< prev index next >

src/java.base/share/classes/java/lang/Double.java

Print this page




  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.invoke.MethodHandles;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.ConstantDesc;
  31 import java.util.Optional;
  32 
  33 import jdk.internal.math.FloatingDecimal;
  34 import jdk.internal.math.DoubleConsts;

  35 import jdk.internal.HotSpotIntrinsicCandidate;
  36 
  37 /**
  38  * The {@code Double} class wraps a value of the primitive type
  39  * {@code double} in an object. An object of type
  40  * {@code Double} contains a single field whose type is
  41  * {@code double}.
  42  *
  43  * <p>In addition, this class provides several methods for converting a
  44  * {@code double} to a {@code String} and a
  45  * {@code String} to a {@code double}, as well as other
  46  * constants and methods useful when dealing with a
  47  * {@code double}.
  48  *
  49  * @author  Lee Boynton
  50  * @author  Arthur van Hoff
  51  * @author  Joseph D. Darcy
  52  * @since 1.0
  53  */
  54 public final class Double extends Number


 128      */
 129     public static final int SIZE = 64;
 130 
 131     /**
 132      * The number of bytes used to represent a {@code double} value.
 133      *
 134      * @since 1.8
 135      */
 136     public static final int BYTES = SIZE / Byte.SIZE;
 137 
 138     /**
 139      * The {@code Class} instance representing the primitive type
 140      * {@code double}.
 141      *
 142      * @since 1.1
 143      */
 144     @SuppressWarnings("unchecked")
 145     public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
 146 
 147     /**
 148      * Returns a string representation of the {@code double}
 149      * argument. All characters mentioned below are ASCII characters.

 150      * <ul>
 151      * <li>If the argument is NaN, the result is the string
 152      *     "{@code NaN}".
 153      * <li>Otherwise, the result is a string that represents the sign and
 154      * magnitude (absolute value) of the argument. If the sign is negative,
 155      * the first character of the result is '{@code -}'
 156      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
 157      * appears in the result. As for the magnitude <i>m</i>:


 158      * <ul>
 159      * <li>If <i>m</i> is infinity, it is represented by the characters
 160      * {@code "Infinity"}; thus, positive infinity produces the result
 161      * {@code "Infinity"} and negative infinity produces the result
 162      * {@code "-Infinity"}.
 163      *
 164      * <li>If <i>m</i> is zero, it is represented by the characters
 165      * {@code "0.0"}; thus, negative zero produces the result
 166      * {@code "-0.0"} and positive zero produces the result
 167      * {@code "0.0"}.
 168      *
 169      * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
 170      * than 10<sup>7</sup>, then it is represented as the integer part of
 171      * <i>m</i>, in decimal form with no leading zeroes, followed by
 172      * '{@code .}' ({@code '\u005Cu002E'}), followed by one or
 173      * more decimal digits representing the fractional part of <i>m</i>.
 174      *
 175      * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
 176      * equal to 10<sup>7</sup>, then it is represented in so-called
 177      * "computerized scientific notation." Let <i>n</i> be the unique
 178      * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
 179      * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
 180      * mathematically exact quotient of <i>m</i> and
 181      * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
 182      * magnitude is then represented as the integer part of <i>a</i>,
 183      * as a single decimal digit, followed by '{@code .}'
 184      * ({@code '\u005Cu002E'}), followed by decimal digits
 185      * representing the fractional part of <i>a</i>, followed by the
 186      * letter '{@code E}' ({@code '\u005Cu0045'}), followed
 187      * by a representation of <i>n</i> as a decimal integer, as
 188      * produced by the method {@link Integer#toString(int)}.
 189      * </ul>
 190      * </ul>
 191      * How many digits must be printed for the fractional part of
 192      * <i>m</i> or <i>a</i>? There must be at least one digit to represent
 193      * the fractional part, and beyond that as many, but only as many, more
 194      * digits as are needed to uniquely distinguish the argument value from
 195      * adjacent values of type {@code double}. That is, suppose that
 196      * <i>x</i> is the exact mathematical value represented by the decimal
 197      * representation produced by this method for a finite nonzero argument
 198      * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
 199      * to <i>x</i>; or if two {@code double} values are equally close
 200      * to <i>x</i>, then <i>d</i> must be one of them and the least
 201      * significant bit of the significand of <i>d</i> must be {@code 0}.
 202      *
 203      * <p>To create localized string representations of a floating-point
 204      * value, use subclasses of {@link java.text.NumberFormat}.







