1 /*
   2  * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.math.DoubleToDecimal;
  29 import jdk.internal.math.FloatingDecimal;
  30 import jdk.internal.math.DoubleConsts;
  31 import jdk.internal.HotSpotIntrinsicCandidate;
  32 
  33 /**
  34  * The {@code Double} class wraps a value of the primitive type
  35  * {@code double} in an object. An object of type
  36  * {@code Double} contains a single field whose type is
  37  * {@code double}.
  38  *
  39  * <p>In addition, this class provides several methods for converting a
  40  * {@code double} to a {@code String} and a
  41  * {@code String} to a {@code double}, as well as other
  42  * constants and methods useful when dealing with a
  43  * {@code double}.
  44  *
  45  * @author  Lee Boynton
  46  * @author  Arthur van Hoff
  47  * @author  Joseph D. Darcy
  48  * @since 1.0
  49  */
  50 public final class Double extends Number implements Comparable<Double> {
  51     /**
  52      * A constant holding the positive infinity of type
  53      * {@code double}. It is equal to the value returned by
  54      * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
  55      */
  56     public static final double POSITIVE_INFINITY = 1.0 / 0.0;
  57 
  58     /**
  59      * A constant holding the negative infinity of type
  60      * {@code double}. It is equal to the value returned by
  61      * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
  62      */
  63     public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
  64 
  65     /**
  66      * A constant holding a Not-a-Number (NaN) value of type
  67      * {@code double}. It is equivalent to the value returned by
  68      * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
  69      */
  70     public static final double NaN = 0.0d / 0.0;
  71 
  72     /**
  73      * A constant holding the largest positive finite value of type
  74      * {@code double},
  75      * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
  76      * the hexadecimal floating-point literal
  77      * {@code 0x1.fffffffffffffP+1023} and also equal to
  78      * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
  79      */
  80     public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
  81 
  82     /**
  83      * A constant holding the smallest positive normal value of type
  84      * {@code double}, 2<sup>-1022</sup>.  It is equal to the
  85      * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
  86      * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
  87      *
  88      * @since 1.6
  89      */
  90     public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
  91 
  92     /**
  93      * A constant holding the smallest positive nonzero value of type
  94      * {@code double}, 2<sup>-1074</sup>. It is equal to the
  95      * hexadecimal floating-point literal
  96      * {@code 0x0.0000000000001P-1022} and also equal to
  97      * {@code Double.longBitsToDouble(0x1L)}.
  98      */
  99     public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
 100 
 101     /**
 102      * Maximum exponent a finite {@code double} variable may have.
 103      * It is equal to the value returned by
 104      * {@code Math.getExponent(Double.MAX_VALUE)}.
 105      *
 106      * @since 1.6
 107      */
 108     public static final int MAX_EXPONENT = 1023;
 109 
 110     /**
 111      * Minimum exponent a normalized {@code double} variable may
 112      * have.  It is equal to the value returned by
 113      * {@code Math.getExponent(Double.MIN_NORMAL)}.
 114      *
 115      * @since 1.6
 116      */
 117     public static final int MIN_EXPONENT = -1022;
 118 
 119     /**
 120      * The number of bits used to represent a {@code double} value.
 121      *
 122      * @since 1.5
 123      */
 124     public static final int SIZE = 64;
 125 
 126     /**
 127      * The number of bytes used to represent a {@code double} value.
 128      *
 129      * @since 1.8
 130      */
 131     public static final int BYTES = SIZE / Byte.SIZE;
 132 
 133     /**
 134      * The {@code Class} instance representing the primitive type
 135      * {@code double}.
 136      *
 137      * @since 1.1
 138      */
 139     @SuppressWarnings("unchecked")
 140     public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
 141 
 142     /**
 143      * Returns a string rendering of the {@code double} argument.
 144      *
 145      * <p>The characters of the result are all drawn from the ASCII set.
 146      * <ul>
 147      *     <li> Any NaN, whether quiet or signaling, is rendered symbolically
 148      *     as {@code "NaN"}, regardless of the sign bit.
 149      *     <li> The infinities +&infin; and -&infin; are rendered as
 150      *     {@code "Infinity"} and {@code "-Infinity"}, respectively.
 151      *     <li> The positive and negative zeroes are rendered as
 152      *     {@code "0.0"} and {@code "-0.0"}, respectively.
 153      *     <li> Otherwise {@code v} is finite and non-zero.
 154      *     It is rendered in two stages:
 155      *     <ul>
 156      *         <li> <em>Selection of a decimal</em>: A well-specified non-zero
 157      *         decimal <i>d</i> is selected to represent {@code v}.
 158      *         <li> <em>Formatting as a string</em>: The decimal <i>d</i> is
 159      *         formatted as a string, either in plain or in computerized
 160      *         scientific notation, depending on its value.
 161      *     </ul>
 162      * </ul>
 163      *
 164      * <p>The selected decimal <i>d</i> has a length <i>n</i> if it can be
 165      * written as <i>d</i> = <i>c</i>&middot;10<sup><i>q</i></sup> for some
 166      * integers <i>q</i> and <i>c</i> meeting 10<sup><i>n</i>-1</sup> &le;
 167      * |<i>c</i>| &lt; 10<sup><i>n</i></sup>. It has all the following
 168      * properties:
 169      * <ul>
 170      *     <li> It rounds to {@code v} according to the usual round-to-closest
 171      *     rule of IEEE 754 floating-point arithmetic.
 172      *     <li> Among the decimals above, it has a length of 2 or more.
