1 /*
   2  * Copyright (c) 1994, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.math.*;
  30 
  31 
  32 /**
  33  * The {@code Long} class wraps a value of the primitive type {@code
  34  * long} in an object. An object of type {@code Long} contains a
  35  * single field whose type is {@code long}.
  36  *
  37  * <p> In addition, this class provides several methods for converting
  38  * a {@code long} to a {@code String} and a {@code String} to a {@code
  39  * long}, as well as other constants and methods useful when dealing
  40  * with a {@code long}.
  41  *
  42  * <p>Implementation note: The implementations of the "bit twiddling"
  43  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  44  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  45  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
  46  * Delight</i>, (Addison Wesley, 2002).
  47  *
  48  * @author  Lee Boynton
  49  * @author  Arthur van Hoff
  50  * @author  Josh Bloch
  51  * @author  Joseph D. Darcy
  52  * @since   JDK1.0
  53  */
  54 public final class Long extends Number implements Comparable<Long> {
  55     /**
  56      * A constant holding the minimum value a {@code long} can
  57      * have, -2<sup>63</sup>.
  58      */
  59     @Native public static final long MIN_VALUE = 0x8000000000000000L;
  60 
  61     /**
  62      * A constant holding the maximum value a {@code long} can
  63      * have, 2<sup>63</sup>-1.
  64      */
  65     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
  66 
  67     /**
  68      * A constant holding the maximum value a 64-bit unsigned long could
  69      * have, 2<sup>64</sup>-1.
  70      */
  71     private static long MAX_UNSIGNED = 0xffffffffffffffffL;
  72 
  73     /**
  74      * The {@code Class} instance representing the primitive type
  75      * {@code long}.
  76      *
  77      * @since   JDK1.1
  78      */
  79     @SuppressWarnings("unchecked")
  80     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
  81 
  82     /**
  83      * Returns a string representation of the first argument in the
  84      * radix specified by the second argument.
  85      *
  86      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
  87      * or larger than {@code Character.MAX_RADIX}, then the radix
  88      * {@code 10} is used instead.
  89      *
  90      * <p>If the first argument is negative, the first element of the
  91      * result is the ASCII minus sign {@code '-'}
  92      * ({@code '\u005Cu002d'}). If the first argument is not
  93      * negative, no sign character appears in the result.
  94      *
  95      * <p>The remaining characters of the result represent the magnitude
  96      * of the first argument. If the magnitude is zero, it is
  97      * represented by a single zero character {@code '0'}
  98      * ({@code '\u005Cu0030'}); otherwise, the first character of
  99      * the representation of the magnitude will not be the zero
 100      * character.  The following ASCII characters are used as digits:
 101      *
 102      * <blockquote>
 103      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 104      * </blockquote>
 105      *
 106      * These are {@code '\u005Cu0030'} through
 107      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 108      * {@code '\u005Cu007a'}. If {@code radix} is
 109      * <var>N</var>, then the first <var>N</var> of these characters
 110      * are used as radix-<var>N</var> digits in the order shown. Thus,
 111      * the digits for hexadecimal (radix 16) are
 112      * {@code 0123456789abcdef}. If uppercase letters are
 113      * desired, the {@link java.lang.String#toUpperCase()} method may
 114      * be called on the result:
 115      *
 116      * <blockquote>
 117      *  {@code Long.toString(n, 16).toUpperCase()}
 118      * </blockquote>
 119      *
 120      * @param   i       a {@code long} to be converted to a string.
 121      * @param   radix   the radix to use in the string representation.
 122      * @return  a string representation of the argument in the specified radix.
 123      * @see     java.lang.Character#MAX_RADIX
 124      * @see     java.lang.Character#MIN_RADIX
 125      */
 126     public static String toString(long i, int radix) {
 127         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 128             radix = 10;
 129         if (radix == 10)
 130             return toString(i);
 131         char[] buf = new char[65];
 132         int charPos = 64;
 133         boolean negative = (i < 0);
 134 
 135         if (!negative) {
 136             i = -i;
 137         }
 138 
 139         while (i <= -radix) {
 140             buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 141             i = i / radix;
 142         }
 143         buf[charPos] = Integer.digits[(int)(-i)];
 144 
 145         if (negative) {
 146             buf[--charPos] = '-';
 147         }
 148 
 149         return new String(buf, charPos, (65 - charPos));
 150     }
 151 
 152     /**
 153      * Returns a string representation of the first argument as an
 154      * unsigned integer value in the radix specified by the second
 155      * argument.
 156      *
 157      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 158      * or larger than {@code Character.MAX_RADIX}, then the radix
 159      * {@code 10} is used instead.
 160      *
 161      * <p>Note that since the first argument is treated as an unsigned
 162      * value, no leading sign character is printed.
 163      *
 164      * <p>If the magnitude is zero, it is represented by a single zero
 165      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 166      * the first character of the representation of the magnitude will
 167      * not be the zero character.
 168      *
 169      * <p>The behavior of radixes and the characters used as digits
 170      * are the same as {@link #toString(long, int) toString}.
 171      *
 172      * @param   i       an integer to be converted to an unsigned string.
 173      * @param   radix   the radix to use in the string representation.
 174      * @return  an unsigned string representation of the argument in the specified radix.
 175      * @see     #toString(long, int)
 176      * @since 1.8
 177      */
 178     public static String toUnsignedString(long i, int radix) {
 179         if (i >= 0)
 180             return toString(i, radix);
 181         else {
 182             switch (radix) {
 183             case 2:
 184                 return toBinaryString(i);
 185 
 186             case 4:
 187                 return toUnsignedString0(i, 2);
 188 
 189             case 8:
 190                 return toOctalString(i);
 191 
 192             case 10:
 193                 /*
 194                  * We can get the effect of an unsigned division by 10
 195                  * on a long value by first shifting right, yielding a
 196                  * positive value, and then dividing by 5.  This
 197                  * allows the last digit and preceding digits to be
 198                  * isolated more quickly than by an initial conversion
 199                  * to BigInteger.
 200                  */
 201                 long quot = (i >>> 1) / 5;
 202                 long rem = i - quot * 10;
 203                 return toString(quot) + rem;
 204 
 205             case 16:
 206                 return toHexString(i);
 207 
 208             case 32:
 209                 return toUnsignedString0(i, 5);
 210 
 211             default:
 212                 return toUnsignedBigInteger(i).toString(radix);
 213             }
 214         }
 215     }
 216 
 217     /**
 218      * Return a BigInteger equal to the unsigned value of the
 219      * argument.
 220      */
 221     private static BigInteger toUnsignedBigInteger(long i) {
 222         if (i >= 0L)
 223             return BigInteger.valueOf(i);
 224         else {
 225             int upper = (int) (i >>> 32);
 226             int lower = (int) i;
 227 
 228             // return (upper << 32) + lower
 229             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 230                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 231         }
 232     }
 233 
 234     /**
 235      * Returns a string representation of the {@code long}
 236      * argument as an unsigned integer in base&nbsp;16.
 237      *
 238      * <p>The unsigned {@code long} value is the argument plus
 239      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 240      * equal to the argument.  This value is converted to a string of
 241      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 242      * leading {@code 0}s.
