1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size, int level,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, level, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              (int) ParallelGCThreads,             // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 308 
 309   // Generation Counters - generation 1, 1 subspace
 310   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 311       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 312 
 313   _space_counters = new GSpaceCounters(gen_name, 0,
 314                                        _virtual_space.reserved_size(),
 315                                        this, _gen_counters);
 316 }
 317 
 318 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 319   _cms_gen(cms_gen)
 320 {
 321   assert(alpha <= 100, "bad value");
 322   _saved_alpha = alpha;
 323 
 324   // Initialize the alphas to the bootstrap value of 100.
 325   _gc0_alpha = _cms_alpha = 100;
 326 
 327   _cms_begin_time.update();
 328   _cms_end_time.update();
 329 
 330   _gc0_duration = 0.0;
 331   _gc0_period = 0.0;
 332   _gc0_promoted = 0;
 333 
 334   _cms_duration = 0.0;
 335   _cms_period = 0.0;
 336   _cms_allocated = 0;
 337 
 338   _cms_used_at_gc0_begin = 0;
 339   _cms_used_at_gc0_end = 0;
 340   _allow_duty_cycle_reduction = false;
 341   _valid_bits = 0;
 342 }
 343 
 344 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 345   // TBD: CR 6909490
 346   return 1.0;
 347 }
 348 
 349 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 350 }
 351 
 352 // If promotion failure handling is on use
 353 // the padded average size of the promotion for each
 354 // young generation collection.
 355 double CMSStats::time_until_cms_gen_full() const {
 356   size_t cms_free = _cms_gen->cmsSpace()->free();
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 359                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 360   if (cms_free > expected_promotion) {
 361     // Start a cms collection if there isn't enough space to promote
 362     // for the next minor collection.  Use the padded average as
 363     // a safety factor.
 364     cms_free -= expected_promotion;
 365 
 366     // Adjust by the safety factor.
 367     double cms_free_dbl = (double)cms_free;
 368     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 369     // Apply a further correction factor which tries to adjust
 370     // for recent occurance of concurrent mode failures.
 371     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 372     cms_free_dbl = cms_free_dbl * cms_adjustment;
 373 
 374     if (PrintGCDetails && Verbose) {
 375       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 376         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377         cms_free, expected_promotion);
 378       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 379         cms_free_dbl, cms_consumption_rate() + 1.0);
 380     }
 381     // Add 1 in case the consumption rate goes to zero.
 382     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 383   }
 384   return 0.0;
 385 }
 386 
 387 // Compare the duration of the cms collection to the
 388 // time remaining before the cms generation is empty.
 389 // Note that the time from the start of the cms collection
 390 // to the start of the cms sweep (less than the total
 391 // duration of the cms collection) can be used.  This
 392 // has been tried and some applications experienced
 393 // promotion failures early in execution.  This was
 394 // possibly because the averages were not accurate
 395 // enough at the beginning.
 396 double CMSStats::time_until_cms_start() const {
 397   // We add "gc0_period" to the "work" calculation
 398   // below because this query is done (mostly) at the
 399   // end of a scavenge, so we need to conservatively
 400   // account for that much possible delay
 401   // in the query so as to avoid concurrent mode failures
 402   // due to starting the collection just a wee bit too
 403   // late.
 404   double work = cms_duration() + gc0_period();
 405   double deadline = time_until_cms_gen_full();
 406   // If a concurrent mode failure occurred recently, we want to be
 407   // more conservative and halve our expected time_until_cms_gen_full()
 408   if (work > deadline) {
 409     if (Verbose && PrintGCDetails) {
 410       gclog_or_tty->print(
 411         " CMSCollector: collect because of anticipated promotion "
 412         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 413         gc0_period(), time_until_cms_gen_full());
 414     }
 415     return 0.0;
 416   }
 417   return work - deadline;
 418 }
 419 
 420 #ifndef PRODUCT
 421 void CMSStats::print_on(outputStream *st) const {
 422   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 423   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 424                gc0_duration(), gc0_period(), gc0_promoted());
 425   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 426             cms_duration(), cms_period(), cms_allocated());
 427   st->print(",cms_since_beg=%g,cms_since_end=%g",
 428             cms_time_since_begin(), cms_time_since_end());
 429   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 430             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 431 
 432   if (valid()) {
 433     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 434               promotion_rate(), cms_allocation_rate());
 435     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 436               cms_consumption_rate(), time_until_cms_gen_full());
 437   }
 438   st->print(" ");
 439 }
 440 #endif // #ifndef PRODUCT
 441 
 442 CMSCollector::CollectorState CMSCollector::_collectorState =
 443                              CMSCollector::Idling;
 444 bool CMSCollector::_foregroundGCIsActive = false;
 445 bool CMSCollector::_foregroundGCShouldWait = false;
 446 
 447 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 448                            CardTableRS*                   ct,
 449                            ConcurrentMarkSweepPolicy*     cp):
 450   _cmsGen(cmsGen),
 451   _ct(ct),
 452   _ref_processor(NULL),    // will be set later
 453   _conc_workers(NULL),     // may be set later
 454   _abort_preclean(false),
 455   _start_sampling(false),
 456   _between_prologue_and_epilogue(false),
 457   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 458   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 459                  -1 /* lock-free */, "No_lock" /* dummy */),
 460   _modUnionClosurePar(&_modUnionTable),
 461   // Adjust my span to cover old (cms) gen
 462   _span(cmsGen->reserved()),
 463   // Construct the is_alive_closure with _span & markBitMap
 464   _is_alive_closure(_span, &_markBitMap),
 465   _restart_addr(NULL),
 466   _overflow_list(NULL),
 467   _stats(cmsGen),
 468   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 469                              //verify that this lock should be acquired with safepoint check.
 470                              Monitor::_safepoint_check_sometimes)),
 471   _eden_chunk_array(NULL),     // may be set in ctor body
 472   _eden_chunk_capacity(0),     // -- ditto --
 473   _eden_chunk_index(0),        // -- ditto --
 474   _survivor_plab_array(NULL),  // -- ditto --
 475   _survivor_chunk_array(NULL), // -- ditto --
 476   _survivor_chunk_capacity(0), // -- ditto --
 477   _survivor_chunk_index(0),    // -- ditto --
 478   _ser_pmc_preclean_ovflw(0),
 479   _ser_kac_preclean_ovflw(0),
 480   _ser_pmc_remark_ovflw(0),
 481   _par_pmc_remark_ovflw(0),
 482   _ser_kac_ovflw(0),
 483   _par_kac_ovflw(0),
 484 #ifndef PRODUCT
 485   _num_par_pushes(0),
 486 #endif
 487   _collection_count_start(0),
 488   _verifying(false),
 489   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 490   _completed_initialization(false),
 491   _collector_policy(cp),
 492   _should_unload_classes(CMSClassUnloadingEnabled),
 493   _concurrent_cycles_since_last_unload(0),
 494   _roots_scanning_options(GenCollectedHeap::SO_None),
 495   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 497   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 498   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 499   _cms_start_registered(false)
 500 {
 501   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 502     ExplicitGCInvokesConcurrent = true;
 503   }
 504   // Now expand the span and allocate the collection support structures
 505   // (MUT, marking bit map etc.) to cover both generations subject to
 506   // collection.
 507 
 508   // For use by dirty card to oop closures.
 509   _cmsGen->cmsSpace()->set_collector(this);
 510 
 511   // Allocate MUT and marking bit map
 512   {
 513     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 514     if (!_markBitMap.allocate(_span)) {
 515       warning("Failed to allocate CMS Bit Map");
 516       return;
 517     }
 518     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 519   }
 520   {
 521     _modUnionTable.allocate(_span);
 522     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 523   }
 524 
 525   if (!_markStack.allocate(MarkStackSize)) {
 526     warning("Failed to allocate CMS Marking Stack");
 527     return;
 528   }
 529 
 530   // Support for multi-threaded concurrent phases
 531   if (CMSConcurrentMTEnabled) {
 532     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 533       // just for now
 534       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 535     }
 536     if (ConcGCThreads > 1) {
 537       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 538                                  ConcGCThreads, true);
 539       if (_conc_workers == NULL) {
 540         warning("GC/CMS: _conc_workers allocation failure: "
 541               "forcing -CMSConcurrentMTEnabled");
 542         CMSConcurrentMTEnabled = false;
 543       } else {
 544         _conc_workers->initialize_workers();
 545       }
 546     } else {
 547       CMSConcurrentMTEnabled = false;
 548     }
 549   }
 550   if (!CMSConcurrentMTEnabled) {
 551     ConcGCThreads = 0;
 552   } else {
 553     // Turn off CMSCleanOnEnter optimization temporarily for
 554     // the MT case where it's not fixed yet; see 6178663.
 555     CMSCleanOnEnter = false;
 556   }
 557   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 558          "Inconsistency");
 559 
 560   // Parallel task queues; these are shared for the
 561   // concurrent and stop-world phases of CMS, but
 562   // are not shared with parallel scavenge (ParNew).
 563   {
 564     uint i;
 565     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 566 
 567     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 568          || ParallelRefProcEnabled)
 569         && num_queues > 0) {
 570       _task_queues = new OopTaskQueueSet(num_queues);
 571       if (_task_queues == NULL) {
 572         warning("task_queues allocation failure.");
 573         return;
 574       }
 575       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 576       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 577       for (i = 0; i < num_queues; i++) {
 578         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 579         if (q == NULL) {
 580           warning("work_queue allocation failure.");
 581           return;
 582         }
 583         _task_queues->register_queue(i, q);
 584       }
 585       for (i = 0; i < num_queues; i++) {
 586         _task_queues->queue(i)->initialize();
 587         _hash_seed[i] = 17;  // copied from ParNew
 588       }
 589     }
 590   }
 591 
 592   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 593 
 594   // Clip CMSBootstrapOccupancy between 0 and 100.
 595   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 596 
 597   // Now tell CMS generations the identity of their collector
 598   ConcurrentMarkSweepGeneration::set_collector(this);
 599 
 600   // Create & start a CMS thread for this CMS collector
 601   _cmsThread = ConcurrentMarkSweepThread::start(this);
 602   assert(cmsThread() != NULL, "CMS Thread should have been created");
 603   assert(cmsThread()->collector() == this,
 604          "CMS Thread should refer to this gen");
 605   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 606 
 607   // Support for parallelizing young gen rescan
 608   GenCollectedHeap* gch = GenCollectedHeap::heap();
 609   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 610   _young_gen = (ParNewGeneration*)gch->young_gen();
 611   if (gch->supports_inline_contig_alloc()) {
 612     _top_addr = gch->top_addr();
 613     _end_addr = gch->end_addr();
 614     assert(_young_gen != NULL, "no _young_gen");
 615     _eden_chunk_index = 0;
 616     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 617     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 618   }
 619 
 620   // Support for parallelizing survivor space rescan
 621   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 622     const size_t max_plab_samples =
 623       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 624 
 625     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 626     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 627     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 628     _survivor_chunk_capacity = 2*max_plab_samples;
 629     for (uint i = 0; i < ParallelGCThreads; i++) {
 630       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 631       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 632       assert(cur->end() == 0, "Should be 0");
 633       assert(cur->array() == vec, "Should be vec");
 634       assert(cur->capacity() == max_plab_samples, "Error");
 635     }
 636   }
 637 
 638   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 639   _gc_counters = new CollectorCounters("CMS", 1);
 640   _completed_initialization = true;
 641   _inter_sweep_timer.start();  // start of time
 642 }
 643 
 644 size_t CMSCollector::plab_sample_minimum_size() {
 645   // The default value of MinTLABSize is 2k, but there is
 646   // no way to get the default value if the flag has been overridden.
 647   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 648 }
 649 
 650 const char* ConcurrentMarkSweepGeneration::name() const {
 651   return "concurrent mark-sweep generation";
 652 }
 653 void ConcurrentMarkSweepGeneration::update_counters() {
 654   if (UsePerfData) {
 655     _space_counters->update_all();
 656     _gen_counters->update_all();
 657   }
 658 }
 659 
 660 // this is an optimized version of update_counters(). it takes the
 661 // used value as a parameter rather than computing it.
 662 //
 663 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 664   if (UsePerfData) {
 665     _space_counters->update_used(used);
 666     _space_counters->update_capacity();
 667     _gen_counters->update_all();
 668   }
 669 }
 670 
 671 void ConcurrentMarkSweepGeneration::print() const {
 672   Generation::print();
 673   cmsSpace()->print();
 674 }
 675 
 676 #ifndef PRODUCT
 677 void ConcurrentMarkSweepGeneration::print_statistics() {
 678   cmsSpace()->printFLCensus(0);
 679 }
 680 #endif
 681 
 682 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 683   GenCollectedHeap* gch = GenCollectedHeap::heap();
 684   if (PrintGCDetails) {
 685     if (Verbose) {
 686       gclog_or_tty->print("[%d %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 687         level(), short_name(), s, used(), capacity());
 688     } else {
 689       gclog_or_tty->print("[%d %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 690         level(), short_name(), s, used() / K, capacity() / K);
 691     }
 692   }
 693   if (Verbose) {
 694     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 695               gch->used(), gch->capacity());
 696   } else {
 697     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 698               gch->used() / K, gch->capacity() / K);
 699   }
 700 }
 701 
 702 size_t
 703 ConcurrentMarkSweepGeneration::contiguous_available() const {
 704   // dld proposes an improvement in precision here. If the committed
 705   // part of the space ends in a free block we should add that to
 706   // uncommitted size in the calculation below. Will make this
 707   // change later, staying with the approximation below for the
 708   // time being. -- ysr.
 709   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 710 }
 711 
 712 size_t
 713 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 714   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 715 }
 716 
 717 size_t ConcurrentMarkSweepGeneration::max_available() const {
 718   return free() + _virtual_space.uncommitted_size();
 719 }
 720 
 721 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 722   size_t available = max_available();
 723   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 724   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 725   if (Verbose && PrintGCDetails) {
 726     gclog_or_tty->print_cr(
 727       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 728       "max_promo(" SIZE_FORMAT ")",
 729       res? "":" not", available, res? ">=":"<",
 730       av_promo, max_promotion_in_bytes);
 731   }
 732   return res;
 733 }
 734 
 735 // At a promotion failure dump information on block layout in heap
 736 // (cms old generation).
 737 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 738   if (CMSDumpAtPromotionFailure) {
 739     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 740   }
 741 }
 742 
 743 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 744   // Clear the promotion information.  These pointers can be adjusted
 745   // along with all the other pointers into the heap but
 746   // compaction is expected to be a rare event with
 747   // a heap using cms so don't do it without seeing the need.
 748   for (uint i = 0; i < ParallelGCThreads; i++) {
 749     _par_gc_thread_states[i]->promo.reset();
 750   }
 751 }
 752 
 753 void ConcurrentMarkSweepGeneration::compute_new_size() {
 754   assert_locked_or_safepoint(Heap_lock);
 755 
 756   // If incremental collection failed, we just want to expand
 757   // to the limit.
 758   if (incremental_collection_failed()) {
 759     clear_incremental_collection_failed();
 760     grow_to_reserved();
 761     return;
 762   }
 763 
 764   // The heap has been compacted but not reset yet.
 765   // Any metric such as free() or used() will be incorrect.
 766 
 767   CardGeneration::compute_new_size();
 768 
 769   // Reset again after a possible resizing
 770   if (did_compact()) {
 771     cmsSpace()->reset_after_compaction();
 772   }
 773 }
 774 
 775 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 776   assert_locked_or_safepoint(Heap_lock);
 777 
 778   // If incremental collection failed, we just want to expand
 779   // to the limit.
 780   if (incremental_collection_failed()) {
 781     clear_incremental_collection_failed();
 782     grow_to_reserved();
 783     return;
 784   }
 785 
 786   double free_percentage = ((double) free()) / capacity();
 787   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 788   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 789 
 790   // compute expansion delta needed for reaching desired free percentage
 791   if (free_percentage < desired_free_percentage) {
 792     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 793     assert(desired_capacity >= capacity(), "invalid expansion size");
 794     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 795     if (PrintGCDetails && Verbose) {
 796       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 797       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 798       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 799       gclog_or_tty->print_cr("  Desired free fraction %f",
 800         desired_free_percentage);
 801       gclog_or_tty->print_cr("  Maximum free fraction %f",
 802         maximum_free_percentage);
 803       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity()/1000);
 804       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT,
 805         desired_capacity/1000);
 806       int prev_level = level() - 1;
 807       if (prev_level >= 0) {
 808         size_t prev_size = 0;
 809         GenCollectedHeap* gch = GenCollectedHeap::heap();
 810         Generation* prev_gen = gch->young_gen();
 811         prev_size = prev_gen->capacity();
 812           gclog_or_tty->print_cr("  Younger gen size " SIZE_FORMAT,
 813                                  prev_size/1000);
 814       }
 815       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT,
 816         unsafe_max_alloc_nogc()/1000);
 817       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT,
 818         contiguous_available()/1000);
 819       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)",
 820         expand_bytes);
 821     }
 822     // safe if expansion fails
 823     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 824     if (PrintGCDetails && Verbose) {
 825       gclog_or_tty->print_cr("  Expanded free fraction %f",
 826         ((double) free()) / capacity());
 827     }
 828   } else {
 829     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 830     assert(desired_capacity <= capacity(), "invalid expansion size");
 831     size_t shrink_bytes = capacity() - desired_capacity;
 832     // Don't shrink unless the delta is greater than the minimum shrink we want
 833     if (shrink_bytes >= MinHeapDeltaBytes) {
 834       shrink_free_list_by(shrink_bytes);
 835     }
 836   }
 837 }
 838 
 839 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 840   return cmsSpace()->freelistLock();
 841 }
 842 
 843 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 844                                                   bool   tlab) {
 845   CMSSynchronousYieldRequest yr;
 846   MutexLockerEx x(freelistLock(),
 847                   Mutex::_no_safepoint_check_flag);
 848   return have_lock_and_allocate(size, tlab);
 849 }
 850 
 851 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 852                                                   bool   tlab /* ignored */) {
 853   assert_lock_strong(freelistLock());
 854   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 855   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 856   // Allocate the object live (grey) if the background collector has
 857   // started marking. This is necessary because the marker may
 858   // have passed this address and consequently this object will
 859   // not otherwise be greyed and would be incorrectly swept up.
 860   // Note that if this object contains references, the writing
 861   // of those references will dirty the card containing this object
 862   // allowing the object to be blackened (and its references scanned)
 863   // either during a preclean phase or at the final checkpoint.
 864   if (res != NULL) {
 865     // We may block here with an uninitialized object with
 866     // its mark-bit or P-bits not yet set. Such objects need
 867     // to be safely navigable by block_start().
 868     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 869     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 870     collector()->direct_allocated(res, adjustedSize);
 871     _direct_allocated_words += adjustedSize;
 872     // allocation counters
 873     NOT_PRODUCT(
 874       _numObjectsAllocated++;
 875       _numWordsAllocated += (int)adjustedSize;
 876     )
 877   }
 878   return res;
 879 }
 880 
 881 // In the case of direct allocation by mutators in a generation that
 882 // is being concurrently collected, the object must be allocated
 883 // live (grey) if the background collector has started marking.
 884 // This is necessary because the marker may
 885 // have passed this address and consequently this object will
 886 // not otherwise be greyed and would be incorrectly swept up.
 887 // Note that if this object contains references, the writing
 888 // of those references will dirty the card containing this object
 889 // allowing the object to be blackened (and its references scanned)
 890 // either during a preclean phase or at the final checkpoint.
 891 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 892   assert(_markBitMap.covers(start, size), "Out of bounds");
 893   if (_collectorState >= Marking) {
 894     MutexLockerEx y(_markBitMap.lock(),
 895                     Mutex::_no_safepoint_check_flag);
 896     // [see comments preceding SweepClosure::do_blk() below for details]
 897     //
 898     // Can the P-bits be deleted now?  JJJ
 899     //
 900     // 1. need to mark the object as live so it isn't collected
 901     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 902     // 3. need to mark the end of the object so marking, precleaning or sweeping
 903     //    can skip over uninitialized or unparsable objects. An allocated
 904     //    object is considered uninitialized for our purposes as long as
 905     //    its klass word is NULL.  All old gen objects are parsable
 906     //    as soon as they are initialized.)
 907     _markBitMap.mark(start);          // object is live
 908     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 909     _markBitMap.mark(start + size - 1);
 910                                       // mark end of object
 911   }
 912   // check that oop looks uninitialized
 913   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 914 }
 915 
 916 void CMSCollector::promoted(bool par, HeapWord* start,
 917                             bool is_obj_array, size_t obj_size) {
 918   assert(_markBitMap.covers(start), "Out of bounds");
 919   // See comment in direct_allocated() about when objects should
 920   // be allocated live.
 921   if (_collectorState >= Marking) {
 922     // we already hold the marking bit map lock, taken in
 923     // the prologue
 924     if (par) {
 925       _markBitMap.par_mark(start);
 926     } else {
 927       _markBitMap.mark(start);
 928     }
 929     // We don't need to mark the object as uninitialized (as
 930     // in direct_allocated above) because this is being done with the
 931     // world stopped and the object will be initialized by the
 932     // time the marking, precleaning or sweeping get to look at it.
 933     // But see the code for copying objects into the CMS generation,
 934     // where we need to ensure that concurrent readers of the
 935     // block offset table are able to safely navigate a block that
 936     // is in flux from being free to being allocated (and in
 937     // transition while being copied into) and subsequently
 938     // becoming a bona-fide object when the copy/promotion is complete.
 939     assert(SafepointSynchronize::is_at_safepoint(),
 940            "expect promotion only at safepoints");
 941 
 942     if (_collectorState < Sweeping) {
 943       // Mark the appropriate cards in the modUnionTable, so that
 944       // this object gets scanned before the sweep. If this is
 945       // not done, CMS generation references in the object might
 946       // not get marked.
 947       // For the case of arrays, which are otherwise precisely
 948       // marked, we need to dirty the entire array, not just its head.
 949       if (is_obj_array) {
 950         // The [par_]mark_range() method expects mr.end() below to
 951         // be aligned to the granularity of a bit's representation
 952         // in the heap. In the case of the MUT below, that's a
 953         // card size.
 954         MemRegion mr(start,
 955                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 956                         CardTableModRefBS::card_size /* bytes */));
 957         if (par) {
 958           _modUnionTable.par_mark_range(mr);
 959         } else {
 960           _modUnionTable.mark_range(mr);
 961         }
 962       } else {  // not an obj array; we can just mark the head
 963         if (par) {
 964           _modUnionTable.par_mark(start);
 965         } else {
 966           _modUnionTable.mark(start);
 967         }
 968       }
 969     }
 970   }
 971 }
 972 
 973 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 974   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 975   // allocate, copy and if necessary update promoinfo --
 976   // delegate to underlying space.
 977   assert_lock_strong(freelistLock());
 978 
 979 #ifndef PRODUCT
 980   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 981     return NULL;
 982   }
 983 #endif  // #ifndef PRODUCT
 984 
 985   oop res = _cmsSpace->promote(obj, obj_size);
 986   if (res == NULL) {
 987     // expand and retry
 988     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 989     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 990     // Since this is the old generation, we don't try to promote
 991     // into a more senior generation.
 992     res = _cmsSpace->promote(obj, obj_size);
 993   }
 994   if (res != NULL) {
 995     // See comment in allocate() about when objects should
 996     // be allocated live.
 997     assert(obj->is_oop(), "Will dereference klass pointer below");
 998     collector()->promoted(false,           // Not parallel
 999                           (HeapWord*)res, obj->is_objArray(), obj_size);
1000     // promotion counters
1001     NOT_PRODUCT(
1002       _numObjectsPromoted++;
1003       _numWordsPromoted +=
1004         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1005     )
1006   }
1007   return res;
1008 }
1009 
1010 
1011 // IMPORTANT: Notes on object size recognition in CMS.
1012 // ---------------------------------------------------
1013 // A block of storage in the CMS generation is always in
1014 // one of three states. A free block (FREE), an allocated
1015 // object (OBJECT) whose size() method reports the correct size,
1016 // and an intermediate state (TRANSIENT) in which its size cannot
1017 // be accurately determined.
1018 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1019 // -----------------------------------------------------
1020 // FREE:      klass_word & 1 == 1; mark_word holds block size
1021 //
1022 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1023 //            obj->size() computes correct size
1024 //
1025 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1026 //
1027 // STATE IDENTIFICATION: (64 bit+COOPS)
1028 // ------------------------------------
1029 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1030 //
1031 // OBJECT:    klass_word installed; klass_word != 0;
1032 //            obj->size() computes correct size
1033 //
1034 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1035 //
1036 //
1037 // STATE TRANSITION DIAGRAM
1038 //
1039 //        mut / parnew                     mut  /  parnew
1040 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1041 //  ^                                                                   |
1042 //  |------------------------ DEAD <------------------------------------|
1043 //         sweep                            mut
1044 //
1045 // While a block is in TRANSIENT state its size cannot be determined
1046 // so readers will either need to come back later or stall until
1047 // the size can be determined. Note that for the case of direct
1048 // allocation, P-bits, when available, may be used to determine the
1049 // size of an object that may not yet have been initialized.
1050 
1051 // Things to support parallel young-gen collection.
1052 oop
1053 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1054                                            oop old, markOop m,
1055                                            size_t word_sz) {
1056 #ifndef PRODUCT
1057   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1058     return NULL;
1059   }
1060 #endif  // #ifndef PRODUCT
1061 
1062   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1063   PromotionInfo* promoInfo = &ps->promo;
1064   // if we are tracking promotions, then first ensure space for
1065   // promotion (including spooling space for saving header if necessary).
1066   // then allocate and copy, then track promoted info if needed.
1067   // When tracking (see PromotionInfo::track()), the mark word may
1068   // be displaced and in this case restoration of the mark word
1069   // occurs in the (oop_since_save_marks_)iterate phase.
1070   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1071     // Out of space for allocating spooling buffers;
1072     // try expanding and allocating spooling buffers.
1073     if (!expand_and_ensure_spooling_space(promoInfo)) {
1074       return NULL;
1075     }
1076   }
1077   assert(promoInfo->has_spooling_space(), "Control point invariant");
1078   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1079   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1080   if (obj_ptr == NULL) {
1081      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1082      if (obj_ptr == NULL) {
1083        return NULL;
1084      }
1085   }
1086   oop obj = oop(obj_ptr);
1087   OrderAccess::storestore();
1088   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1089   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1090   // IMPORTANT: See note on object initialization for CMS above.
1091   // Otherwise, copy the object.  Here we must be careful to insert the
1092   // klass pointer last, since this marks the block as an allocated object.
1093   // Except with compressed oops it's the mark word.
1094   HeapWord* old_ptr = (HeapWord*)old;
1095   // Restore the mark word copied above.
1096   obj->set_mark(m);
1097   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1098   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1099   OrderAccess::storestore();
1100 
1101   if (UseCompressedClassPointers) {
1102     // Copy gap missed by (aligned) header size calculation below
1103     obj->set_klass_gap(old->klass_gap());
1104   }
1105   if (word_sz > (size_t)oopDesc::header_size()) {
1106     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1107                                  obj_ptr + oopDesc::header_size(),
1108                                  word_sz - oopDesc::header_size());
1109   }
1110 
1111   // Now we can track the promoted object, if necessary.  We take care
1112   // to delay the transition from uninitialized to full object
1113   // (i.e., insertion of klass pointer) until after, so that it
1114   // atomically becomes a promoted object.
1115   if (promoInfo->tracking()) {
1116     promoInfo->track((PromotedObject*)obj, old->klass());
1117   }
1118   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1119   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1120   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1121 
1122   // Finally, install the klass pointer (this should be volatile).
1123   OrderAccess::storestore();
1124   obj->set_klass(old->klass());
1125   // We should now be able to calculate the right size for this object
1126   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1127 
1128   collector()->promoted(true,          // parallel
1129                         obj_ptr, old->is_objArray(), word_sz);
1130 
1131   NOT_PRODUCT(
1132     Atomic::inc_ptr(&_numObjectsPromoted);
1133     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1134   )
1135 
1136   return obj;
1137 }
1138 
1139 void
1140 ConcurrentMarkSweepGeneration::
1141 par_promote_alloc_done(int thread_num) {
1142   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1143   ps->lab.retire(thread_num);
1144 }
1145 
1146 void
1147 ConcurrentMarkSweepGeneration::
1148 par_oop_since_save_marks_iterate_done(int thread_num) {
1149   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1150   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1151   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1152 }
1153 
1154 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1155                                                    size_t size,
1156                                                    bool   tlab)
1157 {
1158   // We allow a STW collection only if a full
1159   // collection was requested.
1160   return full || should_allocate(size, tlab); // FIX ME !!!
1161   // This and promotion failure handling are connected at the
1162   // hip and should be fixed by untying them.
1163 }
1164 
1165 bool CMSCollector::shouldConcurrentCollect() {
1166   if (_full_gc_requested) {
1167     if (Verbose && PrintGCDetails) {
1168       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1169                              " gc request (or gc_locker)");
1170     }
1171     return true;
1172   }
1173 
1174   FreelistLocker x(this);
1175   // ------------------------------------------------------------------
1176   // Print out lots of information which affects the initiation of
1177   // a collection.
1178   if (PrintCMSInitiationStatistics && stats().valid()) {
1179     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1180     gclog_or_tty->stamp();
1181     gclog_or_tty->cr();
1182     stats().print_on(gclog_or_tty);
1183     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1184       stats().time_until_cms_gen_full());
1185     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1186     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1187                            _cmsGen->contiguous_available());
1188     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1189     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1190     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1191     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1192     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1193     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1194     gclog_or_tty->print_cr("metadata initialized %d",
1195       MetaspaceGC::should_concurrent_collect());
1196   }
1197   // ------------------------------------------------------------------
1198 
1199   // If the estimated time to complete a cms collection (cms_duration())
1200   // is less than the estimated time remaining until the cms generation
1201   // is full, start a collection.
1202   if (!UseCMSInitiatingOccupancyOnly) {
1203     if (stats().valid()) {
1204       if (stats().time_until_cms_start() == 0.0) {
1205         return true;
1206       }
1207     } else {
1208       // We want to conservatively collect somewhat early in order
1209       // to try and "bootstrap" our CMS/promotion statistics;
1210       // this branch will not fire after the first successful CMS
1211       // collection because the stats should then be valid.
1212       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1213         if (Verbose && PrintGCDetails) {
1214           gclog_or_tty->print_cr(
1215             " CMSCollector: collect for bootstrapping statistics:"
1216             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1217             _bootstrap_occupancy);
1218         }
1219         return true;
1220       }
1221     }
1222   }
1223 
1224   // Otherwise, we start a collection cycle if
1225   // old gen want a collection cycle started. Each may use
1226   // an appropriate criterion for making this decision.
1227   // XXX We need to make sure that the gen expansion
1228   // criterion dovetails well with this. XXX NEED TO FIX THIS
1229   if (_cmsGen->should_concurrent_collect()) {
1230     if (Verbose && PrintGCDetails) {
1231       gclog_or_tty->print_cr("CMS old gen initiated");
1232     }
1233     return true;
1234   }
1235 
1236   // We start a collection if we believe an incremental collection may fail;
1237   // this is not likely to be productive in practice because it's probably too
1238   // late anyway.
1239   GenCollectedHeap* gch = GenCollectedHeap::heap();
1240   assert(gch->collector_policy()->is_generation_policy(),
1241          "You may want to check the correctness of the following");
1242   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1243     if (Verbose && PrintGCDetails) {
1244       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1245     }
1246     return true;
1247   }
1248 
1249   if (MetaspaceGC::should_concurrent_collect()) {
1250     if (Verbose && PrintGCDetails) {
1251       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1252     }
1253     return true;
1254   }
1255 
1256   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1257   if (CMSTriggerInterval >= 0) {
1258     if (CMSTriggerInterval == 0) {
1259       // Trigger always
1260       return true;
1261     }
1262 
1263     // Check the CMS time since begin (we do not check the stats validity
1264     // as we want to be able to trigger the first CMS cycle as well)
1265     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1266       if (Verbose && PrintGCDetails) {
1267         if (stats().valid()) {
1268           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1269                                  stats().cms_time_since_begin());
1270         } else {
1271           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1272         }
1273       }
1274       return true;
1275     }
1276   }
1277 
1278   return false;
1279 }
1280 
1281 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1282 
1283 // Clear _expansion_cause fields of constituent generations
1284 void CMSCollector::clear_expansion_cause() {
1285   _cmsGen->clear_expansion_cause();
1286 }
1287 
1288 // We should be conservative in starting a collection cycle.  To
1289 // start too eagerly runs the risk of collecting too often in the
1290 // extreme.  To collect too rarely falls back on full collections,
1291 // which works, even if not optimum in terms of concurrent work.
1292 // As a work around for too eagerly collecting, use the flag
1293 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1294 // giving the user an easily understandable way of controlling the
1295 // collections.
1296 // We want to start a new collection cycle if any of the following
1297 // conditions hold:
1298 // . our current occupancy exceeds the configured initiating occupancy
1299 //   for this generation, or
1300 // . we recently needed to expand this space and have not, since that
1301 //   expansion, done a collection of this generation, or
1302 // . the underlying space believes that it may be a good idea to initiate
1303 //   a concurrent collection (this may be based on criteria such as the
1304 //   following: the space uses linear allocation and linear allocation is
1305 //   going to fail, or there is believed to be excessive fragmentation in
1306 //   the generation, etc... or ...
1307 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1308 //   the case of the old generation; see CR 6543076):
1309 //   we may be approaching a point at which allocation requests may fail because
1310 //   we will be out of sufficient free space given allocation rate estimates.]
1311 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1312 
1313   assert_lock_strong(freelistLock());
1314   if (occupancy() > initiating_occupancy()) {
1315     if (PrintGCDetails && Verbose) {
1316       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1317         short_name(), occupancy(), initiating_occupancy());
1318     }
1319     return true;
1320   }
1321   if (UseCMSInitiatingOccupancyOnly) {
1322     return false;
1323   }
1324   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1325     if (PrintGCDetails && Verbose) {
1326       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1327         short_name());
1328     }
1329     return true;
1330   }
1331   if (_cmsSpace->should_concurrent_collect()) {
1332     if (PrintGCDetails && Verbose) {
1333       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1334         short_name());
1335     }
1336     return true;
1337   }
1338   return false;
1339 }
1340 
1341 void ConcurrentMarkSweepGeneration::collect(bool   full,
1342                                             bool   clear_all_soft_refs,
1343                                             size_t size,
1344                                             bool   tlab)
1345 {
1346   collector()->collect(full, clear_all_soft_refs, size, tlab);
1347 }
1348 
1349 void CMSCollector::collect(bool   full,
1350                            bool   clear_all_soft_refs,
1351                            size_t size,
1352                            bool   tlab)
1353 {
1354   // The following "if" branch is present for defensive reasons.
1355   // In the current uses of this interface, it can be replaced with:
1356   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1357   // But I am not placing that assert here to allow future
1358   // generality in invoking this interface.
1359   if (GC_locker::is_active()) {
1360     // A consistency test for GC_locker
1361     assert(GC_locker::needs_gc(), "Should have been set already");
1362     // Skip this foreground collection, instead
1363     // expanding the heap if necessary.
