1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1ErgoVerbose.hpp"
  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Log.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcLocker.inline.hpp"
  56 #include "gc/shared/gcTimer.hpp"
  57 #include "gc/shared/gcTrace.hpp"
  58 #include "gc/shared/gcTraceTime.hpp"
  59 #include "gc/shared/generationSpec.hpp"
  60 #include "gc/shared/isGCActiveMark.hpp"
  61 #include "gc/shared/referenceProcessor.hpp"
  62 #include "gc/shared/taskqueue.inline.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/iterator.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "runtime/atomic.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "utilities/globalDefinitions.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   bool _concurrent;
  94 public:
  95   RefineCardTableEntryClosure() : _concurrent(true) { }
  96 
  97   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  98     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111 
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 117  private:
 118   size_t _num_processed;
 119 
 120  public:
 121   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 122 
 123   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 124     *card_ptr = CardTableModRefBS::dirty_card_val();
 125     _num_processed++;
 126     return true;
 127   }
 128 
 129   size_t num_processed() const { return _num_processed; }
 130 };
 131 
 132 YoungList::YoungList(G1CollectedHeap* g1h) :
 133     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 134     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 135   guarantee(check_list_empty(false), "just making sure...");
 136 }
 137 
 138 void YoungList::push_region(HeapRegion *hr) {
 139   assert(!hr->is_young(), "should not already be young");
 140   assert(hr->get_next_young_region() == NULL, "cause it should!");
 141 
 142   hr->set_next_young_region(_head);
 143   _head = hr;
 144 
 145   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 146   ++_length;
 147 }
 148 
 149 void YoungList::add_survivor_region(HeapRegion* hr) {
 150   assert(hr->is_survivor(), "should be flagged as survivor region");
 151   assert(hr->get_next_young_region() == NULL, "cause it should!");
 152 
 153   hr->set_next_young_region(_survivor_head);
 154   if (_survivor_head == NULL) {
 155     _survivor_tail = hr;
 156   }
 157   _survivor_head = hr;
 158   ++_survivor_length;
 159 }
 160 
 161 void YoungList::empty_list(HeapRegion* list) {
 162   while (list != NULL) {
 163     HeapRegion* next = list->get_next_young_region();
 164     list->set_next_young_region(NULL);
 165     list->uninstall_surv_rate_group();
 166     // This is called before a Full GC and all the non-empty /
 167     // non-humongous regions at the end of the Full GC will end up as
 168     // old anyway.
 169     list->set_old();
 170     list = next;
 171   }
 172 }
 173 
 174 void YoungList::empty_list() {
 175   assert(check_list_well_formed(), "young list should be well formed");
 176 
 177   empty_list(_head);
 178   _head = NULL;
 179   _length = 0;
 180 
 181   empty_list(_survivor_head);
 182   _survivor_head = NULL;
 183   _survivor_tail = NULL;
 184   _survivor_length = 0;
 185 
 186   _last_sampled_rs_lengths = 0;
 187 
 188   assert(check_list_empty(false), "just making sure...");
 189 }
 190 
 191 bool YoungList::check_list_well_formed() {
 192   bool ret = true;
 193 
 194   uint length = 0;
 195   HeapRegion* curr = _head;
 196   HeapRegion* last = NULL;
 197   while (curr != NULL) {
 198     if (!curr->is_young()) {
 199       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 200                              "incorrectly tagged (y: %d, surv: %d)",
 201                              p2i(curr->bottom()), p2i(curr->end()),
 202                              curr->is_young(), curr->is_survivor());
 203       ret = false;
 204     }
 205     ++length;
 206     last = curr;
 207     curr = curr->get_next_young_region();
 208   }
 209   ret = ret && (length == _length);
 210 
 211   if (!ret) {
 212     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 213     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 214                            length, _length);
 215   }
 216 
 217   return ret;
 218 }
 219 
 220 bool YoungList::check_list_empty(bool check_sample) {
 221   bool ret = true;
 222 
 223   if (_length != 0) {
 224     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 225                   _length);
 226     ret = false;
 227   }
 228   if (check_sample && _last_sampled_rs_lengths != 0) {
 229     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 230     ret = false;
 231   }
 232   if (_head != NULL) {
 233     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 234     ret = false;
 235   }
 236   if (!ret) {
 237     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 238   }
 239 
 240   return ret;
 241 }
 242 
 243 void
 244 YoungList::rs_length_sampling_init() {
 245   _sampled_rs_lengths = 0;
 246   _curr               = _head;
 247 }
 248 
 249 bool
 250 YoungList::rs_length_sampling_more() {
 251   return _curr != NULL;
 252 }
 253 
 254 void
 255 YoungList::rs_length_sampling_next() {
 256   assert( _curr != NULL, "invariant" );
 257   size_t rs_length = _curr->rem_set()->occupied();
 258 
 259   _sampled_rs_lengths += rs_length;
 260 
 261   // The current region may not yet have been added to the
 262   // incremental collection set (it gets added when it is
 263   // retired as the current allocation region).
 264   if (_curr->in_collection_set()) {
 265     // Update the collection set policy information for this region
 266     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 267   }
 268 
 269   _curr = _curr->get_next_young_region();
 270   if (_curr == NULL) {
 271     _last_sampled_rs_lengths = _sampled_rs_lengths;
 272     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 273   }
 274 }
 275 
 276 void
 277 YoungList::reset_auxilary_lists() {
 278   guarantee( is_empty(), "young list should be empty" );
 279   assert(check_list_well_formed(), "young list should be well formed");
 280 
 281   // Add survivor regions to SurvRateGroup.
 282   _g1h->g1_policy()->note_start_adding_survivor_regions();
 283   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 284 
 285   int young_index_in_cset = 0;
 286   for (HeapRegion* curr = _survivor_head;
 287        curr != NULL;
 288        curr = curr->get_next_young_region()) {
 289     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 290 
 291     // The region is a non-empty survivor so let's add it to
 292     // the incremental collection set for the next evacuation
 293     // pause.
 294     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 295     young_index_in_cset += 1;
 296   }
 297   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 298   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 299 
 300   _head   = _survivor_head;
 301   _length = _survivor_length;
 302   if (_survivor_head != NULL) {
 303     assert(_survivor_tail != NULL, "cause it shouldn't be");
 304     assert(_survivor_length > 0, "invariant");
 305     _survivor_tail->set_next_young_region(NULL);
 306   }
 307 
 308   // Don't clear the survivor list handles until the start of
 309   // the next evacuation pause - we need it in order to re-tag
 310   // the survivor regions from this evacuation pause as 'young'
 311   // at the start of the next.
 312 
 313   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 314 
 315   assert(check_list_well_formed(), "young list should be well formed");
 316 }
 317 
 318 void YoungList::print() {
 319   HeapRegion* lists[] = {_head,   _survivor_head};
 320   const char* names[] = {"YOUNG", "SURVIVOR"};
 321 
 322   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 323     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 324     HeapRegion *curr = lists[list];
 325     if (curr == NULL)
 326       gclog_or_tty->print_cr("  empty");
 327     while (curr != NULL) {
 328       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 329                              HR_FORMAT_PARAMS(curr),
 330                              p2i(curr->prev_top_at_mark_start()),
 331                              p2i(curr->next_top_at_mark_start()),
 332                              curr->age_in_surv_rate_group_cond());
 333       curr = curr->get_next_young_region();
 334     }
 335   }
 336 
 337   gclog_or_tty->cr();
 338 }
 339 
 340 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 341   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 342 }
 343 
 344 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 345   // The from card cache is not the memory that is actually committed. So we cannot
 346   // take advantage of the zero_filled parameter.
 347   reset_from_card_cache(start_idx, num_regions);
 348 }
 349 
 350 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 351 {
 352   // Claim the right to put the region on the dirty cards region list
 353   // by installing a self pointer.
 354   HeapRegion* next = hr->get_next_dirty_cards_region();
 355   if (next == NULL) {
 356     HeapRegion* res = (HeapRegion*)
 357       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 358                           NULL);
 359     if (res == NULL) {
 360       HeapRegion* head;
 361       do {
 362         // Put the region to the dirty cards region list.
 363         head = _dirty_cards_region_list;
 364         next = (HeapRegion*)
 365           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 366         if (next == head) {
 367           assert(hr->get_next_dirty_cards_region() == hr,
 368                  "hr->get_next_dirty_cards_region() != hr");
 369           if (next == NULL) {
 370             // The last region in the list points to itself.
 371             hr->set_next_dirty_cards_region(hr);
 372           } else {
 373             hr->set_next_dirty_cards_region(next);
 374           }
 375         }
 376       } while (next != head);
 377     }
 378   }
 379 }
 380 
 381 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 382 {
 383   HeapRegion* head;
 384   HeapRegion* hr;
 385   do {
 386     head = _dirty_cards_region_list;
 387     if (head == NULL) {
 388       return NULL;
 389     }
 390     HeapRegion* new_head = head->get_next_dirty_cards_region();
 391     if (head == new_head) {
 392       // The last region.
 393       new_head = NULL;
 394     }
 395     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 396                                           head);
 397   } while (hr != head);
 398   assert(hr != NULL, "invariant");
 399   hr->set_next_dirty_cards_region(NULL);
 400   return hr;
 401 }
 402 
 403 // Returns true if the reference points to an object that
 404 // can move in an incremental collection.
 405 bool G1CollectedHeap::is_scavengable(const void* p) {
 406   HeapRegion* hr = heap_region_containing(p);
 407   return !hr->is_humongous();
 408 }
 409 
 410 // Private methods.
 411 
 412 HeapRegion*
 413 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 414   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 415   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 416     if (!_secondary_free_list.is_empty()) {
 417       if (G1ConcRegionFreeingVerbose) {
 418         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 419                                "secondary_free_list has %u entries",
 420                                _secondary_free_list.length());
 421       }
 422       // It looks as if there are free regions available on the
 423       // secondary_free_list. Let's move them to the free_list and try
 424       // again to allocate from it.
 425       append_secondary_free_list();
 426 
 427       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 428              "empty we should have moved at least one entry to the free_list");
 429       HeapRegion* res = _hrm.allocate_free_region(is_old);
 430       if (G1ConcRegionFreeingVerbose) {
 431         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 432                                "allocated "HR_FORMAT" from secondary_free_list",
 433                                HR_FORMAT_PARAMS(res));
 434       }
 435       return res;
 436     }
 437 
 438     // Wait here until we get notified either when (a) there are no
 439     // more free regions coming or (b) some regions have been moved on
 440     // the secondary_free_list.
 441     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 442   }
 443 
 444   if (G1ConcRegionFreeingVerbose) {
 445     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 446                            "could not allocate from secondary_free_list");
 447   }
 448   return NULL;
 449 }
 450 
 451 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 452   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 453          "the only time we use this to allocate a humongous region is "
 454          "when we are allocating a single humongous region");
 455 
 456   HeapRegion* res;
 457   if (G1StressConcRegionFreeing) {
 458     if (!_secondary_free_list.is_empty()) {
 459       if (G1ConcRegionFreeingVerbose) {
 460         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 461                                "forced to look at the secondary_free_list");
 462       }
 463       res = new_region_try_secondary_free_list(is_old);
 464       if (res != NULL) {
 465         return res;
 466       }
 467     }
 468   }
 469 
 470   res = _hrm.allocate_free_region(is_old);
 471 
 472   if (res == NULL) {
 473     if (G1ConcRegionFreeingVerbose) {
 474       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 475                              "res == NULL, trying the secondary_free_list");
 476     }
 477     res = new_region_try_secondary_free_list(is_old);
 478   }
 479   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 480     // Currently, only attempts to allocate GC alloc regions set
 481     // do_expand to true. So, we should only reach here during a
 482     // safepoint. If this assumption changes we might have to
 483     // reconsider the use of _expand_heap_after_alloc_failure.
 484     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 485 
 486     ergo_verbose1(ErgoHeapSizing,
 487                   "attempt heap expansion",
 488                   ergo_format_reason("region allocation request failed")
 489                   ergo_format_byte("allocation request"),
 490                   word_size * HeapWordSize);
 491     if (expand(word_size * HeapWordSize)) {
 492       // Given that expand() succeeded in expanding the heap, and we
 493       // always expand the heap by an amount aligned to the heap
 494       // region size, the free list should in theory not be empty.
 495       // In either case allocate_free_region() will check for NULL.
 496       res = _hrm.allocate_free_region(is_old);
 497     } else {
 498       _expand_heap_after_alloc_failure = false;
 499     }
 500   }
 501   return res;
 502 }
 503 
 504 HeapWord*
 505 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 506                                                            uint num_regions,
 507                                                            size_t word_size,
 508                                                            AllocationContext_t context) {
 509   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 510   assert(is_humongous(word_size), "word_size should be humongous");
 511   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 512 
 513   // Index of last region in the series + 1.
 514   uint last = first + num_regions;
 515 
 516   // We need to initialize the region(s) we just discovered. This is
 517   // a bit tricky given that it can happen concurrently with
 518   // refinement threads refining cards on these regions and
 519   // potentially wanting to refine the BOT as they are scanning
 520   // those cards (this can happen shortly after a cleanup; see CR
 521   // 6991377). So we have to set up the region(s) carefully and in
 522   // a specific order.
 523 
 524   // The word size sum of all the regions we will allocate.
 525   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 526   assert(word_size <= word_size_sum, "sanity");
 527 
 528   // This will be the "starts humongous" region.
