1 /*
   2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.util.Random;
  28 
  29 import sun.misc.FloatConsts;
  30 import sun.misc.DoubleConsts;
  31 
  32 /**
  33  * The class {@code Math} contains methods for performing basic
  34  * numeric operations such as the elementary exponential, logarithm,
  35  * square root, and trigonometric functions.
  36  *
  37  * <p>Unlike some of the numeric methods of class
  38  * {@code StrictMath}, all implementations of the equivalent
  39  * functions of class {@code Math} are not defined to return the
  40  * bit-for-bit same results.  This relaxation permits
  41  * better-performing implementations where strict reproducibility is
  42  * not required.
  43  *
  44  * <p>By default many of the {@code Math} methods simply call
  45  * the equivalent method in {@code StrictMath} for their
  46  * implementation.  Code generators are encouraged to use
  47  * platform-specific native libraries or microprocessor instructions,
  48  * where available, to provide higher-performance implementations of
  49  * {@code Math} methods.  Such higher-performance
  50  * implementations still must conform to the specification for
  51  * {@code Math}.
  52  *
  53  * <p>The quality of implementation specifications concern two
  54  * properties, accuracy of the returned result and monotonicity of the
  55  * method.  Accuracy of the floating-point {@code Math} methods is
  56  * measured in terms of <i>ulps</i>, units in the last place.  For a
  57  * given floating-point format, an {@linkplain #ulp(double) ulp} of a
  58  * specific real number value is the distance between the two
  59  * floating-point values bracketing that numerical value.  When
  60  * discussing the accuracy of a method as a whole rather than at a
  61  * specific argument, the number of ulps cited is for the worst-case
  62  * error at any argument.  If a method always has an error less than
  63  * 0.5 ulps, the method always returns the floating-point number
  64  * nearest the exact result; such a method is <i>correctly
  65  * rounded</i>.  A correctly rounded method is generally the best a
  66  * floating-point approximation can be; however, it is impractical for
  67  * many floating-point methods to be correctly rounded.  Instead, for
  68  * the {@code Math} class, a larger error bound of 1 or 2 ulps is
  69  * allowed for certain methods.  Informally, with a 1 ulp error bound,
  70  * when the exact result is a representable number, the exact result
  71  * should be returned as the computed result; otherwise, either of the
  72  * two floating-point values which bracket the exact result may be
  73  * returned.  For exact results large in magnitude, one of the
  74  * endpoints of the bracket may be infinite.  Besides accuracy at
  75  * individual arguments, maintaining proper relations between the
  76  * method at different arguments is also important.  Therefore, most
  77  * methods with more than 0.5 ulp errors are required to be
  78  * <i>semi-monotonic</i>: whenever the mathematical function is
  79  * non-decreasing, so is the floating-point approximation, likewise,
  80  * whenever the mathematical function is non-increasing, so is the
  81  * floating-point approximation.  Not all approximations that have 1
  82  * ulp accuracy will automatically meet the monotonicity requirements.
  83  *
  84  * <p>
  85  * The platform uses signed two's complement integer arithmetic with
  86  * int and long primitive types.  The developer should choose
  87  * the primitive type to ensure that arithmetic operations consistently
  88  * produce correct results, which in some cases means the operations
  89  * will not overflow the range of values of the computation.
  90  * The best practice is to choose the primitive type and algorithm to avoid
  91  * overflow. In cases where the size is {@code int} or {@code long} and
  92  * overflow errors need to be detected, the methods {@code addExact},
  93  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
  94  * throw an {@code ArithmeticException} when the results overflow.
  95  * For other arithmetic operations such as divide, absolute value,
  96  * increment, decrement, and negation overflow occurs only with
  97  * a specific minimum or maximum value and should be checked against
  98  * the minimum or maximum as appropriate.
  99  *
 100  * @author  unascribed
 101  * @author  Joseph D. Darcy
 102  * @since   JDK1.0
 103  */
 104 
 105 public final class Math {
 106 
 107     /**
 108      * Don't let anyone instantiate this class.
 109      */
 110     private Math() {}
 111 
 112     /**
 113      * The {@code double} value that is closer than any other to
 114      * <i>e</i>, the base of the natural logarithms.
 115      */
 116     public static final double E = 2.7182818284590452354;
 117 
 118     /**
 119      * The {@code double} value that is closer than any other to
 120      * <i>pi</i>, the ratio of the circumference of a circle to its
 121      * diameter.
 122      */
 123     public static final double PI = 3.14159265358979323846;
 124 
 125     /**
 126      * Returns the trigonometric sine of an angle.  Special cases:
 127      * <ul><li>If the argument is NaN or an infinity, then the
 128      * result is NaN.
 129      * <li>If the argument is zero, then the result is a zero with the
 130      * same sign as the argument.</ul>
 131      *
 132      * <p>The computed result must be within 1 ulp of the exact result.
 133      * Results must be semi-monotonic.
 134      *
 135      * @param   a   an angle, in radians.
 136      * @return  the sine of the argument.
 137      */
 138     public static double sin(double a) {
 139         return StrictMath.sin(a); // default impl. delegates to StrictMath
 140     }
 141 
 142     /**
 143      * Returns the trigonometric cosine of an angle. Special cases:
 144      * <ul><li>If the argument is NaN or an infinity, then the
 145      * result is NaN.</ul>
 146      *
 147      * <p>The computed result must be within 1 ulp of the exact result.
 148      * Results must be semi-monotonic.
 149      *
 150      * @param   a   an angle, in radians.
 151      * @return  the cosine of the argument.
 152      */
 153     public static double cos(double a) {
 154         return StrictMath.cos(a); // default impl. delegates to StrictMath
 155     }
 156 
 157     /**
 158      * Returns the trigonometric tangent of an angle.  Special cases:
 159      * <ul><li>If the argument is NaN or an infinity, then the result
 160      * is NaN.
 161      * <li>If the argument is zero, then the result is a zero with the
 162      * same sign as the argument.</ul>
 163      *
 164      * <p>The computed result must be within 1 ulp of the exact result.
 165      * Results must be semi-monotonic.
 166      *
 167      * @param   a   an angle, in radians.
 168      * @return  the tangent of the argument.
 169      */
 170     public static double tan(double a) {
 171         return StrictMath.tan(a); // default impl. delegates to StrictMath
 172     }
 173 
 174     /**
 175      * Returns the arc sine of a value; the returned angle is in the
 176      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 177      * <ul><li>If the argument is NaN or its absolute value is greater
 178      * than 1, then the result is NaN.
 179      * <li>If the argument is zero, then the result is a zero with the
 180      * same sign as the argument.</ul>
 181      *
 182      * <p>The computed result must be within 1 ulp of the exact result.
 183      * Results must be semi-monotonic.
 184      *
 185      * @param   a   the value whose arc sine is to be returned.
 186      * @return  the arc sine of the argument.
 187      */
 188     public static double asin(double a) {
 189         return StrictMath.asin(a); // default impl. delegates to StrictMath
 190     }
 191 
 192     /**
 193      * Returns the arc cosine of a value; the returned angle is in the
 194      * range 0.0 through <i>pi</i>.  Special case:
 195      * <ul><li>If the argument is NaN or its absolute value is greater
 196      * than 1, then the result is NaN.</ul>
 197      *
 198      * <p>The computed result must be within 1 ulp of the exact result.
 199      * Results must be semi-monotonic.
 200      *
 201      * @param   a   the value whose arc cosine is to be returned.
 202      * @return  the arc cosine of the argument.
 203      */
 204     public static double acos(double a) {
 205         return StrictMath.acos(a); // default impl. delegates to StrictMath
 206     }
 207 
 208     /**
 209      * Returns the arc tangent of a value; the returned angle is in the
 210      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 211      * <ul><li>If the argument is NaN, then the result is NaN.
 212      * <li>If the argument is zero, then the result is a zero with the
 213      * same sign as the argument.</ul>
 214      *
 215      * <p>The computed result must be within 1 ulp of the exact result.
 216      * Results must be semi-monotonic.
 217      *
 218      * @param   a   the value whose arc tangent is to be returned.
 219      * @return  the arc tangent of the argument.
 220      */
 221     public static double atan(double a) {
 222         return StrictMath.atan(a); // default impl. delegates to StrictMath
 223     }
 224 
 225     /**
 226      * Converts an angle measured in degrees to an approximately
 227      * equivalent angle measured in radians.  The conversion from
 228      * degrees to radians is generally inexact.
 229      *
 230      * @param   angdeg   an angle, in degrees
 231      * @return  the measurement of the angle {@code angdeg}
 232      *          in radians.
 233      * @since   1.2
 234      */
 235     public static double toRadians(double angdeg) {
 236         return angdeg / 180.0 * PI;
 237     }
 238 
 239     /**
 240      * Converts an angle measured in radians to an approximately
 241      * equivalent angle measured in degrees.  The conversion from
 242      * radians to degrees is generally inexact; users should
 243      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 244      * equal {@code 0.0}.
 245      *
 246      * @param   angrad   an angle, in radians
 247      * @return  the measurement of the angle {@code angrad}
 248      *          in degrees.
 249      * @since   1.2
 250      */
 251     public static double toDegrees(double angrad) {
 252         return angrad * 180.0 / PI;
 253     }
 254 
 255     /**
 256      * Returns Euler's number <i>e</i> raised to the power of a
 257      * {@code double} value.  Special cases:
 258      * <ul><li>If the argument is NaN, the result is NaN.
 259      * <li>If the argument is positive infinity, then the result is
 260      * positive infinity.
 261      * <li>If the argument is negative infinity, then the result is
 262      * positive zero.</ul>
 263      *
 264      * <p>The computed result must be within 1 ulp of the exact result.
 265      * Results must be semi-monotonic.
 266      *
 267      * @param   a   the exponent to raise <i>e</i> to.
 268      * @return  the value <i>e</i><sup>{@code a}</sup>,
 269      *          where <i>e</i> is the base of the natural logarithms.
 270      */
 271     public static double exp(double a) {
 272         return StrictMath.exp(a); // default impl. delegates to StrictMath
 273     }
 274 
 275     /**
 276      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 277      * value.  Special cases:
 278      * <ul><li>If the argument is NaN or less than zero, then the result
 279      * is NaN.
 280      * <li>If the argument is positive infinity, then the result is
 281      * positive infinity.
 282      * <li>If the argument is positive zero or negative zero, then the
 283      * result is negative infinity.</ul>
 284      *
 285      * <p>The computed result must be within 1 ulp of the exact result.
 286      * Results must be semi-monotonic.