 173      *     <li> Among all such decimals, it is one of those with the shortest
 174      *     length.
 175      *     <li> Among the latter ones, it is the one closest to {@code v}. Or
 176      *     if there are two that are equally close to {@code v}, it is the one
 177      *     whose least significant digit is even.
 178      * </ul>
 179      * More formally, let <i>d'</i> = <i>c'</i>&middot;10<sup><i>q'</i></sup>
 180      * &ne; <i>d</i> be any other decimal that rounds to {@code v} according to
 181      * IEEE 754 and of a length <i>n'</i>. Then:
 182      * <ul>
 183      *     <li> either <i>n'</i> = 1, thus <i>d'</i> is too short;
 184      *     <li> or <i>n'</i> &gt; <i>n</i>, thus <i>d'</i> is too long;
 185      *     <li> or <i>n'</i> = <i>n</i> and
 186      *     <ul>
 187      *         <li> either |<i>d</i> - {@code v}| &lt; |<i>d'</i> - {@code v}|:
 188      *         thus <i>d'</i> is farther from {@code v};
 189      *         <li> or |<i>d</i> - {@code v}| = |<i>d'</i> - {@code v}| and
 190      *         <i>c</i> is even while <i>c'</i> is odd
 191      *     </ul>
 192      * </ul>
 193      *
 194      * <p>The selected decimal <i>d</i> is then formatted as a string.
 195      * If <i>d</i> &lt; 0, the first character of the string is the sign
 196      * '{@code -}'. Let |<i>d</i>| = <i>m</i>&middot;10<sup><i>k</i></sup>,
 197      * for the unique pair of integer <i>k</i> and real <i>m</i> meeting
 198      * 1 &le; <i>m</i> &lt; 10. Also, let the decimal expansion of <i>m</i> be
 199      * <i>m</i><sub>1</sub>&thinsp;.&thinsp;<i>m</i><sub>2</sub>&thinsp;<!--
 200      * -->&hellip;&thinsp;<i>m</i><sub><i>i</i></sub>,
 201      * with <i>i</i> &ge; 1 and <i>m</i><sub><i>i</i></sub> &ne; 0.
 202      * <ul>
 203      *     <li>Case -3 &le; k &lt; 0: |<i>d</i>| is formatted as
 204      *     0&thinsp;.&thinsp;0&hellip;0<i>m</i><sub>1</sub>&hellip;<!--
 205      *     --><i>m</i><sub><i>i</i></sub>,
 206      *     where there are exactly -<i>k</i> leading zeroes before
 207      *     <i>m</i><sub>1</sub>, including the zero to the left of the
 208      *     decimal point; for example, {@code "0.01234"}.
 209      *     <li>Case 0 &le; <i>k</i> &lt; 7:
 210      *     <ul>
 211      *         <li>Subcase <i>i</i> &lt; <i>k</i> + 2:
 212      *         |<i>d</i>| is formatted as
 213      *         <i>m</i><sub>1</sub>&hellip;<!--
 214      *         --><i>m</i><sub><i>i</i></sub>0&hellip;0&thinsp;.&thinsp;0,
 215      *         where there are exactly <i>k</i> + 2 - <i>i</i> trailing zeroes
 216      *         after <i>m</i><sub><i>i</i></sub>, including the zero to the
 217      *         right of the decimal point; for example, {@code "1200.0"}.
 218      *         <li>Subcase <i>i</i> &ge; <i>k</i> + 2:
 219      *         |<i>d</i>| is formatted as <i>m</i><sub>1</sub>&hellip;<!--
 220      *         --><i>m</i><sub><i>k</i>+1</sub>&thinsp;.&thinsp;<!--
 221      *         --><i>m</i><sub><i>k</i>+2</sub>&hellip;<!--
 222      *         --><i>m</i><sub><i>i</i></sub>; for example, {@code "1234.32"}.
 223      *     </ul>
 224      *     <li>Case <i>k</i> &lt; -3 or <i>k</i> &ge; 7:
 225      *     computerized scientific notation is used to format |<i>d</i>|,
 226      *     by combining <i>m</i> and <i>k</i> separated by the exponent
 227      *     indicator '{@code E}'. The exponent <i>k</i> is formatted as in
 228      *     {@link Integer#toString(int)}.
 229      *     <ul>
 230      *         <li>Subcase <i>i</i> = 1: |<i>d</i>| is formatted as
 231      *         <i>m</i><sub>1</sub>&thinsp;.&thinsp;0E<i>k</i>;
 232      *         for example, {@code "2.0E23"}.
 233      *         <li>Subcase <i>i</i> &gt; 1: |<i>d</i>| is formatted as
 234      *         <i>m</i><sub>1</sub>&thinsp;.&thinsp;<i>m</i><sub>2</sub><!--
 235      *         -->&hellip;<i>m</i><sub><i>i</i></sub>E<i>k</i>;
 236      *         for example, {@code "1.234E-32"}.
 237      *     </ul>
 238      *  </ul>
 239      *
 240      * @param  v the {@code double} to be rendered.
 241      * @return a string rendering of the argument.
 242      */
 243     public static String toString(double v) {
 244         return DoubleToDecimal.toString(v);
 245     }
 246 
 247     /**
 248      * Returns a hexadecimal string representation of the
 249      * {@code double} argument. All characters mentioned below
 250      * are ASCII characters.
 251      *
 252      * <ul>
 253      * <li>If the argument is NaN, the result is the string
 254      *     "{@code NaN}".