 529   HeapRegion* first_hr = region_at(first);
 530   // The header of the new object will be placed at the bottom of
 531   // the first region.
 532   HeapWord* new_obj = first_hr->bottom();
 533   // This will be the new end of the first region in the series that
 534   // should also match the end of the last region in the series.
 535   HeapWord* new_end = new_obj + word_size_sum;
 536   // This will be the new top of the first region that will reflect
 537   // this allocation.
 538   HeapWord* new_top = new_obj + word_size;
 539 
 540   // First, we need to zero the header of the space that we will be
 541   // allocating. When we update top further down, some refinement
 542   // threads might try to scan the region. By zeroing the header we
 543   // ensure that any thread that will try to scan the region will
 544   // come across the zero klass word and bail out.
 545   //
 546   // NOTE: It would not have been correct to have used
 547   // CollectedHeap::fill_with_object() and make the space look like
 548   // an int array. The thread that is doing the allocation will
 549   // later update the object header to a potentially different array
 550   // type and, for a very short period of time, the klass and length
 551   // fields will be inconsistent. This could cause a refinement
 552   // thread to calculate the object size incorrectly.
 553   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 554 
 555   // We will set up the first region as "starts humongous". This
 556   // will also update the BOT covering all the regions to reflect
 557   // that there is a single object that starts at the bottom of the
 558   // first region.
 559   first_hr->set_starts_humongous(new_top, new_end);
 560   first_hr->set_allocation_context(context);
 561   // Then, if there are any, we will set up the "continues
 562   // humongous" regions.
 563   HeapRegion* hr = NULL;
 564   for (uint i = first + 1; i < last; ++i) {
 565     hr = region_at(i);
 566     hr->set_continues_humongous(first_hr);
 567     hr->set_allocation_context(context);
 568   }
 569   // If we have "continues humongous" regions (hr != NULL), then the
 570   // end of the last one should match new_end.
 571   assert(hr == NULL || hr->end() == new_end, "sanity");
 572 
 573   // Up to this point no concurrent thread would have been able to
 574   // do any scanning on any region in this series. All the top
 575   // fields still point to bottom, so the intersection between
 576   // [bottom,top] and [card_start,card_end] will be empty. Before we
 577   // update the top fields, we'll do a storestore to make sure that
 578   // no thread sees the update to top before the zeroing of the
 579   // object header and the BOT initialization.
 580   OrderAccess::storestore();
 581 
 582   // Now that the BOT and the object header have been initialized,
 583   // we can update top of the "starts humongous" region.
 584   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 585          "new_top should be in this region");
 586   first_hr->set_top(new_top);
 587   if (_hr_printer.is_active()) {
 588     HeapWord* bottom = first_hr->bottom();
 589     HeapWord* end = first_hr->orig_end();
 590     if ((first + 1) == last) {
 591       // the series has a single humongous region
 592       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 593     } else {
 594       // the series has more than one humongous regions
 595       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 596     }
 597   }
 598 
 599   // Now, we will update the top fields of the "continues humongous"
 600   // regions. The reason we need to do this is that, otherwise,
 601   // these regions would look empty and this will confuse parts of
 602   // G1. For example, the code that looks for a consecutive number
 603   // of empty regions will consider them empty and try to
 604   // re-allocate them. We can extend is_empty() to also include
 605   // !is_continues_humongous(), but it is easier to just update the top
 606   // fields here. The way we set top for all regions (i.e., top ==
 607   // end for all regions but the last one, top == new_top for the
 608   // last one) is actually used when we will free up the humongous
 609   // region in free_humongous_region().
 610   hr = NULL;
 611   for (uint i = first + 1; i < last; ++i) {
 612     hr = region_at(i);
 613     if ((i + 1) == last) {
 614       // last continues humongous region
 615       assert(hr->bottom() < new_top && new_top <= hr->end(),
 616              "new_top should fall on this region");
 617       hr->set_top(new_top);
 618       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 619     } else {
 620       // not last one
 621       assert(new_top > hr->end(), "new_top should be above this region");
 622       hr->set_top(hr->end());
 623       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 624     }
 625   }
 626   // If we have continues humongous regions (hr != NULL), then the
 627   // end of the last one should match new_end and its top should
 628   // match new_top.
 629   assert(hr == NULL ||
 630          (hr->end() == new_end && hr->top() == new_top), "sanity");
 631   check_bitmaps("Humongous Region Allocation", first_hr);
 632 
 633   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 634   _allocator->increase_used(first_hr->used());
 635   _humongous_set.add(first_hr);
 636 
 637   return new_obj;
 638 }
 639 
 640 // If could fit into free regions w/o expansion, try.
 641 // Otherwise, if can expand, do so.
 642 // Otherwise, if using ex regions might help, try with ex given back.
 643 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 644   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 645 
 646   verify_region_sets_optional();
 647 
 648   uint first = G1_NO_HRM_INDEX;
 649   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 650 
 651   if (obj_regions == 1) {
 652     // Only one region to allocate, try to use a fast path by directly allocating
 653     // from the free lists. Do not try to expand here, we will potentially do that
 654     // later.
 655     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 656     if (hr != NULL) {
 657       first = hr->hrm_index();
 658     }
 659   } else {
 660     // We can't allocate humongous regions spanning more than one region while
 661     // cleanupComplete() is running, since some of the regions we find to be
 662     // empty might not yet be added to the free list. It is not straightforward
 663     // to know in which list they are on so that we can remove them. We only
 664     // need to do this if we need to allocate more than one region to satisfy the
 665     // current humongous allocation request. If we are only allocating one region
 666     // we use the one-region region allocation code (see above), that already
 667     // potentially waits for regions from the secondary free list.
 668     wait_while_free_regions_coming();
 669     append_secondary_free_list_if_not_empty_with_lock();
 670 
 671     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 672     // are lucky enough to find some.
 673     first = _hrm.find_contiguous_only_empty(obj_regions);
 674     if (first != G1_NO_HRM_INDEX) {
 675       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 676     }
 677   }
 678 
 679   if (first == G1_NO_HRM_INDEX) {
 680     // Policy: We could not find enough regions for the humongous object in the
 681     // free list. Look through the heap to find a mix of free and uncommitted regions.
 682     // If so, try expansion.
 683     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 684     if (first != G1_NO_HRM_INDEX) {
 685       // We found something. Make sure these regions are committed, i.e. expand
 686       // the heap. Alternatively we could do a defragmentation GC.
 687       ergo_verbose1(ErgoHeapSizing,
 688                     "attempt heap expansion",
 689                     ergo_format_reason("humongous allocation request failed")
 690                     ergo_format_byte("allocation request"),
 691                     word_size * HeapWordSize);
 692 
 693       _hrm.expand_at(first, obj_regions);
 694       g1_policy()->record_new_heap_size(num_regions());
 695 
 696 #ifdef ASSERT
 697       for (uint i = first; i < first + obj_regions; ++i) {
 698         HeapRegion* hr = region_at(i);
 699         assert(hr->is_free(), "sanity");
 700         assert(hr->is_empty(), "sanity");
 701         assert(is_on_master_free_list(hr), "sanity");
 702       }
 703 #endif
 704       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 705     } else {
 706       // Policy: Potentially trigger a defragmentation GC.
 707     }
 708   }
 709 
 710   HeapWord* result = NULL;
 711   if (first != G1_NO_HRM_INDEX) {
 712     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 713                                                        word_size, context);
 714     assert(result != NULL, "it should always return a valid result");
 715 
 716     // A successful humongous object allocation changes the used space
 717     // information of the old generation so we need to recalculate the
 718     // sizes and update the jstat counters here.
 719     g1mm()->update_sizes();
 720   }
 721 
 722   verify_region_sets_optional();
 723 
 724   return result;
 725 }
 726 
 727 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 728   assert_heap_not_locked_and_not_at_safepoint();
 729   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 730 
 731   uint dummy_gc_count_before;
 732   uint dummy_gclocker_retry_count = 0;
 733   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 734 }
 735 
 736 HeapWord*
 737 G1CollectedHeap::mem_allocate(size_t word_size,
 738                               bool*  gc_overhead_limit_was_exceeded) {
 739   assert_heap_not_locked_and_not_at_safepoint();
 740 
 741   // Loop until the allocation is satisfied, or unsatisfied after GC.
 742   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 743     uint gc_count_before;
 744 
 745     HeapWord* result = NULL;
 746     if (!is_humongous(word_size)) {
 747       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 748     } else {
 749       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 750     }
 751     if (result != NULL) {
 752       return result;
 753     }
 754 
 755     // Create the garbage collection operation...
 756     VM_G1CollectForAllocation op(gc_count_before, word_size);
 757     op.set_allocation_context(AllocationContext::current());
 758 
 759     // ...and get the VM thread to execute it.
 760     VMThread::execute(&op);
 761 
 762     if (op.prologue_succeeded() && op.pause_succeeded()) {
 763       // If the operation was successful we'll return the result even
 764       // if it is NULL. If the allocation attempt failed immediately
 765       // after a Full GC, it's unlikely we'll be able to allocate now.
 766       HeapWord* result = op.result();
 767       if (result != NULL && !is_humongous(word_size)) {
 768         // Allocations that take place on VM operations do not do any
 769         // card dirtying and we have to do it here. We only have to do
 770         // this for non-humongous allocations, though.
 771         dirty_young_block(result, word_size);
 772       }
 773       return result;
 774     } else {
 775       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 776         return NULL;
 777       }
 778       assert(op.result() == NULL,
 779              "the result should be NULL if the VM op did not succeed");
 780     }
 781 
 782     // Give a warning if we seem to be looping forever.
 783     if ((QueuedAllocationWarningCount > 0) &&
 784         (try_count % QueuedAllocationWarningCount == 0)) {
 785       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 786     }
 787   }
 788 
 789   ShouldNotReachHere();
 790   return NULL;
 791 }
 792 
 793 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 794                                                    AllocationContext_t context,
 795                                                    uint* gc_count_before_ret,
 796                                                    uint* gclocker_retry_count_ret) {
 797   // Make sure you read the note in attempt_allocation_humongous().
 798 
 799   assert_heap_not_locked_and_not_at_safepoint();
 800   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 801          "be called for humongous allocation requests");
 802 
 803   // We should only get here after the first-level allocation attempt
 804   // (attempt_allocation()) failed to allocate.
 805 
 806   // We will loop until a) we manage to successfully perform the
 807   // allocation or b) we successfully schedule a collection which
 808   // fails to perform the allocation. b) is the only case when we'll
 809   // return NULL.
 810   HeapWord* result = NULL;
 811   for (int try_count = 1; /* we'll return */; try_count += 1) {
 812     bool should_try_gc;
 813     uint gc_count_before;
 814 
 815     {
 816       MutexLockerEx x(Heap_lock);
 817       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 818                                                                                     false /* bot_updates */);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       // If we reach here, attempt_allocation_locked() above failed to
 824       // allocate a new region. So the mutator alloc region should be NULL.
 825       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 826 
 827       if (GC_locker::is_active_and_needs_gc()) {
 828         if (g1_policy()->can_expand_young_list()) {
 829           // No need for an ergo verbose message here,
 830           // can_expand_young_list() does this when it returns true.
 831           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 832                                                                                        false /* bot_updates */);
 833           if (result != NULL) {
 834             return result;
 835           }
 836         }
 837         should_try_gc = false;
 838       } else {
 839         // The GCLocker may not be active but the GCLocker initiated
 840         // GC may not yet have been performed (GCLocker::needs_gc()
 841         // returns true). In this case we do not try this GC and
 842         // wait until the GCLocker initiated GC is performed, and
 843         // then retry the allocation.
 844         if (GC_locker::needs_gc()) {
 845           should_try_gc = false;
 846         } else {
 847           // Read the GC count while still holding the Heap_lock.
 848           gc_count_before = total_collections();
 849           should_try_gc = true;
 850         }
 851       }
 852     }
 853 
 854     if (should_try_gc) {
 855       bool succeeded;
 856       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 857                                    GCCause::_g1_inc_collection_pause);
 858       if (result != NULL) {
 859         assert(succeeded, "only way to get back a non-NULL result");
 860         return result;
 861       }
 862 
 863       if (succeeded) {
 864         // If we get here we successfully scheduled a collection which
 865         // failed to allocate. No point in trying to allocate
 866         // further. We'll just return NULL.
 867         MutexLockerEx x(Heap_lock);
 868         *gc_count_before_ret = total_collections();
 869         return NULL;
 870       }
 871     } else {
 872       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877       // The GCLocker is either active or the GCLocker initiated
 878       // GC has not yet been performed. Stall until it is and
 879       // then retry the allocation.
 880       GC_locker::stall_until_clear();
 881       (*gclocker_retry_count_ret) += 1;
 882     }
 883 
 884     // We can reach here if we were unsuccessful in scheduling a
 885     // collection (because another thread beat us to it) or if we were
 886     // stalled due to the GC locker. In either can we should retry the
 887     // allocation attempt in case another thread successfully
 888     // performed a collection and reclaimed enough space. We do the
 889     // first attempt (without holding the Heap_lock) here and the
 890     // follow-on attempt will be at the start of the next loop
 891     // iteration (after taking the Heap_lock).
 892     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 893                                                                            false /* bot_updates */);
 894     if (result != NULL) {
 895       return result;
 896     }
 897 
 898     // Give a warning if we seem to be looping forever.