1364     // Need the free list locks for the call to free() in compute_new_size()
1365     compute_new_size();
1366     return;
1367   }
1368   acquire_control_and_collect(full, clear_all_soft_refs);
1369 }
1370 
1371 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1372   GenCollectedHeap* gch = GenCollectedHeap::heap();
1373   unsigned int gc_count = gch->total_full_collections();
1374   if (gc_count == full_gc_count) {
1375     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1376     _full_gc_requested = true;
1377     _full_gc_cause = cause;
1378     CGC_lock->notify();   // nudge CMS thread
1379   } else {
1380     assert(gc_count > full_gc_count, "Error: causal loop");
1381   }
1382 }
1383 
1384 bool CMSCollector::is_external_interruption() {
1385   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1386   return GCCause::is_user_requested_gc(cause) ||
1387          GCCause::is_serviceability_requested_gc(cause);
1388 }
1389 
1390 void CMSCollector::report_concurrent_mode_interruption() {
1391   if (is_external_interruption()) {
1392     if (PrintGCDetails) {
1393       gclog_or_tty->print(" (concurrent mode interrupted)");
1394     }
1395   } else {
1396     if (PrintGCDetails) {
1397       gclog_or_tty->print(" (concurrent mode failure)");
1398     }
1399     _gc_tracer_cm->report_concurrent_mode_failure();
1400   }
1401 }
1402 
1403 
1404 // The foreground and background collectors need to coordinate in order
1405 // to make sure that they do not mutually interfere with CMS collections.
1406 // When a background collection is active,
1407 // the foreground collector may need to take over (preempt) and
1408 // synchronously complete an ongoing collection. Depending on the
1409 // frequency of the background collections and the heap usage
1410 // of the application, this preemption can be seldom or frequent.
1411 // There are only certain
1412 // points in the background collection that the "collection-baton"
1413 // can be passed to the foreground collector.
1414 //
1415 // The foreground collector will wait for the baton before
1416 // starting any part of the collection.  The foreground collector
1417 // will only wait at one location.
1418 //
1419 // The background collector will yield the baton before starting a new
1420 // phase of the collection (e.g., before initial marking, marking from roots,
1421 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1422 // of the loop which switches the phases. The background collector does some
1423 // of the phases (initial mark, final re-mark) with the world stopped.
1424 // Because of locking involved in stopping the world,
1425 // the foreground collector should not block waiting for the background
1426 // collector when it is doing a stop-the-world phase.  The background
1427 // collector will yield the baton at an additional point just before
1428 // it enters a stop-the-world phase.  Once the world is stopped, the
1429 // background collector checks the phase of the collection.  If the
1430 // phase has not changed, it proceeds with the collection.  If the
1431 // phase has changed, it skips that phase of the collection.  See
1432 // the comments on the use of the Heap_lock in collect_in_background().
1433 //
1434 // Variable used in baton passing.
1435 //   _foregroundGCIsActive - Set to true by the foreground collector when
1436 //      it wants the baton.  The foreground clears it when it has finished
1437 //      the collection.
1438 //   _foregroundGCShouldWait - Set to true by the background collector
1439 //        when it is running.  The foreground collector waits while
1440 //      _foregroundGCShouldWait is true.
1441 //  CGC_lock - monitor used to protect access to the above variables
1442 //      and to notify the foreground and background collectors.
1443 //  _collectorState - current state of the CMS collection.
1444 //
1445 // The foreground collector
1446 //   acquires the CGC_lock
1447 //   sets _foregroundGCIsActive
1448 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1449 //     various locks acquired in preparation for the collection
1450 //     are released so as not to block the background collector
1451 //     that is in the midst of a collection
1452 //   proceeds with the collection
1453 //   clears _foregroundGCIsActive
1454 //   returns
1455 //
1456 // The background collector in a loop iterating on the phases of the
1457 //      collection
1458 //   acquires the CGC_lock
1459 //   sets _foregroundGCShouldWait
1460 //   if _foregroundGCIsActive is set
1461 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1462 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1463 //     and exits the loop.
1464 //   otherwise
1465 //     proceed with that phase of the collection
1466 //     if the phase is a stop-the-world phase,
1467 //       yield the baton once more just before enqueueing
1468 //       the stop-world CMS operation (executed by the VM thread).
1469 //   returns after all phases of the collection are done
1470 //
1471 
1472 void CMSCollector::acquire_control_and_collect(bool full,
1473         bool clear_all_soft_refs) {
1474   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1475   assert(!Thread::current()->is_ConcurrentGC_thread(),
1476          "shouldn't try to acquire control from self!");
1477 
1478   // Start the protocol for acquiring control of the
1479   // collection from the background collector (aka CMS thread).
1480   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1481          "VM thread should have CMS token");
1482   // Remember the possibly interrupted state of an ongoing
1483   // concurrent collection
1484   CollectorState first_state = _collectorState;
1485 
1486   // Signal to a possibly ongoing concurrent collection that
1487   // we want to do a foreground collection.
1488   _foregroundGCIsActive = true;
1489 
1490   // release locks and wait for a notify from the background collector
1491   // releasing the locks in only necessary for phases which
1492   // do yields to improve the granularity of the collection.
1493   assert_lock_strong(bitMapLock());
1494   // We need to lock the Free list lock for the space that we are
1495   // currently collecting.
1496   assert(haveFreelistLocks(), "Must be holding free list locks");
1497   bitMapLock()->unlock();
1498   releaseFreelistLocks();
1499   {
1500     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1501     if (_foregroundGCShouldWait) {
1502       // We are going to be waiting for action for the CMS thread;
1503       // it had better not be gone (for instance at shutdown)!
1504       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1505              "CMS thread must be running");
1506       // Wait here until the background collector gives us the go-ahead
1507       ConcurrentMarkSweepThread::clear_CMS_flag(
1508         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1509       // Get a possibly blocked CMS thread going:
1510       //   Note that we set _foregroundGCIsActive true above,
1511       //   without protection of the CGC_lock.
1512       CGC_lock->notify();
1513       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1514              "Possible deadlock");
1515       while (_foregroundGCShouldWait) {
1516         // wait for notification
1517         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1518         // Possibility of delay/starvation here, since CMS token does
1519         // not know to give priority to VM thread? Actually, i think
1520         // there wouldn't be any delay/starvation, but the proof of
1521         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1522       }
1523       ConcurrentMarkSweepThread::set_CMS_flag(
1524         ConcurrentMarkSweepThread::CMS_vm_has_token);
1525     }
1526   }
1527   // The CMS_token is already held.  Get back the other locks.
1528   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1529          "VM thread should have CMS token");
1530   getFreelistLocks();
1531   bitMapLock()->lock_without_safepoint_check();
1532   if (TraceCMSState) {
1533     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1534       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1535     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1536   }
1537 
1538   // Inform cms gen if this was due to partial collection failing.
1539   // The CMS gen may use this fact to determine its expansion policy.
1540   GenCollectedHeap* gch = GenCollectedHeap::heap();
1541   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1542     assert(!_cmsGen->incremental_collection_failed(),
1543            "Should have been noticed, reacted to and cleared");
1544     _cmsGen->set_incremental_collection_failed();
1545   }
1546 
1547   if (first_state > Idling) {
1548     report_concurrent_mode_interruption();
1549   }
1550 
1551   set_did_compact(true);
1552 
1553   // If the collection is being acquired from the background
1554   // collector, there may be references on the discovered
1555   // references lists.  Abandon those references, since some
1556   // of them may have become unreachable after concurrent
1557   // discovery; the STW compacting collector will redo discovery
1558   // more precisely, without being subject to floating garbage.
1559   // Leaving otherwise unreachable references in the discovered
1560   // lists would require special handling.
1561   ref_processor()->disable_discovery();
1562   ref_processor()->abandon_partial_discovery();
1563   ref_processor()->verify_no_references_recorded();
1564 
1565   if (first_state > Idling) {
1566     save_heap_summary();
1567   }
1568 
1569   do_compaction_work(clear_all_soft_refs);
1570 
1571   // Has the GC time limit been exceeded?
1572   size_t max_eden_size = _young_gen->max_capacity() -
1573                          _young_gen->to()->capacity() -
1574                          _young_gen->from()->capacity();
1575   GCCause::Cause gc_cause = gch->gc_cause();
1576   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1577                                          _young_gen->eden()->used(),
1578                                          _cmsGen->max_capacity(),
1579                                          max_eden_size,
1580                                          full,
1581                                          gc_cause,
1582                                          gch->collector_policy());
1583 
1584   // Reset the expansion cause, now that we just completed
1585   // a collection cycle.
1586   clear_expansion_cause();
1587   _foregroundGCIsActive = false;
1588   return;
1589 }
1590 
1591 // Resize the tenured generation
1592 // after obtaining the free list locks for the
1593 // two generations.
1594 void CMSCollector::compute_new_size() {
1595   assert_locked_or_safepoint(Heap_lock);
1596   FreelistLocker z(this);
1597   MetaspaceGC::compute_new_size();
1598   _cmsGen->compute_new_size_free_list();
1599 }
1600 
1601 // A work method used by the foreground collector to do
1602 // a mark-sweep-compact.
1603 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1604   GenCollectedHeap* gch = GenCollectedHeap::heap();
1605 
1606   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1607   gc_timer->register_gc_start();
1608 
1609   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1610   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1611 
1612   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1613 
1614   // Temporarily widen the span of the weak reference processing to
1615   // the entire heap.
1616   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1617   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1618   // Temporarily, clear the "is_alive_non_header" field of the
1619   // reference processor.
1620   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1621   // Temporarily make reference _processing_ single threaded (non-MT).
1622   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1623   // Temporarily make refs discovery atomic
1624   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1625   // Temporarily make reference _discovery_ single threaded (non-MT)
1626   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1627 
1628   ref_processor()->set_enqueuing_is_done(false);
1629   ref_processor()->enable_discovery();
1630   ref_processor()->setup_policy(clear_all_soft_refs);
1631   // If an asynchronous collection finishes, the _modUnionTable is
1632   // all clear.  If we are assuming the collection from an asynchronous
1633   // collection, clear the _modUnionTable.
1634   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1635     "_modUnionTable should be clear if the baton was not passed");
1636   _modUnionTable.clear_all();
1637   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1638     "mod union for klasses should be clear if the baton was passed");
1639   _ct->klass_rem_set()->clear_mod_union();
1640 
1641   // We must adjust the allocation statistics being maintained
1642   // in the free list space. We do so by reading and clearing
1643   // the sweep timer and updating the block flux rate estimates below.
1644   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1645   if (_inter_sweep_timer.is_active()) {
1646     _inter_sweep_timer.stop();
1647     // Note that we do not use this sample to update the _inter_sweep_estimate.
1648     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1649                                             _inter_sweep_estimate.padded_average(),
1650                                             _intra_sweep_estimate.padded_average());
1651   }
1652 
1653   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1654     ref_processor(), clear_all_soft_refs);
1655   #ifdef ASSERT
1656     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1657     size_t free_size = cms_space->free();
1658     assert(free_size ==
1659            pointer_delta(cms_space->end(), cms_space->compaction_top())
1660            * HeapWordSize,
1661       "All the free space should be compacted into one chunk at top");
1662     assert(cms_space->dictionary()->total_chunk_size(
1663                                       debug_only(cms_space->freelistLock())) == 0 ||
1664            cms_space->totalSizeInIndexedFreeLists() == 0,
1665       "All the free space should be in a single chunk");
1666     size_t num = cms_space->totalCount();
1667     assert((free_size == 0 && num == 0) ||
1668            (free_size > 0  && (num == 1 || num == 2)),
1669          "There should be at most 2 free chunks after compaction");
1670   #endif // ASSERT
1671   _collectorState = Resetting;
1672   assert(_restart_addr == NULL,
1673          "Should have been NULL'd before baton was passed");
1674   reset(false /* == !concurrent */);
1675   _cmsGen->reset_after_compaction();
1676   _concurrent_cycles_since_last_unload = 0;
1677 
1678   // Clear any data recorded in the PLAB chunk arrays.
1679   if (_survivor_plab_array != NULL) {
1680     reset_survivor_plab_arrays();
1681   }
1682 
1683   // Adjust the per-size allocation stats for the next epoch.
1684   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1685   // Restart the "inter sweep timer" for the next epoch.
1686   _inter_sweep_timer.reset();
1687   _inter_sweep_timer.start();
1688 
1689   gc_timer->register_gc_end();
1690 
1691   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1692 
1693   // For a mark-sweep-compact, compute_new_size() will be called
1694   // in the heap's do_collection() method.
1695 }
1696 
1697 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1698   ContiguousSpace* eden_space = _young_gen->eden();
1699   ContiguousSpace* from_space = _young_gen->from();
1700   ContiguousSpace* to_space   = _young_gen->to();
1701   // Eden
1702   if (_eden_chunk_array != NULL) {
1703     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1704                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1705                            p2i(eden_space->end()), eden_space->capacity());
1706     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1707                            "_eden_chunk_capacity=" SIZE_FORMAT,
1708                            _eden_chunk_index, _eden_chunk_capacity);
1709     for (size_t i = 0; i < _eden_chunk_index; i++) {
1710       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1711                              i, p2i(_eden_chunk_array[i]));
1712     }
1713   }
1714   // Survivor
1715   if (_survivor_chunk_array != NULL) {
1716     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1717                            p2i(from_space->bottom()), p2i(from_space->top()),
1718                            p2i(from_space->end()), from_space->capacity());
1719     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1720                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1721                            _survivor_chunk_index, _survivor_chunk_capacity);
1722     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1723       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1724                              i, p2i(_survivor_chunk_array[i]));
1725     }
1726   }
1727 }
1728 
1729 void CMSCollector::getFreelistLocks() const {
1730   // Get locks for all free lists in all generations that this
1731   // collector is responsible for
1732   _cmsGen->freelistLock()->lock_without_safepoint_check();
1733 }
1734 
1735 void CMSCollector::releaseFreelistLocks() const {
1736   // Release locks for all free lists in all generations that this
1737   // collector is responsible for
1738   _cmsGen->freelistLock()->unlock();
1739 }
1740 
1741 bool CMSCollector::haveFreelistLocks() const {
1742   // Check locks for all free lists in all generations that this
1743   // collector is responsible for
1744   assert_lock_strong(_cmsGen->freelistLock());
1745   PRODUCT_ONLY(ShouldNotReachHere());
1746   return true;
1747 }
1748 
1749 // A utility class that is used by the CMS collector to
1750 // temporarily "release" the foreground collector from its
1751 // usual obligation to wait for the background collector to
1752 // complete an ongoing phase before proceeding.
1753 class ReleaseForegroundGC: public StackObj {
1754  private:
1755   CMSCollector* _c;
1756  public:
1757   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1758     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1759     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1760     // allow a potentially blocked foreground collector to proceed
1761     _c->_foregroundGCShouldWait = false;
1762     if (_c->_foregroundGCIsActive) {
1763       CGC_lock->notify();
1764     }
1765     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1766            "Possible deadlock");
1767   }
1768 
1769   ~ReleaseForegroundGC() {
1770     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1771     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1772     _c->_foregroundGCShouldWait = true;
1773   }
1774 };
1775 
1776 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1777   assert(Thread::current()->is_ConcurrentGC_thread(),
1778     "A CMS asynchronous collection is only allowed on a CMS thread.");
1779 
1780   GenCollectedHeap* gch = GenCollectedHeap::heap();
1781   {
1782     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1783     MutexLockerEx hl(Heap_lock, safepoint_check);
1784     FreelistLocker fll(this);
1785     MutexLockerEx x(CGC_lock, safepoint_check);
1786     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1787       // The foreground collector is active or we're
1788       // not using asynchronous collections.  Skip this
1789       // background collection.
1790       assert(!_foregroundGCShouldWait, "Should be clear");
1791       return;
1792     } else {
1793       assert(_collectorState == Idling, "Should be idling before start.");
1794       _collectorState = InitialMarking;
1795       register_gc_start(cause);
1796       // Reset the expansion cause, now that we are about to begin
1797       // a new cycle.
1798       clear_expansion_cause();
1799 
1800       // Clear the MetaspaceGC flag since a concurrent collection
1801       // is starting but also clear it after the collection.
1802       MetaspaceGC::set_should_concurrent_collect(false);
1803     }
1804     // Decide if we want to enable class unloading as part of the
1805     // ensuing concurrent GC cycle.
1806     update_should_unload_classes();
1807     _full_gc_requested = false;           // acks all outstanding full gc requests
1808     _full_gc_cause = GCCause::_no_gc;
1809     // Signal that we are about to start a collection
1810     gch->increment_total_full_collections();  // ... starting a collection cycle
1811     _collection_count_start = gch->total_full_collections();
1812   }
1813 
1814   // Used for PrintGC
1815   size_t prev_used;
1816   if (PrintGC && Verbose) {
1817     prev_used = _cmsGen->used();
1818   }
1819 
1820   // The change of the collection state is normally done at this level;
1821   // the exceptions are phases that are executed while the world is
1822   // stopped.  For those phases the change of state is done while the
1823   // world is stopped.  For baton passing purposes this allows the
1824   // background collector to finish the phase and change state atomically.
1825   // The foreground collector cannot wait on a phase that is done
1826   // while the world is stopped because the foreground collector already
1827   // has the world stopped and would deadlock.
1828   while (_collectorState != Idling) {
1829     if (TraceCMSState) {
1830       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1831         p2i(Thread::current()), _collectorState);
1832     }
1833     // The foreground collector
1834     //   holds the Heap_lock throughout its collection.
1835     //   holds the CMS token (but not the lock)
1836     //     except while it is waiting for the background collector to yield.
1837     //
1838     // The foreground collector should be blocked (not for long)
1839     //   if the background collector is about to start a phase
1840     //   executed with world stopped.  If the background
1841     //   collector has already started such a phase, the
1842     //   foreground collector is blocked waiting for the
1843     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1844     //   are executed in the VM thread.
1845     //
1846     // The locking order is
1847     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1848     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1849     //   CMS token  (claimed in
1850     //                stop_world_and_do() -->
1851     //                  safepoint_synchronize() -->
1852     //                    CMSThread::synchronize())
1853 
1854     {
1855       // Check if the FG collector wants us to yield.
1856       CMSTokenSync x(true); // is cms thread
1857       if (waitForForegroundGC()) {
1858         // We yielded to a foreground GC, nothing more to be
1859         // done this round.
1860         assert(_foregroundGCShouldWait == false, "We set it to false in "
1861                "waitForForegroundGC()");
1862         if (TraceCMSState) {
1863           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1864             " exiting collection CMS state %d",
1865             p2i(Thread::current()), _collectorState);
1866         }
1867         return;
1868       } else {
1869         // The background collector can run but check to see if the
1870         // foreground collector has done a collection while the
1871         // background collector was waiting to get the CGC_lock
1872         // above.  If yes, break so that _foregroundGCShouldWait
1873         // is cleared before returning.
1874         if (_collectorState == Idling) {
1875           break;
1876         }
1877       }
1878     }
1879 
1880     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1881       "should be waiting");
1882 
1883     switch (_collectorState) {
1884       case InitialMarking:
1885         {
1886           ReleaseForegroundGC x(this);
1887           stats().record_cms_begin();
1888           VM_CMS_Initial_Mark initial_mark_op(this);
1889           VMThread::execute(&initial_mark_op);
1890         }
1891         // The collector state may be any legal state at this point
1892         // since the background collector may have yielded to the
1893         // foreground collector.
1894         break;
1895       case Marking:
1896         // initial marking in checkpointRootsInitialWork has been completed
1897         if (markFromRoots()) { // we were successful
1898           assert(_collectorState == Precleaning, "Collector state should "
1899             "have changed");
1900         } else {
1901           assert(_foregroundGCIsActive, "Internal state inconsistency");
1902         }
1903         break;
1904       case Precleaning:
1905         // marking from roots in markFromRoots has been completed
1906         preclean();
1907         assert(_collectorState == AbortablePreclean ||
1908                _collectorState == FinalMarking,
1909                "Collector state should have changed");
1910         break;
1911       case AbortablePreclean:
1912         abortable_preclean();
1913         assert(_collectorState == FinalMarking, "Collector state should "
1914           "have changed");
1915         break;
1916       case FinalMarking:
1917         {
1918           ReleaseForegroundGC x(this);
1919 
1920           VM_CMS_Final_Remark final_remark_op(this);
1921           VMThread::execute(&final_remark_op);
1922         }
1923         assert(_foregroundGCShouldWait, "block post-condition");
1924         break;
1925       case Sweeping:
1926         // final marking in checkpointRootsFinal has been completed
1927         sweep();
1928         assert(_collectorState == Resizing, "Collector state change "
1929           "to Resizing must be done under the free_list_lock");
1930 
1931       case Resizing: {
1932         // Sweeping has been completed...
1933         // At this point the background collection has completed.
1934         // Don't move the call to compute_new_size() down
1935         // into code that might be executed if the background
1936         // collection was preempted.
1937         {
1938           ReleaseForegroundGC x(this);   // unblock FG collection
1939           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1940           CMSTokenSync        z(true);   // not strictly needed.
1941           if (_collectorState == Resizing) {
1942             compute_new_size();
1943             save_heap_summary();
1944             _collectorState = Resetting;
1945           } else {
1946             assert(_collectorState == Idling, "The state should only change"
1947                    " because the foreground collector has finished the collection");
1948           }
1949         }
1950         break;
1951       }
1952       case Resetting:
1953         // CMS heap resizing has been completed
1954         reset(true);
1955         assert(_collectorState == Idling, "Collector state should "
1956           "have changed");
1957 
1958         MetaspaceGC::set_should_concurrent_collect(false);
1959 
1960         stats().record_cms_end();
1961         // Don't move the concurrent_phases_end() and compute_new_size()
1962         // calls to here because a preempted background collection
1963         // has it's state set to "Resetting".
1964         break;
1965       case Idling:
1966       default:
1967         ShouldNotReachHere();
1968         break;
1969     }
1970     if (TraceCMSState) {
1971       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1972         p2i(Thread::current()), _collectorState);
1973     }
1974     assert(_foregroundGCShouldWait, "block post-condition");
1975   }
1976 
1977   // Should this be in gc_epilogue?
1978   collector_policy()->counters()->update_counters();
1979 
1980   {
1981     // Clear _foregroundGCShouldWait and, in the event that the
1982     // foreground collector is waiting, notify it, before
1983     // returning.
1984     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1985     _foregroundGCShouldWait = false;
1986     if (_foregroundGCIsActive) {
1987       CGC_lock->notify();
1988     }
1989     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1990            "Possible deadlock");
1991   }
1992   if (TraceCMSState) {
1993     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1994       " exiting collection CMS state %d",
1995       p2i(Thread::current()), _collectorState);
1996   }
1997   if (PrintGC && Verbose) {
1998     _cmsGen->print_heap_change(prev_used);
1999   }
2000 }
2001 
2002 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2003   _cms_start_registered = true;
2004   _gc_timer_cm->register_gc_start();
2005   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2006 }
2007 
2008 void CMSCollector::register_gc_end() {
2009   if (_cms_start_registered) {
2010     report_heap_summary(GCWhen::AfterGC);
2011 
2012     _gc_timer_cm->register_gc_end();
2013     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2014     _cms_start_registered = false;
2015   }
2016 }
2017 
2018 void CMSCollector::save_heap_summary() {
2019   GenCollectedHeap* gch = GenCollectedHeap::heap();
2020   _last_heap_summary = gch->create_heap_summary();
2021   _last_metaspace_summary = gch->create_metaspace_summary();
2022 }
2023 
2024 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2025   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2026   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2027 }
2028 
2029 bool CMSCollector::waitForForegroundGC() {
2030   bool res = false;
2031   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2032          "CMS thread should have CMS token");
2033   // Block the foreground collector until the
2034   // background collectors decides whether to
2035   // yield.
2036   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2037   _foregroundGCShouldWait = true;
2038   if (_foregroundGCIsActive) {
2039     // The background collector yields to the
2040     // foreground collector and returns a value
2041     // indicating that it has yielded.  The foreground
2042     // collector can proceed.
2043     res = true;
2044     _foregroundGCShouldWait = false;
2045     ConcurrentMarkSweepThread::clear_CMS_flag(
2046       ConcurrentMarkSweepThread::CMS_cms_has_token);
2047     ConcurrentMarkSweepThread::set_CMS_flag(
2048       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2049     // Get a possibly blocked foreground thread going
2050     CGC_lock->notify();
2051     if (TraceCMSState) {
2052       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2053         p2i(Thread::current()), _collectorState);
2054     }
2055     while (_foregroundGCIsActive) {
2056       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2057     }
2058     ConcurrentMarkSweepThread::set_CMS_flag(
2059       ConcurrentMarkSweepThread::CMS_cms_has_token);
2060     ConcurrentMarkSweepThread::clear_CMS_flag(
2061       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2062   }
2063   if (TraceCMSState) {
2064     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2065       p2i(Thread::current()), _collectorState);
2066   }
2067   return res;
2068 }
2069 
2070 // Because of the need to lock the free lists and other structures in
2071 // the collector, common to all the generations that the collector is
2072 // collecting, we need the gc_prologues of individual CMS generations
2073 // delegate to their collector. It may have been simpler had the
2074 // current infrastructure allowed one to call a prologue on a
2075 // collector. In the absence of that we have the generation's
2076 // prologue delegate to the collector, which delegates back
2077 // some "local" work to a worker method in the individual generations
2078 // that it's responsible for collecting, while itself doing any
2079 // work common to all generations it's responsible for. A similar
2080 // comment applies to the  gc_epilogue()'s.
2081 // The role of the variable _between_prologue_and_epilogue is to
2082 // enforce the invocation protocol.
2083 void CMSCollector::gc_prologue(bool full) {
2084   // Call gc_prologue_work() for the CMSGen
2085   // we are responsible for.
2086 
2087   // The following locking discipline assumes that we are only called
2088   // when the world is stopped.
2089   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2090 
2091   // The CMSCollector prologue must call the gc_prologues for the
2092   // "generations" that it's responsible
2093   // for.
2094 
2095   assert(   Thread::current()->is_VM_thread()
2096          || (   CMSScavengeBeforeRemark
2097              && Thread::current()->is_ConcurrentGC_thread()),
2098          "Incorrect thread type for prologue execution");
2099 
2100   if (_between_prologue_and_epilogue) {
2101     // We have already been invoked; this is a gc_prologue delegation
2102     // from yet another CMS generation that we are responsible for, just
2103     // ignore it since all relevant work has already been done.
2104     return;
2105   }
2106 
2107   // set a bit saying prologue has been called; cleared in epilogue
2108   _between_prologue_and_epilogue = true;
2109   // Claim locks for common data structures, then call gc_prologue_work()
2110   // for each CMSGen.
2111 
2112   getFreelistLocks();   // gets free list locks on constituent spaces
2113   bitMapLock()->lock_without_safepoint_check();
2114 
2115   // Should call gc_prologue_work() for all cms gens we are responsible for
2116   bool duringMarking =    _collectorState >= Marking
2117                          && _collectorState < Sweeping;
2118 
2119   // The young collections clear the modified oops state, which tells if
2120   // there are any modified oops in the class. The remark phase also needs
2121   // that information. Tell the young collection to save the union of all
2122   // modified klasses.
2123   if (duringMarking) {
2124     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2125   }
2126 
2127   bool registerClosure = duringMarking;
2128 
2129   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2130 
2131   if (!full) {
2132     stats().record_gc0_begin();
2133   }
2134 }
2135 
2136 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2137 
2138   _capacity_at_prologue = capacity();
2139   _used_at_prologue = used();
2140 
2141   // Delegate to CMScollector which knows how to coordinate between
2142   // this and any other CMS generations that it is responsible for
2143   // collecting.
2144   collector()->gc_prologue(full);
2145 }
2146 
2147 // This is a "private" interface for use by this generation's CMSCollector.
2148 // Not to be called directly by any other entity (for instance,
2149 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2150 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2151   bool registerClosure, ModUnionClosure* modUnionClosure) {
2152   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2153   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2154     "Should be NULL");
2155   if (registerClosure) {
2156     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2157   }
2158   cmsSpace()->gc_prologue();
2159   // Clear stat counters
2160   NOT_PRODUCT(
2161     assert(_numObjectsPromoted == 0, "check");
2162     assert(_numWordsPromoted   == 0, "check");
2163     if (Verbose && PrintGC) {
2164       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2165                           SIZE_FORMAT " bytes concurrently",
2166       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2167     }
2168     _numObjectsAllocated = 0;
2169     _numWordsAllocated   = 0;
2170   )
2171 }
2172 
2173 void CMSCollector::gc_epilogue(bool full) {
2174   // The following locking discipline assumes that we are only called
2175   // when the world is stopped.
2176   assert(SafepointSynchronize::is_at_safepoint(),
2177          "world is stopped assumption");
2178 
2179   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2180   // if linear allocation blocks need to be appropriately marked to allow the
2181   // the blocks to be parsable. We also check here whether we need to nudge the
2182   // CMS collector thread to start a new cycle (if it's not already active).
2183   assert(   Thread::current()->is_VM_thread()
2184          || (   CMSScavengeBeforeRemark
2185              && Thread::current()->is_ConcurrentGC_thread()),
2186          "Incorrect thread type for epilogue execution");
2187 
2188   if (!_between_prologue_and_epilogue) {
2189     // We have already been invoked; this is a gc_epilogue delegation
2190     // from yet another CMS generation that we are responsible for, just
2191     // ignore it since all relevant work has already been done.
2192     return;
2193   }
2194   assert(haveFreelistLocks(), "must have freelist locks");
2195   assert_lock_strong(bitMapLock());
2196 
2197   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2198 
2199   _cmsGen->gc_epilogue_work(full);
2200 
2201   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2202     // in case sampling was not already enabled, enable it
2203     _start_sampling = true;
2204   }
2205   // reset _eden_chunk_array so sampling starts afresh
2206   _eden_chunk_index = 0;
2207 
2208   size_t cms_used   = _cmsGen->cmsSpace()->used();
2209 
2210   // update performance counters - this uses a special version of
2211   // update_counters() that allows the utilization to be passed as a
2212   // parameter, avoiding multiple calls to used().
2213   //
2214   _cmsGen->update_counters(cms_used);
2215 
2216   bitMapLock()->unlock();
2217   releaseFreelistLocks();
2218 
2219   if (!CleanChunkPoolAsync) {
2220     Chunk::clean_chunk_pool();
2221   }
2222 
2223   set_did_compact(false);
2224   _between_prologue_and_epilogue = false;  // ready for next cycle
2225 }
2226 
2227 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2228   collector()->gc_epilogue(full);
2229 
2230   // Also reset promotion tracking in par gc thread states.
2231   for (uint i = 0; i < ParallelGCThreads; i++) {
2232     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2233   }
2234 }
2235 
2236 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2237   assert(!incremental_collection_failed(), "Should have been cleared");
2238   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2239   cmsSpace()->gc_epilogue();
2240     // Print stat counters
2241   NOT_PRODUCT(
2242     assert(_numObjectsAllocated == 0, "check");
2243     assert(_numWordsAllocated == 0, "check");
2244     if (Verbose && PrintGC) {
2245       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2246                           SIZE_FORMAT " bytes",
2247                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2248     }
2249     _numObjectsPromoted = 0;
2250     _numWordsPromoted   = 0;
2251   )
2252 
2253   if (PrintGC && Verbose) {
2254     // Call down the chain in contiguous_available needs the freelistLock
2255     // so print this out before releasing the freeListLock.
2256     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2257                         contiguous_available());
2258   }
2259 }
2260 
2261 #ifndef PRODUCT
2262 bool CMSCollector::have_cms_token() {
2263   Thread* thr = Thread::current();
2264   if (thr->is_VM_thread()) {
2265     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2266   } else if (thr->is_ConcurrentGC_thread()) {
2267     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2268   } else if (thr->is_GC_task_thread()) {
2269     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2270            ParGCRareEvent_lock->owned_by_self();
2271   }
2272   return false;
2273 }
2274 #endif
2275 
2276 // Check reachability of the given heap address in CMS generation,
2277 // treating all other generations as roots.
2278 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2279   // We could "guarantee" below, rather than assert, but I'll
2280   // leave these as "asserts" so that an adventurous debugger
2281   // could try this in the product build provided some subset of
2282   // the conditions were met, provided they were interested in the
2283   // results and knew that the computation below wouldn't interfere
2284   // with other concurrent computations mutating the structures
2285   // being read or written.
2286   assert(SafepointSynchronize::is_at_safepoint(),
2287          "Else mutations in object graph will make answer suspect");
2288   assert(have_cms_token(), "Should hold cms token");
2289   assert(haveFreelistLocks(), "must hold free list locks");
2290   assert_lock_strong(bitMapLock());
2291 
2292   // Clear the marking bit map array before starting, but, just
2293   // for kicks, first report if the given address is already marked
2294   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2295                 _markBitMap.isMarked(addr) ? "" : " not");
2296 
2297   if (verify_after_remark()) {
2298     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2299     bool result = verification_mark_bm()->isMarked(addr);
2300     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2301                            result ? "IS" : "is NOT");
2302     return result;
2303   } else {
2304     gclog_or_tty->print_cr("Could not compute result");
2305     return false;
2306   }
2307 }
2308 
2309 
2310 void
2311 CMSCollector::print_on_error(outputStream* st) {
2312   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2313   if (collector != NULL) {
2314     CMSBitMap* bitmap = &collector->_markBitMap;
2315     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2316     bitmap->print_on_error(st, " Bits: ");
2317 
2318     st->cr();
2319 
2320     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2321     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2322     mut_bitmap->print_on_error(st, " Bits: ");
2323   }
2324 }
2325 
2326 ////////////////////////////////////////////////////////
2327 // CMS Verification Support
2328 ////////////////////////////////////////////////////////
2329 // Following the remark phase, the following invariant
2330 // should hold -- each object in the CMS heap which is
2331 // marked in markBitMap() should be marked in the verification_mark_bm().
2332 
2333 class VerifyMarkedClosure: public BitMapClosure {
2334   CMSBitMap* _marks;
2335   bool       _failed;
2336 
2337  public:
2338   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2339 
2340   bool do_bit(size_t offset) {
2341     HeapWord* addr = _marks->offsetToHeapWord(offset);
2342     if (!_marks->isMarked(addr)) {
2343       oop(addr)->print_on(gclog_or_tty);
2344       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2345       _failed = true;
2346     }
2347     return true;
2348   }
2349 
2350   bool failed() { return _failed; }
2351 };
2352 
2353 bool CMSCollector::verify_after_remark(bool silent) {
2354   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2355   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2356   static bool init = false;
2357 
2358   assert(SafepointSynchronize::is_at_safepoint(),
2359          "Else mutations in object graph will make answer suspect");
2360   assert(have_cms_token(),
2361          "Else there may be mutual interference in use of "
2362          " verification data structures");
2363   assert(_collectorState > Marking && _collectorState <= Sweeping,
2364          "Else marking info checked here may be obsolete");
2365   assert(haveFreelistLocks(), "must hold free list locks");
2366   assert_lock_strong(bitMapLock());
2367 
2368 
2369   // Allocate marking bit map if not already allocated
2370   if (!init) { // first time
2371     if (!verification_mark_bm()->allocate(_span)) {
2372       return false;
2373     }
2374     init = true;
2375   }
2376 
2377   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2378 
2379   // Turn off refs discovery -- so we will be tracing through refs.
2380   // This is as intended, because by this time
2381   // GC must already have cleared any refs that need to be cleared,
2382   // and traced those that need to be marked; moreover,
2383   // the marking done here is not going to interfere in any
2384   // way with the marking information used by GC.
2385   NoRefDiscovery no_discovery(ref_processor());
2386 
2387   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2388 
2389   // Clear any marks from a previous round
2390   verification_mark_bm()->clear_all();
2391   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2392   verify_work_stacks_empty();
2393 
2394   GenCollectedHeap* gch = GenCollectedHeap::heap();
2395   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2396   // Update the saved marks which may affect the root scans.
2397   gch->save_marks();
2398 
2399   if (CMSRemarkVerifyVariant == 1) {
2400     // In this first variant of verification, we complete
2401     // all marking, then check if the new marks-vector is
2402     // a subset of the CMS marks-vector.
2403     verify_after_remark_work_1();
2404   } else if (CMSRemarkVerifyVariant == 2) {
2405     // In this second variant of verification, we flag an error
2406     // (i.e. an object reachable in the new marks-vector not reachable
2407     // in the CMS marks-vector) immediately, also indicating the
2408     // identify of an object (A) that references the unmarked object (B) --
2409     // presumably, a mutation to A failed to be picked up by preclean/remark?
