1 /*
   2  * Copyright (c) 1994, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.util.Random;
  28 
  29 import sun.misc.FloatConsts;
  30 import sun.misc.DoubleConsts;
  31 
  32 /**
  33  * The class {@code Math} contains methods for performing basic
  34  * numeric operations such as the elementary exponential, logarithm,
  35  * square root, and trigonometric functions.
  36  *
  37  * <p>Unlike some of the numeric methods of class
  38  * {@code StrictMath}, all implementations of the equivalent
  39  * functions of class {@code Math} are not defined to return the
  40  * bit-for-bit same results.  This relaxation permits
  41  * better-performing implementations where strict reproducibility is
  42  * not required.
  43  *
  44  * <p>By default many of the {@code Math} methods simply call
  45  * the equivalent method in {@code StrictMath} for their
  46  * implementation.  Code generators are encouraged to use
  47  * platform-specific native libraries or microprocessor instructions,
  48  * where available, to provide higher-performance implementations of
  49  * {@code Math} methods.  Such higher-performance
  50  * implementations still must conform to the specification for
  51  * {@code Math}.
  52  *
  53  * <p>The quality of implementation specifications concern two
  54  * properties, accuracy of the returned result and monotonicity of the
  55  * method.  Accuracy of the floating-point {@code Math} methods is
  56  * measured in terms of <i>ulps</i>, units in the last place.  For a
  57  * given floating-point format, an {@linkplain #ulp(double) ulp} of a
  58  * specific real number value is the distance between the two
  59  * floating-point values bracketing that numerical value.  When
  60  * discussing the accuracy of a method as a whole rather than at a
  61  * specific argument, the number of ulps cited is for the worst-case
  62  * error at any argument.  If a method always has an error less than
  63  * 0.5 ulps, the method always returns the floating-point number
  64  * nearest the exact result; such a method is <i>correctly
  65  * rounded</i>.  A correctly rounded method is generally the best a
  66  * floating-point approximation can be; however, it is impractical for
  67  * many floating-point methods to be correctly rounded.  Instead, for
  68  * the {@code Math} class, a larger error bound of 1 or 2 ulps is
  69  * allowed for certain methods.  Informally, with a 1 ulp error bound,
  70  * when the exact result is a representable number, the exact result
  71  * should be returned as the computed result; otherwise, either of the
  72  * two floating-point values which bracket the exact result may be
  73  * returned.  For exact results large in magnitude, one of the
  74  * endpoints of the bracket may be infinite.  Besides accuracy at
  75  * individual arguments, maintaining proper relations between the
  76  * method at different arguments is also important.  Therefore, most
  77  * methods with more than 0.5 ulp errors are required to be
  78  * <i>semi-monotonic</i>: whenever the mathematical function is
  79  * non-decreasing, so is the floating-point approximation, likewise,
  80  * whenever the mathematical function is non-increasing, so is the
  81  * floating-point approximation.  Not all approximations that have 1
  82  * ulp accuracy will automatically meet the monotonicity requirements.
  83  *
  84  * <p>
  85  * The platform uses signed two's complement integer arithmetic with
  86  * int and long primitive types.  The developer should choose
  87  * the primitive type to ensure that arithmetic operations consistently
  88  * produce correct results, which in some cases means the operations
  89  * will not overflow the range of values of the computation.
  90  * The best practice is to choose the primitive type and algorithm to avoid
  91  * overflow. In cases where the size is {@code int} or {@code long} and
  92  * overflow errors need to be detected, the methods {@code addExact},
  93  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
  94  * throw an {@code ArithmeticException} when the results overflow.
  95  * For other arithmetic operations such as divide, absolute value,
  96  * increment, decrement, and negation overflow occurs only with
  97  * a specific minimum or maximum value and should be checked against
  98  * the minimum or maximum as appropriate.
  99  *
 100  * @author  unascribed
 101  * @author  Joseph D. Darcy
 102  * @since   JDK1.0
 103  */
 104 
 105 public final class Math {
 106 
 107     /**
 108      * Don't let anyone instantiate this class.
 109      */
 110     private Math() {}
 111 
 112     /**
 113      * The {@code double} value that is closer than any other to
 114      * <i>e</i>, the base of the natural logarithms.
 115      */
 116     public static final double E = 2.7182818284590452354;
 117 
 118     /**
 119      * The {@code double} value that is closer than any other to
 120      * <i>pi</i>, the ratio of the circumference of a circle to its
 121      * diameter.
 122      */
 123     public static final double PI = 3.14159265358979323846;
 124 
 125     /**
 126      * Returns the trigonometric sine of an angle.  Special cases:
 127      * <ul><li>If the argument is NaN or an infinity, then the
 128      * result is NaN.
 129      * <li>If the argument is zero, then the result is a zero with the
 130      * same sign as the argument.</ul>
 131      *
 132      * <p>The computed result must be within 1 ulp of the exact result.
 133      * Results must be semi-monotonic.
 134      *
 135      * @param   a   an angle, in radians.
 136      * @return  the sine of the argument.
 137      */
 138     public static double sin(double a) {
 139         return StrictMath.sin(a); // default impl. delegates to StrictMath
 140     }
 141 
 142     /**
 143      * Returns the trigonometric cosine of an angle. Special cases:
 144      * <ul><li>If the argument is NaN or an infinity, then the
 145      * result is NaN.</ul>
 146      *
 147      * <p>The computed result must be within 1 ulp of the exact result.
 148      * Results must be semi-monotonic.
 149      *
 150      * @param   a   an angle, in radians.
 151      * @return  the cosine of the argument.
 152      */
 153     public static double cos(double a) {
 154         return StrictMath.cos(a); // default impl. delegates to StrictMath
 155     }
 156 
 157     /**
 158      * Returns the trigonometric tangent of an angle.  Special cases:
 159      * <ul><li>If the argument is NaN or an infinity, then the result
 160      * is NaN.
 161      * <li>If the argument is zero, then the result is a zero with the
 162      * same sign as the argument.</ul>
 163      *
 164      * <p>The computed result must be within 1 ulp of the exact result.
 165      * Results must be semi-monotonic.
 166      *
 167      * @param   a   an angle, in radians.
 168      * @return  the tangent of the argument.
 169      */
 170     public static double tan(double a) {
 171         return StrictMath.tan(a); // default impl. delegates to StrictMath
 172     }
 173 
 174     /**
 175      * Returns the arc sine of a value; the returned angle is in the
 176      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 177      * <ul><li>If the argument is NaN or its absolute value is greater
 178      * than 1, then the result is NaN.
 179      * <li>If the argument is zero, then the result is a zero with the
 180      * same sign as the argument.</ul>
 181      *
 182      * <p>The computed result must be within 1 ulp of the exact result.
 183      * Results must be semi-monotonic.
 184      *
 185      * @param   a   the value whose arc sine is to be returned.
 186      * @return  the arc sine of the argument.
 187      */
 188     public static double asin(double a) {
 189         return StrictMath.asin(a); // default impl. delegates to StrictMath
 190     }
 191 
 192     /**
 193      * Returns the arc cosine of a value; the returned angle is in the
 194      * range 0.0 through <i>pi</i>.  Special case:
 195      * <ul><li>If the argument is NaN or its absolute value is greater
 196      * than 1, then the result is NaN.</ul>
 197      *
 198      * <p>The computed result must be within 1 ulp of the exact result.
 199      * Results must be semi-monotonic.
 200      *
 201      * @param   a   the value whose arc cosine is to be returned.
 202      * @return  the arc cosine of the argument.
 203      */
 204     public static double acos(double a) {
 205         return StrictMath.acos(a); // default impl. delegates to StrictMath
 206     }
 207 
 208     /**
 209      * Returns the arc tangent of a value; the returned angle is in the
 210      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 211      * <ul><li>If the argument is NaN, then the result is NaN.
 212      * <li>If the argument is zero, then the result is a zero with the
 213      * same sign as the argument.</ul>
 214      *
 215      * <p>The computed result must be within 1 ulp of the exact result.
 216      * Results must be semi-monotonic.
 217      *
 218      * @param   a   the value whose arc tangent is to be returned.
 219      * @return  the arc tangent of the argument.
 220      */
 221     public static double atan(double a) {
 222         return StrictMath.atan(a); // default impl. delegates to StrictMath
 223     }
 224 
 225     /**
 226      * Converts an angle measured in degrees to an approximately
 227      * equivalent angle measured in radians.  The conversion from
 228      * degrees to radians is generally inexact.
 229      *
 230      * @param   angdeg   an angle, in degrees
 231      * @return  the measurement of the angle {@code angdeg}
 232      *          in radians.
 233      * @since   1.2
 234      */
 235     public static double toRadians(double angdeg) {
 236         return angdeg / 180.0 * PI;
 237     }
 238 
 239     /**
 240      * Converts an angle measured in radians to an approximately
 241      * equivalent angle measured in degrees.  The conversion from
 242      * radians to degrees is generally inexact; users should
 243      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 244      * equal {@code 0.0}.
 245      *
 246      * @param   angrad   an angle, in radians
 247      * @return  the measurement of the angle {@code angrad}
 248      *          in degrees.
 249      * @since   1.2
 250      */
 251     public static double toDegrees(double angrad) {
 252         return angrad * 180.0 / PI;
 253     }
 254 
 255     /**
 256      * Returns Euler's number <i>e</i> raised to the power of a
 257      * {@code double} value.  Special cases:
 258      * <ul><li>If the argument is NaN, the result is NaN.
 259      * <li>If the argument is positive infinity, then the result is
 260      * positive infinity.
 261      * <li>If the argument is negative infinity, then the result is
 262      * positive zero.</ul>
 263      *
 264      * <p>The computed result must be within 1 ulp of the exact result.
 265      * Results must be semi-monotonic.
 266      *
 267      * @param   a   the exponent to raise <i>e</i> to.
 268      * @return  the value <i>e</i><sup>{@code a}</sup>,
 269      *          where <i>e</i> is the base of the natural logarithms.