 899     if ((QueuedAllocationWarningCount > 0) &&
 900         (try_count % QueuedAllocationWarningCount == 0)) {
 901       warning("G1CollectedHeap::attempt_allocation_slow() "
 902               "retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 911                                                         uint* gc_count_before_ret,
 912                                                         uint* gclocker_retry_count_ret) {
 913   // The structure of this method has a lot of similarities to
 914   // attempt_allocation_slow(). The reason these two were not merged
 915   // into a single one is that such a method would require several "if
 916   // allocation is not humongous do this, otherwise do that"
 917   // conditional paths which would obscure its flow. In fact, an early
 918   // version of this code did use a unified method which was harder to
 919   // follow and, as a result, it had subtle bugs that were hard to
 920   // track down. So keeping these two methods separate allows each to
 921   // be more readable. It will be good to keep these two in sync as
 922   // much as possible.
 923 
 924   assert_heap_not_locked_and_not_at_safepoint();
 925   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 926          "should only be called for humongous allocations");
 927 
 928   // Humongous objects can exhaust the heap quickly, so we should check if we
 929   // need to start a marking cycle at each humongous object allocation. We do
 930   // the check before we do the actual allocation. The reason for doing it
 931   // before the allocation is that we avoid having to keep track of the newly
 932   // allocated memory while we do a GC.
 933   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 934                                            word_size)) {
 935     collect(GCCause::_g1_humongous_allocation);
 936   }
 937 
 938   // We will loop until a) we manage to successfully perform the
 939   // allocation or b) we successfully schedule a collection which
 940   // fails to perform the allocation. b) is the only case when we'll
 941   // return NULL.
 942   HeapWord* result = NULL;
 943   for (int try_count = 1; /* we'll return */; try_count += 1) {
 944     bool should_try_gc;
 945     uint gc_count_before;
 946 
 947     {
 948       MutexLockerEx x(Heap_lock);
 949 
 950       // Given that humongous objects are not allocated in young
 951       // regions, we'll first try to do the allocation without doing a
 952       // collection hoping that there's enough space in the heap.
 953       result = humongous_obj_allocate(word_size, AllocationContext::current());
 954       if (result != NULL) {
 955         return result;
 956       }
 957 
 958       if (GC_locker::is_active_and_needs_gc()) {
 959         should_try_gc = false;
 960       } else {
 961          // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       // If we failed to allocate the humongous object, we should try to
 978       // do a collection pause (if we're allowed) in case it reclaims
 979       // enough space for the allocation to succeed after the pause.
 980 
 981       bool succeeded;
 982       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 983                                    GCCause::_g1_humongous_allocation);
 984       if (result != NULL) {
 985         assert(succeeded, "only way to get back a non-NULL result");
 986         return result;
 987       }
 988 
 989       if (succeeded) {
 990         // If we get here we successfully scheduled a collection which
 991         // failed to allocate. No point in trying to allocate
 992         // further. We'll just return NULL.
 993         MutexLockerEx x(Heap_lock);
 994         *gc_count_before_ret = total_collections();
 995         return NULL;
 996       }
 997     } else {
 998       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 999         MutexLockerEx x(Heap_lock);
1000         *gc_count_before_ret = total_collections();
1001         return NULL;
1002       }
1003       // The GCLocker is either active or the GCLocker initiated
1004       // GC has not yet been performed. Stall until it is and
1005       // then retry the allocation.
1006       GC_locker::stall_until_clear();
1007       (*gclocker_retry_count_ret) += 1;
1008     }
1009 
1010     // We can reach here if we were unsuccessful in scheduling a
1011     // collection (because another thread beat us to it) or if we were
1012     // stalled due to the GC locker. In either can we should retry the
1013     // allocation attempt in case another thread successfully
1014     // performed a collection and reclaimed enough space.  Give a
1015     // warning if we seem to be looping forever.
1016 
1017     if ((QueuedAllocationWarningCount > 0) &&
1018         (try_count % QueuedAllocationWarningCount == 0)) {
1019       warning("G1CollectedHeap::attempt_allocation_humongous() "
1020               "retries %d times", try_count);
1021     }
1022   }
1023 
1024   ShouldNotReachHere();
1025   return NULL;
1026 }
1027 
1028 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1029                                                            AllocationContext_t context,
1030                                                            bool expect_null_mutator_alloc_region) {
1031   assert_at_safepoint(true /* should_be_vm_thread */);
1032   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1033                                              !expect_null_mutator_alloc_region,
1034          "the current alloc region was unexpectedly found to be non-NULL");
1035 
1036   if (!is_humongous(word_size)) {
1037     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1038                                                       false /* bot_updates */);
1039   } else {
1040     HeapWord* result = humongous_obj_allocate(word_size, context);
1041     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1042       g1_policy()->set_initiate_conc_mark_if_possible();
1043     }
1044     return result;
1045   }
1046 
1047   ShouldNotReachHere();
1048 }
1049 
1050 class PostMCRemSetClearClosure: public HeapRegionClosure {
1051   G1CollectedHeap* _g1h;
1052   ModRefBarrierSet* _mr_bs;
1053 public:
1054   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1055     _g1h(g1h), _mr_bs(mr_bs) {}
1056 
1057   bool doHeapRegion(HeapRegion* r) {
1058     HeapRegionRemSet* hrrs = r->rem_set();
1059 
1060     if (r->is_continues_humongous()) {
1061       // We'll assert that the strong code root list and RSet is empty
1062       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1063       assert(hrrs->occupied() == 0, "RSet should be empty");
1064       return false;
1065     }
1066 
1067     _g1h->reset_gc_time_stamps(r);
1068     hrrs->clear();
1069     // You might think here that we could clear just the cards
1070     // corresponding to the used region.  But no: if we leave a dirty card
1071     // in a region we might allocate into, then it would prevent that card
1072     // from being enqueued, and cause it to be missed.
1073     // Re: the performance cost: we shouldn't be doing full GC anyway!
1074     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1075 
1076     return false;
1077   }
1078 };
1079 
1080 void G1CollectedHeap::clear_rsets_post_compaction() {
1081   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1082   heap_region_iterate(&rs_clear);
1083 }
1084 
1085 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1086   G1CollectedHeap*   _g1h;
1087   UpdateRSOopClosure _cl;
1088 public:
1089   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1090     _cl(g1->g1_rem_set(), worker_i),
1091     _g1h(g1)
1092   { }
1093 
1094   bool doHeapRegion(HeapRegion* r) {
1095     if (!r->is_continues_humongous()) {
1096       _cl.set_from(r);
1097       r->oop_iterate(&_cl);
1098     }
1099     return false;
1100   }
1101 };
1102 
1103 class ParRebuildRSTask: public AbstractGangTask {
1104   G1CollectedHeap* _g1;
1105   HeapRegionClaimer _hrclaimer;
1106 
1107 public:
1108   ParRebuildRSTask(G1CollectedHeap* g1) :
1109       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1110 
1111   void work(uint worker_id) {
1112     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1113     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1114   }
1115 };
1116 
1117 class PostCompactionPrinterClosure: public HeapRegionClosure {
1118 private:
1119   G1HRPrinter* _hr_printer;
1120 public:
1121   bool doHeapRegion(HeapRegion* hr) {
1122     assert(!hr->is_young(), "not expecting to find young regions");
1123     if (hr->is_free()) {
1124       // We only generate output for non-empty regions.
1125     } else if (hr->is_starts_humongous()) {
1126       if (hr->region_num() == 1) {
1127         // single humongous region
1128         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1129       } else {
1130         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1131       }
1132     } else if (hr->is_continues_humongous()) {
1133       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1134     } else if (hr->is_old()) {
1135       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1136     } else {
1137       ShouldNotReachHere();
1138     }
1139     return false;
1140   }
1141 
1142   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1143     : _hr_printer(hr_printer) { }
1144 };
1145 
1146 void G1CollectedHeap::print_hrm_post_compaction() {
1147   PostCompactionPrinterClosure cl(hr_printer());
1148   heap_region_iterate(&cl);
1149 }
1150 
1151 bool G1CollectedHeap::do_collection(bool explicit_gc,
1152                                     bool clear_all_soft_refs,
1153                                     size_t word_size) {
1154   assert_at_safepoint(true /* should_be_vm_thread */);
1155 
1156   if (GC_locker::check_active_before_gc()) {
1157     return false;
1158   }
1159 
1160   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1161   gc_timer->register_gc_start();
1162 
1163   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1164   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1165 
1166   SvcGCMarker sgcm(SvcGCMarker::FULL);
1167   ResourceMark rm;
1168 
1169   G1Log::update_level();
1170   print_heap_before_gc();
1171   trace_heap_before_gc(gc_tracer);
1172 
1173   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1174 
1175   verify_region_sets_optional();
1176 
1177   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1178                            collector_policy()->should_clear_all_soft_refs();
1179 
1180   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1181 
1182   {
1183     IsGCActiveMark x;
1184 
1185     // Timing
1186     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1187     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1188 
1189     {
1190       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1191       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1192       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1193 
1194       g1_policy()->record_full_collection_start();
1195 
1196       // Note: When we have a more flexible GC logging framework that
1197       // allows us to add optional attributes to a GC log record we
1198       // could consider timing and reporting how long we wait in the
1199       // following two methods.
1200       wait_while_free_regions_coming();
1201       // If we start the compaction before the CM threads finish
1202       // scanning the root regions we might trip them over as we'll
1203       // be moving objects / updating references. So let's wait until
1204       // they are done. By telling them to abort, they should complete
1205       // early.
1206       _cm->root_regions()->abort();
1207       _cm->root_regions()->wait_until_scan_finished();
1208       append_secondary_free_list_if_not_empty_with_lock();
1209 
1210       gc_prologue(true);
1211       increment_total_collections(true /* full gc */);
1212       increment_old_marking_cycles_started();
1213 
1214       assert(used() == recalculate_used(), "Should be equal");
1215 
1216       verify_before_gc();
1217 
1218       check_bitmaps("Full GC Start");
1219       pre_full_gc_dump(gc_timer);
1220 
1221       COMPILER2_PRESENT(DerivedPointerTable::clear());
1222 
1223       // Disable discovery and empty the discovered lists
1224       // for the CM ref processor.
1225       ref_processor_cm()->disable_discovery();
1226       ref_processor_cm()->abandon_partial_discovery();
1227       ref_processor_cm()->verify_no_references_recorded();
1228 
1229       // Abandon current iterations of concurrent marking and concurrent
1230       // refinement, if any are in progress. We have to do this before
1231       // wait_until_scan_finished() below.
1232       concurrent_mark()->abort();
1233 
1234       // Make sure we'll choose a new allocation region afterwards.
1235       _allocator->release_mutator_alloc_region();
1236       _allocator->abandon_gc_alloc_regions();
1237       g1_rem_set()->cleanupHRRS();
1238 
1239       // We should call this after we retire any currently active alloc
1240       // regions so that all the ALLOC / RETIRE events are generated
1241       // before the start GC event.
1242       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1243 
1244       // We may have added regions to the current incremental collection
1245       // set between the last GC or pause and now. We need to clear the
1246       // incremental collection set and then start rebuilding it afresh
1247       // after this full GC.
1248       abandon_collection_set(g1_policy()->inc_cset_head());
1249       g1_policy()->clear_incremental_cset();
1250       g1_policy()->stop_incremental_cset_building();
1251 
1252       tear_down_region_sets(false /* free_list_only */);
1253       g1_policy()->set_gcs_are_young(true);
1254 
1255       // See the comments in g1CollectedHeap.hpp and
1256       // G1CollectedHeap::ref_processing_init() about
1257       // how reference processing currently works in G1.
1258 
1259       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1260       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1261 
1262       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1263       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1264 
1265       ref_processor_stw()->enable_discovery();
1266       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1267 
1268       // Do collection work
1269       {
1270         HandleMark hm;  // Discard invalid handles created during gc
1271         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1272       }
1273 
1274       assert(num_free_regions() == 0, "we should not have added any free regions");
1275       rebuild_region_sets(false /* free_list_only */);
1276 
1277       // Enqueue any discovered reference objects that have
1278       // not been removed from the discovered lists.
1279       ref_processor_stw()->enqueue_discovered_references();
1280 
1281       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1282 
1283       MemoryService::track_memory_usage();
1284 
1285       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1286       ref_processor_stw()->verify_no_references_recorded();
1287 
1288       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1289       ClassLoaderDataGraph::purge();
1290       MetaspaceAux::verify_metrics();
1291 
1292       // Note: since we've just done a full GC, concurrent
1293       // marking is no longer active. Therefore we need not
1294       // re-enable reference discovery for the CM ref processor.
1295       // That will be done at the start of the next marking cycle.
1296       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1297       ref_processor_cm()->verify_no_references_recorded();
1298 
1299       reset_gc_time_stamp();
1300       // Since everything potentially moved, we will clear all remembered
1301       // sets, and clear all cards.  Later we will rebuild remembered
1302       // sets. We will also reset the GC time stamps of the regions.
1303       clear_rsets_post_compaction();
1304       check_gc_time_stamps();
1305 
1306       // Resize the heap if necessary.
1307       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1308 
1309       if (_hr_printer.is_active()) {
1310         // We should do this after we potentially resize the heap so
1311         // that all the COMMIT / UNCOMMIT events are generated before
1312         // the end GC event.