2410     verify_after_remark_work_2();
2411   } else {
2412     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2413             CMSRemarkVerifyVariant);
2414   }
2415   if (!silent) gclog_or_tty->print(" done] ");
2416   return true;
2417 }
2418 
2419 void CMSCollector::verify_after_remark_work_1() {
2420   ResourceMark rm;
2421   HandleMark  hm;
2422   GenCollectedHeap* gch = GenCollectedHeap::heap();
2423 
2424   // Get a clear set of claim bits for the roots processing to work with.
2425   ClassLoaderDataGraph::clear_claimed_marks();
2426 
2427   // Mark from roots one level into CMS
2428   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2429   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2430 
2431   gch->gen_process_roots(_cmsGen->level(),
2432                          true,   // younger gens are roots
2433                          true,   // activate StrongRootsScope
2434                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2435                          should_unload_classes(),
2436                          &notOlder,
2437                          NULL,
2438                          NULL);  // SSS: Provide correct closure
2439 
2440   // Now mark from the roots
2441   MarkFromRootsClosure markFromRootsClosure(this, _span,
2442     verification_mark_bm(), verification_mark_stack(),
2443     false /* don't yield */, true /* verifying */);
2444   assert(_restart_addr == NULL, "Expected pre-condition");
2445   verification_mark_bm()->iterate(&markFromRootsClosure);
2446   while (_restart_addr != NULL) {
2447     // Deal with stack overflow: by restarting at the indicated
2448     // address.
2449     HeapWord* ra = _restart_addr;
2450     markFromRootsClosure.reset(ra);
2451     _restart_addr = NULL;
2452     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2453   }
2454   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2455   verify_work_stacks_empty();
2456 
2457   // Marking completed -- now verify that each bit marked in
2458   // verification_mark_bm() is also marked in markBitMap(); flag all
2459   // errors by printing corresponding objects.
2460   VerifyMarkedClosure vcl(markBitMap());
2461   verification_mark_bm()->iterate(&vcl);
2462   if (vcl.failed()) {
2463     gclog_or_tty->print("Verification failed");
2464     gch->print_on(gclog_or_tty);
2465     fatal("CMS: failed marking verification after remark");
2466   }
2467 }
2468 
2469 class VerifyKlassOopsKlassClosure : public KlassClosure {
2470   class VerifyKlassOopsClosure : public OopClosure {
2471     CMSBitMap* _bitmap;
2472    public:
2473     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2474     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2475     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2476   } _oop_closure;
2477  public:
2478   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2479   void do_klass(Klass* k) {
2480     k->oops_do(&_oop_closure);
2481   }
2482 };
2483 
2484 void CMSCollector::verify_after_remark_work_2() {
2485   ResourceMark rm;
2486   HandleMark  hm;
2487   GenCollectedHeap* gch = GenCollectedHeap::heap();
2488 
2489   // Get a clear set of claim bits for the roots processing to work with.
2490   ClassLoaderDataGraph::clear_claimed_marks();
2491 
2492   // Mark from roots one level into CMS
2493   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2494                                      markBitMap());
2495   CLDToOopClosure cld_closure(&notOlder, true);
2496 
2497   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2498 
2499   gch->gen_process_roots(_cmsGen->level(),
2500                          true,   // younger gens are roots
2501                          true,   // activate StrongRootsScope
2502                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2503                          should_unload_classes(),
2504                          &notOlder,
2505                          NULL,
2506                          &cld_closure);
2507 
2508   // Now mark from the roots
2509   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2510     verification_mark_bm(), markBitMap(), verification_mark_stack());
2511   assert(_restart_addr == NULL, "Expected pre-condition");
2512   verification_mark_bm()->iterate(&markFromRootsClosure);
2513   while (_restart_addr != NULL) {
2514     // Deal with stack overflow: by restarting at the indicated
2515     // address.
2516     HeapWord* ra = _restart_addr;
2517     markFromRootsClosure.reset(ra);
2518     _restart_addr = NULL;
2519     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2520   }
2521   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2522   verify_work_stacks_empty();
2523 
2524   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2525   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2526 
2527   // Marking completed -- now verify that each bit marked in
2528   // verification_mark_bm() is also marked in markBitMap(); flag all
2529   // errors by printing corresponding objects.
2530   VerifyMarkedClosure vcl(markBitMap());
2531   verification_mark_bm()->iterate(&vcl);
2532   assert(!vcl.failed(), "Else verification above should not have succeeded");
2533 }
2534 
2535 void ConcurrentMarkSweepGeneration::save_marks() {
2536   // delegate to CMS space
2537   cmsSpace()->save_marks();
2538   for (uint i = 0; i < ParallelGCThreads; i++) {
2539     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2540   }
2541 }
2542 
2543 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2544   return cmsSpace()->no_allocs_since_save_marks();
2545 }
2546 
2547 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2548                                                                 \
2549 void ConcurrentMarkSweepGeneration::                            \
2550 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2551   cl->set_generation(this);                                     \
2552   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2553   cl->reset_generation();                                       \
2554   save_marks();                                                 \
2555 }
2556 
2557 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2558 
2559 void
2560 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2561   if (freelistLock()->owned_by_self()) {
2562     Generation::oop_iterate(cl);
2563   } else {
2564     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2565     Generation::oop_iterate(cl);
2566   }
2567 }
2568 
2569 void
2570 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2571   if (freelistLock()->owned_by_self()) {
2572     Generation::object_iterate(cl);
2573   } else {
2574     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2575     Generation::object_iterate(cl);
2576   }
2577 }
2578 
2579 void
2580 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2581   if (freelistLock()->owned_by_self()) {
2582     Generation::safe_object_iterate(cl);
2583   } else {
2584     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2585     Generation::safe_object_iterate(cl);
2586   }
2587 }
2588 
2589 void
2590 ConcurrentMarkSweepGeneration::post_compact() {
2591 }
2592 
2593 void
2594 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2595   // Fix the linear allocation blocks to look like free blocks.
2596 
2597   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2598   // are not called when the heap is verified during universe initialization and
2599   // at vm shutdown.
2600   if (freelistLock()->owned_by_self()) {
2601     cmsSpace()->prepare_for_verify();
2602   } else {
2603     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2604     cmsSpace()->prepare_for_verify();
2605   }
2606 }
2607 
2608 void
2609 ConcurrentMarkSweepGeneration::verify() {
2610   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2611   // are not called when the heap is verified during universe initialization and
2612   // at vm shutdown.
2613   if (freelistLock()->owned_by_self()) {
2614     cmsSpace()->verify();
2615   } else {
2616     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2617     cmsSpace()->verify();
2618   }
2619 }
2620 
2621 void CMSCollector::verify() {
2622   _cmsGen->verify();
2623 }
2624 
2625 #ifndef PRODUCT
2626 bool CMSCollector::overflow_list_is_empty() const {
2627   assert(_num_par_pushes >= 0, "Inconsistency");
2628   if (_overflow_list == NULL) {
2629     assert(_num_par_pushes == 0, "Inconsistency");
2630   }
2631   return _overflow_list == NULL;
2632 }
2633 
2634 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2635 // merely consolidate assertion checks that appear to occur together frequently.
2636 void CMSCollector::verify_work_stacks_empty() const {
2637   assert(_markStack.isEmpty(), "Marking stack should be empty");
2638   assert(overflow_list_is_empty(), "Overflow list should be empty");
2639 }
2640 
2641 void CMSCollector::verify_overflow_empty() const {
2642   assert(overflow_list_is_empty(), "Overflow list should be empty");
2643   assert(no_preserved_marks(), "No preserved marks");
2644 }
2645 #endif // PRODUCT
2646 
2647 // Decide if we want to enable class unloading as part of the
2648 // ensuing concurrent GC cycle. We will collect and
2649 // unload classes if it's the case that:
2650 // (1) an explicit gc request has been made and the flag
2651 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2652 // (2) (a) class unloading is enabled at the command line, and
2653 //     (b) old gen is getting really full
2654 // NOTE: Provided there is no change in the state of the heap between
2655 // calls to this method, it should have idempotent results. Moreover,
2656 // its results should be monotonically increasing (i.e. going from 0 to 1,
2657 // but not 1 to 0) between successive calls between which the heap was
2658 // not collected. For the implementation below, it must thus rely on
2659 // the property that concurrent_cycles_since_last_unload()
2660 // will not decrease unless a collection cycle happened and that
2661 // _cmsGen->is_too_full() are
2662 // themselves also monotonic in that sense. See check_monotonicity()
2663 // below.
2664 void CMSCollector::update_should_unload_classes() {
2665   _should_unload_classes = false;
2666   // Condition 1 above
2667   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2668     _should_unload_classes = true;
2669   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2670     // Disjuncts 2.b.(i,ii,iii) above
2671     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2672                               CMSClassUnloadingMaxInterval)
2673                            || _cmsGen->is_too_full();
2674   }
2675 }
2676 
2677 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2678   bool res = should_concurrent_collect();
2679   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2680   return res;
2681 }
2682 
2683 void CMSCollector::setup_cms_unloading_and_verification_state() {
2684   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2685                              || VerifyBeforeExit;
2686   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2687 
2688   // We set the proper root for this CMS cycle here.
2689   if (should_unload_classes()) {   // Should unload classes this cycle
2690     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2691     set_verifying(should_verify);    // Set verification state for this cycle
2692     return;                            // Nothing else needs to be done at this time
2693   }
2694 
2695   // Not unloading classes this cycle
2696   assert(!should_unload_classes(), "Inconsistency!");
2697 
2698   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2699     // Include symbols, strings and code cache elements to prevent their resurrection.
2700     add_root_scanning_option(rso);
2701     set_verifying(true);
2702   } else if (verifying() && !should_verify) {
2703     // We were verifying, but some verification flags got disabled.
2704     set_verifying(false);
2705     // Exclude symbols, strings and code cache elements from root scanning to
2706     // reduce IM and RM pauses.
2707     remove_root_scanning_option(rso);
2708   }
2709 }
2710 
2711 
2712 #ifndef PRODUCT
2713 HeapWord* CMSCollector::block_start(const void* p) const {
2714   const HeapWord* addr = (HeapWord*)p;
2715   if (_span.contains(p)) {
2716     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2717       return _cmsGen->cmsSpace()->block_start(p);
2718     }
2719   }
2720   return NULL;
2721 }
2722 #endif
2723 
2724 HeapWord*
2725 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2726                                                    bool   tlab,
2727                                                    bool   parallel) {
2728   CMSSynchronousYieldRequest yr;
2729   assert(!tlab, "Can't deal with TLAB allocation");
2730   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2731   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2732   if (GCExpandToAllocateDelayMillis > 0) {
2733     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2734   }
2735   return have_lock_and_allocate(word_size, tlab);
2736 }
2737 
2738 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2739     size_t bytes,
2740     size_t expand_bytes,
2741     CMSExpansionCause::Cause cause)
2742 {
2743 
2744   bool success = expand(bytes, expand_bytes);
2745 
2746   // remember why we expanded; this information is used
2747   // by shouldConcurrentCollect() when making decisions on whether to start
2748   // a new CMS cycle.
2749   if (success) {
2750     set_expansion_cause(cause);
2751     if (PrintGCDetails && Verbose) {
2752       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2753         CMSExpansionCause::to_string(cause));
2754     }
2755   }
2756 }
2757 
2758 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2759   HeapWord* res = NULL;
2760   MutexLocker x(ParGCRareEvent_lock);
2761   while (true) {
2762     // Expansion by some other thread might make alloc OK now:
2763     res = ps->lab.alloc(word_sz);
2764     if (res != NULL) return res;
2765     // If there's not enough expansion space available, give up.
2766     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2767       return NULL;
2768     }
2769     // Otherwise, we try expansion.
2770     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2771     // Now go around the loop and try alloc again;
2772     // A competing par_promote might beat us to the expansion space,
2773     // so we may go around the loop again if promotion fails again.
2774     if (GCExpandToAllocateDelayMillis > 0) {
2775       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2776     }
2777   }
2778 }
2779 
2780 
2781 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2782   PromotionInfo* promo) {
2783   MutexLocker x(ParGCRareEvent_lock);
2784   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2785   while (true) {
2786     // Expansion by some other thread might make alloc OK now:
2787     if (promo->ensure_spooling_space()) {
2788       assert(promo->has_spooling_space(),
2789              "Post-condition of successful ensure_spooling_space()");
2790       return true;
2791     }
2792     // If there's not enough expansion space available, give up.
2793     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2794       return false;
2795     }
2796     // Otherwise, we try expansion.
2797     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2798     // Now go around the loop and try alloc again;
2799     // A competing allocation might beat us to the expansion space,
2800     // so we may go around the loop again if allocation fails again.
2801     if (GCExpandToAllocateDelayMillis > 0) {
2802       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2803     }
2804   }
2805 }
2806 
2807 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2808   // Only shrink if a compaction was done so that all the free space
2809   // in the generation is in a contiguous block at the end.
2810   if (did_compact()) {
2811     CardGeneration::shrink(bytes);
2812   }
2813 }
2814 
2815 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2816   assert_locked_or_safepoint(Heap_lock);
2817 }
2818 
2819 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2820   assert_locked_or_safepoint(Heap_lock);
2821   assert_lock_strong(freelistLock());
2822   if (PrintGCDetails && Verbose) {
2823     warning("Shrinking of CMS not yet implemented");
2824   }
2825   return;
2826 }
2827 
2828 
2829 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2830 // phases.
2831 class CMSPhaseAccounting: public StackObj {
2832  public:
2833   CMSPhaseAccounting(CMSCollector *collector,
2834                      const char *phase,
2835                      const GCId gc_id,
2836                      bool print_cr = true);
2837   ~CMSPhaseAccounting();
2838 
2839  private:
2840   CMSCollector *_collector;
2841   const char *_phase;
2842   elapsedTimer _wallclock;
2843   bool _print_cr;
2844   const GCId _gc_id;
2845 
2846  public:
2847   // Not MT-safe; so do not pass around these StackObj's
2848   // where they may be accessed by other threads.
2849   jlong wallclock_millis() {
2850     assert(_wallclock.is_active(), "Wall clock should not stop");
2851     _wallclock.stop();  // to record time
2852     jlong ret = _wallclock.milliseconds();
2853     _wallclock.start(); // restart
2854     return ret;
2855   }
2856 };
2857 
2858 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2859                                        const char *phase,
2860                                        const GCId gc_id,
2861                                        bool print_cr) :
2862   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2863 
2864   if (PrintCMSStatistics != 0) {
2865     _collector->resetYields();
2866   }
2867   if (PrintGCDetails) {
2868     gclog_or_tty->gclog_stamp(_gc_id);
2869     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2870       _collector->cmsGen()->short_name(), _phase);
2871   }
2872   _collector->resetTimer();
2873   _wallclock.start();
2874   _collector->startTimer();
2875 }
2876 
2877 CMSPhaseAccounting::~CMSPhaseAccounting() {
2878   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2879   _collector->stopTimer();
2880   _wallclock.stop();
2881   if (PrintGCDetails) {
2882     gclog_or_tty->gclog_stamp(_gc_id);
2883     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2884                  _collector->cmsGen()->short_name(),
2885                  _phase, _collector->timerValue(), _wallclock.seconds());
2886     if (_print_cr) {
2887       gclog_or_tty->cr();
2888     }
2889     if (PrintCMSStatistics != 0) {
2890       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2891                     _collector->yields());
2892     }
2893   }
2894 }
2895 
2896 // CMS work
2897 
2898 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2899 class CMSParMarkTask : public AbstractGangTask {
2900  protected:
2901   CMSCollector*     _collector;
2902   uint              _n_workers;
2903   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2904       AbstractGangTask(name),
2905       _collector(collector),
2906       _n_workers(n_workers) {}
2907   // Work method in support of parallel rescan ... of young gen spaces
2908   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2909                              ContiguousSpace* space,
2910                              HeapWord** chunk_array, size_t chunk_top);
2911   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2912 };
2913 
2914 // Parallel initial mark task
2915 class CMSParInitialMarkTask: public CMSParMarkTask {
2916  public:
2917   CMSParInitialMarkTask(CMSCollector* collector, uint n_workers) :
2918       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
2919                      collector, n_workers) {}
2920   void work(uint worker_id);
2921 };
2922 
2923 // Checkpoint the roots into this generation from outside
2924 // this generation. [Note this initial checkpoint need only
2925 // be approximate -- we'll do a catch up phase subsequently.]
2926 void CMSCollector::checkpointRootsInitial() {
2927   assert(_collectorState == InitialMarking, "Wrong collector state");
2928   check_correct_thread_executing();
2929   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2930 
2931   save_heap_summary();
2932   report_heap_summary(GCWhen::BeforeGC);
2933 
2934   ReferenceProcessor* rp = ref_processor();
2935   assert(_restart_addr == NULL, "Control point invariant");
2936   {
2937     // acquire locks for subsequent manipulations
2938     MutexLockerEx x(bitMapLock(),
2939                     Mutex::_no_safepoint_check_flag);
2940     checkpointRootsInitialWork();
2941     // enable ("weak") refs discovery
2942     rp->enable_discovery();
2943     _collectorState = Marking;
2944   }
2945 }
2946 
2947 void CMSCollector::checkpointRootsInitialWork() {
2948   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2949   assert(_collectorState == InitialMarking, "just checking");
2950 
2951   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2952   // precede our marking with a collection of all
2953   // younger generations to keep floating garbage to a minimum.
2954   // XXX: we won't do this for now -- it's an optimization to be done later.
2955 
2956   // already have locks
2957   assert_lock_strong(bitMapLock());
2958   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2959 
2960   // Setup the verification and class unloading state for this
2961   // CMS collection cycle.
2962   setup_cms_unloading_and_verification_state();
2963 
2964   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2965     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2966 
2967   // Reset all the PLAB chunk arrays if necessary.
2968   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2969     reset_survivor_plab_arrays();
2970   }
2971 
2972   ResourceMark rm;
2973   HandleMark  hm;
2974 
2975   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2976   GenCollectedHeap* gch = GenCollectedHeap::heap();
2977 
2978   verify_work_stacks_empty();
2979   verify_overflow_empty();
2980 
2981   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2982   // Update the saved marks which may affect the root scans.
2983   gch->save_marks();
2984 
2985   // weak reference processing has not started yet.
2986   ref_processor()->set_enqueuing_is_done(false);
2987 
2988   // Need to remember all newly created CLDs,
2989   // so that we can guarantee that the remark finds them.
2990   ClassLoaderDataGraph::remember_new_clds(true);
2991 
2992   // Whenever a CLD is found, it will be claimed before proceeding to mark
2993   // the klasses. The claimed marks need to be cleared before marking starts.
2994   ClassLoaderDataGraph::clear_claimed_marks();
2995 
2996   if (CMSPrintEdenSurvivorChunks) {
2997     print_eden_and_survivor_chunk_arrays();
2998   }
2999 
3000   {
3001     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3002     if (CMSParallelInitialMarkEnabled) {
3003       // The parallel version.
3004       FlexibleWorkGang* workers = gch->workers();
3005       assert(workers != NULL, "Need parallel worker threads.");
3006       uint n_workers = workers->active_workers();
3007       CMSParInitialMarkTask tsk(this, n_workers);
3008       gch->set_par_threads(n_workers);
3009       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3010       if (n_workers > 1) {
3011         StrongRootsScope srs;
3012         workers->run_task(&tsk);
3013       } else {
3014         StrongRootsScope srs;
3015         tsk.work(0);
3016       }
3017       gch->set_par_threads(0);
3018     } else {
3019       // The serial version.
3020       CLDToOopClosure cld_closure(&notOlder, true);
3021       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3022       gch->gen_process_roots(_cmsGen->level(),
3023                              true,   // younger gens are roots
3024                              true,   // activate StrongRootsScope
3025                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3026                              should_unload_classes(),
3027                              &notOlder,
3028                              NULL,
3029                              &cld_closure);
3030     }
3031   }
3032 
3033   // Clear mod-union table; it will be dirtied in the prologue of
3034   // CMS generation per each younger generation collection.
3035 
3036   assert(_modUnionTable.isAllClear(),
3037        "Was cleared in most recent final checkpoint phase"
3038        " or no bits are set in the gc_prologue before the start of the next "
3039        "subsequent marking phase.");
3040 
3041   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3042 
3043   // Save the end of the used_region of the constituent generations
3044   // to be used to limit the extent of sweep in each generation.
3045   save_sweep_limits();
3046   verify_overflow_empty();
3047 }
3048 
3049 bool CMSCollector::markFromRoots() {
3050   // we might be tempted to assert that:
3051   // assert(!SafepointSynchronize::is_at_safepoint(),
3052   //        "inconsistent argument?");
3053   // However that wouldn't be right, because it's possible that
3054   // a safepoint is indeed in progress as a younger generation
3055   // stop-the-world GC happens even as we mark in this generation.
3056   assert(_collectorState == Marking, "inconsistent state?");
3057   check_correct_thread_executing();
3058   verify_overflow_empty();
3059 
3060   // Weak ref discovery note: We may be discovering weak
3061   // refs in this generation concurrent (but interleaved) with
3062   // weak ref discovery by a younger generation collector.
3063 
3064   CMSTokenSyncWithLocks ts(true, bitMapLock());
3065   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3066   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3067   bool res = markFromRootsWork();
3068   if (res) {
3069     _collectorState = Precleaning;
3070   } else { // We failed and a foreground collection wants to take over
3071     assert(_foregroundGCIsActive, "internal state inconsistency");
3072     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3073     if (PrintGCDetails) {
3074       gclog_or_tty->print_cr("bailing out to foreground collection");
3075     }
3076   }
3077   verify_overflow_empty();
3078   return res;
3079 }
3080 
3081 bool CMSCollector::markFromRootsWork() {
3082   // iterate over marked bits in bit map, doing a full scan and mark
3083   // from these roots using the following algorithm:
3084   // . if oop is to the right of the current scan pointer,
3085   //   mark corresponding bit (we'll process it later)
3086   // . else (oop is to left of current scan pointer)
3087   //   push oop on marking stack
3088   // . drain the marking stack
3089 
3090   // Note that when we do a marking step we need to hold the
3091   // bit map lock -- recall that direct allocation (by mutators)
3092   // and promotion (by younger generation collectors) is also
3093   // marking the bit map. [the so-called allocate live policy.]
3094   // Because the implementation of bit map marking is not
3095   // robust wrt simultaneous marking of bits in the same word,
3096   // we need to make sure that there is no such interference
3097   // between concurrent such updates.
3098 
3099   // already have locks
3100   assert_lock_strong(bitMapLock());
3101 
3102   verify_work_stacks_empty();
3103   verify_overflow_empty();
3104   bool result = false;
3105   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3106     result = do_marking_mt();
3107   } else {
3108     result = do_marking_st();
3109   }
3110   return result;
3111 }
3112 
3113 // Forward decl
3114 class CMSConcMarkingTask;
3115 
3116 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3117   CMSCollector*       _collector;
3118   CMSConcMarkingTask* _task;
3119  public:
3120   virtual void yield();
3121 
3122   // "n_threads" is the number of threads to be terminated.
3123   // "queue_set" is a set of work queues of other threads.
3124   // "collector" is the CMS collector associated with this task terminator.
3125   // "yield" indicates whether we need the gang as a whole to yield.
3126   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3127     ParallelTaskTerminator(n_threads, queue_set),
3128     _collector(collector) { }
3129 
3130   void set_task(CMSConcMarkingTask* task) {
3131     _task = task;
3132   }
3133 };
3134 
3135 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3136   CMSConcMarkingTask* _task;
3137  public:
3138   bool should_exit_termination();
3139   void set_task(CMSConcMarkingTask* task) {
3140     _task = task;
3141   }
3142 };
3143 
3144 // MT Concurrent Marking Task
3145 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3146   CMSCollector* _collector;
3147   uint          _n_workers;       // requested/desired # workers
3148   bool          _result;
3149   CompactibleFreeListSpace*  _cms_space;
3150   char          _pad_front[64];   // padding to ...
3151   HeapWord*     _global_finger;   // ... avoid sharing cache line
3152   char          _pad_back[64];
3153   HeapWord*     _restart_addr;
3154 
3155   //  Exposed here for yielding support
3156   Mutex* const _bit_map_lock;
3157 
3158   // The per thread work queues, available here for stealing
3159   OopTaskQueueSet*  _task_queues;
3160 
3161   // Termination (and yielding) support
3162   CMSConcMarkingTerminator _term;
3163   CMSConcMarkingTerminatorTerminator _term_term;
3164 
3165  public:
3166   CMSConcMarkingTask(CMSCollector* collector,
3167                  CompactibleFreeListSpace* cms_space,
3168                  YieldingFlexibleWorkGang* workers,
3169                  OopTaskQueueSet* task_queues):
3170     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3171     _collector(collector),
3172     _cms_space(cms_space),
3173     _n_workers(0), _result(true),
3174     _task_queues(task_queues),
3175     _term(_n_workers, task_queues, _collector),
3176     _bit_map_lock(collector->bitMapLock())
3177   {
3178     _requested_size = _n_workers;
3179     _term.set_task(this);
3180     _term_term.set_task(this);
3181     _restart_addr = _global_finger = _cms_space->bottom();
3182   }
3183 
3184 
3185   OopTaskQueueSet* task_queues()  { return _task_queues; }
3186 
3187   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3188 
3189   HeapWord** global_finger_addr() { return &_global_finger; }
3190 
3191   CMSConcMarkingTerminator* terminator() { return &_term; }
3192 
3193   virtual void set_for_termination(uint active_workers) {
3194     terminator()->reset_for_reuse(active_workers);
3195   }
3196 
3197   void work(uint worker_id);
3198   bool should_yield() {
3199     return    ConcurrentMarkSweepThread::should_yield()
3200            && !_collector->foregroundGCIsActive();
3201   }
3202 
3203   virtual void coordinator_yield();  // stuff done by coordinator
3204   bool result() { return _result; }
3205 
3206   void reset(HeapWord* ra) {
3207     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3208     _restart_addr = _global_finger = ra;
3209     _term.reset_for_reuse();
3210   }
3211 
3212   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3213                                            OopTaskQueue* work_q);
3214 
3215  private:
3216   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3217   void do_work_steal(int i);
3218   void bump_global_finger(HeapWord* f);
3219 };
3220 
3221 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3222   assert(_task != NULL, "Error");
3223   return _task->yielding();
3224   // Note that we do not need the disjunct || _task->should_yield() above
3225   // because we want terminating threads to yield only if the task
3226   // is already in the midst of yielding, which happens only after at least one
3227   // thread has yielded.
3228 }
3229 
3230 void CMSConcMarkingTerminator::yield() {
3231   if (_task->should_yield()) {
3232     _task->yield();
3233   } else {
3234     ParallelTaskTerminator::yield();
3235   }
3236 }
3237 
3238 ////////////////////////////////////////////////////////////////
3239 // Concurrent Marking Algorithm Sketch
3240 ////////////////////////////////////////////////////////////////
3241 // Until all tasks exhausted (both spaces):
3242 // -- claim next available chunk
3243 // -- bump global finger via CAS
3244 // -- find first object that starts in this chunk
3245 //    and start scanning bitmap from that position
3246 // -- scan marked objects for oops
3247 // -- CAS-mark target, and if successful:
3248 //    . if target oop is above global finger (volatile read)
3249 //      nothing to do
3250 //    . if target oop is in chunk and above local finger
3251 //        then nothing to do
3252 //    . else push on work-queue
3253 // -- Deal with possible overflow issues:
3254 //    . local work-queue overflow causes stuff to be pushed on
3255 //      global (common) overflow queue
3256 //    . always first empty local work queue
3257 //    . then get a batch of oops from global work queue if any
3258 //    . then do work stealing
3259 // -- When all tasks claimed (both spaces)
3260 //    and local work queue empty,
3261 //    then in a loop do:
3262 //    . check global overflow stack; steal a batch of oops and trace
3263 //    . try to steal from other threads oif GOS is empty
3264 //    . if neither is available, offer termination
3265 // -- Terminate and return result
3266 //
3267 void CMSConcMarkingTask::work(uint worker_id) {
3268   elapsedTimer _timer;
3269   ResourceMark rm;
3270   HandleMark hm;
3271 
3272   DEBUG_ONLY(_collector->verify_overflow_empty();)
3273 
3274   // Before we begin work, our work queue should be empty
3275   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3276   // Scan the bitmap covering _cms_space, tracing through grey objects.
3277   _timer.start();
3278   do_scan_and_mark(worker_id, _cms_space);
3279   _timer.stop();
3280   if (PrintCMSStatistics != 0) {
3281     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3282       worker_id, _timer.seconds());
3283       // XXX: need xxx/xxx type of notation, two timers
3284   }
3285 
3286   // ... do work stealing
3287   _timer.reset();
3288   _timer.start();
3289   do_work_steal(worker_id);
3290   _timer.stop();
3291   if (PrintCMSStatistics != 0) {
3292     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3293       worker_id, _timer.seconds());
3294       // XXX: need xxx/xxx type of notation, two timers
3295   }
3296   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3297   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3298   // Note that under the current task protocol, the
3299   // following assertion is true even of the spaces
3300   // expanded since the completion of the concurrent
3301   // marking. XXX This will likely change under a strict
3302   // ABORT semantics.
3303   // After perm removal the comparison was changed to
3304   // greater than or equal to from strictly greater than.
3305   // Before perm removal the highest address sweep would
3306   // have been at the end of perm gen but now is at the
3307   // end of the tenured gen.
3308   assert(_global_finger >=  _cms_space->end(),
3309          "All tasks have been completed");
3310   DEBUG_ONLY(_collector->verify_overflow_empty();)
3311 }
3312 
3313 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3314   HeapWord* read = _global_finger;
3315   HeapWord* cur  = read;
3316   while (f > read) {
3317     cur = read;
3318     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3319     if (cur == read) {
3320       // our cas succeeded
3321       assert(_global_finger >= f, "protocol consistency");
3322       break;
3323     }
3324   }
3325 }
3326 
3327 // This is really inefficient, and should be redone by
3328 // using (not yet available) block-read and -write interfaces to the
3329 // stack and the work_queue. XXX FIX ME !!!
3330 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3331                                                       OopTaskQueue* work_q) {
3332   // Fast lock-free check
3333   if (ovflw_stk->length() == 0) {
3334     return false;
3335   }
3336   assert(work_q->size() == 0, "Shouldn't steal");
3337   MutexLockerEx ml(ovflw_stk->par_lock(),
3338                    Mutex::_no_safepoint_check_flag);
3339   // Grab up to 1/4 the size of the work queue
3340   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3341                     (size_t)ParGCDesiredObjsFromOverflowList);
3342   num = MIN2(num, ovflw_stk->length());
3343   for (int i = (int) num; i > 0; i--) {
3344     oop cur = ovflw_stk->pop();
3345     assert(cur != NULL, "Counted wrong?");
3346     work_q->push(cur);
3347   }
3348   return num > 0;
3349 }
3350 
3351 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3352   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3353   int n_tasks = pst->n_tasks();
3354   // We allow that there may be no tasks to do here because
3355   // we are restarting after a stack overflow.
3356   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3357   uint nth_task = 0;
3358 
3359   HeapWord* aligned_start = sp->bottom();
3360   if (sp->used_region().contains(_restart_addr)) {
3361     // Align down to a card boundary for the start of 0th task
3362     // for this space.
3363     aligned_start =
3364       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3365                                  CardTableModRefBS::card_size);
3366   }
3367 
3368   size_t chunk_size = sp->marking_task_size();
3369   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3370     // Having claimed the nth task in this space,
3371     // compute the chunk that it corresponds to:
3372     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3373                                aligned_start + (nth_task+1)*chunk_size);
3374     // Try and bump the global finger via a CAS;
3375     // note that we need to do the global finger bump
3376     // _before_ taking the intersection below, because
3377     // the task corresponding to that region will be
3378     // deemed done even if the used_region() expands
3379     // because of allocation -- as it almost certainly will
3380     // during start-up while the threads yield in the
3381     // closure below.
3382     HeapWord* finger = span.end();
3383     bump_global_finger(finger);   // atomically
3384     // There are null tasks here corresponding to chunks
3385     // beyond the "top" address of the space.
3386     span = span.intersection(sp->used_region());
3387     if (!span.is_empty()) {  // Non-null task
3388       HeapWord* prev_obj;
3389       assert(!span.contains(_restart_addr) || nth_task == 0,
3390              "Inconsistency");
3391       if (nth_task == 0) {
3392         // For the 0th task, we'll not need to compute a block_start.
3393         if (span.contains(_restart_addr)) {
3394           // In the case of a restart because of stack overflow,
3395           // we might additionally skip a chunk prefix.
3396           prev_obj = _restart_addr;
3397         } else {
3398           prev_obj = span.start();
3399         }
3400       } else {
3401         // We want to skip the first object because
3402         // the protocol is to scan any object in its entirety
3403         // that _starts_ in this span; a fortiori, any
3404         // object starting in an earlier span is scanned
3405         // as part of an earlier claimed task.
3406         // Below we use the "careful" version of block_start
3407         // so we do not try to navigate uninitialized objects.
3408         prev_obj = sp->block_start_careful(span.start());
3409         // Below we use a variant of block_size that uses the
3410         // Printezis bits to avoid waiting for allocated
3411         // objects to become initialized/parsable.
3412         while (prev_obj < span.start()) {
3413           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3414           if (sz > 0) {
3415             prev_obj += sz;
3416           } else {
3417             // In this case we may end up doing a bit of redundant
3418             // scanning, but that appears unavoidable, short of
3419             // locking the free list locks; see bug 6324141.
3420             break;
3421           }
3422         }
3423       }
3424       if (prev_obj < span.end()) {
3425         MemRegion my_span = MemRegion(prev_obj, span.end());
3426         // Do the marking work within a non-empty span --
3427         // the last argument to the constructor indicates whether the
3428         // iteration should be incremental with periodic yields.
3429         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3430                                     &_collector->_markBitMap,
3431                                     work_queue(i),
3432                                     &_collector->_markStack);
3433         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3434       } // else nothing to do for this task
3435     }   // else nothing to do for this task
3436   }
3437   // We'd be tempted to assert here that since there are no
3438   // more tasks left to claim in this space, the global_finger
3439   // must exceed space->top() and a fortiori space->end(). However,
3440   // that would not quite be correct because the bumping of
3441   // global_finger occurs strictly after the claiming of a task,
3442   // so by the time we reach here the global finger may not yet
3443   // have been bumped up by the thread that claimed the last
3444   // task.
3445   pst->all_tasks_completed();
3446 }
3447 
3448 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3449  private:
3450   CMSCollector* _collector;
3451   CMSConcMarkingTask* _task;
3452   MemRegion     _span;
3453   CMSBitMap*    _bit_map;
3454   CMSMarkStack* _overflow_stack;
3455   OopTaskQueue* _work_queue;
3456  protected:
3457   DO_OOP_WORK_DEFN
3458  public:
3459   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3460                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3461     MetadataAwareOopClosure(collector->ref_processor()),
3462     _collector(collector),
3463     _task(task),
3464     _span(collector->_span),
3465     _work_queue(work_queue),
3466     _bit_map(bit_map),
3467     _overflow_stack(overflow_stack)
3468   { }
3469   virtual void do_oop(oop* p);
3470   virtual void do_oop(narrowOop* p);
3471 
3472   void trim_queue(size_t max);
3473   void handle_stack_overflow(HeapWord* lost);
3474   void do_yield_check() {
3475     if (_task->should_yield()) {
3476       _task->yield();
3477     }
3478   }
3479 };
3480 
3481 // Grey object scanning during work stealing phase --
3482 // the salient assumption here is that any references
3483 // that are in these stolen objects being scanned must
3484 // already have been initialized (else they would not have
3485 // been published), so we do not need to check for
3486 // uninitialized objects before pushing here.