 270      */
 271     public static double exp(double a) {
 272         return StrictMath.exp(a); // default impl. delegates to StrictMath
 273     }
 274 
 275     /**
 276      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 277      * value.  Special cases:
 278      * <ul><li>If the argument is NaN or less than zero, then the result
 279      * is NaN.
 280      * <li>If the argument is positive infinity, then the result is
 281      * positive infinity.
 282      * <li>If the argument is positive zero or negative zero, then the
 283      * result is negative infinity.</ul>
 284      *
 285      * <p>The computed result must be within 1 ulp of the exact result.
 286      * Results must be semi-monotonic.
 287      *
 288      * @param   a   a value
 289      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 290      *          {@code a}.
 291      */
 292     public static double log(double a) {
 293         return StrictMath.log(a); // default impl. delegates to StrictMath
 294     }
 295 
 296     /**
 297      * Returns the base 10 logarithm of a {@code double} value.
 298      * Special cases:
 299      *
 300      * <ul><li>If the argument is NaN or less than zero, then the result
 301      * is NaN.
 302      * <li>If the argument is positive infinity, then the result is
 303      * positive infinity.
 304      * <li>If the argument is positive zero or negative zero, then the
 305      * result is negative infinity.
 306      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 307      * integer <i>n</i>, then the result is <i>n</i>.
 308      * </ul>
 309      *
 310      * <p>The computed result must be within 1 ulp of the exact result.
 311      * Results must be semi-monotonic.
 312      *
 313      * @param   a   a value
 314      * @return  the base 10 logarithm of  {@code a}.
 315      * @since 1.5
 316      */
 317     public static double log10(double a) {
 318         return StrictMath.log10(a); // default impl. delegates to StrictMath
 319     }
 320 
 321     /**
 322      * Returns the correctly rounded positive square root of a
 323      * {@code double} value.
 324      * Special cases:
 325      * <ul><li>If the argument is NaN or less than zero, then the result
 326      * is NaN.
 327      * <li>If the argument is positive infinity, then the result is positive
 328      * infinity.
 329      * <li>If the argument is positive zero or negative zero, then the
 330      * result is the same as the argument.</ul>
 331      * Otherwise, the result is the {@code double} value closest to
 332      * the true mathematical square root of the argument value.
 333      *
 334      * @param   a   a value.
 335      * @return  the positive square root of {@code a}.
 336      *          If the argument is NaN or less than zero, the result is NaN.
 337      */
 338     public static double sqrt(double a) {
 339         return StrictMath.sqrt(a); // default impl. delegates to StrictMath
 340                                    // Note that hardware sqrt instructions
 341                                    // frequently can be directly used by JITs
 342                                    // and should be much faster than doing
 343                                    // Math.sqrt in software.
 344     }
 345 
 346 
 347     /**
 348      * Returns the cube root of a {@code double} value.  For
 349      * positive finite {@code x}, {@code cbrt(-x) ==
 350      * -cbrt(x)}; that is, the cube root of a negative value is
 351      * the negative of the cube root of that value's magnitude.
 352      *
 353      * Special cases:
 354      *
 355      * <ul>
 356      *
 357      * <li>If the argument is NaN, then the result is NaN.
 358      *
 359      * <li>If the argument is infinite, then the result is an infinity
 360      * with the same sign as the argument.
 361      *
 362      * <li>If the argument is zero, then the result is a zero with the
 363      * same sign as the argument.
 364      *
 365      * </ul>
 366      *
 367      * <p>The computed result must be within 1 ulp of the exact result.
 368      *
 369      * @param   a   a value.
 370      * @return  the cube root of {@code a}.
 371      * @since 1.5
 372      */
 373     public static double cbrt(double a) {
 374         return StrictMath.cbrt(a);
 375     }
 376 
 377     /**
 378      * Computes the remainder operation on two arguments as prescribed
 379      * by the IEEE 754 standard.
 380      * The remainder value is mathematically equal to
 381      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 382      * where <i>n</i> is the mathematical integer closest to the exact
 383      * mathematical value of the quotient {@code f1/f2}, and if two
 384      * mathematical integers are equally close to {@code f1/f2},
 385      * then <i>n</i> is the integer that is even. If the remainder is
 386      * zero, its sign is the same as the sign of the first argument.
 387      * Special cases:
 388      * <ul><li>If either argument is NaN, or the first argument is infinite,
 389      * or the second argument is positive zero or negative zero, then the
 390      * result is NaN.
 391      * <li>If the first argument is finite and the second argument is
 392      * infinite, then the result is the same as the first argument.</ul>
 393      *
 394      * @param   f1   the dividend.
 395      * @param   f2   the divisor.
 396      * @return  the remainder when {@code f1} is divided by
 397      *          {@code f2}.
 398      */
 399     public static double IEEEremainder(double f1, double f2) {
 400         return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
 401     }
 402 
 403     /**
 404      * Returns the smallest (closest to negative infinity)
 405      * {@code double} value that is greater than or equal to the
 406      * argument and is equal to a mathematical integer. Special cases:
 407      * <ul><li>If the argument value is already equal to a
 408      * mathematical integer, then the result is the same as the
 409      * argument.  <li>If the argument is NaN or an infinity or
 410      * positive zero or negative zero, then the result is the same as
 411      * the argument.  <li>If the argument value is less than zero but
 412      * greater than -1.0, then the result is negative zero.</ul> Note
 413      * that the value of {@code Math.ceil(x)} is exactly the
 414      * value of {@code -Math.floor(-x)}.
 415      *
 416      *
 417      * @param   a   a value.
 418      * @return  the smallest (closest to negative infinity)
 419      *          floating-point value that is greater than or equal to
 420      *          the argument and is equal to a mathematical integer.
 421      */
 422     public static double ceil(double a) {
 423         return StrictMath.ceil(a); // default impl. delegates to StrictMath
 424     }
 425 
 426     /**
 427      * Returns the largest (closest to positive infinity)
 428      * {@code double} value that is less than or equal to the
 429      * argument and is equal to a mathematical integer. Special cases:
 430      * <ul><li>If the argument value is already equal to a
 431      * mathematical integer, then the result is the same as the
 432      * argument.  <li>If the argument is NaN or an infinity or
 433      * positive zero or negative zero, then the result is the same as
 434      * the argument.</ul>
 435      *
 436      * @param   a   a value.
 437      * @return  the largest (closest to positive infinity)
 438      *          floating-point value that less than or equal to the argument
 439      *          and is equal to a mathematical integer.
 440      */
 441     public static double floor(double a) {
 442         return StrictMath.floor(a); // default impl. delegates to StrictMath
 443     }
 444 
 445     /**
 446      * Returns the {@code double} value that is closest in value
 447      * to the argument and is equal to a mathematical integer. If two
 448      * {@code double} values that are mathematical integers are
 449      * equally close, the result is the integer value that is
 450      * even. Special cases:
 451      * <ul><li>If the argument value is already equal to a mathematical
 452      * integer, then the result is the same as the argument.
 453      * <li>If the argument is NaN or an infinity or positive zero or negative
 454      * zero, then the result is the same as the argument.</ul>
 455      *
 456      * @param   a   a {@code double} value.
 457      * @return  the closest floating-point value to {@code a} that is
 458      *          equal to a mathematical integer.
 459      */
 460     public static double rint(double a) {
 461         return StrictMath.rint(a); // default impl. delegates to StrictMath
 462     }
 463 
 464     /**
 465      * Returns the angle <i>theta</i> from the conversion of rectangular
 466      * coordinates ({@code x},&nbsp;{@code y}) to polar
 467      * coordinates (r,&nbsp;<i>theta</i>).
 468      * This method computes the phase <i>theta</i> by computing an arc tangent
 469      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 470      * cases:
 471      * <ul><li>If either argument is NaN, then the result is NaN.
 472      * <li>If the first argument is positive zero and the second argument
 473      * is positive, or the first argument is positive and finite and the
 474      * second argument is positive infinity, then the result is positive
 475      * zero.
 476      * <li>If the first argument is negative zero and the second argument
 477      * is positive, or the first argument is negative and finite and the
 478      * second argument is positive infinity, then the result is negative zero.
 479      * <li>If the first argument is positive zero and the second argument
 480      * is negative, or the first argument is positive and finite and the
 481      * second argument is negative infinity, then the result is the
 482      * {@code double} value closest to <i>pi</i>.
 483      * <li>If the first argument is negative zero and the second argument
 484      * is negative, or the first argument is negative and finite and the
 485      * second argument is negative infinity, then the result is the
 486      * {@code double} value closest to -<i>pi</i>.
 487      * <li>If the first argument is positive and the second argument is
 488      * positive zero or negative zero, or the first argument is positive
 489      * infinity and the second argument is finite, then the result is the
 490      * {@code double} value closest to <i>pi</i>/2.
 491      * <li>If the first argument is negative and the second argument is
 492      * positive zero or negative zero, or the first argument is negative
 493      * infinity and the second argument is finite, then the result is the
 494      * {@code double} value closest to -<i>pi</i>/2.
 495      * <li>If both arguments are positive infinity, then the result is the
 496      * {@code double} value closest to <i>pi</i>/4.
 497      * <li>If the first argument is positive infinity and the second argument
 498      * is negative infinity, then the result is the {@code double}
 499      * value closest to 3*<i>pi</i>/4.
 500      * <li>If the first argument is negative infinity and the second argument
 501      * is positive infinity, then the result is the {@code double} value
 502      * closest to -<i>pi</i>/4.
 503      * <li>If both arguments are negative infinity, then the result is the
 504      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 505      *
 506      * <p>The computed result must be within 2 ulps of the exact result.
 507      * Results must be semi-monotonic.
 508      *
 509      * @param   y   the ordinate coordinate
 510      * @param   x   the abscissa coordinate
 511      * @return  the <i>theta</i> component of the point
 512      *          (<i>r</i>,&nbsp;<i>theta</i>)
 513      *          in polar coordinates that corresponds to the point
 514      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 515      */
 516     public static double atan2(double y, double x) {
 517         return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
 518     }
 519 
 520     /**
 521      * Returns the value of the first argument raised to the power of the
 522      * second argument. Special cases:
 523      *
 524      * <ul><li>If the second argument is positive or negative zero, then the
 525      * result is 1.0.
