/* * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_ARM_VM_MACROASSEMBLER_ARM_HPP #define CPU_ARM_VM_MACROASSEMBLER_ARM_HPP #include "code/codeCacheExtensions.hpp" #include "code/relocInfo.hpp" #include "code/relocInfo_ext.hpp" class BiasedLockingCounters; // Introduced AddressLiteral and its subclasses to ease portability from // x86 and avoid relocation issues class AddressLiteral VALUE_OBJ_CLASS_SPEC { RelocationHolder _rspec; // Typically we use AddressLiterals we want to use their rval // However in some situations we want the lval (effect address) of the item. // We provide a special factory for making those lvals. bool _is_lval; address _target; private: static relocInfo::relocType reloc_for_target(address target) { // Used for ExternalAddress or when the type is not specified // Sometimes ExternalAddress is used for values which aren't // exactly addresses, like the card table base. // external_word_type can't be used for values in the first page // so just skip the reloc in that case. return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; } void set_rspec(relocInfo::relocType rtype); protected: // creation AddressLiteral() : _is_lval(false), _target(NULL) {} public: AddressLiteral(address target, relocInfo::relocType rtype) { _is_lval = false; _target = target; set_rspec(rtype); } AddressLiteral(address target, RelocationHolder const& rspec) : _rspec(rspec), _is_lval(false), _target(target) {} AddressLiteral(address target) { _is_lval = false; _target = target; set_rspec(reloc_for_target(target)); } AddressLiteral addr() { AddressLiteral ret = *this; ret._is_lval = true; return ret; } private: address target() { return _target; } bool is_lval() { return _is_lval; } relocInfo::relocType reloc() const { return _rspec.type(); } const RelocationHolder& rspec() const { return _rspec; } friend class Assembler; friend class MacroAssembler; friend class Address; friend class LIR_Assembler; friend class InlinedAddress; }; class ExternalAddress: public AddressLiteral { public: ExternalAddress(address target) : AddressLiteral(target) {} }; class InternalAddress: public AddressLiteral { public: InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {} }; // Inlined constants, for use with ldr_literal / bind_literal // Note: InlinedInteger not supported (use move_slow(Register,int[,cond])) class InlinedLiteral: StackObj { public: Label label; // need to be public for direct access with & InlinedLiteral() { } }; class InlinedMetadata: public InlinedLiteral { private: Metadata *_data; public: InlinedMetadata(Metadata *data): InlinedLiteral() { _data = data; } Metadata *data() { return _data; } }; // Currently unused // class InlinedOop: public InlinedLiteral { // private: // jobject _jobject; // // public: // InlinedOop(jobject target): InlinedLiteral() { // _jobject = target; // } // jobject jobject() { return _jobject; } // }; class InlinedAddress: public InlinedLiteral { private: AddressLiteral _literal; public: InlinedAddress(jobject object): InlinedLiteral(), _literal((address)object, relocInfo::oop_type) { ShouldNotReachHere(); // use mov_oop (or implement InlinedOop) } InlinedAddress(Metadata *data): InlinedLiteral(), _literal((address)data, relocInfo::metadata_type) { ShouldNotReachHere(); // use InlinedMetadata or mov_metadata } InlinedAddress(address target, const RelocationHolder &rspec): InlinedLiteral(), _literal(target, rspec) { assert(rspec.type() != relocInfo::oop_type, "Do not use InlinedAddress for oops"); assert(rspec.type() != relocInfo::metadata_type, "Do not use InlinedAddress for metadatas"); } InlinedAddress(address target, relocInfo::relocType rtype): InlinedLiteral(), _literal(target, rtype) { assert(rtype != relocInfo::oop_type, "Do not use InlinedAddress for oops"); assert(rtype != relocInfo::metadata_type, "Do not use InlinedAddress for metadatas"); } // Note: default is relocInfo::none for InlinedAddress InlinedAddress(address target): InlinedLiteral(), _literal(target, relocInfo::none) { } address target() { return _literal.target(); } const RelocationHolder& rspec() const { return _literal.rspec(); } }; class InlinedString: public InlinedLiteral { private: const char* _msg; public: InlinedString(const char* msg): InlinedLiteral() { _msg = msg; } const char* msg() { return _msg; } }; class MacroAssembler: public Assembler { protected: // Support for VM calls // // This is the base routine called by the different versions of call_VM_leaf. void call_VM_leaf_helper(address entry_point, int number_of_arguments); // This is the base routine called by the different versions of call_VM. The interpreter // may customize this version by overriding it for its purposes (e.g., to save/restore // additional registers when doing a VM call). virtual void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions); // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. // The implementation is only non-empty for the InterpreterMacroAssembler, // as only the interpreter handles PopFrame and ForceEarlyReturn requests. virtual void check_and_handle_popframe() {} virtual void check_and_handle_earlyret() {} public: MacroAssembler(CodeBuffer* code) : Assembler(code) {} // By default, we do not need relocation