3487 void Par_ConcMarkingClosure::do_oop(oop obj) {
3488   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3489   HeapWord* addr = (HeapWord*)obj;
3490   // Check if oop points into the CMS generation
3491   // and is not marked
3492   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3493     // a white object ...
3494     // If we manage to "claim" the object, by being the
3495     // first thread to mark it, then we push it on our
3496     // marking stack
3497     if (_bit_map->par_mark(addr)) {     // ... now grey
3498       // push on work queue (grey set)
3499       bool simulate_overflow = false;
3500       NOT_PRODUCT(
3501         if (CMSMarkStackOverflowALot &&
3502             _collector->simulate_overflow()) {
3503           // simulate a stack overflow
3504           simulate_overflow = true;
3505         }
3506       )
3507       if (simulate_overflow ||
3508           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3509         // stack overflow
3510         if (PrintCMSStatistics != 0) {
3511           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3512                                  SIZE_FORMAT, _overflow_stack->capacity());
3513         }
3514         // We cannot assert that the overflow stack is full because
3515         // it may have been emptied since.
3516         assert(simulate_overflow ||
3517                _work_queue->size() == _work_queue->max_elems(),
3518               "Else push should have succeeded");
3519         handle_stack_overflow(addr);
3520       }
3521     } // Else, some other thread got there first
3522     do_yield_check();
3523   }
3524 }
3525 
3526 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3527 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3528 
3529 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3530   while (_work_queue->size() > max) {
3531     oop new_oop;
3532     if (_work_queue->pop_local(new_oop)) {
3533       assert(new_oop->is_oop(), "Should be an oop");
3534       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3535       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3536       new_oop->oop_iterate(this);  // do_oop() above
3537       do_yield_check();
3538     }
3539   }
3540 }
3541 
3542 // Upon stack overflow, we discard (part of) the stack,
3543 // remembering the least address amongst those discarded
3544 // in CMSCollector's _restart_address.
3545 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3546   // We need to do this under a mutex to prevent other
3547   // workers from interfering with the work done below.
3548   MutexLockerEx ml(_overflow_stack->par_lock(),
3549                    Mutex::_no_safepoint_check_flag);
3550   // Remember the least grey address discarded
3551   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3552   _collector->lower_restart_addr(ra);
3553   _overflow_stack->reset();  // discard stack contents
3554   _overflow_stack->expand(); // expand the stack if possible
3555 }
3556 
3557 
3558 void CMSConcMarkingTask::do_work_steal(int i) {
3559   OopTaskQueue* work_q = work_queue(i);
3560   oop obj_to_scan;
3561   CMSBitMap* bm = &(_collector->_markBitMap);
3562   CMSMarkStack* ovflw = &(_collector->_markStack);
3563   int* seed = _collector->hash_seed(i);
3564   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3565   while (true) {
3566     cl.trim_queue(0);
3567     assert(work_q->size() == 0, "Should have been emptied above");
3568     if (get_work_from_overflow_stack(ovflw, work_q)) {
3569       // Can't assert below because the work obtained from the
3570       // overflow stack may already have been stolen from us.
3571       // assert(work_q->size() > 0, "Work from overflow stack");
3572       continue;
3573     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3574       assert(obj_to_scan->is_oop(), "Should be an oop");
3575       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3576       obj_to_scan->oop_iterate(&cl);
3577     } else if (terminator()->offer_termination(&_term_term)) {
3578       assert(work_q->size() == 0, "Impossible!");
3579       break;
3580     } else if (yielding() || should_yield()) {
3581       yield();
3582     }
3583   }
3584 }
3585 
3586 // This is run by the CMS (coordinator) thread.
3587 void CMSConcMarkingTask::coordinator_yield() {
3588   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3589          "CMS thread should hold CMS token");
3590   // First give up the locks, then yield, then re-lock
3591   // We should probably use a constructor/destructor idiom to
3592   // do this unlock/lock or modify the MutexUnlocker class to
3593   // serve our purpose. XXX
3594   assert_lock_strong(_bit_map_lock);
3595   _bit_map_lock->unlock();
3596   ConcurrentMarkSweepThread::desynchronize(true);
3597   _collector->stopTimer();
3598   if (PrintCMSStatistics != 0) {
3599     _collector->incrementYields();
3600   }
3601 
3602   // It is possible for whichever thread initiated the yield request
3603   // not to get a chance to wake up and take the bitmap lock between
3604   // this thread releasing it and reacquiring it. So, while the
3605   // should_yield() flag is on, let's sleep for a bit to give the
3606   // other thread a chance to wake up. The limit imposed on the number
3607   // of iterations is defensive, to avoid any unforseen circumstances
3608   // putting us into an infinite loop. Since it's always been this
3609   // (coordinator_yield()) method that was observed to cause the
3610   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3611   // which is by default non-zero. For the other seven methods that
3612   // also perform the yield operation, as are using a different
3613   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3614   // can enable the sleeping for those methods too, if necessary.
3615   // See 6442774.
3616   //
3617   // We really need to reconsider the synchronization between the GC
3618   // thread and the yield-requesting threads in the future and we
3619   // should really use wait/notify, which is the recommended
3620   // way of doing this type of interaction. Additionally, we should
3621   // consolidate the eight methods that do the yield operation and they
3622   // are almost identical into one for better maintainability and
3623   // readability. See 6445193.
3624   //
3625   // Tony 2006.06.29
3626   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3627                    ConcurrentMarkSweepThread::should_yield() &&
3628                    !CMSCollector::foregroundGCIsActive(); ++i) {
3629     os::sleep(Thread::current(), 1, false);
3630   }
3631 
3632   ConcurrentMarkSweepThread::synchronize(true);
3633   _bit_map_lock->lock_without_safepoint_check();
3634   _collector->startTimer();
3635 }
3636 
3637 bool CMSCollector::do_marking_mt() {
3638   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3639   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3640                                                                   conc_workers()->active_workers(),
3641                                                                   Threads::number_of_non_daemon_threads());
3642   conc_workers()->set_active_workers(num_workers);
3643 
3644   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3645 
3646   CMSConcMarkingTask tsk(this,
3647                          cms_space,
3648                          conc_workers(),
3649                          task_queues());
3650 
3651   // Since the actual number of workers we get may be different
3652   // from the number we requested above, do we need to do anything different
3653   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3654   // class?? XXX
3655   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3656 
3657   // Refs discovery is already non-atomic.
3658   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3659   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3660   conc_workers()->start_task(&tsk);
3661   while (tsk.yielded()) {
3662     tsk.coordinator_yield();
3663     conc_workers()->continue_task(&tsk);
3664   }
3665   // If the task was aborted, _restart_addr will be non-NULL
3666   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3667   while (_restart_addr != NULL) {
3668     // XXX For now we do not make use of ABORTED state and have not
3669     // yet implemented the right abort semantics (even in the original
3670     // single-threaded CMS case). That needs some more investigation
3671     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3672     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3673     // If _restart_addr is non-NULL, a marking stack overflow
3674     // occurred; we need to do a fresh marking iteration from the
3675     // indicated restart address.
3676     if (_foregroundGCIsActive) {
3677       // We may be running into repeated stack overflows, having
3678       // reached the limit of the stack size, while making very
3679       // slow forward progress. It may be best to bail out and
3680       // let the foreground collector do its job.
3681       // Clear _restart_addr, so that foreground GC
3682       // works from scratch. This avoids the headache of
3683       // a "rescan" which would otherwise be needed because
3684       // of the dirty mod union table & card table.
3685       _restart_addr = NULL;
3686       return false;
3687     }
3688     // Adjust the task to restart from _restart_addr
3689     tsk.reset(_restart_addr);
3690     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3691                   _restart_addr);
3692     _restart_addr = NULL;
3693     // Get the workers going again
3694     conc_workers()->start_task(&tsk);
3695     while (tsk.yielded()) {
3696       tsk.coordinator_yield();
3697       conc_workers()->continue_task(&tsk);
3698     }
3699   }
3700   assert(tsk.completed(), "Inconsistency");
3701   assert(tsk.result() == true, "Inconsistency");
3702   return true;
3703 }
3704 
3705 bool CMSCollector::do_marking_st() {
3706   ResourceMark rm;
3707   HandleMark   hm;
3708 
3709   // Temporarily make refs discovery single threaded (non-MT)
3710   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3711   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3712     &_markStack, CMSYield);
3713   // the last argument to iterate indicates whether the iteration
3714   // should be incremental with periodic yields.
3715   _markBitMap.iterate(&markFromRootsClosure);
3716   // If _restart_addr is non-NULL, a marking stack overflow
3717   // occurred; we need to do a fresh iteration from the
3718   // indicated restart address.
3719   while (_restart_addr != NULL) {
3720     if (_foregroundGCIsActive) {
3721       // We may be running into repeated stack overflows, having
3722       // reached the limit of the stack size, while making very
3723       // slow forward progress. It may be best to bail out and
3724       // let the foreground collector do its job.
3725       // Clear _restart_addr, so that foreground GC
3726       // works from scratch. This avoids the headache of
3727       // a "rescan" which would otherwise be needed because
3728       // of the dirty mod union table & card table.
3729       _restart_addr = NULL;
3730       return false;  // indicating failure to complete marking
3731     }
3732     // Deal with stack overflow:
3733     // we restart marking from _restart_addr
3734     HeapWord* ra = _restart_addr;
3735     markFromRootsClosure.reset(ra);
3736     _restart_addr = NULL;
3737     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3738   }
3739   return true;
3740 }
3741 
3742 void CMSCollector::preclean() {
3743   check_correct_thread_executing();
3744   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3745   verify_work_stacks_empty();
3746   verify_overflow_empty();
3747   _abort_preclean = false;
3748   if (CMSPrecleaningEnabled) {
3749     if (!CMSEdenChunksRecordAlways) {
3750       _eden_chunk_index = 0;
3751     }
3752     size_t used = get_eden_used();
3753     size_t capacity = get_eden_capacity();
3754     // Don't start sampling unless we will get sufficiently
3755     // many samples.
3756     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3757                 * CMSScheduleRemarkEdenPenetration)) {
3758       _start_sampling = true;
3759     } else {
3760       _start_sampling = false;
3761     }
3762     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3763     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3764     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3765   }
3766   CMSTokenSync x(true); // is cms thread
3767   if (CMSPrecleaningEnabled) {
3768     sample_eden();
3769     _collectorState = AbortablePreclean;
3770   } else {
3771     _collectorState = FinalMarking;
3772   }
3773   verify_work_stacks_empty();
3774   verify_overflow_empty();
3775 }
3776 
3777 // Try and schedule the remark such that young gen
3778 // occupancy is CMSScheduleRemarkEdenPenetration %.
3779 void CMSCollector::abortable_preclean() {
3780   check_correct_thread_executing();
3781   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3782   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3783 
3784   // If Eden's current occupancy is below this threshold,
3785   // immediately schedule the remark; else preclean
3786   // past the next scavenge in an effort to
3787   // schedule the pause as described above. By choosing
3788   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3789   // we will never do an actual abortable preclean cycle.
3790   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3791     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3792     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3793     // We need more smarts in the abortable preclean
3794     // loop below to deal with cases where allocation
3795     // in young gen is very very slow, and our precleaning
3796     // is running a losing race against a horde of
3797     // mutators intent on flooding us with CMS updates
3798     // (dirty cards).
3799     // One, admittedly dumb, strategy is to give up
3800     // after a certain number of abortable precleaning loops
3801     // or after a certain maximum time. We want to make
3802     // this smarter in the next iteration.
3803     // XXX FIX ME!!! YSR
3804     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3805     while (!(should_abort_preclean() ||
3806              ConcurrentMarkSweepThread::should_terminate())) {
3807       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3808       cumworkdone += workdone;
3809       loops++;
3810       // Voluntarily terminate abortable preclean phase if we have
3811       // been at it for too long.
3812       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3813           loops >= CMSMaxAbortablePrecleanLoops) {
3814         if (PrintGCDetails) {
3815           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3816         }
3817         break;
3818       }
3819       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3820         if (PrintGCDetails) {
3821           gclog_or_tty->print(" CMS: abort preclean due to time ");
3822         }
3823         break;
3824       }
3825       // If we are doing little work each iteration, we should
3826       // take a short break.
3827       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3828         // Sleep for some time, waiting for work to accumulate
3829         stopTimer();
3830         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3831         startTimer();
3832         waited++;
3833       }
3834     }
3835     if (PrintCMSStatistics > 0) {
3836       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3837                           loops, waited, cumworkdone);
3838     }
3839   }
3840   CMSTokenSync x(true); // is cms thread
3841   if (_collectorState != Idling) {
3842     assert(_collectorState == AbortablePreclean,
3843            "Spontaneous state transition?");
3844     _collectorState = FinalMarking;
3845   } // Else, a foreground collection completed this CMS cycle.
3846   return;
3847 }
3848 
3849 // Respond to an Eden sampling opportunity
3850 void CMSCollector::sample_eden() {
3851   // Make sure a young gc cannot sneak in between our
3852   // reading and recording of a sample.
3853   assert(Thread::current()->is_ConcurrentGC_thread(),
3854          "Only the cms thread may collect Eden samples");
3855   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3856          "Should collect samples while holding CMS token");
3857   if (!_start_sampling) {
3858     return;
3859   }
3860   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3861   // is populated by the young generation.
3862   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3863     if (_eden_chunk_index < _eden_chunk_capacity) {
3864       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3865       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3866              "Unexpected state of Eden");
3867       // We'd like to check that what we just sampled is an oop-start address;
3868       // however, we cannot do that here since the object may not yet have been
3869       // initialized. So we'll instead do the check when we _use_ this sample
3870       // later.
3871       if (_eden_chunk_index == 0 ||
3872           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3873                          _eden_chunk_array[_eden_chunk_index-1])
3874            >= CMSSamplingGrain)) {
3875         _eden_chunk_index++;  // commit sample
3876       }
3877     }
3878   }
3879   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3880     size_t used = get_eden_used();
3881     size_t capacity = get_eden_capacity();
3882     assert(used <= capacity, "Unexpected state of Eden");
3883     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3884       _abort_preclean = true;
3885     }
3886   }
3887 }
3888 
3889 
3890 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3891   assert(_collectorState == Precleaning ||
3892          _collectorState == AbortablePreclean, "incorrect state");
3893   ResourceMark rm;
3894   HandleMark   hm;
3895 
3896   // Precleaning is currently not MT but the reference processor
3897   // may be set for MT.  Disable it temporarily here.
3898   ReferenceProcessor* rp = ref_processor();
3899   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3900 
3901   // Do one pass of scrubbing the discovered reference lists
3902   // to remove any reference objects with strongly-reachable
3903   // referents.
3904   if (clean_refs) {
3905     CMSPrecleanRefsYieldClosure yield_cl(this);
3906     assert(rp->span().equals(_span), "Spans should be equal");
3907     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3908                                    &_markStack, true /* preclean */);
3909     CMSDrainMarkingStackClosure complete_trace(this,
3910                                    _span, &_markBitMap, &_markStack,
3911                                    &keep_alive, true /* preclean */);
3912 
3913     // We don't want this step to interfere with a young
3914     // collection because we don't want to take CPU
3915     // or memory bandwidth away from the young GC threads
3916     // (which may be as many as there are CPUs).
3917     // Note that we don't need to protect ourselves from
3918     // interference with mutators because they can't
3919     // manipulate the discovered reference lists nor affect
3920     // the computed reachability of the referents, the
3921     // only properties manipulated by the precleaning
3922     // of these reference lists.
3923     stopTimer();
3924     CMSTokenSyncWithLocks x(true /* is cms thread */,
3925                             bitMapLock());
3926     startTimer();
3927     sample_eden();
3928 
3929     // The following will yield to allow foreground
3930     // collection to proceed promptly. XXX YSR:
3931     // The code in this method may need further
3932     // tweaking for better performance and some restructuring
3933     // for cleaner interfaces.
3934     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3935     rp->preclean_discovered_references(
3936           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3937           gc_timer, _gc_tracer_cm->gc_id());
3938   }
3939 
3940   if (clean_survivor) {  // preclean the active survivor space(s)
3941     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3942                              &_markBitMap, &_modUnionTable,
3943                              &_markStack, true /* precleaning phase */);
3944     stopTimer();
3945     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3946                              bitMapLock());
3947     startTimer();
3948     unsigned int before_count =
3949       GenCollectedHeap::heap()->total_collections();
3950     SurvivorSpacePrecleanClosure
3951       sss_cl(this, _span, &_markBitMap, &_markStack,
3952              &pam_cl, before_count, CMSYield);
3953     _young_gen->from()->object_iterate_careful(&sss_cl);
3954     _young_gen->to()->object_iterate_careful(&sss_cl);
3955   }
3956   MarkRefsIntoAndScanClosure
3957     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3958              &_markStack, this, CMSYield,
3959              true /* precleaning phase */);
3960   // CAUTION: The following closure has persistent state that may need to
3961   // be reset upon a decrease in the sequence of addresses it
3962   // processes.
3963   ScanMarkedObjectsAgainCarefullyClosure
3964     smoac_cl(this, _span,
3965       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3966 
3967   // Preclean dirty cards in ModUnionTable and CardTable using
3968   // appropriate convergence criterion;
3969   // repeat CMSPrecleanIter times unless we find that
3970   // we are losing.
3971   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3972   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3973          "Bad convergence multiplier");
3974   assert(CMSPrecleanThreshold >= 100,
3975          "Unreasonably low CMSPrecleanThreshold");
3976 
3977   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3978   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3979        numIter < CMSPrecleanIter;
3980        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3981     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3982     if (Verbose && PrintGCDetails) {
3983       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3984     }
3985     // Either there are very few dirty cards, so re-mark
3986     // pause will be small anyway, or our pre-cleaning isn't
3987     // that much faster than the rate at which cards are being
3988     // dirtied, so we might as well stop and re-mark since
3989     // precleaning won't improve our re-mark time by much.
3990     if (curNumCards <= CMSPrecleanThreshold ||
3991         (numIter > 0 &&
3992          (curNumCards * CMSPrecleanDenominator >
3993          lastNumCards * CMSPrecleanNumerator))) {
3994       numIter++;
3995       cumNumCards += curNumCards;
3996       break;
3997     }
3998   }
3999 
4000   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4001 
4002   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4003   cumNumCards += curNumCards;
4004   if (PrintGCDetails && PrintCMSStatistics != 0) {
4005     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4006                   curNumCards, cumNumCards, numIter);
4007   }
4008   return cumNumCards;   // as a measure of useful work done
4009 }
4010 
4011 // PRECLEANING NOTES:
4012 // Precleaning involves:
4013 // . reading the bits of the modUnionTable and clearing the set bits.
4014 // . For the cards corresponding to the set bits, we scan the
4015 //   objects on those cards. This means we need the free_list_lock
4016 //   so that we can safely iterate over the CMS space when scanning
4017 //   for oops.
4018 // . When we scan the objects, we'll be both reading and setting
4019 //   marks in the marking bit map, so we'll need the marking bit map.
4020 // . For protecting _collector_state transitions, we take the CGC_lock.
4021 //   Note that any races in the reading of of card table entries by the
4022 //   CMS thread on the one hand and the clearing of those entries by the
4023 //   VM thread or the setting of those entries by the mutator threads on the
4024 //   other are quite benign. However, for efficiency it makes sense to keep
4025 //   the VM thread from racing with the CMS thread while the latter is
4026 //   dirty card info to the modUnionTable. We therefore also use the
4027 //   CGC_lock to protect the reading of the card table and the mod union
4028 //   table by the CM thread.
4029 // . We run concurrently with mutator updates, so scanning
4030 //   needs to be done carefully  -- we should not try to scan
4031 //   potentially uninitialized objects.
4032 //
4033 // Locking strategy: While holding the CGC_lock, we scan over and
4034 // reset a maximal dirty range of the mod union / card tables, then lock
4035 // the free_list_lock and bitmap lock to do a full marking, then
4036 // release these locks; and repeat the cycle. This allows for a
4037 // certain amount of fairness in the sharing of these locks between
4038 // the CMS collector on the one hand, and the VM thread and the
4039 // mutators on the other.
4040 
4041 // NOTE: preclean_mod_union_table() and preclean_card_table()
4042 // further below are largely identical; if you need to modify
4043 // one of these methods, please check the other method too.
4044 
4045 size_t CMSCollector::preclean_mod_union_table(
4046   ConcurrentMarkSweepGeneration* gen,
4047   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4048   verify_work_stacks_empty();
4049   verify_overflow_empty();
4050 
4051   // strategy: starting with the first card, accumulate contiguous
4052   // ranges of dirty cards; clear these cards, then scan the region
4053   // covered by these cards.
4054 
4055   // Since all of the MUT is committed ahead, we can just use
4056   // that, in case the generations expand while we are precleaning.
4057   // It might also be fine to just use the committed part of the
4058   // generation, but we might potentially miss cards when the
4059   // generation is rapidly expanding while we are in the midst
4060   // of precleaning.
4061   HeapWord* startAddr = gen->reserved().start();
4062   HeapWord* endAddr   = gen->reserved().end();
4063 
4064   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4065 
4066   size_t numDirtyCards, cumNumDirtyCards;
4067   HeapWord *nextAddr, *lastAddr;
4068   for (cumNumDirtyCards = numDirtyCards = 0,
4069        nextAddr = lastAddr = startAddr;
4070        nextAddr < endAddr;
4071        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4072 
4073     ResourceMark rm;
4074     HandleMark   hm;
4075 
4076     MemRegion dirtyRegion;
4077     {
4078       stopTimer();
4079       // Potential yield point
4080       CMSTokenSync ts(true);
4081       startTimer();
4082       sample_eden();
4083       // Get dirty region starting at nextOffset (inclusive),
4084       // simultaneously clearing it.
4085       dirtyRegion =
4086         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4087       assert(dirtyRegion.start() >= nextAddr,
4088              "returned region inconsistent?");
4089     }
4090     // Remember where the next search should begin.
4091     // The returned region (if non-empty) is a right open interval,
4092     // so lastOffset is obtained from the right end of that
4093     // interval.
4094     lastAddr = dirtyRegion.end();
4095     // Should do something more transparent and less hacky XXX
4096     numDirtyCards =
4097       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4098 
4099     // We'll scan the cards in the dirty region (with periodic
4100     // yields for foreground GC as needed).
4101     if (!dirtyRegion.is_empty()) {
4102       assert(numDirtyCards > 0, "consistency check");
4103       HeapWord* stop_point = NULL;
4104       stopTimer();
4105       // Potential yield point
4106       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4107                                bitMapLock());
4108       startTimer();
4109       {
4110         verify_work_stacks_empty();
4111         verify_overflow_empty();
4112         sample_eden();
4113         stop_point =
4114           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4115       }
4116       if (stop_point != NULL) {
4117         // The careful iteration stopped early either because it found an
4118         // uninitialized object, or because we were in the midst of an
4119         // "abortable preclean", which should now be aborted. Redirty
4120         // the bits corresponding to the partially-scanned or unscanned
4121         // cards. We'll either restart at the next block boundary or
4122         // abort the preclean.
4123         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4124                "Should only be AbortablePreclean.");
4125         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4126         if (should_abort_preclean()) {
4127           break; // out of preclean loop
4128         } else {
4129           // Compute the next address at which preclean should pick up;
4130           // might need bitMapLock in order to read P-bits.
4131           lastAddr = next_card_start_after_block(stop_point);
4132         }
4133       }
4134     } else {
4135       assert(lastAddr == endAddr, "consistency check");
4136       assert(numDirtyCards == 0, "consistency check");
4137       break;
4138     }
4139   }
4140   verify_work_stacks_empty();
4141   verify_overflow_empty();
4142   return cumNumDirtyCards;
4143 }
4144 
4145 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4146 // below are largely identical; if you need to modify
4147 // one of these methods, please check the other method too.
4148 
4149 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4150   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4151   // strategy: it's similar to precleamModUnionTable above, in that
4152   // we accumulate contiguous ranges of dirty cards, mark these cards
4153   // precleaned, then scan the region covered by these cards.
4154   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4155   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4156 
4157   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4158 
4159   size_t numDirtyCards, cumNumDirtyCards;
4160   HeapWord *lastAddr, *nextAddr;
4161 
4162   for (cumNumDirtyCards = numDirtyCards = 0,
4163        nextAddr = lastAddr = startAddr;
4164        nextAddr < endAddr;
4165        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4166 
4167     ResourceMark rm;
4168     HandleMark   hm;
4169 
4170     MemRegion dirtyRegion;
4171     {
4172       // See comments in "Precleaning notes" above on why we
4173       // do this locking. XXX Could the locking overheads be
4174       // too high when dirty cards are sparse? [I don't think so.]
4175       stopTimer();
4176       CMSTokenSync x(true); // is cms thread
4177       startTimer();
4178       sample_eden();
4179       // Get and clear dirty region from card table
4180       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4181                                     MemRegion(nextAddr, endAddr),
4182                                     true,
4183                                     CardTableModRefBS::precleaned_card_val());
4184 
4185       assert(dirtyRegion.start() >= nextAddr,
4186              "returned region inconsistent?");
4187     }
4188     lastAddr = dirtyRegion.end();
4189     numDirtyCards =
4190       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4191 
4192     if (!dirtyRegion.is_empty()) {
4193       stopTimer();
4194       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4195       startTimer();
4196       sample_eden();
4197       verify_work_stacks_empty();
4198       verify_overflow_empty();
4199       HeapWord* stop_point =
4200         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4201       if (stop_point != NULL) {
4202         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4203                "Should only be AbortablePreclean.");
4204         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4205         if (should_abort_preclean()) {
4206           break; // out of preclean loop
4207         } else {
4208           // Compute the next address at which preclean should pick up.
4209           lastAddr = next_card_start_after_block(stop_point);
4210         }
4211       }
4212     } else {
4213       break;
4214     }
4215   }
4216   verify_work_stacks_empty();
4217   verify_overflow_empty();
4218   return cumNumDirtyCards;
4219 }
4220 
4221 class PrecleanKlassClosure : public KlassClosure {
4222   KlassToOopClosure _cm_klass_closure;
4223  public:
4224   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4225   void do_klass(Klass* k) {
4226     if (k->has_accumulated_modified_oops()) {
4227       k->clear_accumulated_modified_oops();
4228 
4229       _cm_klass_closure.do_klass(k);
4230     }
4231   }
4232 };
4233 
4234 // The freelist lock is needed to prevent asserts, is it really needed?
4235 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4236 
4237   cl->set_freelistLock(freelistLock);
4238 
4239   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4240 
4241   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4242   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4243   PrecleanKlassClosure preclean_klass_closure(cl);
4244   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4245 
4246   verify_work_stacks_empty();
4247   verify_overflow_empty();
4248 }
4249 
4250 void CMSCollector::checkpointRootsFinal() {
4251   assert(_collectorState == FinalMarking, "incorrect state transition?");
4252   check_correct_thread_executing();
4253   // world is stopped at this checkpoint
4254   assert(SafepointSynchronize::is_at_safepoint(),
4255          "world should be stopped");
4256   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4257 
4258   verify_work_stacks_empty();
4259   verify_overflow_empty();
4260 
4261   if (PrintGCDetails) {
4262     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4263                         _young_gen->used() / K,
4264                         _young_gen->capacity() / K);
4265   }
4266   {
4267     if (CMSScavengeBeforeRemark) {
4268       GenCollectedHeap* gch = GenCollectedHeap::heap();
4269       // Temporarily set flag to false, GCH->do_collection will
4270       // expect it to be false and set to true
4271       FlagSetting fl(gch->_is_gc_active, false);
4272       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4273         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4274       int level = _cmsGen->level() - 1;
4275       if (level >= 0) {
4276         gch->do_collection(true,        // full (i.e. force, see below)
4277                            false,       // !clear_all_soft_refs
4278                            0,           // size
4279                            false,       // is_tlab
4280                            level        // max_level
4281                           );
4282       }
4283     }
4284     FreelistLocker x(this);
4285     MutexLockerEx y(bitMapLock(),
4286                     Mutex::_no_safepoint_check_flag);
4287     checkpointRootsFinalWork();
4288   }
4289   verify_work_stacks_empty();
4290   verify_overflow_empty();
4291 }
4292 
4293 void CMSCollector::checkpointRootsFinalWork() {
4294   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4295 
4296   assert(haveFreelistLocks(), "must have free list locks");
4297   assert_lock_strong(bitMapLock());
4298 
4299   ResourceMark rm;
4300   HandleMark   hm;
4301 
4302   GenCollectedHeap* gch = GenCollectedHeap::heap();
4303 
4304   if (should_unload_classes()) {
4305     CodeCache::gc_prologue();
4306   }
4307   assert(haveFreelistLocks(), "must have free list locks");
4308   assert_lock_strong(bitMapLock());
4309 
4310   // We might assume that we need not fill TLAB's when
4311   // CMSScavengeBeforeRemark is set, because we may have just done
4312   // a scavenge which would have filled all TLAB's -- and besides
4313   // Eden would be empty. This however may not always be the case --
4314   // for instance although we asked for a scavenge, it may not have
4315   // happened because of a JNI critical section. We probably need
4316   // a policy for deciding whether we can in that case wait until
4317   // the critical section releases and then do the remark following
4318   // the scavenge, and skip it here. In the absence of that policy,
4319   // or of an indication of whether the scavenge did indeed occur,
4320   // we cannot rely on TLAB's having been filled and must do
4321   // so here just in case a scavenge did not happen.
4322   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4323   // Update the saved marks which may affect the root scans.
4324   gch->save_marks();
4325 
4326   if (CMSPrintEdenSurvivorChunks) {
4327     print_eden_and_survivor_chunk_arrays();
4328   }
4329 
4330   {
4331     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4332 
4333     // Note on the role of the mod union table:
4334     // Since the marker in "markFromRoots" marks concurrently with
4335     // mutators, it is possible for some reachable objects not to have been
4336     // scanned. For instance, an only reference to an object A was
4337     // placed in object B after the marker scanned B. Unless B is rescanned,
4338     // A would be collected. Such updates to references in marked objects
4339     // are detected via the mod union table which is the set of all cards
4340     // dirtied since the first checkpoint in this GC cycle and prior to
4341     // the most recent young generation GC, minus those cleaned up by the
4342     // concurrent precleaning.
4343     if (CMSParallelRemarkEnabled) {
4344       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4345       do_remark_parallel();
4346     } else {
4347       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4348                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4349       do_remark_non_parallel();
4350     }
4351   }
4352   verify_work_stacks_empty();
4353   verify_overflow_empty();
4354 
4355   {
4356     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4357     refProcessingWork();
4358   }
4359   verify_work_stacks_empty();
4360   verify_overflow_empty();
4361 
4362   if (should_unload_classes()) {
4363     CodeCache::gc_epilogue();
4364   }
4365   JvmtiExport::gc_epilogue();
4366 
4367   // If we encountered any (marking stack / work queue) overflow
4368   // events during the current CMS cycle, take appropriate
4369   // remedial measures, where possible, so as to try and avoid
4370   // recurrence of that condition.
4371   assert(_markStack.isEmpty(), "No grey objects");
4372   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4373                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4374   if (ser_ovflw > 0) {
4375     if (PrintCMSStatistics != 0) {
4376       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4377         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4378         ", kac_preclean=" SIZE_FORMAT ")",
4379         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4380         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4381     }
4382     _markStack.expand();
4383     _ser_pmc_remark_ovflw = 0;
4384     _ser_pmc_preclean_ovflw = 0;
4385     _ser_kac_preclean_ovflw = 0;
4386     _ser_kac_ovflw = 0;
4387   }
4388   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4389     if (PrintCMSStatistics != 0) {
4390       gclog_or_tty->print_cr("Work queue overflow (benign) "
4391         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4392         _par_pmc_remark_ovflw, _par_kac_ovflw);
4393     }
4394     _par_pmc_remark_ovflw = 0;
4395     _par_kac_ovflw = 0;
4396   }
4397   if (PrintCMSStatistics != 0) {
4398      if (_markStack._hit_limit > 0) {
4399        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4400                               _markStack._hit_limit);
4401      }
4402      if (_markStack._failed_double > 0) {
4403        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4404                               " current capacity " SIZE_FORMAT,
4405                               _markStack._failed_double,
4406                               _markStack.capacity());
4407      }
4408   }
4409   _markStack._hit_limit = 0;
4410   _markStack._failed_double = 0;
4411 
4412   if ((VerifyAfterGC || VerifyDuringGC) &&
4413       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4414     verify_after_remark();
4415   }
4416 
4417   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4418 
4419   // Change under the freelistLocks.
4420   _collectorState = Sweeping;
4421   // Call isAllClear() under bitMapLock
4422   assert(_modUnionTable.isAllClear(),
4423       "Should be clear by end of the final marking");
4424   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4425       "Should be clear by end of the final marking");
4426 }
4427 
4428 void CMSParInitialMarkTask::work(uint worker_id) {
4429   elapsedTimer _timer;
4430   ResourceMark rm;
4431   HandleMark   hm;
4432 
4433   // ---------- scan from roots --------------
4434   _timer.start();
4435   GenCollectedHeap* gch = GenCollectedHeap::heap();
4436   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4437 
4438   // ---------- young gen roots --------------
4439   {
4440     work_on_young_gen_roots(worker_id, &par_mri_cl);
4441     _timer.stop();
4442     if (PrintCMSStatistics != 0) {
4443       gclog_or_tty->print_cr(
4444         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4445         worker_id, _timer.seconds());
4446     }
4447   }
4448 
4449   // ---------- remaining roots --------------
4450   _timer.reset();
4451   _timer.start();
4452 
4453   CLDToOopClosure cld_closure(&par_mri_cl, true);
4454 
4455   gch->gen_process_roots(_collector->_cmsGen->level(),
4456                          false,     // yg was scanned above
4457                          false,     // this is parallel code
4458                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4459                          _collector->should_unload_classes(),
4460                          &par_mri_cl,
4461                          NULL,
4462                          &cld_closure);
4463   assert(_collector->should_unload_classes()
4464          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4465          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4466   _timer.stop();
4467   if (PrintCMSStatistics != 0) {
4468     gclog_or_tty->print_cr(
4469       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4470       worker_id, _timer.seconds());
4471   }
4472 }
4473 
4474 // Parallel remark task
4475 class CMSParRemarkTask: public CMSParMarkTask {
4476   CompactibleFreeListSpace* _cms_space;
4477 
4478   // The per-thread work queues, available here for stealing.
4479   OopTaskQueueSet*       _task_queues;
4480   ParallelTaskTerminator _term;
4481 
4482  public:
4483   // A value of 0 passed to n_workers will cause the number of
4484   // workers to be taken from the active workers in the work gang.
4485   CMSParRemarkTask(CMSCollector* collector,
4486                    CompactibleFreeListSpace* cms_space,
4487                    uint n_workers, FlexibleWorkGang* workers,
4488                    OopTaskQueueSet* task_queues):
4489     CMSParMarkTask("Rescan roots and grey objects in parallel",
4490                    collector, n_workers),
4491     _cms_space(cms_space),
4492     _task_queues(task_queues),
4493     _term(n_workers, task_queues) { }
4494 
4495   OopTaskQueueSet* task_queues() { return _task_queues; }
4496 
4497   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4498 
4499   ParallelTaskTerminator* terminator() { return &_term; }
4500   uint n_workers() { return _n_workers; }
4501 
4502   void work(uint worker_id);
4503 
4504  private:
4505   // ... of  dirty cards in old space
4506   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4507                                   Par_MarkRefsIntoAndScanClosure* cl);
4508 
4509   // ... work stealing for the above
4510   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4511 };
4512 
4513 class RemarkKlassClosure : public KlassClosure {
4514   KlassToOopClosure _cm_klass_closure;
4515  public:
4516   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4517   void do_klass(Klass* k) {
4518     // Check if we have modified any oops in the Klass during the concurrent marking.