 526      * <li>If the second argument is 1.0, then the result is the same as the
 527      * first argument.
 528      * <li>If the second argument is NaN, then the result is NaN.
 529      * <li>If the first argument is NaN and the second argument is nonzero,
 530      * then the result is NaN.
 531      *
 532      * <li>If
 533      * <ul>
 534      * <li>the absolute value of the first argument is greater than 1
 535      * and the second argument is positive infinity, or
 536      * <li>the absolute value of the first argument is less than 1 and
 537      * the second argument is negative infinity,
 538      * </ul>
 539      * then the result is positive infinity.
 540      *
 541      * <li>If
 542      * <ul>
 543      * <li>the absolute value of the first argument is greater than 1 and
 544      * the second argument is negative infinity, or
 545      * <li>the absolute value of the
 546      * first argument is less than 1 and the second argument is positive
 547      * infinity,
 548      * </ul>
 549      * then the result is positive zero.
 550      *
 551      * <li>If the absolute value of the first argument equals 1 and the
 552      * second argument is infinite, then the result is NaN.
 553      *
 554      * <li>If
 555      * <ul>
 556      * <li>the first argument is positive zero and the second argument
 557      * is greater than zero, or
 558      * <li>the first argument is positive infinity and the second
 559      * argument is less than zero,
 560      * </ul>
 561      * then the result is positive zero.
 562      *
 563      * <li>If
 564      * <ul>
 565      * <li>the first argument is positive zero and the second argument
 566      * is less than zero, or
 567      * <li>the first argument is positive infinity and the second
 568      * argument is greater than zero,
 569      * </ul>
 570      * then the result is positive infinity.
 571      *
 572      * <li>If
 573      * <ul>
 574      * <li>the first argument is negative zero and the second argument
 575      * is greater than zero but not a finite odd integer, or
 576      * <li>the first argument is negative infinity and the second
 577      * argument is less than zero but not a finite odd integer,
 578      * </ul>
 579      * then the result is positive zero.
 580      *
 581      * <li>If
 582      * <ul>
 583      * <li>the first argument is negative zero and the second argument
 584      * is a positive finite odd integer, or
 585      * <li>the first argument is negative infinity and the second
 586      * argument is a negative finite odd integer,
 587      * </ul>
 588      * then the result is negative zero.
 589      *
 590      * <li>If
 591      * <ul>
 592      * <li>the first argument is negative zero and the second argument
 593      * is less than zero but not a finite odd integer, or
 594      * <li>the first argument is negative infinity and the second
 595      * argument is greater than zero but not a finite odd integer,
 596      * </ul>
 597      * then the result is positive infinity.
 598      *
 599      * <li>If
 600      * <ul>
 601      * <li>the first argument is negative zero and the second argument
 602      * is a negative finite odd integer, or
 603      * <li>the first argument is negative infinity and the second
 604      * argument is a positive finite odd integer,
 605      * </ul>
 606      * then the result is negative infinity.
 607      *
 608      * <li>If the first argument is finite and less than zero
 609      * <ul>
 610      * <li> if the second argument is a finite even integer, the
 611      * result is equal to the result of raising the absolute value of
 612      * the first argument to the power of the second argument
 613      *
 614      * <li>if the second argument is a finite odd integer, the result
 615      * is equal to the negative of the result of raising the absolute
 616      * value of the first argument to the power of the second
 617      * argument
 618      *
 619      * <li>if the second argument is finite and not an integer, then
 620      * the result is NaN.
 621      * </ul>
 622      *
 623      * <li>If both arguments are integers, then the result is exactly equal
 624      * to the mathematical result of raising the first argument to the power
 625      * of the second argument if that result can in fact be represented
 626      * exactly as a {@code double} value.</ul>
 627      *
 628      * <p>(In the foregoing descriptions, a floating-point value is
 629      * considered to be an integer if and only if it is finite and a
 630      * fixed point of the method {@link #ceil ceil} or,
 631      * equivalently, a fixed point of the method {@link #floor
 632      * floor}. A value is a fixed point of a one-argument
 633      * method if and only if the result of applying the method to the
 634      * value is equal to the value.)
 635      *
 636      * <p>The computed result must be within 1 ulp of the exact result.
 637      * Results must be semi-monotonic.
 638      *
 639      * @param   a   the base.
 640      * @param   b   the exponent.
 641      * @return  the value {@code a}<sup>{@code b}</sup>.
 642      */
 643     public static double pow(double a, double b) {
 644         return StrictMath.pow(a, b); // default impl. delegates to StrictMath
 645     }
 646 
 647     /**
 648      * Returns the closest {@code int} to the argument, with ties
 649      * rounding up.
 650      *
 651      * <p>
 652      * Special cases:
 653      * <ul><li>If the argument is NaN, the result is 0.
 654      * <li>If the argument is negative infinity or any value less than or
 655      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 656      * equal to the value of {@code Integer.MIN_VALUE}.
 657      * <li>If the argument is positive infinity or any value greater than or
 658      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 659      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 660      *
 661      * @param   a   a floating-point value to be rounded to an integer.
 662      * @return  the value of the argument rounded to the nearest
 663      *          {@code int} value.
 664      * @see     java.lang.Integer#MAX_VALUE
 665      * @see     java.lang.Integer#MIN_VALUE
 666      */
 667     public static int round(float a) {
 668         if (a != 0x1.fffffep-2f) // greatest float value less than 0.5
 669             return (int)floor(a + 0.5f);
 670         else
 671             return 0;
 672     }
 673 
 674     /**
 675      * Returns the closest {@code long} to the argument, with ties
 676      * rounding up.
 677      *
 678      * <p>Special cases:
 679      * <ul><li>If the argument is NaN, the result is 0.
 680      * <li>If the argument is negative infinity or any value less than or
 681      * equal to the value of {@code Long.MIN_VALUE}, the result is
 682      * equal to the value of {@code Long.MIN_VALUE}.
 683      * <li>If the argument is positive infinity or any value greater than or
 684      * equal to the value of {@code Long.MAX_VALUE}, the result is
 685      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 686      *
 687      * @param   a   a floating-point value to be rounded to a
 688      *          {@code long}.
 689      * @return  the value of the argument rounded to the nearest
 690      *          {@code long} value.
 691      * @see     java.lang.Long#MAX_VALUE
 692      * @see     java.lang.Long#MIN_VALUE
 693      */
 694     public static long round(double a) {
 695         if (a != 0x1.fffffffffffffp-2) // greatest double value less than 0.5
 696             return (long)floor(a + 0.5d);
 697         else
 698             return 0;
 699     }
 700 
 701     private static Random randomNumberGenerator;
 702 
 703     private static synchronized Random initRNG() {
 704         Random rnd = randomNumberGenerator;
 705         return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
 706     }
 707 
 708     /**
 709      * Returns a {@code double} value with a positive sign, greater
 710      * than or equal to {@code 0.0} and less than {@code 1.0}.
 711      * Returned values are chosen pseudorandomly with (approximately)
 712      * uniform distribution from that range.
 713      *
 714      * <p>When this method is first called, it creates a single new
 715      * pseudorandom-number generator, exactly as if by the expression
 716      *
 717      * <blockquote>{@code new java.util.Random()}</blockquote>
 718      *
 719      * This new pseudorandom-number generator is used thereafter for
 720      * all calls to this method and is used nowhere else.
 721      *
 722      * <p>This method is properly synchronized to allow correct use by
 723      * more than one thread. However, if many threads need to generate
 724      * pseudorandom numbers at a great rate, it may reduce contention
 725      * for each thread to have its own pseudorandom-number generator.
 726      *
 727      * @return  a pseudorandom {@code double} greater than or equal
 728      * to {@code 0.0} and less than {@code 1.0}.
 729      * @see Random#nextDouble()
 730      */
 731     public static double random() {
 732         Random rnd = randomNumberGenerator;
 733         if (rnd == null) rnd = initRNG();
 734         return rnd.nextDouble();
 735     }
 736 
 737     /**
 738      * Returns the sum of its arguments,
 739      * throwing an exception if the result overflows an {@code int}.
 740      *
 741      * @param x the first value
 742      * @param y the second value
 743      * @return the result
 744      * @throws ArithmeticException if the result overflows an int
 745      * @since 1.8
 746      */
 747     public static int addExact(int x, int y) {
 748         int r = x + y;
 749         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
 750         if (((x ^ r) & (y ^ r)) < 0) {
 751             throw new ArithmeticException("integer overflow");
 752         }
 753         return r;
 754     }
 755 
 756     /**
 757      * Returns the sum of its arguments,
 758      * throwing an exception if the result overflows a {@code long}.
 759      *
 760      * @param x the first value
 761      * @param y the second value
 762      * @return the result
 763      * @throws ArithmeticException if the result overflows a long
 764      * @since 1.8
 765      */
 766     public static long addExact(long x, long y) {
 767         long r = x + y;
 768         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
 769         if (((x ^ r) & (y ^ r)) < 0) {
 770             throw new ArithmeticException("long overflow");
 771         }
 772         return r;
 773     }
 774 
 775     /**
 776      * Returns the difference of the arguments,
 777      * throwing an exception if the result overflows an {@code int}.
 778      *
 779      * @param x the first value
 780      * @param y the second value to subtract from the first
 781      * @return the result
 782      * @throws ArithmeticException if the result overflows an int
 783      * @since 1.8
 784      */
 785     public static int subtractExact(int x, int y) {
 786         int r = x - y;
 787         // HD 2-12 Overflow iff the arguments have different signs and
 788         // the sign of the result is different than the sign of x
 789         if (((x ^ y) & (x ^ r)) < 0) {
 790             throw new ArithmeticException("integer overflow");
 791         }
 792         return r;
 793     }
 794 
 795     /**
 796      * Returns the difference of the arguments,
 797      * throwing an exception if the result overflows a {@code long}.