 255      * <li>Otherwise, the result is a string that represents the sign
 256      * and magnitude of the argument. If the sign is negative, the
 257      * first character of the result is '{@code -}'
 258      * ({@code '\u005Cu002D'}); if the sign is positive, no sign
 259      * character appears in the result. As for the magnitude <i>m</i>:
 260      *
 261      * <ul>
 262      * <li>If <i>m</i> is infinity, it is represented by the string
 263      * {@code "Infinity"}; thus, positive infinity produces the
 264      * result {@code "Infinity"} and negative infinity produces
 265      * the result {@code "-Infinity"}.
 266      *
 267      * <li>If <i>m</i> is zero, it is represented by the string
 268      * {@code "0x0.0p0"}; thus, negative zero produces the result
 269      * {@code "-0x0.0p0"} and positive zero produces the result
 270      * {@code "0x0.0p0"}.
 271      *
 272      * <li>If <i>m</i> is a {@code double} value with a
 273      * normalized representation, substrings are used to represent the
 274      * significand and exponent fields.  The significand is
 275      * represented by the characters {@code "0x1."}
 276      * followed by a lowercase hexadecimal representation of the rest
 277      * of the significand as a fraction.  Trailing zeros in the
 278      * hexadecimal representation are removed unless all the digits
 279      * are zero, in which case a single zero is used. Next, the
 280      * exponent is represented by {@code "p"} followed
 281      * by a decimal string of the unbiased exponent as if produced by
 282      * a call to {@link Integer#toString(int) Integer.toString} on the
 283      * exponent value.
 284      *
 285      * <li>If <i>m</i> is a {@code double} value with a subnormal
 286      * representation, the significand is represented by the
 287      * characters {@code "0x0."} followed by a
 288      * hexadecimal representation of the rest of the significand as a
 289      * fraction.  Trailing zeros in the hexadecimal representation are
 290      * removed. Next, the exponent is represented by
 291      * {@code "p-1022"}.  Note that there must be at
 292      * least one nonzero digit in a subnormal significand.
 293      *
 294      * </ul>
 295      *
 296      * </ul>
 297      *
 298      * <table class="striped">
 299      * <caption>Examples</caption>
 300      * <thead>
 301      * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
 302      * </thead>
 303      * <tbody style="text-align:right">
 304      * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
 305      * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
 306      * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
 307      * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
 308      * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
 309      * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
 310      * <tr><th scope="row">{@code Double.MAX_VALUE}</th>
 311      *     <td>{@code 0x1.fffffffffffffp1023}</td>
 312      * <tr><th scope="row">{@code Minimum Normal Value}</th>
 313      *     <td>{@code 0x1.0p-1022}</td>
 314      * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
 315      *     <td>{@code 0x0.fffffffffffffp-1022}</td>
 316      * <tr><th scope="row">{@code Double.MIN_VALUE}</th>
 317      *     <td>{@code 0x0.0000000000001p-1022}</td>
 318      * </tbody>
 319      * </table>
 320      * @param   d   the {@code double} to be converted.
 321      * @return a hex string representation of the argument.
 322      * @since 1.5
 323      * @author Joseph D. Darcy
 324      */
 325     public static String toHexString(double d) {
 326         /*
 327          * Modeled after the "a" conversion specifier in C99, section
 328          * 7.19.6.1; however, the output of this method is more
 329          * tightly specified.
 330          */
 331         if (!isFinite(d) )
 332             // For infinity and NaN, use the decimal output.
 333             return Double.toString(d);
 334         else {
 335             // Initialized to maximum size of output.
 336             StringBuilder answer = new StringBuilder(24);
 337 
 338             if (Math.copySign(1.0, d) == -1.0)    // value is negative,
 339                 answer.append("-");                  // so append sign info
 340 
 341             answer.append("0x");
 342 
 343             d = Math.abs(d);
 344 
 345             if(d == 0.0) {
 346                 answer.append("0.0p0");
 347             } else {
 348                 boolean subnormal = (d < Double.MIN_NORMAL);
 349 
 350                 // Isolate significand bits and OR in a high-order bit
 351                 // so that the string representation has a known
 352                 // length.
 353                 long signifBits = (Double.doubleToLongBits(d)
 354                                    & DoubleConsts.SIGNIF_BIT_MASK) |
 355                     0x1000000000000000L;
 356 
 357                 // Subnormal values have a 0 implicit bit; normal
 358                 // values have a 1 implicit bit.
 359                 answer.append(subnormal ? "0." : "1.");
 360 
 361                 // Isolate the low-order 13 digits of the hex
 362                 // representation.  If all the digits are zero,
 363                 // replace with a single 0; otherwise, remove all
 364                 // trailing zeros.
 365                 String signif = Long.toHexString(signifBits).substring(3,16);
 366                 answer.append(signif.equals("0000000000000") ? // 13 zeros
 367                               "0":
 368                               signif.replaceFirst("0{1,12}$", ""));
 369 
 370                 answer.append('p');
 371                 // If the value is subnormal, use the E_min exponent
 372                 // value for double; otherwise, extract and report d's
 373                 // exponent (the representation of a subnormal uses
 374                 // E_min -1).
 375                 answer.append(subnormal ?
 376                               Double.MIN_EXPONENT:
 377                               Math.getExponent(d));
 378             }
 379             return answer.toString();
 380         }
 381     }
 382 
 383     /**
 384      * Returns a {@code Double} object holding the
 385      * {@code double} value represented by the argument string
 386      * {@code s}.
 387      *
 388      * <p>If {@code s} is {@code null}, then a
 389      * {@code NullPointerException} is thrown.