4519     if (k->has_accumulated_modified_oops()) {
4520       k->clear_accumulated_modified_oops();
4521 
4522       // We could have transfered the current modified marks to the accumulated marks,
4523       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4524     } else if (k->has_modified_oops()) {
4525       // Don't clear anything, this info is needed by the next young collection.
4526     } else {
4527       // No modified oops in the Klass.
4528       return;
4529     }
4530 
4531     // The klass has modified fields, need to scan the klass.
4532     _cm_klass_closure.do_klass(k);
4533   }
4534 };
4535 
4536 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4537   ParNewGeneration* young_gen = _collector->_young_gen;
4538   ContiguousSpace* eden_space = young_gen->eden();
4539   ContiguousSpace* from_space = young_gen->from();
4540   ContiguousSpace* to_space   = young_gen->to();
4541 
4542   HeapWord** eca = _collector->_eden_chunk_array;
4543   size_t     ect = _collector->_eden_chunk_index;
4544   HeapWord** sca = _collector->_survivor_chunk_array;
4545   size_t     sct = _collector->_survivor_chunk_index;
4546 
4547   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4548   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4549 
4550   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4551   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4552   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4553 }
4554 
4555 // work_queue(i) is passed to the closure
4556 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4557 // also is passed to do_dirty_card_rescan_tasks() and to
4558 // do_work_steal() to select the i-th task_queue.
4559 
4560 void CMSParRemarkTask::work(uint worker_id) {
4561   elapsedTimer _timer;
4562   ResourceMark rm;
4563   HandleMark   hm;
4564 
4565   // ---------- rescan from roots --------------
4566   _timer.start();
4567   GenCollectedHeap* gch = GenCollectedHeap::heap();
4568   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4569     _collector->_span, _collector->ref_processor(),
4570     &(_collector->_markBitMap),
4571     work_queue(worker_id));
4572 
4573   // Rescan young gen roots first since these are likely
4574   // coarsely partitioned and may, on that account, constitute
4575   // the critical path; thus, it's best to start off that
4576   // work first.
4577   // ---------- young gen roots --------------
4578   {
4579     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4580     _timer.stop();
4581     if (PrintCMSStatistics != 0) {
4582       gclog_or_tty->print_cr(
4583         "Finished young gen rescan work in %dth thread: %3.3f sec",
4584         worker_id, _timer.seconds());
4585     }
4586   }
4587 
4588   // ---------- remaining roots --------------
4589   _timer.reset();
4590   _timer.start();
4591   gch->gen_process_roots(_collector->_cmsGen->level(),
4592                          false,     // yg was scanned above
4593                          false,     // this is parallel code
4594                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4595                          _collector->should_unload_classes(),
4596                          &par_mrias_cl,
4597                          NULL,
4598                          NULL);     // The dirty klasses will be handled below
4599 
4600   assert(_collector->should_unload_classes()
4601          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4602          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4603   _timer.stop();
4604   if (PrintCMSStatistics != 0) {
4605     gclog_or_tty->print_cr(
4606       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4607       worker_id, _timer.seconds());
4608   }
4609 
4610   // ---------- unhandled CLD scanning ----------
4611   if (worker_id == 0) { // Single threaded at the moment.
4612     _timer.reset();
4613     _timer.start();
4614 
4615     // Scan all new class loader data objects and new dependencies that were
4616     // introduced during concurrent marking.
4617     ResourceMark rm;
4618     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4619     for (int i = 0; i < array->length(); i++) {
4620       par_mrias_cl.do_class_loader_data(array->at(i));
4621     }
4622 
4623     // We don't need to keep track of new CLDs anymore.
4624     ClassLoaderDataGraph::remember_new_clds(false);
4625 
4626     _timer.stop();
4627     if (PrintCMSStatistics != 0) {
4628       gclog_or_tty->print_cr(
4629           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4630           worker_id, _timer.seconds());
4631     }
4632   }
4633 
4634   // ---------- dirty klass scanning ----------
4635   if (worker_id == 0) { // Single threaded at the moment.
4636     _timer.reset();
4637     _timer.start();
4638 
4639     // Scan all classes that was dirtied during the concurrent marking phase.
4640     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4641     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4642 
4643     _timer.stop();
4644     if (PrintCMSStatistics != 0) {
4645       gclog_or_tty->print_cr(
4646           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4647           worker_id, _timer.seconds());
4648     }
4649   }
4650 
4651   // We might have added oops to ClassLoaderData::_handles during the
4652   // concurrent marking phase. These oops point to newly allocated objects
4653   // that are guaranteed to be kept alive. Either by the direct allocation
4654   // code, or when the young collector processes the roots. Hence,
4655   // we don't have to revisit the _handles block during the remark phase.
4656 
4657   // ---------- rescan dirty cards ------------
4658   _timer.reset();
4659   _timer.start();
4660 
4661   // Do the rescan tasks for each of the two spaces
4662   // (cms_space) in turn.
4663   // "worker_id" is passed to select the task_queue for "worker_id"
4664   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4665   _timer.stop();
4666   if (PrintCMSStatistics != 0) {
4667     gclog_or_tty->print_cr(
4668       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4669       worker_id, _timer.seconds());
4670   }
4671 
4672   // ---------- steal work from other threads ...
4673   // ---------- ... and drain overflow list.
4674   _timer.reset();
4675   _timer.start();
4676   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4677   _timer.stop();
4678   if (PrintCMSStatistics != 0) {
4679     gclog_or_tty->print_cr(
4680       "Finished work stealing in %dth thread: %3.3f sec",
4681       worker_id, _timer.seconds());
4682   }
4683 }
4684 
4685 // Note that parameter "i" is not used.
4686 void
4687 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4688   OopsInGenClosure* cl, ContiguousSpace* space,
4689   HeapWord** chunk_array, size_t chunk_top) {
4690   // Until all tasks completed:
4691   // . claim an unclaimed task
4692   // . compute region boundaries corresponding to task claimed
4693   //   using chunk_array
4694   // . par_oop_iterate(cl) over that region
4695 
4696   ResourceMark rm;
4697   HandleMark   hm;
4698 
4699   SequentialSubTasksDone* pst = space->par_seq_tasks();
4700 
4701   uint nth_task = 0;
4702   uint n_tasks  = pst->n_tasks();
4703 
4704   if (n_tasks > 0) {
4705     assert(pst->valid(), "Uninitialized use?");
4706     HeapWord *start, *end;
4707     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4708       // We claimed task # nth_task; compute its boundaries.
4709       if (chunk_top == 0) {  // no samples were taken
4710         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4711         start = space->bottom();
4712         end   = space->top();
4713       } else if (nth_task == 0) {
4714         start = space->bottom();
4715         end   = chunk_array[nth_task];
4716       } else if (nth_task < (uint)chunk_top) {
4717         assert(nth_task >= 1, "Control point invariant");
4718         start = chunk_array[nth_task - 1];
4719         end   = chunk_array[nth_task];
4720       } else {
4721         assert(nth_task == (uint)chunk_top, "Control point invariant");
4722         start = chunk_array[chunk_top - 1];
4723         end   = space->top();
4724       }
4725       MemRegion mr(start, end);
4726       // Verify that mr is in space
4727       assert(mr.is_empty() || space->used_region().contains(mr),
4728              "Should be in space");
4729       // Verify that "start" is an object boundary
4730       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4731              "Should be an oop");
4732       space->par_oop_iterate(mr, cl);
4733     }
4734     pst->all_tasks_completed();
4735   }
4736 }
4737 
4738 void
4739 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4740   CompactibleFreeListSpace* sp, int i,
4741   Par_MarkRefsIntoAndScanClosure* cl) {
4742   // Until all tasks completed:
4743   // . claim an unclaimed task
4744   // . compute region boundaries corresponding to task claimed
4745   // . transfer dirty bits ct->mut for that region
4746   // . apply rescanclosure to dirty mut bits for that region
4747 
4748   ResourceMark rm;
4749   HandleMark   hm;
4750 
4751   OopTaskQueue* work_q = work_queue(i);
4752   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4753   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4754   // CAUTION: This closure has state that persists across calls to
4755   // the work method dirty_range_iterate_clear() in that it has
4756   // embedded in it a (subtype of) UpwardsObjectClosure. The
4757   // use of that state in the embedded UpwardsObjectClosure instance
4758   // assumes that the cards are always iterated (even if in parallel
4759   // by several threads) in monotonically increasing order per each
4760   // thread. This is true of the implementation below which picks
4761   // card ranges (chunks) in monotonically increasing order globally
4762   // and, a-fortiori, in monotonically increasing order per thread
4763   // (the latter order being a subsequence of the former).
4764   // If the work code below is ever reorganized into a more chaotic
4765   // work-partitioning form than the current "sequential tasks"
4766   // paradigm, the use of that persistent state will have to be
4767   // revisited and modified appropriately. See also related
4768   // bug 4756801 work on which should examine this code to make
4769   // sure that the changes there do not run counter to the
4770   // assumptions made here and necessary for correctness and
4771   // efficiency. Note also that this code might yield inefficient
4772   // behavior in the case of very large objects that span one or
4773   // more work chunks. Such objects would potentially be scanned
4774   // several times redundantly. Work on 4756801 should try and
4775   // address that performance anomaly if at all possible. XXX
4776   MemRegion  full_span  = _collector->_span;
4777   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4778   MarkFromDirtyCardsClosure
4779     greyRescanClosure(_collector, full_span, // entire span of interest
4780                       sp, bm, work_q, cl);
4781 
4782   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4783   assert(pst->valid(), "Uninitialized use?");
4784   uint nth_task = 0;
4785   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4786   MemRegion span = sp->used_region();
4787   HeapWord* start_addr = span.start();
4788   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4789                                            alignment);
4790   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4791   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4792          start_addr, "Check alignment");
4793   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4794          chunk_size, "Check alignment");
4795 
4796   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4797     // Having claimed the nth_task, compute corresponding mem-region,
4798     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4799     // The alignment restriction ensures that we do not need any
4800     // synchronization with other gang-workers while setting or
4801     // clearing bits in thus chunk of the MUT.
4802     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4803                                     start_addr + (nth_task+1)*chunk_size);
4804     // The last chunk's end might be way beyond end of the
4805     // used region. In that case pull back appropriately.
4806     if (this_span.end() > end_addr) {
4807       this_span.set_end(end_addr);
4808       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4809     }
4810     // Iterate over the dirty cards covering this chunk, marking them
4811     // precleaned, and setting the corresponding bits in the mod union
4812     // table. Since we have been careful to partition at Card and MUT-word
4813     // boundaries no synchronization is needed between parallel threads.
4814     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4815                                                  &modUnionClosure);
4816 
4817     // Having transferred these marks into the modUnionTable,
4818     // rescan the marked objects on the dirty cards in the modUnionTable.
4819     // Even if this is at a synchronous collection, the initial marking
4820     // may have been done during an asynchronous collection so there
4821     // may be dirty bits in the mod-union table.
4822     _collector->_modUnionTable.dirty_range_iterate_clear(
4823                   this_span, &greyRescanClosure);
4824     _collector->_modUnionTable.verifyNoOneBitsInRange(
4825                                  this_span.start(),
4826                                  this_span.end());
4827   }
4828   pst->all_tasks_completed();  // declare that i am done
4829 }
4830 
4831 // . see if we can share work_queues with ParNew? XXX
4832 void
4833 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4834                                 int* seed) {
4835   OopTaskQueue* work_q = work_queue(i);
4836   NOT_PRODUCT(int num_steals = 0;)
4837   oop obj_to_scan;
4838   CMSBitMap* bm = &(_collector->_markBitMap);
4839 
4840   while (true) {
4841     // Completely finish any left over work from (an) earlier round(s)
4842     cl->trim_queue(0);
4843     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4844                                          (size_t)ParGCDesiredObjsFromOverflowList);
4845     // Now check if there's any work in the overflow list
4846     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4847     // only affects the number of attempts made to get work from the
4848     // overflow list and does not affect the number of workers.  Just
4849     // pass ParallelGCThreads so this behavior is unchanged.
4850     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4851                                                 work_q,
4852                                                 ParallelGCThreads)) {
4853       // found something in global overflow list;
4854       // not yet ready to go stealing work from others.
4855       // We'd like to assert(work_q->size() != 0, ...)
4856       // because we just took work from the overflow list,
4857       // but of course we can't since all of that could have
4858       // been already stolen from us.
4859       // "He giveth and He taketh away."
4860       continue;
4861     }
4862     // Verify that we have no work before we resort to stealing
4863     assert(work_q->size() == 0, "Have work, shouldn't steal");
4864     // Try to steal from other queues that have work
4865     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4866       NOT_PRODUCT(num_steals++;)
4867       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4868       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4869       // Do scanning work
4870       obj_to_scan->oop_iterate(cl);
4871       // Loop around, finish this work, and try to steal some more
4872     } else if (terminator()->offer_termination()) {
4873         break;  // nirvana from the infinite cycle
4874     }
4875   }
4876   NOT_PRODUCT(
4877     if (PrintCMSStatistics != 0) {
4878       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4879     }
4880   )
4881   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4882          "Else our work is not yet done");
4883 }
4884 
4885 // Record object boundaries in _eden_chunk_array by sampling the eden
4886 // top in the slow-path eden object allocation code path and record
4887 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4888 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4889 // sampling in sample_eden() that activates during the part of the
4890 // preclean phase.
4891 void CMSCollector::sample_eden_chunk() {
4892   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4893     if (_eden_chunk_lock->try_lock()) {
4894       // Record a sample. This is the critical section. The contents
4895       // of the _eden_chunk_array have to be non-decreasing in the
4896       // address order.
4897       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4898       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4899              "Unexpected state of Eden");
4900       if (_eden_chunk_index == 0 ||
4901           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4902            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4903                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4904         _eden_chunk_index++;  // commit sample
4905       }
4906       _eden_chunk_lock->unlock();
4907     }
4908   }
4909 }
4910 
4911 // Return a thread-local PLAB recording array, as appropriate.
4912 void* CMSCollector::get_data_recorder(int thr_num) {
4913   if (_survivor_plab_array != NULL &&
4914       (CMSPLABRecordAlways ||
4915        (_collectorState > Marking && _collectorState < FinalMarking))) {
4916     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4917     ChunkArray* ca = &_survivor_plab_array[thr_num];
4918     ca->reset();   // clear it so that fresh data is recorded
4919     return (void*) ca;
4920   } else {
4921     return NULL;
4922   }
4923 }
4924 
4925 // Reset all the thread-local PLAB recording arrays
4926 void CMSCollector::reset_survivor_plab_arrays() {
4927   for (uint i = 0; i < ParallelGCThreads; i++) {
4928     _survivor_plab_array[i].reset();
4929   }
4930 }
4931 
4932 // Merge the per-thread plab arrays into the global survivor chunk
4933 // array which will provide the partitioning of the survivor space
4934 // for CMS initial scan and rescan.
4935 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4936                                               int no_of_gc_threads) {
4937   assert(_survivor_plab_array  != NULL, "Error");
4938   assert(_survivor_chunk_array != NULL, "Error");
4939   assert(_collectorState == FinalMarking ||
4940          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4941   for (int j = 0; j < no_of_gc_threads; j++) {
4942     _cursor[j] = 0;
4943   }
4944   HeapWord* top = surv->top();
4945   size_t i;
4946   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4947     HeapWord* min_val = top;          // Higher than any PLAB address
4948     uint      min_tid = 0;            // position of min_val this round
4949     for (int j = 0; j < no_of_gc_threads; j++) {
4950       ChunkArray* cur_sca = &_survivor_plab_array[j];
4951       if (_cursor[j] == cur_sca->end()) {
4952         continue;
4953       }
4954       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4955       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4956       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4957       if (cur_val < min_val) {
4958         min_tid = j;
4959         min_val = cur_val;
4960       } else {
4961         assert(cur_val < top, "All recorded addresses should be less");
4962       }
4963     }
4964     // At this point min_val and min_tid are respectively
4965     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4966     // and the thread (j) that witnesses that address.
4967     // We record this address in the _survivor_chunk_array[i]
4968     // and increment _cursor[min_tid] prior to the next round i.
4969     if (min_val == top) {
4970       break;
4971     }
4972     _survivor_chunk_array[i] = min_val;
4973     _cursor[min_tid]++;
4974   }
4975   // We are all done; record the size of the _survivor_chunk_array
4976   _survivor_chunk_index = i; // exclusive: [0, i)
4977   if (PrintCMSStatistics > 0) {
4978     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4979   }
4980   // Verify that we used up all the recorded entries
4981   #ifdef ASSERT
4982     size_t total = 0;
4983     for (int j = 0; j < no_of_gc_threads; j++) {
4984       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4985       total += _cursor[j];
4986     }
4987     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4988     // Check that the merged array is in sorted order
4989     if (total > 0) {
4990       for (size_t i = 0; i < total - 1; i++) {
4991         if (PrintCMSStatistics > 0) {
4992           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4993                               i, p2i(_survivor_chunk_array[i]));
4994         }
4995         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4996                "Not sorted");
4997       }
4998     }
4999   #endif // ASSERT
5000 }
5001 
5002 // Set up the space's par_seq_tasks structure for work claiming
5003 // for parallel initial scan and rescan of young gen.
5004 // See ParRescanTask where this is currently used.
5005 void
5006 CMSCollector::
5007 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5008   assert(n_threads > 0, "Unexpected n_threads argument");
5009 
5010   // Eden space
5011   if (!_young_gen->eden()->is_empty()) {
5012     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5013     assert(!pst->valid(), "Clobbering existing data?");
5014     // Each valid entry in [0, _eden_chunk_index) represents a task.
5015     size_t n_tasks = _eden_chunk_index + 1;
5016     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5017     // Sets the condition for completion of the subtask (how many threads
5018     // need to finish in order to be done).
5019     pst->set_n_threads(n_threads);
5020     pst->set_n_tasks((int)n_tasks);
5021   }
5022 
5023   // Merge the survivor plab arrays into _survivor_chunk_array
5024   if (_survivor_plab_array != NULL) {
5025     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5026   } else {
5027     assert(_survivor_chunk_index == 0, "Error");
5028   }
5029 
5030   // To space
5031   {
5032     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5033     assert(!pst->valid(), "Clobbering existing data?");
5034     // Sets the condition for completion of the subtask (how many threads
5035     // need to finish in order to be done).
5036     pst->set_n_threads(n_threads);
5037     pst->set_n_tasks(1);
5038     assert(pst->valid(), "Error");
5039   }
5040 
5041   // From space
5042   {
5043     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5044     assert(!pst->valid(), "Clobbering existing data?");
5045     size_t n_tasks = _survivor_chunk_index + 1;
5046     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5047     // Sets the condition for completion of the subtask (how many threads
5048     // need to finish in order to be done).
5049     pst->set_n_threads(n_threads);
5050     pst->set_n_tasks((int)n_tasks);
5051     assert(pst->valid(), "Error");
5052   }
5053 }
5054 
5055 // Parallel version of remark
5056 void CMSCollector::do_remark_parallel() {
5057   GenCollectedHeap* gch = GenCollectedHeap::heap();
5058   FlexibleWorkGang* workers = gch->workers();
5059   assert(workers != NULL, "Need parallel worker threads.");
5060   // Choose to use the number of GC workers most recently set
5061   // into "active_workers".  If active_workers is not set, set it
5062   // to ParallelGCThreads.
5063   uint n_workers = workers->active_workers();
5064   if (n_workers == 0) {
5065     assert(n_workers > 0, "Should have been set during scavenge");
5066     n_workers = ParallelGCThreads;
5067     workers->set_active_workers(n_workers);
5068   }
5069   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5070 
5071   CMSParRemarkTask tsk(this,
5072     cms_space,
5073     n_workers, workers, task_queues());
5074 
5075   // Set up for parallel process_roots work.
5076   gch->set_par_threads(n_workers);
5077   // We won't be iterating over the cards in the card table updating
5078   // the younger_gen cards, so we shouldn't call the following else
5079   // the verification code as well as subsequent younger_refs_iterate
5080   // code would get confused. XXX
5081   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5082 
5083   // The young gen rescan work will not be done as part of
5084   // process_roots (which currently doesn't know how to
5085   // parallelize such a scan), but rather will be broken up into
5086   // a set of parallel tasks (via the sampling that the [abortable]
5087   // preclean phase did of eden, plus the [two] tasks of
5088   // scanning the [two] survivor spaces. Further fine-grain
5089   // parallelization of the scanning of the survivor spaces
5090   // themselves, and of precleaning of the younger gen itself
5091   // is deferred to the future.
5092   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5093 
5094   // The dirty card rescan work is broken up into a "sequence"
5095   // of parallel tasks (per constituent space) that are dynamically
5096   // claimed by the parallel threads.
5097   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5098 
5099   // It turns out that even when we're using 1 thread, doing the work in a
5100   // separate thread causes wide variance in run times.  We can't help this
5101   // in the multi-threaded case, but we special-case n=1 here to get
5102   // repeatable measurements of the 1-thread overhead of the parallel code.
5103   if (n_workers > 1) {
5104     // Make refs discovery MT-safe, if it isn't already: it may not
5105     // necessarily be so, since it's possible that we are doing
5106     // ST marking.
5107     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5108     StrongRootsScope srs;
5109     workers->run_task(&tsk);
5110   } else {
5111     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5112     StrongRootsScope srs;
5113     tsk.work(0);
5114   }
5115 
5116   gch->set_par_threads(0);  // 0 ==> non-parallel.
5117   // restore, single-threaded for now, any preserved marks
5118   // as a result of work_q overflow
5119   restore_preserved_marks_if_any();
5120 }
5121 
5122 // Non-parallel version of remark
5123 void CMSCollector::do_remark_non_parallel() {
5124   ResourceMark rm;
5125   HandleMark   hm;
5126   GenCollectedHeap* gch = GenCollectedHeap::heap();
5127   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5128 
5129   MarkRefsIntoAndScanClosure
5130     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5131              &_markStack, this,
5132              false /* should_yield */, false /* not precleaning */);
5133   MarkFromDirtyCardsClosure
5134     markFromDirtyCardsClosure(this, _span,
5135                               NULL,  // space is set further below
5136                               &_markBitMap, &_markStack, &mrias_cl);
5137   {
5138     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5139     // Iterate over the dirty cards, setting the corresponding bits in the
5140     // mod union table.
5141     {
5142       ModUnionClosure modUnionClosure(&_modUnionTable);
5143       _ct->ct_bs()->dirty_card_iterate(
5144                       _cmsGen->used_region(),
5145                       &modUnionClosure);
5146     }
5147     // Having transferred these marks into the modUnionTable, we just need
5148     // to rescan the marked objects on the dirty cards in the modUnionTable.
5149     // The initial marking may have been done during an asynchronous
5150     // collection so there may be dirty bits in the mod-union table.
5151     const int alignment =
5152       CardTableModRefBS::card_size * BitsPerWord;
5153     {
5154       // ... First handle dirty cards in CMS gen
5155       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5156       MemRegion ur = _cmsGen->used_region();
5157       HeapWord* lb = ur.start();
5158       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5159       MemRegion cms_span(lb, ub);
5160       _modUnionTable.dirty_range_iterate_clear(cms_span,
5161                                                &markFromDirtyCardsClosure);
5162       verify_work_stacks_empty();
5163       if (PrintCMSStatistics != 0) {
5164         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5165           markFromDirtyCardsClosure.num_dirty_cards());
5166       }
5167     }
5168   }
5169   if (VerifyDuringGC &&
5170       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5171     HandleMark hm;  // Discard invalid handles created during verification
5172     Universe::verify();
5173   }
5174   {
5175     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5176 
5177     verify_work_stacks_empty();
5178 
5179     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5180     StrongRootsScope srs;
5181 
5182     gch->gen_process_roots(_cmsGen->level(),
5183                            true,  // younger gens as roots
5184                            false, // use the local StrongRootsScope
5185                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5186                            should_unload_classes(),
5187                            &mrias_cl,
5188                            NULL,
5189                            NULL); // The dirty klasses will be handled below
5190 
5191     assert(should_unload_classes()
5192            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5193            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5194   }
5195 
5196   {
5197     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5198 
5199     verify_work_stacks_empty();
5200 
5201     // Scan all class loader data objects that might have been introduced
5202     // during concurrent marking.
5203     ResourceMark rm;
5204     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5205     for (int i = 0; i < array->length(); i++) {
5206       mrias_cl.do_class_loader_data(array->at(i));
5207     }
5208 
5209     // We don't need to keep track of new CLDs anymore.
5210     ClassLoaderDataGraph::remember_new_clds(false);
5211 
5212     verify_work_stacks_empty();
5213   }
5214 
5215   {
5216     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5217 
5218     verify_work_stacks_empty();
5219 
5220     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5221     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5222 
5223     verify_work_stacks_empty();
5224   }
5225 
5226   // We might have added oops to ClassLoaderData::_handles during the
5227   // concurrent marking phase. These oops point to newly allocated objects
5228   // that are guaranteed to be kept alive. Either by the direct allocation
5229   // code, or when the young collector processes the roots. Hence,
5230   // we don't have to revisit the _handles block during the remark phase.
5231 
5232   verify_work_stacks_empty();
5233   // Restore evacuated mark words, if any, used for overflow list links
5234   if (!CMSOverflowEarlyRestoration) {
5235     restore_preserved_marks_if_any();
5236   }
5237   verify_overflow_empty();
5238 }
5239 
5240 ////////////////////////////////////////////////////////
5241 // Parallel Reference Processing Task Proxy Class
5242 ////////////////////////////////////////////////////////
5243 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5244   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5245   CMSCollector*          _collector;
5246   CMSBitMap*             _mark_bit_map;
5247   const MemRegion        _span;
5248   ProcessTask&           _task;
5249 
5250 public:
5251   CMSRefProcTaskProxy(ProcessTask&     task,
5252                       CMSCollector*    collector,
5253                       const MemRegion& span,
5254                       CMSBitMap*       mark_bit_map,
5255                       AbstractWorkGang* workers,
5256                       OopTaskQueueSet* task_queues):
5257     // XXX Should superclass AGTWOQ also know about AWG since it knows
5258     // about the task_queues used by the AWG? Then it could initialize
5259     // the terminator() object. See 6984287. The set_for_termination()
5260     // below is a temporary band-aid for the regression in 6984287.
5261     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5262       task_queues),
5263     _task(task),
5264     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5265   {
5266     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5267            "Inconsistency in _span");
5268     set_for_termination(workers->active_workers());
5269   }
5270 
5271   OopTaskQueueSet* task_queues() { return queues(); }
5272 
5273   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5274 
5275   void do_work_steal(int i,
5276                      CMSParDrainMarkingStackClosure* drain,
5277                      CMSParKeepAliveClosure* keep_alive,
5278                      int* seed);
5279 
5280   virtual void work(uint worker_id);
5281 };
5282 
5283 void CMSRefProcTaskProxy::work(uint worker_id) {
5284   ResourceMark rm;
5285   HandleMark hm;
5286   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5287   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5288                                         _mark_bit_map,
5289                                         work_queue(worker_id));
5290   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5291                                                  _mark_bit_map,
5292                                                  work_queue(worker_id));
5293   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5294   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5295   if (_task.marks_oops_alive()) {
5296     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5297                   _collector->hash_seed(worker_id));
5298   }
5299   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5300   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5301 }
5302 
5303 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5304   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5305   EnqueueTask& _task;
5306 
5307 public:
5308   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5309     : AbstractGangTask("Enqueue reference objects in parallel"),
5310       _task(task)
5311   { }
5312 
5313   virtual void work(uint worker_id)
5314   {
5315     _task.work(worker_id);
5316   }
5317 };
5318 
5319 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5320   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5321    _span(span),
5322    _bit_map(bit_map),
5323    _work_queue(work_queue),
5324    _mark_and_push(collector, span, bit_map, work_queue),
5325    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5326                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5327 { }
5328 
5329 // . see if we can share work_queues with ParNew? XXX
5330 void CMSRefProcTaskProxy::do_work_steal(int i,
5331   CMSParDrainMarkingStackClosure* drain,
5332   CMSParKeepAliveClosure* keep_alive,
5333   int* seed) {
5334   OopTaskQueue* work_q = work_queue(i);
5335   NOT_PRODUCT(int num_steals = 0;)
5336   oop obj_to_scan;
5337 
5338   while (true) {
5339     // Completely finish any left over work from (an) earlier round(s)
5340     drain->trim_queue(0);
5341     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5342                                          (size_t)ParGCDesiredObjsFromOverflowList);
5343     // Now check if there's any work in the overflow list
5344     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5345     // only affects the number of attempts made to get work from the
5346     // overflow list and does not affect the number of workers.  Just
5347     // pass ParallelGCThreads so this behavior is unchanged.
5348     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5349                                                 work_q,
5350                                                 ParallelGCThreads)) {
5351       // Found something in global overflow list;
5352       // not yet ready to go stealing work from others.
5353       // We'd like to assert(work_q->size() != 0, ...)
5354       // because we just took work from the overflow list,
5355       // but of course we can't, since all of that might have
5356       // been already stolen from us.
5357       continue;
5358     }
5359     // Verify that we have no work before we resort to stealing
5360     assert(work_q->size() == 0, "Have work, shouldn't steal");
5361     // Try to steal from other queues that have work
5362     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5363       NOT_PRODUCT(num_steals++;)
5364       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5365       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5366       // Do scanning work
5367       obj_to_scan->oop_iterate(keep_alive);
5368       // Loop around, finish this work, and try to steal some more
5369     } else if (terminator()->offer_termination()) {
5370       break;  // nirvana from the infinite cycle
5371     }
5372   }
5373   NOT_PRODUCT(
5374     if (PrintCMSStatistics != 0) {
5375       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5376     }
5377   )
5378 }
5379 
5380 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5381 {
5382   GenCollectedHeap* gch = GenCollectedHeap::heap();
5383   FlexibleWorkGang* workers = gch->workers();
5384   assert(workers != NULL, "Need parallel worker threads.");
5385   CMSRefProcTaskProxy rp_task(task, &_collector,
5386                               _collector.ref_processor()->span(),
5387                               _collector.markBitMap(),
5388                               workers, _collector.task_queues());
5389   workers->run_task(&rp_task);
5390 }
5391 
5392 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5393 {
5394 
5395   GenCollectedHeap* gch = GenCollectedHeap::heap();
5396   FlexibleWorkGang* workers = gch->workers();
5397   assert(workers != NULL, "Need parallel worker threads.");
5398   CMSRefEnqueueTaskProxy enq_task(task);
5399   workers->run_task(&enq_task);
5400 }
5401 
5402 void CMSCollector::refProcessingWork() {
5403   ResourceMark rm;
5404   HandleMark   hm;
5405 
5406   ReferenceProcessor* rp = ref_processor();
5407   assert(rp->span().equals(_span), "Spans should be equal");
5408   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5409   // Process weak references.
5410   rp->setup_policy(false);
5411   verify_work_stacks_empty();
5412 
5413   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5414                                           &_markStack, false /* !preclean */);
5415   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5416                                 _span, &_markBitMap, &_markStack,
5417                                 &cmsKeepAliveClosure, false /* !preclean */);
5418   {
5419     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5420 
5421     ReferenceProcessorStats stats;
5422     if (rp->processing_is_mt()) {
5423       // Set the degree of MT here.  If the discovery is done MT, there
5424       // may have been a different number of threads doing the discovery
5425       // and a different number of discovered lists may have Ref objects.
5426       // That is OK as long as the Reference lists are balanced (see
5427       // balance_all_queues() and balance_queues()).
5428       GenCollectedHeap* gch = GenCollectedHeap::heap();
5429       uint active_workers = ParallelGCThreads;
5430       FlexibleWorkGang* workers = gch->workers();
5431       if (workers != NULL) {
5432         active_workers = workers->active_workers();
5433         // The expectation is that active_workers will have already
5434         // been set to a reasonable value.  If it has not been set,
5435         // investigate.
5436         assert(active_workers > 0, "Should have been set during scavenge");
5437       }
5438       rp->set_active_mt_degree(active_workers);
5439       CMSRefProcTaskExecutor task_executor(*this);
5440       stats = rp->process_discovered_references(&_is_alive_closure,
5441                                         &cmsKeepAliveClosure,
5442                                         &cmsDrainMarkingStackClosure,
5443                                         &task_executor,
5444                                         _gc_timer_cm,
5445                                         _gc_tracer_cm->gc_id());
5446     } else {
5447       stats = rp->process_discovered_references(&_is_alive_closure,
5448                                         &cmsKeepAliveClosure,
5449                                         &cmsDrainMarkingStackClosure,
5450                                         NULL,
5451                                         _gc_timer_cm,
5452                                         _gc_tracer_cm->gc_id());
5453     }
5454     _gc_tracer_cm->report_gc_reference_stats(stats);
5455 
5456   }
5457 
5458   // This is the point where the entire marking should have completed.
5459   verify_work_stacks_empty();
5460 
5461   if (should_unload_classes()) {
5462     {
5463       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5464 
5465       // Unload classes and purge the SystemDictionary.
5466       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5467 
5468       // Unload nmethods.
5469       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5470 
5471       // Prune dead klasses from subklass/sibling/implementor lists.
5472       Klass::clean_weak_klass_links(&_is_alive_closure);
5473     }
5474 
5475     {
5476       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5477       // Clean up unreferenced symbols in symbol table.
5478       SymbolTable::unlink();
5479     }
5480 
5481     {
5482       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5483       // Delete entries for dead interned strings.
5484       StringTable::unlink(&_is_alive_closure);
5485     }
5486   }
5487 
5488 
5489   // Restore any preserved marks as a result of mark stack or
5490   // work queue overflow
5491   restore_preserved_marks_if_any();  // done single-threaded for now
5492 
5493   rp->set_enqueuing_is_done(true);
5494   if (rp->processing_is_mt()) {
5495     rp->balance_all_queues();
5496     CMSRefProcTaskExecutor task_executor(*this);
5497     rp->enqueue_discovered_references(&task_executor);
5498   } else {
5499     rp->enqueue_discovered_references(NULL);
5500   }
5501   rp->verify_no_references_recorded();
5502   assert(!rp->discovery_enabled(), "should have been disabled");
5503 }
5504 
5505 #ifndef PRODUCT
5506 void CMSCollector::check_correct_thread_executing() {
5507   Thread* t = Thread::current();
5508   // Only the VM thread or the CMS thread should be here.
5509   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5510          "Unexpected thread type");
5511   // If this is the vm thread, the foreground process
5512   // should not be waiting.  Note that _foregroundGCIsActive is
5513   // true while the foreground collector is waiting.
5514   if (_foregroundGCShouldWait) {
5515     // We cannot be the VM thread
5516     assert(t->is_ConcurrentGC_thread(),
5517            "Should be CMS thread");
5518   } else {
5519     // We can be the CMS thread only if we are in a stop-world
5520     // phase of CMS collection.
5521     if (t->is_ConcurrentGC_thread()) {
5522       assert(_collectorState == InitialMarking ||
5523              _collectorState == FinalMarking,
5524              "Should be a stop-world phase");
5525       // The CMS thread should be holding the CMS_token.
5526       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5527              "Potential interference with concurrently "
5528              "executing VM thread");
5529     }
5530   }
5531 }
5532 #endif
5533 
5534 void CMSCollector::sweep() {
5535   assert(_collectorState == Sweeping, "just checking");
5536   check_correct_thread_executing();
5537   verify_work_stacks_empty();
5538   verify_overflow_empty();
5539   increment_sweep_count();
5540   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5541 
5542   _inter_sweep_timer.stop();
5543   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5544 
5545   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5546   _intra_sweep_timer.reset();
5547   _intra_sweep_timer.start();
5548   {
5549     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5550     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5551     // First sweep the old gen
5552     {
5553       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5554                                bitMapLock());
5555       sweepWork(_cmsGen);
5556     }
5557 
5558     // Update Universe::_heap_*_at_gc figures.