 243      *
 244      * <p>The value of the argument can be recovered from the returned
 245      * string {@code s} by calling {@link
 246      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 247      * 16)}.
 248      *
 249      * <p>If the unsigned magnitude is zero, it is represented by a
 250      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 251      * otherwise, the first character of the representation of the
 252      * unsigned magnitude will not be the zero character. The
 253      * following characters are used as hexadecimal digits:
 254      *
 255      * <blockquote>
 256      *  {@code 0123456789abcdef}
 257      * </blockquote>
 258      *
 259      * These are the characters {@code '\u005Cu0030'} through
 260      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 261      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 262      * the {@link java.lang.String#toUpperCase()} method may be called
 263      * on the result:
 264      *
 265      * <blockquote>
 266      *  {@code Long.toHexString(n).toUpperCase()}
 267      * </blockquote>
 268      *
 269      * @param   i   a {@code long} to be converted to a string.
 270      * @return  the string representation of the unsigned {@code long}
 271      *          value represented by the argument in hexadecimal
 272      *          (base&nbsp;16).
 273      * @see #parseUnsignedLong(String, int)
 274      * @see #toUnsignedString(long, int)
 275      * @since   JDK 1.0.2
 276      */
 277     public static String toHexString(long i) {
 278         return toUnsignedString0(i, 4);
 279     }
 280 
 281     /**
 282      * Returns a string representation of the {@code long}
 283      * argument as an unsigned integer in base&nbsp;8.
 284      *
 285      * <p>The unsigned {@code long} value is the argument plus
 286      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 287      * equal to the argument.  This value is converted to a string of
 288      * ASCII digits in octal (base&nbsp;8) with no extra leading
 289      * {@code 0}s.
 290      *
 291      * <p>The value of the argument can be recovered from the returned
 292      * string {@code s} by calling {@link
 293      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 294      * 8)}.
 295      *
 296      * <p>If the unsigned magnitude is zero, it is represented by a
 297      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 298      * otherwise, the first character of the representation of the
 299      * unsigned magnitude will not be the zero character. The
 300      * following characters are used as octal digits:
 301      *
 302      * <blockquote>
 303      *  {@code 01234567}
 304      * </blockquote>
 305      *
 306      * These are the characters {@code '\u005Cu0030'} through
 307      * {@code '\u005Cu0037'}.
 308      *
 309      * @param   i   a {@code long} to be converted to a string.
 310      * @return  the string representation of the unsigned {@code long}
 311      *          value represented by the argument in octal (base&nbsp;8).
 312      * @see #parseUnsignedLong(String, int)
 313      * @see #toUnsignedString(long, int)
 314      * @since   JDK 1.0.2
 315      */
 316     public static String toOctalString(long i) {
 317         return toUnsignedString0(i, 3);
 318     }
 319 
 320     /**
 321      * Returns a string representation of the {@code long}
 322      * argument as an unsigned integer in base&nbsp;2.
 323      *
 324      * <p>The unsigned {@code long} value is the argument plus
 325      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 326      * equal to the argument.  This value is converted to a string of
 327      * ASCII digits in binary (base&nbsp;2) with no extra leading
 328      * {@code 0}s.
 329      *
 330      * <p>The value of the argument can be recovered from the returned
 331      * string {@code s} by calling {@link
 332      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 333      * 2)}.
 334      *
 335      * <p>If the unsigned magnitude is zero, it is represented by a
 336      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 337      * otherwise, the first character of the representation of the
 338      * unsigned magnitude will not be the zero character. The
 339      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 340      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 341      *
 342      * @param   i   a {@code long} to be converted to a string.
 343      * @return  the string representation of the unsigned {@code long}
 344      *          value represented by the argument in binary (base&nbsp;2).
 345      * @see #parseUnsignedLong(String, int)
 346      * @see #toUnsignedString(long, int)
 347      * @since   JDK 1.0.2
 348      */
 349     public static String toBinaryString(long i) {
 350         return toUnsignedString0(i, 1);
 351     }
 352 
 353     /**
 354      * Format a long (treated as unsigned) into a String.
 355      * @param val the value to format
 356      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 357      */
 358     static String toUnsignedString0(long val, int shift) {
 359         // assert shift > 0 && shift <=5 : "Illegal shift value";
 360         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 361         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 362         char[] buf = new char[chars];
 363 
 364         formatUnsignedLong(val, shift, buf, 0, chars);
 365         return new String(buf, true);
 366     }
 367 
 368     /**
 369      * Format a long (treated as unsigned) into a character buffer.
 370      * @param val the unsigned long to format
 371      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 372      * @param buf the character buffer to write to
 373      * @param offset the offset in the destination buffer to start at
 374      * @param len the number of characters to write
 375      * @return the lowest character location used
 376      */
 377      static int formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
 378         int charPos = len;
 379         int radix = 1 << shift;
 380         int mask = radix - 1;
 381         do {
 382             buf[offset + --charPos] = Integer.digits[((int) val) & mask];
 383             val >>>= shift;
 384         } while (val != 0 && charPos > 0);
 385 
 386         return charPos;
 387     }
 388 
 389     /**
 390      * Returns a {@code String} object representing the specified
 391      * {@code long}.  The argument is converted to signed decimal
 392      * representation and returned as a string, exactly as if the
 393      * argument and the radix 10 were given as arguments to the {@link
 394      * #toString(long, int)} method.
 395      *
 396      * @param   i   a {@code long} to be converted.
 397      * @return  a string representation of the argument in base&nbsp;10.
 398      */
 399     public static String toString(long i) {
 400         if (i == Long.MIN_VALUE)
 401             return "-9223372036854775808";
 402         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
 403         char[] buf = new char[size];
 404         getChars(i, size, buf);
 405         return new String(buf, true);
 406     }
 407 
 408     /**
 409      * Returns a string representation of the argument as an unsigned
 410      * decimal value.
 411      *
 412      * The argument is converted to unsigned decimal representation
 413      * and returned as a string exactly as if the argument and radix
 414      * 10 were given as arguments to the {@link #toUnsignedString(long,
 415      * int)} method.
 416      *
 417      * @param   i  an integer to be converted to an unsigned string.
 418      * @return  an unsigned string representation of the argument.
 419      * @see     #toUnsignedString(long, int)
 420      * @since 1.8
 421      */
 422     public static String toUnsignedString(long i) {
 423         return toUnsignedString(i, 10);
 424     }
 425 
 426     /**
 427      * Places characters representing the integer i into the
 428      * character array buf. The characters are placed into
 429      * the buffer backwards starting with the least significant
 430      * digit at the specified index (exclusive), and working
 431      * backwards from there.