 287      *
 288      * @param   a   a value
 289      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 290      *          {@code a}.
 291      */
 292     public static double log(double a) {
 293         return StrictMath.log(a); // default impl. delegates to StrictMath
 294     }
 295 
 296     /**
 297      * Returns the base 10 logarithm of a {@code double} value.
 298      * Special cases:
 299      *
 300      * <ul><li>If the argument is NaN or less than zero, then the result
 301      * is NaN.
 302      * <li>If the argument is positive infinity, then the result is
 303      * positive infinity.
 304      * <li>If the argument is positive zero or negative zero, then the
 305      * result is negative infinity.
 306      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 307      * integer <i>n</i>, then the result is <i>n</i>.
 308      * </ul>
 309      *
 310      * <p>The computed result must be within 1 ulp of the exact result.
 311      * Results must be semi-monotonic.
 312      *
 313      * @param   a   a value
 314      * @return  the base 10 logarithm of  {@code a}.
 315      * @since 1.5
 316      */
 317     public static double log10(double a) {
 318         return StrictMath.log10(a); // default impl. delegates to StrictMath
 319     }
 320 
 321     /**
 322      * Returns the correctly rounded positive square root of a
 323      * {@code double} value.
 324      * Special cases:
 325      * <ul><li>If the argument is NaN or less than zero, then the result
 326      * is NaN.
 327      * <li>If the argument is positive infinity, then the result is positive
 328      * infinity.
 329      * <li>If the argument is positive zero or negative zero, then the
 330      * result is the same as the argument.</ul>
 331      * Otherwise, the result is the {@code double} value closest to
 332      * the true mathematical square root of the argument value.
 333      *
 334      * @param   a   a value.
 335      * @return  the positive square root of {@code a}.
 336      *          If the argument is NaN or less than zero, the result is NaN.
 337      */
 338     public static double sqrt(double a) {
 339         return StrictMath.sqrt(a); // default impl. delegates to StrictMath
 340                                    // Note that hardware sqrt instructions
 341                                    // frequently can be directly used by JITs
 342                                    // and should be much faster than doing
 343                                    // Math.sqrt in software.
 344     }
 345 
 346 
 347     /**
 348      * Returns the cube root of a {@code double} value.  For
 349      * positive finite {@code x}, {@code cbrt(-x) ==
 350      * -cbrt(x)}; that is, the cube root of a negative value is
 351      * the negative of the cube root of that value's magnitude.
 352      *
 353      * Special cases:
 354      *
 355      * <ul>
 356      *
 357      * <li>If the argument is NaN, then the result is NaN.
 358      *
 359      * <li>If the argument is infinite, then the result is an infinity
 360      * with the same sign as the argument.
 361      *
 362      * <li>If the argument is zero, then the result is a zero with the
 363      * same sign as the argument.
 364      *
 365      * </ul>
 366      *
 367      * <p>The computed result must be within 1 ulp of the exact result.
 368      *
 369      * @param   a   a value.
 370      * @return  the cube root of {@code a}.
 371      * @since 1.5
 372      */
 373     public static double cbrt(double a) {
 374         return StrictMath.cbrt(a);
 375     }
 376 
 377     /**
 378      * Computes the remainder operation on two arguments as prescribed
 379      * by the IEEE 754 standard.
 380      * The remainder value is mathematically equal to
 381      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 382      * where <i>n</i> is the mathematical integer closest to the exact
 383      * mathematical value of the quotient {@code f1/f2}, and if two
 384      * mathematical integers are equally close to {@code f1/f2},
 385      * then <i>n</i> is the integer that is even. If the remainder is
 386      * zero, its sign is the same as the sign of the first argument.
 387      * Special cases:
 388      * <ul><li>If either argument is NaN, or the first argument is infinite,
 389      * or the second argument is positive zero or negative zero, then the
 390      * result is NaN.
 391      * <li>If the first argument is finite and the second argument is
 392      * infinite, then the result is the same as the first argument.</ul>
 393      *
 394      * @param   f1   the dividend.
 395      * @param   f2   the divisor.
 396      * @return  the remainder when {@code f1} is divided by
 397      *          {@code f2}.
 398      */
 399     public static double IEEEremainder(double f1, double f2) {
 400         return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
 401     }
 402 
 403     /**
 404      * Returns the smallest (closest to negative infinity)
 405      * {@code double} value that is greater than or equal to the
 406      * argument and is equal to a mathematical integer. Special cases:
 407      * <ul><li>If the argument value is already equal to a
 408      * mathematical integer, then the result is the same as the
 409      * argument.  <li>If the argument is NaN or an infinity or
 410      * positive zero or negative zero, then the result is the same as
 411      * the argument.  <li>If the argument value is less than zero but
 412      * greater than -1.0, then the result is negative zero.</ul> Note
 413      * that the value of {@code Math.ceil(x)} is exactly the
 414      * value of {@code -Math.floor(-x)}.
 415      *
 416      *
 417      * @param   a   a value.
 418      * @return  the smallest (closest to negative infinity)
 419      *          floating-point value that is greater than or equal to
 420      *          the argument and is equal to a mathematical integer.
 421      */
 422     public static double ceil(double a) {
 423         return StrictMath.ceil(a); // default impl. delegates to StrictMath
 424     }
 425 
 426     /**
 427      * Returns the largest (closest to positive infinity)
 428      * {@code double} value that is less than or equal to the
 429      * argument and is equal to a mathematical integer. Special cases:
 430      * <ul><li>If the argument value is already equal to a
 431      * mathematical integer, then the result is the same as the
 432      * argument.  <li>If the argument is NaN or an infinity or
 433      * positive zero or negative zero, then the result is the same as
 434      * the argument.</ul>
 435      *
 436      * @param   a   a value.
 437      * @return  the largest (closest to positive infinity)
 438      *          floating-point value that less than or equal to the argument
 439      *          and is equal to a mathematical integer.
 440      */
 441     public static double floor(double a) {
 442         return StrictMath.floor(a); // default impl. delegates to StrictMath
 443     }
 444 
 445     /**
 446      * Returns the {@code double} value that is closest in value
 447      * to the argument and is equal to a mathematical integer. If two
 448      * {@code double} values that are mathematical integers are
 449      * equally close, the result is the integer value that is
 450      * even. Special cases:
 451      * <ul><li>If the argument value is already equal to a mathematical
 452      * integer, then the result is the same as the argument.
 453      * <li>If the argument is NaN or an infinity or positive zero or negative
 454      * zero, then the result is the same as the argument.</ul>
 455      *
 456      * @param   a   a {@code double} value.
 457      * @return  the closest floating-point value to {@code a} that is
 458      *          equal to a mathematical integer.
 459      */
 460     public static double rint(double a) {
 461         return StrictMath.rint(a); // default impl. delegates to StrictMath
 462     }
 463 
 464     /**
 465      * Returns the angle <i>theta</i> from the conversion of rectangular
 466      * coordinates ({@code x},&nbsp;{@code y}) to polar
 467      * coordinates (r,&nbsp;<i>theta</i>).
 468      * This method computes the phase <i>theta</i> by computing an arc tangent
 469      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 470      * cases:
 471      * <ul><li>If either argument is NaN, then the result is NaN.
 472      * <li>If the first argument is positive zero and the second argument
 473      * is positive, or the first argument is positive and finite and the
 474      * second argument is positive infinity, then the result is positive
 475      * zero.
 476      * <li>If the first argument is negative zero and the second argument
 477      * is positive, or the first argument is negative and finite and the
 478      * second argument is positive infinity, then the result is negative zero.
 479      * <li>If the first argument is positive zero and the second argument
 480      * is negative, or the first argument is positive and finite and the
 481      * second argument is negative infinity, then the result is the
 482      * {@code double} value closest to <i>pi</i>.
 483      * <li>If the first argument is negative zero and the second argument
 484      * is negative, or the first argument is negative and finite and the
 485      * second argument is negative infinity, then the result is the
 486      * {@code double} value closest to -<i>pi</i>.
 487      * <li>If the first argument is positive and the second argument is
 488      * positive zero or negative zero, or the first argument is positive
 489      * infinity and the second argument is finite, then the result is the
 490      * {@code double} value closest to <i>pi</i>/2.
 491      * <li>If the first argument is negative and the second argument is
 492      * positive zero or negative zero, or the first argument is negative
 493      * infinity and the second argument is finite, then the result is the
 494      * {@code double} value closest to -<i>pi</i>/2.
 495      * <li>If both arguments are positive infinity, then the result is the
 496      * {@code double} value closest to <i>pi</i>/4.
 497      * <li>If the first argument is positive infinity and the second argument
 498      * is negative infinity, then the result is the {@code double}
 499      * value closest to 3*<i>pi</i>/4.
 500      * <li>If the first argument is negative infinity and the second argument
 501      * is positive infinity, then the result is the {@code double} value
 502      * closest to -<i>pi</i>/4.
 503      * <li>If both arguments are negative infinity, then the result is the
 504      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 505      *
 506      * <p>The computed result must be within 2 ulps of the exact result.
 507      * Results must be semi-monotonic.
 508      *
 509      * @param   y   the ordinate coordinate
 510      * @param   x   the abscissa coordinate
 511      * @return  the <i>theta</i> component of the point
 512      *          (<i>r</i>,&nbsp;<i>theta</i>)
 513      *          in polar coordinates that corresponds to the point
 514      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 515      */
 516     public static double atan2(double y, double x) {
 517         return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
 518     }
 519 
 520     /**
 521      * Returns the value of the first argument raised to the power of the
 522      * second argument. Special cases:
 523      *
 524      * <ul><li>If the second argument is positive or negative zero, then the
 525      * result is 1.0.
 526      * <li>If the second argument is 1.0, then the result is the same as the
 527      * first argument.
 528      * <li>If the second argument is NaN, then the result is NaN.
 529      * <li>If the first argument is NaN and the second argument is nonzero,
 530      * then the result is NaN.
 531      *
 532      * <li>If
 533      * <ul>
 534      * <li>the absolute value of the first argument is greater than 1
 535      * and the second argument is positive infinity, or
 536      * <li>the absolute value of the first argument is less than 1 and
 537      * the second argument is negative infinity,
 538      * </ul>
 539      * then the result is positive infinity.
 540      *
 541      * <li>If
 542      * <ul>
 543      * <li>the absolute value of the first argument is greater than 1 and
 544      * the second argument is negative infinity, or
 545      * <li>the absolute value of the
 546      * first argument is less than 1 and the second argument is positive
 547      * infinity,
 548      * </ul>
 549      * then the result is positive zero.