 205      *
 206      * @param   d   the {@code double} to be converted.
 207      * @return a string representation of the argument.











































































 208      */
 209     public static String toString(double d) {
 210         return FloatingDecimal.toJavaFormatString(d);
 211     }
 212 
 213     /**
 214      * Returns a hexadecimal string representation of the
 215      * {@code double} argument. All characters mentioned below
 216      * are ASCII characters.
 217      *
 218      * <ul>
 219      * <li>If the argument is NaN, the result is the string
 220      *     "{@code NaN}".
 221      * <li>Otherwise, the result is a string that represents the sign
 222      * and magnitude of the argument. If the sign is negative, the
 223      * first character of the result is '{@code -}'
 224      * ({@code '\u005Cu002D'}); if the sign is positive, no sign
 225      * character appears in the result. As for the magnitude <i>m</i>:
 226      *
 227      * <ul>
 228      * <li>If <i>m</i> is infinity, it is represented by the string
 229      * {@code "Infinity"}; thus, positive infinity produces the
 230      * result {@code "Infinity"} and negative infinity produces




  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.invoke.MethodHandles;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.ConstantDesc;
  31 import java.util.Optional;
  32 
  33 import jdk.internal.math.FloatingDecimal;
  34 import jdk.internal.math.DoubleConsts;
  35 import jdk.internal.math.DoubleToDecimal;
  36 import jdk.internal.HotSpotIntrinsicCandidate;
  37 
  38 /**
  39  * The {@code Double} class wraps a value of the primitive type
  40  * {@code double} in an object. An object of type
  41  * {@code Double} contains a single field whose type is
  42  * {@code double}.
  43  *
  44  * <p>In addition, this class provides several methods for converting a
  45  * {@code double} to a {@code String} and a
  46  * {@code String} to a {@code double}, as well as other
  47  * constants and methods useful when dealing with a
  48  * {@code double}.
  49  *
  50  * @author  Lee Boynton
  51  * @author  Arthur van Hoff
  52  * @author  Joseph D. Darcy
  53  * @since 1.0
  54  */
  55 public final class Double extends Number


 129      */
 130     public static final int SIZE = 64;
 131 
 132     /**
 133      * The number of bytes used to represent a {@code double} value.
 134      *
 135      * @since 1.8
 136      */
 137     public static final int BYTES = SIZE / Byte.SIZE;
 138 
 139     /**
 140      * The {@code Class} instance representing the primitive type
 141      * {@code double}.
 142      *
 143      * @since 1.1
 144      */
 145     @SuppressWarnings("unchecked")
 146     public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
 147 
 148     /**
 149      * Returns a string rendering of the {@code double} argument.
 150      *
 151      * <p>The characters of the result are all drawn from the ASCII set.
 152      * <ul>
 153      * <li> Any NaN, whether quiet or signaling, is rendered as
 154      * {@code "NaN"}, regardless of the sign bit.
 155      * <li> The infinities +&infin; and -&infin; are rendered as
 156      * {@code "Infinity"} and {@code "-Infinity"}, respectively.
 157      * <li> The positive and negative zeroes are rendered as
 158      * {@code "0.0"} and {@code "-0.0"}, respectively.
 159      * <li> A finite negative {@code v} is rendered as the sign
 160      * '{@code -}' followed by the rendering of the magnitude -{@code v}.
 161      * <li> A finite positive {@code v} is rendered in two stages:
 162      * <ul>
 163      * <li> <em>Selection of a decimal</em>: A well-defined
 164      * decimal <i>d</i><sub><code>v</code></sub> is selected
 165      * to represent {@code v}.
 166      * <li> <em>Formatting as a string</em>: The decimal
 167      * <i>d</i><sub><code>v</code></sub> is formatted as a string,
 168      * either in plain or in computerized scientific notation,
 169      * depending on its value.