1313 
1314         print_hrm_post_compaction();
1315         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1316       }
1317 
1318       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1319       if (hot_card_cache->use_cache()) {
1320         hot_card_cache->reset_card_counts();
1321         hot_card_cache->reset_hot_cache();
1322       }
1323 
1324       // Rebuild remembered sets of all regions.
1325       uint n_workers =
1326         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1327                                                 workers()->active_workers(),
1328                                                 Threads::number_of_non_daemon_threads());
1329       assert(UseDynamicNumberOfGCThreads ||
1330              n_workers == workers()->total_workers(),
1331              "If not dynamic should be using all the  workers");
1332       workers()->set_active_workers(n_workers);
1333       // Set parallel threads in the heap (_n_par_threads) only
1334       // before a parallel phase and always reset it to 0 after
1335       // the phase so that the number of parallel threads does
1336       // no get carried forward to a serial phase where there
1337       // may be code that is "possibly_parallel".
1338       set_par_threads(n_workers);
1339 
1340       ParRebuildRSTask rebuild_rs_task(this);
1341       assert(UseDynamicNumberOfGCThreads ||
1342              workers()->active_workers() == workers()->total_workers(),
1343              "Unless dynamic should use total workers");
1344       // Use the most recent number of  active workers
1345       assert(workers()->active_workers() > 0,
1346              "Active workers not properly set");
1347       set_par_threads(workers()->active_workers());
1348       workers()->run_task(&rebuild_rs_task);
1349       set_par_threads(0);
1350 
1351       // Rebuild the strong code root lists for each region
1352       rebuild_strong_code_roots();
1353 
1354       if (true) { // FIXME
1355         MetaspaceGC::compute_new_size();
1356       }
1357 
1358 #ifdef TRACESPINNING
1359       ParallelTaskTerminator::print_termination_counts();
1360 #endif
1361 
1362       // Discard all rset updates
1363       JavaThread::dirty_card_queue_set().abandon_logs();
1364       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1365 
1366       _young_list->reset_sampled_info();
1367       // At this point there should be no regions in the
1368       // entire heap tagged as young.
1369       assert(check_young_list_empty(true /* check_heap */),
1370              "young list should be empty at this point");
1371 
1372       // Update the number of full collections that have been completed.
1373       increment_old_marking_cycles_completed(false /* concurrent */);
1374 
1375       _hrm.verify_optional();
1376       verify_region_sets_optional();
1377 
1378       verify_after_gc();
1379 
1380       // Clear the previous marking bitmap, if needed for bitmap verification.
1381       // Note we cannot do this when we clear the next marking bitmap in
1382       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1383       // objects marked during a full GC against the previous bitmap.
1384       // But we need to clear it before calling check_bitmaps below since
1385       // the full GC has compacted objects and updated TAMS but not updated
1386       // the prev bitmap.
1387       if (G1VerifyBitmaps) {
1388         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1389       }
1390       check_bitmaps("Full GC End");
1391 
1392       // Start a new incremental collection set for the next pause
1393       assert(g1_policy()->collection_set() == NULL, "must be");
1394       g1_policy()->start_incremental_cset_building();
1395 
1396       clear_cset_fast_test();
1397 
1398       _allocator->init_mutator_alloc_region();
1399 
1400       g1_policy()->record_full_collection_end();
1401 
1402       if (G1Log::fine()) {
1403         g1_policy()->print_heap_transition();
1404       }
1405 
1406       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1407       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1408       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1409       // before any GC notifications are raised.
1410       g1mm()->update_sizes();
1411 
1412       gc_epilogue(true);
1413     }
1414 
1415     if (G1Log::finer()) {
1416       g1_policy()->print_detailed_heap_transition(true /* full */);
1417     }
1418 
1419     print_heap_after_gc();
1420     trace_heap_after_gc(gc_tracer);
1421 
1422     post_full_gc_dump(gc_timer);
1423 
1424     gc_timer->register_gc_end();
1425     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1426   }
1427 
1428   return true;
1429 }
1430 
1431 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1432   // do_collection() will return whether it succeeded in performing
1433   // the GC. Currently, there is no facility on the
1434   // do_full_collection() API to notify the caller than the collection
1435   // did not succeed (e.g., because it was locked out by the GC
1436   // locker). So, right now, we'll ignore the return value.
1437   bool dummy = do_collection(true,                /* explicit_gc */
1438                              clear_all_soft_refs,
1439                              0                    /* word_size */);
1440 }
1441 
1442 // This code is mostly copied from TenuredGeneration.
1443 void
1444 G1CollectedHeap::
1445 resize_if_necessary_after_full_collection(size_t word_size) {
1446   // Include the current allocation, if any, and bytes that will be
1447   // pre-allocated to support collections, as "used".
1448   const size_t used_after_gc = used();
1449   const size_t capacity_after_gc = capacity();
1450   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1451 
1452   // This is enforced in arguments.cpp.
1453   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1454          "otherwise the code below doesn't make sense");
1455 
1456   // We don't have floating point command-line arguments
1457   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1458   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1459   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1460   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1461 
1462   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1463   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1464 
1465   // We have to be careful here as these two calculations can overflow
1466   // 32-bit size_t's.
1467   double used_after_gc_d = (double) used_after_gc;
1468   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1469   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1470 
1471   // Let's make sure that they are both under the max heap size, which
1472   // by default will make them fit into a size_t.
1473   double desired_capacity_upper_bound = (double) max_heap_size;
1474   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1475                                     desired_capacity_upper_bound);
1476   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1477                                     desired_capacity_upper_bound);
1478 
1479   // We can now safely turn them into size_t's.
1480   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1481   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1482 
1483   // This assert only makes sense here, before we adjust them
1484   // with respect to the min and max heap size.
1485   assert(minimum_desired_capacity <= maximum_desired_capacity,
1486          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1487                  "maximum_desired_capacity = "SIZE_FORMAT,
1488                  minimum_desired_capacity, maximum_desired_capacity));
1489 
1490   // Should not be greater than the heap max size. No need to adjust
1491   // it with respect to the heap min size as it's a lower bound (i.e.,
1492   // we'll try to make the capacity larger than it, not smaller).
1493   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1494   // Should not be less than the heap min size. No need to adjust it
1495   // with respect to the heap max size as it's an upper bound (i.e.,
1496   // we'll try to make the capacity smaller than it, not greater).
1497   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1498 
1499   if (capacity_after_gc < minimum_desired_capacity) {
1500     // Don't expand unless it's significant
1501     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1502     ergo_verbose4(ErgoHeapSizing,
1503                   "attempt heap expansion",
1504                   ergo_format_reason("capacity lower than "
1505                                      "min desired capacity after Full GC")
1506                   ergo_format_byte("capacity")
1507                   ergo_format_byte("occupancy")
1508                   ergo_format_byte_perc("min desired capacity"),
1509                   capacity_after_gc, used_after_gc,
1510                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1511     expand(expand_bytes);
1512 
1513     // No expansion, now see if we want to shrink
1514   } else if (capacity_after_gc > maximum_desired_capacity) {
1515     // Capacity too large, compute shrinking size
1516     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1517     ergo_verbose4(ErgoHeapSizing,
1518                   "attempt heap shrinking",
1519                   ergo_format_reason("capacity higher than "
1520                                      "max desired capacity after Full GC")
1521                   ergo_format_byte("capacity")
1522                   ergo_format_byte("occupancy")
1523                   ergo_format_byte_perc("max desired capacity"),
1524                   capacity_after_gc, used_after_gc,
1525                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1526     shrink(shrink_bytes);
1527   }
1528 }
1529 
1530 
1531 HeapWord*
1532 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1533                                            AllocationContext_t context,
1534                                            bool* succeeded) {
1535   assert_at_safepoint(true /* should_be_vm_thread */);
1536 
1537   *succeeded = true;
1538   // Let's attempt the allocation first.
1539   HeapWord* result =
1540     attempt_allocation_at_safepoint(word_size,
1541                                     context,
1542                                     false /* expect_null_mutator_alloc_region */);
1543   if (result != NULL) {
1544     assert(*succeeded, "sanity");
1545     return result;
1546   }
1547 
1548   // In a G1 heap, we're supposed to keep allocation from failing by
1549   // incremental pauses.  Therefore, at least for now, we'll favor
1550   // expansion over collection.  (This might change in the future if we can
1551   // do something smarter than full collection to satisfy a failed alloc.)
1552   result = expand_and_allocate(word_size, context);
1553   if (result != NULL) {
1554     assert(*succeeded, "sanity");
1555     return result;
1556   }
1557 
1558   // Expansion didn't work, we'll try to do a Full GC.
1559   bool gc_succeeded = do_collection(false, /* explicit_gc */
1560                                     false, /* clear_all_soft_refs */
1561                                     word_size);
1562   if (!gc_succeeded) {
1563     *succeeded = false;
1564     return NULL;
1565   }
1566 
1567   // Retry the allocation
1568   result = attempt_allocation_at_safepoint(word_size,
1569                                            context,
1570                                            true /* expect_null_mutator_alloc_region */);
1571   if (result != NULL) {
1572     assert(*succeeded, "sanity");
1573     return result;
1574   }
1575 
1576   // Then, try a Full GC that will collect all soft references.
1577   gc_succeeded = do_collection(false, /* explicit_gc */
1578                                true,  /* clear_all_soft_refs */
1579                                word_size);
1580   if (!gc_succeeded) {
1581     *succeeded = false;
1582     return NULL;
1583   }
1584 
1585   // Retry the allocation once more
1586   result = attempt_allocation_at_safepoint(word_size,
1587                                            context,
1588                                            true /* expect_null_mutator_alloc_region */);
1589   if (result != NULL) {
1590     assert(*succeeded, "sanity");
1591     return result;
1592   }
1593 
1594   assert(!collector_policy()->should_clear_all_soft_refs(),
1595          "Flag should have been handled and cleared prior to this point");
1596 
1597   // What else?  We might try synchronous finalization later.  If the total
1598   // space available is large enough for the allocation, then a more
1599   // complete compaction phase than we've tried so far might be
1600   // appropriate.
1601   assert(*succeeded, "sanity");
1602   return NULL;
1603 }
1604 
1605 // Attempting to expand the heap sufficiently
1606 // to support an allocation of the given "word_size".  If
1607 // successful, perform the allocation and return the address of the
1608 // allocated block, or else "NULL".
1609 
1610 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1611   assert_at_safepoint(true /* should_be_vm_thread */);
1612 
1613   verify_region_sets_optional();
1614 
1615   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1616   ergo_verbose1(ErgoHeapSizing,
1617                 "attempt heap expansion",
1618                 ergo_format_reason("allocation request failed")
1619                 ergo_format_byte("allocation request"),
1620                 word_size * HeapWordSize);
1621   if (expand(expand_bytes)) {
1622     _hrm.verify_optional();
1623     verify_region_sets_optional();
1624     return attempt_allocation_at_safepoint(word_size,
1625                                            context,
1626                                            false /* expect_null_mutator_alloc_region */);
1627   }
1628   return NULL;
1629 }
1630 
1631 bool G1CollectedHeap::expand(size_t expand_bytes) {
1632   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1633   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1634                                        HeapRegion::GrainBytes);
1635   ergo_verbose2(ErgoHeapSizing,
1636                 "expand the heap",
1637                 ergo_format_byte("requested expansion amount")
1638                 ergo_format_byte("attempted expansion amount"),
1639                 expand_bytes, aligned_expand_bytes);
1640 
1641   if (is_maximal_no_gc()) {
1642     ergo_verbose0(ErgoHeapSizing,
1643                       "did not expand the heap",
1644                       ergo_format_reason("heap already fully expanded"));
1645     return false;
1646   }
1647 
1648   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1649   assert(regions_to_expand > 0, "Must expand by at least one region");
1650 
1651   uint expanded_by = _hrm.expand_by(regions_to_expand);
1652 
1653   if (expanded_by > 0) {
1654     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1655     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1656     g1_policy()->record_new_heap_size(num_regions());
1657   } else {
1658     ergo_verbose0(ErgoHeapSizing,
1659                   "did not expand the heap",
1660                   ergo_format_reason("heap expansion operation failed"));
1661     // The expansion of the virtual storage space was unsuccessful.
1662     // Let's see if it was because we ran out of swap.
1663     if (G1ExitOnExpansionFailure &&
1664         _hrm.available() >= regions_to_expand) {
1665       // We had head room...
1666       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1667     }
1668   }
1669   return regions_to_expand > 0;
1670 }
1671 
1672 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1673   size_t aligned_shrink_bytes =
1674     ReservedSpace::page_align_size_down(shrink_bytes);
1675   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1676                                          HeapRegion::GrainBytes);
1677   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1678 
1679   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1680   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1681 
1682   ergo_verbose3(ErgoHeapSizing,
1683                 "shrink the heap",
1684                 ergo_format_byte("requested shrinking amount")
1685                 ergo_format_byte("aligned shrinking amount")
1686                 ergo_format_byte("attempted shrinking amount"),
1687                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1688   if (num_regions_removed > 0) {
1689     g1_policy()->record_new_heap_size(num_regions());
1690   } else {
1691     ergo_verbose0(ErgoHeapSizing,
1692                   "did not shrink the heap",
1693                   ergo_format_reason("heap shrinking operation failed"));
1694   }
1695 }
1696 
1697 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1698   verify_region_sets_optional();
1699 
1700   // We should only reach here at the end of a Full GC which means we
1701   // should not not be holding to any GC alloc regions. The method
1702   // below will make sure of that and do any remaining clean up.