 550      *
 551      * <li>If the absolute value of the first argument equals 1 and the
 552      * second argument is infinite, then the result is NaN.
 553      *
 554      * <li>If
 555      * <ul>
 556      * <li>the first argument is positive zero and the second argument
 557      * is greater than zero, or
 558      * <li>the first argument is positive infinity and the second
 559      * argument is less than zero,
 560      * </ul>
 561      * then the result is positive zero.
 562      *
 563      * <li>If
 564      * <ul>
 565      * <li>the first argument is positive zero and the second argument
 566      * is less than zero, or
 567      * <li>the first argument is positive infinity and the second
 568      * argument is greater than zero,
 569      * </ul>
 570      * then the result is positive infinity.
 571      *
 572      * <li>If
 573      * <ul>
 574      * <li>the first argument is negative zero and the second argument
 575      * is greater than zero but not a finite odd integer, or
 576      * <li>the first argument is negative infinity and the second
 577      * argument is less than zero but not a finite odd integer,
 578      * </ul>
 579      * then the result is positive zero.
 580      *
 581      * <li>If
 582      * <ul>
 583      * <li>the first argument is negative zero and the second argument
 584      * is a positive finite odd integer, or
 585      * <li>the first argument is negative infinity and the second
 586      * argument is a negative finite odd integer,
 587      * </ul>
 588      * then the result is negative zero.
 589      *
 590      * <li>If
 591      * <ul>
 592      * <li>the first argument is negative zero and the second argument
 593      * is less than zero but not a finite odd integer, or
 594      * <li>the first argument is negative infinity and the second
 595      * argument is greater than zero but not a finite odd integer,
 596      * </ul>
 597      * then the result is positive infinity.
 598      *
 599      * <li>If
 600      * <ul>
 601      * <li>the first argument is negative zero and the second argument
 602      * is a negative finite odd integer, or
 603      * <li>the first argument is negative infinity and the second
 604      * argument is a positive finite odd integer,
 605      * </ul>
 606      * then the result is negative infinity.
 607      *
 608      * <li>If the first argument is finite and less than zero
 609      * <ul>
 610      * <li> if the second argument is a finite even integer, the
 611      * result is equal to the result of raising the absolute value of
 612      * the first argument to the power of the second argument
 613      *
 614      * <li>if the second argument is a finite odd integer, the result
 615      * is equal to the negative of the result of raising the absolute
 616      * value of the first argument to the power of the second
 617      * argument
 618      *
 619      * <li>if the second argument is finite and not an integer, then
 620      * the result is NaN.
 621      * </ul>
 622      *
 623      * <li>If both arguments are integers, then the result is exactly equal
 624      * to the mathematical result of raising the first argument to the power
 625      * of the second argument if that result can in fact be represented
 626      * exactly as a {@code double} value.</ul>
 627      *
 628      * <p>(In the foregoing descriptions, a floating-point value is
 629      * considered to be an integer if and only if it is finite and a
 630      * fixed point of the method {@link #ceil ceil} or,
 631      * equivalently, a fixed point of the method {@link #floor
 632      * floor}. A value is a fixed point of a one-argument
 633      * method if and only if the result of applying the method to the
 634      * value is equal to the value.)
 635      *
 636      * <p>The computed result must be within 1 ulp of the exact result.
 637      * Results must be semi-monotonic.
 638      *
 639      * @param   a   the base.
 640      * @param   b   the exponent.
 641      * @return  the value {@code a}<sup>{@code b}</sup>.
 642      */
 643     public static double pow(double a, double b) {
 644         return StrictMath.pow(a, b); // default impl. delegates to StrictMath
 645     }
 646 
 647     /**
 648      * Returns the closest {@code int} to the argument, with ties
 649      * rounding to positive infinity.
 650      *
 651      * <p>
 652      * Special cases:
 653      * <ul><li>If the argument is NaN, the result is 0.
 654      * <li>If the argument is negative infinity or any value less than or
 655      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 656      * equal to the value of {@code Integer.MIN_VALUE}.
 657      * <li>If the argument is positive infinity or any value greater than or
 658      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 659      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 660      *
 661      * @param   a   a floating-point value to be rounded to an integer.
 662      * @return  the value of the argument rounded to the nearest
 663      *          {@code int} value.
 664      * @see     java.lang.Integer#MAX_VALUE
 665      * @see     java.lang.Integer#MIN_VALUE
 666      */
 667     public static int round(float a) {
 668         int intBits = Float.floatToRawIntBits(a);
 669         int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
 670                 >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
 671         int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
 672                 + FloatConsts.EXP_BIAS) - biasedExp;
 673         if ((shift & -32) == 0) { // shift >= 0 && shift < 32
 674             // a is a finite number such that pow(2,-32) <= ulp(a) < 1
 675             int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
 676                     | (FloatConsts.SIGNIF_BIT_MASK + 1));
 677             if (intBits < 0) {
 678                 r = -r;
 679             }
 680             // In the comments below each Java expression evaluates to the value
 681             // the corresponding mathematical expression:
 682             // (r) evaluates to a / ulp(a)
 683             // (r >> shift) evaluates to floor(a * 2)
 684             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
 685             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
 686             return ((r >> shift) + 1) >> 1;
 687         } else {
 688             // a is either
 689             // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
 690             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
 691             // - an infinity or NaN
 692             return (int) a;
 693         }
 694     }
 695 
 696     /**
 697      * Returns the closest {@code long} to the argument, with ties
 698      * rounding to positive infinity.
 699      *
 700      * <p>Special cases:
 701      * <ul><li>If the argument is NaN, the result is 0.
 702      * <li>If the argument is negative infinity or any value less than or
 703      * equal to the value of {@code Long.MIN_VALUE}, the result is
 704      * equal to the value of {@code Long.MIN_VALUE}.
 705      * <li>If the argument is positive infinity or any value greater than or
 706      * equal to the value of {@code Long.MAX_VALUE}, the result is
 707      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 708      *
 709      * @param   a   a floating-point value to be rounded to a
 710      *          {@code long}.
 711      * @return  the value of the argument rounded to the nearest
 712      *          {@code long} value.
 713      * @see     java.lang.Long#MAX_VALUE
 714      * @see     java.lang.Long#MIN_VALUE
 715      */
 716     public static long round(double a) {
 717         long longBits = Double.doubleToRawLongBits(a);
 718         long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
 719                 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
 720         long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
 721                 + DoubleConsts.EXP_BIAS) - biasedExp;
 722         if ((shift & -64) == 0) { // shift >= 0 && shift < 64
 723             // a is a finite number such that pow(2,-64) <= ulp(a) < 1
 724             long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
 725                     | (DoubleConsts.SIGNIF_BIT_MASK + 1));
 726             if (longBits < 0) {
 727                 r = -r;
 728             }
 729             // In the comments below each Java expression evaluates to the value
 730             // the corresponding mathematical expression:
 731             // (r) evaluates to a / ulp(a)
 732             // (r >> shift) evaluates to floor(a * 2)
 733             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
 734             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
 735             return ((r >> shift) + 1) >> 1;
 736         } else {
 737             // a is either
 738             // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
 739             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
 740             // - an infinity or NaN
 741             return (long) a;
 742         }
 743     }
 744 
 745     private static final class RandomNumberGeneratorHolder {
 746         static final Random randomNumberGenerator = new Random();
 747     }
 748 
 749     /**
 750      * Returns a {@code double} value with a positive sign, greater
 751      * than or equal to {@code 0.0} and less than {@code 1.0}.
 752      * Returned values are chosen pseudorandomly with (approximately)
 753      * uniform distribution from that range.
 754      *
 755      * <p>When this method is first called, it creates a single new
 756      * pseudorandom-number generator, exactly as if by the expression
 757      *
 758      * <blockquote>{@code new java.util.Random()}</blockquote>
 759      *
 760      * This new pseudorandom-number generator is used thereafter for
 761      * all calls to this method and is used nowhere else.
 762      *
 763      * <p>This method is properly synchronized to allow correct use by
 764      * more than one thread. However, if many threads need to generate
 765      * pseudorandom numbers at a great rate, it may reduce contention
 766      * for each thread to have its own pseudorandom-number generator.
 767      *
 768      * @apiNote
 769      * As the largest {@code double} value less than {@code 1.0}
 770      * is {@code Math.nextDown(1.0)}, a value {@code x} in the closed range
 771      * {@code [x1,x2]} where {@code x1<=x2} may be defined by the statements
 772      *
 773      * <blockquote><pre>{@code
 774      * double f = Math.random()/Math.nextDown(1.0);
 775      * double x = x1*(1.0 - f) + x2*f;
 776      * }</pre></blockquote>
 777      *
 778      * @return  a pseudorandom {@code double} greater than or equal
 779      * to {@code 0.0} and less than {@code 1.0}.
 780      * @see #nextDown(double)
 781      * @see Random#nextDouble()
 782      */
 783     public static double random() {
 784         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
 785     }
 786 
 787     /**
 788      * Returns the sum of its arguments,
 789      * throwing an exception if the result overflows an {@code int}.
 790      *
 791      * @param x the first value
 792      * @param y the second value
 793      * @return the result
 794      * @throws ArithmeticException if the result overflows an int
 795      * @since 1.8
 796      */
 797     public static int addExact(int x, int y) {
 798         int r = x + y;
 799         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
 800         if (((x ^ r) & (y ^ r)) < 0) {
 801             throw new ArithmeticException("integer overflow");
 802         }
 803         return r;
 804     }
 805 
 806     /**
 807      * Returns the sum of its arguments,
 808      * throwing an exception if the result overflows a {@code long}.
 809      *
 810      * @param x the first value
 811      * @param y the second value
 812      * @return the result
 813      * @throws ArithmeticException if the result overflows a long
 814      * @since 1.8
 815      */
 816     public static long addExact(long x, long y) {
 817         long r = x + y;
 818         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
 819         if (((x ^ r) & (y ^ r)) < 0) {
 820             throw new ArithmeticException("long overflow");
 821         }
 822         return r;
 823     }
 824 
 825     /**
 826      * Returns the difference of the arguments,
 827      * throwing an exception if the result overflows an {@code int}.
 828      *
 829      * @param x the first value
 830      * @param y the second value to subtract from the first
 831      * @return the result
 832      * @throws ArithmeticException if the result overflows an int
 833      * @since 1.8
 834      */
 835     public static int subtractExact(int x, int y) {
 836         int r = x - y;
 837         // HD 2-12 Overflow iff the arguments have different signs and
 838         // the sign of the result is different than the sign of x
 839         if (((x ^ y) & (x ^ r)) < 0) {
 840             throw new ArithmeticException("integer overflow");
 841         }
 842         return r;
 843     }
 844 
 845     /**
 846      * Returns the difference of the arguments,
 847      * throwing an exception if the result overflows a {@code long}.