 432      *
 433      * Will fail if i == Long.MIN_VALUE
 434      */
 435     static void getChars(long i, int index, char[] buf) {
 436         long q;
 437         int r;
 438         int charPos = index;
 439         char sign = 0;
 440 
 441         if (i < 0) {
 442             sign = '-';
 443             i = -i;
 444         }
 445 
 446         // Get 2 digits/iteration using longs until quotient fits into an int
 447         while (i > Integer.MAX_VALUE) {
 448             q = i / 100;
 449             // really: r = i - (q * 100);
 450             r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
 451             i = q;
 452             buf[--charPos] = Integer.DigitOnes[r];
 453             buf[--charPos] = Integer.DigitTens[r];
 454         }
 455 
 456         // Get 2 digits/iteration using ints
 457         int q2;
 458         int i2 = (int)i;
 459         while (i2 >= 65536) {
 460             q2 = i2 / 100;
 461             // really: r = i2 - (q * 100);
 462             r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
 463             i2 = q2;
 464             buf[--charPos] = Integer.DigitOnes[r];
 465             buf[--charPos] = Integer.DigitTens[r];
 466         }
 467 
 468         // Fall thru to fast mode for smaller numbers
 469         // assert(i2 <= 65536, i2);
 470         for (;;) {
 471             q2 = (i2 * 52429) >>> (16+3);
 472             r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
 473             buf[--charPos] = Integer.digits[r];
 474             i2 = q2;
 475             if (i2 == 0) break;
 476         }
 477         if (sign != 0) {
 478             buf[--charPos] = sign;
 479         }
 480     }
 481 
 482     // Requires positive x
 483     static int stringSize(long x) {
 484         long p = 10;
 485         for (int i=1; i<19; i++) {
 486             if (x < p)
 487                 return i;
 488             p = 10*p;
 489         }
 490         return 19;
 491     }
 492 
 493     /**
 494      * Parses the string argument as a signed {@code long} in the
 495      * radix specified by the second argument. The characters in the
 496      * string must all be digits of the specified radix (as determined
 497      * by whether {@link java.lang.Character#digit(char, int)} returns
 498      * a nonnegative value), except that the first character may be an
 499      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 500      * indicate a negative value or an ASCII plus sign {@code '+'}
 501      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 502      * resulting {@code long} value is returned.
 503      *
 504      * <p>Note that neither the character {@code L}
 505      * ({@code '\u005Cu004C'}) nor {@code l}
 506      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 507      * of the string as a type indicator, as would be permitted in
 508      * Java programming language source code - except that either
 509      * {@code L} or {@code l} may appear as a digit for a
 510      * radix greater than or equal to 22.
 511      *
 512      * <p>An exception of type {@code NumberFormatException} is
 513      * thrown if any of the following situations occurs:
 514      * <ul>
 515      *
 516      * <li>The first argument is {@code null} or is a string of
 517      * length zero.
 518      *
 519      * <li>The {@code radix} is either smaller than {@link
 520      * java.lang.Character#MIN_RADIX} or larger than {@link
 521      * java.lang.Character#MAX_RADIX}.
 522      *
 523      * <li>Any character of the string is not a digit of the specified
 524      * radix, except that the first character may be a minus sign
 525      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
 526      * '+'} ({@code '\u005Cu002B'}) provided that the string is
 527      * longer than length 1.
 528      *
 529      * <li>The value represented by the string is not a value of type
 530      *      {@code long}.
 531      * </ul>
 532      *
 533      * <p>Examples:
 534      * <blockquote><pre>
 535      * parseLong("0", 10) returns 0L
 536      * parseLong("473", 10) returns 473L
 537      * parseLong("+42", 10) returns 42L
 538      * parseLong("-0", 10) returns 0L
 539      * parseLong("-FF", 16) returns -255L
 540      * parseLong("1100110", 2) returns 102L
 541      * parseLong("99", 8) throws a NumberFormatException
 542      * parseLong("Hazelnut", 10) throws a NumberFormatException
 543      * parseLong("Hazelnut", 36) returns 1356099454469L
 544      * </pre></blockquote>
 545      *
 546      * @param      s       the {@code String} containing the
 547      *                     {@code long} representation to be parsed.
 548      * @param      radix   the radix to be used while parsing {@code s}.
 549      * @return     the {@code long} represented by the string argument in
 550      *             the specified radix.
 551      * @throws     NumberFormatException  if the string does not contain a
 552      *             parsable {@code long}.
 553      */
 554     public static long parseLong(String s, int radix)
 555               throws NumberFormatException
 556     {
 557         if (s == null) {
 558             throw new NumberFormatException("null");
 559         }
 560 
 561         if (radix < Character.MIN_RADIX) {
 562             throw new NumberFormatException("radix " + radix +
 563                                             " less than Character.MIN_RADIX");
 564         }
 565         if (radix > Character.MAX_RADIX) {
 566             throw new NumberFormatException("radix " + radix +
 567                                             " greater than Character.MAX_RADIX");
 568         }
 569 
 570         long result = 0;
 571         boolean negative = false;
 572         int i = 0, len = s.length();
 573         long limit = -Long.MAX_VALUE;
 574         long multmin;
 575         int digit;
 576 
 577         if (len > 0) {
 578             char firstChar = s.charAt(0);
 579             if (firstChar < '0') { // Possible leading "+" or "-"
 580                 if (firstChar == '-') {
 581                     negative = true;
 582                     limit = Long.MIN_VALUE;
 583                 } else if (firstChar != '+')
 584                     throw NumberFormatException.forInputString(s);
 585 
 586                 if (len == 1) // Cannot have lone "+" or "-"
 587                     throw NumberFormatException.forInputString(s);
 588                 i++;
 589             }
 590             multmin = limit / radix;
 591             while (i < len) {
 592                 // Accumulating negatively avoids surprises near MAX_VALUE
 593                 digit = Character.digit(s.charAt(i++),radix);
 594                 if (digit < 0) {
 595                     throw NumberFormatException.forInputString(s);
 596                 }
 597                 if (result < multmin) {
 598                     throw NumberFormatException.forInputString(s);
 599                 }
 600                 result *= radix;
 601                 if (result < limit + digit) {
 602                     throw NumberFormatException.forInputString(s);
 603                 }
 604                 result -= digit;
 605             }
 606         } else {
 607             throw NumberFormatException.forInputString(s);
 608         }
 609         return negative ? result : -result;
 610     }
 611 
 612     /**
 613      * Parses the string argument as a signed decimal {@code long}.
 614      * The characters in the string must all be decimal digits, except
 615      * that the first character may be an ASCII minus sign {@code '-'}
 616      * ({@code \u005Cu002D'}) to indicate a negative value or an
 617      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 618      * indicate a positive value. The resulting {@code long} value is
 619      * returned, exactly as if the argument and the radix {@code 10}
 620      * were given as arguments to the {@link
 621      * #parseLong(java.lang.String, int)} method.
 622      *
 623      * <p>Note that neither the character {@code L}
 624      * ({@code '\u005Cu004C'}) nor {@code l}
 625      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 626      * of the string as a type indicator, as would be permitted in
 627      * Java programming language source code.
 628      *
 629      * @param      s   a {@code String} containing the {@code long}
 630      *             representation to be parsed
 631      * @return     the {@code long} represented by the argument in
 632      *             decimal.
 633      * @throws     NumberFormatException  if the string does not contain a
 634      *             parsable {@code long}.
 635      */
 636     public static long parseLong(String s) throws NumberFormatException {
 637         return parseLong(s, 10);
 638     }
 639 
 640     private static class ParseUnsignedCache {
 641         private ParseUnsignedCache(){}
 642 
 643         static final long[] div = new long[Character.MAX_RADIX];
 644         static final long[] rem = new long[Character.MAX_RADIX];
 645 
 646         static {
 647             // div[0] and rem[0] are unused.