information for non // patchable absolute addresses. However, when needed by some // extensions, ignore_non_patchable_relocations can be modified, // returning false to preserve all relocation information. inline bool ignore_non_patchable_relocations() { return true; } // Initially added to the Assembler interface as a pure virtual: // RegisterConstant delayed_value(..) // for: // 6812678 macro assembler needs delayed binding of a few constants (for 6655638) // this was subsequently modified to its present name and return type virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset); #ifdef AARCH64 # define NOT_IMPLEMENTED() unimplemented("NYI at " __FILE__ ":" XSTR(__LINE__)) # define NOT_TESTED() warn("Not tested at " __FILE__ ":" XSTR(__LINE__)) #endif void align(int modulus); // Support for VM calls // // It is imperative that all calls into the VM are handled via the call_VM methods. // They make sure that the stack linkage is setup correctly. call_VM's correspond // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. void call_VM(Register oop_result, address entry_point, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); // The following methods are required by templateTable.cpp, // but not used on ARM. void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); // Note: The super_call_VM calls are not used on ARM // Raw call, without saving/restoring registers, exception handling, etc. // Mainly used from various stubs. // Note: if 'save_R9_if_scratched' is true, call_VM may on some // platforms save values on the stack. Set it to false (and handle // R9 in the callers) if the top of the stack must not be modified // by call_VM. void call_VM(address entry_point, bool save_R9_if_scratched); void call_VM_leaf(address entry_point); void call_VM_leaf(address entry_point, Register arg_1); void call_VM_leaf(address entry_point, Register arg_1, Register arg_2); void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); void get_vm_result(Register oop_result, Register tmp); void get_vm_result_2(Register metadata_result, Register tmp); // Always sets/resets sp, which default to SP if (last_sp == noreg) // Optionally sets/resets fp (use noreg to avoid setting it) // Always sets/resets pc on AArch64; optionally sets/resets pc on 32-bit ARM depending on save_last_java_pc flag // Note: when saving PC, set_last_Java_frame returns PC's offset in the code section // (for oop_maps offset computation) int set_last_Java_frame(Register last_sp, Register last_fp, bool save_last_java_pc, Register tmp); void reset_last_Java_frame(Register tmp); // status set in set_last_Java_frame for reset_last_Java_frame bool _fp_saved; bool _pc_saved; #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #define STOP(error) __ stop(error) #else #define BLOCK_COMMENT(str) __ block_comment(str) #define STOP(error) __ block_comment(error); __ stop(error) #endif void lookup_virtual_method(Register recv_klass, Register vtable_index, Register method_result); // Test sub_klass against super_klass, with fast and slow paths. // The fast path produces a tri-state answer: yes / no / maybe-slow. // One of the three labels can be NULL, meaning take the fall-through. // No registers are killed, except temp_regs. void check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp_reg2, Label* L_success, Label* L_failure, Label* L_slow_path); // The rest of the type check; must be wired to a corresponding fast path. // It does not repeat the fast path logic, so don't use it standalone. // temp_reg3 can be noreg, if no temps are available. // Updates the sub's secondary super cache as necessary. // If set_cond_codes: // - condition codes will be Z on success, NZ on failure. // - temp_reg will be 0 on success, non-0 on failure void check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp_reg2, Register temp_reg3, // auto assigned if noreg Label* L_success, Label* L_failure, bool set_cond_codes = false); // Simplified, combined version, good for typical uses. // temp_reg3 can be noreg, if no temps are available. It is used only on slow path. // Falls through on failure. void check_klass_subtype(Register sub_klass, Register super_klass, Register temp_reg, Register temp_reg2, Register temp_reg3, // auto assigned on slow path if noreg Label& L_success); // Returns address of receiver parameter, using tmp as base register. tmp and params_count can be the same. Address receiver_argument_address(Register params_base, Register params_count, Register tmp); void _verify_oop(Register reg, const char* s, const char* file, int line); void _verify_oop_addr(Address addr, const char * s, const char* file, int line); // TODO: verify method and klass metadata (compare against vptr?) void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {} #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__) #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop ", __FILE__, __LINE__) #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) void null_check(Register reg, Register tmp, int offset = -1); inline void null_check(Register reg) { null_check(reg, noreg, -1); } // for C1 lir_null_check // Puts address of allocated object into register `obj` and end of allocated object into register `obj_end`. void eden_allocate(Register obj, Register obj_end, Register tmp1, Register tmp2, RegisterOrConstant size_expression, Label& slow_case); void tlab_allocate(Register obj, Register obj_end, Register tmp1, RegisterOrConstant size_expression, Label& slow_case); void tlab_refill(Register top, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Label& try_eden, Label& slow_case); void zero_memory(Register start, Register end, Register tmp); void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register tmp); static bool needs_explicit_null_check(intptr_t offset); void arm_stack_overflow_check(int frame_size_in_bytes, Register tmp); void arm_stack_overflow_check(Register Rsize, Register tmp); void bang_stack_with_offset(int offset) { ShouldNotReachHere(); } // Biased locking support // lock_reg and obj_reg must be loaded up with the appropriate values. // swap_reg must be supplied. // tmp_reg must be supplied. // Optional slow case is for implementations (interpreter and C1) which branch to // slow case directly. If slow_case is NULL, then leaves condition // codes set (for C2's Fast_Lock node) and jumps to done label. // Falls through for the fast locking attempt. // Returns offset of first potentially-faulting instruction for null // check info (currently consumed only by C1). If // swap_reg_contains_mark is true then returns -1 as it is assumed // the calling code has already passed any potential faults. // Notes: // - swap_reg and tmp_reg are scratched // - Rtemp was (implicitly) scratched and can now be specified as the tmp2 int biased_locking_enter(Register obj_reg, Register swap_reg, Register tmp_reg, bool swap_reg_contains_mark, Register tmp2, Label& done, Label& slow_case, BiasedLockingCounters* counters = NULL); void biased_locking_exit(Register obj_reg, Register temp_reg, Label& done); // Building block for CAS cases of biased locking: makes CAS and records statistics. // Optional slow_case label is used to transfer control if CAS fails. Otherwise leaves condition codes set. void biased_locking_enter_with_cas(Register obj_reg, Register old_mark_reg, Register new_mark_reg, Register tmp, Label& slow_case, int* counter_addr); #ifndef AARCH64 void nop() { mov(R0, R0); } void push(Register rd, AsmCondition cond = al) { assert(rd != SP, "unpredictable instruction"); str(rd, Address(SP, -wordSize, pre_indexed), cond); } void push(RegisterSet reg_set, AsmCondition cond = al) { assert(!reg_set.contains(SP), "unpredictable instruction"); stmdb(SP, reg_set, writeback, cond); } void pop(Register rd, AsmCondition cond = al) { assert(rd != SP, "unpredictable instruction"); ldr(rd, Address(SP, wordSize, post_indexed), cond); } void pop(RegisterSet reg_set, AsmCondition cond = al) { assert(!reg_set.contains(SP), "unpredictable instruction"); ldmia(SP, reg_set, writeback, cond); } void fpushd(FloatRegister fd, AsmCondition cond = al) { fstmdbd(SP, FloatRegisterSet(fd), writeback, cond); } void fpushs(FloatRegister fd, AsmCondition cond = al) { fstmdbs(SP, FloatRegisterSet(fd), writeback, cond); } void fpopd(FloatRegister fd, AsmCondition cond = al) { fldmiad(SP, FloatRegisterSet(fd), writeback, cond); } void fpops(FloatRegister fd, AsmCondition cond = al) { fldmias(SP, FloatRegisterSet(fd), writeback, cond); } #endif // !AARCH64 // Order access primitives enum Membar_mask_bits { StoreStore = 1 << 3, LoadStore = 1 << 2, StoreLoad = 1 << 1, LoadLoad = 1 << 0 }; #ifdef AARCH64 // tmp register is not used on AArch64, this parameter is provided solely for better compatibility with 32-bit ARM void membar(Membar_mask_bits order_constraint, Register tmp = noreg); #else void membar(Membar_mask_bits mask, Register tmp, bool preserve_flags = true, Register load_tgt = noreg); #endif void breakpoint(AsmCondition cond = al); void stop(const char* msg); // prints msg and continues void warn(const char* msg); void unimplemented(const char* what = ""); void should_not_reach_here() { stop("should not reach here"); } static void debug(const char* msg, const intx* registers); // Create a walkable frame to help tracking down who called this code. // Returns the frame size in words. int should_not_call_this() { raw_push(FP, LR); should_not_reach_here(); flush(); return 2; // frame_size_in_words (FP+LR) } int save_all_registers(); void restore_all_registers(); int save_caller_save_registers(); void restore_caller_save_registers(); void add_rc(Register dst, Register arg1, RegisterOrConstant arg2); // add_slow and mov_slow are used to manipulate offsets larger than 1024, // these functions are not expected to handle all possible constants, // only those that can really occur during compilation void add_slow(Register rd, Register rn, int c); void sub_slow(Register rd, Register rn, int c); #ifdef AARCH64 static int mov_slow_helper(Register rd, intptr_t c, MacroAssembler* masm /* optional */); #endif void mov_slow(Register rd, intptr_t c NOT_AARCH64_ARG(AsmCondition cond = al)); void mov_slow(Register rd, const char *string); void mov_slow(Register rd, address addr); void patchable_mov_oop(Register rd, jobject o, int oop_index) { mov_oop(rd, o, oop_index AARCH64_ONLY_ARG(true)); } void mov_oop(Register rd, jobject o, int index = 0 AARCH64_ONLY_ARG(bool