 390      *
 391      * <p>Leading and trailing whitespace characters in {@code s}
 392      * are ignored.  Whitespace is removed as if by the {@link
 393      * String#trim} method; that is, both ASCII space and control
 394      * characters are removed. The rest of {@code s} should
 395      * constitute a <i>FloatValue</i> as described by the lexical
 396      * syntax rules:
 397      *
 398      * <blockquote>
 399      * <dl>
 400      * <dt><i>FloatValue:</i>
 401      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
 402      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
 403      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
 404      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
 405      * <dd><i>SignedInteger</i>
 406      * </dl>
 407      *
 408      * <dl>
 409      * <dt><i>HexFloatingPointLiteral</i>:
 410      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
 411      * </dl>
 412      *
 413      * <dl>
 414      * <dt><i>HexSignificand:</i>
 415      * <dd><i>HexNumeral</i>
 416      * <dd><i>HexNumeral</i> {@code .}
 417      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
 418      *     </i>{@code .}<i> HexDigits</i>
 419      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
 420      *     </i>{@code .} <i>HexDigits</i>
 421      * </dl>
 422      *
 423      * <dl>
 424      * <dt><i>BinaryExponent:</i>
 425      * <dd><i>BinaryExponentIndicator SignedInteger</i>
 426      * </dl>
 427      *
 428      * <dl>
 429      * <dt><i>BinaryExponentIndicator:</i>
 430      * <dd>{@code p}
 431      * <dd>{@code P}
 432      * </dl>
 433      *
 434      * </blockquote>
 435      *
 436      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
 437      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
 438      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
 439      * sections of
 440      * <cite>The Java&trade; Language Specification</cite>,
 441      * except that underscores are not accepted between digits.
 442      * If {@code s} does not have the form of
 443      * a <i>FloatValue</i>, then a {@code NumberFormatException}
 444      * is thrown. Otherwise, {@code s} is regarded as
 445      * representing an exact decimal value in the usual
 446      * "computerized scientific notation" or as an exact
 447      * hexadecimal value; this exact numerical value is then
 448      * conceptually converted to an "infinitely precise"
 449      * binary value that is then rounded to type {@code double}
 450      * by the usual round-to-nearest rule of IEEE 754 floating-point
 451      * arithmetic, which includes preserving the sign of a zero
 452      * value.
 453      *
 454      * Note that the round-to-nearest rule also implies overflow and
 455      * underflow behaviour; if the exact value of {@code s} is large
 456      * enough in magnitude (greater than or equal to ({@link
 457      * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
 458      * rounding to {@code double} will result in an infinity and if the
 459      * exact value of {@code s} is small enough in magnitude (less
 460      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
 461      * result in a zero.
 462      *
 463      * Finally, after rounding a {@code Double} object representing
 464      * this {@code double} value is returned.
 465      *
 466      * <p> To interpret localized string representations of a
 467      * floating-point value, use subclasses of {@link
 468      * java.text.NumberFormat}.
 469      *
 470      * <p>Note that trailing format specifiers, specifiers that
 471      * determine the type of a floating-point literal
 472      * ({@code 1.0f} is a {@code float} value;
 473      * {@code 1.0d} is a {@code double} value), do
 474      * <em>not</em> influence the results of this method.  In other
 475      * words, the numerical value of the input string is converted
 476      * directly to the target floating-point type.  The two-step
 477      * sequence of conversions, string to {@code float} followed
 478      * by {@code float} to {@code double}, is <em>not</em>
 479      * equivalent to converting a string directly to
 480      * {@code double}. For example, the {@code float}
 481      * literal {@code 0.1f} is equal to the {@code double}
 482      * value {@code 0.10000000149011612}; the {@code float}
 483      * literal {@code 0.1f} represents a different numerical
 484      * value than the {@code double} literal
 485      * {@code 0.1}. (The numerical value 0.1 cannot be exactly
 486      * represented in a binary floating-point number.)
 487      *
 488      * <p>To avoid calling this method on an invalid string and having
 489      * a {@code NumberFormatException} be thrown, the regular
 490      * expression below can be used to screen the input string:
 491      *
 492      * <pre>{@code
 493      *  final String Digits     = "(\\p{Digit}+)";
 494      *  final String HexDigits  = "(\\p{XDigit}+)";
 495      *  // an exponent is 'e' or 'E' followed by an optionally
 496      *  // signed decimal integer.
 497      *  final String Exp        = "[eE][+-]?"+Digits;
 498      *  final String fpRegex    =
 499      *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
 500      *       "[+-]?(" + // Optional sign character
 501      *       "NaN|" +           // "NaN" string
 502      *       "Infinity|" +      // "Infinity" string
 503      *
 504      *       // A decimal floating-point string representing a finite positive
 505      *       // number without a leading sign has at most five basic pieces:
 506      *       // Digits . Digits ExponentPart FloatTypeSuffix
 507      *       //
 508      *       // Since this method allows integer-only strings as input
 509      *       // in addition to strings of floating-point literals, the
 510      *       // two sub-patterns below are simplifications of the grammar
 511      *       // productions from section 3.10.2 of
 512      *       // The Java Language Specification.