 798      *
 799      * @param x the first value
 800      * @param y the second value to subtract from the first
 801      * @return the result
 802      * @throws ArithmeticException if the result overflows a long
 803      * @since 1.8
 804      */
 805     public static long subtractExact(long x, long y) {
 806         long r = x - y;
 807         // HD 2-12 Overflow iff the arguments have different signs and
 808         // the sign of the result is different than the sign of x
 809         if (((x ^ y) & (x ^ r)) < 0) {
 810             throw new ArithmeticException("long overflow");
 811         }
 812         return r;
 813     }
 814 
 815     /**
 816      * Returns the product of the arguments,
 817      * throwing an exception if the result overflows an {@code int}.
 818      *
 819      * @param x the first value
 820      * @param y the second value
 821      * @return the result
 822      * @throws ArithmeticException if the result overflows an int
 823      * @since 1.8
 824      */
 825     public static int multiplyExact(int x, int y) {
 826         long r = (long)x * (long)y;
 827         if ((int)r != r) {
 828             throw new ArithmeticException("long overflow");
 829         }
 830         return (int)r;
 831     }
 832 
 833     /**
 834      * Returns the product of the arguments,
 835      * throwing an exception if the result overflows a {@code long}.
 836      *
 837      * @param x the first value
 838      * @param y the second value
 839      * @return the result
 840      * @throws ArithmeticException if the result overflows a long
 841      * @since 1.8
 842      */
 843     public static long multiplyExact(long x, long y) {
 844         long r = x * y;
 845         long ax = Math.abs(x);
 846         long ay = Math.abs(y);
 847         if (((ax | ay) >>> 31 != 0)) {
 848             // Some bits greater than 2^31 that might cause overflow
 849             // Check the result using the divide operator
 850             // and check for the special case of Long.MIN_VALUE * -1
 851            if (((y != 0) && (r / y != x)) ||
 852                (x == Long.MIN_VALUE && y == -1)) {
 853                 throw new ArithmeticException("long overflow");
 854             }
 855         }
 856         return r;
 857     }
 858 
 859     /**
 860      * Returns the value of the {@code long} argument;
 861      * throwing an exception if the value overflows an {@code int}.
 862      *
 863      * @param value the long value
 864      * @return the argument as an int
 865      * @throws ArithmeticException if the {@code argument} overflows an int
 866      * @since 1.8
 867      */
 868     public static int toIntExact(long value) {
 869         if ((int)value != value) {
 870             throw new ArithmeticException("integer overflow");
 871         }
 872         return (int)value;
 873     }
 874 
 875     /**
 876      * Returns the largest (closest to positive infinity)
 877      * {@code int} value that is less than or equal to the algebraic quotient.
 878      * There is one special case, if the dividend is the
 879      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
 880      * then integer overflow occurs and
 881      * the result is equal to the {@code Integer.MIN_VALUE}.
 882      * <p>
 883      * Normal integer division operates under the round to zero rounding mode
 884      * (truncation).  This operation instead acts under the round toward
 885      * negative infinity (floor) rounding mode.
 886      * The floor rounding mode gives different results than truncation
 887      * when the exact result is negative.
 888      * <ul>
 889      *   <li>If the signs of the arguments are the same, the results of
 890      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
 891      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
 892      *   <li>If the signs of the arguments are different,  the quotient is negative and
 893      *       {@code floorDiv} returns the integer less than or equal to the quotient
 894      *       and the {@code /} operator returns the integer closest to zero.<br>
 895      *       For example, {@code floorDiv(-4, 3) == -2},
 896      *       whereas {@code (-4 / 3) == -1}.
 897      *   </li>
 898      * </ul>
 899      * <p>
 900      *
 901      * @param x the dividend
 902      * @param y the divisor
 903      * @return the largest (closest to positive infinity)
 904      * {@code int} value that is less than or equal to the algebraic quotient.
 905      * @throws ArithmeticException if the divisor {@code y} is zero
 906      * @see #floorMod(int, int)
 907      * @see #floor(double)
 908      * @since 1.8
 909      */
 910     public static int floorDiv(int x, int y) {
 911         int r = x / y;
 912         // if the signs are different and modulo not zero, round down
 913         if ((x ^ y) < 0 && (r * y != x)) {
 914             r--;
 915         }
 916         return r;
 917     }
 918 
 919     /**
 920      * Returns the largest (closest to positive infinity)
 921      * {@code long} value that is less than or equal to the algebraic quotient.
 922      * There is one special case, if the dividend is the
 923      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
 924      * then integer overflow occurs and
 925      * the result is equal to the {@code Long.MIN_VALUE}.
 926      * <p>
 927      * Normal integer division operates under the round to zero rounding mode
 928      * (truncation).  This operation instead acts under the round toward
 929      * negative infinity (floor) rounding mode.
 930      * The floor rounding mode gives different results than truncation
 931      * when the exact result is negative.
 932      * <p>
 933      * For examples, see {@link #floorDiv(int, int)}.
 934      *
 935      * @param x the dividend
 936      * @param y the divisor
 937      * @return the largest (closest to positive infinity)
 938      * {@code long} value that is less than or equal to the algebraic quotient.
 939      * @throws ArithmeticException if the divisor {@code y} is zero
 940      * @see #floorMod(long, long)
 941      * @see #floor(double)
 942      * @since 1.8
 943      */
 944     public static long floorDiv(long x, long y) {
 945         long r = x / y;
 946         // if the signs are different and modulo not zero, round down
 947         if ((x ^ y) < 0 && (r * y != x)) {
 948             r--;
 949         }
 950         return r;
 951     }
 952 
 953     /**
 954      * Returns the floor modulus of the {@code int} arguments.
 955      * <p>
 956      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
 957      * has the same sign as the divisor {@code y}, and
 958      * is in the range of {@code -abs(y) < r < +abs(y)}.
 959      *
 960      * <p>
 961      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
 962      * <ul>
 963      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
 964      * </ul>
 965      * <p>
 966      * The difference in values between {@code floorMod} and
 967      * the {@code %} operator is due to the difference between
 968      * {@code floorDiv} that returns the integer less than or equal to the quotient
 969      * and the {@code /} operator that returns the integer closest to zero.
 970      * <p>
 971      * Examples:
 972      * <ul>
 973      *   <li>If the signs of the arguments are the same, the results
 974      *       of {@code floorMod} and the {@code %} operator are the same.  <br>
 975      *       <ul>
 976      *       <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
 977      *       </ul>
 978      *   <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
 979      *      <ul>
 980      *      <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
 981      *      <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
 982      *      <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
 983      *      </ul>
 984      *   </li>
 985      * </ul>
 986      * <p>
 987      * If the signs of arguments are unknown and a positive modulus
 988      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
 989      *
 990      * @param x the dividend
 991      * @param y the divisor
 992      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
 993      * @throws ArithmeticException if the divisor {@code y} is zero
 994      * @see #floorDiv(int, int)
 995      * @since 1.8
 996      */
 997     public static int floorMod(int x, int y) {
 998         int r = x - floorDiv(x, y) * y;
 999         return r;
1000     }
1001 
1002     /**
1003      * Returns the floor modulus of the {@code long} arguments.
1004      * <p>
1005      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1006      * has the same sign as the divisor {@code y}, and
1007      * is in the range of {@code -abs(y) < r < +abs(y)}.
1008      *
1009      * <p>
1010      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1011      * <ul>
1012      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1013      * </ul>
1014      * <p>
1015      * For examples, see {@link #floorMod(int, int)}.
1016      *
1017      * @param x the dividend
1018      * @param y the divisor
1019      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1020      * @throws ArithmeticException if the divisor {@code y} is zero
1021      * @see #floorDiv(long, long)
1022      * @since 1.8
1023      */
1024     public static long floorMod(long x, long y) {
1025         return x - floorDiv(x, y) * y;
1026     }
1027 
1028     /**
1029      * Returns the absolute value of an {@code int} value.
1030      * If the argument is not negative, the argument is returned.
1031      * If the argument is negative, the negation of the argument is returned.
1032      *
1033      * <p>Note that if the argument is equal to the value of
1034      * {@link Integer#MIN_VALUE}, the most negative representable
1035      * {@code int} value, the result is that same value, which is
1036      * negative.
1037      *
1038      * @param   a   the argument whose absolute value is to be determined
1039      * @return  the absolute value of the argument.
1040      */
1041     public static int abs(int a) {
1042         return (a < 0) ? -a : a;
1043     }
1044 
1045     /**
1046      * Returns the absolute value of a {@code long} value.
1047      * If the argument is not negative, the argument is returned.
1048      * If the argument is negative, the negation of the argument is returned.
1049      *
1050      * <p>Note that if the argument is equal to the value of
1051      * {@link Long#MIN_VALUE}, the most negative representable
1052      * {@code long} value, the result is that same value, which
1053      * is negative.
1054      *
1055      * @param   a   the argument whose absolute value is to be determined
1056      * @return  the absolute value of the argument.
1057      */
1058     public static long abs(long a) {
1059         return (a < 0) ? -a : a;
1060     }
1061 
1062     /**
1063      * Returns the absolute value of a {@code float} value.
1064      * If the argument is not negative, the argument is returned.
1065      * If the argument is negative, the negation of the argument is returned.
1066      * Special cases:
1067      * <ul><li>If the argument is positive zero or negative zero, the
1068      * result is positive zero.
1069      * <li>If the argument is infinite, the result is positive infinity.
1070      * <li>If the argument is NaN, the result is NaN.</ul>
1071      * In other words, the result is the same as the value of the expression:
1072      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
1073      *
1074      * @param   a   the argument whose absolute value is to be determined
1075      * @return  the absolute value of the argument.
1076      */
1077     public static float abs(float a) {
1078         return (a <= 0.0F) ? 0.0F - a : a;
1079     }
1080 
1081     /**
1082      * Returns the absolute value of a {@code double} value.
1083      * If the argument is not negative, the argument is returned.
1084      * If the argument is negative, the negation of the argument is returned.
1085      * Special cases:
1086      * <ul><li>If the argument is positive zero or negative zero, the result
1087      * is positive zero.