 848      *
 849      * @param x the first value
 850      * @param y the second value to subtract from the first
 851      * @return the result
 852      * @throws ArithmeticException if the result overflows a long
 853      * @since 1.8
 854      */
 855     public static long subtractExact(long x, long y) {
 856         long r = x - y;
 857         // HD 2-12 Overflow iff the arguments have different signs and
 858         // the sign of the result is different than the sign of x
 859         if (((x ^ y) & (x ^ r)) < 0) {
 860             throw new ArithmeticException("long overflow");
 861         }
 862         return r;
 863     }
 864 
 865     /**
 866      * Returns the product of the arguments,
 867      * throwing an exception if the result overflows an {@code int}.
 868      *
 869      * @param x the first value
 870      * @param y the second value
 871      * @return the result
 872      * @throws ArithmeticException if the result overflows an int
 873      * @since 1.8
 874      */
 875     public static int multiplyExact(int x, int y) {
 876         long r = (long)x * (long)y;
 877         if ((int)r != r) {
 878             throw new ArithmeticException("integer overflow");
 879         }
 880         return (int)r;
 881     }
 882 
 883     /**
 884      * Returns the product of the arguments,
 885      * throwing an exception if the result overflows a {@code long}.
 886      *
 887      * @param x the first value
 888      * @param y the second value
 889      * @return the result
 890      * @throws ArithmeticException if the result overflows a long
 891      * @since 1.8
 892      */
 893     public static long multiplyExact(long x, long y) {
 894         long r = x * y;
 895         long ax = Math.abs(x);
 896         long ay = Math.abs(y);
 897         if (((ax | ay) >>> 31 != 0)) {
 898             // Some bits greater than 2^31 that might cause overflow
 899             // Check the result using the divide operator
 900             // and check for the special case of Long.MIN_VALUE * -1
 901            if (((y != 0) && (r / y != x)) ||
 902                (x == Long.MIN_VALUE && y == -1)) {
 903                 throw new ArithmeticException("long overflow");
 904             }
 905         }
 906         return r;
 907     }
 908 
 909     /**
 910      * Returns the argument incremented by one, throwing an exception if the
 911      * result overflows an {@code int}.
 912      *
 913      * @param a the value to increment
 914      * @return the result
 915      * @throws ArithmeticException if the result overflows an int
 916      * @since 1.8
 917      */
 918     public static int incrementExact(int a) {
 919         if (a == Integer.MAX_VALUE) {
 920             throw new ArithmeticException("integer overflow");
 921         }
 922 
 923         return a + 1;
 924     }
 925 
 926     /**
 927      * Returns the argument incremented by one, throwing an exception if the
 928      * result overflows a {@code long}.
 929      *
 930      * @param a the value to increment
 931      * @return the result
 932      * @throws ArithmeticException if the result overflows a long
 933      * @since 1.8
 934      */
 935     public static long incrementExact(long a) {
 936         if (a == Long.MAX_VALUE) {
 937             throw new ArithmeticException("long overflow");
 938         }
 939 
 940         return a + 1L;
 941     }
 942 
 943     /**
 944      * Returns the argument decremented by one, throwing an exception if the
 945      * result overflows an {@code int}.
 946      *
 947      * @param a the value to decrement
 948      * @return the result
 949      * @throws ArithmeticException if the result overflows an int
 950      * @since 1.8
 951      */
 952     public static int decrementExact(int a) {
 953         if (a == Integer.MIN_VALUE) {
 954             throw new ArithmeticException("integer overflow");
 955         }
 956 
 957         return a - 1;
 958     }
 959 
 960     /**
 961      * Returns the argument decremented by one, throwing an exception if the
 962      * result overflows a {@code long}.
 963      *
 964      * @param a the value to decrement
 965      * @return the result
 966      * @throws ArithmeticException if the result overflows a long
 967      * @since 1.8
 968      */
 969     public static long decrementExact(long a) {
 970         if (a == Long.MIN_VALUE) {
 971             throw new ArithmeticException("long overflow");
 972         }
 973 
 974         return a - 1L;
 975     }
 976 
 977     /**
 978      * Returns the negation of the argument, throwing an exception if the
 979      * result overflows an {@code int}.
 980      *
 981      * @param a the value to negate
 982      * @return the result
 983      * @throws ArithmeticException if the result overflows an int
 984      * @since 1.8
 985      */
 986     public static int negateExact(int a) {
 987         if (a == Integer.MIN_VALUE) {
 988             throw new ArithmeticException("integer overflow");
 989         }
 990 
 991         return -a;
 992     }
 993 
 994     /**
 995      * Returns the negation of the argument, throwing an exception if the
 996      * result overflows a {@code long}.
 997      *
 998      * @param a the value to negate
 999      * @return the result
1000      * @throws ArithmeticException if the result overflows a long
1001      * @since 1.8
1002      */
1003     public static long negateExact(long a) {
1004         if (a == Long.MIN_VALUE) {
1005             throw new ArithmeticException("long overflow");
1006         }
1007 
1008         return -a;
1009     }
1010 
1011     /**
1012      * Returns the value of the {@code long} argument;
1013      * throwing an exception if the value overflows an {@code int}.
1014      *
1015      * @param value the long value
1016      * @return the argument as an int
1017      * @throws ArithmeticException if the {@code argument} overflows an int
1018      * @since 1.8
1019      */
1020     public static int toIntExact(long value) {
1021         if ((int)value != value) {
1022             throw new ArithmeticException("integer overflow");
1023         }
1024         return (int)value;
1025     }
1026 
1027     /**
1028      * Returns the largest (closest to positive infinity)
1029      * {@code int} value that is less than or equal to the algebraic quotient.
1030      * There is one special case, if the dividend is the
1031      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1032      * then integer overflow occurs and
1033      * the result is equal to the {@code Integer.MIN_VALUE}.
1034      * <p>
1035      * Normal integer division operates under the round to zero rounding mode
1036      * (truncation).  This operation instead acts under the round toward
1037      * negative infinity (floor) rounding mode.
1038      * The floor rounding mode gives different results than truncation
1039      * when the exact result is negative.
1040      * <ul>
1041      *   <li>If the signs of the arguments are the same, the results of
1042      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
1043      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
1044      *   <li>If the signs of the arguments are different,  the quotient is negative and
1045      *       {@code floorDiv} returns the integer less than or equal to the quotient
1046      *       and the {@code /} operator returns the integer closest to zero.<br>
1047      *       For example, {@code floorDiv(-4, 3) == -2},
1048      *       whereas {@code (-4 / 3) == -1}.
1049      *   </li>
1050      * </ul>
1051      * <p>
1052      *
1053      * @param x the dividend
1054      * @param y the divisor
1055      * @return the largest (closest to positive infinity)
1056      * {@code int} value that is less than or equal to the algebraic quotient.
1057      * @throws ArithmeticException if the divisor {@code y} is zero
1058      * @see #floorMod(int, int)
1059      * @see #floor(double)
1060      * @since 1.8
1061      */
1062     public static int floorDiv(int x, int y) {
1063         int r = x / y;
1064         // if the signs are different and modulo not zero, round down
1065         if ((x ^ y) < 0 && (r * y != x)) {
1066             r--;
1067         }
1068         return r;
1069     }
1070 
1071     /**
1072      * Returns the largest (closest to positive infinity)
1073      * {@code long} value that is less than or equal to the algebraic quotient.
1074      * There is one special case, if the dividend is the
1075      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1076      * then integer overflow occurs and
1077      * the result is equal to the {@code Long.MIN_VALUE}.
1078      * <p>
1079      * Normal integer division operates under the round to zero rounding mode
1080      * (truncation).  This operation instead acts under the round toward
1081      * negative infinity (floor) rounding mode.
1082      * The floor rounding mode gives different results than truncation
1083      * when the exact result is negative.
1084      * <p>
1085      * For examples, see {@link #floorDiv(int, int)}.
1086      *
1087      * @param x the dividend
1088      * @param y the divisor
1089      * @return the largest (closest to positive infinity)
1090      * {@code long} value that is less than or equal to the algebraic quotient.
1091      * @throws ArithmeticException if the divisor {@code y} is zero
1092      * @see #floorMod(long, long)
1093      * @see #floor(double)
1094      * @since 1.8
1095      */
1096     public static long floorDiv(long x, long y) {
1097         long r = x / y;
1098         // if the signs are different and modulo not zero, round down
1099         if ((x ^ y) < 0 && (r * y != x)) {
1100             r--;
1101         }
1102         return r;
1103     }
1104 
1105     /**
1106      * Returns the floor modulus of the {@code int} arguments.
1107      * <p>
1108      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1109      * has the same sign as the divisor {@code y}, and
1110      * is in the range of {@code -abs(y) < r < +abs(y)}.
1111      *
1112      * <p>
1113      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1114      * <ul>
1115      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1116      * </ul>
1117      * <p>
1118      * The difference in values between {@code floorMod} and
1119      * the {@code %} operator is due to the difference between
1120      * {@code floorDiv} that returns the integer less than or equal to the quotient
1121      * and the {@code /} operator that returns the integer closest to zero.
1122      * <p>
1123      * Examples:
1124      * <ul>
1125      *   <li>If the signs of the arguments are the same, the results
1126      *       of {@code floorMod} and the {@code %} operator are the same.  <br>
1127      *       <ul>
1128      *       <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
1129      *       </ul>
1130      *   <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
1131      *      <ul>
1132      *      <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
1133      *      <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
1134      *      <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
1135      *      </ul>
1136      *   </li>
1137      * </ul>
1138      * <p>
1139      * If the signs of arguments are unknown and a positive modulus
1140      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
1141      *
1142      * @param x the dividend
1143      * @param y the divisor
1144      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1145      * @throws ArithmeticException if the divisor {@code y} is zero
1146      * @see #floorDiv(int, int)
1147      * @since 1.8
1148      */
1149     public static int floorMod(int x, int y) {
1150         int r = x - floorDiv(x, y) * y;
1151         return r;
1152     }
1153 
1154     /**
1155      * Returns the floor modulus of the {@code long} arguments.
1156      * <p>
1157      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1158      * has the same sign as the divisor {@code y}, and
1159      * is in the range of {@code -abs(y) < r < +abs(y)}.