 513      *
 514      *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
 515      *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
 516      *
 517      *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
 518      *       "(\\.("+Digits+")("+Exp+")?)|"+
 519      *
 520      *       // Hexadecimal strings
 521      *       "((" +
 522      *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
 523      *        "(0[xX]" + HexDigits + "(\\.)?)|" +
 524      *
 525      *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
 526      *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
 527      *
 528      *        ")[pP][+-]?" + Digits + "))" +
 529      *       "[fFdD]?))" +
 530      *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
 531      *
 532      *  if (Pattern.matches(fpRegex, myString))
 533      *      Double.valueOf(myString); // Will not throw NumberFormatException
 534      *  else {
 535      *      // Perform suitable alternative action
 536      *  }
 537      * }</pre>
 538      *
 539      * @param      s   the string to be parsed.
 540      * @return     a {@code Double} object holding the value
 541      *             represented by the {@code String} argument.
 542      * @throws     NumberFormatException  if the string does not contain a
 543      *             parsable number.
 544      */
 545     public static Double valueOf(String s) throws NumberFormatException {
 546         return new Double(parseDouble(s));
 547     }
 548 
 549     /**
 550      * Returns a {@code Double} instance representing the specified
 551      * {@code double} value.
 552      * If a new {@code Double} instance is not required, this method
 553      * should generally be used in preference to the constructor
 554      * {@link #Double(double)}, as this method is likely to yield
 555      * significantly better space and time performance by caching
 556      * frequently requested values.
 557      *
 558      * @param  d a double value.
 559      * @return a {@code Double} instance representing {@code d}.
 560      * @since  1.5
 561      */
 562     @HotSpotIntrinsicCandidate
 563     public static Double valueOf(double d) {
 564         return new Double(d);
 565     }
 566 
 567     /**
 568      * Returns a new {@code double} initialized to the value
 569      * represented by the specified {@code String}, as performed
 570      * by the {@code valueOf} method of class
 571      * {@code Double}.
 572      *
 573      * @param  s   the string to be parsed.
 574      * @return the {@code double} value represented by the string
 575      *         argument.
 576      * @throws NullPointerException  if the string is null
 577      * @throws NumberFormatException if the string does not contain
 578      *         a parsable {@code double}.
 579      * @see    java.lang.Double#valueOf(String)
 580      * @since 1.2
 581      */
 582     public static double parseDouble(String s) throws NumberFormatException {
 583         return FloatingDecimal.parseDouble(s);
 584     }
 585 
 586     /**
 587      * Returns {@code true} if the specified number is a
 588      * Not-a-Number (NaN) value, {@code false} otherwise.
 589      *
 590      * @param   v   the value to be tested.
 591      * @return  {@code true} if the value of the argument is NaN;
 592      *          {@code false} otherwise.
 593      */
 594     public static boolean isNaN(double v) {
 595         return (v != v);
 596     }
 597 
 598     /**
 599      * Returns {@code true} if the specified number is infinitely
 600      * large in magnitude, {@code false} otherwise.
 601      *
 602      * @param   v   the value to be tested.
 603      * @return  {@code true} if the value of the argument is positive
 604      *          infinity or negative infinity; {@code false} otherwise.
 605      */
 606     public static boolean isInfinite(double v) {
 607         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
 608     }
 609 
 610     /**
 611      * Returns {@code true} if the argument is a finite floating-point
 612      * value; returns {@code false} otherwise (for NaN and infinity
 613      * arguments).
 614      *
 615      * @param d the {@code double} value to be tested
 616      * @return {@code true} if the argument is a finite
 617      * floating-point value, {@code false} otherwise.
 618      * @since 1.8
 619      */
 620     public static boolean isFinite(double d) {
 621         return Math.abs(d) <= Double.MAX_VALUE;
 622     }
 623 
 624     /**
 625      * The value of the Double.
 626      *
 627      * @serial
 628      */
 629     private final double value;
 630 
 631     /**
 632      * Constructs a newly allocated {@code Double} object that
 633      * represents the primitive {@code double} argument.
 634      *
 635      * @param   value   the value to be represented by the {@code Double}.
 636      *
 637      * @deprecated
 638      * It is rarely appropriate to use this constructor. The static factory
 639      * {@link #valueOf(double)} is generally a better choice, as it is
 640      * likely to yield significantly better space and time performance.
 641      */
 642     @Deprecated(since="9")
 643     public Double(double value) {
 644         this.value = value;
 645     }
 646 
 647     /**
 648      * Constructs a newly allocated {@code Double} object that
 649      * represents the floating-point value of type {@code double}
 650      * represented by the string. The string is converted to a
 651      * {@code double} value as if by the {@code valueOf} method.
 652      *
 653      * @param  s  a string to be converted to a {@code Double}.
 654      * @throws    NumberFormatException if the string does not contain a
 655      *            parsable number.
 656      *
 657      * @deprecated
 658      * It is rarely appropriate to use this constructor.
 659      * Use {@link #parseDouble(String)} to convert a string to a
 660      * {@code double} primitive, or use {@link #valueOf(String)}
 661      * to convert a string to a {@code Double} object.
 662      */
 663     @Deprecated(since="9")
 664     public Double(String s) throws NumberFormatException {
 665         value = parseDouble(s);
 666     }
 667 
 668     /**
 669      * Returns {@code true} if this {@code Double} value is
 670      * a Not-a-Number (NaN), {@code false} otherwise.
 671      *
 672      * @return  {@code true} if the value represented by this object is
 673      *          NaN; {@code false} otherwise.
 674      */
 675     public boolean isNaN() {
 676         return isNaN(value);
 677     }
 678 
 679     /**
 680      * Returns {@code true} if this {@code Double} value is
 681      * infinitely large in magnitude, {@code false} otherwise.
 682      *
 683      * @return  {@code true} if the value represented by this object is
 684      *          positive infinity or negative infinity;
 685      *          {@code false} otherwise.