patchable = false) NOT_AARCH64_ARG(AsmCondition cond = al)); void patchable_mov_metadata(Register rd, Metadata* o, int index) { mov_metadata(rd, o, index AARCH64_ONLY_ARG(true)); } void mov_metadata(Register rd, Metadata* o, int index = 0 AARCH64_ONLY_ARG(bool patchable = false)); void mov_float(FloatRegister fd, jfloat c NOT_AARCH64_ARG(AsmCondition cond = al)); void mov_double(FloatRegister fd, jdouble c NOT_AARCH64_ARG(AsmCondition cond = al)); #ifdef AARCH64 int mov_pc_to(Register rd) { Label L; adr(rd, L); bind(L); return offset(); } #endif // Note: this variant of mov_address assumes the address moves with // the code. Do *not* implement it with non-relocated instructions, // unless PC-relative. #ifdef AARCH64 void mov_relative_address(Register rd, address addr) { adr(rd, addr); } #else void mov_relative_address(Register rd, address addr, AsmCondition cond = al) { int offset = addr - pc() - 8; assert((offset & 3) == 0, "bad alignment"); if (offset >= 0) { assert(AsmOperand::is_rotated_imm(offset), "addr too far"); add(rd, PC, offset, cond); } else { assert(AsmOperand::is_rotated_imm(-offset), "addr too far"); sub(rd, PC, -offset, cond); } } #endif // AARCH64 // Runtime address that may vary from one execution to another. The // symbolic_reference describes what the address is, allowing // the address to be resolved in a different execution context. // Warning: do not implement as a PC relative address. void mov_address(Register rd, address addr, symbolic_Relocation::symbolic_reference t) { mov_address(rd, addr, RelocationHolder::none); } // rspec can be RelocationHolder::none (for ignored symbolic_Relocation). // In that case, the address is absolute and the generated code need // not be relocable. void mov_address(Register rd, address addr, RelocationHolder const& rspec) { assert(rspec.type() != relocInfo::runtime_call_type, "do not use mov_address for runtime calls"); assert(rspec.type() != relocInfo::static_call_type, "do not use mov_address for relocable calls"); if (rspec.type() == relocInfo::none) { // absolute address, relocation not needed mov_slow(rd, (intptr_t)addr); return; } #ifndef AARCH64 if (VM_Version::supports_movw()) { relocate(rspec); int c = (int)addr; movw(rd, c & 0xffff); if ((unsigned int)c >> 16) { movt(rd, (unsigned int)c >> 16); } return; } #endif Label skip_literal; InlinedAddress addr_literal(addr, rspec); ldr_literal(rd, addr_literal); b(skip_literal); bind_literal(addr_literal); // AARCH64 WARNING: because of alignment padding, extra padding // may be required to get a consistent size for C2, or rules must // overestimate size see MachEpilogNode::size bind(skip_literal); } // Note: Do not define mov_address for a Label // // Load from addresses potentially within the code are now handled // InlinedLiteral subclasses (to allow more flexibility on how the // ldr_literal is performed). void ldr_literal(Register rd, InlinedAddress& L) { assert(L.rspec().type() != relocInfo::runtime_call_type, "avoid ldr_literal for calls"); assert(L.rspec().type() != relocInfo::static_call_type, "avoid ldr_literal for calls"); relocate(L.rspec()); #ifdef AARCH64 ldr(rd, target(L.label)); #else ldr(rd, Address(PC, target(L.label) - pc() - 8)); #endif } void ldr_literal(Register rd, InlinedString& L) { const char* msg = L.msg(); if (code()->consts()->contains((address)msg)) { // string address moves with the code #ifdef AARCH64 ldr(rd, (address)msg); #else ldr(rd, Address(PC, ((address)msg) - pc() - 8)); #endif return; } // Warning: use external strings with care. They are not relocated // if the code moves. If needed, use code_string to move them // to the consts section. #ifdef AARCH64 ldr(rd, target(L.label)); #else ldr(rd, Address(PC, target(L.label) - pc() - 8)); #endif } void ldr_literal(Register rd, InlinedMetadata& L) { // relocation done in the bind_literal for metadatas #ifdef AARCH64 ldr(rd, target(L.label)); #else ldr(rd, Address(PC, target(L.label) - pc() - 8)); #endif } void bind_literal(InlinedAddress& L) { AARCH64_ONLY(align(wordSize)); bind(L.label); assert(L.rspec().type() != relocInfo::metadata_type, "Must use InlinedMetadata"); // We currently do not use oop 'bound' literals. // If the code evolves and the following assert is triggered, // we need to implement InlinedOop (see InlinedMetadata). assert(L.rspec().type() != relocInfo::oop_type, "Inlined oops not supported"); // Note: relocation is handled by relocate calls in ldr_literal AbstractAssembler::emit_address((address)L.target()); } void bind_literal(InlinedString& L) { const char* msg = L.msg(); if (code()->consts()->contains((address)msg)) { // The Label should not be used; avoid binding it // to detect errors. return; } AARCH64_ONLY(align(wordSize)); bind(L.label); AbstractAssembler::emit_address((address)L.msg()); } void bind_literal(InlinedMetadata& L) { AARCH64_ONLY(align(wordSize)); bind(L.label); relocate(metadata_Relocation::spec_for_immediate()); AbstractAssembler::emit_address((address)L.data()); } void load_mirror(Register mirror, Register method, Register tmp); // Porting layer between 32-bit ARM and AArch64 #define COMMON_INSTR_1(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg_type) \ void common_mnemonic(arg_type arg) { \ AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg); \ } #define COMMON_INSTR_2(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg1_type, arg2_type) \ void common_mnemonic(arg1_type arg1, arg2_type arg2) { \ AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg1, arg2); \ } #define COMMON_INSTR_3(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg1_type, arg2_type, arg3_type) \ void common_mnemonic(arg1_type arg1, arg2_type arg2, arg3_type arg3) { \ AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg1, arg2, arg3); \ } COMMON_INSTR_1(jump, br, bx, Register) COMMON_INSTR_1(call, blr, blx, Register) COMMON_INSTR_2(cbz_32, cbz_w, cbz, Register, Label&) COMMON_INSTR_2(cbnz_32, cbnz_w, cbnz, Register, Label&) COMMON_INSTR_2(ldr_u32, ldr_w, ldr, Register, Address) COMMON_INSTR_2(ldr_s32, ldrsw, ldr, Register, Address) COMMON_INSTR_2(str_32, str_w, str, Register, Address) COMMON_INSTR_2(mvn_32, mvn_w, mvn, Register, Register) COMMON_INSTR_2(cmp_32, cmp_w, cmp, Register, Register) COMMON_INSTR_2(neg_32, neg_w, neg, Register, Register) COMMON_INSTR_2(clz_32, clz_w, clz, Register, Register) COMMON_INSTR_2(rbit_32, rbit_w, rbit, Register, Register) COMMON_INSTR_2(cmp_32, cmp_w, cmp, Register, int) COMMON_INSTR_2(cmn_32, cmn_w, cmn, Register, int) COMMON_INSTR_3(add_32, add_w, add, Register, Register, Register) COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, Register) COMMON_INSTR_3(subs_32, subs_w, subs, Register, Register, Register) COMMON_INSTR_3(mul_32, mul_w, mul, Register, Register, Register) COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, Register) COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, Register) COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, Register) COMMON_INSTR_3(add_32, add_w, add, Register, Register, AsmOperand) COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, AsmOperand) COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, AsmOperand) COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, AsmOperand) COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, AsmOperand) COMMON_INSTR_3(add_32, add_w, add, Register, Register, int) COMMON_INSTR_3(adds_32, adds_w, adds, Register, Register, int) COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, int) COMMON_INSTR_3(subs_32, subs_w, subs, Register, Register, int) COMMON_INSTR_2(tst_32, tst_w, tst, Register, unsigned int) COMMON_INSTR_2(tst_32, tst_w, tst, Register, AsmOperand) COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, uint) COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, uint) COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, uint) COMMON_INSTR_1(cmp_zero_float, fcmp0_s, fcmpzs, FloatRegister) COMMON_INSTR_1(cmp_zero_double, fcmp0_d, fcmpzd, FloatRegister) COMMON_INSTR_2(ldr_float, ldr_s, flds, FloatRegister, Address) COMMON_INSTR_2(str_float, str_s, fsts, FloatRegister, Address) COMMON_INSTR_2(mov_float, fmov_s, fcpys, FloatRegister, FloatRegister) COMMON_INSTR_2(neg_float, fneg_s, fnegs, FloatRegister, FloatRegister) COMMON_INSTR_2(abs_float, fabs_s, fabss, FloatRegister, FloatRegister) COMMON_INSTR_2(sqrt_float, fsqrt_s, fsqrts, FloatRegister, FloatRegister) COMMON_INSTR_2(cmp_float, fcmp_s, fcmps, FloatRegister, FloatRegister) COMMON_INSTR_3(add_float, fadd_s, fadds, FloatRegister, FloatRegister, FloatRegister) COMMON_INSTR_3(sub_float, fsub_s, fsubs, FloatRegister, FloatRegister, FloatRegister) COMMON_INSTR_3(mul_float, fmul_s, fmuls, FloatRegister, FloatRegister, FloatRegister) COMMON_INSTR_3(div_float, fdiv_s, fdivs, FloatRegister, FloatRegister, FloatRegister) COMMON_INSTR_2(ldr_double, ldr_d, fldd, FloatRegister, Address) COMMON_INSTR_2(str_double, str_d, fstd, FloatRegister, Address) COMMON_INSTR_2(mov_double, fmov_d, fcpyd, FloatRegister, FloatRegister) COMMON_INSTR_2(neg_double, fneg_d, fnegd, FloatRegister, FloatRegister) COMMON_INSTR_2(cmp_double, fcmp_d, fcmpd, FloatRegister, FloatRegister) COMMON_INSTR_2(abs_double, fabs_d, fabsd, FloatRegister, FloatRegister) COMMON_INSTR_2(sqrt_double, fsqrt_d, fsqrtd, FloatRegister, FloatRegister) COMMON_INSTR_3(add_double, fadd_d, faddd, FloatRegister, FloatRegister, FloatRegister) COMMON_INSTR_3(sub_double, fsub_d, fsubd, FloatRegister, FloatRegister, FloatRegister) COMMON_INSTR_3(mul_double, fmul_d, fmuld, FloatRegister, FloatRegister, FloatRegister) COMMON_INSTR_3(div_double, fdiv_d, fdivd, FloatRegister, FloatRegister, FloatRegister) COMMON_INSTR_2(convert_f2d, fcvt_ds, fcvtds, FloatRegister, FloatRegister) COMMON_INSTR_2(convert_d2f, fcvt_sd, fcvtsd, FloatRegister, FloatRegister) COMMON_INSTR_2(mov_fpr2gpr_float, fmov_ws, fmrs, Register, FloatRegister) #undef COMMON_INSTR_1 #undef COMMON_INSTR_2 #undef COMMON_INSTR_3 #ifdef AARCH64 void mov(Register dst, Register src, AsmCondition cond) { if (cond == al) { mov(dst, src); } else { csel(dst, src, dst, cond); } } // Propagate other overloaded "mov" methods from Assembler. void mov(Register dst, Register src) { Assembler::mov(dst, src); } void mov(Register rd, int imm) { Assembler::mov(rd, imm); } void mov(Register dst, int imm, AsmCondition cond) { assert(imm == 0 || imm == 1, ""); if (imm == 0) { mov(dst, ZR, cond); } else if (imm == 1) { csinc(dst, dst, ZR, inverse(cond)); } else