1703   _allocator->abandon_gc_alloc_regions();
1704 
1705   // Instead of tearing down / rebuilding the free lists here, we
1706   // could instead use the remove_all_pending() method on free_list to
1707   // remove only the ones that we need to remove.
1708   tear_down_region_sets(true /* free_list_only */);
1709   shrink_helper(shrink_bytes);
1710   rebuild_region_sets(true /* free_list_only */);
1711 
1712   _hrm.verify_optional();
1713   verify_region_sets_optional();
1714 }
1715 
1716 // Public methods.
1717 
1718 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1719 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1720 #endif // _MSC_VER
1721 
1722 
1723 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1724   CollectedHeap(),
1725   _g1_policy(policy_),
1726   _dirty_card_queue_set(false),
1727   _into_cset_dirty_card_queue_set(false),
1728   _is_alive_closure_cm(this),
1729   _is_alive_closure_stw(this),
1730   _ref_processor_cm(NULL),
1731   _ref_processor_stw(NULL),
1732   _bot_shared(NULL),
1733   _evac_failure_scan_stack(NULL),
1734   _mark_in_progress(false),
1735   _cg1r(NULL),
1736   _g1mm(NULL),
1737   _refine_cte_cl(NULL),
1738   _full_collection(false),
1739   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1740   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1741   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1742   _humongous_reclaim_candidates(),
1743   _has_humongous_reclaim_candidates(false),
1744   _free_regions_coming(false),
1745   _young_list(new YoungList(this)),
1746   _gc_time_stamp(0),
1747   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1748   _old_plab_stats(OldPLABSize, PLABWeight),
1749   _expand_heap_after_alloc_failure(true),
1750   _surviving_young_words(NULL),
1751   _old_marking_cycles_started(0),
1752   _old_marking_cycles_completed(0),
1753   _concurrent_cycle_started(false),
1754   _heap_summary_sent(false),
1755   _in_cset_fast_test(),
1756   _dirty_cards_region_list(NULL),
1757   _worker_cset_start_region(NULL),
1758   _worker_cset_start_region_time_stamp(NULL),
1759   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1760   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1761   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1762   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1763 
1764   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1765                           /* are_GC_task_threads */true,
1766                           /* are_ConcurrentGC_threads */false);
1767   _workers->initialize_workers();
1768 
1769   _allocator = G1Allocator::create_allocator(this);
1770   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1771 
1772   int n_queues = MAX2((int)ParallelGCThreads, 1);
1773   _task_queues = new RefToScanQueueSet(n_queues);
1774 
1775   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1776   assert(n_rem_sets > 0, "Invariant.");
1777 
1778   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1779   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1780   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1781 
1782   for (int i = 0; i < n_queues; i++) {
1783     RefToScanQueue* q = new RefToScanQueue();
1784     q->initialize();
1785     _task_queues->register_queue(i, q);
1786     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1787   }
1788   clear_cset_start_regions();
1789 
1790   // Initialize the G1EvacuationFailureALot counters and flags.
1791   NOT_PRODUCT(reset_evacuation_should_fail();)
1792 
1793   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1794 }
1795 
1796 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1797                                                                  size_t size,
1798                                                                  size_t translation_factor) {
1799   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1800   // Allocate a new reserved space, preferring to use large pages.
1801   ReservedSpace rs(size, preferred_page_size);
1802   G1RegionToSpaceMapper* result  =
1803     G1RegionToSpaceMapper::create_mapper(rs,
1804                                          size,
1805                                          rs.alignment(),
1806                                          HeapRegion::GrainBytes,
1807                                          translation_factor,
1808                                          mtGC);
1809   if (TracePageSizes) {
1810     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1811                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1812   }
1813   return result;
1814 }
1815 
1816 jint G1CollectedHeap::initialize() {
1817   CollectedHeap::pre_initialize();
1818   os::enable_vtime();
1819 
1820   G1Log::init();
1821 
1822   // Necessary to satisfy locking discipline assertions.
1823 
1824   MutexLocker x(Heap_lock);
1825 
1826   // We have to initialize the printer before committing the heap, as
1827   // it will be used then.
1828   _hr_printer.set_active(G1PrintHeapRegions);
1829 
1830   // While there are no constraints in the GC code that HeapWordSize
1831   // be any particular value, there are multiple other areas in the
1832   // system which believe this to be true (e.g. oop->object_size in some
1833   // cases incorrectly returns the size in wordSize units rather than
1834   // HeapWordSize).
1835   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1836 
1837   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1838   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1839   size_t heap_alignment = collector_policy()->heap_alignment();
1840 
1841   // Ensure that the sizes are properly aligned.
1842   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1843   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1844   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1845 
1846   _refine_cte_cl = new RefineCardTableEntryClosure();
1847 
1848   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1849 
1850   // Reserve the maximum.
1851 
1852   // When compressed oops are enabled, the preferred heap base
1853   // is calculated by subtracting the requested size from the
1854   // 32Gb boundary and using the result as the base address for
1855   // heap reservation. If the requested size is not aligned to
1856   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1857   // into the ReservedHeapSpace constructor) then the actual
1858   // base of the reserved heap may end up differing from the
1859   // address that was requested (i.e. the preferred heap base).
1860   // If this happens then we could end up using a non-optimal
1861   // compressed oops mode.
1862 
1863   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1864                                                  heap_alignment);
1865 
1866   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1867 
1868   // Create the barrier set for the entire reserved region.
1869   G1SATBCardTableLoggingModRefBS* bs
1870     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1871   bs->initialize();
1872   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1873   set_barrier_set(bs);
1874 
1875   // Also create a G1 rem set.
1876   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1877 
1878   // Carve out the G1 part of the heap.
1879 
1880   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1881   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1882   G1RegionToSpaceMapper* heap_storage =
1883     G1RegionToSpaceMapper::create_mapper(g1_rs,
1884                                          g1_rs.size(),
1885                                          page_size,
1886                                          HeapRegion::GrainBytes,
1887                                          1,
1888                                          mtJavaHeap);
1889   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1890                        max_byte_size, page_size,
1891                        heap_rs.base(),
1892                        heap_rs.size());
1893   heap_storage->set_mapping_changed_listener(&_listener);
1894 
1895   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1896   G1RegionToSpaceMapper* bot_storage =
1897     create_aux_memory_mapper("Block offset table",
1898                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1899                              G1BlockOffsetSharedArray::heap_map_factor());
1900 
1901   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1902   G1RegionToSpaceMapper* cardtable_storage =
1903     create_aux_memory_mapper("Card table",
1904                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1905                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1906 
1907   G1RegionToSpaceMapper* card_counts_storage =
1908     create_aux_memory_mapper("Card counts table",
1909                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1910                              G1CardCounts::heap_map_factor());
1911 
1912   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1913   G1RegionToSpaceMapper* prev_bitmap_storage =
1914     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1915   G1RegionToSpaceMapper* next_bitmap_storage =
1916     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1917 
1918   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1919   g1_barrier_set()->initialize(cardtable_storage);
1920    // Do later initialization work for concurrent refinement.
1921   _cg1r->init(card_counts_storage);
1922 
1923   // 6843694 - ensure that the maximum region index can fit
1924   // in the remembered set structures.
1925   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1926   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1927 
1928   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1929   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1930   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1931             "too many cards per region");
1932 
1933   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1934 
1935   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1936 
1937   {
1938     HeapWord* start = _hrm.reserved().start();
1939     HeapWord* end = _hrm.reserved().end();
1940     size_t granularity = HeapRegion::GrainBytes;
1941 
1942     _in_cset_fast_test.initialize(start, end, granularity);
1943     _humongous_reclaim_candidates.initialize(start, end, granularity);
1944   }
1945 
1946   // Create the ConcurrentMark data structure and thread.
1947   // (Must do this late, so that "max_regions" is defined.)
1948   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1949   if (_cm == NULL || !_cm->completed_initialization()) {
1950     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1951     return JNI_ENOMEM;
1952   }
1953   _cmThread = _cm->cmThread();
1954 
1955   // Initialize the from_card cache structure of HeapRegionRemSet.
1956   HeapRegionRemSet::init_heap(max_regions());
1957 
1958   // Now expand into the initial heap size.
1959   if (!expand(init_byte_size)) {
1960     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1961     return JNI_ENOMEM;
1962   }
1963 
1964   // Perform any initialization actions delegated to the policy.
1965   g1_policy()->init();
1966 
1967   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1968                                                SATB_Q_FL_lock,
1969                                                G1SATBProcessCompletedThreshold,
1970                                                Shared_SATB_Q_lock);
1971 
1972   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1973                                                 DirtyCardQ_CBL_mon,
1974                                                 DirtyCardQ_FL_lock,
1975                                                 concurrent_g1_refine()->yellow_zone(),
1976                                                 concurrent_g1_refine()->red_zone(),
1977                                                 Shared_DirtyCardQ_lock);
1978 
1979   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1980                                     DirtyCardQ_CBL_mon,
1981                                     DirtyCardQ_FL_lock,
1982                                     -1, // never trigger processing
1983                                     -1, // no limit on length
1984                                     Shared_DirtyCardQ_lock,
1985                                     &JavaThread::dirty_card_queue_set());
1986 
1987   // Initialize the card queue set used to hold cards containing
1988   // references into the collection set.
1989   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1990                                              DirtyCardQ_CBL_mon,
1991                                              DirtyCardQ_FL_lock,
1992                                              -1, // never trigger processing
1993                                              -1, // no limit on length
1994                                              Shared_DirtyCardQ_lock,
1995                                              &JavaThread::dirty_card_queue_set());
1996 
1997   // Here we allocate the dummy HeapRegion that is required by the
1998   // G1AllocRegion class.
1999   HeapRegion* dummy_region = _hrm.get_dummy_region();
2000 
2001   // We'll re-use the same region whether the alloc region will
2002   // require BOT updates or not and, if it doesn't, then a non-young
2003   // region will complain that it cannot support allocations without
2004   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2005   dummy_region->set_eden();
2006   // Make sure it's full.
2007   dummy_region->set_top(dummy_region->end());
2008   G1AllocRegion::setup(this, dummy_region);
2009 
2010   _allocator->init_mutator_alloc_region();
2011 
2012   // Do create of the monitoring and management support so that
2013   // values in the heap have been properly initialized.
2014   _g1mm = new G1MonitoringSupport(this);
2015 
2016   G1StringDedup::initialize();
2017 
2018   return JNI_OK;
2019 }
2020 
2021 void G1CollectedHeap::stop() {
2022   // Stop all concurrent threads. We do this to make sure these threads
2023   // do not continue to execute and access resources (e.g. gclog_or_tty)
2024   // that are destroyed during shutdown.
2025   _cg1r->stop();
2026   _cmThread->stop();
2027   if (G1StringDedup::is_enabled()) {
2028     G1StringDedup::stop();
2029   }
2030 }
2031 
2032 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2033   return HeapRegion::max_region_size();
2034 }
2035 
2036 void G1CollectedHeap::post_initialize() {
2037   CollectedHeap::post_initialize();
2038   ref_processing_init();
2039 }
2040 
2041 void G1CollectedHeap::ref_processing_init() {
2042   // Reference processing in G1 currently works as follows:
2043   //
2044   // * There are two reference processor instances. One is
2045   //   used to record and process discovered references
2046   //   during concurrent marking; the other is used to
2047   //   record and process references during STW pauses
2048   //   (both full and incremental).
2049   // * Both ref processors need to 'span' the entire heap as
2050   //   the regions in the collection set may be dotted around.
2051   //
2052   // * For the concurrent marking ref processor:
2053   //   * Reference discovery is enabled at initial marking.
2054   //   * Reference discovery is disabled and the discovered
2055   //     references processed etc during remarking.
2056   //   * Reference discovery is MT (see below).
2057   //   * Reference discovery requires a barrier (see below).
2058   //   * Reference processing may or may not be MT
2059   //     (depending on the value of ParallelRefProcEnabled
2060   //     and ParallelGCThreads).
2061   //   * A full GC disables reference discovery by the CM
2062   //     ref processor and abandons any entries on it's
2063   //     discovered lists.
2064   //
2065   // * For the STW processor:
2066   //   * Non MT discovery is enabled at the start of a full GC.
2067   //   * Processing and enqueueing during a full GC is non-MT.
2068   //   * During a full GC, references are processed after marking.
2069   //
2070   //   * Discovery (may or may not be MT) is enabled at the start
2071   //     of an incremental evacuation pause.
2072   //   * References are processed near the end of a STW evacuation pause.
2073   //   * For both types of GC:
2074   //     * Discovery is atomic - i.e. not concurrent.
2075   //     * Reference discovery will not need a barrier.