 686      */
 687     public boolean isInfinite() {
 688         return isInfinite(value);
 689     }
 690 
 691     /**
 692      * Returns a string representation of this {@code Double} object.
 693      * The primitive {@code double} value represented by this
 694      * object is converted to a string exactly as if by the method
 695      * {@code toString} of one argument.
 696      *
 697      * @return  a {@code String} representation of this object.
 698      * @see java.lang.Double#toString(double)
 699      */
 700     public String toString() {
 701         return toString(value);
 702     }
 703 
 704     /**
 705      * Returns the value of this {@code Double} as a {@code byte}
 706      * after a narrowing primitive conversion.
 707      *
 708      * @return  the {@code double} value represented by this object
 709      *          converted to type {@code byte}
 710      * @jls 5.1.3 Narrowing Primitive Conversions
 711      * @since 1.1
 712      */
 713     public byte byteValue() {
 714         return (byte)value;
 715     }
 716 
 717     /**
 718      * Returns the value of this {@code Double} as a {@code short}
 719      * after a narrowing primitive conversion.
 720      *
 721      * @return  the {@code double} value represented by this object
 722      *          converted to type {@code short}
 723      * @jls 5.1.3 Narrowing Primitive Conversions
 724      * @since 1.1
 725      */
 726     public short shortValue() {
 727         return (short)value;
 728     }
 729 
 730     /**
 731      * Returns the value of this {@code Double} as an {@code int}
 732      * after a narrowing primitive conversion.
 733      * @jls 5.1.3 Narrowing Primitive Conversions
 734      *
 735      * @return  the {@code double} value represented by this object
 736      *          converted to type {@code int}
 737      */
 738     public int intValue() {
 739         return (int)value;
 740     }
 741 
 742     /**
 743      * Returns the value of this {@code Double} as a {@code long}
 744      * after a narrowing primitive conversion.
 745      *
 746      * @return  the {@code double} value represented by this object
 747      *          converted to type {@code long}
 748      * @jls 5.1.3 Narrowing Primitive Conversions
 749      */
 750     public long longValue() {
 751         return (long)value;
 752     }
 753 
 754     /**
 755      * Returns the value of this {@code Double} as a {@code float}
 756      * after a narrowing primitive conversion.
 757      *
 758      * @return  the {@code double} value represented by this object
 759      *          converted to type {@code float}
 760      * @jls 5.1.3 Narrowing Primitive Conversions
 761      * @since 1.0
 762      */
 763     public float floatValue() {
 764         return (float)value;
 765     }
 766 
 767     /**
 768      * Returns the {@code double} value of this {@code Double} object.
 769      *
 770      * @return the {@code double} value represented by this object
 771      */
 772     @HotSpotIntrinsicCandidate
 773     public double doubleValue() {
 774         return value;
 775     }
 776 
 777     /**
 778      * Returns a hash code for this {@code Double} object. The
 779      * result is the exclusive OR of the two halves of the
 780      * {@code long} integer bit representation, exactly as
 781      * produced by the method {@link #doubleToLongBits(double)}, of
 782      * the primitive {@code double} value represented by this
 783      * {@code Double} object. That is, the hash code is the value
 784      * of the expression:
 785      *
 786      * <blockquote>
 787      *  {@code (int)(v^(v>>>32))}
 788      * </blockquote>
 789      *
 790      * where {@code v} is defined by:
 791      *
 792      * <blockquote>
 793      *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
 794      * </blockquote>
 795      *
 796      * @return  a {@code hash code} value for this object.
 797      */
 798     @Override
 799     public int hashCode() {
 800         return Double.hashCode(value);
 801     }
 802 
 803     /**
 804      * Returns a hash code for a {@code double} value; compatible with
 805      * {@code Double.hashCode()}.
 806      *
 807      * @param value the value to hash
 808      * @return a hash code value for a {@code double} value.
 809      * @since 1.8
 810      */
 811     public static int hashCode(double value) {
 812         long bits = doubleToLongBits(value);
 813         return (int)(bits ^ (bits >>> 32));
 814     }
 815 
 816     /**
 817      * Compares this object against the specified object.  The result
 818      * is {@code true} if and only if the argument is not
 819      * {@code null} and is a {@code Double} object that
 820      * represents a {@code double} that has the same value as the
 821      * {@code double} represented by this object. For this
 822      * purpose, two {@code double} values are considered to be
 823      * the same if and only if the method {@link
 824      * #doubleToLongBits(double)} returns the identical
 825      * {@code long} value when applied to each.
 826      *
 827      * <p>Note that in most cases, for two instances of class
 828      * {@code Double}, {@code d1} and {@code d2}, the
 829      * value of {@code d1.equals(d2)} is {@code true} if and
 830      * only if
 831      *
 832      * <blockquote>
 833      *  {@code d1.doubleValue() == d2.doubleValue()}
 834      * </blockquote>
 835      *
 836      * <p>also has the value {@code true}. However, there are two
 837      * exceptions:
 838      * <ul>
 839      * <li>If {@code d1} and {@code d2} both represent
 840      *     {@code Double.NaN}, then the {@code equals} method
 841      *     returns {@code true}, even though
 842      *     {@code Double.NaN==Double.NaN} has the value
 843      *     {@code false}.
 844      * <li>If {@code d1} represents {@code +0.0} while
 845      *     {@code d2} represents {@code -0.0}, or vice versa,
 846      *     the {@code equal} test has the value {@code false},
 847      *     even though {@code +0.0==-0.0} has the value {@code true}.