if (imm == -1) { csinv(dst, dst, ZR, inverse(cond)); } else { fatal("illegal mov(R%d,%d,cond)", dst->encoding(), imm); } } void movs(Register dst, Register src) { adds(dst, src, 0); } #else // AARCH64 void tbz(Register rt, int bit, Label& L) { assert(0 <= bit && bit < BitsPerWord, "bit number is out of range"); tst(rt, 1 << bit); b(L, eq); } void tbnz(Register rt, int bit, Label& L) { assert(0 <= bit && bit < BitsPerWord, "bit number is out of range"); tst(rt, 1 << bit); b(L, ne); } void cbz(Register rt, Label& L) { cmp(rt, 0); b(L, eq); } void cbz(Register rt, address target) { cmp(rt, 0); b(target, eq); } void cbnz(Register rt, Label& L) { cmp(rt, 0); b(L, ne); } void ret(Register dst = LR) { bx(dst); } #endif // AARCH64 Register zero_register(Register tmp) { #ifdef AARCH64 return ZR; #else mov(tmp, 0); return tmp; #endif } void logical_shift_left(Register dst, Register src, int shift) { #ifdef AARCH64 _lsl(dst, src, shift); #else mov(dst, AsmOperand(src, lsl, shift)); #endif } void logical_shift_left_32(Register dst, Register src, int shift) { #ifdef AARCH64 _lsl_w(dst, src, shift); #else mov(dst, AsmOperand(src, lsl, shift)); #endif } void logical_shift_right(Register dst, Register src, int shift) { #ifdef AARCH64 _lsr(dst, src, shift); #else mov(dst, AsmOperand(src, lsr, shift)); #endif } void arith_shift_right(Register dst, Register src, int shift) { #ifdef AARCH64 _asr(dst, src, shift); #else mov(dst, AsmOperand(src, asr, shift)); #endif } void asr_32(Register dst, Register src, int shift) { #ifdef AARCH64 _asr_w(dst, src, shift); #else mov(dst, AsmOperand(src, asr, shift)); #endif } // If holds, compares r1 and r2. Otherwise, flags are set so that does not hold. void cond_cmp(Register r1, Register r2, AsmCondition cond) { #ifdef AARCH64 ccmp(r1, r2, flags_for_condition(inverse(cond)), cond); #else cmp(r1, r2, cond); #endif } // If holds, compares r and imm. Otherwise, flags are set so that does not hold. void cond_cmp(Register r, int imm, AsmCondition cond) { #ifdef AARCH64 ccmp(r, imm, flags_for_condition(inverse(cond)), cond); #else cmp(r, imm, cond); #endif } void align_reg(Register dst, Register src, int align) { assert (is_power_of_2(align), "should be"); #ifdef AARCH64 andr(dst, src, ~(uintx)(align-1)); #else bic(dst, src, align-1); #endif } void prefetch_read(Address addr) { #ifdef AARCH64 prfm(pldl1keep, addr); #else pld(addr); #endif } void raw_push(Register r1, Register r2) { #ifdef AARCH64 stp(r1, r2, Address(SP, -2*wordSize, pre_indexed)); #else assert(r1->encoding() < r2->encoding(), "should be ordered"); push(RegisterSet(r1) | RegisterSet(r2)); #endif } void raw_pop(Register r1, Register r2) { #ifdef AARCH64 ldp(r1, r2, Address(SP, 2*wordSize, post_indexed)); #else assert(r1->encoding() < r2->encoding(), "should be ordered"); pop(RegisterSet(r1) | RegisterSet(r2)); #endif } void raw_push(Register r1, Register r2, Register r3) { #ifdef AARCH64 raw_push(r1, r2); raw_push(r3, ZR); #else assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered"); push(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3)); #endif } void raw_pop(Register r1, Register r2, Register r3) { #ifdef AARCH64 raw_pop(r3, ZR); raw_pop(r1, r2); #else assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered"); pop(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3)); #endif } // Restores registers r1 and r2 previously saved by raw_push(r1, r2, ret_addr) and returns by ret_addr. Clobbers LR. void raw_pop_and_ret(Register r1, Register r2) { #ifdef AARCH64 raw_pop(r1, r2, LR); ret(); #else raw_pop(r1, r2, PC); #endif } void indirect_jump(Address addr, Register scratch) { #ifdef AARCH64 ldr(scratch, addr); br(scratch); #else ldr(PC, addr); #endif } void indirect_jump(InlinedAddress& literal, Register scratch) { #ifdef AARCH64 ldr_literal(scratch, literal); br(scratch); #else ldr_literal(PC, literal); #endif } #ifndef AARCH64 void neg(Register dst, Register src) { rsb(dst, src, 0); } #endif void branch_if_negative_32(Register r, Label& L) { // Note about branch_if_negative_32() / branch_if_any_negative_32() implementation for AArch64: // tbnz is not used instead of tst & b.mi because destination may be out of tbnz range (+-32KB) // since these methods are used in LIR_Assembler::emit_arraycopy() to jump to stub entry. tst_32(r, r); b(L, mi); } void branch_if_any_negative_32(Register r1, Register r2, Register tmp, Label& L) { #ifdef AARCH64 orr_32(tmp, r1, r2); tst_32(tmp, tmp); #else orrs(tmp, r1, r2); #endif b(L, mi); } void branch_if_any_negative_32(Register r1, Register r2, Register r3, Register tmp, Label& L) { orr_32(tmp, r1, r2); #ifdef AARCH64 orr_32(tmp, tmp, r3); tst_32(tmp, tmp); #else orrs(tmp, tmp, r3); #endif b(L, mi); } void add_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) { #ifdef AARCH64 add(dst, r1, r2, ex_sxtw, shift); #else add(dst, r1, AsmOperand(r2, lsl, shift)); #endif } void sub_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) { #ifdef AARCH64 sub(dst, r1, r2, ex_sxtw, shift); #else sub(dst, r1, AsmOperand(r2, lsl, shift)); #endif } // klass oop manipulations if compressed #ifdef AARCH64 void load_klass(Register dst_klass, Register src_oop); #else void load_klass(Register