 648             for(int radix = 1; radix < Character.MAX_RADIX; radix++) {
 649                 div[radix] = divideUnsigned(MAX_UNSIGNED, radix);
 650                 rem[radix] = remainderUnsigned(MAX_UNSIGNED, radix);
 651             }
 652         }
 653     }
 654 
 655     /**
 656      * Parses the string argument as an unsigned {@code long} in the
 657      * radix specified by the second argument.  An unsigned integer
 658      * maps the values usually associated with negative numbers to
 659      * positive numbers larger than {@code MAX_VALUE}.
 660      *
 661      * The characters in the string must all be digits of the
 662      * specified radix (as determined by whether {@link
 663      * java.lang.Character#digit(char, int)} returns a nonnegative
 664      * value), except that the first character may be an ASCII plus
 665      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 666      * integer value is returned.
 667      *
 668      * <p>An exception of type {@code NumberFormatException} is
 669      * thrown if any of the following situations occurs:
 670      * <ul>
 671      * <li>The first argument is {@code null} or is a string of
 672      * length zero.
 673      *
 674      * <li>The radix is either smaller than
 675      * {@link java.lang.Character#MIN_RADIX} or
 676      * larger than {@link java.lang.Character#MAX_RADIX}.
 677      *
 678      * <li>Any character of the string is not a digit of the specified
 679      * radix, except that the first character may be a plus sign
 680      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 681      * string is longer than length 1.
 682      *
 683      * <li>The value represented by the string is larger than the
 684      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 685      *
 686      * </ul>
 687      *
 688      *
 689      * @param      s   the {@code String} containing the unsigned integer
 690      *                  representation to be parsed
 691      * @param      radix   the radix to be used while parsing {@code s}.
 692      * @return     the unsigned {@code long} represented by the string
 693      *             argument in the specified radix.
 694      * @throws     NumberFormatException if the {@code String}
 695      *             does not contain a parsable {@code long}.
 696      * @since 1.8
 697      */
 698     public static long parseUnsignedLong(String s, int radix)
 699                 throws NumberFormatException {
 700         if (s == null)  {
 701             throw new NumberFormatException("null");
 702         }
 703 
 704         int len = s.length();
 705         if (len > 0) {
 706             char firstChar = s.charAt(0);
 707             if (firstChar == '-') {
 708                 throw new
 709                     NumberFormatException(String.format("Illegal leading minus sign " +
 710                                                        "on unsigned string %s.", s));
 711             } else {
 712                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
 713                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
 714                     return parseLong(s, radix);
 715                 }
 716 
 717                 // No need for range checks on len due to testing above.
 718                 long first = parseLong(s.substring(0, len - 1), radix);
 719                 int second = Character.digit(s.charAt(len - 1), radix);
 720                 if (second < 0) {
 721                     throw new NumberFormatException("Bad digit at end of " + s);
 722                 }
 723                 if (compareUnsigned(first, ParseUnsignedCache.div[radix]) > 0 ||
 724                         (first == ParseUnsignedCache.div[radix] &&
 725                         second > ParseUnsignedCache.rem[radix])) {
 726                     /*
 727                      * The maximum unsigned value, (2^64)-1, takes at
 728                      * most one more digit to represent than the
 729                      * maximum signed value, (2^63)-1.  Therefore,
 730                      * parsing (len - 1) digits will be appropriately
 731                      * in-range of the signed parsing.  In other
 732                      * words, if parsing (len -1) digits overflows
 733                      * signed parsing, parsing len digits will
 734                      * certainly overflow unsigned parsing.
 735                      *
 736                      * The compareUnsigned check above catches
 737                      * situations where an unsigned overflow occurs
 738                      * incorporating the contribution of the final
 739                      * digit.
 740                      */
 741                     throw new NumberFormatException(String.format("String value %s exceeds " +
 742                                                                   "range of unsigned long.", s));
 743                 }
 744                 return first * radix + second;
 745             }
 746         } else {
 747             throw NumberFormatException.forInputString(s);
 748         }
 749     }
 750 
 751     /**
 752      * Parses the string argument as an unsigned decimal {@code long}. The
 753      * characters in the string must all be decimal digits, except
 754      * that the first character may be an an ASCII plus sign {@code
 755      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 756      * is returned, exactly as if the argument and the radix 10 were
 757      * given as arguments to the {@link
 758      * #parseUnsignedLong(java.lang.String, int)} method.
 759      *
 760      * @param s   a {@code String} containing the unsigned {@code long}
 761      *            representation to be parsed
 762      * @return    the unsigned {@code long} value represented by the decimal string argument
 763      * @throws    NumberFormatException  if the string does not contain a
 764      *            parsable unsigned integer.
 765      * @since 1.8
 766      */
 767     public static long parseUnsignedLong(String s) throws NumberFormatException {
 768         return parseUnsignedLong(s, 10);
 769     }
 770 
 771     /**
 772      * Returns a {@code Long} object holding the value
 773      * extracted from the specified {@code String} when parsed
 774      * with the radix given by the second argument.  The first
 775      * argument is interpreted as representing a signed
 776      * {@code long} in the radix specified by the second
 777      * argument, exactly as if the arguments were given to the {@link
 778      * #parseLong(java.lang.String, int)} method. The result is a
 779      * {@code Long} object that represents the {@code long}
 780      * value specified by the string.
 781      *
 782      * <p>In other words, this method returns a {@code Long} object equal
 783      * to the value of:
 784      *
 785      * <blockquote>
 786      *  {@code new Long(Long.parseLong(s, radix))}
 787      * </blockquote>
 788      *
 789      * @param      s       the string to be parsed
 790      * @param      radix   the radix to be used in interpreting {@code s}
 791      * @return     a {@code Long} object holding the value
 792      *             represented by the string argument in the specified
 793      *             radix.
 794      * @throws     NumberFormatException  If the {@code String} does not
 795      *             contain a parsable {@code long}.
 796      */
 797     public static Long valueOf(String s, int radix) throws NumberFormatException {
 798         return Long.valueOf(parseLong(s, radix));
 799     }
 800 
 801     /**
 802      * Returns a {@code Long} object holding the value
 803      * of the specified {@code String}. The argument is
 804      * interpreted as representing a signed decimal {@code long},
 805      * exactly as if the argument were given to the {@link
 806      * #parseLong(java.lang.String)} method. The result is a
 807      * {@code Long} object that represents the integer value
 808      * specified by the string.
 809      *
 810      * <p>In other words, this method returns a {@code Long} object
 811      * equal to the value of:
 812      *
 813      * <blockquote>
 814      *  {@code new Long(Long.parseLong(s))}
 815      * </blockquote>
 816      *
 817      * @param      s   the string to be parsed.
 818      * @return     a {@code Long} object holding the value
 819      *             represented by the string argument.
 820      * @throws     NumberFormatException  If the string cannot be parsed
 821      *             as a {@code long}.
 822      */
 823     public static Long valueOf(String s) throws NumberFormatException
 824     {
 825         return Long.valueOf(parseLong(s, 10));
 826     }
 827 
 828     private static class LongCache {
 829         private LongCache(){}
 830 
 831         static final Long cache[] = new Long[-(-128) + 127 + 1];
 832 
 833         static {
 834             for(int i = 0; i < cache.length; i++)
 835                 cache[i] = new Long(i - 128);
 836         }
 837     }
 838 
 839     /**
 840      * Returns a {@code Long} instance representing the specified
 841      * {@code long} value.