1160      *
1161      * <p>
1162      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1163      * <ul>
1164      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1165      * </ul>
1166      * <p>
1167      * For examples, see {@link #floorMod(int, int)}.
1168      *
1169      * @param x the dividend
1170      * @param y the divisor
1171      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1172      * @throws ArithmeticException if the divisor {@code y} is zero
1173      * @see #floorDiv(long, long)
1174      * @since 1.8
1175      */
1176     public static long floorMod(long x, long y) {
1177         return x - floorDiv(x, y) * y;
1178     }
1179 
1180     /**
1181      * Returns the absolute value of an {@code int} value.
1182      * If the argument is not negative, the argument is returned.
1183      * If the argument is negative, the negation of the argument is returned.
1184      *
1185      * <p>Note that if the argument is equal to the value of
1186      * {@link Integer#MIN_VALUE}, the most negative representable
1187      * {@code int} value, the result is that same value, which is
1188      * negative.
1189      *
1190      * @param   a   the argument whose absolute value is to be determined
1191      * @return  the absolute value of the argument.
1192      */
1193     public static int abs(int a) {
1194         return (a < 0) ? -a : a;
1195     }
1196 
1197     /**
1198      * Returns the absolute value of a {@code long} value.
1199      * If the argument is not negative, the argument is returned.
1200      * If the argument is negative, the negation of the argument is returned.
1201      *
1202      * <p>Note that if the argument is equal to the value of
1203      * {@link Long#MIN_VALUE}, the most negative representable
1204      * {@code long} value, the result is that same value, which
1205      * is negative.
1206      *
1207      * @param   a   the argument whose absolute value is to be determined
1208      * @return  the absolute value of the argument.
1209      */
1210     public static long abs(long a) {
1211         return (a < 0) ? -a : a;
1212     }
1213 
1214     /**
1215      * Returns the absolute value of a {@code float} value.
1216      * If the argument is not negative, the argument is returned.
1217      * If the argument is negative, the negation of the argument is returned.
1218      * Special cases:
1219      * <ul><li>If the argument is positive zero or negative zero, the
1220      * result is positive zero.
1221      * <li>If the argument is infinite, the result is positive infinity.
1222      * <li>If the argument is NaN, the result is NaN.</ul>
1223      * In other words, the result is the same as the value of the expression:
1224      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
1225      *
1226      * @param   a   the argument whose absolute value is to be determined
1227      * @return  the absolute value of the argument.
1228      */
1229     public static float abs(float a) {
1230         return (a <= 0.0F) ? 0.0F - a : a;
1231     }
1232 
1233     /**
1234      * Returns the absolute value of a {@code double} value.
1235      * If the argument is not negative, the argument is returned.
1236      * If the argument is negative, the negation of the argument is returned.
1237      * Special cases:
1238      * <ul><li>If the argument is positive zero or negative zero, the result
1239      * is positive zero.
1240      * <li>If the argument is infinite, the result is positive infinity.
1241      * <li>If the argument is NaN, the result is NaN.</ul>
1242      * In other words, the result is the same as the value of the expression:
1243      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
1244      *
1245      * @param   a   the argument whose absolute value is to be determined
1246      * @return  the absolute value of the argument.
1247      */
1248     public static double abs(double a) {
1249         return (a <= 0.0D) ? 0.0D - a : a;
1250     }
1251 
1252     /**
1253      * Returns the greater of two {@code int} values. That is, the
1254      * result is the argument closer to the value of
1255      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1256      * the result is that same value.
1257      *
1258      * @param   a   an argument.
1259      * @param   b   another argument.
1260      * @return  the larger of {@code a} and {@code b}.
1261      */
1262     public static int max(int a, int b) {
1263         return (a >= b) ? a : b;
1264     }
1265 
1266     /**
1267      * Returns the greater of two {@code long} values. That is, the
1268      * result is the argument closer to the value of
1269      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1270      * the result is that same value.
1271      *
1272      * @param   a   an argument.
1273      * @param   b   another argument.
1274      * @return  the larger of {@code a} and {@code b}.
1275      */
1276     public static long max(long a, long b) {
1277         return (a >= b) ? a : b;
1278     }
1279 
1280     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
1281     private static long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
1282     private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
1283 
1284     /**
1285      * Returns the greater of two {@code float} values.  That is,
1286      * the result is the argument closer to positive infinity. If the
1287      * arguments have the same value, the result is that same
1288      * value. If either value is NaN, then the result is NaN.  Unlike
1289      * the numerical comparison operators, this method considers
1290      * negative zero to be strictly smaller than positive zero. If one
1291      * argument is positive zero and the other negative zero, the
1292      * result is positive zero.
1293      *
1294      * @param   a   an argument.
1295      * @param   b   another argument.
1296      * @return  the larger of {@code a} and {@code b}.
1297      */
1298     public static float max(float a, float b) {
1299         if (a != a)
1300             return a;   // a is NaN
1301         if ((a == 0.0f) &&
1302             (b == 0.0f) &&
1303             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
1304             // Raw conversion ok since NaN can't map to -0.0.
1305             return b;
1306         }
1307         return (a >= b) ? a : b;
1308     }
1309 
1310     /**
1311      * Returns the greater of two {@code double} values.  That
1312      * is, the result is the argument closer to positive infinity. If
1313      * the arguments have the same value, the result is that same
1314      * value. If either value is NaN, then the result is NaN.  Unlike
1315      * the numerical comparison operators, this method considers
1316      * negative zero to be strictly smaller than positive zero. If one
1317      * argument is positive zero and the other negative zero, the
1318      * result is positive zero.
1319      *
1320      * @param   a   an argument.
1321      * @param   b   another argument.
1322      * @return  the larger of {@code a} and {@code b}.
1323      */
1324     public static double max(double a, double b) {
1325         if (a != a)
1326             return a;   // a is NaN
1327         if ((a == 0.0d) &&
1328             (b == 0.0d) &&
1329             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
1330             // Raw conversion ok since NaN can't map to -0.0.
1331             return b;
1332         }
1333         return (a >= b) ? a : b;
1334     }
1335 
1336     /**
1337      * Returns the smaller of two {@code int} values. That is,
1338      * the result the argument closer to the value of
1339      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1340      * value, the result is that same value.
1341      *
1342      * @param   a   an argument.
1343      * @param   b   another argument.
1344      * @return  the smaller of {@code a} and {@code b}.
1345      */
1346     public static int min(int a, int b) {
1347         return (a <= b) ? a : b;
1348     }
1349 
1350     /**
1351      * Returns the smaller of two {@code long} values. That is,
1352      * the result is the argument closer to the value of
1353      * {@link Long#MIN_VALUE}. If the arguments have the same
1354      * value, the result is that same value.
1355      *
1356      * @param   a   an argument.
1357      * @param   b   another argument.
1358      * @return  the smaller of {@code a} and {@code b}.
1359      */
1360     public static long min(long a, long b) {
1361         return (a <= b) ? a : b;
1362     }
1363 
1364     /**
1365      * Returns the smaller of two {@code float} values.  That is,
1366      * the result is the value closer to negative infinity. If the
1367      * arguments have the same value, the result is that same
1368      * value. If either value is NaN, then the result is NaN.  Unlike
1369      * the numerical comparison operators, this method considers
1370      * negative zero to be strictly smaller than positive zero.  If
1371      * one argument is positive zero and the other is negative zero,
1372      * the result is negative zero.
1373      *
1374      * @param   a   an argument.
1375      * @param   b   another argument.
1376      * @return  the smaller of {@code a} and {@code b}.
1377      */
1378     public static float min(float a, float b) {
1379         if (a != a)
1380             return a;   // a is NaN
1381         if ((a == 0.0f) &&
1382             (b == 0.0f) &&
1383             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
1384             // Raw conversion ok since NaN can't map to -0.0.
1385             return b;
1386         }
1387         return (a <= b) ? a : b;
1388     }
1389 
1390     /**
1391      * Returns the smaller of two {@code double} values.  That
1392      * is, the result is the value closer to negative infinity. If the
1393      * arguments have the same value, the result is that same
1394      * value. If either value is NaN, then the result is NaN.  Unlike
1395      * the numerical comparison operators, this method considers
1396      * negative zero to be strictly smaller than positive zero. If one
1397      * argument is positive zero and the other is negative zero, the
1398      * result is negative zero.
1399      *
1400      * @param   a   an argument.
1401      * @param   b   another argument.
1402      * @return  the smaller of {@code a} and {@code b}.
1403      */
1404     public static double min(double a, double b) {
1405         if (a != a)
1406             return a;   // a is NaN
1407         if ((a == 0.0d) &&
1408             (b == 0.0d) &&
1409             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
1410             // Raw conversion ok since NaN can't map to -0.0.
1411             return b;
1412         }
1413         return (a <= b) ? a : b;
1414     }
1415 
1416     /**
1417      * Returns the size of an ulp of the argument.  An ulp, unit in
1418      * the last place, of a {@code double} value is the positive
1419      * distance between this floating-point value and the {@code
1420      * double} value next larger in magnitude.  Note that for non-NaN
1421      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1422      *
1423      * <p>Special Cases:
1424      * <ul>
1425      * <li> If the argument is NaN, then the result is NaN.
1426      * <li> If the argument is positive or negative infinity, then the
1427      * result is positive infinity.
1428      * <li> If the argument is positive or negative zero, then the result is
1429      * {@code Double.MIN_VALUE}.
1430      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1431      * the result is equal to 2<sup>971</sup>.
1432      * </ul>
1433      *
1434      * @param d the floating-point value whose ulp is to be returned
1435      * @return the size of an ulp of the argument
1436      * @author Joseph D. Darcy
1437      * @since 1.5
1438      */
1439     public static double ulp(double d) {
1440         int exp = getExponent(d);
1441 
1442         switch(exp) {
1443         case DoubleConsts.MAX_EXPONENT+1:       // NaN or infinity
1444             return Math.abs(d);
1445 
1446         case DoubleConsts.MIN_EXPONENT-1:       // zero or subnormal
1447             return Double.MIN_VALUE;
1448 
1449         default:
1450             assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT;
1451 
1452             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1453             exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1);
1454             if (exp >= DoubleConsts.MIN_EXPONENT) {
1455                 return powerOfTwoD(exp);
1456             }
1457             else {
1458                 // return a subnormal result; left shift integer
1459                 // representation of Double.MIN_VALUE appropriate
1460                 // number of positions
1461                 return Double.longBitsToDouble(1L <<
1462                 (exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) ));
1463             }
1464         }
1465     }
1466 
1467     /**
1468      * Returns the size of an ulp of the argument.  An ulp, unit in
1469      * the last place, of a {@code float} value is the positive
1470      * distance between this floating-point value and the {@code
1471      * float} value next larger in magnitude.  Note that for non-NaN
1472      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1473      *
1474      * <p>Special Cases:
1475      * <ul>
1476      * <li> If the argument is NaN, then the result is NaN.