2076 
2077   MemRegion mr = reserved_region();
2078 
2079   // Concurrent Mark ref processor
2080   _ref_processor_cm =
2081     new ReferenceProcessor(mr,    // span
2082                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2083                                 // mt processing
2084                            (int) ParallelGCThreads,
2085                                 // degree of mt processing
2086                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2087                                 // mt discovery
2088                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2089                                 // degree of mt discovery
2090                            false,
2091                                 // Reference discovery is not atomic
2092                            &_is_alive_closure_cm);
2093                                 // is alive closure
2094                                 // (for efficiency/performance)
2095 
2096   // STW ref processor
2097   _ref_processor_stw =
2098     new ReferenceProcessor(mr,    // span
2099                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2100                                 // mt processing
2101                            MAX2((int)ParallelGCThreads, 1),
2102                                 // degree of mt processing
2103                            (ParallelGCThreads > 1),
2104                                 // mt discovery
2105                            MAX2((int)ParallelGCThreads, 1),
2106                                 // degree of mt discovery
2107                            true,
2108                                 // Reference discovery is atomic
2109                            &_is_alive_closure_stw);
2110                                 // is alive closure
2111                                 // (for efficiency/performance)
2112 }
2113 
2114 size_t G1CollectedHeap::capacity() const {
2115   return _hrm.length() * HeapRegion::GrainBytes;
2116 }
2117 
2118 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2119   assert(!hr->is_continues_humongous(), "pre-condition");
2120   hr->reset_gc_time_stamp();
2121   if (hr->is_starts_humongous()) {
2122     uint first_index = hr->hrm_index() + 1;
2123     uint last_index = hr->last_hc_index();
2124     for (uint i = first_index; i < last_index; i += 1) {
2125       HeapRegion* chr = region_at(i);
2126       assert(chr->is_continues_humongous(), "sanity");
2127       chr->reset_gc_time_stamp();
2128     }
2129   }
2130 }
2131 
2132 #ifndef PRODUCT
2133 
2134 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2135 private:
2136   unsigned _gc_time_stamp;
2137   bool _failures;
2138 
2139 public:
2140   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2141     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2142 
2143   virtual bool doHeapRegion(HeapRegion* hr) {
2144     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2145     if (_gc_time_stamp != region_gc_time_stamp) {
2146       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2147                              "expected %d", HR_FORMAT_PARAMS(hr),
2148                              region_gc_time_stamp, _gc_time_stamp);
2149       _failures = true;
2150     }
2151     return false;
2152   }
2153 
2154   bool failures() { return _failures; }
2155 };
2156 
2157 void G1CollectedHeap::check_gc_time_stamps() {
2158   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2159   heap_region_iterate(&cl);
2160   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2161 }
2162 #endif // PRODUCT
2163 
2164 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2165                                                  DirtyCardQueue* into_cset_dcq,
2166                                                  bool concurrent,
2167                                                  uint worker_i) {
2168   // Clean cards in the hot card cache
2169   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2170   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2171 
2172   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2173   size_t n_completed_buffers = 0;
2174   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2175     n_completed_buffers++;
2176   }
2177   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2178   dcqs.clear_n_completed_buffers();
2179   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2180 }
2181 
2182 
2183 // Computes the sum of the storage used by the various regions.
2184 size_t G1CollectedHeap::used() const {
2185   return _allocator->used();
2186 }
2187 
2188 size_t G1CollectedHeap::used_unlocked() const {
2189   return _allocator->used_unlocked();
2190 }
2191 
2192 class SumUsedClosure: public HeapRegionClosure {
2193   size_t _used;
2194 public:
2195   SumUsedClosure() : _used(0) {}
2196   bool doHeapRegion(HeapRegion* r) {
2197     if (!r->is_continues_humongous()) {
2198       _used += r->used();
2199     }
2200     return false;
2201   }
2202   size_t result() { return _used; }
2203 };
2204 
2205 size_t G1CollectedHeap::recalculate_used() const {
2206   double recalculate_used_start = os::elapsedTime();
2207 
2208   SumUsedClosure blk;
2209   heap_region_iterate(&blk);
2210 
2211   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2212   return blk.result();
2213 }
2214 
2215 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2216   switch (cause) {
2217     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2218     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2219     case GCCause::_g1_humongous_allocation: return true;
2220     case GCCause::_update_allocation_context_stats_inc: return true;
2221     case GCCause::_wb_conc_mark:            return true;
2222     default:                                return false;
2223   }
2224 }
2225 
2226 #ifndef PRODUCT
2227 void G1CollectedHeap::allocate_dummy_regions() {
2228   // Let's fill up most of the region
2229   size_t word_size = HeapRegion::GrainWords - 1024;
2230   // And as a result the region we'll allocate will be humongous.
2231   guarantee(is_humongous(word_size), "sanity");
2232 
2233   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2234     // Let's use the existing mechanism for the allocation
2235     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2236                                                  AllocationContext::system());
2237     if (dummy_obj != NULL) {
2238       MemRegion mr(dummy_obj, word_size);
2239       CollectedHeap::fill_with_object(mr);
2240     } else {
2241       // If we can't allocate once, we probably cannot allocate
2242       // again. Let's get out of the loop.
2243       break;
2244     }
2245   }
2246 }
2247 #endif // !PRODUCT
2248 
2249 void G1CollectedHeap::increment_old_marking_cycles_started() {
2250   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2251     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2252     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2253     _old_marking_cycles_started, _old_marking_cycles_completed));
2254 
2255   _old_marking_cycles_started++;
2256 }
2257 
2258 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2259   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2260 
2261   // We assume that if concurrent == true, then the caller is a
2262   // concurrent thread that was joined the Suspendible Thread
2263   // Set. If there's ever a cheap way to check this, we should add an
2264   // assert here.
2265 
2266   // Given that this method is called at the end of a Full GC or of a
2267   // concurrent cycle, and those can be nested (i.e., a Full GC can
2268   // interrupt a concurrent cycle), the number of full collections
2269   // completed should be either one (in the case where there was no
2270   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2271   // behind the number of full collections started.
2272 
2273   // This is the case for the inner caller, i.e. a Full GC.
2274   assert(concurrent ||
2275          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2276          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2277          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2278                  "is inconsistent with _old_marking_cycles_completed = %u",
2279                  _old_marking_cycles_started, _old_marking_cycles_completed));
2280 
2281   // This is the case for the outer caller, i.e. the concurrent cycle.
2282   assert(!concurrent ||
2283          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2284          err_msg("for outer caller (concurrent cycle): "
2285                  "_old_marking_cycles_started = %u "
2286                  "is inconsistent with _old_marking_cycles_completed = %u",
2287                  _old_marking_cycles_started, _old_marking_cycles_completed));
2288 
2289   _old_marking_cycles_completed += 1;
2290 
2291   // We need to clear the "in_progress" flag in the CM thread before
2292   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2293   // is set) so that if a waiter requests another System.gc() it doesn't
2294   // incorrectly see that a marking cycle is still in progress.
2295   if (concurrent) {
2296     _cmThread->clear_in_progress();
2297   }
2298 
2299   // This notify_all() will ensure that a thread that called
2300   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2301   // and it's waiting for a full GC to finish will be woken up. It is
2302   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2303   FullGCCount_lock->notify_all();
2304 }
2305 
2306 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2307   _concurrent_cycle_started = true;
2308   _gc_timer_cm->register_gc_start(start_time);
2309 
2310   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2311   trace_heap_before_gc(_gc_tracer_cm);
2312 }
2313 
2314 void G1CollectedHeap::register_concurrent_cycle_end() {
2315   if (_concurrent_cycle_started) {
2316     if (_cm->has_aborted()) {
2317       _gc_tracer_cm->report_concurrent_mode_failure();
2318     }
2319 
2320     _gc_timer_cm->register_gc_end();
2321     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2322 
2323     // Clear state variables to prepare for the next concurrent cycle.
2324     _concurrent_cycle_started = false;
2325     _heap_summary_sent = false;
2326   }
2327 }
2328 
2329 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2330   if (_concurrent_cycle_started) {
2331     // This function can be called when:
2332     //  the cleanup pause is run
2333     //  the concurrent cycle is aborted before the cleanup pause.
2334     //  the concurrent cycle is aborted after the cleanup pause,
2335     //   but before the concurrent cycle end has been registered.
2336     // Make sure that we only send the heap information once.
2337     if (!_heap_summary_sent) {
2338       trace_heap_after_gc(_gc_tracer_cm);
2339       _heap_summary_sent = true;
2340     }
2341   }
2342 }
2343 
2344 G1YCType G1CollectedHeap::yc_type() {
2345   bool is_young = g1_policy()->gcs_are_young();
2346   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2347   bool is_during_mark = mark_in_progress();
2348 
2349   if (is_initial_mark) {
2350     return InitialMark;
2351   } else if (is_during_mark) {
2352     return DuringMark;
2353   } else if (is_young) {
2354     return Normal;
2355   } else {
2356     return Mixed;
2357   }
2358 }
2359 
2360 void G1CollectedHeap::collect(GCCause::Cause cause) {
2361   assert_heap_not_locked();
2362 
2363   uint gc_count_before;
2364   uint old_marking_count_before;
2365   uint full_gc_count_before;
2366   bool retry_gc;
2367 
2368   do {
2369     retry_gc = false;
2370 
2371     {
2372       MutexLocker ml(Heap_lock);
2373 
2374       // Read the GC count while holding the Heap_lock
2375       gc_count_before = total_collections();
2376       full_gc_count_before = total_full_collections();
2377       old_marking_count_before = _old_marking_cycles_started;
2378     }
2379 
2380     if (should_do_concurrent_full_gc(cause)) {
2381       // Schedule an initial-mark evacuation pause that will start a
2382       // concurrent cycle. We're setting word_size to 0 which means that
2383       // we are not requesting a post-GC allocation.
2384       VM_G1IncCollectionPause op(gc_count_before,
2385                                  0,     /* word_size */
2386                                  true,  /* should_initiate_conc_mark */
2387                                  g1_policy()->max_pause_time_ms(),
2388                                  cause);
2389       op.set_allocation_context(AllocationContext::current());
2390 
2391       VMThread::execute(&op);
2392       if (!op.pause_succeeded()) {
2393         if (old_marking_count_before == _old_marking_cycles_started) {
2394           retry_gc = op.should_retry_gc();
2395         } else {
2396           // A Full GC happened while we were trying to schedule the
2397           // initial-mark GC. No point in starting a new cycle given
2398           // that the whole heap was collected anyway.
2399         }
2400 
2401         if (retry_gc) {
2402           if (GC_locker::is_active_and_needs_gc()) {
2403             GC_locker::stall_until_clear();
2404           }
2405         }
2406       }
2407     } else {
2408       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2409           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2410 
2411         // Schedule a standard evacuation pause. We're setting word_size
2412         // to 0 which means that we are not requesting a post-GC allocation.
2413         VM_G1IncCollectionPause op(gc_count_before,
2414                                    0,     /* word_size */
2415                                    false, /* should_initiate_conc_mark */
2416                                    g1_policy()->max_pause_time_ms(),
2417                                    cause);
2418         VMThread::execute(&op);
2419       } else {
2420         // Schedule a Full GC.
2421         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2422         VMThread::execute(&op);
2423       }
2424     }
2425   } while (retry_gc);
2426 }
2427 
2428 bool G1CollectedHeap::is_in(const void* p) const {
2429   if (_hrm.reserved().contains(p)) {
2430     // Given that we know that p is in the reserved space,
2431     // heap_region_containing_raw() should successfully
2432     // return the containing region.
2433     HeapRegion* hr = heap_region_containing_raw(p);
2434     return hr->is_in(p);
2435   } else {
2436     return false;
2437   }
2438 }
2439 
2440 #ifdef ASSERT
2441 bool G1CollectedHeap::is_in_exact(const void* p) const {
2442   bool contains = reserved_region().contains(p);
2443   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2444   if (contains && available) {
2445     return true;
2446   } else {
2447     return false;
2448   }
2449 }
2450 #endif
2451 
2452 // Iteration functions.
2453 
2454 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2455 
2456 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2457   ExtendedOopClosure* _cl;
2458 public:
2459   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2460   bool doHeapRegion(HeapRegion* r) {
2461     if (!r->is_continues_humongous()) {
2462       r->oop_iterate(_cl);
2463     }
2464     return false;
2465   }
2466 };
2467 
2468 // Iterates an ObjectClosure over all objects within a HeapRegion.
2469 
2470 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2471   ObjectClosure* _cl;
2472 public:
2473   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2474   bool doHeapRegion(HeapRegion* r) {
2475     if (!r->is_continues_humongous()) {
2476       r->object_iterate(_cl);
2477     }
2478     return false;
2479   }
2480 };
2481 
2482 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2483   IterateObjectClosureRegionClosure blk(cl);
2484   heap_region_iterate(&blk);
2485 }
2486 
2487 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2488   _hrm.iterate(cl);
2489 }
2490 
2491 void
2492 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2493                                          uint worker_id,
2494                                          HeapRegionClaimer *hrclaimer,
2495                                          bool concurrent) const {
2496   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2497 }
2498 
2499 // Clear the cached CSet starting regions and (more importantly)
2500 // the time stamps. Called when we reset the GC time stamp.
2501 void G1CollectedHeap::clear_cset_start_regions() {
2502   assert(_worker_cset_start_region != NULL, "sanity");
2503   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2504 
2505   int n_queues = MAX2((int)ParallelGCThreads, 1);
2506   for (int i = 0; i < n_queues; i++) {
2507     _worker_cset_start_region[i] = NULL;
2508     _worker_cset_start_region_time_stamp[i] = 0;
2509   }
2510 }
2511 
2512 // Given the id of a worker, obtain or calculate a suitable
2513 // starting region for iterating over the current collection set.
2514 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2515   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2516 
2517   HeapRegion* result = NULL;
2518   unsigned gc_time_stamp = get_gc_time_stamp();
2519 
2520   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2521     // Cached starting region for current worker was set
2522     // during the current pause - so it's valid.
2523     // Note: the cached starting heap region may be NULL
2524     // (when the collection set is empty).