 842      * If a new {@code Long} instance is not required, this method
 843      * should generally be used in preference to the constructor
 844      * {@link #Long(long)}, as this method is likely to yield
 845      * significantly better space and time performance by caching
 846      * frequently requested values.
 847      *
 848      * Note that unlike the {@linkplain Integer#valueOf(int)
 849      * corresponding method} in the {@code Integer} class, this method
 850      * is <em>not</em> required to cache values within a particular
 851      * range.
 852      *
 853      * @param  l a long value.
 854      * @return a {@code Long} instance representing {@code l}.
 855      * @since  1.5
 856      */
 857     public static Long valueOf(long l) {
 858         final int offset = 128;
 859         if (l >= -128 && l <= 127) { // will cache
 860             return LongCache.cache[(int)l + offset];
 861         }
 862         return new Long(l);
 863     }
 864 
 865     /**
 866      * Decodes a {@code String} into a {@code Long}.
 867      * Accepts decimal, hexadecimal, and octal numbers given by the
 868      * following grammar:
 869      *
 870      * <blockquote>
 871      * <dl>
 872      * <dt><i>DecodableString:</i>
 873      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
 874      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
 875      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
 876      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
 877      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
 878      *
 879      * <dt><i>Sign:</i>
 880      * <dd>{@code -}
 881      * <dd>{@code +}
 882      * </dl>
 883      * </blockquote>
 884      *
 885      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
 886      * are as defined in section 3.10.1 of
 887      * <cite>The Java&trade; Language Specification</cite>,
 888      * except that underscores are not accepted between digits.
 889      *
 890      * <p>The sequence of characters following an optional
 891      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
 892      * "{@code #}", or leading zero) is parsed as by the {@code
 893      * Long.parseLong} method with the indicated radix (10, 16, or 8).
 894      * This sequence of characters must represent a positive value or
 895      * a {@link NumberFormatException} will be thrown.  The result is
 896      * negated if first character of the specified {@code String} is
 897      * the minus sign.  No whitespace characters are permitted in the
 898      * {@code String}.
 899      *
 900      * @param     nm the {@code String} to decode.
 901      * @return    a {@code Long} object holding the {@code long}
 902      *            value represented by {@code nm}
 903      * @throws    NumberFormatException  if the {@code String} does not
 904      *            contain a parsable {@code long}.
 905      * @see java.lang.Long#parseLong(String, int)
 906      * @since 1.2
 907      */
 908     public static Long decode(String nm) throws NumberFormatException {
 909         int radix = 10;
 910         int index = 0;
 911         boolean negative = false;
 912         Long result;
 913 
 914         if (nm.length() == 0)
 915             throw new NumberFormatException("Zero length string");
 916         char firstChar = nm.charAt(0);
 917         // Handle sign, if present
 918         if (firstChar == '-') {
 919             negative = true;
 920             index++;
 921         } else if (firstChar == '+')
 922             index++;
 923 
 924         // Handle radix specifier, if present
 925         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
 926             index += 2;
 927             radix = 16;
 928         }
 929         else if (nm.startsWith("#", index)) {
 930             index ++;
 931             radix = 16;
 932         }
 933         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
 934             index ++;
 935             radix = 8;
 936         }
 937 
 938         if (nm.startsWith("-", index) || nm.startsWith("+", index))
 939             throw new NumberFormatException("Sign character in wrong position");
 940 
 941         try {
 942             result = Long.valueOf(nm.substring(index), radix);
 943             result = negative ? Long.valueOf(-result.longValue()) : result;
 944         } catch (NumberFormatException e) {
 945             // If number is Long.MIN_VALUE, we'll end up here. The next line
 946             // handles this case, and causes any genuine format error to be
 947             // rethrown.
 948             String constant = negative ? ("-" + nm.substring(index))
 949                                        : nm.substring(index);
 950             result = Long.valueOf(constant, radix);
 951         }
 952         return result;
 953     }
 954 
 955     /**
 956      * The value of the {@code Long}.
 957      *
 958      * @serial
 959      */
 960     private final long value;
 961 
 962     /**
 963      * Constructs a newly allocated {@code Long} object that
 964      * represents the specified {@code long} argument.
 965      *
 966      * @param   value   the value to be represented by the
 967      *          {@code Long} object.
 968      */
 969     public Long(long value) {
 970         this.value = value;
 971     }
 972 
 973     /**
 974      * Constructs a newly allocated {@code Long} object that
 975      * represents the {@code long} value indicated by the
 976      * {@code String} parameter. The string is converted to a
 977      * {@code long} value in exactly the manner used by the
 978      * {@code parseLong} method for radix 10.
 979      *
 980      * @param      s   the {@code String} to be converted to a
 981      *             {@code Long}.
 982      * @throws     NumberFormatException  if the {@code String} does not
 983      *             contain a parsable {@code long}.
 984      * @see        java.lang.Long#parseLong(java.lang.String, int)
 985      */
 986     public Long(String s) throws NumberFormatException {
 987         this.value = parseLong(s, 10);
 988     }
 989 
 990     /**
 991      * Returns the value of this {@code Long} as a {@code byte} after
 992      * a narrowing primitive conversion.
 993      * @jls 5.1.3 Narrowing Primitive Conversions
 994      */
 995     public byte byteValue() {
 996         return (byte)value;
 997     }
 998 
 999     /**
1000      * Returns the value of this {@code Long} as a {@code short} after
1001      * a narrowing primitive conversion.
1002      * @jls 5.1.3 Narrowing Primitive Conversions
1003      */
1004     public short shortValue() {
1005         return (short)value;
1006     }
1007 
1008     /**
1009      * Returns the value of this {@code Long} as an {@code int} after
1010      * a narrowing primitive conversion.
1011      * @jls 5.1.3 Narrowing Primitive Conversions
1012      */
1013     public int intValue() {
1014         return (int)value;
1015     }
1016 
1017     /**
1018      * Returns the value of this {@code Long} as a
1019      * {@code long} value.
1020      */
1021     public long longValue() {
1022         return value;
1023     }
1024 
1025     /**
1026      * Returns the value of this {@code Long} as a {@code float} after
1027      * a widening primitive conversion.
1028      * @jls 5.1.2 Widening Primitive Conversions
1029      */
1030     public float floatValue() {
1031         return (float)value;
1032     }
1033 
1034     /**
1035      * Returns the value of this {@code Long} as a {@code double}
1036      * after a widening primitive conversion.
1037      * @jls 5.1.2 Widening Primitive Conversions
1038      */
1039     public double doubleValue() {
1040         return (double)value;
1041     }
1042 
1043     /**
1044      * Returns a {@code String} object representing this
1045      * {@code Long}'s value.  The value is converted to signed
1046      * decimal representation and returned as a string, exactly as if
1047      * the {@code long} value were given as an argument to the
1048      * {@link java.lang.Long#toString(long)} method.
1049      *
1050      * @return  a string representation of the value of this object in
1051      *          base&nbsp;10.