1477      * <li> If the argument is positive or negative infinity, then the
1478      * result is positive infinity.
1479      * <li> If the argument is positive or negative zero, then the result is
1480      * {@code Float.MIN_VALUE}.
1481      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1482      * the result is equal to 2<sup>104</sup>.
1483      * </ul>
1484      *
1485      * @param f the floating-point value whose ulp is to be returned
1486      * @return the size of an ulp of the argument
1487      * @author Joseph D. Darcy
1488      * @since 1.5
1489      */
1490     public static float ulp(float f) {
1491         int exp = getExponent(f);
1492 
1493         switch(exp) {
1494         case FloatConsts.MAX_EXPONENT+1:        // NaN or infinity
1495             return Math.abs(f);
1496 
1497         case FloatConsts.MIN_EXPONENT-1:        // zero or subnormal
1498             return FloatConsts.MIN_VALUE;
1499 
1500         default:
1501             assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT;
1502 
1503             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1504             exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1);
1505             if (exp >= FloatConsts.MIN_EXPONENT) {
1506                 return powerOfTwoF(exp);
1507             }
1508             else {
1509                 // return a subnormal result; left shift integer
1510                 // representation of FloatConsts.MIN_VALUE appropriate
1511                 // number of positions
1512                 return Float.intBitsToFloat(1 <<
1513                 (exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) ));
1514             }
1515         }
1516     }
1517 
1518     /**
1519      * Returns the signum function of the argument; zero if the argument
1520      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1521      * argument is less than zero.
1522      *
1523      * <p>Special Cases:
1524      * <ul>
1525      * <li> If the argument is NaN, then the result is NaN.
1526      * <li> If the argument is positive zero or negative zero, then the
1527      *      result is the same as the argument.
1528      * </ul>
1529      *
1530      * @param d the floating-point value whose signum is to be returned
1531      * @return the signum function of the argument
1532      * @author Joseph D. Darcy
1533      * @since 1.5
1534      */
1535     public static double signum(double d) {
1536         return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d);
1537     }
1538 
1539     /**
1540      * Returns the signum function of the argument; zero if the argument
1541      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1542      * argument is less than zero.
1543      *
1544      * <p>Special Cases:
1545      * <ul>
1546      * <li> If the argument is NaN, then the result is NaN.
1547      * <li> If the argument is positive zero or negative zero, then the
1548      *      result is the same as the argument.
1549      * </ul>
1550      *
1551      * @param f the floating-point value whose signum is to be returned
1552      * @return the signum function of the argument
1553      * @author Joseph D. Darcy
1554      * @since 1.5
1555      */
1556     public static float signum(float f) {
1557         return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f);
1558     }
1559 
1560     /**
1561      * Returns the hyperbolic sine of a {@code double} value.
1562      * The hyperbolic sine of <i>x</i> is defined to be
1563      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1564      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1565      *
1566      * <p>Special cases:
1567      * <ul>
1568      *
1569      * <li>If the argument is NaN, then the result is NaN.
1570      *
1571      * <li>If the argument is infinite, then the result is an infinity
1572      * with the same sign as the argument.
1573      *
1574      * <li>If the argument is zero, then the result is a zero with the
1575      * same sign as the argument.
1576      *
1577      * </ul>
1578      *
1579      * <p>The computed result must be within 2.5 ulps of the exact result.
1580      *
1581      * @param   x The number whose hyperbolic sine is to be returned.
1582      * @return  The hyperbolic sine of {@code x}.
1583      * @since 1.5
1584      */
1585     public static double sinh(double x) {
1586         return StrictMath.sinh(x);
1587     }
1588 
1589     /**
1590      * Returns the hyperbolic cosine of a {@code double} value.
1591      * The hyperbolic cosine of <i>x</i> is defined to be
1592      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1593      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1594      *
1595      * <p>Special cases:
1596      * <ul>
1597      *
1598      * <li>If the argument is NaN, then the result is NaN.
1599      *
1600      * <li>If the argument is infinite, then the result is positive
1601      * infinity.
1602      *
1603      * <li>If the argument is zero, then the result is {@code 1.0}.
1604      *
1605      * </ul>
1606      *
1607      * <p>The computed result must be within 2.5 ulps of the exact result.
1608      *
1609      * @param   x The number whose hyperbolic cosine is to be returned.
1610      * @return  The hyperbolic cosine of {@code x}.
1611      * @since 1.5
1612      */
1613     public static double cosh(double x) {
1614         return StrictMath.cosh(x);
1615     }
1616 
1617     /**
1618      * Returns the hyperbolic tangent of a {@code double} value.
1619      * The hyperbolic tangent of <i>x</i> is defined to be
1620      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1621      * in other words, {@linkplain Math#sinh
1622      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1623      * that the absolute value of the exact tanh is always less than
1624      * 1.
1625      *
1626      * <p>Special cases:
1627      * <ul>
1628      *
1629      * <li>If the argument is NaN, then the result is NaN.
1630      *
1631      * <li>If the argument is zero, then the result is a zero with the
1632      * same sign as the argument.
1633      *
1634      * <li>If the argument is positive infinity, then the result is
1635      * {@code +1.0}.
1636      *
1637      * <li>If the argument is negative infinity, then the result is
1638      * {@code -1.0}.
1639      *
1640      * </ul>
1641      *
1642      * <p>The computed result must be within 2.5 ulps of the exact result.
1643      * The result of {@code tanh} for any finite input must have
1644      * an absolute value less than or equal to 1.  Note that once the
1645      * exact result of tanh is within 1/2 of an ulp of the limit value
1646      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
1647      * be returned.
1648      *
1649      * @param   x The number whose hyperbolic tangent is to be returned.
1650      * @return  The hyperbolic tangent of {@code x}.
1651      * @since 1.5
1652      */
1653     public static double tanh(double x) {
1654         return StrictMath.tanh(x);
1655     }
1656 
1657     /**
1658      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1659      * without intermediate overflow or underflow.
1660      *
1661      * <p>Special cases:
1662      * <ul>
1663      *
1664      * <li> If either argument is infinite, then the result
1665      * is positive infinity.
1666      *
1667      * <li> If either argument is NaN and neither argument is infinite,
1668      * then the result is NaN.
1669      *
1670      * </ul>
1671      *
1672      * <p>The computed result must be within 1 ulp of the exact
1673      * result.  If one parameter is held constant, the results must be
1674      * semi-monotonic in the other parameter.
1675      *
1676      * @param x a value
1677      * @param y a value
1678      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1679      * without intermediate overflow or underflow
1680      * @since 1.5
1681      */
1682     public static double hypot(double x, double y) {
1683         return StrictMath.hypot(x, y);
1684     }
1685 
1686     /**
1687      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1688      * <i>x</i> near 0, the exact sum of
1689      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1690      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1691      *
1692      * <p>Special cases:
1693      * <ul>
1694      * <li>If the argument is NaN, the result is NaN.
1695      *
1696      * <li>If the argument is positive infinity, then the result is
1697      * positive infinity.
1698      *
1699      * <li>If the argument is negative infinity, then the result is
1700      * -1.0.
1701      *
1702      * <li>If the argument is zero, then the result is a zero with the
1703      * same sign as the argument.
1704      *
1705      * </ul>
1706      *
1707      * <p>The computed result must be within 1 ulp of the exact result.
1708      * Results must be semi-monotonic.  The result of
1709      * {@code expm1} for any finite input must be greater than or
1710      * equal to {@code -1.0}.  Note that once the exact result of
1711      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
1712      * ulp of the limit value -1, {@code -1.0} should be
1713      * returned.
1714      *
1715      * @param   x   the exponent to raise <i>e</i> to in the computation of
1716      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1717      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1718      * @since 1.5
1719      */
1720     public static double expm1(double x) {
1721         return StrictMath.expm1(x);
1722     }
1723 
1724     /**
1725      * Returns the natural logarithm of the sum of the argument and 1.
1726      * Note that for small values {@code x}, the result of
1727      * {@code log1p(x)} is much closer to the true result of ln(1
1728      * + {@code x}) than the floating-point evaluation of
1729      * {@code log(1.0+x)}.
1730      *
1731      * <p>Special cases:
1732      *
1733      * <ul>
1734      *
1735      * <li>If the argument is NaN or less than -1, then the result is
1736      * NaN.
1737      *
1738      * <li>If the argument is positive infinity, then the result is
1739      * positive infinity.
1740      *
1741      * <li>If the argument is negative one, then the result is
1742      * negative infinity.
1743      *
1744      * <li>If the argument is zero, then the result is a zero with the
1745      * same sign as the argument.
1746      *
1747      * </ul>
1748      *
1749      * <p>The computed result must be within 1 ulp of the exact result.
1750      * Results must be semi-monotonic.
1751      *
1752      * @param   x   a value
1753      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1754      * log of {@code x}&nbsp;+&nbsp;1
1755      * @since 1.5
1756      */
1757     public static double log1p(double x) {
1758         return StrictMath.log1p(x);
1759     }
1760 
1761     /**
1762      * Returns the first floating-point argument with the sign of the
1763      * second floating-point argument.  Note that unlike the {@link
1764      * StrictMath#copySign(double, double) StrictMath.copySign}
1765      * method, this method does not require NaN {@code sign}
1766      * arguments to be treated as positive values; implementations are
1767      * permitted to treat some NaN arguments as positive and other NaN
1768      * arguments as negative to allow greater performance.
1769      *
1770      * @param magnitude  the parameter providing the magnitude of the result
1771      * @param sign   the parameter providing the sign of the result
1772      * @return a value with the magnitude of {@code magnitude}
1773      * and the sign of {@code sign}.
1774      * @since 1.6
1775      */
1776     public static double copySign(double magnitude, double sign) {
1777         return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) &
1778                                         (DoubleConsts.SIGN_BIT_MASK)) |
1779                                        (Double.doubleToRawLongBits(magnitude) &
1780                                         (DoubleConsts.EXP_BIT_MASK |
1781                                          DoubleConsts.SIGNIF_BIT_MASK)));
1782     }
1783 
1784     /**
1785      * Returns the first floating-point argument with the sign of the
1786      * second floating-point argument.  Note that unlike the {@link
1787      * StrictMath#copySign(float, float) StrictMath.copySign}
1788      * method, this method does not require NaN {@code sign}
1789      * arguments to be treated as positive values; implementations are
1790      * permitted to treat some NaN arguments as positive and other NaN
1791      * arguments as negative to allow greater performance.