2525     result = _worker_cset_start_region[worker_i];
2526     assert(result == NULL || result->in_collection_set(), "sanity");
2527     return result;
2528   }
2529 
2530   // The cached entry was not valid so let's calculate
2531   // a suitable starting heap region for this worker.
2532 
2533   // We want the parallel threads to start their collection
2534   // set iteration at different collection set regions to
2535   // avoid contention.
2536   // If we have:
2537   //          n collection set regions
2538   //          p threads
2539   // Then thread t will start at region floor ((t * n) / p)
2540 
2541   result = g1_policy()->collection_set();
2542   uint cs_size = g1_policy()->cset_region_length();
2543   uint active_workers = workers()->active_workers();
2544   assert(UseDynamicNumberOfGCThreads ||
2545            active_workers == workers()->total_workers(),
2546            "Unless dynamic should use total workers");
2547 
2548   uint end_ind   = (cs_size * worker_i) / active_workers;
2549   uint start_ind = 0;
2550 
2551   if (worker_i > 0 &&
2552       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2553     // Previous workers starting region is valid
2554     // so let's iterate from there
2555     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2556     result = _worker_cset_start_region[worker_i - 1];
2557   }
2558 
2559   for (uint i = start_ind; i < end_ind; i++) {
2560     result = result->next_in_collection_set();
2561   }
2562 
2563   // Note: the calculated starting heap region may be NULL
2564   // (when the collection set is empty).
2565   assert(result == NULL || result->in_collection_set(), "sanity");
2566   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2567          "should be updated only once per pause");
2568   _worker_cset_start_region[worker_i] = result;
2569   OrderAccess::storestore();
2570   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2571   return result;
2572 }
2573 
2574 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2575   HeapRegion* r = g1_policy()->collection_set();
2576   while (r != NULL) {
2577     HeapRegion* next = r->next_in_collection_set();
2578     if (cl->doHeapRegion(r)) {
2579       cl->incomplete();
2580       return;
2581     }
2582     r = next;
2583   }
2584 }
2585 
2586 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2587                                                   HeapRegionClosure *cl) {
2588   if (r == NULL) {
2589     // The CSet is empty so there's nothing to do.
2590     return;
2591   }
2592 
2593   assert(r->in_collection_set(),
2594          "Start region must be a member of the collection set.");
2595   HeapRegion* cur = r;
2596   while (cur != NULL) {
2597     HeapRegion* next = cur->next_in_collection_set();
2598     if (cl->doHeapRegion(cur) && false) {
2599       cl->incomplete();
2600       return;
2601     }
2602     cur = next;
2603   }
2604   cur = g1_policy()->collection_set();
2605   while (cur != r) {
2606     HeapRegion* next = cur->next_in_collection_set();
2607     if (cl->doHeapRegion(cur) && false) {
2608       cl->incomplete();
2609       return;
2610     }
2611     cur = next;
2612   }
2613 }
2614 
2615 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2616   HeapRegion* result = _hrm.next_region_in_heap(from);
2617   while (result != NULL && result->is_humongous()) {
2618     result = _hrm.next_region_in_heap(result);
2619   }
2620   return result;
2621 }
2622 
2623 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2624   HeapRegion* hr = heap_region_containing(addr);
2625   return hr->block_start(addr);
2626 }
2627 
2628 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2629   HeapRegion* hr = heap_region_containing(addr);
2630   return hr->block_size(addr);
2631 }
2632 
2633 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2634   HeapRegion* hr = heap_region_containing(addr);
2635   return hr->block_is_obj(addr);
2636 }
2637 
2638 bool G1CollectedHeap::supports_tlab_allocation() const {
2639   return true;
2640 }
2641 
2642 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2643   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2644 }
2645 
2646 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2647   return young_list()->eden_used_bytes();
2648 }
2649 
2650 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2651 // must be smaller than the humongous object limit.
2652 size_t G1CollectedHeap::max_tlab_size() const {
2653   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2654 }
2655 
2656 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2657   // Return the remaining space in the cur alloc region, but not less than
2658   // the min TLAB size.
2659 
2660   // Also, this value can be at most the humongous object threshold,
2661   // since we can't allow tlabs to grow big enough to accommodate
2662   // humongous objects.
2663 
2664   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2665   size_t max_tlab = max_tlab_size() * wordSize;
2666   if (hr == NULL) {
2667     return max_tlab;
2668   } else {
2669     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2670   }
2671 }
2672 
2673 size_t G1CollectedHeap::max_capacity() const {
2674   return _hrm.reserved().byte_size();
2675 }
2676 
2677 jlong G1CollectedHeap::millis_since_last_gc() {
2678   // assert(false, "NYI");
2679   return 0;
2680 }
2681 
2682 void G1CollectedHeap::prepare_for_verify() {
2683   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2684     ensure_parsability(false);
2685   }
2686   g1_rem_set()->prepare_for_verify();
2687 }
2688 
2689 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2690                                               VerifyOption vo) {
2691   switch (vo) {
2692   case VerifyOption_G1UsePrevMarking:
2693     return hr->obj_allocated_since_prev_marking(obj);
2694   case VerifyOption_G1UseNextMarking:
2695     return hr->obj_allocated_since_next_marking(obj);
2696   case VerifyOption_G1UseMarkWord:
2697     return false;
2698   default:
2699     ShouldNotReachHere();
2700   }
2701   return false; // keep some compilers happy
2702 }
2703 
2704 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2705   switch (vo) {
2706   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2707   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2708   case VerifyOption_G1UseMarkWord:    return NULL;
2709   default:                            ShouldNotReachHere();
2710   }
2711   return NULL; // keep some compilers happy
2712 }
2713 
2714 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2715   switch (vo) {
2716   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2717   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2718   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2719   default:                            ShouldNotReachHere();
2720   }
2721   return false; // keep some compilers happy
2722 }
2723 
2724 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2725   switch (vo) {
2726   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2727   case VerifyOption_G1UseNextMarking: return "NTAMS";
2728   case VerifyOption_G1UseMarkWord:    return "NONE";
2729   default:                            ShouldNotReachHere();
2730   }
2731   return NULL; // keep some compilers happy
2732 }
2733 
2734 class VerifyRootsClosure: public OopClosure {
2735 private:
2736   G1CollectedHeap* _g1h;
2737   VerifyOption     _vo;
2738   bool             _failures;
2739 public:
2740   // _vo == UsePrevMarking -> use "prev" marking information,
2741   // _vo == UseNextMarking -> use "next" marking information,
2742   // _vo == UseMarkWord    -> use mark word from object header.
2743   VerifyRootsClosure(VerifyOption vo) :
2744     _g1h(G1CollectedHeap::heap()),
2745     _vo(vo),
2746     _failures(false) { }
2747 
2748   bool failures() { return _failures; }
2749 
2750   template <class T> void do_oop_nv(T* p) {
2751     T heap_oop = oopDesc::load_heap_oop(p);
2752     if (!oopDesc::is_null(heap_oop)) {
2753       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2754       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2755         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2756                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2757         if (_vo == VerifyOption_G1UseMarkWord) {
2758           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2759         }
2760         obj->print_on(gclog_or_tty);
2761         _failures = true;
2762       }
2763     }
2764   }
2765 
2766   void do_oop(oop* p)       { do_oop_nv(p); }
2767   void do_oop(narrowOop* p) { do_oop_nv(p); }
2768 };
2769 
2770 class G1VerifyCodeRootOopClosure: public OopClosure {
2771   G1CollectedHeap* _g1h;
2772   OopClosure* _root_cl;
2773   nmethod* _nm;
2774   VerifyOption _vo;
2775   bool _failures;
2776 
2777   template <class T> void do_oop_work(T* p) {
2778     // First verify that this root is live
2779     _root_cl->do_oop(p);
2780 
2781     if (!G1VerifyHeapRegionCodeRoots) {
2782       // We're not verifying the code roots attached to heap region.
2783       return;
2784     }
2785 
2786     // Don't check the code roots during marking verification in a full GC
2787     if (_vo == VerifyOption_G1UseMarkWord) {
2788       return;
2789     }
2790 
2791     // Now verify that the current nmethod (which contains p) is
2792     // in the code root list of the heap region containing the
2793     // object referenced by p.
2794 
2795     T heap_oop = oopDesc::load_heap_oop(p);
2796     if (!oopDesc::is_null(heap_oop)) {
2797       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2798 
2799       // Now fetch the region containing the object
2800       HeapRegion* hr = _g1h->heap_region_containing(obj);
2801       HeapRegionRemSet* hrrs = hr->rem_set();
2802       // Verify that the strong code root list for this region
2803       // contains the nmethod
2804       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2805         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2806                                "from nmethod "PTR_FORMAT" not in strong "
2807                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2808                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2809         _failures = true;
2810       }
2811     }
2812   }
2813 
2814 public:
2815   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2816     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2817 
2818   void do_oop(oop* p) { do_oop_work(p); }
2819   void do_oop(narrowOop* p) { do_oop_work(p); }
2820 
2821   void set_nmethod(nmethod* nm) { _nm = nm; }
2822   bool failures() { return _failures; }
2823 };
2824 
2825 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2826   G1VerifyCodeRootOopClosure* _oop_cl;
2827 
2828 public:
2829   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2830     _oop_cl(oop_cl) {}
2831 
2832   void do_code_blob(CodeBlob* cb) {
2833     nmethod* nm = cb->as_nmethod_or_null();
2834     if (nm != NULL) {
2835       _oop_cl->set_nmethod(nm);
2836       nm->oops_do(_oop_cl);
2837     }
2838   }
2839 };
2840 
2841 class YoungRefCounterClosure : public OopClosure {
2842   G1CollectedHeap* _g1h;
2843   int              _count;
2844  public:
2845   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2846   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2847   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2848 
2849   int count() { return _count; }
2850   void reset_count() { _count = 0; };
2851 };
2852 
2853 class VerifyKlassClosure: public KlassClosure {
2854   YoungRefCounterClosure _young_ref_counter_closure;
2855   OopClosure *_oop_closure;
2856  public:
2857   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2858   void do_klass(Klass* k) {
2859     k->oops_do(_oop_closure);
2860 
2861     _young_ref_counter_closure.reset_count();
2862     k->oops_do(&_young_ref_counter_closure);
2863     if (_young_ref_counter_closure.count() > 0) {
2864       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
2865     }
2866   }
2867 };
2868 
2869 class VerifyLivenessOopClosure: public OopClosure {
2870   G1CollectedHeap* _g1h;
2871   VerifyOption _vo;
2872 public:
2873   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2874     _g1h(g1h), _vo(vo)
2875   { }
2876   void do_oop(narrowOop *p) { do_oop_work(p); }
2877   void do_oop(      oop *p) { do_oop_work(p); }
2878 
2879   template <class T> void do_oop_work(T *p) {
2880     oop obj = oopDesc::load_decode_heap_oop(p);
2881     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2882               "Dead object referenced by a not dead object");
2883   }
2884 };
2885 
2886 class VerifyObjsInRegionClosure: public ObjectClosure {
2887 private:
2888   G1CollectedHeap* _g1h;
2889   size_t _live_bytes;
2890   HeapRegion *_hr;
2891   VerifyOption _vo;
2892 public:
2893   // _vo == UsePrevMarking -> use "prev" marking information,
2894   // _vo == UseNextMarking -> use "next" marking information,
2895   // _vo == UseMarkWord    -> use mark word from object header.
2896   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2897     : _live_bytes(0), _hr(hr), _vo(vo) {
2898     _g1h = G1CollectedHeap::heap();
2899   }
2900   void do_object(oop o) {
2901     VerifyLivenessOopClosure isLive(_g1h, _vo);
2902     assert(o != NULL, "Huh?");
2903     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2904       // If the object is alive according to the mark word,
2905       // then verify that the marking information agrees.
2906       // Note we can't verify the contra-positive of the
2907       // above: if the object is dead (according to the mark
2908       // word), it may not be marked, or may have been marked
2909       // but has since became dead, or may have been allocated
2910       // since the last marking.
2911       if (_vo == VerifyOption_G1UseMarkWord) {
2912         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2913       }
2914 
2915       o->oop_iterate_no_header(&isLive);
2916       if (!_hr->obj_allocated_since_prev_marking(o)) {
2917         size_t obj_size = o->size();    // Make sure we don't overflow
2918         _live_bytes += (obj_size * HeapWordSize);
2919       }
2920     }
2921   }
2922   size_t live_bytes() { return _live_bytes; }
2923 };
2924 
2925 class VerifyRegionClosure: public HeapRegionClosure {
2926 private:
2927   bool             _par;
2928   VerifyOption     _vo;
2929   bool             _failures;
2930 public:
2931   // _vo == UsePrevMarking -> use "prev" marking information,
2932   // _vo == UseNextMarking -> use "next" marking information,
2933   // _vo == UseMarkWord    -> use mark word from object header.
2934   VerifyRegionClosure(bool par, VerifyOption vo)
2935     : _par(par),
2936       _vo(vo),
2937       _failures(false) {}
2938 
2939   bool failures() {
2940     return _failures;
2941   }
2942 
2943   bool doHeapRegion(HeapRegion* r) {
2944     if (!r->is_continues_humongous()) {
2945       bool failures = false;
2946       r->verify(_vo, &failures);
2947       if (failures) {
2948         _failures = true;
2949       } else {
2950         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2951         r->object_iterate(&not_dead_yet_cl);
2952         if (_vo != VerifyOption_G1UseNextMarking) {
2953           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2954             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2955                                    "max_live_bytes "SIZE_FORMAT" "
2956                                    "< calculated "SIZE_FORMAT,
2957                                    p2i(r->bottom()), p2i(r->end()),
2958                                    r->max_live_bytes(),
2959                                  not_dead_yet_cl.live_bytes());
2960             _failures = true;
2961           }
2962         } else {
2963           // When vo == UseNextMarking we cannot currently do a sanity
2964           // check on the live bytes as the calculation has not been
2965           // finalized yet.