1088      * <li>If the argument is infinite, the result is positive infinity.
1089      * <li>If the argument is NaN, the result is NaN.</ul>
1090      * In other words, the result is the same as the value of the expression:
1091      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
1092      *
1093      * @param   a   the argument whose absolute value is to be determined
1094      * @return  the absolute value of the argument.
1095      */
1096     public static double abs(double a) {
1097         return (a <= 0.0D) ? 0.0D - a : a;
1098     }
1099 
1100     /**
1101      * Returns the greater of two {@code int} values. That is, the
1102      * result is the argument closer to the value of
1103      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1104      * the result is that same value.
1105      *
1106      * @param   a   an argument.
1107      * @param   b   another argument.
1108      * @return  the larger of {@code a} and {@code b}.
1109      */
1110     public static int max(int a, int b) {
1111         return (a >= b) ? a : b;
1112     }
1113 
1114     /**
1115      * Returns the greater of two {@code long} values. That is, the
1116      * result is the argument closer to the value of
1117      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1118      * the result is that same value.
1119      *
1120      * @param   a   an argument.
1121      * @param   b   another argument.
1122      * @return  the larger of {@code a} and {@code b}.
1123      */
1124     public static long max(long a, long b) {
1125         return (a >= b) ? a : b;
1126     }
1127 
1128     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
1129     private static long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
1130     private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
1131 
1132     /**
1133      * Returns the greater of two {@code float} values.  That is,
1134      * the result is the argument closer to positive infinity. If the
1135      * arguments have the same value, the result is that same
1136      * value. If either value is NaN, then the result is NaN.  Unlike
1137      * the numerical comparison operators, this method considers
1138      * negative zero to be strictly smaller than positive zero. If one
1139      * argument is positive zero and the other negative zero, the
1140      * result is positive zero.
1141      *
1142      * @param   a   an argument.
1143      * @param   b   another argument.
1144      * @return  the larger of {@code a} and {@code b}.
1145      */
1146     public static float max(float a, float b) {
1147         if (a != a)
1148             return a;   // a is NaN
1149         if ((a == 0.0f) &&
1150             (b == 0.0f) &&
1151             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
1152             // Raw conversion ok since NaN can't map to -0.0.
1153             return b;
1154         }
1155         return (a >= b) ? a : b;
1156     }
1157 
1158     /**
1159      * Returns the greater of two {@code double} values.  That
1160      * is, the result is the argument closer to positive infinity. If
1161      * the arguments have the same value, the result is that same
1162      * value. If either value is NaN, then the result is NaN.  Unlike
1163      * the numerical comparison operators, this method considers
1164      * negative zero to be strictly smaller than positive zero. If one
1165      * argument is positive zero and the other negative zero, the
1166      * result is positive zero.
1167      *
1168      * @param   a   an argument.
1169      * @param   b   another argument.
1170      * @return  the larger of {@code a} and {@code b}.
1171      */
1172     public static double max(double a, double b) {
1173         if (a != a)
1174             return a;   // a is NaN
1175         if ((a == 0.0d) &&
1176             (b == 0.0d) &&
1177             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
1178             // Raw conversion ok since NaN can't map to -0.0.
1179             return b;
1180         }
1181         return (a >= b) ? a : b;
1182     }
1183 
1184     /**
1185      * Returns the smaller of two {@code int} values. That is,
1186      * the result the argument closer to the value of
1187      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1188      * value, the result is that same value.
1189      *
1190      * @param   a   an argument.
1191      * @param   b   another argument.
1192      * @return  the smaller of {@code a} and {@code b}.
1193      */
1194     public static int min(int a, int b) {
1195         return (a <= b) ? a : b;
1196     }
1197 
1198     /**
1199      * Returns the smaller of two {@code long} values. That is,
1200      * the result is the argument closer to the value of
1201      * {@link Long#MIN_VALUE}. If the arguments have the same
1202      * value, the result is that same value.
1203      *
1204      * @param   a   an argument.
1205      * @param   b   another argument.
1206      * @return  the smaller of {@code a} and {@code b}.
1207      */
1208     public static long min(long a, long b) {
1209         return (a <= b) ? a : b;
1210     }
1211 
1212     /**
1213      * Returns the smaller of two {@code float} values.  That is,
1214      * the result is the value closer to negative infinity. If the
1215      * arguments have the same value, the result is that same
1216      * value. If either value is NaN, then the result is NaN.  Unlike
1217      * the numerical comparison operators, this method considers
1218      * negative zero to be strictly smaller than positive zero.  If
1219      * one argument is positive zero and the other is negative zero,
1220      * the result is negative zero.
1221      *
1222      * @param   a   an argument.
1223      * @param   b   another argument.
1224      * @return  the smaller of {@code a} and {@code b}.
1225      */
1226     public static float min(float a, float b) {
1227         if (a != a)
1228             return a;   // a is NaN
1229         if ((a == 0.0f) &&
1230             (b == 0.0f) &&
1231             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
1232             // Raw conversion ok since NaN can't map to -0.0.
1233             return b;
1234         }
1235         return (a <= b) ? a : b;
1236     }
1237 
1238     /**
1239      * Returns the smaller of two {@code double} values.  That
1240      * is, the result is the value closer to negative infinity. If the
1241      * arguments have the same value, the result is that same
1242      * value. If either value is NaN, then the result is NaN.  Unlike
1243      * the numerical comparison operators, this method considers
1244      * negative zero to be strictly smaller than positive zero. If one
1245      * argument is positive zero and the other is negative zero, the
1246      * result is negative zero.
1247      *
1248      * @param   a   an argument.
1249      * @param   b   another argument.
1250      * @return  the smaller of {@code a} and {@code b}.
1251      */
1252     public static double min(double a, double b) {
1253         if (a != a)
1254             return a;   // a is NaN
1255         if ((a == 0.0d) &&
1256             (b == 0.0d) &&
1257             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
1258             // Raw conversion ok since NaN can't map to -0.0.
1259             return b;
1260         }
1261         return (a <= b) ? a : b;
1262     }
1263 
1264     /**
1265      * Returns the size of an ulp of the argument.  An ulp, unit in
1266      * the last place, of a {@code double} value is the positive
1267      * distance between this floating-point value and the {@code
1268      * double} value next larger in magnitude.  Note that for non-NaN
1269      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1270      *
1271      * <p>Special Cases:
1272      * <ul>
1273      * <li> If the argument is NaN, then the result is NaN.
1274      * <li> If the argument is positive or negative infinity, then the
1275      * result is positive infinity.
1276      * <li> If the argument is positive or negative zero, then the result is
1277      * {@code Double.MIN_VALUE}.
1278      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1279      * the result is equal to 2<sup>971</sup>.
1280      * </ul>
1281      *
1282      * @param d the floating-point value whose ulp is to be returned
1283      * @return the size of an ulp of the argument
1284      * @author Joseph D. Darcy
1285      * @since 1.5
1286      */
1287     public static double ulp(double d) {
1288         int exp = getExponent(d);
1289 
1290         switch(exp) {
1291         case DoubleConsts.MAX_EXPONENT+1:       // NaN or infinity
1292             return Math.abs(d);
1293 
1294         case DoubleConsts.MIN_EXPONENT-1:       // zero or subnormal
1295             return Double.MIN_VALUE;
1296 
1297         default:
1298             assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT;
1299 
1300             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1301             exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1);
1302             if (exp >= DoubleConsts.MIN_EXPONENT) {
1303                 return powerOfTwoD(exp);
1304             }
1305             else {
1306                 // return a subnormal result; left shift integer
1307                 // representation of Double.MIN_VALUE appropriate
1308                 // number of positions
1309                 return Double.longBitsToDouble(1L <<
1310                 (exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) ));
1311             }
1312         }
1313     }
1314 
1315     /**
1316      * Returns the size of an ulp of the argument.  An ulp, unit in
1317      * the last place, of a {@code float} value is the positive
1318      * distance between this floating-point value and the {@code
1319      * float} value next larger in magnitude.  Note that for non-NaN
1320      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1321      *
1322      * <p>Special Cases:
1323      * <ul>
1324      * <li> If the argument is NaN, then the result is NaN.
1325      * <li> If the argument is positive or negative infinity, then the
1326      * result is positive infinity.
1327      * <li> If the argument is positive or negative zero, then the result is
1328      * {@code Float.MIN_VALUE}.
1329      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1330      * the result is equal to 2<sup>104</sup>.
1331      * </ul>
1332      *
1333      * @param f the floating-point value whose ulp is to be returned
1334      * @return the size of an ulp of the argument
1335      * @author Joseph D. Darcy
1336      * @since 1.5
1337      */
1338     public static float ulp(float f) {
1339         int exp = getExponent(f);
1340 
1341         switch(exp) {
1342         case FloatConsts.MAX_EXPONENT+1:        // NaN or infinity
1343             return Math.abs(f);
1344 
1345         case FloatConsts.MIN_EXPONENT-1:        // zero or subnormal
1346             return FloatConsts.MIN_VALUE;
1347 
1348         default:
1349             assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT;
1350 
1351             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1352             exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1);
1353             if (exp >= FloatConsts.MIN_EXPONENT) {
1354                 return powerOfTwoF(exp);
1355             }
1356             else {
1357                 // return a subnormal result; left shift integer
1358                 // representation of FloatConsts.MIN_VALUE appropriate
1359                 // number of positions
1360                 return Float.intBitsToFloat(1 <<
1361                 (exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) ));
1362             }
1363         }
1364     }
1365 
1366     /**
1367      * Returns the signum function of the argument; zero if the argument
1368      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1369      * argument is less than zero.
1370      *
1371      * <p>Special Cases:
1372      * <ul>
1373      * <li> If the argument is NaN, then the result is NaN.
1374      * <li> If the argument is positive zero or negative zero, then the
1375      *      result is the same as the argument.