 848      * </ul>
 849      * This definition allows hash tables to operate properly.
 850      * @param   obj   the object to compare with.
 851      * @return  {@code true} if the objects are the same;
 852      *          {@code false} otherwise.
 853      * @see java.lang.Double#doubleToLongBits(double)
 854      */
 855     public boolean equals(Object obj) {
 856         return (obj instanceof Double)
 857                && (doubleToLongBits(((Double)obj).value) ==
 858                       doubleToLongBits(value));
 859     }
 860 
 861     /**
 862      * Returns a representation of the specified floating-point value
 863      * according to the IEEE 754 floating-point "double
 864      * format" bit layout.
 865      *
 866      * <p>Bit 63 (the bit that is selected by the mask
 867      * {@code 0x8000000000000000L}) represents the sign of the
 868      * floating-point number. Bits
 869      * 62-52 (the bits that are selected by the mask
 870      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
 871      * (the bits that are selected by the mask
 872      * {@code 0x000fffffffffffffL}) represent the significand
 873      * (sometimes called the mantissa) of the floating-point number.
 874      *
 875      * <p>If the argument is positive infinity, the result is
 876      * {@code 0x7ff0000000000000L}.
 877      *
 878      * <p>If the argument is negative infinity, the result is
 879      * {@code 0xfff0000000000000L}.
 880      *
 881      * <p>If the argument is NaN, the result is
 882      * {@code 0x7ff8000000000000L}.
 883      *
 884      * <p>In all cases, the result is a {@code long} integer that, when
 885      * given to the {@link #longBitsToDouble(long)} method, will produce a
 886      * floating-point value the same as the argument to
 887      * {@code doubleToLongBits} (except all NaN values are
 888      * collapsed to a single "canonical" NaN value).
 889      *
 890      * @param   value   a {@code double} precision floating-point number.
 891      * @return the bits that represent the floating-point number.
 892      */
 893     @HotSpotIntrinsicCandidate
 894     public static long doubleToLongBits(double value) {
 895         if (!isNaN(value)) {
 896             return doubleToRawLongBits(value);
 897         }
 898         return 0x7ff8000000000000L;
 899     }
 900 
 901     /**
 902      * Returns a representation of the specified floating-point value
 903      * according to the IEEE 754 floating-point "double
 904      * format" bit layout, preserving Not-a-Number (NaN) values.
 905      *
 906      * <p>Bit 63 (the bit that is selected by the mask
 907      * {@code 0x8000000000000000L}) represents the sign of the
 908      * floating-point number. Bits
 909      * 62-52 (the bits that are selected by the mask
 910      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
 911      * (the bits that are selected by the mask
 912      * {@code 0x000fffffffffffffL}) represent the significand
 913      * (sometimes called the mantissa) of the floating-point number.
 914      *
 915      * <p>If the argument is positive infinity, the result is
 916      * {@code 0x7ff0000000000000L}.
 917      *
 918      * <p>If the argument is negative infinity, the result is
 919      * {@code 0xfff0000000000000L}.
 920      *
 921      * <p>If the argument is NaN, the result is the {@code long}
 922      * integer representing the actual NaN value.  Unlike the
 923      * {@code doubleToLongBits} method,
 924      * {@code doubleToRawLongBits} does not collapse all the bit
 925      * patterns encoding a NaN to a single "canonical" NaN
 926      * value.
 927      *
 928      * <p>In all cases, the result is a {@code long} integer that,
 929      * when given to the {@link #longBitsToDouble(long)} method, will
 930      * produce a floating-point value the same as the argument to
 931      * {@code doubleToRawLongBits}.
 932      *
 933      * @param   value   a {@code double} precision floating-point number.
 934      * @return the bits that represent the floating-point number.
 935      * @since 1.3
 936      */
 937     @HotSpotIntrinsicCandidate
 938     public static native long doubleToRawLongBits(double value);
 939 
 940     /**
 941      * Returns the {@code double} value corresponding to a given
 942      * bit representation.
 943      * The argument is considered to be a representation of a
 944      * floating-point value according to the IEEE 754 floating-point
 945      * "double format" bit layout.
 946      *
 947      * <p>If the argument is {@code 0x7ff0000000000000L}, the result
 948      * is positive infinity.
 949      *
 950      * <p>If the argument is {@code 0xfff0000000000000L}, the result
 951      * is negative infinity.
 952      *
 953      * <p>If the argument is any value in the range
 954      * {@code 0x7ff0000000000001L} through
 955      * {@code 0x7fffffffffffffffL} or in the range
 956      * {@code 0xfff0000000000001L} through
 957      * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
 958      * 754 floating-point operation provided by Java can distinguish
 959      * between two NaN values of the same type with different bit
 960      * patterns.  Distinct values of NaN are only distinguishable by
 961      * use of the {@code Double.doubleToRawLongBits} method.
 962      *
 963      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
 964      * values that can be computed from the argument:
 965      *
 966      * <blockquote><pre>{@code
 967      * int s = ((bits >> 63) == 0) ? 1 : -1;
 968      * int e = (int)((bits >> 52) & 0x7ffL);
 969      * long m = (e == 0) ?