1052      */
1053     public String toString() {
1054         return toString(value);
1055     }
1056 
1057     /**
1058      * Returns a hash code for this {@code Long}. The result is
1059      * the exclusive OR of the two halves of the primitive
1060      * {@code long} value held by this {@code Long}
1061      * object. That is, the hashcode is the value of the expression:
1062      *
1063      * <blockquote>
1064      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1065      * </blockquote>
1066      *
1067      * @return  a hash code value for this object.
1068      */
1069     @Override
1070     public int hashCode() {
1071         return Long.hashCode(value);
1072     }
1073 
1074     /**
1075      * Returns a hash code for a {@code long} value; compatible with
1076      * {@code Long.hashCode()}.
1077      *
1078      * @param value the value to hash
1079      * @return a hash code value for a {@code long} value.
1080      * @since 1.8
1081      */
1082     public static int hashCode(long value) {
1083         return (int)(value ^ (value >>> 32));
1084     }
1085 
1086     /**
1087      * Compares this object to the specified object.  The result is
1088      * {@code true} if and only if the argument is not
1089      * {@code null} and is a {@code Long} object that
1090      * contains the same {@code long} value as this object.
1091      *
1092      * @param   obj   the object to compare with.
1093      * @return  {@code true} if the objects are the same;
1094      *          {@code false} otherwise.
1095      */
1096     public boolean equals(Object obj) {
1097         if (obj instanceof Long) {
1098             return value == ((Long)obj).longValue();
1099         }
1100         return false;
1101     }
1102 
1103     /**
1104      * Determines the {@code long} value of the system property
1105      * with the specified name.
1106      *
1107      * <p>The first argument is treated as the name of a system
1108      * property.  System properties are accessible through the {@link
1109      * java.lang.System#getProperty(java.lang.String)} method. The
1110      * string value of this property is then interpreted as a {@code
1111      * long} value using the grammar supported by {@link Long#decode decode}
1112      * and a {@code Long} object representing this value is returned.
1113      *
1114      * <p>If there is no property with the specified name, if the
1115      * specified name is empty or {@code null}, or if the property
1116      * does not have the correct numeric format, then {@code null} is
1117      * returned.
1118      *
1119      * <p>In other words, this method returns a {@code Long} object
1120      * equal to the value of:
1121      *
1122      * <blockquote>
1123      *  {@code getLong(nm, null)}
1124      * </blockquote>
1125      *
1126      * @param   nm   property name.
1127      * @return  the {@code Long} value of the property.
1128      * @throws  SecurityException for the same reasons as
1129      *          {@link System#getProperty(String) System.getProperty}
1130      * @see     java.lang.System#getProperty(java.lang.String)
1131      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1132      */
1133     public static Long getLong(String nm) {
1134         return getLong(nm, null);
1135     }
1136 
1137     /**
1138      * Determines the {@code long} value of the system property
1139      * with the specified name.
1140      *
1141      * <p>The first argument is treated as the name of a system
1142      * property.  System properties are accessible through the {@link
1143      * java.lang.System#getProperty(java.lang.String)} method. The
1144      * string value of this property is then interpreted as a {@code
1145      * long} value using the grammar supported by {@link Long#decode decode}
1146      * and a {@code Long} object representing this value is returned.
1147      *
1148      * <p>The second argument is the default value. A {@code Long} object
1149      * that represents the value of the second argument is returned if there
1150      * is no property of the specified name, if the property does not have
1151      * the correct numeric format, or if the specified name is empty or null.
1152      *
1153      * <p>In other words, this method returns a {@code Long} object equal
1154      * to the value of:
1155      *
1156      * <blockquote>
1157      *  {@code getLong(nm, new Long(val))}
1158      * </blockquote>
1159      *
1160      * but in practice it may be implemented in a manner such as:
1161      *
1162      * <blockquote><pre>
1163      * Long result = getLong(nm, null);
1164      * return (result == null) ? new Long(val) : result;
1165      * </pre></blockquote>
1166      *
1167      * to avoid the unnecessary allocation of a {@code Long} object when
1168      * the default value is not needed.
1169      *
1170      * @param   nm    property name.
1171      * @param   val   default value.
1172      * @return  the {@code Long} value of the property.
1173      * @throws  SecurityException for the same reasons as
1174      *          {@link System#getProperty(String) System.getProperty}
1175      * @see     java.lang.System#getProperty(java.lang.String)
1176      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1177      */
1178     public static Long getLong(String nm, long val) {
1179         Long result = Long.getLong(nm, null);
1180         return (result == null) ? Long.valueOf(val) : result;
1181     }
1182 
1183     /**
1184      * Returns the {@code long} value of the system property with
1185      * the specified name.  The first argument is treated as the name
1186      * of a system property.  System properties are accessible through
1187      * the {@link java.lang.System#getProperty(java.lang.String)}
1188      * method. The string value of this property is then interpreted
1189      * as a {@code long} value, as per the
1190      * {@link Long#decode decode} method, and a {@code Long} object
1191      * representing this value is returned; in summary:
1192      *
1193      * <ul>
1194      * <li>If the property value begins with the two ASCII characters
1195      * {@code 0x} or the ASCII character {@code #}, not followed by
1196      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1197      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1198      * with radix 16.
1199      * <li>If the property value begins with the ASCII character
1200      * {@code 0} followed by another character, it is parsed as
1201      * an octal integer exactly as by the method {@link
1202      * #valueOf(java.lang.String, int)} with radix 8.
1203      * <li>Otherwise the property value is parsed as a decimal
1204      * integer exactly as by the method
1205      * {@link #valueOf(java.lang.String, int)} with radix 10.
1206      * </ul>
1207      *
1208      * <p>Note that, in every case, neither {@code L}
1209      * ({@code '\u005Cu004C'}) nor {@code l}
1210      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1211      * of the property value as a type indicator, as would be
1212      * permitted in Java programming language source code.
1213      *
1214      * <p>The second argument is the default value. The default value is
1215      * returned if there is no property of the specified name, if the
1216      * property does not have the correct numeric format, or if the
1217      * specified name is empty or {@code null}.
1218      *
1219      * @param   nm   property name.
1220      * @param   val   default value.
1221      * @return  the {@code Long} value of the property.
1222      * @throws  SecurityException for the same reasons as
1223      *          {@link System#getProperty(String) System.getProperty}
1224      * @see     System#getProperty(java.lang.String)
1225      * @see     System#getProperty(java.lang.String, java.lang.String)
1226      */
1227     public static Long getLong(String nm, Long val) {
1228         String v = null;
1229         try {
1230             v = System.getProperty(nm);
1231         } catch (IllegalArgumentException | NullPointerException e) {
1232         }
1233         if (v != null) {
1234             try {
1235                 return Long.decode(v);
1236             } catch (NumberFormatException e) {
1237             }
1238         }
1239         return val;
1240     }
1241 
1242     /**
1243      * Compares two {@code Long} objects numerically.
1244      *
1245      * @param   anotherLong   the {@code Long} to be compared.
1246      * @return  the value {@code 0} if this {@code Long} is
1247      *          equal to the argument {@code Long}; a value less than
1248      *          {@code 0} if this {@code Long} is numerically less
1249      *          than the argument {@code Long}; and a value greater
1250      *          than {@code 0} if this {@code Long} is numerically
1251      *           greater than the argument {@code Long} (signed
1252      *           comparison).