 170      * </ul>
 171      * </ul>











 172      *
 173      * <p>A <em>decimal</em> is a number of the form
 174      * <i>d</i>&times;10<sup><i>i</i></sup>
 175      * for some (unique) integers <i>d</i> &gt; 0 and <i>i</i> such that
 176      * <i>d</i> is not a multiple of 10.
 177      * These integers are the <em>significand</em> and
 178      * the <em>exponent</em>, respectively, of the decimal.
 179      * The <em>length</em> of the decimal is the (unique)
 180      * integer <i>n</i> meeting
 181      * 10<sup><i>n</i>-1</sup> &le; <i>d</i> &lt; 10<sup><i>n</i></sup>.
 182      *
 183      * <p>The decimal <i>d</i><sub><code>v</code></sub>
 184      * for a finite positive {@code v} is defined as follows:
 185      * <ul>
 186      * <li>Let <i>R</i> be the set of all decimals that round to {@code v}
 187      * according to the usual round-to-closest rule of
 188      * IEEE 754 floating-point arithmetic.
 189      * <li>Let <i>m</i> be the minimal length over all decimals in <i>R</i>.
 190      * <li>When <i>m</i> &ge; 2, let <i>T</i> be the set of all decimals
 191      * in <i>R</i> with length <i>m</i>.
 192      * Otherwise, let <i>T</i> be the set of all decimals
 193      * in <i>R</i> with length 1 or 2.
 194      * <li>Define <i>d</i><sub><code>v</code></sub> as
 195      * the decimal in <i>T</i> that is closest to {@code v}.
 196      * Or if there are two such decimals in <i>T</i>,
 197      * select the one with the even significand (there is exactly one).
 198      * </ul>
 199      *
 200      * <p>The (uniquely) selected decimal <i>d</i><sub><code>v</code></sub>
 201      * is then formatted.
 202      *
 203      * <p>Let <i>d</i>, <i>i</i> and <i>n</i> be the significand, exponent and
 204      * length of <i>d</i><sub><code>v</code></sub>, respectively.
 205      * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let
 206      * <i>d</i><sub>1</sub>&hellip;<i>d</i><sub><i>n</i></sub>
 207      * be the usual decimal expansion of the significand.
 208      * Note that <i>d</i><sub>1</sub> &ne; 0 &ne; <i>d</i><sub><i>n</i></sub>.
 209      * <ul>
 210      * <li>Case -3 &le; <i>e</i> &lt; 0:
 211      * <i>d</i><sub><code>v</code></sub> is formatted as
 212      * <code>0.0</code>&hellip;<code>0</code><!--
 213      * --><i>d</i><sub>1</sub>&hellip;<i>d</i><sub><i>n</i></sub>,
 214      * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between
 215      * the decimal point and <i>d</i><sub>1</sub>.
 216      * For example, 123 &times; 10<sup>-4</sup> is formatted as
 217      * {@code 0.0123}.
 218      * <li>Case 0 &le; <i>e</i> &lt; 7:
 219      * <ul>
 220      * <li>Subcase <i>i</i> &ge; 0:
 221      * <i>d</i><sub><code>v</code></sub> is formatted as
 222      * <i>d</i><sub>1</sub>&hellip;<i>d</i><sub><i>n</i></sub><!--
 223      * --><code>0</code>&hellip;<code>0.0</code>,
 224      * where there are exactly <i>i</i> zeroes
 225      * between <i>d</i><sub><i>n</i></sub> and the decimal point.
 226      * For example, 123 &times; 10<sup>2</sup> is formatted as
 227      * {@code 12300.0}.
 228      * <li>Subcase <i>i</i> &lt; 0:
 229      * <i>d</i><sub><code>v</code></sub> is formatted as
 230      * <i>d</i><sub>1</sub>&hellip;<!--
 231      * --><i>d</i><sub><i>n</i>+<i>i</i></sub>.<!--
 232      * --><i>d</i><sub><i>n</i>+<i>i</i>+1</sub>&hellip;<!--
 233      * --><i>d</i><sub><i>n</i></sub>.
 234      * There are exactly -<i>i</i> digits to the right of
 235      * the decimal point.
 236      * For example, 123 &times; 10<sup>-1</sup> is formatted as
 237      * {@code 12.3}.
 238      * </ul>
 239      * <li>Case <i>e</i> &lt; -3 or <i>e</i> &ge; 7:
 240      * computerized scientific notation is used to format
 241      * <i>d</i><sub><code>v</code></sub>.
 242      * Here <i>e</i> is formatted as by {@link Integer#toString(int)}.
 243      * <ul>
 244      * <li>Subcase <i>n</i> = 1:
 245      * <i>d</i><sub><code>v</code></sub> is formatted as
 246      * <i>d</i><sub>1</sub><code>.0E</code><i>e</i>.
 247      * For example, 1 &times; 10<sup>23</sup> is formatted as
 248      * {@code 1.0E23}.
 249      * <li>Subcase <i>n</i> &gt; 1:
 250      * <i>d</i><sub><code>v</code></sub> is formatted as
 251      * <i>d</i><sub>1</sub><code>.</code><i>d</i><sub>2</sub><!--
 252      * -->&hellip;<i>d</i><sub><i>n</i></sub><code>E</code><i>e</i>.
 253      * For example, 123 &times; 10<sup>-21</sup> is formatted as
 254      * {@code 1.23E-19}.
 255      * </ul>
 256      * </ul>
 257      *
 258      * @param v the {@code double} to be rendered.
 259      * @return a string rendering of the argument.
 260      */
 261     public static String toString(double v) {
 262         return DoubleToDecimal.toString(v);
 263     }
 264 
 265     /**
 266      * Returns a hexadecimal string representation of the
 267      * {@code double} argument. All characters mentioned below
 268      * are ASCII characters.
 269      *
 270      * <ul>
 271      * <li>If the argument is NaN, the result is the string
 272      *     "{@code NaN}".
 273      * <li>Otherwise, the result is a string that represents the sign
 274      * and magnitude of the argument. If the sign is negative, the
 275      * first character of the result is '{@code -}'
 276      * ({@code '\u005Cu002D'}); if the sign is positive, no sign
 277      * character appears in the result. As for the magnitude <i>m</i>:
 278      *
 279      * <ul>
 280      * <li>If <i>m</i> is infinity, it is represented by the string
 281      * {@code "Infinity"}; thus, positive infinity produces the
 282      * result {@code "Infinity"} and negative infinity produces


< prev index next >