dst_klass, Register src_oop, AsmCondition cond = al); #endif // AARCH64 void store_klass(Register src_klass, Register dst_oop); #ifdef AARCH64 void store_klass_gap(Register dst); #endif // AARCH64 // oop manipulations void load_heap_oop(Register dst, Address src); void store_heap_oop(Register src, Address dst); void store_heap_oop(Address dst, Register src) { store_heap_oop(src, dst); } void store_heap_oop_null(Register src, Address dst); #ifdef AARCH64 void encode_heap_oop(Register dst, Register src); void encode_heap_oop(Register r) { encode_heap_oop(r, r); } void decode_heap_oop(Register dst, Register src); void decode_heap_oop(Register r) { decode_heap_oop(r, r); } #ifdef COMPILER2 void encode_heap_oop_not_null(Register dst, Register src); void decode_heap_oop_not_null(Register dst, Register src); void set_narrow_klass(Register dst, Klass* k); void set_narrow_oop(Register dst, jobject obj); #endif void encode_klass_not_null(Register r); void encode_klass_not_null(Register dst, Register src); void decode_klass_not_null(Register r); void decode_klass_not_null(Register dst, Register src); void reinit_heapbase(); #ifdef ASSERT void verify_heapbase(const char* msg); #endif // ASSERT static int instr_count_for_mov_slow(intptr_t c); static int instr_count_for_mov_slow(address addr); static int instr_count_for_decode_klass_not_null(); #endif // AARCH64 void ldr_global_ptr(Register reg, address address_of_global); void ldr_global_s32(Register reg, address address_of_global); void ldrb_global(Register reg, address address_of_global); // address_placeholder_instruction is invalid instruction and is used // as placeholder in code for address of label enum { address_placeholder_instruction = 0xFFFFFFFF }; void emit_address(Label& L) { assert(!L.is_bound(), "otherwise address will not be patched"); target(L); // creates relocation which will be patched later assert ((offset() & (wordSize-1)) == 0, "should be aligned by word size"); #ifdef AARCH64 emit_int32(address_placeholder_instruction); emit_int32(address_placeholder_instruction); #else AbstractAssembler::emit_address((address)address_placeholder_instruction); #endif } void b(address target, AsmCondition cond = al) { Assembler::b(target, cond); \ } void b(Label& L, AsmCondition cond = al) { // internal jumps Assembler::b(target(L), cond); } void bl(address target NOT_AARCH64_ARG(AsmCondition cond = al)) { Assembler::bl(target NOT_AARCH64_ARG(cond)); } void bl(Label& L NOT_AARCH64_ARG(AsmCondition cond = al)) { // internal calls Assembler::bl(target(L) NOT_AARCH64_ARG(cond)); } #ifndef AARCH64 void adr(Register dest, Label& L, AsmCondition cond = al) { int delta = target(L) - pc() - 8; if (delta >= 0) { add(dest, PC, delta, cond); } else { sub(dest, PC, -delta, cond); } } #endif // !AARCH64 // Variable-length jump and calls. We now distinguish only the // patchable case from the other cases. Patchable must be // distinguised from relocable. Relocable means the generated code // containing the jump/call may move. Patchable means that the // targeted address may be changed later. // Non patchable versions. // - used only for relocInfo::runtime_call_type and relocInfo::none // - may use relative or absolute format (do not use relocInfo::none // if the generated code may move) // - the implementation takes into account switch to THUMB mode if the // destination is a THUMB address // - the implementation supports far targets // // To reduce regression risk, scratch still defaults to noreg on // arm32. This results in patchable instructions. However, if // patching really matters, the call sites should be modified and // use patchable_call or patchable_jump. If patching is not required // and if a register can be cloberred, it should be explicitly // specified to allow future optimizations. void jump(address target, relocInfo::relocType rtype = relocInfo::runtime_call_type, Register scratch = AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg) #ifndef AARCH64 , AsmCondition cond = al #endif ); void call(address target, RelocationHolder rspec NOT_AARCH64_ARG(AsmCondition cond = al)); void call(address target, relocInfo::relocType rtype = relocInfo::runtime_call_type NOT_AARCH64_ARG(AsmCondition cond = al)) { call(target, Relocation::spec_simple(rtype) NOT_AARCH64_ARG(cond)); } void jump(AddressLiteral dest) { jump(dest.target(), dest.reloc()); } #ifndef AARCH64 void jump(address dest, relocInfo::relocType rtype, AsmCondition cond) { jump(dest, rtype, Rtemp, cond); } #endif void call(AddressLiteral dest) { call(dest.target(), dest.reloc()); } // Patchable version: // - set_destination can be used to atomically change the target // // The targets for patchable_jump and patchable_call must be in the // code cache. // [ including possible extensions of the code cache, like AOT code ] // // To reduce regression risk, scratch still defaults to noreg on // arm32. If a register can be cloberred, it should be explicitly // specified to allow future optimizations. void patchable_jump(address target, relocInfo::relocType rtype = relocInfo::runtime_call_type, Register scratch = AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg) #ifndef AARCH64 , AsmCondition cond = al #endif ); // patchable_call