5559     // We need all the free list locks to make the abstract state
5560     // transition from Sweeping to Resetting. See detailed note
5561     // further below.
5562     {
5563       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5564       // Update heap occupancy information which is used as
5565       // input to soft ref clearing policy at the next gc.
5566       Universe::update_heap_info_at_gc();
5567       _collectorState = Resizing;
5568     }
5569   }
5570   verify_work_stacks_empty();
5571   verify_overflow_empty();
5572 
5573   if (should_unload_classes()) {
5574     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5575     // requires that the virtual spaces are stable and not deleted.
5576     ClassLoaderDataGraph::set_should_purge(true);
5577   }
5578 
5579   _intra_sweep_timer.stop();
5580   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5581 
5582   _inter_sweep_timer.reset();
5583   _inter_sweep_timer.start();
5584 
5585   // We need to use a monotonically non-decreasing time in ms
5586   // or we will see time-warp warnings and os::javaTimeMillis()
5587   // does not guarantee monotonicity.
5588   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5589   update_time_of_last_gc(now);
5590 
5591   // NOTE on abstract state transitions:
5592   // Mutators allocate-live and/or mark the mod-union table dirty
5593   // based on the state of the collection.  The former is done in
5594   // the interval [Marking, Sweeping] and the latter in the interval
5595   // [Marking, Sweeping).  Thus the transitions into the Marking state
5596   // and out of the Sweeping state must be synchronously visible
5597   // globally to the mutators.
5598   // The transition into the Marking state happens with the world
5599   // stopped so the mutators will globally see it.  Sweeping is
5600   // done asynchronously by the background collector so the transition
5601   // from the Sweeping state to the Resizing state must be done
5602   // under the freelistLock (as is the check for whether to
5603   // allocate-live and whether to dirty the mod-union table).
5604   assert(_collectorState == Resizing, "Change of collector state to"
5605     " Resizing must be done under the freelistLocks (plural)");
5606 
5607   // Now that sweeping has been completed, we clear
5608   // the incremental_collection_failed flag,
5609   // thus inviting a younger gen collection to promote into
5610   // this generation. If such a promotion may still fail,
5611   // the flag will be set again when a young collection is
5612   // attempted.
5613   GenCollectedHeap* gch = GenCollectedHeap::heap();
5614   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5615   gch->update_full_collections_completed(_collection_count_start);
5616 }
5617 
5618 // FIX ME!!! Looks like this belongs in CFLSpace, with
5619 // CMSGen merely delegating to it.
5620 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5621   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5622   HeapWord*  minAddr        = _cmsSpace->bottom();
5623   HeapWord*  largestAddr    =
5624     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5625   if (largestAddr == NULL) {
5626     // The dictionary appears to be empty.  In this case
5627     // try to coalesce at the end of the heap.
5628     largestAddr = _cmsSpace->end();
5629   }
5630   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5631   size_t nearLargestOffset =
5632     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5633   if (PrintFLSStatistics != 0) {
5634     gclog_or_tty->print_cr(
5635       "CMS: Large Block: " PTR_FORMAT ";"
5636       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5637       p2i(largestAddr),
5638       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5639   }
5640   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5641 }
5642 
5643 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5644   return addr >= _cmsSpace->nearLargestChunk();
5645 }
5646 
5647 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5648   return _cmsSpace->find_chunk_at_end();
5649 }
5650 
5651 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
5652                                                     bool full) {
5653   // The next lower level has been collected.  Gather any statistics
5654   // that are of interest at this point.
5655   if (!full && (current_level + 1) == level()) {
5656     // Gather statistics on the young generation collection.
5657     collector()->stats().record_gc0_end(used());
5658   }
5659 }
5660 
5661 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5662   // We iterate over the space(s) underlying this generation,
5663   // checking the mark bit map to see if the bits corresponding
5664   // to specific blocks are marked or not. Blocks that are
5665   // marked are live and are not swept up. All remaining blocks
5666   // are swept up, with coalescing on-the-fly as we sweep up
5667   // contiguous free and/or garbage blocks:
5668   // We need to ensure that the sweeper synchronizes with allocators
5669   // and stop-the-world collectors. In particular, the following
5670   // locks are used:
5671   // . CMS token: if this is held, a stop the world collection cannot occur
5672   // . freelistLock: if this is held no allocation can occur from this
5673   //                 generation by another thread
5674   // . bitMapLock: if this is held, no other thread can access or update
5675   //
5676 
5677   // Note that we need to hold the freelistLock if we use
5678   // block iterate below; else the iterator might go awry if
5679   // a mutator (or promotion) causes block contents to change
5680   // (for instance if the allocator divvies up a block).
5681   // If we hold the free list lock, for all practical purposes
5682   // young generation GC's can't occur (they'll usually need to
5683   // promote), so we might as well prevent all young generation
5684   // GC's while we do a sweeping step. For the same reason, we might
5685   // as well take the bit map lock for the entire duration
5686 
5687   // check that we hold the requisite locks
5688   assert(have_cms_token(), "Should hold cms token");
5689   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5690   assert_lock_strong(gen->freelistLock());
5691   assert_lock_strong(bitMapLock());
5692 
5693   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5694   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5695   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5696                                       _inter_sweep_estimate.padded_average(),
5697                                       _intra_sweep_estimate.padded_average());
5698   gen->setNearLargestChunk();
5699 
5700   {
5701     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5702     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5703     // We need to free-up/coalesce garbage/blocks from a
5704     // co-terminal free run. This is done in the SweepClosure
5705     // destructor; so, do not remove this scope, else the
5706     // end-of-sweep-census below will be off by a little bit.
5707   }
5708   gen->cmsSpace()->sweep_completed();
5709   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5710   if (should_unload_classes()) {                // unloaded classes this cycle,
5711     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5712   } else {                                      // did not unload classes,
5713     _concurrent_cycles_since_last_unload++;     // ... increment count
5714   }
5715 }
5716 
5717 // Reset CMS data structures (for now just the marking bit map)
5718 // preparatory for the next cycle.
5719 void CMSCollector::reset(bool concurrent) {
5720   if (concurrent) {
5721     CMSTokenSyncWithLocks ts(true, bitMapLock());
5722 
5723     // If the state is not "Resetting", the foreground  thread
5724     // has done a collection and the resetting.
5725     if (_collectorState != Resetting) {
5726       assert(_collectorState == Idling, "The state should only change"
5727         " because the foreground collector has finished the collection");
5728       return;
5729     }
5730 
5731     // Clear the mark bitmap (no grey objects to start with)
5732     // for the next cycle.
5733     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5734     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5735 
5736     HeapWord* curAddr = _markBitMap.startWord();
5737     while (curAddr < _markBitMap.endWord()) {
5738       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5739       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5740       _markBitMap.clear_large_range(chunk);
5741       if (ConcurrentMarkSweepThread::should_yield() &&
5742           !foregroundGCIsActive() &&
5743           CMSYield) {
5744         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5745                "CMS thread should hold CMS token");
5746         assert_lock_strong(bitMapLock());
5747         bitMapLock()->unlock();
5748         ConcurrentMarkSweepThread::desynchronize(true);
5749         stopTimer();
5750         if (PrintCMSStatistics != 0) {
5751           incrementYields();
5752         }
5753 
5754         // See the comment in coordinator_yield()
5755         for (unsigned i = 0; i < CMSYieldSleepCount &&
5756                          ConcurrentMarkSweepThread::should_yield() &&
5757                          !CMSCollector::foregroundGCIsActive(); ++i) {
5758           os::sleep(Thread::current(), 1, false);
5759         }
5760 
5761         ConcurrentMarkSweepThread::synchronize(true);
5762         bitMapLock()->lock_without_safepoint_check();
5763         startTimer();
5764       }
5765       curAddr = chunk.end();
5766     }
5767     // A successful mostly concurrent collection has been done.
5768     // Because only the full (i.e., concurrent mode failure) collections
5769     // are being measured for gc overhead limits, clean the "near" flag
5770     // and count.
5771     size_policy()->reset_gc_overhead_limit_count();
5772     _collectorState = Idling;
5773   } else {
5774     // already have the lock
5775     assert(_collectorState == Resetting, "just checking");
5776     assert_lock_strong(bitMapLock());
5777     _markBitMap.clear_all();
5778     _collectorState = Idling;
5779   }
5780 
5781   register_gc_end();
5782 }
5783 
5784 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5785   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5786   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5787   TraceCollectorStats tcs(counters());
5788 
5789   switch (op) {
5790     case CMS_op_checkpointRootsInitial: {
5791       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5792       checkpointRootsInitial();
5793       if (PrintGC) {
5794         _cmsGen->printOccupancy("initial-mark");
5795       }
5796       break;
5797     }
5798     case CMS_op_checkpointRootsFinal: {
5799       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5800       checkpointRootsFinal();
5801       if (PrintGC) {
5802         _cmsGen->printOccupancy("remark");
5803       }
5804       break;
5805     }
5806     default:
5807       fatal("No such CMS_op");
5808   }
5809 }
5810 
5811 #ifndef PRODUCT
5812 size_t const CMSCollector::skip_header_HeapWords() {
5813   return FreeChunk::header_size();
5814 }
5815 
5816 // Try and collect here conditions that should hold when
5817 // CMS thread is exiting. The idea is that the foreground GC
5818 // thread should not be blocked if it wants to terminate
5819 // the CMS thread and yet continue to run the VM for a while
5820 // after that.
5821 void CMSCollector::verify_ok_to_terminate() const {
5822   assert(Thread::current()->is_ConcurrentGC_thread(),
5823          "should be called by CMS thread");
5824   assert(!_foregroundGCShouldWait, "should be false");
5825   // We could check here that all the various low-level locks
5826   // are not held by the CMS thread, but that is overkill; see
5827   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5828   // is checked.
5829 }
5830 #endif
5831 
5832 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5833    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5834           "missing Printezis mark?");
5835   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5836   size_t size = pointer_delta(nextOneAddr + 1, addr);
5837   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5838          "alignment problem");
5839   assert(size >= 3, "Necessary for Printezis marks to work");
5840   return size;
5841 }
5842 
5843 // A variant of the above (block_size_using_printezis_bits()) except
5844 // that we return 0 if the P-bits are not yet set.
5845 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5846   if (_markBitMap.isMarked(addr + 1)) {
5847     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5848     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5849     size_t size = pointer_delta(nextOneAddr + 1, addr);
5850     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5851            "alignment problem");
5852     assert(size >= 3, "Necessary for Printezis marks to work");
5853     return size;
5854   }
5855   return 0;
5856 }
5857 
5858 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5859   size_t sz = 0;
5860   oop p = (oop)addr;
5861   if (p->klass_or_null() != NULL) {
5862     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5863   } else {
5864     sz = block_size_using_printezis_bits(addr);
5865   }
5866   assert(sz > 0, "size must be nonzero");
5867   HeapWord* next_block = addr + sz;
5868   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5869                                              CardTableModRefBS::card_size);
5870   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5871          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5872          "must be different cards");
5873   return next_card;
5874 }
5875 
5876 
5877 // CMS Bit Map Wrapper /////////////////////////////////////////
5878 
5879 // Construct a CMS bit map infrastructure, but don't create the
5880 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5881 // further below.
5882 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5883   _bm(),
5884   _shifter(shifter),
5885   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5886                                     Monitor::_safepoint_check_sometimes) : NULL)
5887 {
5888   _bmStartWord = 0;
5889   _bmWordSize  = 0;
5890 }
5891 
5892 bool CMSBitMap::allocate(MemRegion mr) {
5893   _bmStartWord = mr.start();
5894   _bmWordSize  = mr.word_size();
5895   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5896                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5897   if (!brs.is_reserved()) {
5898     warning("CMS bit map allocation failure");
5899     return false;
5900   }
5901   // For now we'll just commit all of the bit map up front.
5902   // Later on we'll try to be more parsimonious with swap.
5903   if (!_virtual_space.initialize(brs, brs.size())) {
5904     warning("CMS bit map backing store failure");
5905     return false;
5906   }
5907   assert(_virtual_space.committed_size() == brs.size(),
5908          "didn't reserve backing store for all of CMS bit map?");
5909   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5910   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5911          _bmWordSize, "inconsistency in bit map sizing");
5912   _bm.set_size(_bmWordSize >> _shifter);
5913 
5914   // bm.clear(); // can we rely on getting zero'd memory? verify below
5915   assert(isAllClear(),
5916          "Expected zero'd memory from ReservedSpace constructor");
5917   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5918          "consistency check");
5919   return true;
5920 }
5921 
5922 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5923   HeapWord *next_addr, *end_addr, *last_addr;
5924   assert_locked();
5925   assert(covers(mr), "out-of-range error");
5926   // XXX assert that start and end are appropriately aligned
5927   for (next_addr = mr.start(), end_addr = mr.end();
5928        next_addr < end_addr; next_addr = last_addr) {
5929     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5930     last_addr = dirty_region.end();
5931     if (!dirty_region.is_empty()) {
5932       cl->do_MemRegion(dirty_region);
5933     } else {
5934       assert(last_addr == end_addr, "program logic");
5935       return;
5936     }
5937   }
5938 }
5939 
5940 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5941   _bm.print_on_error(st, prefix);
5942 }
5943 
5944 #ifndef PRODUCT
5945 void CMSBitMap::assert_locked() const {
5946   CMSLockVerifier::assert_locked(lock());
5947 }
5948 
5949 bool CMSBitMap::covers(MemRegion mr) const {
5950   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5951   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5952          "size inconsistency");
5953   return (mr.start() >= _bmStartWord) &&
5954          (mr.end()   <= endWord());
5955 }
5956 
5957 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5958     return (start >= _bmStartWord && (start + size) <= endWord());
5959 }
5960 
5961 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5962   // verify that there are no 1 bits in the interval [left, right)
5963   FalseBitMapClosure falseBitMapClosure;
5964   iterate(&falseBitMapClosure, left, right);
5965 }
5966 
5967 void CMSBitMap::region_invariant(MemRegion mr)
5968 {
5969   assert_locked();
5970   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5971   assert(!mr.is_empty(), "unexpected empty region");
5972   assert(covers(mr), "mr should be covered by bit map");
5973   // convert address range into offset range
5974   size_t start_ofs = heapWordToOffset(mr.start());
5975   // Make sure that end() is appropriately aligned
5976   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5977                         (1 << (_shifter+LogHeapWordSize))),
5978          "Misaligned mr.end()");
5979   size_t end_ofs   = heapWordToOffset(mr.end());
5980   assert(end_ofs > start_ofs, "Should mark at least one bit");
5981 }
5982 
5983 #endif
5984 
5985 bool CMSMarkStack::allocate(size_t size) {
5986   // allocate a stack of the requisite depth
5987   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5988                    size * sizeof(oop)));
5989   if (!rs.is_reserved()) {
5990     warning("CMSMarkStack allocation failure");
5991     return false;
5992   }
5993   if (!_virtual_space.initialize(rs, rs.size())) {
5994     warning("CMSMarkStack backing store failure");
5995     return false;
5996   }
5997   assert(_virtual_space.committed_size() == rs.size(),
5998          "didn't reserve backing store for all of CMS stack?");
5999   _base = (oop*)(_virtual_space.low());
6000   _index = 0;
6001   _capacity = size;
6002   NOT_PRODUCT(_max_depth = 0);
6003   return true;
6004 }
6005 
6006 // XXX FIX ME !!! In the MT case we come in here holding a
6007 // leaf lock. For printing we need to take a further lock
6008 // which has lower rank. We need to recalibrate the two
6009 // lock-ranks involved in order to be able to print the
6010 // messages below. (Or defer the printing to the caller.
6011 // For now we take the expedient path of just disabling the
6012 // messages for the problematic case.)
6013 void CMSMarkStack::expand() {
6014   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6015   if (_capacity == MarkStackSizeMax) {
6016     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6017       // We print a warning message only once per CMS cycle.
6018       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6019     }
6020     return;
6021   }
6022   // Double capacity if possible
6023   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6024   // Do not give up existing stack until we have managed to
6025   // get the double capacity that we desired.
6026   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6027                    new_capacity * sizeof(oop)));
6028   if (rs.is_reserved()) {
6029     // Release the backing store associated with old stack
6030     _virtual_space.release();
6031     // Reinitialize virtual space for new stack
6032     if (!_virtual_space.initialize(rs, rs.size())) {
6033       fatal("Not enough swap for expanded marking stack");
6034     }
6035     _base = (oop*)(_virtual_space.low());
6036     _index = 0;
6037     _capacity = new_capacity;
6038   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6039     // Failed to double capacity, continue;
6040     // we print a detail message only once per CMS cycle.
6041     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6042             SIZE_FORMAT "K",
6043             _capacity / K, new_capacity / K);
6044   }
6045 }
6046 
6047 
6048 // Closures
6049 // XXX: there seems to be a lot of code  duplication here;
6050 // should refactor and consolidate common code.
6051 
6052 // This closure is used to mark refs into the CMS generation in
6053 // the CMS bit map. Called at the first checkpoint. This closure
6054 // assumes that we do not need to re-mark dirty cards; if the CMS
6055 // generation on which this is used is not an oldest
6056 // generation then this will lose younger_gen cards!
6057 
6058 MarkRefsIntoClosure::MarkRefsIntoClosure(
6059   MemRegion span, CMSBitMap* bitMap):
6060     _span(span),
6061     _bitMap(bitMap)
6062 {
6063     assert(_ref_processor == NULL, "deliberately left NULL");
6064     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6065 }
6066 
6067 void MarkRefsIntoClosure::do_oop(oop obj) {
6068   // if p points into _span, then mark corresponding bit in _markBitMap
6069   assert(obj->is_oop(), "expected an oop");
6070   HeapWord* addr = (HeapWord*)obj;
6071   if (_span.contains(addr)) {
6072     // this should be made more efficient
6073     _bitMap->mark(addr);
6074   }
6075 }
6076 
6077 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6078 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6079 
6080 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6081   MemRegion span, CMSBitMap* bitMap):
6082     _span(span),
6083     _bitMap(bitMap)
6084 {
6085     assert(_ref_processor == NULL, "deliberately left NULL");
6086     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6087 }
6088 
6089 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6090   // if p points into _span, then mark corresponding bit in _markBitMap
6091   assert(obj->is_oop(), "expected an oop");
6092   HeapWord* addr = (HeapWord*)obj;
6093   if (_span.contains(addr)) {
6094     // this should be made more efficient
6095     _bitMap->par_mark(addr);
6096   }
6097 }
6098 
6099 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6100 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6101 
6102 // A variant of the above, used for CMS marking verification.
6103 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6104   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6105     _span(span),
6106     _verification_bm(verification_bm),
6107     _cms_bm(cms_bm)
6108 {
6109     assert(_ref_processor == NULL, "deliberately left NULL");
6110     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6111 }
6112 
6113 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6114   // if p points into _span, then mark corresponding bit in _markBitMap
6115   assert(obj->is_oop(), "expected an oop");
6116   HeapWord* addr = (HeapWord*)obj;
6117   if (_span.contains(addr)) {
6118     _verification_bm->mark(addr);
6119     if (!_cms_bm->isMarked(addr)) {
6120       oop(addr)->print();
6121       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6122       fatal("... aborting");
6123     }
6124   }
6125 }
6126 
6127 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6128 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6129 
6130 //////////////////////////////////////////////////
6131 // MarkRefsIntoAndScanClosure
6132 //////////////////////////////////////////////////
6133 
6134 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6135                                                        ReferenceProcessor* rp,
6136                                                        CMSBitMap* bit_map,
6137                                                        CMSBitMap* mod_union_table,
6138                                                        CMSMarkStack*  mark_stack,
6139                                                        CMSCollector* collector,
6140                                                        bool should_yield,
6141                                                        bool concurrent_precleaning):
6142   _collector(collector),
6143   _span(span),
6144   _bit_map(bit_map),
6145   _mark_stack(mark_stack),
6146   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6147                       mark_stack, concurrent_precleaning),
6148   _yield(should_yield),
6149   _concurrent_precleaning(concurrent_precleaning),
6150   _freelistLock(NULL)
6151 {
6152   _ref_processor = rp;
6153   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6154 }
6155 
6156 // This closure is used to mark refs into the CMS generation at the
6157 // second (final) checkpoint, and to scan and transitively follow
6158 // the unmarked oops. It is also used during the concurrent precleaning
6159 // phase while scanning objects on dirty cards in the CMS generation.
6160 // The marks are made in the marking bit map and the marking stack is
6161 // used for keeping the (newly) grey objects during the scan.
6162 // The parallel version (Par_...) appears further below.
6163 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6164   if (obj != NULL) {
6165     assert(obj->is_oop(), "expected an oop");
6166     HeapWord* addr = (HeapWord*)obj;
6167     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6168     assert(_collector->overflow_list_is_empty(),
6169            "overflow list should be empty");
6170     if (_span.contains(addr) &&
6171         !_bit_map->isMarked(addr)) {
6172       // mark bit map (object is now grey)
6173       _bit_map->mark(addr);
6174       // push on marking stack (stack should be empty), and drain the
6175       // stack by applying this closure to the oops in the oops popped
6176       // from the stack (i.e. blacken the grey objects)
6177       bool res = _mark_stack->push(obj);
6178       assert(res, "Should have space to push on empty stack");
6179       do {
6180         oop new_oop = _mark_stack->pop();
6181         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6182         assert(_bit_map->isMarked((HeapWord*)new_oop),
6183                "only grey objects on this stack");
6184         // iterate over the oops in this oop, marking and pushing
6185         // the ones in CMS heap (i.e. in _span).
6186         new_oop->oop_iterate(&_pushAndMarkClosure);
6187         // check if it's time to yield
6188         do_yield_check();
6189       } while (!_mark_stack->isEmpty() ||
6190                (!_concurrent_precleaning && take_from_overflow_list()));
6191         // if marking stack is empty, and we are not doing this
6192         // during precleaning, then check the overflow list
6193     }
6194     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6195     assert(_collector->overflow_list_is_empty(),
6196            "overflow list was drained above");
6197     // We could restore evacuated mark words, if any, used for
6198     // overflow list links here because the overflow list is
6199     // provably empty here. That would reduce the maximum
6200     // size requirements for preserved_{oop,mark}_stack.
6201     // But we'll just postpone it until we are all done
6202     // so we can just stream through.
6203     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6204       _collector->restore_preserved_marks_if_any();
6205       assert(_collector->no_preserved_marks(), "No preserved marks");
6206     }
6207     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6208            "All preserved marks should have been restored above");
6209   }
6210 }
6211 
6212 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6213 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6214 
6215 void MarkRefsIntoAndScanClosure::do_yield_work() {
6216   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6217          "CMS thread should hold CMS token");
6218   assert_lock_strong(_freelistLock);
6219   assert_lock_strong(_bit_map->lock());
6220   // relinquish the free_list_lock and bitMaplock()
6221   _bit_map->lock()->unlock();
6222   _freelistLock->unlock();
6223   ConcurrentMarkSweepThread::desynchronize(true);
6224   _collector->stopTimer();
6225   if (PrintCMSStatistics != 0) {
6226     _collector->incrementYields();
6227   }
6228 
6229   // See the comment in coordinator_yield()
6230   for (unsigned i = 0;
6231        i < CMSYieldSleepCount &&
6232        ConcurrentMarkSweepThread::should_yield() &&
6233        !CMSCollector::foregroundGCIsActive();
6234        ++i) {
6235     os::sleep(Thread::current(), 1, false);
6236   }
6237 
6238   ConcurrentMarkSweepThread::synchronize(true);
6239   _freelistLock->lock_without_safepoint_check();
6240   _bit_map->lock()->lock_without_safepoint_check();
6241   _collector->startTimer();
6242 }
6243 
6244 ///////////////////////////////////////////////////////////
6245 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6246 //                                 MarkRefsIntoAndScanClosure
6247 ///////////////////////////////////////////////////////////
6248 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6249   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6250   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6251   _span(span),
6252   _bit_map(bit_map),
6253   _work_queue(work_queue),
6254   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6255                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6256   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6257 {
6258   _ref_processor = rp;
6259   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6260 }
6261 
6262 // This closure is used to mark refs into the CMS generation at the
6263 // second (final) checkpoint, and to scan and transitively follow
6264 // the unmarked oops. The marks are made in the marking bit map and
6265 // the work_queue is used for keeping the (newly) grey objects during
6266 // the scan phase whence they are also available for stealing by parallel
6267 // threads. Since the marking bit map is shared, updates are
6268 // synchronized (via CAS).
6269 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6270   if (obj != NULL) {
6271     // Ignore mark word because this could be an already marked oop
6272     // that may be chained at the end of the overflow list.
6273     assert(obj->is_oop(true), "expected an oop");
6274     HeapWord* addr = (HeapWord*)obj;
6275     if (_span.contains(addr) &&
6276         !_bit_map->isMarked(addr)) {
6277       // mark bit map (object will become grey):
6278       // It is possible for several threads to be
6279       // trying to "claim" this object concurrently;
6280       // the unique thread that succeeds in marking the
6281       // object first will do the subsequent push on
6282       // to the work queue (or overflow list).
6283       if (_bit_map->par_mark(addr)) {
6284         // push on work_queue (which may not be empty), and trim the
6285         // queue to an appropriate length by applying this closure to
6286         // the oops in the oops popped from the stack (i.e. blacken the
6287         // grey objects)
6288         bool res = _work_queue->push(obj);
6289         assert(res, "Low water mark should be less than capacity?");
6290         trim_queue(_low_water_mark);
6291       } // Else, another thread claimed the object
6292     }
6293   }
6294 }
6295 
6296 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6297 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6298 
6299 // This closure is used to rescan the marked objects on the dirty cards
6300 // in the mod union table and the card table proper.
6301 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6302   oop p, MemRegion mr) {
6303 
6304   size_t size = 0;
6305   HeapWord* addr = (HeapWord*)p;
6306   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6307   assert(_span.contains(addr), "we are scanning the CMS generation");
6308   // check if it's time to yield
6309   if (do_yield_check()) {
6310     // We yielded for some foreground stop-world work,
6311     // and we have been asked to abort this ongoing preclean cycle.
6312     return 0;
6313   }
6314   if (_bitMap->isMarked(addr)) {
6315     // it's marked; is it potentially uninitialized?
6316     if (p->klass_or_null() != NULL) {
6317         // an initialized object; ignore mark word in verification below
6318         // since we are running concurrent with mutators
6319         assert(p->is_oop(true), "should be an oop");
6320         if (p->is_objArray()) {
6321           // objArrays are precisely marked; restrict scanning
6322           // to dirty cards only.
6323           size = CompactibleFreeListSpace::adjustObjectSize(
6324                    p->oop_iterate(_scanningClosure, mr));
6325         } else {
6326           // A non-array may have been imprecisely marked; we need
6327           // to scan object in its entirety.
6328           size = CompactibleFreeListSpace::adjustObjectSize(
6329                    p->oop_iterate(_scanningClosure));
6330         }
6331         #ifdef ASSERT
6332           size_t direct_size =
6333             CompactibleFreeListSpace::adjustObjectSize(p->size());
6334           assert(size == direct_size, "Inconsistency in size");
6335           assert(size >= 3, "Necessary for Printezis marks to work");
6336           if (!_bitMap->isMarked(addr+1)) {
6337             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6338           } else {
6339             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6340             assert(_bitMap->isMarked(addr+size-1),
6341                    "inconsistent Printezis mark");
6342           }
6343         #endif // ASSERT
6344     } else {
6345       // An uninitialized object.
6346       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6347       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6348       size = pointer_delta(nextOneAddr + 1, addr);
6349       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6350              "alignment problem");
6351       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6352       // will dirty the card when the klass pointer is installed in the
6353       // object (signaling the completion of initialization).
6354     }
6355   } else {
6356     // Either a not yet marked object or an uninitialized object
6357     if (p->klass_or_null() == NULL) {
6358       // An uninitialized object, skip to the next card, since
6359       // we may not be able to read its P-bits yet.
6360       assert(size == 0, "Initial value");
6361     } else {
6362       // An object not (yet) reached by marking: we merely need to
6363       // compute its size so as to go look at the next block.
6364       assert(p->is_oop(true), "should be an oop");
6365       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6366     }
6367   }
6368   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6369   return size;
6370 }
6371 
6372 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6373   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6374          "CMS thread should hold CMS token");
6375   assert_lock_strong(_freelistLock);
6376   assert_lock_strong(_bitMap->lock());
6377   // relinquish the free_list_lock and bitMaplock()
6378   _bitMap->lock()->unlock();
6379   _freelistLock->unlock();
6380   ConcurrentMarkSweepThread::desynchronize(true);
6381   _collector->stopTimer();
6382   if (PrintCMSStatistics != 0) {
6383     _collector->incrementYields();
6384   }
6385 
6386   // See the comment in coordinator_yield()
6387   for (unsigned i = 0; i < CMSYieldSleepCount &&
6388                    ConcurrentMarkSweepThread::should_yield() &&
6389                    !CMSCollector::foregroundGCIsActive(); ++i) {
6390     os::sleep(Thread::current(), 1, false);
6391   }
6392 
6393   ConcurrentMarkSweepThread::synchronize(true);
6394   _freelistLock->lock_without_safepoint_check();
6395   _bitMap->lock()->lock_without_safepoint_check();
6396   _collector->startTimer();
6397 }
6398 
6399 
6400 //////////////////////////////////////////////////////////////////
6401 // SurvivorSpacePrecleanClosure
6402 //////////////////////////////////////////////////////////////////
6403 // This (single-threaded) closure is used to preclean the oops in
6404 // the survivor spaces.
6405 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6406 
6407   HeapWord* addr = (HeapWord*)p;
6408   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6409   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6410   assert(p->klass_or_null() != NULL, "object should be initialized");
6411   // an initialized object; ignore mark word in verification below
6412   // since we are running concurrent with mutators
6413   assert(p->is_oop(true), "should be an oop");
6414   // Note that we do not yield while we iterate over
6415   // the interior oops of p, pushing the relevant ones
6416   // on our marking stack.
6417   size_t size = p->oop_iterate(_scanning_closure);
6418   do_yield_check();
6419   // Observe that below, we do not abandon the preclean
6420   // phase as soon as we should; rather we empty the
6421   // marking stack before returning. This is to satisfy
6422   // some existing assertions. In general, it may be a
6423   // good idea to abort immediately and complete the marking
6424   // from the grey objects at a later time.
6425   while (!_mark_stack->isEmpty()) {
6426     oop new_oop = _mark_stack->pop();
6427     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6428     assert(_bit_map->isMarked((HeapWord*)new_oop),
6429            "only grey objects on this stack");
6430     // iterate over the oops in this oop, marking and pushing
6431     // the ones in CMS heap (i.e. in _span).
6432     new_oop->oop_iterate(_scanning_closure);
6433     // check if it's time to yield
6434     do_yield_check();
6435   }
6436   unsigned int after_count =
6437     GenCollectedHeap::heap()->total_collections();
6438   bool abort = (_before_count != after_count) ||
6439                _collector->should_abort_preclean();
6440   return abort ? 0 : size;
6441 }
6442 
6443 void SurvivorSpacePrecleanClosure::do_yield_work() {
6444   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6445          "CMS thread should hold CMS token");
6446   assert_lock_strong(_bit_map->lock());
6447   // Relinquish the bit map lock
6448   _bit_map->lock()->unlock();
6449   ConcurrentMarkSweepThread::desynchronize(true);
6450   _collector->stopTimer();
6451   if (PrintCMSStatistics != 0) {
6452     _collector->incrementYields();
6453   }
6454 
6455   // See the comment in coordinator_yield()
6456   for (unsigned i = 0; i < CMSYieldSleepCount &&
6457                        ConcurrentMarkSweepThread::should_yield() &&
6458                        !CMSCollector::foregroundGCIsActive(); ++i) {
6459     os::sleep(Thread::current(), 1, false);
6460   }
6461 
6462   ConcurrentMarkSweepThread::synchronize(true);
6463   _bit_map->lock()->lock_without_safepoint_check();
6464   _collector->startTimer();
6465 }
6466 
6467 // This closure is used to rescan the marked objects on the dirty cards
6468 // in the mod union table and the card table proper. In the parallel
6469 // case, although the bitMap is shared, we do a single read so the
6470 // isMarked() query is "safe".
6471 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6472   // Ignore mark word because we are running concurrent with mutators
6473   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6474   HeapWord* addr = (HeapWord*)p;
6475   assert(_span.contains(addr), "we are scanning the CMS generation");
6476   bool is_obj_array = false;
6477   #ifdef ASSERT
6478     if (!_parallel) {
6479       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6480       assert(_collector->overflow_list_is_empty(),
6481              "overflow list should be empty");
6482 
6483     }
6484   #endif // ASSERT
6485   if (_bit_map->isMarked(addr)) {
6486     // Obj arrays are precisely marked, non-arrays are not;
6487     // so we scan objArrays precisely and non-arrays in their
6488     // entirety.
6489     if (p->is_objArray()) {
6490       is_obj_array = true;
6491       if (_parallel) {
6492         p->oop_iterate(_par_scan_closure, mr);
6493       } else {
6494         p->oop_iterate(_scan_closure, mr);
6495       }
6496     } else {
6497       if (_parallel) {
6498         p->oop_iterate(_par_scan_closure);
6499       } else {
6500         p->oop_iterate(_scan_closure);
6501       }
6502     }
6503   }
6504   #ifdef ASSERT
6505     if (!_parallel) {
6506       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6507       assert(_collector->overflow_list_is_empty(),
6508              "overflow list should be empty");
6509 
6510     }
6511   #endif // ASSERT
6512   return is_obj_array;
6513 }
6514 
6515 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6516                         MemRegion span,
6517                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6518                         bool should_yield, bool verifying):
6519   _collector(collector),
6520   _span(span),
6521   _bitMap(bitMap),
6522   _mut(&collector->_modUnionTable),
6523   _markStack(markStack),
6524   _yield(should_yield),
6525   _skipBits(0)
6526 {
6527   assert(_markStack->isEmpty(), "stack should be empty");
6528   _finger = _bitMap->startWord();
6529   _threshold = _finger;
6530   assert(_collector->_restart_addr == NULL, "Sanity check");
6531   assert(_span.contains(_finger), "Out of bounds _finger?");
6532   DEBUG_ONLY(_verifying = verifying;)
6533 }
6534 
6535 void MarkFromRootsClosure::reset(HeapWord* addr) {
6536   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6537   assert(_span.contains(addr), "Out of bounds _finger?");
6538   _finger = addr;
6539   _threshold = (HeapWord*)round_to(
6540                  (intptr_t)_finger, CardTableModRefBS::card_size);
6541 }
6542 
6543 // Should revisit to see if this should be restructured for
6544 // greater efficiency.
6545 bool MarkFromRootsClosure::do_bit(size_t offset) {
6546   if (_skipBits > 0) {
6547     _skipBits--;
6548     return true;
6549   }
6550   // convert offset into a HeapWord*
6551   HeapWord* addr = _bitMap->startWord() + offset;
6552   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6553          "address out of range");
6554   assert(_bitMap->isMarked(addr), "tautology");
6555   if (_bitMap->isMarked(addr+1)) {
6556     // this is an allocated but not yet initialized object
6557     assert(_skipBits == 0, "tautology");
6558     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6559     oop p = oop(addr);
6560     if (p->klass_or_null() == NULL) {
6561       DEBUG_ONLY(if (!_verifying) {)
6562         // We re-dirty the cards on which this object lies and increase
6563         // the _threshold so that we'll come back to scan this object
6564         // during the preclean or remark phase. (CMSCleanOnEnter)
6565         if (CMSCleanOnEnter) {
6566           size_t sz = _collector->block_size_using_printezis_bits(addr);
6567           HeapWord* end_card_addr   = (HeapWord*)round_to(
6568                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6569           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6570           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6571           // Bump _threshold to end_card_addr; note that
6572           // _threshold cannot possibly exceed end_card_addr, anyhow.