1792      *
1793      * @param magnitude  the parameter providing the magnitude of the result
1794      * @param sign   the parameter providing the sign of the result
1795      * @return a value with the magnitude of {@code magnitude}
1796      * and the sign of {@code sign}.
1797      * @since 1.6
1798      */
1799     public static float copySign(float magnitude, float sign) {
1800         return Float.intBitsToFloat((Float.floatToRawIntBits(sign) &
1801                                      (FloatConsts.SIGN_BIT_MASK)) |
1802                                     (Float.floatToRawIntBits(magnitude) &
1803                                      (FloatConsts.EXP_BIT_MASK |
1804                                       FloatConsts.SIGNIF_BIT_MASK)));
1805     }
1806 
1807     /**
1808      * Returns the unbiased exponent used in the representation of a
1809      * {@code float}.  Special cases:
1810      *
1811      * <ul>
1812      * <li>If the argument is NaN or infinite, then the result is
1813      * {@link Float#MAX_EXPONENT} + 1.
1814      * <li>If the argument is zero or subnormal, then the result is
1815      * {@link Float#MIN_EXPONENT} -1.
1816      * </ul>
1817      * @param f a {@code float} value
1818      * @return the unbiased exponent of the argument
1819      * @since 1.6
1820      */
1821     public static int getExponent(float f) {
1822         /*
1823          * Bitwise convert f to integer, mask out exponent bits, shift
1824          * to the right and then subtract out float's bias adjust to
1825          * get true exponent value
1826          */
1827         return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >>
1828                 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS;
1829     }
1830 
1831     /**
1832      * Returns the unbiased exponent used in the representation of a
1833      * {@code double}.  Special cases:
1834      *
1835      * <ul>
1836      * <li>If the argument is NaN or infinite, then the result is
1837      * {@link Double#MAX_EXPONENT} + 1.
1838      * <li>If the argument is zero or subnormal, then the result is
1839      * {@link Double#MIN_EXPONENT} -1.
1840      * </ul>
1841      * @param d a {@code double} value
1842      * @return the unbiased exponent of the argument
1843      * @since 1.6
1844      */
1845     public static int getExponent(double d) {
1846         /*
1847          * Bitwise convert d to long, mask out exponent bits, shift
1848          * to the right and then subtract out double's bias adjust to
1849          * get true exponent value.
1850          */
1851         return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >>
1852                       (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS);
1853     }
1854 
1855     /**
1856      * Returns the floating-point number adjacent to the first
1857      * argument in the direction of the second argument.  If both
1858      * arguments compare as equal the second argument is returned.
1859      *
1860      * <p>
1861      * Special cases:
1862      * <ul>
1863      * <li> If either argument is a NaN, then NaN is returned.
1864      *
1865      * <li> If both arguments are signed zeros, {@code direction}
1866      * is returned unchanged (as implied by the requirement of
1867      * returning the second argument if the arguments compare as
1868      * equal).
1869      *
1870      * <li> If {@code start} is
1871      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1872      * has a value such that the result should have a smaller
1873      * magnitude, then a zero with the same sign as {@code start}
1874      * is returned.
1875      *
1876      * <li> If {@code start} is infinite and
1877      * {@code direction} has a value such that the result should
1878      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1879      * same sign as {@code start} is returned.
1880      *
1881      * <li> If {@code start} is equal to &plusmn;
1882      * {@link Double#MAX_VALUE} and {@code direction} has a
1883      * value such that the result should have a larger magnitude, an
1884      * infinity with same sign as {@code start} is returned.
1885      * </ul>
1886      *
1887      * @param start  starting floating-point value
1888      * @param direction value indicating which of
1889      * {@code start}'s neighbors or {@code start} should
1890      * be returned
1891      * @return The floating-point number adjacent to {@code start} in the
1892      * direction of {@code direction}.
1893      * @since 1.6
1894      */
1895     public static double nextAfter(double start, double direction) {
1896         /*
1897          * The cases:
1898          *
1899          * nextAfter(+infinity, 0)  == MAX_VALUE
1900          * nextAfter(+infinity, +infinity)  == +infinity
1901          * nextAfter(-infinity, 0)  == -MAX_VALUE
1902          * nextAfter(-infinity, -infinity)  == -infinity
1903          *
1904          * are naturally handled without any additional testing
1905          */
1906 
1907         /*
1908          * IEEE 754 floating-point numbers are lexicographically
1909          * ordered if treated as signed-magnitude integers.
1910          * Since Java's integers are two's complement,
1911          * incrementing the two's complement representation of a
1912          * logically negative floating-point value *decrements*
1913          * the signed-magnitude representation. Therefore, when
1914          * the integer representation of a floating-point value
1915          * is negative, the adjustment to the representation is in
1916          * the opposite direction from what would initially be expected.
1917          */
1918 
1919         // Branch to descending case first as it is more costly than ascending
1920         // case due to start != 0.0d conditional.
1921         if (start > direction) { // descending
1922             if (start != 0.0d) {
1923                 final long transducer = Double.doubleToRawLongBits(start);
1924                 return Double.longBitsToDouble(transducer + ((transducer > 0L) ? -1L : 1L));
1925             } else { // start == 0.0d && direction < 0.0d
1926                 return -Double.MIN_VALUE;
1927             }
1928         } else if (start < direction) { // ascending
1929             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
1930             // then bitwise convert start to integer.
1931             final long transducer = Double.doubleToRawLongBits(start + 0.0d);
1932             return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
1933         } else if (start == direction) {
1934             return direction;
1935         } else { // isNaN(start) || isNaN(direction)
1936             return start + direction;
1937         }
1938     }
1939 
1940     /**
1941      * Returns the floating-point number adjacent to the first
1942      * argument in the direction of the second argument.  If both
1943      * arguments compare as equal a value equivalent to the second argument
1944      * is returned.
1945      *
1946      * <p>
1947      * Special cases:
1948      * <ul>
1949      * <li> If either argument is a NaN, then NaN is returned.
1950      *
1951      * <li> If both arguments are signed zeros, a value equivalent
1952      * to {@code direction} is returned.
1953      *
1954      * <li> If {@code start} is
1955      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1956      * has a value such that the result should have a smaller
1957      * magnitude, then a zero with the same sign as {@code start}
1958      * is returned.
1959      *
1960      * <li> If {@code start} is infinite and
1961      * {@code direction} has a value such that the result should
1962      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1963      * same sign as {@code start} is returned.
1964      *
1965      * <li> If {@code start} is equal to &plusmn;
1966      * {@link Float#MAX_VALUE} and {@code direction} has a
1967      * value such that the result should have a larger magnitude, an
1968      * infinity with same sign as {@code start} is returned.
1969      * </ul>
1970      *
1971      * @param start  starting floating-point value
1972      * @param direction value indicating which of
1973      * {@code start}'s neighbors or {@code start} should
1974      * be returned
1975      * @return The floating-point number adjacent to {@code start} in the
1976      * direction of {@code direction}.
1977      * @since 1.6
1978      */
1979     public static float nextAfter(float start, double direction) {
1980         /*
1981          * The cases:
1982          *
1983          * nextAfter(+infinity, 0)  == MAX_VALUE
1984          * nextAfter(+infinity, +infinity)  == +infinity
1985          * nextAfter(-infinity, 0)  == -MAX_VALUE
1986          * nextAfter(-infinity, -infinity)  == -infinity
1987          *
1988          * are naturally handled without any additional testing
1989          */
1990 
1991         /*
1992          * IEEE 754 floating-point numbers are lexicographically
1993          * ordered if treated as signed-magnitude integers.
1994          * Since Java's integers are two's complement,
1995          * incrementing the two's complement representation of a
1996          * logically negative floating-point value *decrements*
1997          * the signed-magnitude representation. Therefore, when
1998          * the integer representation of a floating-point value
1999          * is negative, the adjustment to the representation is in
2000          * the opposite direction from what would initially be expected.
2001          */
2002 
2003         // Branch to descending case first as it is more costly than ascending
2004         // case due to start != 0.0f conditional.
2005         if (start > direction) { // descending
2006             if (start != 0.0f) {
2007                 final int transducer = Float.floatToRawIntBits(start);
2008                 return Float.intBitsToFloat(transducer + ((transducer > 0) ? -1 : 1));
2009             } else { // start == 0.0f && direction < 0.0f
2010                 return -Float.MIN_VALUE;
2011             }
2012         } else if (start < direction) { // ascending
2013             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2014             // then bitwise convert start to integer.
2015             final int transducer = Float.floatToRawIntBits(start + 0.0f);
2016             return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
2017         } else if (start == direction) {
2018             return (float)direction;
2019         } else { // isNaN(start) || isNaN(direction)
2020             return start + (float)direction;
2021         }
2022     }
2023 
2024     /**
2025      * Returns the floating-point value adjacent to {@code d} in
2026      * the direction of positive infinity.  This method is
2027      * semantically equivalent to {@code nextAfter(d,
2028      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
2029      * implementation may run faster than its equivalent
2030      * {@code nextAfter} call.
2031      *
2032      * <p>Special Cases:
2033      * <ul>
2034      * <li> If the argument is NaN, the result is NaN.
2035      *
2036      * <li> If the argument is positive infinity, the result is
2037      * positive infinity.
2038      *
2039      * <li> If the argument is zero, the result is
2040      * {@link Double#MIN_VALUE}
2041      *
2042      * </ul>
2043      *
2044      * @param d starting floating-point value
2045      * @return The adjacent floating-point value closer to positive
2046      * infinity.
2047      * @since 1.6
2048      */
2049     public static double nextUp(double d) {
2050         // Use a single conditional and handle the likely cases first.
2051         if (d < Double.POSITIVE_INFINITY) {
2052             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
2053             final long transducer = Double.doubleToRawLongBits(d + 0.0D);
2054             return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
2055         } else { // d is NaN or +Infinity
2056             return d;
2057         }
2058     }
2059 
2060     /**
2061      * Returns the floating-point value adjacent to {@code f} in
2062      * the direction of positive infinity.  This method is
2063      * semantically equivalent to {@code nextAfter(f,
2064      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
2065      * implementation may run faster than its equivalent
2066      * {@code nextAfter} call.
2067      *
2068      * <p>Special Cases:
2069      * <ul>
2070      * <li> If the argument is NaN, the result is NaN.