may scratch Rtemp int patchable_call(address target, RelocationHolder const& rspec, bool c2 = false); int patchable_call(address target, relocInfo::relocType rtype, bool c2 = false) { return patchable_call(target, Relocation::spec_simple(rtype), c2); } #if defined(AARCH64) && defined(COMPILER2) static int call_size(address target, bool far, bool patchable); #endif #ifdef AARCH64 static bool page_reachable_from_cache(address target); #endif static bool _reachable_from_cache(address target); static bool _cache_fully_reachable(); bool cache_fully_reachable(); bool reachable_from_cache(address target); void zero_extend(Register rd, Register rn, int bits); void sign_extend(Register rd, Register rn, int bits); inline void zap_high_non_significant_bits(Register r) { #ifdef AARCH64 if(ZapHighNonSignificantBits) { movk(r, 0xBAAD, 48); movk(r, 0xF00D, 32); } #endif } #ifndef AARCH64 void long_move(Register rd_lo, Register rd_hi, Register rn_lo, Register rn_hi, AsmCondition cond = al); void long_shift(Register rd_lo, Register rd_hi, Register rn_lo, Register rn_hi, AsmShift shift, Register count); void long_shift(Register rd_lo, Register rd_hi, Register rn_lo, Register rn_hi, AsmShift shift, int count); void atomic_cas(Register tmpreg1, Register tmpreg2, Register oldval, Register newval, Register base, int offset); void atomic_cas_bool(Register oldval, Register newval, Register base, int offset, Register tmpreg); void atomic_cas64(Register temp_lo, Register temp_hi, Register temp_result, Register oldval_lo, Register oldval_hi, Register newval_lo, Register newval_hi, Register base, int offset); #endif // !AARCH64 void cas_for_lock_acquire(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false); void cas_for_lock_release(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false); #ifndef PRODUCT // Preserves flags and all registers. // On SMP the updated value might not be visible to external observers without a sychronization barrier void cond_atomic_inc32(AsmCondition cond, int* counter_addr); #endif // !PRODUCT // unconditional non-atomic increment void inc_counter(address counter_addr, Register tmpreg1, Register tmpreg2); void inc_counter(int* counter_addr, Register tmpreg1, Register tmpreg2) { inc_counter((address) counter_addr, tmpreg1, tmpreg2); } void pd_patch_instruction(address branch, address target); // Loading and storing values by size and signed-ness; // size must not exceed wordSize (i.e. 8-byte values are not supported on 32-bit ARM); // each of these calls generates exactly one load or store instruction, // so src can be pre- or post-indexed address. #ifdef AARCH64 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); void store_sized_value(Register src, Address dst, size_t size_in_bytes); #else // 32-bit ARM variants also support conditional execution void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, AsmCondition cond = al); void store_sized_value(Register src, Address dst, size_t size_in_bytes, AsmCondition cond = al); #endif void lookup_interface_method(Register recv_klass, Register intf_klass, Register itable_index, Register method_result, Register temp_reg1, Register temp_reg2, Label& L_no_such_interface); // Compare char[] arrays aligned to 4 bytes. void char_arrays_equals(Register ary1, Register ary2, Register limit, Register result, Register chr1, Register chr2, Label& Ldone); void floating_cmp(Register dst); // improved x86 portability (minimizing source code changes) void ldr_literal(Register rd, AddressLiteral addr) { relocate(addr.rspec()); #ifdef AARCH64 ldr(rd, addr.target()); #else ldr(rd, Address(PC, addr.target() - pc() - 8)); #endif } void lea(Register Rd, AddressLiteral addr) { // Never dereferenced, as on x86 (lval status ignored) mov_address(Rd, addr.target(), addr.rspec()); } void restore_default_fp_mode(); #ifdef COMPILER2 #ifdef AARCH64 // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file. void fast_lock(Register obj, Register box, Register scratch, Register scratch2, Register scratch3); void fast_unlock(Register obj, Register box, Register scratch, Register scratch2, Register scratch3); #else void fast_lock(Register obj, Register box, Register scratch, Register scratch2); void fast_unlock(Register obj, Register box, Register scratch, Register scratch2); #endif #endif #ifdef AARCH64 #define F(mnemonic) \ void mnemonic(Register rt, address target) { \ Assembler::mnemonic(rt, target); \ } \ void mnemonic(Register rt, Label& L) { \ Assembler::mnemonic(rt, target(L)); \ } F(cbz_w); F(cbnz_w); F(cbz); F(cbnz); #undef F #define F(mnemonic) \ void mnemonic(Register rt, int bit, address target) { \ Assembler::mnemonic(rt, bit, target); \ } \ void mnemonic(Register rt, int bit, Label& L) { \ Assembler::mnemonic(rt, bit, target(L)); \ } F(tbz); F(tbnz); #undef F #endif // AARCH64 }; // The purpose of this class is to build several code fragments of the same size // in order to allow fast table branch. class FixedSizeCodeBlock VALUE_OBJ_CLASS_SPEC { public: FixedSizeCodeBlock(MacroAssembler* masm, int size_in_instrs, bool enabled); ~FixedSizeCodeBlock(); private: MacroAssembler* _masm; address _start; int _size_in_instrs; bool _enabled; }; #endif // CPU_ARM_VM_MACROASSEMBLER_ARM_HPP