6573           // This prevents future clearing of the card as the scan proceeds
6574           // to the right.
6575           assert(_threshold <= end_card_addr,
6576                  "Because we are just scanning into this object");
6577           if (_threshold < end_card_addr) {
6578             _threshold = end_card_addr;
6579           }
6580           if (p->klass_or_null() != NULL) {
6581             // Redirty the range of cards...
6582             _mut->mark_range(redirty_range);
6583           } // ...else the setting of klass will dirty the card anyway.
6584         }
6585       DEBUG_ONLY(})
6586       return true;
6587     }
6588   }
6589   scanOopsInOop(addr);
6590   return true;
6591 }
6592 
6593 // We take a break if we've been at this for a while,
6594 // so as to avoid monopolizing the locks involved.
6595 void MarkFromRootsClosure::do_yield_work() {
6596   // First give up the locks, then yield, then re-lock
6597   // We should probably use a constructor/destructor idiom to
6598   // do this unlock/lock or modify the MutexUnlocker class to
6599   // serve our purpose. XXX
6600   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6601          "CMS thread should hold CMS token");
6602   assert_lock_strong(_bitMap->lock());
6603   _bitMap->lock()->unlock();
6604   ConcurrentMarkSweepThread::desynchronize(true);
6605   _collector->stopTimer();
6606   if (PrintCMSStatistics != 0) {
6607     _collector->incrementYields();
6608   }
6609 
6610   // See the comment in coordinator_yield()
6611   for (unsigned i = 0; i < CMSYieldSleepCount &&
6612                        ConcurrentMarkSweepThread::should_yield() &&
6613                        !CMSCollector::foregroundGCIsActive(); ++i) {
6614     os::sleep(Thread::current(), 1, false);
6615   }
6616 
6617   ConcurrentMarkSweepThread::synchronize(true);
6618   _bitMap->lock()->lock_without_safepoint_check();
6619   _collector->startTimer();
6620 }
6621 
6622 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6623   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6624   assert(_markStack->isEmpty(),
6625          "should drain stack to limit stack usage");
6626   // convert ptr to an oop preparatory to scanning
6627   oop obj = oop(ptr);
6628   // Ignore mark word in verification below, since we
6629   // may be running concurrent with mutators.
6630   assert(obj->is_oop(true), "should be an oop");
6631   assert(_finger <= ptr, "_finger runneth ahead");
6632   // advance the finger to right end of this object
6633   _finger = ptr + obj->size();
6634   assert(_finger > ptr, "we just incremented it above");
6635   // On large heaps, it may take us some time to get through
6636   // the marking phase. During
6637   // this time it's possible that a lot of mutations have
6638   // accumulated in the card table and the mod union table --
6639   // these mutation records are redundant until we have
6640   // actually traced into the corresponding card.
6641   // Here, we check whether advancing the finger would make
6642   // us cross into a new card, and if so clear corresponding
6643   // cards in the MUT (preclean them in the card-table in the
6644   // future).
6645 
6646   DEBUG_ONLY(if (!_verifying) {)
6647     // The clean-on-enter optimization is disabled by default,
6648     // until we fix 6178663.
6649     if (CMSCleanOnEnter && (_finger > _threshold)) {
6650       // [_threshold, _finger) represents the interval
6651       // of cards to be cleared  in MUT (or precleaned in card table).
6652       // The set of cards to be cleared is all those that overlap
6653       // with the interval [_threshold, _finger); note that
6654       // _threshold is always kept card-aligned but _finger isn't
6655       // always card-aligned.
6656       HeapWord* old_threshold = _threshold;
6657       assert(old_threshold == (HeapWord*)round_to(
6658               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6659              "_threshold should always be card-aligned");
6660       _threshold = (HeapWord*)round_to(
6661                      (intptr_t)_finger, CardTableModRefBS::card_size);
6662       MemRegion mr(old_threshold, _threshold);
6663       assert(!mr.is_empty(), "Control point invariant");
6664       assert(_span.contains(mr), "Should clear within span");
6665       _mut->clear_range(mr);
6666     }
6667   DEBUG_ONLY(})
6668   // Note: the finger doesn't advance while we drain
6669   // the stack below.
6670   PushOrMarkClosure pushOrMarkClosure(_collector,
6671                                       _span, _bitMap, _markStack,
6672                                       _finger, this);
6673   bool res = _markStack->push(obj);
6674   assert(res, "Empty non-zero size stack should have space for single push");
6675   while (!_markStack->isEmpty()) {
6676     oop new_oop = _markStack->pop();
6677     // Skip verifying header mark word below because we are
6678     // running concurrent with mutators.
6679     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6680     // now scan this oop's oops
6681     new_oop->oop_iterate(&pushOrMarkClosure);
6682     do_yield_check();
6683   }
6684   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6685 }
6686 
6687 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6688                        CMSCollector* collector, MemRegion span,
6689                        CMSBitMap* bit_map,
6690                        OopTaskQueue* work_queue,
6691                        CMSMarkStack*  overflow_stack):
6692   _collector(collector),
6693   _whole_span(collector->_span),
6694   _span(span),
6695   _bit_map(bit_map),
6696   _mut(&collector->_modUnionTable),
6697   _work_queue(work_queue),
6698   _overflow_stack(overflow_stack),
6699   _skip_bits(0),
6700   _task(task)
6701 {
6702   assert(_work_queue->size() == 0, "work_queue should be empty");
6703   _finger = span.start();
6704   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6705   assert(_span.contains(_finger), "Out of bounds _finger?");
6706 }
6707 
6708 // Should revisit to see if this should be restructured for
6709 // greater efficiency.
6710 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6711   if (_skip_bits > 0) {
6712     _skip_bits--;
6713     return true;
6714   }
6715   // convert offset into a HeapWord*
6716   HeapWord* addr = _bit_map->startWord() + offset;
6717   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6718          "address out of range");
6719   assert(_bit_map->isMarked(addr), "tautology");
6720   if (_bit_map->isMarked(addr+1)) {
6721     // this is an allocated object that might not yet be initialized
6722     assert(_skip_bits == 0, "tautology");
6723     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6724     oop p = oop(addr);
6725     if (p->klass_or_null() == NULL) {
6726       // in the case of Clean-on-Enter optimization, redirty card
6727       // and avoid clearing card by increasing  the threshold.
6728       return true;
6729     }
6730   }
6731   scan_oops_in_oop(addr);
6732   return true;
6733 }
6734 
6735 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6736   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6737   // Should we assert that our work queue is empty or
6738   // below some drain limit?
6739   assert(_work_queue->size() == 0,
6740          "should drain stack to limit stack usage");
6741   // convert ptr to an oop preparatory to scanning
6742   oop obj = oop(ptr);
6743   // Ignore mark word in verification below, since we
6744   // may be running concurrent with mutators.
6745   assert(obj->is_oop(true), "should be an oop");
6746   assert(_finger <= ptr, "_finger runneth ahead");
6747   // advance the finger to right end of this object
6748   _finger = ptr + obj->size();
6749   assert(_finger > ptr, "we just incremented it above");
6750   // On large heaps, it may take us some time to get through
6751   // the marking phase. During
6752   // this time it's possible that a lot of mutations have
6753   // accumulated in the card table and the mod union table --
6754   // these mutation records are redundant until we have
6755   // actually traced into the corresponding card.
6756   // Here, we check whether advancing the finger would make
6757   // us cross into a new card, and if so clear corresponding
6758   // cards in the MUT (preclean them in the card-table in the
6759   // future).
6760 
6761   // The clean-on-enter optimization is disabled by default,
6762   // until we fix 6178663.
6763   if (CMSCleanOnEnter && (_finger > _threshold)) {
6764     // [_threshold, _finger) represents the interval
6765     // of cards to be cleared  in MUT (or precleaned in card table).
6766     // The set of cards to be cleared is all those that overlap
6767     // with the interval [_threshold, _finger); note that
6768     // _threshold is always kept card-aligned but _finger isn't
6769     // always card-aligned.
6770     HeapWord* old_threshold = _threshold;
6771     assert(old_threshold == (HeapWord*)round_to(
6772             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6773            "_threshold should always be card-aligned");
6774     _threshold = (HeapWord*)round_to(
6775                    (intptr_t)_finger, CardTableModRefBS::card_size);
6776     MemRegion mr(old_threshold, _threshold);
6777     assert(!mr.is_empty(), "Control point invariant");
6778     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6779     _mut->clear_range(mr);
6780   }
6781 
6782   // Note: the local finger doesn't advance while we drain
6783   // the stack below, but the global finger sure can and will.
6784   HeapWord** gfa = _task->global_finger_addr();
6785   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6786                                       _span, _bit_map,
6787                                       _work_queue,
6788                                       _overflow_stack,
6789                                       _finger,
6790                                       gfa, this);
6791   bool res = _work_queue->push(obj);   // overflow could occur here
6792   assert(res, "Will hold once we use workqueues");
6793   while (true) {
6794     oop new_oop;
6795     if (!_work_queue->pop_local(new_oop)) {
6796       // We emptied our work_queue; check if there's stuff that can
6797       // be gotten from the overflow stack.
6798       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6799             _overflow_stack, _work_queue)) {
6800         do_yield_check();
6801         continue;
6802       } else {  // done
6803         break;
6804       }
6805     }
6806     // Skip verifying header mark word below because we are
6807     // running concurrent with mutators.
6808     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6809     // now scan this oop's oops
6810     new_oop->oop_iterate(&pushOrMarkClosure);
6811     do_yield_check();
6812   }
6813   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6814 }
6815 
6816 // Yield in response to a request from VM Thread or
6817 // from mutators.
6818 void Par_MarkFromRootsClosure::do_yield_work() {
6819   assert(_task != NULL, "sanity");
6820   _task->yield();
6821 }
6822 
6823 // A variant of the above used for verifying CMS marking work.
6824 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6825                         MemRegion span,
6826                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6827                         CMSMarkStack*  mark_stack):
6828   _collector(collector),
6829   _span(span),
6830   _verification_bm(verification_bm),
6831   _cms_bm(cms_bm),
6832   _mark_stack(mark_stack),
6833   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6834                       mark_stack)
6835 {
6836   assert(_mark_stack->isEmpty(), "stack should be empty");
6837   _finger = _verification_bm->startWord();
6838   assert(_collector->_restart_addr == NULL, "Sanity check");
6839   assert(_span.contains(_finger), "Out of bounds _finger?");
6840 }
6841 
6842 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6843   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6844   assert(_span.contains(addr), "Out of bounds _finger?");
6845   _finger = addr;
6846 }
6847 
6848 // Should revisit to see if this should be restructured for
6849 // greater efficiency.
6850 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6851   // convert offset into a HeapWord*
6852   HeapWord* addr = _verification_bm->startWord() + offset;
6853   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6854          "address out of range");
6855   assert(_verification_bm->isMarked(addr), "tautology");
6856   assert(_cms_bm->isMarked(addr), "tautology");
6857 
6858   assert(_mark_stack->isEmpty(),
6859          "should drain stack to limit stack usage");
6860   // convert addr to an oop preparatory to scanning
6861   oop obj = oop(addr);
6862   assert(obj->is_oop(), "should be an oop");
6863   assert(_finger <= addr, "_finger runneth ahead");
6864   // advance the finger to right end of this object
6865   _finger = addr + obj->size();
6866   assert(_finger > addr, "we just incremented it above");
6867   // Note: the finger doesn't advance while we drain
6868   // the stack below.
6869   bool res = _mark_stack->push(obj);
6870   assert(res, "Empty non-zero size stack should have space for single push");
6871   while (!_mark_stack->isEmpty()) {
6872     oop new_oop = _mark_stack->pop();
6873     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6874     // now scan this oop's oops
6875     new_oop->oop_iterate(&_pam_verify_closure);
6876   }
6877   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6878   return true;
6879 }
6880 
6881 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6882   CMSCollector* collector, MemRegion span,
6883   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6884   CMSMarkStack*  mark_stack):
6885   MetadataAwareOopClosure(collector->ref_processor()),
6886   _collector(collector),
6887   _span(span),
6888   _verification_bm(verification_bm),
6889   _cms_bm(cms_bm),
6890   _mark_stack(mark_stack)
6891 { }
6892 
6893 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6894 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6895 
6896 // Upon stack overflow, we discard (part of) the stack,
6897 // remembering the least address amongst those discarded
6898 // in CMSCollector's _restart_address.
6899 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6900   // Remember the least grey address discarded
6901   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6902   _collector->lower_restart_addr(ra);
6903   _mark_stack->reset();  // discard stack contents
6904   _mark_stack->expand(); // expand the stack if possible
6905 }
6906 
6907 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6908   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6909   HeapWord* addr = (HeapWord*)obj;
6910   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6911     // Oop lies in _span and isn't yet grey or black
6912     _verification_bm->mark(addr);            // now grey
6913     if (!_cms_bm->isMarked(addr)) {
6914       oop(addr)->print();
6915       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6916                              p2i(addr));
6917       fatal("... aborting");
6918     }
6919 
6920     if (!_mark_stack->push(obj)) { // stack overflow
6921       if (PrintCMSStatistics != 0) {
6922         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6923                                SIZE_FORMAT, _mark_stack->capacity());
6924       }
6925       assert(_mark_stack->isFull(), "Else push should have succeeded");
6926       handle_stack_overflow(addr);
6927     }
6928     // anything including and to the right of _finger
6929     // will be scanned as we iterate over the remainder of the
6930     // bit map
6931   }
6932 }
6933 
6934 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6935                      MemRegion span,
6936                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6937                      HeapWord* finger, MarkFromRootsClosure* parent) :
6938   MetadataAwareOopClosure(collector->ref_processor()),
6939   _collector(collector),
6940   _span(span),
6941   _bitMap(bitMap),
6942   _markStack(markStack),
6943   _finger(finger),
6944   _parent(parent)
6945 { }
6946 
6947 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6948                      MemRegion span,
6949                      CMSBitMap* bit_map,
6950                      OopTaskQueue* work_queue,
6951                      CMSMarkStack*  overflow_stack,
6952                      HeapWord* finger,
6953                      HeapWord** global_finger_addr,
6954                      Par_MarkFromRootsClosure* parent) :
6955   MetadataAwareOopClosure(collector->ref_processor()),
6956   _collector(collector),
6957   _whole_span(collector->_span),
6958   _span(span),
6959   _bit_map(bit_map),
6960   _work_queue(work_queue),
6961   _overflow_stack(overflow_stack),
6962   _finger(finger),
6963   _global_finger_addr(global_finger_addr),
6964   _parent(parent)
6965 { }
6966 
6967 // Assumes thread-safe access by callers, who are
6968 // responsible for mutual exclusion.
6969 void CMSCollector::lower_restart_addr(HeapWord* low) {
6970   assert(_span.contains(low), "Out of bounds addr");
6971   if (_restart_addr == NULL) {
6972     _restart_addr = low;
6973   } else {
6974     _restart_addr = MIN2(_restart_addr, low);
6975   }
6976 }
6977 
6978 // Upon stack overflow, we discard (part of) the stack,
6979 // remembering the least address amongst those discarded
6980 // in CMSCollector's _restart_address.
6981 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6982   // Remember the least grey address discarded
6983   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6984   _collector->lower_restart_addr(ra);
6985   _markStack->reset();  // discard stack contents
6986   _markStack->expand(); // expand the stack if possible
6987 }
6988 
6989 // Upon stack overflow, we discard (part of) the stack,
6990 // remembering the least address amongst those discarded
6991 // in CMSCollector's _restart_address.
6992 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6993   // We need to do this under a mutex to prevent other
6994   // workers from interfering with the work done below.
6995   MutexLockerEx ml(_overflow_stack->par_lock(),
6996                    Mutex::_no_safepoint_check_flag);
6997   // Remember the least grey address discarded
6998   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6999   _collector->lower_restart_addr(ra);
7000   _overflow_stack->reset();  // discard stack contents
7001   _overflow_stack->expand(); // expand the stack if possible
7002 }
7003 
7004 void PushOrMarkClosure::do_oop(oop obj) {
7005   // Ignore mark word because we are running concurrent with mutators.
7006   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7007   HeapWord* addr = (HeapWord*)obj;
7008   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7009     // Oop lies in _span and isn't yet grey or black
7010     _bitMap->mark(addr);            // now grey
7011     if (addr < _finger) {
7012       // the bit map iteration has already either passed, or
7013       // sampled, this bit in the bit map; we'll need to
7014       // use the marking stack to scan this oop's oops.
7015       bool simulate_overflow = false;
7016       NOT_PRODUCT(
7017         if (CMSMarkStackOverflowALot &&
7018             _collector->simulate_overflow()) {
7019           // simulate a stack overflow
7020           simulate_overflow = true;
7021         }
7022       )
7023       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7024         if (PrintCMSStatistics != 0) {
7025           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7026                                  SIZE_FORMAT, _markStack->capacity());
7027         }
7028         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7029         handle_stack_overflow(addr);
7030       }
7031     }
7032     // anything including and to the right of _finger
7033     // will be scanned as we iterate over the remainder of the
7034     // bit map
7035     do_yield_check();
7036   }
7037 }
7038 
7039 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7040 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7041 
7042 void Par_PushOrMarkClosure::do_oop(oop obj) {
7043   // Ignore mark word because we are running concurrent with mutators.
7044   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7045   HeapWord* addr = (HeapWord*)obj;
7046   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7047     // Oop lies in _span and isn't yet grey or black
7048     // We read the global_finger (volatile read) strictly after marking oop
7049     bool res = _bit_map->par_mark(addr);    // now grey
7050     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7051     // Should we push this marked oop on our stack?
7052     // -- if someone else marked it, nothing to do
7053     // -- if target oop is above global finger nothing to do
7054     // -- if target oop is in chunk and above local finger
7055     //      then nothing to do
7056     // -- else push on work queue
7057     if (   !res       // someone else marked it, they will deal with it
7058         || (addr >= *gfa)  // will be scanned in a later task
7059         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7060       return;
7061     }
7062     // the bit map iteration has already either passed, or
7063     // sampled, this bit in the bit map; we'll need to
7064     // use the marking stack to scan this oop's oops.
7065     bool simulate_overflow = false;
7066     NOT_PRODUCT(
7067       if (CMSMarkStackOverflowALot &&
7068           _collector->simulate_overflow()) {
7069         // simulate a stack overflow
7070         simulate_overflow = true;
7071       }
7072     )
7073     if (simulate_overflow ||
7074         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7075       // stack overflow
7076       if (PrintCMSStatistics != 0) {
7077         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7078                                SIZE_FORMAT, _overflow_stack->capacity());
7079       }
7080       // We cannot assert that the overflow stack is full because
7081       // it may have been emptied since.
7082       assert(simulate_overflow ||
7083              _work_queue->size() == _work_queue->max_elems(),
7084             "Else push should have succeeded");
7085       handle_stack_overflow(addr);
7086     }
7087     do_yield_check();
7088   }
7089 }
7090 
7091 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7092 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7093 
7094 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7095                                        MemRegion span,
7096                                        ReferenceProcessor* rp,
7097                                        CMSBitMap* bit_map,
7098                                        CMSBitMap* mod_union_table,
7099                                        CMSMarkStack*  mark_stack,
7100                                        bool           concurrent_precleaning):
7101   MetadataAwareOopClosure(rp),
7102   _collector(collector),
7103   _span(span),
7104   _bit_map(bit_map),
7105   _mod_union_table(mod_union_table),
7106   _mark_stack(mark_stack),
7107   _concurrent_precleaning(concurrent_precleaning)
7108 {
7109   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7110 }
7111 
7112 // Grey object rescan during pre-cleaning and second checkpoint phases --
7113 // the non-parallel version (the parallel version appears further below.)
7114 void PushAndMarkClosure::do_oop(oop obj) {
7115   // Ignore mark word verification. If during concurrent precleaning,
7116   // the object monitor may be locked. If during the checkpoint
7117   // phases, the object may already have been reached by a  different
7118   // path and may be at the end of the global overflow list (so
7119   // the mark word may be NULL).
7120   assert(obj->is_oop_or_null(true /* ignore mark word */),
7121          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7122   HeapWord* addr = (HeapWord*)obj;
7123   // Check if oop points into the CMS generation
7124   // and is not marked
7125   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7126     // a white object ...
7127     _bit_map->mark(addr);         // ... now grey
7128     // push on the marking stack (grey set)
7129     bool simulate_overflow = false;
7130     NOT_PRODUCT(
7131       if (CMSMarkStackOverflowALot &&
7132           _collector->simulate_overflow()) {
7133         // simulate a stack overflow
7134         simulate_overflow = true;
7135       }
7136     )
7137     if (simulate_overflow || !_mark_stack->push(obj)) {
7138       if (_concurrent_precleaning) {
7139          // During precleaning we can just dirty the appropriate card(s)
7140          // in the mod union table, thus ensuring that the object remains
7141          // in the grey set  and continue. In the case of object arrays
7142          // we need to dirty all of the cards that the object spans,
7143          // since the rescan of object arrays will be limited to the
7144          // dirty cards.
7145          // Note that no one can be interfering with us in this action
7146          // of dirtying the mod union table, so no locking or atomics
7147          // are required.
7148          if (obj->is_objArray()) {
7149            size_t sz = obj->size();
7150            HeapWord* end_card_addr = (HeapWord*)round_to(
7151                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7152            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7153            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7154            _mod_union_table->mark_range(redirty_range);
7155          } else {
7156            _mod_union_table->mark(addr);
7157          }
7158          _collector->_ser_pmc_preclean_ovflw++;
7159       } else {
7160          // During the remark phase, we need to remember this oop
7161          // in the overflow list.
7162          _collector->push_on_overflow_list(obj);
7163          _collector->_ser_pmc_remark_ovflw++;
7164       }
7165     }
7166   }
7167 }
7168 
7169 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7170                                                MemRegion span,
7171                                                ReferenceProcessor* rp,
7172                                                CMSBitMap* bit_map,
7173                                                OopTaskQueue* work_queue):
7174   MetadataAwareOopClosure(rp),
7175   _collector(collector),
7176   _span(span),
7177   _bit_map(bit_map),
7178   _work_queue(work_queue)
7179 {
7180   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7181 }
7182 
7183 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7184 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7185 
7186 // Grey object rescan during second checkpoint phase --
7187 // the parallel version.
7188 void Par_PushAndMarkClosure::do_oop(oop obj) {
7189   // In the assert below, we ignore the mark word because
7190   // this oop may point to an already visited object that is
7191   // on the overflow stack (in which case the mark word has
7192   // been hijacked for chaining into the overflow stack --
7193   // if this is the last object in the overflow stack then
7194   // its mark word will be NULL). Because this object may
7195   // have been subsequently popped off the global overflow
7196   // stack, and the mark word possibly restored to the prototypical
7197   // value, by the time we get to examined this failing assert in
7198   // the debugger, is_oop_or_null(false) may subsequently start
7199   // to hold.
7200   assert(obj->is_oop_or_null(true),
7201          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7202   HeapWord* addr = (HeapWord*)obj;
7203   // Check if oop points into the CMS generation
7204   // and is not marked
7205   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7206     // a white object ...
7207     // If we manage to "claim" the object, by being the
7208     // first thread to mark it, then we push it on our
7209     // marking stack
7210     if (_bit_map->par_mark(addr)) {     // ... now grey
7211       // push on work queue (grey set)
7212       bool simulate_overflow = false;
7213       NOT_PRODUCT(
7214         if (CMSMarkStackOverflowALot &&
7215             _collector->par_simulate_overflow()) {
7216           // simulate a stack overflow
7217           simulate_overflow = true;
7218         }
7219       )
7220       if (simulate_overflow || !_work_queue->push(obj)) {
7221         _collector->par_push_on_overflow_list(obj);
7222         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7223       }
7224     } // Else, some other thread got there first
7225   }
7226 }
7227 
7228 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7229 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7230 
7231 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7232   Mutex* bml = _collector->bitMapLock();
7233   assert_lock_strong(bml);
7234   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7235          "CMS thread should hold CMS token");
7236 
7237   bml->unlock();
7238   ConcurrentMarkSweepThread::desynchronize(true);
7239 
7240   _collector->stopTimer();
7241   if (PrintCMSStatistics != 0) {
7242     _collector->incrementYields();
7243   }
7244 
7245   // See the comment in coordinator_yield()
7246   for (unsigned i = 0; i < CMSYieldSleepCount &&
7247                        ConcurrentMarkSweepThread::should_yield() &&
7248                        !CMSCollector::foregroundGCIsActive(); ++i) {
7249     os::sleep(Thread::current(), 1, false);
7250   }
7251 
7252   ConcurrentMarkSweepThread::synchronize(true);
7253   bml->lock();
7254 
7255   _collector->startTimer();
7256 }
7257 
7258 bool CMSPrecleanRefsYieldClosure::should_return() {
7259   if (ConcurrentMarkSweepThread::should_yield()) {
7260     do_yield_work();
7261   }
7262   return _collector->foregroundGCIsActive();
7263 }
7264 
7265 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7266   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7267          "mr should be aligned to start at a card boundary");
7268   // We'd like to assert:
7269   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7270   //        "mr should be a range of cards");
7271   // However, that would be too strong in one case -- the last
7272   // partition ends at _unallocated_block which, in general, can be
7273   // an arbitrary boundary, not necessarily card aligned.
7274   if (PrintCMSStatistics != 0) {
7275     _num_dirty_cards +=
7276          mr.word_size()/CardTableModRefBS::card_size_in_words;
7277   }
7278   _space->object_iterate_mem(mr, &_scan_cl);
7279 }
7280 
7281 SweepClosure::SweepClosure(CMSCollector* collector,
7282                            ConcurrentMarkSweepGeneration* g,
7283                            CMSBitMap* bitMap, bool should_yield) :
7284   _collector(collector),
7285   _g(g),
7286   _sp(g->cmsSpace()),
7287   _limit(_sp->sweep_limit()),
7288   _freelistLock(_sp->freelistLock()),
7289   _bitMap(bitMap),
7290   _yield(should_yield),
7291   _inFreeRange(false),           // No free range at beginning of sweep
7292   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7293   _lastFreeRangeCoalesced(false),
7294   _freeFinger(g->used_region().start())
7295 {
7296   NOT_PRODUCT(
7297     _numObjectsFreed = 0;
7298     _numWordsFreed   = 0;
7299     _numObjectsLive = 0;
7300     _numWordsLive = 0;
7301     _numObjectsAlreadyFree = 0;
7302     _numWordsAlreadyFree = 0;
7303     _last_fc = NULL;
7304 
7305     _sp->initializeIndexedFreeListArrayReturnedBytes();
7306     _sp->dictionary()->initialize_dict_returned_bytes();
7307   )
7308   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7309          "sweep _limit out of bounds");
7310   if (CMSTraceSweeper) {
7311     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7312                         p2i(_limit));
7313   }
7314 }
7315 
7316 void SweepClosure::print_on(outputStream* st) const {
7317   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7318                 p2i(_sp->bottom()), p2i(_sp->end()));
7319   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7320   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7321   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7322   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7323                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7324 }
7325 
7326 #ifndef PRODUCT
7327 // Assertion checking only:  no useful work in product mode --
7328 // however, if any of the flags below become product flags,
7329 // you may need to review this code to see if it needs to be
7330 // enabled in product mode.
7331 SweepClosure::~SweepClosure() {
7332   assert_lock_strong(_freelistLock);
7333   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7334          "sweep _limit out of bounds");
7335   if (inFreeRange()) {
7336     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7337     print();
7338     ShouldNotReachHere();
7339   }
7340   if (Verbose && PrintGC) {
7341     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7342                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7343     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7344                            SIZE_FORMAT " bytes  "
7345       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7346       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7347       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7348     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7349                         * sizeof(HeapWord);
7350     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7351 
7352     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7353       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7354       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7355       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7356       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7357       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7358         indexListReturnedBytes);
7359       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7360         dict_returned_bytes);
7361     }
7362   }
7363   if (CMSTraceSweeper) {
7364     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7365                            p2i(_limit));
7366   }
7367 }
7368 #endif  // PRODUCT
7369 
7370 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7371     bool freeRangeInFreeLists) {
7372   if (CMSTraceSweeper) {
7373     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7374                p2i(freeFinger), freeRangeInFreeLists);
7375   }
7376   assert(!inFreeRange(), "Trampling existing free range");
7377   set_inFreeRange(true);
7378   set_lastFreeRangeCoalesced(false);
7379 
7380   set_freeFinger(freeFinger);
7381   set_freeRangeInFreeLists(freeRangeInFreeLists);
7382   if (CMSTestInFreeList) {
7383     if (freeRangeInFreeLists) {
7384       FreeChunk* fc = (FreeChunk*) freeFinger;
7385       assert(fc->is_free(), "A chunk on the free list should be free.");
7386       assert(fc->size() > 0, "Free range should have a size");
7387       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7388     }
7389   }
7390 }
7391 
7392 // Note that the sweeper runs concurrently with mutators. Thus,
7393 // it is possible for direct allocation in this generation to happen
7394 // in the middle of the sweep. Note that the sweeper also coalesces
7395 // contiguous free blocks. Thus, unless the sweeper and the allocator
7396 // synchronize appropriately freshly allocated blocks may get swept up.
7397 // This is accomplished by the sweeper locking the free lists while
7398 // it is sweeping. Thus blocks that are determined to be free are
7399 // indeed free. There is however one additional complication:
7400 // blocks that have been allocated since the final checkpoint and
7401 // mark, will not have been marked and so would be treated as
7402 // unreachable and swept up. To prevent this, the allocator marks
7403 // the bit map when allocating during the sweep phase. This leads,
7404 // however, to a further complication -- objects may have been allocated
7405 // but not yet initialized -- in the sense that the header isn't yet
7406 // installed. The sweeper can not then determine the size of the block
7407 // in order to skip over it. To deal with this case, we use a technique
7408 // (due to Printezis) to encode such uninitialized block sizes in the
7409 // bit map. Since the bit map uses a bit per every HeapWord, but the
7410 // CMS generation has a minimum object size of 3 HeapWords, it follows
7411 // that "normal marks" won't be adjacent in the bit map (there will
7412 // always be at least two 0 bits between successive 1 bits). We make use
7413 // of these "unused" bits to represent uninitialized blocks -- the bit
7414 // corresponding to the start of the uninitialized object and the next
7415 // bit are both set. Finally, a 1 bit marks the end of the object that
7416 // started with the two consecutive 1 bits to indicate its potentially
7417 // uninitialized state.
7418 
7419 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7420   FreeChunk* fc = (FreeChunk*)addr;
7421   size_t res;
7422 
7423   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7424   // than "addr == _limit" because although _limit was a block boundary when
7425   // we started the sweep, it may no longer be one because heap expansion
7426   // may have caused us to coalesce the block ending at the address _limit
7427   // with a newly expanded chunk (this happens when _limit was set to the
7428   // previous _end of the space), so we may have stepped past _limit:
7429   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7430   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7431     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7432            "sweep _limit out of bounds");
7433     assert(addr < _sp->end(), "addr out of bounds");
7434     // Flush any free range we might be holding as a single
7435     // coalesced chunk to the appropriate free list.
7436     if (inFreeRange()) {
7437       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7438              err_msg("freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger())));
7439       flush_cur_free_chunk(freeFinger(),
7440                            pointer_delta(addr, freeFinger()));
7441       if (CMSTraceSweeper) {
7442         gclog_or_tty->print("Sweep: last chunk: ");
7443         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7444                    "[coalesced:%d]\n",
7445                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7446                    lastFreeRangeCoalesced() ? 1 : 0);
7447       }
7448     }
7449 
7450     // help the iterator loop finish
7451     return pointer_delta(_sp->end(), addr);
7452   }
7453 
7454   assert(addr < _limit, "sweep invariant");
7455   // check if we should yield
7456   do_yield_check(addr);
7457   if (fc->is_free()) {
7458     // Chunk that is already free
7459     res = fc->size();
7460     do_already_free_chunk(fc);
7461     debug_only(_sp->verifyFreeLists());
7462     // If we flush the chunk at hand in lookahead_and_flush()
7463     // and it's coalesced with a preceding chunk, then the
7464     // process of "mangling" the payload of the coalesced block
7465     // will cause erasure of the size information from the
7466     // (erstwhile) header of all the coalesced blocks but the
7467     // first, so the first disjunct in the assert will not hold
7468     // in that specific case (in which case the second disjunct
7469     // will hold).
7470     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7471            "Otherwise the size info doesn't change at this step");
7472     NOT_PRODUCT(
7473       _numObjectsAlreadyFree++;
7474       _numWordsAlreadyFree += res;
7475     )
7476     NOT_PRODUCT(_last_fc = fc;)
7477   } else if (!_bitMap->isMarked(addr)) {
7478     // Chunk is fresh garbage
7479     res = do_garbage_chunk(fc);
7480     debug_only(_sp->verifyFreeLists());
7481     NOT_PRODUCT(
7482       _numObjectsFreed++;
7483       _numWordsFreed += res;
7484     )
7485   } else {
7486     // Chunk that is alive.
7487     res = do_live_chunk(fc);
7488     debug_only(_sp->verifyFreeLists());
7489     NOT_PRODUCT(
7490         _numObjectsLive++;
7491         _numWordsLive += res;
7492     )
7493   }
7494   return res;
7495 }
7496 
7497 // For the smart allocation, record following
7498 //  split deaths - a free chunk is removed from its free list because
7499 //      it is being split into two or more chunks.
7500 //  split birth - a free chunk is being added to its free list because
7501 //      a larger free chunk has been split and resulted in this free chunk.
7502 //  coal death - a free chunk is being removed from its free list because
7503 //      it is being coalesced into a large free chunk.
7504 //  coal birth - a free chunk is being added to its free list because
7505 //      it was created when two or more free chunks where coalesced into
7506 //      this free chunk.
7507 //
7508 // These statistics are used to determine the desired number of free
7509 // chunks of a given size.  The desired number is chosen to be relative
7510 // to the end of a CMS sweep.  The desired number at the end of a sweep
7511 // is the
7512 //      count-at-end-of-previous-sweep (an amount that was enough)
7513 //              - count-at-beginning-of-current-sweep  (the excess)
7514 //              + split-births  (gains in this size during interval)
7515 //              - split-deaths  (demands on this size during interval)
7516 // where the interval is from the end of one sweep to the end of the
7517 // next.
7518 //
7519 // When sweeping the sweeper maintains an accumulated chunk which is
7520 // the chunk that is made up of chunks that have been coalesced.  That
7521 // will be termed the left-hand chunk.  A new chunk of garbage that
7522 // is being considered for coalescing will be referred to as the
7523 // right-hand chunk.
7524 //
7525 // When making a decision on whether to coalesce a right-hand chunk with
7526 // the current left-hand chunk, the current count vs. the desired count
7527 // of the left-hand chunk is considered.  Also if the right-hand chunk
7528 // is near the large chunk at the end of the heap (see
7529 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7530 // left-hand chunk is coalesced.
7531 //
7532 // When making a decision about whether to split a chunk, the desired count
7533 // vs. the current count of the candidate to be split is also considered.
7534 // If the candidate is underpopulated (currently fewer chunks than desired)
7535 // a chunk of an overpopulated (currently more chunks than desired) size may
7536 // be chosen.  The "hint" associated with a free list, if non-null, points
7537 // to a free list which may be overpopulated.
7538 //
7539 
7540 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7541   const size_t size = fc->size();
7542   // Chunks that cannot be coalesced are not in the
7543   // free lists.
7544   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7545     assert(_sp->verify_chunk_in_free_list(fc),
7546       "free chunk should be in free lists");
7547   }
7548   // a chunk that is already free, should not have been
7549   // marked in the bit map
7550   HeapWord* const addr = (HeapWord*) fc;
7551   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7552   // Verify that the bit map has no bits marked between
7553   // addr and purported end of this block.