1376      * </ul>
1377      *
1378      * @param d the floating-point value whose signum is to be returned
1379      * @return the signum function of the argument
1380      * @author Joseph D. Darcy
1381      * @since 1.5
1382      */
1383     public static double signum(double d) {
1384         return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d);
1385     }
1386 
1387     /**
1388      * Returns the signum function of the argument; zero if the argument
1389      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1390      * argument is less than zero.
1391      *
1392      * <p>Special Cases:
1393      * <ul>
1394      * <li> If the argument is NaN, then the result is NaN.
1395      * <li> If the argument is positive zero or negative zero, then the
1396      *      result is the same as the argument.
1397      * </ul>
1398      *
1399      * @param f the floating-point value whose signum is to be returned
1400      * @return the signum function of the argument
1401      * @author Joseph D. Darcy
1402      * @since 1.5
1403      */
1404     public static float signum(float f) {
1405         return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f);
1406     }
1407 
1408     /**
1409      * Returns the hyperbolic sine of a {@code double} value.
1410      * The hyperbolic sine of <i>x</i> is defined to be
1411      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1412      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1413      *
1414      * <p>Special cases:
1415      * <ul>
1416      *
1417      * <li>If the argument is NaN, then the result is NaN.
1418      *
1419      * <li>If the argument is infinite, then the result is an infinity
1420      * with the same sign as the argument.
1421      *
1422      * <li>If the argument is zero, then the result is a zero with the
1423      * same sign as the argument.
1424      *
1425      * </ul>
1426      *
1427      * <p>The computed result must be within 2.5 ulps of the exact result.
1428      *
1429      * @param   x The number whose hyperbolic sine is to be returned.
1430      * @return  The hyperbolic sine of {@code x}.
1431      * @since 1.5
1432      */
1433     public static double sinh(double x) {
1434         return StrictMath.sinh(x);
1435     }
1436 
1437     /**
1438      * Returns the hyperbolic cosine of a {@code double} value.
1439      * The hyperbolic cosine of <i>x</i> is defined to be
1440      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1441      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1442      *
1443      * <p>Special cases:
1444      * <ul>
1445      *
1446      * <li>If the argument is NaN, then the result is NaN.
1447      *
1448      * <li>If the argument is infinite, then the result is positive
1449      * infinity.
1450      *
1451      * <li>If the argument is zero, then the result is {@code 1.0}.
1452      *
1453      * </ul>
1454      *
1455      * <p>The computed result must be within 2.5 ulps of the exact result.
1456      *
1457      * @param   x The number whose hyperbolic cosine is to be returned.
1458      * @return  The hyperbolic cosine of {@code x}.
1459      * @since 1.5
1460      */
1461     public static double cosh(double x) {
1462         return StrictMath.cosh(x);
1463     }
1464 
1465     /**
1466      * Returns the hyperbolic tangent of a {@code double} value.
1467      * The hyperbolic tangent of <i>x</i> is defined to be
1468      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1469      * in other words, {@linkplain Math#sinh
1470      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1471      * that the absolute value of the exact tanh is always less than
1472      * 1.
1473      *
1474      * <p>Special cases:
1475      * <ul>
1476      *
1477      * <li>If the argument is NaN, then the result is NaN.
1478      *
1479      * <li>If the argument is zero, then the result is a zero with the
1480      * same sign as the argument.
1481      *
1482      * <li>If the argument is positive infinity, then the result is
1483      * {@code +1.0}.
1484      *
1485      * <li>If the argument is negative infinity, then the result is
1486      * {@code -1.0}.
1487      *
1488      * </ul>
1489      *
1490      * <p>The computed result must be within 2.5 ulps of the exact result.
1491      * The result of {@code tanh} for any finite input must have
1492      * an absolute value less than or equal to 1.  Note that once the
1493      * exact result of tanh is within 1/2 of an ulp of the limit value
1494      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
1495      * be returned.
1496      *
1497      * @param   x The number whose hyperbolic tangent is to be returned.
1498      * @return  The hyperbolic tangent of {@code x}.
1499      * @since 1.5
1500      */
1501     public static double tanh(double x) {
1502         return StrictMath.tanh(x);
1503     }
1504 
1505     /**
1506      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1507      * without intermediate overflow or underflow.
1508      *
1509      * <p>Special cases:
1510      * <ul>
1511      *
1512      * <li> If either argument is infinite, then the result
1513      * is positive infinity.
1514      *
1515      * <li> If either argument is NaN and neither argument is infinite,
1516      * then the result is NaN.
1517      *
1518      * </ul>
1519      *
1520      * <p>The computed result must be within 1 ulp of the exact
1521      * result.  If one parameter is held constant, the results must be
1522      * semi-monotonic in the other parameter.
1523      *
1524      * @param x a value
1525      * @param y a value
1526      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1527      * without intermediate overflow or underflow
1528      * @since 1.5
1529      */
1530     public static double hypot(double x, double y) {
1531         return StrictMath.hypot(x, y);
1532     }
1533 
1534     /**
1535      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1536      * <i>x</i> near 0, the exact sum of
1537      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1538      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1539      *
1540      * <p>Special cases:
1541      * <ul>
1542      * <li>If the argument is NaN, the result is NaN.
1543      *
1544      * <li>If the argument is positive infinity, then the result is
1545      * positive infinity.
1546      *
1547      * <li>If the argument is negative infinity, then the result is
1548      * -1.0.
1549      *
1550      * <li>If the argument is zero, then the result is a zero with the
1551      * same sign as the argument.
1552      *
1553      * </ul>
1554      *
1555      * <p>The computed result must be within 1 ulp of the exact result.
1556      * Results must be semi-monotonic.  The result of
1557      * {@code expm1} for any finite input must be greater than or
1558      * equal to {@code -1.0}.  Note that once the exact result of
1559      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
1560      * ulp of the limit value -1, {@code -1.0} should be
1561      * returned.
1562      *
1563      * @param   x   the exponent to raise <i>e</i> to in the computation of
1564      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1565      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1566      * @since 1.5
1567      */
1568     public static double expm1(double x) {
1569         return StrictMath.expm1(x);
1570     }
1571 
1572     /**
1573      * Returns the natural logarithm of the sum of the argument and 1.
1574      * Note that for small values {@code x}, the result of
1575      * {@code log1p(x)} is much closer to the true result of ln(1
1576      * + {@code x}) than the floating-point evaluation of
1577      * {@code log(1.0+x)}.
1578      *
1579      * <p>Special cases:
1580      *
1581      * <ul>
1582      *
1583      * <li>If the argument is NaN or less than -1, then the result is
1584      * NaN.
1585      *
1586      * <li>If the argument is positive infinity, then the result is
1587      * positive infinity.
1588      *
1589      * <li>If the argument is negative one, then the result is
1590      * negative infinity.
1591      *
1592      * <li>If the argument is zero, then the result is a zero with the
1593      * same sign as the argument.
1594      *
1595      * </ul>
1596      *
1597      * <p>The computed result must be within 1 ulp of the exact result.
1598      * Results must be semi-monotonic.
1599      *
1600      * @param   x   a value
1601      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1602      * log of {@code x}&nbsp;+&nbsp;1
1603      * @since 1.5
1604      */
1605     public static double log1p(double x) {
1606         return StrictMath.log1p(x);
1607     }
1608 
1609     /**
1610      * Returns the first floating-point argument with the sign of the
1611      * second floating-point argument.  Note that unlike the {@link
1612      * StrictMath#copySign(double, double) StrictMath.copySign}
1613      * method, this method does not require NaN {@code sign}
1614      * arguments to be treated as positive values; implementations are
1615      * permitted to treat some NaN arguments as positive and other NaN
1616      * arguments as negative to allow greater performance.
1617      *
1618      * @param magnitude  the parameter providing the magnitude of the result
1619      * @param sign   the parameter providing the sign of the result
1620      * @return a value with the magnitude of {@code magnitude}
1621      * and the sign of {@code sign}.
1622      * @since 1.6
1623      */
1624     public static double copySign(double magnitude, double sign) {
1625         return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) &
1626                                         (DoubleConsts.SIGN_BIT_MASK)) |
1627                                        (Double.doubleToRawLongBits(magnitude) &
1628                                         (DoubleConsts.EXP_BIT_MASK |
1629                                          DoubleConsts.SIGNIF_BIT_MASK)));
1630     }
1631 
1632     /**
1633      * Returns the first floating-point argument with the sign of the
1634      * second floating-point argument.  Note that unlike the {@link
1635      * StrictMath#copySign(float, float) StrictMath.copySign}
1636      * method, this method does not require NaN {@code sign}
1637      * arguments to be treated as positive values; implementations are
1638      * permitted to treat some NaN arguments as positive and other NaN
1639      * arguments as negative to allow greater performance.
1640      *
1641      * @param magnitude  the parameter providing the magnitude of the result
1642      * @param sign   the parameter providing the sign of the result
1643      * @return a value with the magnitude of {@code magnitude}
1644      * and the sign of {@code sign}.
1645      * @since 1.6
1646      */
1647     public static float copySign(float magnitude, float sign) {
1648         return Float.intBitsToFloat((Float.floatToRawIntBits(sign) &
1649                                      (FloatConsts.SIGN_BIT_MASK)) |
1650                                     (Float.floatToRawIntBits(magnitude) &
1651                                      (FloatConsts.EXP_BIT_MASK |
1652                                       FloatConsts.SIGNIF_BIT_MASK)));
1653     }
1654 
1655     /**
1656      * Returns the unbiased exponent used in the representation of a
1657      * {@code float}.  Special cases:
1658      *
1659      * <ul>
1660      * <li>If the argument is NaN or infinite, then the result is
1661      * {@link Float#MAX_EXPONENT} + 1.
1662      * <li>If the argument is zero or subnormal, then the result is
1663      * {@link Float#MIN_EXPONENT} -1.
1664      * </ul>
1665      * @param f a {@code float} value
1666      * @return the unbiased exponent of the argument
1667      * @since 1.6
1668      */
1669     public static int getExponent(float f) {
1670         /*
1671          * Bitwise convert f to integer, mask out exponent bits, shift
1672          * to the right and then subtract out float's bias adjust to
1673          * get true exponent value
1674          */
1675         return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >>
1676                 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS;
1677     }
1678 
1679     /**
1680      * Returns the unbiased exponent used in the representation of a
1681      * {@code double}.  Special cases:
1682      *
1683      * <ul>
1684      * <li>If the argument is NaN or infinite, then the result is
1685      * {@link Double#MAX_EXPONENT} + 1.