1253      * @since   1.2
1254      */
1255     public int compareTo(Long anotherLong) {
1256         return compare(this.value, anotherLong.value);
1257     }
1258 
1259     /**
1260      * Compares two {@code long} values numerically.
1261      * The value returned is identical to what would be returned by:
1262      * <pre>
1263      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1264      * </pre>
1265      *
1266      * @param  x the first {@code long} to compare
1267      * @param  y the second {@code long} to compare
1268      * @return the value {@code 0} if {@code x == y};
1269      *         a value less than {@code 0} if {@code x < y}; and
1270      *         a value greater than {@code 0} if {@code x > y}
1271      * @since 1.7
1272      */
1273     public static int compare(long x, long y) {
1274         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1275     }
1276 
1277     /**
1278      * Compares two {@code long} values numerically treating the values
1279      * as unsigned.
1280      *
1281      * @param  x the first {@code long} to compare
1282      * @param  y the second {@code long} to compare
1283      * @return the value {@code 0} if {@code x == y}; a value less
1284      *         than {@code 0} if {@code x < y} as unsigned values; and
1285      *         a value greater than {@code 0} if {@code x > y} as
1286      *         unsigned values
1287      * @since 1.8
1288      */
1289     public static int compareUnsigned(long x, long y) {
1290         return compare(x + MIN_VALUE, y + MIN_VALUE);
1291     }
1292 
1293 
1294     /**
1295      * Returns the unsigned quotient of dividing the first argument by
1296      * the second where each argument and the result is interpreted as
1297      * an unsigned value.
1298      *
1299      * <p>Note that in two's complement arithmetic, the three other
1300      * basic arithmetic operations of add, subtract, and multiply are
1301      * bit-wise identical if the two operands are regarded as both
1302      * being signed or both being unsigned.  Therefore separate {@code
1303      * addUnsigned}, etc. methods are not provided.
1304      *
1305      * @param dividend the value to be divided
1306      * @param divisor the value doing the dividing
1307      * @return the unsigned quotient of the first argument divided by
1308      * the second argument
1309      * @see #remainderUnsigned
1310      * @since 1.8
1311      */
1312     public static long divideUnsigned(long dividend, long divisor) {
1313         if (divisor < 0L) { // signed comparison
1314             // Answer must be 0 or 1 depending on relative magnitude
1315             // of dividend and divisor.
1316             return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1317         }
1318 
1319         if (dividend > 0) //  Both inputs non-negative
1320             return dividend/divisor;
1321         else {
1322             /*
1323              * For simple code, leveraging BigInteger.  Longer and faster
1324              * code written directly in terms of operations on longs is
1325              * possible; see "Hacker's Delight" for divide and remainder
1326              * algorithms.
1327              */
1328             return toUnsignedBigInteger(dividend).
1329                 divide(toUnsignedBigInteger(divisor)).longValue();
1330         }
1331     }
1332 
1333     /**
1334      * Returns the unsigned remainder from dividing the first argument
1335      * by the second where each argument and the result is interpreted
1336      * as an unsigned value.
1337      *
1338      * @param dividend the value to be divided
1339      * @param divisor the value doing the dividing
1340      * @return the unsigned remainder of the first argument divided by
1341      * the second argument
1342      * @see #divideUnsigned
1343      * @since 1.8
1344      */
1345     public static long remainderUnsigned(long dividend, long divisor) {
1346         if (dividend > 0 && divisor > 0) { // signed comparisons
1347             return dividend % divisor;
1348         } else {
1349             if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
1350                 return dividend;
1351             else
1352                 return toUnsignedBigInteger(dividend).
1353                     remainder(toUnsignedBigInteger(divisor)).longValue();
1354         }
1355     }
1356 
1357     // Bit Twiddling
1358 
1359     /**
1360      * The number of bits used to represent a {@code long} value in two's
1361      * complement binary form.
1362      *
1363      * @since 1.5
1364      */
1365     @Native public static final int SIZE = 64;
1366 
1367     /**
1368      * The number of bytes used to represent a {@code long} value in two's
1369      * complement binary form.
1370      *
1371      * @since 1.8
1372      */
1373     public static final int BYTES = SIZE / Byte.SIZE;
1374 
1375     /**
1376      * Returns a {@code long} value with at most a single one-bit, in the
1377      * position of the highest-order ("leftmost") one-bit in the specified
1378      * {@code long} value.  Returns zero if the specified value has no
1379      * one-bits in its two's complement binary representation, that is, if it
1380      * is equal to zero.
1381      *
1382      * @param i the value whose highest one bit is to be computed
1383      * @return a {@code long} value with a single one-bit, in the position
1384      *     of the highest-order one-bit in the specified value, or zero if
1385      *     the specified value is itself equal to zero.
1386      * @since 1.5
1387      */
1388     public static long highestOneBit(long i) {
1389         // HD, Figure 3-1
1390         i |= (i >>  1);
1391         i |= (i >>  2);
1392         i |= (i >>  4);
1393         i |= (i >>  8);
1394         i |= (i >> 16);
1395         i |= (i >> 32);
1396         return i - (i >>> 1);
1397     }
1398 
1399     /**
1400      * Returns a {@code long} value with at most a single one-bit, in the
1401      * position of the lowest-order ("rightmost") one-bit in the specified
1402      * {@code long} value.  Returns zero if the specified value has no
1403      * one-bits in its two's complement binary representation, that is, if it
1404      * is equal to zero.
1405      *
1406      * @param i the value whose lowest one bit is to be computed
1407      * @return a {@code long} value with a single one-bit, in the position
1408      *     of the lowest-order one-bit in the specified value, or zero if
1409      *     the specified value is itself equal to zero.
1410      * @since 1.5
1411      */
1412     public static long lowestOneBit(long i) {
1413         // HD, Section 2-1
1414         return i & -i;
1415     }
1416 
1417     /**
1418      * Returns the number of zero bits preceding the highest-order
1419      * ("leftmost") one-bit in the two's complement binary representation
1420      * of the specified {@code long} value.  Returns 64 if the
1421      * specified value has no one-bits in its two's complement representation,
1422      * in other words if it is equal to zero.
1423      *
1424      * <p>Note that this method is closely related to the logarithm base 2.
1425      * For all positive {@code long} values x:
1426      * <ul>
1427      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1428      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1429      * </ul>
1430      *
1431      * @param i the value whose number of leading zeros is to be computed
1432      * @return the number of zero bits preceding the highest-order
1433      *     ("leftmost") one-bit in the two's complement binary representation
1434      *     of the specified {@code long} value, or 64 if the value
1435      *     is equal to zero.