2071      *
2072      * <li> If the argument is positive infinity, the result is
2073      * positive infinity.
2074      *
2075      * <li> If the argument is zero, the result is
2076      * {@link Float#MIN_VALUE}
2077      *
2078      * </ul>
2079      *
2080      * @param f starting floating-point value
2081      * @return The adjacent floating-point value closer to positive
2082      * infinity.
2083      * @since 1.6
2084      */
2085     public static float nextUp(float f) {
2086         // Use a single conditional and handle the likely cases first.
2087         if (f < Float.POSITIVE_INFINITY) {
2088             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
2089             final int transducer = Float.floatToRawIntBits(f + 0.0F);
2090             return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
2091         } else { // f is NaN or +Infinity
2092             return f;
2093         }
2094     }
2095 
2096     /**
2097      * Returns the floating-point value adjacent to {@code d} in
2098      * the direction of negative infinity.  This method is
2099      * semantically equivalent to {@code nextAfter(d,
2100      * Double.NEGATIVE_INFINITY)}; however, a
2101      * {@code nextDown} implementation may run faster than its
2102      * equivalent {@code nextAfter} call.
2103      *
2104      * <p>Special Cases:
2105      * <ul>
2106      * <li> If the argument is NaN, the result is NaN.
2107      *
2108      * <li> If the argument is negative infinity, the result is
2109      * negative infinity.
2110      *
2111      * <li> If the argument is zero, the result is
2112      * {@code -Double.MIN_VALUE}
2113      *
2114      * </ul>
2115      *
2116      * @param d  starting floating-point value
2117      * @return The adjacent floating-point value closer to negative
2118      * infinity.
2119      * @since 1.8
2120      */
2121     public static double nextDown(double d) {
2122         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
2123             return d;
2124         else {
2125             if (d == 0.0)
2126                 return -Double.MIN_VALUE;
2127             else
2128                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2129                                                ((d > 0.0d)?-1L:+1L));
2130         }
2131     }
2132 
2133     /**
2134      * Returns the floating-point value adjacent to {@code f} in
2135      * the direction of negative infinity.  This method is
2136      * semantically equivalent to {@code nextAfter(f,
2137      * Float.NEGATIVE_INFINITY)}; however, a
2138      * {@code nextDown} implementation may run faster than its
2139      * equivalent {@code nextAfter} call.
2140      *
2141      * <p>Special Cases:
2142      * <ul>
2143      * <li> If the argument is NaN, the result is NaN.
2144      *
2145      * <li> If the argument is negative infinity, the result is
2146      * negative infinity.
2147      *
2148      * <li> If the argument is zero, the result is
2149      * {@code -Float.MIN_VALUE}
2150      *
2151      * </ul>
2152      *
2153      * @param f  starting floating-point value
2154      * @return The adjacent floating-point value closer to negative
2155      * infinity.
2156      * @since 1.8
2157      */
2158     public static float nextDown(float f) {
2159         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
2160             return f;
2161         else {
2162             if (f == 0.0f)
2163                 return -Float.MIN_VALUE;
2164             else
2165                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2166                                             ((f > 0.0f)?-1:+1));
2167         }
2168     }
2169 
2170     /**
2171      * Returns {@code d} &times;
2172      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2173      * by a single correctly rounded floating-point multiply to a
2174      * member of the double value set.  See the Java
2175      * Language Specification for a discussion of floating-point
2176      * value sets.  If the exponent of the result is between {@link
2177      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
2178      * answer is calculated exactly.  If the exponent of the result
2179      * would be larger than {@code Double.MAX_EXPONENT}, an
2180      * infinity is returned.  Note that if the result is subnormal,
2181      * precision may be lost; that is, when {@code scalb(x, n)}
2182      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2183      * <i>x</i>.  When the result is non-NaN, the result has the same
2184      * sign as {@code d}.
2185      *
2186      * <p>Special cases:
2187      * <ul>
2188      * <li> If the first argument is NaN, NaN is returned.
2189      * <li> If the first argument is infinite, then an infinity of the
2190      * same sign is returned.
2191      * <li> If the first argument is zero, then a zero of the same
2192      * sign is returned.
2193      * </ul>
2194      *
2195      * @param d number to be scaled by a power of two.
2196      * @param scaleFactor power of 2 used to scale {@code d}
2197      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2198      * @since 1.6
2199      */
2200     public static double scalb(double d, int scaleFactor) {
2201         /*
2202          * This method does not need to be declared strictfp to
2203          * compute the same correct result on all platforms.  When
2204          * scaling up, it does not matter what order the
2205          * multiply-store operations are done; the result will be
2206          * finite or overflow regardless of the operation ordering.
2207          * However, to get the correct result when scaling down, a
2208          * particular ordering must be used.
2209          *
2210          * When scaling down, the multiply-store operations are
2211          * sequenced so that it is not possible for two consecutive
2212          * multiply-stores to return subnormal results.  If one
2213          * multiply-store result is subnormal, the next multiply will
2214          * round it away to zero.  This is done by first multiplying
2215          * by 2 ^ (scaleFactor % n) and then multiplying several
2216          * times by by 2^n as needed where n is the exponent of number
2217          * that is a covenient power of two.  In this way, at most one
2218          * real rounding error occurs.  If the double value set is
2219          * being used exclusively, the rounding will occur on a
2220          * multiply.  If the double-extended-exponent value set is
2221          * being used, the products will (perhaps) be exact but the
2222          * stores to d are guaranteed to round to the double value
2223          * set.
2224          *
2225          * It is _not_ a valid implementation to first multiply d by
2226          * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor %
2227          * MIN_EXPONENT) since even in a strictfp program double
2228          * rounding on underflow could occur; e.g. if the scaleFactor
2229          * argument was (MIN_EXPONENT - n) and the exponent of d was a
2230          * little less than -(MIN_EXPONENT - n), meaning the final
2231          * result would be subnormal.
2232          *
2233          * Since exact reproducibility of this method can be achieved
2234          * without any undue performance burden, there is no
2235          * compelling reason to allow double rounding on underflow in
2236          * scalb.
2237          */
2238 
2239         // magnitude of a power of two so large that scaling a finite
2240         // nonzero value by it would be guaranteed to over or
2241         // underflow; due to rounding, scaling down takes takes an
2242         // additional power of two which is reflected here
2243         final int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT +
2244                               DoubleConsts.SIGNIFICAND_WIDTH + 1;
2245         int exp_adjust = 0;
2246         int scale_increment = 0;
2247         double exp_delta = Double.NaN;
2248 
2249         // Make sure scaling factor is in a reasonable range
2250 
2251         if(scaleFactor < 0) {
2252             scaleFactor = Math.max(scaleFactor, -MAX_SCALE);
2253             scale_increment = -512;
2254             exp_delta = twoToTheDoubleScaleDown;
2255         }
2256         else {
2257             scaleFactor = Math.min(scaleFactor, MAX_SCALE);
2258             scale_increment = 512;
2259             exp_delta = twoToTheDoubleScaleUp;
2260         }
2261 
2262         // Calculate (scaleFactor % +/-512), 512 = 2^9, using
2263         // technique from "Hacker's Delight" section 10-2.
2264         int t = (scaleFactor >> 9-1) >>> 32 - 9;
2265         exp_adjust = ((scaleFactor + t) & (512 -1)) - t;
2266 
2267         d *= powerOfTwoD(exp_adjust);
2268         scaleFactor -= exp_adjust;
2269 
2270         while(scaleFactor != 0) {
2271             d *= exp_delta;
2272             scaleFactor -= scale_increment;
2273         }
2274         return d;
2275     }
2276 
2277     /**
2278      * Returns {@code f} &times;
2279      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2280      * by a single correctly rounded floating-point multiply to a
2281      * member of the float value set.  See the Java
2282      * Language Specification for a discussion of floating-point
2283      * value sets.  If the exponent of the result is between {@link
2284      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
2285      * answer is calculated exactly.  If the exponent of the result
2286      * would be larger than {@code Float.MAX_EXPONENT}, an
2287      * infinity is returned.  Note that if the result is subnormal,
2288      * precision may be lost; that is, when {@code scalb(x, n)}
2289      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2290      * <i>x</i>.  When the result is non-NaN, the result has the same
2291      * sign as {@code f}.
2292      *
2293      * <p>Special cases:
2294      * <ul>
2295      * <li> If the first argument is NaN, NaN is returned.
2296      * <li> If the first argument is infinite, then an infinity of the
2297      * same sign is returned.
2298      * <li> If the first argument is zero, then a zero of the same
2299      * sign is returned.
2300      * </ul>
2301      *
2302      * @param f number to be scaled by a power of two.
2303      * @param scaleFactor power of 2 used to scale {@code f}
2304      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2305      * @since 1.6
2306      */
2307     public static float scalb(float f, int scaleFactor) {
2308         // magnitude of a power of two so large that scaling a finite
2309         // nonzero value by it would be guaranteed to over or
2310         // underflow; due to rounding, scaling down takes takes an
2311         // additional power of two which is reflected here
2312         final int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT +
2313                               FloatConsts.SIGNIFICAND_WIDTH + 1;
2314 
2315         // Make sure scaling factor is in a reasonable range
2316         scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE);
2317 
2318         /*
2319          * Since + MAX_SCALE for float fits well within the double
2320          * exponent range and + float -> double conversion is exact
2321          * the multiplication below will be exact. Therefore, the
2322          * rounding that occurs when the double product is cast to
2323          * float will be the correctly rounded float result.  Since
2324          * all operations other than the final multiply will be exact,
2325          * it is not necessary to declare this method strictfp.
2326          */
2327         return (float)((double)f*powerOfTwoD(scaleFactor));
2328     }
2329 
2330     // Constants used in scalb
2331     static double twoToTheDoubleScaleUp = powerOfTwoD(512);
2332     static double twoToTheDoubleScaleDown = powerOfTwoD(-512);
2333 
2334     /**
2335      * Returns a floating-point power of two in the normal range.
2336      */
2337     static double powerOfTwoD(int n) {
2338         assert(n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT);
2339         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) <<
2340                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
2341                                        & DoubleConsts.EXP_BIT_MASK);
2342     }
2343 
2344     /**
2345      * Returns a floating-point power of two in the normal range.
2346      */
2347     static float powerOfTwoF(int n) {
2348         assert(n >= FloatConsts.MIN_EXPONENT && n <= FloatConsts.MAX_EXPONENT);
2349         return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) <<
2350                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
2351                                     & FloatConsts.EXP_BIT_MASK);
2352     }
2353 }