1686      * <li>If the argument is zero or subnormal, then the result is
1687      * {@link Double#MIN_EXPONENT} -1.
1688      * </ul>
1689      * @param d a {@code double} value
1690      * @return the unbiased exponent of the argument
1691      * @since 1.6
1692      */
1693     public static int getExponent(double d) {
1694         /*
1695          * Bitwise convert d to long, mask out exponent bits, shift
1696          * to the right and then subtract out double's bias adjust to
1697          * get true exponent value.
1698          */
1699         return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >>
1700                       (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS);
1701     }
1702 
1703     /**
1704      * Returns the floating-point number adjacent to the first
1705      * argument in the direction of the second argument.  If both
1706      * arguments compare as equal the second argument is returned.
1707      *
1708      * <p>
1709      * Special cases:
1710      * <ul>
1711      * <li> If either argument is a NaN, then NaN is returned.
1712      *
1713      * <li> If both arguments are signed zeros, {@code direction}
1714      * is returned unchanged (as implied by the requirement of
1715      * returning the second argument if the arguments compare as
1716      * equal).
1717      *
1718      * <li> If {@code start} is
1719      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1720      * has a value such that the result should have a smaller
1721      * magnitude, then a zero with the same sign as {@code start}
1722      * is returned.
1723      *
1724      * <li> If {@code start} is infinite and
1725      * {@code direction} has a value such that the result should
1726      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1727      * same sign as {@code start} is returned.
1728      *
1729      * <li> If {@code start} is equal to &plusmn;
1730      * {@link Double#MAX_VALUE} and {@code direction} has a
1731      * value such that the result should have a larger magnitude, an
1732      * infinity with same sign as {@code start} is returned.
1733      * </ul>
1734      *
1735      * @param start  starting floating-point value
1736      * @param direction value indicating which of
1737      * {@code start}'s neighbors or {@code start} should
1738      * be returned
1739      * @return The floating-point number adjacent to {@code start} in the
1740      * direction of {@code direction}.
1741      * @since 1.6
1742      */
1743     public static double nextAfter(double start, double direction) {
1744         /*
1745          * The cases:
1746          *
1747          * nextAfter(+infinity, 0)  == MAX_VALUE
1748          * nextAfter(+infinity, +infinity)  == +infinity
1749          * nextAfter(-infinity, 0)  == -MAX_VALUE
1750          * nextAfter(-infinity, -infinity)  == -infinity
1751          *
1752          * are naturally handled without any additional testing
1753          */
1754 
1755         // First check for NaN values
1756         if (Double.isNaN(start) || Double.isNaN(direction)) {
1757             // return a NaN derived from the input NaN(s)
1758             return start + direction;
1759         } else if (start == direction) {
1760             return direction;
1761         } else {        // start > direction or start < direction
1762             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
1763             // then bitwise convert start to integer.
1764             long transducer = Double.doubleToRawLongBits(start + 0.0d);
1765 
1766             /*
1767              * IEEE 754 floating-point numbers are lexicographically
1768              * ordered if treated as signed- magnitude integers .
1769              * Since Java's integers are two's complement,
1770              * incrementing" the two's complement representation of a
1771              * logically negative floating-point value *decrements*
1772              * the signed-magnitude representation. Therefore, when
1773              * the integer representation of a floating-point values
1774              * is less than zero, the adjustment to the representation
1775              * is in the opposite direction than would be expected at
1776              * first .
1777              */
1778             if (direction > start) { // Calculate next greater value
1779                 transducer = transducer + (transducer >= 0L ? 1L:-1L);
1780             } else  { // Calculate next lesser value
1781                 assert direction < start;
1782                 if (transducer > 0L)
1783                     --transducer;
1784                 else
1785                     if (transducer < 0L )
1786                         ++transducer;
1787                     /*
1788                      * transducer==0, the result is -MIN_VALUE
1789                      *
1790                      * The transition from zero (implicitly
1791                      * positive) to the smallest negative
1792                      * signed magnitude value must be done
1793                      * explicitly.
1794                      */
1795                     else
1796                         transducer = DoubleConsts.SIGN_BIT_MASK | 1L;
1797             }
1798 
1799             return Double.longBitsToDouble(transducer);
1800         }
1801     }
1802 
1803     /**
1804      * Returns the floating-point number adjacent to the first
1805      * argument in the direction of the second argument.  If both
1806      * arguments compare as equal a value equivalent to the second argument
1807      * is returned.
1808      *
1809      * <p>
1810      * Special cases:
1811      * <ul>
1812      * <li> If either argument is a NaN, then NaN is returned.
1813      *
1814      * <li> If both arguments are signed zeros, a value equivalent
1815      * to {@code direction} is returned.
1816      *
1817      * <li> If {@code start} is
1818      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1819      * has a value such that the result should have a smaller
1820      * magnitude, then a zero with the same sign as {@code start}
1821      * is returned.
1822      *
1823      * <li> If {@code start} is infinite and
1824      * {@code direction} has a value such that the result should
1825      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1826      * same sign as {@code start} is returned.
1827      *
1828      * <li> If {@code start} is equal to &plusmn;
1829      * {@link Float#MAX_VALUE} and {@code direction} has a
1830      * value such that the result should have a larger magnitude, an
1831      * infinity with same sign as {@code start} is returned.
1832      * </ul>
1833      *
1834      * @param start  starting floating-point value
1835      * @param direction value indicating which of
1836      * {@code start}'s neighbors or {@code start} should
1837      * be returned
1838      * @return The floating-point number adjacent to {@code start} in the
1839      * direction of {@code direction}.
1840      * @since 1.6
1841      */
1842     public static float nextAfter(float start, double direction) {
1843         /*
1844          * The cases:
1845          *
1846          * nextAfter(+infinity, 0)  == MAX_VALUE
1847          * nextAfter(+infinity, +infinity)  == +infinity
1848          * nextAfter(-infinity, 0)  == -MAX_VALUE
1849          * nextAfter(-infinity, -infinity)  == -infinity
1850          *
1851          * are naturally handled without any additional testing
1852          */
1853 
1854         // First check for NaN values
1855         if (Float.isNaN(start) || Double.isNaN(direction)) {
1856             // return a NaN derived from the input NaN(s)
1857             return start + (float)direction;
1858         } else if (start == direction) {
1859             return (float)direction;
1860         } else {        // start > direction or start < direction
1861             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
1862             // then bitwise convert start to integer.
1863             int transducer = Float.floatToRawIntBits(start + 0.0f);
1864 
1865             /*
1866              * IEEE 754 floating-point numbers are lexicographically
1867              * ordered if treated as signed- magnitude integers .
1868              * Since Java's integers are two's complement,
1869              * incrementing" the two's complement representation of a
1870              * logically negative floating-point value *decrements*
1871              * the signed-magnitude representation. Therefore, when
1872              * the integer representation of a floating-point values
1873              * is less than zero, the adjustment to the representation
1874              * is in the opposite direction than would be expected at
1875              * first.
1876              */
1877             if (direction > start) {// Calculate next greater value
1878                 transducer = transducer + (transducer >= 0 ? 1:-1);
1879             } else  { // Calculate next lesser value
1880                 assert direction < start;
1881                 if (transducer > 0)
1882                     --transducer;
1883                 else
1884                     if (transducer < 0 )
1885                         ++transducer;
1886                     /*
1887                      * transducer==0, the result is -MIN_VALUE
1888                      *
1889                      * The transition from zero (implicitly
1890                      * positive) to the smallest negative
1891                      * signed magnitude value must be done
1892                      * explicitly.
1893                      */
1894                     else
1895                         transducer = FloatConsts.SIGN_BIT_MASK | 1;
1896             }
1897 
1898             return Float.intBitsToFloat(transducer);
1899         }
1900     }
1901 
1902     /**
1903      * Returns the floating-point value adjacent to {@code d} in
1904      * the direction of positive infinity.  This method is
1905      * semantically equivalent to {@code nextAfter(d,
1906      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1907      * implementation may run faster than its equivalent
1908      * {@code nextAfter} call.
1909      *
1910      * <p>Special Cases:
1911      * <ul>
1912      * <li> If the argument is NaN, the result is NaN.
1913      *
1914      * <li> If the argument is positive infinity, the result is
1915      * positive infinity.
1916      *
1917      * <li> If the argument is zero, the result is
1918      * {@link Double#MIN_VALUE}
1919      *
1920      * </ul>
1921      *
1922      * @param d starting floating-point value
1923      * @return The adjacent floating-point value closer to positive
1924      * infinity.
1925      * @since 1.6
1926      */
1927     public static double nextUp(double d) {
1928         if( Double.isNaN(d) || d == Double.POSITIVE_INFINITY)
1929             return d;
1930         else {
1931             d += 0.0d;
1932             return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
1933                                            ((d >= 0.0d)?+1L:-1L));
1934         }
1935     }
1936 
1937     /**
1938      * Returns the floating-point value adjacent to {@code f} in
1939      * the direction of positive infinity.  This method is
1940      * semantically equivalent to {@code nextAfter(f,
1941      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1942      * implementation may run faster than its equivalent
1943      * {@code nextAfter} call.
1944      *
1945      * <p>Special Cases:
1946      * <ul>
1947      * <li> If the argument is NaN, the result is NaN.
1948      *
1949      * <li> If the argument is positive infinity, the result is
1950      * positive infinity.
1951      *
1952      * <li> If the argument is zero, the result is
1953      * {@link Float#MIN_VALUE}
1954      *
1955      * </ul>
1956      *
1957      * @param f starting floating-point value
1958      * @return The adjacent floating-point value closer to positive
1959      * infinity.