7554   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7555 
7556   // Some chunks cannot be coalesced under any circumstances.
7557   // See the definition of cantCoalesce().
7558   if (!fc->cantCoalesce()) {
7559     // This chunk can potentially be coalesced.
7560     if (_sp->adaptive_freelists()) {
7561       // All the work is done in
7562       do_post_free_or_garbage_chunk(fc, size);
7563     } else {  // Not adaptive free lists
7564       // this is a free chunk that can potentially be coalesced by the sweeper;
7565       if (!inFreeRange()) {
7566         // if the next chunk is a free block that can't be coalesced
7567         // it doesn't make sense to remove this chunk from the free lists
7568         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7569         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7570         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7571             nextChunk->is_free()               &&     // ... which is free...
7572             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7573           // nothing to do
7574         } else {
7575           // Potentially the start of a new free range:
7576           // Don't eagerly remove it from the free lists.
7577           // No need to remove it if it will just be put
7578           // back again.  (Also from a pragmatic point of view
7579           // if it is a free block in a region that is beyond
7580           // any allocated blocks, an assertion will fail)
7581           // Remember the start of a free run.
7582           initialize_free_range(addr, true);
7583           // end - can coalesce with next chunk
7584         }
7585       } else {
7586         // the midst of a free range, we are coalescing
7587         print_free_block_coalesced(fc);
7588         if (CMSTraceSweeper) {
7589           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7590         }
7591         // remove it from the free lists
7592         _sp->removeFreeChunkFromFreeLists(fc);
7593         set_lastFreeRangeCoalesced(true);
7594         // If the chunk is being coalesced and the current free range is
7595         // in the free lists, remove the current free range so that it
7596         // will be returned to the free lists in its entirety - all
7597         // the coalesced pieces included.
7598         if (freeRangeInFreeLists()) {
7599           FreeChunk* ffc = (FreeChunk*) freeFinger();
7600           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7601             "Size of free range is inconsistent with chunk size.");
7602           if (CMSTestInFreeList) {
7603             assert(_sp->verify_chunk_in_free_list(ffc),
7604               "free range is not in free lists");
7605           }
7606           _sp->removeFreeChunkFromFreeLists(ffc);
7607           set_freeRangeInFreeLists(false);
7608         }
7609       }
7610     }
7611     // Note that if the chunk is not coalescable (the else arm
7612     // below), we unconditionally flush, without needing to do
7613     // a "lookahead," as we do below.
7614     if (inFreeRange()) lookahead_and_flush(fc, size);
7615   } else {
7616     // Code path common to both original and adaptive free lists.
7617 
7618     // cant coalesce with previous block; this should be treated
7619     // as the end of a free run if any
7620     if (inFreeRange()) {
7621       // we kicked some butt; time to pick up the garbage
7622       assert(freeFinger() < addr, "freeFinger points too high");
7623       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7624     }
7625     // else, nothing to do, just continue
7626   }
7627 }
7628 
7629 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7630   // This is a chunk of garbage.  It is not in any free list.
7631   // Add it to a free list or let it possibly be coalesced into
7632   // a larger chunk.
7633   HeapWord* const addr = (HeapWord*) fc;
7634   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7635 
7636   if (_sp->adaptive_freelists()) {
7637     // Verify that the bit map has no bits marked between
7638     // addr and purported end of just dead object.
7639     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7640 
7641     do_post_free_or_garbage_chunk(fc, size);
7642   } else {
7643     if (!inFreeRange()) {
7644       // start of a new free range
7645       assert(size > 0, "A free range should have a size");
7646       initialize_free_range(addr, false);
7647     } else {
7648       // this will be swept up when we hit the end of the
7649       // free range
7650       if (CMSTraceSweeper) {
7651         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7652       }
7653       // If the chunk is being coalesced and the current free range is
7654       // in the free lists, remove the current free range so that it
7655       // will be returned to the free lists in its entirety - all
7656       // the coalesced pieces included.
7657       if (freeRangeInFreeLists()) {
7658         FreeChunk* ffc = (FreeChunk*)freeFinger();
7659         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7660           "Size of free range is inconsistent with chunk size.");
7661         if (CMSTestInFreeList) {
7662           assert(_sp->verify_chunk_in_free_list(ffc),
7663             "free range is not in free lists");
7664         }
7665         _sp->removeFreeChunkFromFreeLists(ffc);
7666         set_freeRangeInFreeLists(false);
7667       }
7668       set_lastFreeRangeCoalesced(true);
7669     }
7670     // this will be swept up when we hit the end of the free range
7671 
7672     // Verify that the bit map has no bits marked between
7673     // addr and purported end of just dead object.
7674     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7675   }
7676   assert(_limit >= addr + size,
7677          "A freshly garbage chunk can't possibly straddle over _limit");
7678   if (inFreeRange()) lookahead_and_flush(fc, size);
7679   return size;
7680 }
7681 
7682 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7683   HeapWord* addr = (HeapWord*) fc;
7684   // The sweeper has just found a live object. Return any accumulated
7685   // left hand chunk to the free lists.
7686   if (inFreeRange()) {
7687     assert(freeFinger() < addr, "freeFinger points too high");
7688     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7689   }
7690 
7691   // This object is live: we'd normally expect this to be
7692   // an oop, and like to assert the following:
7693   // assert(oop(addr)->is_oop(), "live block should be an oop");
7694   // However, as we commented above, this may be an object whose
7695   // header hasn't yet been initialized.
7696   size_t size;
7697   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7698   if (_bitMap->isMarked(addr + 1)) {
7699     // Determine the size from the bit map, rather than trying to
7700     // compute it from the object header.
7701     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7702     size = pointer_delta(nextOneAddr + 1, addr);
7703     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7704            "alignment problem");
7705 
7706 #ifdef ASSERT
7707       if (oop(addr)->klass_or_null() != NULL) {
7708         // Ignore mark word because we are running concurrent with mutators
7709         assert(oop(addr)->is_oop(true), "live block should be an oop");
7710         assert(size ==
7711                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7712                "P-mark and computed size do not agree");
7713       }
7714 #endif
7715 
7716   } else {
7717     // This should be an initialized object that's alive.
7718     assert(oop(addr)->klass_or_null() != NULL,
7719            "Should be an initialized object");
7720     // Ignore mark word because we are running concurrent with mutators
7721     assert(oop(addr)->is_oop(true), "live block should be an oop");
7722     // Verify that the bit map has no bits marked between
7723     // addr and purported end of this block.
7724     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7725     assert(size >= 3, "Necessary for Printezis marks to work");
7726     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7727     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7728   }
7729   return size;
7730 }
7731 
7732 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7733                                                  size_t chunkSize) {
7734   // do_post_free_or_garbage_chunk() should only be called in the case
7735   // of the adaptive free list allocator.
7736   const bool fcInFreeLists = fc->is_free();
7737   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7738   assert((HeapWord*)fc <= _limit, "sweep invariant");
7739   if (CMSTestInFreeList && fcInFreeLists) {
7740     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7741   }
7742 
7743   if (CMSTraceSweeper) {
7744     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7745   }
7746 
7747   HeapWord* const fc_addr = (HeapWord*) fc;
7748 
7749   bool coalesce;
7750   const size_t left  = pointer_delta(fc_addr, freeFinger());
7751   const size_t right = chunkSize;
7752   switch (FLSCoalescePolicy) {
7753     // numeric value forms a coalition aggressiveness metric
7754     case 0:  { // never coalesce
7755       coalesce = false;
7756       break;
7757     }
7758     case 1: { // coalesce if left & right chunks on overpopulated lists
7759       coalesce = _sp->coalOverPopulated(left) &&
7760                  _sp->coalOverPopulated(right);
7761       break;
7762     }
7763     case 2: { // coalesce if left chunk on overpopulated list (default)
7764       coalesce = _sp->coalOverPopulated(left);
7765       break;
7766     }
7767     case 3: { // coalesce if left OR right chunk on overpopulated list
7768       coalesce = _sp->coalOverPopulated(left) ||
7769                  _sp->coalOverPopulated(right);
7770       break;
7771     }
7772     case 4: { // always coalesce
7773       coalesce = true;
7774       break;
7775     }
7776     default:
7777      ShouldNotReachHere();
7778   }
7779 
7780   // Should the current free range be coalesced?
7781   // If the chunk is in a free range and either we decided to coalesce above
7782   // or the chunk is near the large block at the end of the heap
7783   // (isNearLargestChunk() returns true), then coalesce this chunk.
7784   const bool doCoalesce = inFreeRange()
7785                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7786   if (doCoalesce) {
7787     // Coalesce the current free range on the left with the new
7788     // chunk on the right.  If either is on a free list,
7789     // it must be removed from the list and stashed in the closure.
7790     if (freeRangeInFreeLists()) {
7791       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7792       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7793         "Size of free range is inconsistent with chunk size.");
7794       if (CMSTestInFreeList) {
7795         assert(_sp->verify_chunk_in_free_list(ffc),
7796           "Chunk is not in free lists");
7797       }
7798       _sp->coalDeath(ffc->size());
7799       _sp->removeFreeChunkFromFreeLists(ffc);
7800       set_freeRangeInFreeLists(false);
7801     }
7802     if (fcInFreeLists) {
7803       _sp->coalDeath(chunkSize);
7804       assert(fc->size() == chunkSize,
7805         "The chunk has the wrong size or is not in the free lists");
7806       _sp->removeFreeChunkFromFreeLists(fc);
7807     }
7808     set_lastFreeRangeCoalesced(true);
7809     print_free_block_coalesced(fc);
7810   } else {  // not in a free range and/or should not coalesce
7811     // Return the current free range and start a new one.
7812     if (inFreeRange()) {
7813       // In a free range but cannot coalesce with the right hand chunk.
7814       // Put the current free range into the free lists.
7815       flush_cur_free_chunk(freeFinger(),
7816                            pointer_delta(fc_addr, freeFinger()));
7817     }
7818     // Set up for new free range.  Pass along whether the right hand
7819     // chunk is in the free lists.
7820     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7821   }
7822 }
7823 
7824 // Lookahead flush:
7825 // If we are tracking a free range, and this is the last chunk that
7826 // we'll look at because its end crosses past _limit, we'll preemptively
7827 // flush it along with any free range we may be holding on to. Note that
7828 // this can be the case only for an already free or freshly garbage
7829 // chunk. If this block is an object, it can never straddle
7830 // over _limit. The "straddling" occurs when _limit is set at
7831 // the previous end of the space when this cycle started, and
7832 // a subsequent heap expansion caused the previously co-terminal
7833 // free block to be coalesced with the newly expanded portion,
7834 // thus rendering _limit a non-block-boundary making it dangerous
7835 // for the sweeper to step over and examine.
7836 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7837   assert(inFreeRange(), "Should only be called if currently in a free range.");
7838   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7839   assert(_sp->used_region().contains(eob - 1),
7840          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7841                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7842                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7843                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7844   if (eob >= _limit) {
7845     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7846     if (CMSTraceSweeper) {
7847       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7848                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7849                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7850                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7851     }
7852     // Return the storage we are tracking back into the free lists.
7853     if (CMSTraceSweeper) {
7854       gclog_or_tty->print_cr("Flushing ... ");
7855     }
7856     assert(freeFinger() < eob, "Error");
7857     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7858   }
7859 }
7860 
7861 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7862   assert(inFreeRange(), "Should only be called if currently in a free range.");
7863   assert(size > 0,
7864     "A zero sized chunk cannot be added to the free lists.");
7865   if (!freeRangeInFreeLists()) {
7866     if (CMSTestInFreeList) {
7867       FreeChunk* fc = (FreeChunk*) chunk;
7868       fc->set_size(size);
7869       assert(!_sp->verify_chunk_in_free_list(fc),
7870         "chunk should not be in free lists yet");
7871     }
7872     if (CMSTraceSweeper) {
7873       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7874                     p2i(chunk), size);
7875     }
7876     // A new free range is going to be starting.  The current
7877     // free range has not been added to the free lists yet or
7878     // was removed so add it back.
7879     // If the current free range was coalesced, then the death
7880     // of the free range was recorded.  Record a birth now.
7881     if (lastFreeRangeCoalesced()) {
7882       _sp->coalBirth(size);
7883     }
7884     _sp->addChunkAndRepairOffsetTable(chunk, size,
7885             lastFreeRangeCoalesced());
7886   } else if (CMSTraceSweeper) {
7887     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7888   }
7889   set_inFreeRange(false);
7890   set_freeRangeInFreeLists(false);
7891 }
7892 
7893 // We take a break if we've been at this for a while,
7894 // so as to avoid monopolizing the locks involved.
7895 void SweepClosure::do_yield_work(HeapWord* addr) {
7896   // Return current free chunk being used for coalescing (if any)
7897   // to the appropriate freelist.  After yielding, the next
7898   // free block encountered will start a coalescing range of
7899   // free blocks.  If the next free block is adjacent to the
7900   // chunk just flushed, they will need to wait for the next
7901   // sweep to be coalesced.
7902   if (inFreeRange()) {
7903     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7904   }
7905 
7906   // First give up the locks, then yield, then re-lock.
7907   // We should probably use a constructor/destructor idiom to
7908   // do this unlock/lock or modify the MutexUnlocker class to
7909   // serve our purpose. XXX
7910   assert_lock_strong(_bitMap->lock());
7911   assert_lock_strong(_freelistLock);
7912   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7913          "CMS thread should hold CMS token");
7914   _bitMap->lock()->unlock();
7915   _freelistLock->unlock();
7916   ConcurrentMarkSweepThread::desynchronize(true);
7917   _collector->stopTimer();
7918   if (PrintCMSStatistics != 0) {
7919     _collector->incrementYields();
7920   }
7921 
7922   // See the comment in coordinator_yield()
7923   for (unsigned i = 0; i < CMSYieldSleepCount &&
7924                        ConcurrentMarkSweepThread::should_yield() &&
7925                        !CMSCollector::foregroundGCIsActive(); ++i) {
7926     os::sleep(Thread::current(), 1, false);
7927   }
7928 
7929   ConcurrentMarkSweepThread::synchronize(true);
7930   _freelistLock->lock();
7931   _bitMap->lock()->lock_without_safepoint_check();
7932   _collector->startTimer();
7933 }
7934 
7935 #ifndef PRODUCT
7936 // This is actually very useful in a product build if it can
7937 // be called from the debugger.  Compile it into the product
7938 // as needed.
7939 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7940   return debug_cms_space->verify_chunk_in_free_list(fc);
7941 }
7942 #endif
7943 
7944 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7945   if (CMSTraceSweeper) {
7946     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7947                            p2i(fc), fc->size());
7948   }
7949 }
7950 
7951 // CMSIsAliveClosure
7952 bool CMSIsAliveClosure::do_object_b(oop obj) {
7953   HeapWord* addr = (HeapWord*)obj;
7954   return addr != NULL &&
7955          (!_span.contains(addr) || _bit_map->isMarked(addr));
7956 }
7957 
7958 
7959 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7960                       MemRegion span,
7961                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7962                       bool cpc):
7963   _collector(collector),
7964   _span(span),
7965   _bit_map(bit_map),
7966   _mark_stack(mark_stack),
7967   _concurrent_precleaning(cpc) {
7968   assert(!_span.is_empty(), "Empty span could spell trouble");
7969 }
7970 
7971 
7972 // CMSKeepAliveClosure: the serial version
7973 void CMSKeepAliveClosure::do_oop(oop obj) {
7974   HeapWord* addr = (HeapWord*)obj;
7975   if (_span.contains(addr) &&
7976       !_bit_map->isMarked(addr)) {
7977     _bit_map->mark(addr);
7978     bool simulate_overflow = false;
7979     NOT_PRODUCT(
7980       if (CMSMarkStackOverflowALot &&
7981           _collector->simulate_overflow()) {
7982         // simulate a stack overflow
7983         simulate_overflow = true;
7984       }
7985     )
7986     if (simulate_overflow || !_mark_stack->push(obj)) {
7987       if (_concurrent_precleaning) {
7988         // We dirty the overflown object and let the remark
7989         // phase deal with it.
7990         assert(_collector->overflow_list_is_empty(), "Error");
7991         // In the case of object arrays, we need to dirty all of
7992         // the cards that the object spans. No locking or atomics
7993         // are needed since no one else can be mutating the mod union
7994         // table.
7995         if (obj->is_objArray()) {
7996           size_t sz = obj->size();
7997           HeapWord* end_card_addr =
7998             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7999           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8000           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8001           _collector->_modUnionTable.mark_range(redirty_range);
8002         } else {
8003           _collector->_modUnionTable.mark(addr);
8004         }
8005         _collector->_ser_kac_preclean_ovflw++;
8006       } else {
8007         _collector->push_on_overflow_list(obj);
8008         _collector->_ser_kac_ovflw++;
8009       }
8010     }
8011   }
8012 }
8013 
8014 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8015 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8016 
8017 // CMSParKeepAliveClosure: a parallel version of the above.
8018 // The work queues are private to each closure (thread),
8019 // but (may be) available for stealing by other threads.
8020 void CMSParKeepAliveClosure::do_oop(oop obj) {
8021   HeapWord* addr = (HeapWord*)obj;
8022   if (_span.contains(addr) &&
8023       !_bit_map->isMarked(addr)) {
8024     // In general, during recursive tracing, several threads
8025     // may be concurrently getting here; the first one to
8026     // "tag" it, claims it.
8027     if (_bit_map->par_mark(addr)) {
8028       bool res = _work_queue->push(obj);
8029       assert(res, "Low water mark should be much less than capacity");
8030       // Do a recursive trim in the hope that this will keep
8031       // stack usage lower, but leave some oops for potential stealers
8032       trim_queue(_low_water_mark);
8033     } // Else, another thread got there first
8034   }
8035 }
8036 
8037 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8038 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8039 
8040 void CMSParKeepAliveClosure::trim_queue(uint max) {
8041   while (_work_queue->size() > max) {
8042     oop new_oop;
8043     if (_work_queue->pop_local(new_oop)) {
8044       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8045       assert(_bit_map->isMarked((HeapWord*)new_oop),
8046              "no white objects on this stack!");
8047       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8048       // iterate over the oops in this oop, marking and pushing
8049       // the ones in CMS heap (i.e. in _span).
8050       new_oop->oop_iterate(&_mark_and_push);
8051     }
8052   }
8053 }
8054 
8055 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8056                                 CMSCollector* collector,
8057                                 MemRegion span, CMSBitMap* bit_map,
8058                                 OopTaskQueue* work_queue):
8059   _collector(collector),
8060   _span(span),
8061   _bit_map(bit_map),
8062   _work_queue(work_queue) { }
8063 
8064 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8065   HeapWord* addr = (HeapWord*)obj;
8066   if (_span.contains(addr) &&
8067       !_bit_map->isMarked(addr)) {
8068     if (_bit_map->par_mark(addr)) {
8069       bool simulate_overflow = false;
8070       NOT_PRODUCT(
8071         if (CMSMarkStackOverflowALot &&
8072             _collector->par_simulate_overflow()) {
8073           // simulate a stack overflow
8074           simulate_overflow = true;
8075         }
8076       )
8077       if (simulate_overflow || !_work_queue->push(obj)) {
8078         _collector->par_push_on_overflow_list(obj);
8079         _collector->_par_kac_ovflw++;
8080       }
8081     } // Else another thread got there already
8082   }
8083 }
8084 
8085 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8086 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8087 
8088 //////////////////////////////////////////////////////////////////
8089 //  CMSExpansionCause                /////////////////////////////
8090 //////////////////////////////////////////////////////////////////
8091 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8092   switch (cause) {
8093     case _no_expansion:
8094       return "No expansion";
8095     case _satisfy_free_ratio:
8096       return "Free ratio";
8097     case _satisfy_promotion:
8098       return "Satisfy promotion";
8099     case _satisfy_allocation:
8100       return "allocation";
8101     case _allocate_par_lab:
8102       return "Par LAB";
8103     case _allocate_par_spooling_space:
8104       return "Par Spooling Space";
8105     case _adaptive_size_policy:
8106       return "Ergonomics";
8107     default:
8108       return "unknown";
8109   }
8110 }
8111 
8112 void CMSDrainMarkingStackClosure::do_void() {
8113   // the max number to take from overflow list at a time
8114   const size_t num = _mark_stack->capacity()/4;
8115   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8116          "Overflow list should be NULL during concurrent phases");
8117   while (!_mark_stack->isEmpty() ||
8118          // if stack is empty, check the overflow list
8119          _collector->take_from_overflow_list(num, _mark_stack)) {
8120     oop obj = _mark_stack->pop();
8121     HeapWord* addr = (HeapWord*)obj;
8122     assert(_span.contains(addr), "Should be within span");
8123     assert(_bit_map->isMarked(addr), "Should be marked");
8124     assert(obj->is_oop(), "Should be an oop");
8125     obj->oop_iterate(_keep_alive);
8126   }
8127 }
8128 
8129 void CMSParDrainMarkingStackClosure::do_void() {
8130   // drain queue
8131   trim_queue(0);
8132 }
8133 
8134 // Trim our work_queue so its length is below max at return
8135 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8136   while (_work_queue->size() > max) {
8137     oop new_oop;
8138     if (_work_queue->pop_local(new_oop)) {
8139       assert(new_oop->is_oop(), "Expected an oop");
8140       assert(_bit_map->isMarked((HeapWord*)new_oop),
8141              "no white objects on this stack!");
8142       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8143       // iterate over the oops in this oop, marking and pushing
8144       // the ones in CMS heap (i.e. in _span).
8145       new_oop->oop_iterate(&_mark_and_push);
8146     }
8147   }
8148 }
8149 
8150 ////////////////////////////////////////////////////////////////////
8151 // Support for Marking Stack Overflow list handling and related code
8152 ////////////////////////////////////////////////////////////////////
8153 // Much of the following code is similar in shape and spirit to the
8154 // code used in ParNewGC. We should try and share that code
8155 // as much as possible in the future.
8156 
8157 #ifndef PRODUCT
8158 // Debugging support for CMSStackOverflowALot
8159 
8160 // It's OK to call this multi-threaded;  the worst thing
8161 // that can happen is that we'll get a bunch of closely
8162 // spaced simulated overflows, but that's OK, in fact
8163 // probably good as it would exercise the overflow code
8164 // under contention.
8165 bool CMSCollector::simulate_overflow() {
8166   if (_overflow_counter-- <= 0) { // just being defensive
8167     _overflow_counter = CMSMarkStackOverflowInterval;
8168     return true;
8169   } else {
8170     return false;
8171   }
8172 }
8173 
8174 bool CMSCollector::par_simulate_overflow() {
8175   return simulate_overflow();
8176 }
8177 #endif
8178 
8179 // Single-threaded
8180 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8181   assert(stack->isEmpty(), "Expected precondition");
8182   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8183   size_t i = num;
8184   oop  cur = _overflow_list;
8185   const markOop proto = markOopDesc::prototype();
8186   NOT_PRODUCT(ssize_t n = 0;)
8187   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8188     next = oop(cur->mark());
8189     cur->set_mark(proto);   // until proven otherwise
8190     assert(cur->is_oop(), "Should be an oop");
8191     bool res = stack->push(cur);
8192     assert(res, "Bit off more than can chew?");
8193     NOT_PRODUCT(n++;)
8194   }
8195   _overflow_list = cur;
8196 #ifndef PRODUCT
8197   assert(_num_par_pushes >= n, "Too many pops?");
8198   _num_par_pushes -=n;
8199 #endif
8200   return !stack->isEmpty();
8201 }
8202 
8203 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8204 // (MT-safe) Get a prefix of at most "num" from the list.
8205 // The overflow list is chained through the mark word of
8206 // each object in the list. We fetch the entire list,
8207 // break off a prefix of the right size and return the
8208 // remainder. If other threads try to take objects from
8209 // the overflow list at that time, they will wait for
8210 // some time to see if data becomes available. If (and
8211 // only if) another thread places one or more object(s)
8212 // on the global list before we have returned the suffix
8213 // to the global list, we will walk down our local list
8214 // to find its end and append the global list to
8215 // our suffix before returning it. This suffix walk can
8216 // prove to be expensive (quadratic in the amount of traffic)
8217 // when there are many objects in the overflow list and
8218 // there is much producer-consumer contention on the list.
8219 // *NOTE*: The overflow list manipulation code here and
8220 // in ParNewGeneration:: are very similar in shape,
8221 // except that in the ParNew case we use the old (from/eden)
8222 // copy of the object to thread the list via its klass word.
8223 // Because of the common code, if you make any changes in
8224 // the code below, please check the ParNew version to see if
8225 // similar changes might be needed.
8226 // CR 6797058 has been filed to consolidate the common code.
8227 bool CMSCollector::par_take_from_overflow_list(size_t num,
8228                                                OopTaskQueue* work_q,
8229                                                int no_of_gc_threads) {
8230   assert(work_q->size() == 0, "First empty local work queue");
8231   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8232   if (_overflow_list == NULL) {
8233     return false;
8234   }
8235   // Grab the entire list; we'll put back a suffix
8236   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8237   Thread* tid = Thread::current();
8238   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8239   // set to ParallelGCThreads.
8240   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8241   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8242   // If the list is busy, we spin for a short while,
8243   // sleeping between attempts to get the list.
8244   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8245     os::sleep(tid, sleep_time_millis, false);
8246     if (_overflow_list == NULL) {
8247       // Nothing left to take
8248       return false;
8249     } else if (_overflow_list != BUSY) {
8250       // Try and grab the prefix
8251       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8252     }
8253   }
8254   // If the list was found to be empty, or we spun long
8255   // enough, we give up and return empty-handed. If we leave
8256   // the list in the BUSY state below, it must be the case that
8257   // some other thread holds the overflow list and will set it
8258   // to a non-BUSY state in the future.
8259   if (prefix == NULL || prefix == BUSY) {
8260      // Nothing to take or waited long enough
8261      if (prefix == NULL) {
8262        // Write back the NULL in case we overwrote it with BUSY above
8263        // and it is still the same value.
8264        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8265      }
8266      return false;
8267   }
8268   assert(prefix != NULL && prefix != BUSY, "Error");
8269   size_t i = num;
8270   oop cur = prefix;
8271   // Walk down the first "num" objects, unless we reach the end.
8272   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8273   if (cur->mark() == NULL) {
8274     // We have "num" or fewer elements in the list, so there
8275     // is nothing to return to the global list.
8276     // Write back the NULL in lieu of the BUSY we wrote
8277     // above, if it is still the same value.
8278     if (_overflow_list == BUSY) {
8279       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8280     }
8281   } else {
8282     // Chop off the suffix and return it to the global list.
8283     assert(cur->mark() != BUSY, "Error");
8284     oop suffix_head = cur->mark(); // suffix will be put back on global list
8285     cur->set_mark(NULL);           // break off suffix
8286     // It's possible that the list is still in the empty(busy) state
8287     // we left it in a short while ago; in that case we may be
8288     // able to place back the suffix without incurring the cost
8289     // of a walk down the list.
8290     oop observed_overflow_list = _overflow_list;
8291     oop cur_overflow_list = observed_overflow_list;
8292     bool attached = false;
8293     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8294       observed_overflow_list =
8295         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8296       if (cur_overflow_list == observed_overflow_list) {
8297         attached = true;
8298         break;
8299       } else cur_overflow_list = observed_overflow_list;
8300     }
8301     if (!attached) {
8302       // Too bad, someone else sneaked in (at least) an element; we'll need
8303       // to do a splice. Find tail of suffix so we can prepend suffix to global
8304       // list.
8305       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8306       oop suffix_tail = cur;
8307       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8308              "Tautology");
8309       observed_overflow_list = _overflow_list;
8310       do {
8311         cur_overflow_list = observed_overflow_list;
8312         if (cur_overflow_list != BUSY) {
8313           // Do the splice ...
8314           suffix_tail->set_mark(markOop(cur_overflow_list));
8315         } else { // cur_overflow_list == BUSY
8316           suffix_tail->set_mark(NULL);
8317         }
8318         // ... and try to place spliced list back on overflow_list ...
8319         observed_overflow_list =
8320           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8321       } while (cur_overflow_list != observed_overflow_list);
8322       // ... until we have succeeded in doing so.
8323     }
8324   }
8325 
8326   // Push the prefix elements on work_q
8327   assert(prefix != NULL, "control point invariant");
8328   const markOop proto = markOopDesc::prototype();
8329   oop next;
8330   NOT_PRODUCT(ssize_t n = 0;)
8331   for (cur = prefix; cur != NULL; cur = next) {
8332     next = oop(cur->mark());
8333     cur->set_mark(proto);   // until proven otherwise
8334     assert(cur->is_oop(), "Should be an oop");
8335     bool res = work_q->push(cur);
8336     assert(res, "Bit off more than we can chew?");
8337     NOT_PRODUCT(n++;)
8338   }
8339 #ifndef PRODUCT
8340   assert(_num_par_pushes >= n, "Too many pops?");
8341   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8342 #endif
8343   return true;
8344 }
8345 
8346 // Single-threaded
8347 void CMSCollector::push_on_overflow_list(oop p) {
8348   NOT_PRODUCT(_num_par_pushes++;)
8349   assert(p->is_oop(), "Not an oop");
8350   preserve_mark_if_necessary(p);
8351   p->set_mark((markOop)_overflow_list);
8352   _overflow_list = p;
8353 }
8354 
8355 // Multi-threaded; use CAS to prepend to overflow list
8356 void CMSCollector::par_push_on_overflow_list(oop p) {
8357   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8358   assert(p->is_oop(), "Not an oop");
8359   par_preserve_mark_if_necessary(p);
8360   oop observed_overflow_list = _overflow_list;
8361   oop cur_overflow_list;
8362   do {
8363     cur_overflow_list = observed_overflow_list;
8364     if (cur_overflow_list != BUSY) {
8365       p->set_mark(markOop(cur_overflow_list));
8366     } else {
8367       p->set_mark(NULL);
8368     }
8369     observed_overflow_list =
8370       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8371   } while (cur_overflow_list != observed_overflow_list);
8372 }
8373 #undef BUSY
8374 
8375 // Single threaded
8376 // General Note on GrowableArray: pushes may silently fail
8377 // because we are (temporarily) out of C-heap for expanding
8378 // the stack. The problem is quite ubiquitous and affects
8379 // a lot of code in the JVM. The prudent thing for GrowableArray
8380 // to do (for now) is to exit with an error. However, that may
8381 // be too draconian in some cases because the caller may be
8382 // able to recover without much harm. For such cases, we
8383 // should probably introduce a "soft_push" method which returns
8384 // an indication of success or failure with the assumption that
8385 // the caller may be able to recover from a failure; code in
8386 // the VM can then be changed, incrementally, to deal with such
8387 // failures where possible, thus, incrementally hardening the VM
8388 // in such low resource situations.
8389 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8390   _preserved_oop_stack.push(p);
8391   _preserved_mark_stack.push(m);
8392   assert(m == p->mark(), "Mark word changed");
8393   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8394          "bijection");
8395 }
8396 
8397 // Single threaded
8398 void CMSCollector::preserve_mark_if_necessary(oop p) {
8399   markOop m = p->mark();
8400   if (m->must_be_preserved(p)) {
8401     preserve_mark_work(p, m);
8402   }
8403 }
8404 
8405 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8406   markOop m = p->mark();
8407   if (m->must_be_preserved(p)) {
8408     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8409     // Even though we read the mark word without holding
8410     // the lock, we are assured that it will not change
8411     // because we "own" this oop, so no other thread can
8412     // be trying to push it on the overflow list; see
8413     // the assertion in preserve_mark_work() that checks
8414     // that m == p->mark().
8415     preserve_mark_work(p, m);
8416   }
8417 }
8418 
8419 // We should be able to do this multi-threaded,
8420 // a chunk of stack being a task (this is
8421 // correct because each oop only ever appears
8422 // once in the overflow list. However, it's
8423 // not very easy to completely overlap this with
8424 // other operations, so will generally not be done
8425 // until all work's been completed. Because we
8426 // expect the preserved oop stack (set) to be small,
8427 // it's probably fine to do this single-threaded.
8428 // We can explore cleverer concurrent/overlapped/parallel
8429 // processing of preserved marks if we feel the
8430 // need for this in the future. Stack overflow should
8431 // be so rare in practice and, when it happens, its
8432 // effect on performance so great that this will
8433 // likely just be in the noise anyway.
8434 void CMSCollector::restore_preserved_marks_if_any() {
8435   assert(SafepointSynchronize::is_at_safepoint(),
8436          "world should be stopped");
8437   assert(Thread::current()->is_ConcurrentGC_thread() ||
8438          Thread::current()->is_VM_thread(),
8439          "should be single-threaded");
8440   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8441          "bijection");
8442 
8443   while (!_preserved_oop_stack.is_empty()) {
8444     oop p = _preserved_oop_stack.pop();
8445     assert(p->is_oop(), "Should be an oop");
8446     assert(_span.contains(p), "oop should be in _span");
8447     assert(p->mark() == markOopDesc::prototype(),
8448            "Set when taken from overflow list");
8449     markOop m = _preserved_mark_stack.pop();
8450     p->set_mark(m);
8451   }
8452   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8453          "stacks were cleared above");
8454 }
8455 
8456 #ifndef PRODUCT
8457 bool CMSCollector::no_preserved_marks() const {
8458   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8459 }
8460 #endif
8461 
8462 // Transfer some number of overflown objects to usual marking
8463 // stack. Return true if some objects were transferred.
8464 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8465   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8466                     (size_t)ParGCDesiredObjsFromOverflowList);
8467 
8468   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8469   assert(_collector->overflow_list_is_empty() || res,
8470          "If list is not empty, we should have taken something");
8471   assert(!res || !_mark_stack->isEmpty(),
8472          "If we took something, it should now be on our stack");
8473   return res;
8474 }
8475 
8476 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8477   size_t res = _sp->block_size_no_stall(addr, _collector);
8478   if (_sp->block_is_obj(addr)) {
8479     if (_live_bit_map->isMarked(addr)) {
8480       // It can't have been dead in a previous cycle
8481       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8482     } else {
8483       _dead_bit_map->mark(addr);      // mark the dead object
8484     }
8485   }
8486   // Could be 0, if the block size could not be computed without stalling.
8487   return res;
8488 }
8489 
8490 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8491 
8492   switch (phase) {
8493     case CMSCollector::InitialMarking:
8494       initialize(true  /* fullGC */ ,
8495                  cause /* cause of the GC */,
8496                  true  /* recordGCBeginTime */,
8497                  true  /* recordPreGCUsage */,
8498                  false /* recordPeakUsage */,
8499                  false /* recordPostGCusage */,
8500                  true  /* recordAccumulatedGCTime */,
8501                  false /* recordGCEndTime */,
8502                  false /* countCollection */  );
8503       break;
8504 
8505     case CMSCollector::FinalMarking:
8506       initialize(true  /* fullGC */ ,
8507                  cause /* cause of the GC */,
8508                  false /* recordGCBeginTime */,
8509                  false /* recordPreGCUsage */,
8510                  false /* recordPeakUsage */,
8511                  false /* recordPostGCusage */,
8512                  true  /* recordAccumulatedGCTime */,
8513                  false /* recordGCEndTime */,
8514                  false /* countCollection */  );
8515       break;
8516 
8517     case CMSCollector::Sweeping:
8518       initialize(true  /* fullGC */ ,
8519                  cause /* cause of the GC */,
8520                  false /* recordGCBeginTime */,
8521                  false /* recordPreGCUsage */,
8522                  true  /* recordPeakUsage */,
8523                  true  /* recordPostGCusage */,
8524                  false /* recordAccumulatedGCTime */,
8525                  true  /* recordGCEndTime */,
8526                  true  /* countCollection */  );
8527       break;
8528 
8529     default:
8530       ShouldNotReachHere();
8531   }
8532 }