1436      * @since 1.5
1437      */
1438     public static int numberOfLeadingZeros(long i) {
1439         // HD, Figure 5-6
1440          if (i == 0)
1441             return 64;
1442         int n = 1;
1443         int x = (int)(i >>> 32);
1444         if (x == 0) { n += 32; x = (int)i; }
1445         if (x >>> 16 == 0) { n += 16; x <<= 16; }
1446         if (x >>> 24 == 0) { n +=  8; x <<=  8; }
1447         if (x >>> 28 == 0) { n +=  4; x <<=  4; }
1448         if (x >>> 30 == 0) { n +=  2; x <<=  2; }
1449         n -= x >>> 31;
1450         return n;
1451     }
1452 
1453     /**
1454      * Returns the number of zero bits following the lowest-order ("rightmost")
1455      * one-bit in the two's complement binary representation of the specified
1456      * {@code long} value.  Returns 64 if the specified value has no
1457      * one-bits in its two's complement representation, in other words if it is
1458      * equal to zero.
1459      *
1460      * @param i the value whose number of trailing zeros is to be computed
1461      * @return the number of zero bits following the lowest-order ("rightmost")
1462      *     one-bit in the two's complement binary representation of the
1463      *     specified {@code long} value, or 64 if the value is equal
1464      *     to zero.
1465      * @since 1.5
1466      */
1467     public static int numberOfTrailingZeros(long i) {
1468         // HD, Figure 5-14
1469         int x, y;
1470         if (i == 0) return 64;
1471         int n = 63;
1472         y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1473         y = x <<16; if (y != 0) { n = n -16; x = y; }
1474         y = x << 8; if (y != 0) { n = n - 8; x = y; }
1475         y = x << 4; if (y != 0) { n = n - 4; x = y; }
1476         y = x << 2; if (y != 0) { n = n - 2; x = y; }
1477         return n - ((x << 1) >>> 31);
1478     }
1479 
1480     /**
1481      * Returns the number of one-bits in the two's complement binary
1482      * representation of the specified {@code long} value.  This function is
1483      * sometimes referred to as the <i>population count</i>.
1484      *
1485      * @param i the value whose bits are to be counted
1486      * @return the number of one-bits in the two's complement binary
1487      *     representation of the specified {@code long} value.
1488      * @since 1.5
1489      */
1490      public static int bitCount(long i) {
1491         // HD, Figure 5-14
1492         i = i - ((i >>> 1) & 0x5555555555555555L);
1493         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1494         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1495         i = i + (i >>> 8);
1496         i = i + (i >>> 16);
1497         i = i + (i >>> 32);
1498         return (int)i & 0x7f;
1499      }
1500 
1501     /**
1502      * Returns the value obtained by rotating the two's complement binary
1503      * representation of the specified {@code long} value left by the
1504      * specified number of bits.  (Bits shifted out of the left hand, or
1505      * high-order, side reenter on the right, or low-order.)
1506      *
1507      * <p>Note that left rotation with a negative distance is equivalent to
1508      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1509      * distance)}.  Note also that rotation by any multiple of 64 is a
1510      * no-op, so all but the last six bits of the rotation distance can be
1511      * ignored, even if the distance is negative: {@code rotateLeft(val,
1512      * distance) == rotateLeft(val, distance & 0x3F)}.
1513      *
1514      * @param i the value whose bits are to be rotated left
1515      * @param distance the number of bit positions to rotate left
1516      * @return the value obtained by rotating the two's complement binary
1517      *     representation of the specified {@code long} value left by the
1518      *     specified number of bits.
1519      * @since 1.5
1520      */
1521     public static long rotateLeft(long i, int distance) {
1522         return (i << distance) | (i >>> -distance);
1523     }
1524 
1525     /**
1526      * Returns the value obtained by rotating the two's complement binary
1527      * representation of the specified {@code long} value right by the
1528      * specified number of bits.  (Bits shifted out of the right hand, or
1529      * low-order, side reenter on the left, or high-order.)
1530      *
1531      * <p>Note that right rotation with a negative distance is equivalent to
1532      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1533      * distance)}.  Note also that rotation by any multiple of 64 is a
1534      * no-op, so all but the last six bits of the rotation distance can be
1535      * ignored, even if the distance is negative: {@code rotateRight(val,
1536      * distance) == rotateRight(val, distance & 0x3F)}.
1537      *
1538      * @param i the value whose bits are to be rotated right
1539      * @param distance the number of bit positions to rotate right
1540      * @return the value obtained by rotating the two's complement binary
1541      *     representation of the specified {@code long} value right by the
1542      *     specified number of bits.
1543      * @since 1.5
1544      */
1545     public static long rotateRight(long i, int distance) {
1546         return (i >>> distance) | (i << -distance);
1547     }
1548 
1549     /**
1550      * Returns the value obtained by reversing the order of the bits in the
1551      * two's complement binary representation of the specified {@code long}
1552      * value.
1553      *
1554      * @param i the value to be reversed
1555      * @return the value obtained by reversing order of the bits in the
1556      *     specified {@code long} value.
1557      * @since 1.5
1558      */
1559     public static long reverse(long i) {
1560         // HD, Figure 7-1
1561         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1562         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1563         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1564         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1565         i = (i << 48) | ((i & 0xffff0000L) << 16) |
1566             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1567         return i;
1568     }
1569 
1570     /**
1571      * Returns the signum function of the specified {@code long} value.  (The
1572      * return value is -1 if the specified value is negative; 0 if the
1573      * specified value is zero; and 1 if the specified value is positive.)
1574      *
1575      * @param i the value whose signum is to be computed
1576      * @return the signum function of the specified {@code long} value.
1577      * @since 1.5
1578      */
1579     public static int signum(long i) {
1580         // HD, Section 2-7
1581         return (int) ((i >> 63) | (-i >>> 63));
1582     }
1583 
1584     /**
1585      * Returns the value obtained by reversing the order of the bytes in the
1586      * two's complement representation of the specified {@code long} value.
1587      *
1588      * @param i the value whose bytes are to be reversed
1589      * @return the value obtained by reversing the bytes in the specified
1590      *     {@code long} value.
1591      * @since 1.5
1592      */
1593     public static long reverseBytes(long i) {
1594         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1595         return (i << 48) | ((i & 0xffff0000L) << 16) |
1596             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1597     }
1598 
1599     /**
1600      * Adds two {@code long} values together as per the + operator.
1601      *
1602      * @param a the first operand
1603      * @param b the second operand
1604      * @return the sum of {@code a} and {@code b}
1605      * @see java.util.function.BinaryOperator
1606      * @since 1.8
1607      */
1608     public static long sum(long a, long b) {
1609         return a + b;
1610     }
1611 
1612     /**
1613      * Returns the greater of two {@code long} values
1614      * as if by calling {@link Math#max(long, long) Math.max}.
1615      *
1616      * @param a the first operand
1617      * @param b the second operand
1618      * @return the greater of {@code a} and {@code b}
1619      * @see java.util.function.BinaryOperator
1620      * @since 1.8
1621      */
1622     public static long max(long a, long b) {
1623         return Math.max(a, b);
1624     }
1625 
1626     /**
1627      * Returns the smaller of two {@code long} values
1628      * as if by calling {@link Math#min(long, long) Math.min}.
1629      *
1630      * @param a the first operand
1631      * @param b the second operand
1632      * @return the smaller of {@code a} and {@code b}
1633      * @see java.util.function.BinaryOperator
1634      * @since 1.8
1635      */
1636     public static long min(long a, long b) {
1637         return Math.min(a, b);
1638     }
1639 
1640     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1641     @Native private static final long serialVersionUID = 4290774380558885855L;
1642 }