1960      * @since 1.6
1961      */
1962     public static float nextUp(float f) {
1963         if( Float.isNaN(f) || f == FloatConsts.POSITIVE_INFINITY)
1964             return f;
1965         else {
1966             f += 0.0f;
1967             return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
1968                                         ((f >= 0.0f)?+1:-1));
1969         }
1970     }
1971 
1972     /**
1973      * Returns the floating-point value adjacent to {@code d} in
1974      * the direction of negative infinity.  This method is
1975      * semantically equivalent to {@code nextAfter(d,
1976      * Double.NEGATIVE_INFINITY)}; however, a
1977      * {@code nextDown} implementation may run faster than its
1978      * equivalent {@code nextAfter} call.
1979      *
1980      * <p>Special Cases:
1981      * <ul>
1982      * <li> If the argument is NaN, the result is NaN.
1983      *
1984      * <li> If the argument is negative infinity, the result is
1985      * negative infinity.
1986      *
1987      * <li> If the argument is zero, the result is
1988      * {@code -Double.MIN_VALUE}
1989      *
1990      * </ul>
1991      *
1992      * @param d  starting floating-point value
1993      * @return The adjacent floating-point value closer to negative
1994      * infinity.
1995      * @since 1.8
1996      */
1997     public static double nextDown(double d) {
1998         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
1999             return d;
2000         else {
2001             if (d == 0.0)
2002                 return -Double.MIN_VALUE;
2003             else
2004                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2005                                                ((d > 0.0d)?-1L:+1L));
2006         }
2007     }
2008 
2009     /**
2010      * Returns the floating-point value adjacent to {@code f} in
2011      * the direction of negative infinity.  This method is
2012      * semantically equivalent to {@code nextAfter(f,
2013      * Float.NEGATIVE_INFINITY)}; however, a
2014      * {@code nextDown} implementation may run faster than its
2015      * equivalent {@code nextAfter} call.
2016      *
2017      * <p>Special Cases:
2018      * <ul>
2019      * <li> If the argument is NaN, the result is NaN.
2020      *
2021      * <li> If the argument is negative infinity, the result is
2022      * negative infinity.
2023      *
2024      * <li> If the argument is zero, the result is
2025      * {@code -Float.MIN_VALUE}
2026      *
2027      * </ul>
2028      *
2029      * @param f  starting floating-point value
2030      * @return The adjacent floating-point value closer to negative
2031      * infinity.
2032      * @since 1.8
2033      */
2034     public static float nextDown(float f) {
2035         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
2036             return f;
2037         else {
2038             if (f == 0.0f)
2039                 return -Float.MIN_VALUE;
2040             else
2041                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2042                                             ((f > 0.0f)?-1:+1));
2043         }
2044     }
2045 
2046     /**
2047      * Returns {@code d} &times;
2048      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2049      * by a single correctly rounded floating-point multiply to a
2050      * member of the double value set.  See the Java
2051      * Language Specification for a discussion of floating-point
2052      * value sets.  If the exponent of the result is between {@link
2053      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
2054      * answer is calculated exactly.  If the exponent of the result
2055      * would be larger than {@code Double.MAX_EXPONENT}, an
2056      * infinity is returned.  Note that if the result is subnormal,
2057      * precision may be lost; that is, when {@code scalb(x, n)}
2058      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2059      * <i>x</i>.  When the result is non-NaN, the result has the same
2060      * sign as {@code d}.
2061      *
2062      * <p>Special cases:
2063      * <ul>
2064      * <li> If the first argument is NaN, NaN is returned.
2065      * <li> If the first argument is infinite, then an infinity of the
2066      * same sign is returned.
2067      * <li> If the first argument is zero, then a zero of the same
2068      * sign is returned.
2069      * </ul>
2070      *
2071      * @param d number to be scaled by a power of two.
2072      * @param scaleFactor power of 2 used to scale {@code d}
2073      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2074      * @since 1.6
2075      */
2076     public static double scalb(double d, int scaleFactor) {
2077         /*
2078          * This method does not need to be declared strictfp to
2079          * compute the same correct result on all platforms.  When
2080          * scaling up, it does not matter what order the
2081          * multiply-store operations are done; the result will be
2082          * finite or overflow regardless of the operation ordering.
2083          * However, to get the correct result when scaling down, a
2084          * particular ordering must be used.
2085          *
2086          * When scaling down, the multiply-store operations are
2087          * sequenced so that it is not possible for two consecutive
2088          * multiply-stores to return subnormal results.  If one
2089          * multiply-store result is subnormal, the next multiply will
2090          * round it away to zero.  This is done by first multiplying
2091          * by 2 ^ (scaleFactor % n) and then multiplying several
2092          * times by by 2^n as needed where n is the exponent of number
2093          * that is a covenient power of two.  In this way, at most one
2094          * real rounding error occurs.  If the double value set is
2095          * being used exclusively, the rounding will occur on a
2096          * multiply.  If the double-extended-exponent value set is
2097          * being used, the products will (perhaps) be exact but the
2098          * stores to d are guaranteed to round to the double value
2099          * set.
2100          *
2101          * It is _not_ a valid implementation to first multiply d by
2102          * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor %
2103          * MIN_EXPONENT) since even in a strictfp program double
2104          * rounding on underflow could occur; e.g. if the scaleFactor
2105          * argument was (MIN_EXPONENT - n) and the exponent of d was a
2106          * little less than -(MIN_EXPONENT - n), meaning the final
2107          * result would be subnormal.
2108          *
2109          * Since exact reproducibility of this method can be achieved
2110          * without any undue performance burden, there is no
2111          * compelling reason to allow double rounding on underflow in
2112          * scalb.
2113          */
2114 
2115         // magnitude of a power of two so large that scaling a finite
2116         // nonzero value by it would be guaranteed to over or
2117         // underflow; due to rounding, scaling down takes takes an
2118         // additional power of two which is reflected here
2119         final int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT +
2120                               DoubleConsts.SIGNIFICAND_WIDTH + 1;
2121         int exp_adjust = 0;
2122         int scale_increment = 0;
2123         double exp_delta = Double.NaN;
2124 
2125         // Make sure scaling factor is in a reasonable range
2126 
2127         if(scaleFactor < 0) {
2128             scaleFactor = Math.max(scaleFactor, -MAX_SCALE);
2129             scale_increment = -512;
2130             exp_delta = twoToTheDoubleScaleDown;
2131         }
2132         else {
2133             scaleFactor = Math.min(scaleFactor, MAX_SCALE);
2134             scale_increment = 512;
2135             exp_delta = twoToTheDoubleScaleUp;
2136         }
2137 
2138         // Calculate (scaleFactor % +/-512), 512 = 2^9, using
2139         // technique from "Hacker's Delight" section 10-2.
2140         int t = (scaleFactor >> 9-1) >>> 32 - 9;
2141         exp_adjust = ((scaleFactor + t) & (512 -1)) - t;
2142 
2143         d *= powerOfTwoD(exp_adjust);
2144         scaleFactor -= exp_adjust;
2145 
2146         while(scaleFactor != 0) {
2147             d *= exp_delta;
2148             scaleFactor -= scale_increment;
2149         }
2150         return d;
2151     }
2152 
2153     /**
2154      * Returns {@code f} &times;
2155      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2156      * by a single correctly rounded floating-point multiply to a
2157      * member of the float value set.  See the Java
2158      * Language Specification for a discussion of floating-point
2159      * value sets.  If the exponent of the result is between {@link
2160      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
2161      * answer is calculated exactly.  If the exponent of the result
2162      * would be larger than {@code Float.MAX_EXPONENT}, an
2163      * infinity is returned.  Note that if the result is subnormal,
2164      * precision may be lost; that is, when {@code scalb(x, n)}
2165      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2166      * <i>x</i>.  When the result is non-NaN, the result has the same
2167      * sign as {@code f}.
2168      *
2169      * <p>Special cases:
2170      * <ul>
2171      * <li> If the first argument is NaN, NaN is returned.
2172      * <li> If the first argument is infinite, then an infinity of the
2173      * same sign is returned.
2174      * <li> If the first argument is zero, then a zero of the same
2175      * sign is returned.
2176      * </ul>
2177      *
2178      * @param f number to be scaled by a power of two.
2179      * @param scaleFactor power of 2 used to scale {@code f}
2180      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2181      * @since 1.6
2182      */
2183     public static float scalb(float f, int scaleFactor) {
2184         // magnitude of a power of two so large that scaling a finite
2185         // nonzero value by it would be guaranteed to over or
2186         // underflow; due to rounding, scaling down takes takes an
2187         // additional power of two which is reflected here
2188         final int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT +
2189                               FloatConsts.SIGNIFICAND_WIDTH + 1;
2190 
2191         // Make sure scaling factor is in a reasonable range
2192         scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE);
2193 
2194         /*
2195          * Since + MAX_SCALE for float fits well within the double
2196          * exponent range and + float -> double conversion is exact
2197          * the multiplication below will be exact. Therefore, the
2198          * rounding that occurs when the double product is cast to
2199          * float will be the correctly rounded float result.  Since
2200          * all operations other than the final multiply will be exact,
2201          * it is not necessary to declare this method strictfp.
2202          */
2203         return (float)((double)f*powerOfTwoD(scaleFactor));
2204     }
2205 
2206     // Constants used in scalb
2207     static double twoToTheDoubleScaleUp = powerOfTwoD(512);
2208     static double twoToTheDoubleScaleDown = powerOfTwoD(-512);
2209 
2210     /**
2211      * Returns a floating-point power of two in the normal range.
2212      */
2213     static double powerOfTwoD(int n) {
2214         assert(n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT);
2215         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) <<
2216                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
2217                                        & DoubleConsts.EXP_BIT_MASK);
2218     }
2219 
2220     /**
2221      * Returns a floating-point power of two in the normal range.
2222      */
2223     static float powerOfTwoF(int n) {
2224         assert(n >= FloatConsts.MIN_EXPONENT && n <= FloatConsts.MAX_EXPONENT);
2225         return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) <<
2226                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
2227                                     & FloatConsts.EXP_BIT_MASK);
2228     }
2229 }