 970      *                 (bits & 0xfffffffffffffL) << 1 :
 971      *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
 972      * }</pre></blockquote>
 973      *
 974      * Then the floating-point result equals the value of the mathematical
 975      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
 976      *
 977      * <p>Note that this method may not be able to return a
 978      * {@code double} NaN with exactly same bit pattern as the
 979      * {@code long} argument.  IEEE 754 distinguishes between two
 980      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
 981      * differences between the two kinds of NaN are generally not
 982      * visible in Java.  Arithmetic operations on signaling NaNs turn
 983      * them into quiet NaNs with a different, but often similar, bit
 984      * pattern.  However, on some processors merely copying a
 985      * signaling NaN also performs that conversion.  In particular,
 986      * copying a signaling NaN to return it to the calling method
 987      * may perform this conversion.  So {@code longBitsToDouble}
 988      * may not be able to return a {@code double} with a
 989      * signaling NaN bit pattern.  Consequently, for some
 990      * {@code long} values,
 991      * {@code doubleToRawLongBits(longBitsToDouble(start))} may
 992      * <i>not</i> equal {@code start}.  Moreover, which
 993      * particular bit patterns represent signaling NaNs is platform
 994      * dependent; although all NaN bit patterns, quiet or signaling,
 995      * must be in the NaN range identified above.
 996      *
 997      * @param   bits   any {@code long} integer.
 998      * @return  the {@code double} floating-point value with the same
 999      *          bit pattern.
1000      */
1001     @HotSpotIntrinsicCandidate
1002     public static native double longBitsToDouble(long bits);
1003 
1004     /**
1005      * Compares two {@code Double} objects numerically.  There
1006      * are two ways in which comparisons performed by this method
1007      * differ from those performed by the Java language numerical
1008      * comparison operators ({@code <, <=, ==, >=, >})
1009      * when applied to primitive {@code double} values:
1010      * <ul><li>
1011      *          {@code Double.NaN} is considered by this method
1012      *          to be equal to itself and greater than all other
1013      *          {@code double} values (including
1014      *          {@code Double.POSITIVE_INFINITY}).
1015      * <li>
1016      *          {@code 0.0d} is considered by this method to be greater
1017      *          than {@code -0.0d}.
1018      * </ul>
1019      * This ensures that the <i>natural ordering</i> of
1020      * {@code Double} objects imposed by this method is <i>consistent
1021      * with equals</i>.
1022      *
1023      * @param   anotherDouble   the {@code Double} to be compared.
1024      * @return  the value {@code 0} if {@code anotherDouble} is
1025      *          numerically equal to this {@code Double}; a value
1026      *          less than {@code 0} if this {@code Double}
1027      *          is numerically less than {@code anotherDouble};
1028      *          and a value greater than {@code 0} if this
1029      *          {@code Double} is numerically greater than
1030      *          {@code anotherDouble}.
1031      *
1032      * @since   1.2
1033      */
1034     public int compareTo(Double anotherDouble) {
1035         return Double.compare(value, anotherDouble.value);
1036     }
1037 
1038     /**
1039      * Compares the two specified {@code double} values. The sign
1040      * of the integer value returned is the same as that of the
1041      * integer that would be returned by the call:
1042      * <pre>
1043      *    new Double(d1).compareTo(new Double(d2))
1044      * </pre>
1045      *
1046      * @param   d1        the first {@code double} to compare
1047      * @param   d2        the second {@code double} to compare
1048      * @return  the value {@code 0} if {@code d1} is
1049      *          numerically equal to {@code d2}; a value less than
1050      *          {@code 0} if {@code d1} is numerically less than
1051      *          {@code d2}; and a value greater than {@code 0}
1052      *          if {@code d1} is numerically greater than
1053      *          {@code d2}.
1054      * @since 1.4
1055      */
1056     public static int compare(double d1, double d2) {
1057         if (d1 < d2)
1058             return -1;           // Neither val is NaN, thisVal is smaller
1059         if (d1 > d2)
1060             return 1;            // Neither val is NaN, thisVal is larger
1061 
1062         // Cannot use doubleToRawLongBits because of possibility of NaNs.
1063         long thisBits    = Double.doubleToLongBits(d1);
1064         long anotherBits = Double.doubleToLongBits(d2);
1065 
1066         return (thisBits == anotherBits ?  0 : // Values are equal
1067                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1068                  1));                          // (0.0, -0.0) or (NaN, !NaN)
1069     }
1070 
1071     /**
1072      * Adds two {@code double} values together as per the + operator.
1073      *
1074      * @param a the first operand
1075      * @param b the second operand
1076      * @return the sum of {@code a} and {@code b}
1077      * @jls 4.2.4 Floating-Point Operations
1078      * @see java.util.function.BinaryOperator
1079      * @since 1.8
1080      */
1081     public static double sum(double a, double b) {
1082         return a + b;
1083     }
1084 
1085     /**
1086      * Returns the greater of two {@code double} values
1087      * as if by calling {@link Math#max(double, double) Math.max}.
1088      *
1089      * @param a the first operand
1090      * @param b the second operand
1091      * @return the greater of {@code a} and {@code b}
1092      * @see java.util.function.BinaryOperator
1093      * @since 1.8
1094      */
1095     public static double max(double a, double b) {
1096         return Math.max(a, b);
1097     }
1098 
1099     /**
1100      * Returns the smaller of two {@code double} values
1101      * as if by calling {@link Math#min(double, double) Math.min}.
1102      *
1103      * @param a the first operand
1104      * @param b the second operand
1105      * @return the smaller of {@code a} and {@code b}.
1106      * @see java.util.function.BinaryOperator
1107      * @since 1.8
1108      */
1109     public static double min(double a, double b) {
1110         return Math.min(a, b);
1111     }
1112 
1113     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1114     private static final long serialVersionUID = -9172774392245257468L;
1115 }