2966         }
2967       }
2968     }
2969     return false; // stop the region iteration if we hit a failure
2970   }
2971 };
2972 
2973 // This is the task used for parallel verification of the heap regions
2974 
2975 class G1ParVerifyTask: public AbstractGangTask {
2976 private:
2977   G1CollectedHeap*  _g1h;
2978   VerifyOption      _vo;
2979   bool              _failures;
2980   HeapRegionClaimer _hrclaimer;
2981 
2982 public:
2983   // _vo == UsePrevMarking -> use "prev" marking information,
2984   // _vo == UseNextMarking -> use "next" marking information,
2985   // _vo == UseMarkWord    -> use mark word from object header.
2986   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
2987       AbstractGangTask("Parallel verify task"),
2988       _g1h(g1h),
2989       _vo(vo),
2990       _failures(false),
2991       _hrclaimer(g1h->workers()->active_workers()) {}
2992 
2993   bool failures() {
2994     return _failures;
2995   }
2996 
2997   void work(uint worker_id) {
2998     HandleMark hm;
2999     VerifyRegionClosure blk(true, _vo);
3000     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3001     if (blk.failures()) {
3002       _failures = true;
3003     }
3004   }
3005 };
3006 
3007 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3008   if (SafepointSynchronize::is_at_safepoint()) {
3009     assert(Thread::current()->is_VM_thread(),
3010            "Expected to be executed serially by the VM thread at this point");
3011 
3012     if (!silent) { gclog_or_tty->print("Roots "); }
3013     VerifyRootsClosure rootsCl(vo);
3014     VerifyKlassClosure klassCl(this, &rootsCl);
3015     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3016 
3017     // We apply the relevant closures to all the oops in the
3018     // system dictionary, class loader data graph, the string table
3019     // and the nmethods in the code cache.
3020     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3021     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3022 
3023     {
3024       G1RootProcessor root_processor(this);
3025       root_processor.process_all_roots(&rootsCl,
3026                                        &cldCl,
3027                                        &blobsCl);
3028     }
3029 
3030     bool failures = rootsCl.failures() || codeRootsCl.failures();
3031 
3032     if (vo != VerifyOption_G1UseMarkWord) {
3033       // If we're verifying during a full GC then the region sets
3034       // will have been torn down at the start of the GC. Therefore
3035       // verifying the region sets will fail. So we only verify
3036       // the region sets when not in a full GC.
3037       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3038       verify_region_sets();
3039     }
3040 
3041     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3042     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3043 
3044       G1ParVerifyTask task(this, vo);
3045       assert(UseDynamicNumberOfGCThreads ||
3046         workers()->active_workers() == workers()->total_workers(),
3047         "If not dynamic should be using all the workers");
3048       uint n_workers = workers()->active_workers();
3049       set_par_threads(n_workers);
3050       workers()->run_task(&task);
3051       set_par_threads(0);
3052       if (task.failures()) {
3053         failures = true;
3054       }
3055 
3056     } else {
3057       VerifyRegionClosure blk(false, vo);
3058       heap_region_iterate(&blk);
3059       if (blk.failures()) {
3060         failures = true;
3061       }
3062     }
3063 
3064     if (G1StringDedup::is_enabled()) {
3065       if (!silent) gclog_or_tty->print("StrDedup ");
3066       G1StringDedup::verify();
3067     }
3068 
3069     if (failures) {
3070       gclog_or_tty->print_cr("Heap:");
3071       // It helps to have the per-region information in the output to
3072       // help us track down what went wrong. This is why we call
3073       // print_extended_on() instead of print_on().
3074       print_extended_on(gclog_or_tty);
3075       gclog_or_tty->cr();
3076       gclog_or_tty->flush();
3077     }
3078     guarantee(!failures, "there should not have been any failures");
3079   } else {
3080     if (!silent) {
3081       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3082       if (G1StringDedup::is_enabled()) {
3083         gclog_or_tty->print(", StrDedup");
3084       }
3085       gclog_or_tty->print(") ");
3086     }
3087   }
3088 }
3089 
3090 void G1CollectedHeap::verify(bool silent) {
3091   verify(silent, VerifyOption_G1UsePrevMarking);
3092 }
3093 
3094 double G1CollectedHeap::verify(bool guard, const char* msg) {
3095   double verify_time_ms = 0.0;
3096 
3097   if (guard && total_collections() >= VerifyGCStartAt) {
3098     double verify_start = os::elapsedTime();
3099     HandleMark hm;  // Discard invalid handles created during verification
3100     prepare_for_verify();
3101     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3102     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3103   }
3104 
3105   return verify_time_ms;
3106 }
3107 
3108 void G1CollectedHeap::verify_before_gc() {
3109   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3110   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3111 }
3112 
3113 void G1CollectedHeap::verify_after_gc() {
3114   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3115   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3116 }
3117 
3118 class PrintRegionClosure: public HeapRegionClosure {
3119   outputStream* _st;
3120 public:
3121   PrintRegionClosure(outputStream* st) : _st(st) {}
3122   bool doHeapRegion(HeapRegion* r) {
3123     r->print_on(_st);
3124     return false;
3125   }
3126 };
3127 
3128 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3129                                        const HeapRegion* hr,
3130                                        const VerifyOption vo) const {
3131   switch (vo) {
3132   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3133   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3134   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3135   default:                            ShouldNotReachHere();
3136   }
3137   return false; // keep some compilers happy
3138 }
3139 
3140 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3141                                        const VerifyOption vo) const {
3142   switch (vo) {
3143   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3144   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3145   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3146   default:                            ShouldNotReachHere();
3147   }
3148   return false; // keep some compilers happy
3149 }
3150 
3151 void G1CollectedHeap::print_on(outputStream* st) const {
3152   st->print(" %-20s", "garbage-first heap");
3153   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3154             capacity()/K, used_unlocked()/K);
3155   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3156             p2i(_hrm.reserved().start()),
3157             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3158             p2i(_hrm.reserved().end()));
3159   st->cr();
3160   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3161   uint young_regions = _young_list->length();
3162   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3163             (size_t) young_regions * HeapRegion::GrainBytes / K);
3164   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3165   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3166             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3167   st->cr();
3168   MetaspaceAux::print_on(st);
3169 }
3170 
3171 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3172   print_on(st);
3173 
3174   // Print the per-region information.
3175   st->cr();
3176   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3177                "HS=humongous(starts), HC=humongous(continues), "
3178                "CS=collection set, F=free, TS=gc time stamp, "
3179                "PTAMS=previous top-at-mark-start, "
3180                "NTAMS=next top-at-mark-start)");
3181   PrintRegionClosure blk(st);
3182   heap_region_iterate(&blk);
3183 }
3184 
3185 void G1CollectedHeap::print_on_error(outputStream* st) const {
3186   this->CollectedHeap::print_on_error(st);
3187 
3188   if (_cm != NULL) {
3189     st->cr();
3190     _cm->print_on_error(st);
3191   }
3192 }
3193 
3194 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3195   workers()->print_worker_threads_on(st);
3196   _cmThread->print_on(st);
3197   st->cr();
3198   _cm->print_worker_threads_on(st);
3199   _cg1r->print_worker_threads_on(st);
3200   if (G1StringDedup::is_enabled()) {
3201     G1StringDedup::print_worker_threads_on(st);
3202   }
3203 }
3204 
3205 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3206   workers()->threads_do(tc);
3207   tc->do_thread(_cmThread);
3208   _cg1r->threads_do(tc);
3209   if (G1StringDedup::is_enabled()) {
3210     G1StringDedup::threads_do(tc);
3211   }
3212 }
3213 
3214 void G1CollectedHeap::print_tracing_info() const {
3215   // We'll overload this to mean "trace GC pause statistics."
3216   if (TraceYoungGenTime || TraceOldGenTime) {
3217     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3218     // to that.
3219     g1_policy()->print_tracing_info();
3220   }
3221   if (G1SummarizeRSetStats) {
3222     g1_rem_set()->print_summary_info();
3223   }
3224   if (G1SummarizeConcMark) {
3225     concurrent_mark()->print_summary_info();
3226   }
3227   g1_policy()->print_yg_surv_rate_info();
3228 }
3229 
3230 #ifndef PRODUCT
3231 // Helpful for debugging RSet issues.
3232 
3233 class PrintRSetsClosure : public HeapRegionClosure {
3234 private:
3235   const char* _msg;
3236   size_t _occupied_sum;
3237 
3238 public:
3239   bool doHeapRegion(HeapRegion* r) {
3240     HeapRegionRemSet* hrrs = r->rem_set();
3241     size_t occupied = hrrs->occupied();
3242     _occupied_sum += occupied;
3243 
3244     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3245                            HR_FORMAT_PARAMS(r));
3246     if (occupied == 0) {
3247       gclog_or_tty->print_cr("  RSet is empty");
3248     } else {
3249       hrrs->print();
3250     }
3251     gclog_or_tty->print_cr("----------");
3252     return false;
3253   }
3254 
3255   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3256     gclog_or_tty->cr();
3257     gclog_or_tty->print_cr("========================================");
3258     gclog_or_tty->print_cr("%s", msg);
3259     gclog_or_tty->cr();
3260   }
3261 
3262   ~PrintRSetsClosure() {
3263     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3264     gclog_or_tty->print_cr("========================================");
3265     gclog_or_tty->cr();
3266   }
3267 };
3268 
3269 void G1CollectedHeap::print_cset_rsets() {
3270   PrintRSetsClosure cl("Printing CSet RSets");
3271   collection_set_iterate(&cl);
3272 }
3273 
3274 void G1CollectedHeap::print_all_rsets() {
3275   PrintRSetsClosure cl("Printing All RSets");;
3276   heap_region_iterate(&cl);
3277 }
3278 #endif // PRODUCT
3279 
3280 G1CollectedHeap* G1CollectedHeap::heap() {
3281   CollectedHeap* heap = Universe::heap();
3282   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3283   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3284   return (G1CollectedHeap*)heap;
3285 }
3286 
3287 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3288   // always_do_update_barrier = false;
3289   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3290   // Fill TLAB's and such
3291   accumulate_statistics_all_tlabs();
3292   ensure_parsability(true);
3293 
3294   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3295       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3296     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3297   }
3298 }
3299 
3300 void G1CollectedHeap::gc_epilogue(bool full) {
3301 
3302   if (G1SummarizeRSetStats &&
3303       (G1SummarizeRSetStatsPeriod > 0) &&
3304       // we are at the end of the GC. Total collections has already been increased.
3305       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3306     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3307   }
3308 
3309   // FIXME: what is this about?
3310   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3311   // is set.
3312   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3313                         "derived pointer present"));
3314   // always_do_update_barrier = true;
3315 
3316   resize_all_tlabs();
3317   allocation_context_stats().update(full);
3318 
3319   // We have just completed a GC. Update the soft reference
3320   // policy with the new heap occupancy
3321   Universe::update_heap_info_at_gc();
3322 }
3323 
3324 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3325                                                uint gc_count_before,
3326                                                bool* succeeded,
3327                                                GCCause::Cause gc_cause) {
3328   assert_heap_not_locked_and_not_at_safepoint();
3329   g1_policy()->record_stop_world_start();
3330   VM_G1IncCollectionPause op(gc_count_before,
3331                              word_size,
3332                              false, /* should_initiate_conc_mark */
3333                              g1_policy()->max_pause_time_ms(),
3334                              gc_cause);
3335 
3336   op.set_allocation_context(AllocationContext::current());
3337   VMThread::execute(&op);
3338 
3339   HeapWord* result = op.result();
3340   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3341   assert(result == NULL || ret_succeeded,
3342          "the result should be NULL if the VM did not succeed");
3343   *succeeded = ret_succeeded;
3344 
3345   assert_heap_not_locked();
3346   return result;
3347 }
3348 
3349 void
3350 G1CollectedHeap::doConcurrentMark() {
3351   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3352   if (!_cmThread->in_progress()) {
3353     _cmThread->set_started();
3354     CGC_lock->notify();
3355   }
3356 }
3357 
3358 size_t G1CollectedHeap::pending_card_num() {
3359   size_t extra_cards = 0;
3360   JavaThread *curr = Threads::first();
3361   while (curr != NULL) {
3362     DirtyCardQueue& dcq = curr->dirty_card_queue();
3363     extra_cards += dcq.size();
3364     curr = curr->next();
3365   }
3366   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3367   size_t buffer_size = dcqs.buffer_size();
3368   size_t buffer_num = dcqs.completed_buffers_num();
3369 
3370   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3371   // in bytes - not the number of 'entries'. We need to convert
3372   // into a number of cards.
3373   return (buffer_size * buffer_num + extra_cards) / oopSize;
3374 }
3375 
3376 size_t G1CollectedHeap::cards_scanned() {
3377   return g1_rem_set()->cardsScanned();
3378 }
3379 
3380 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3381  private:
3382   size_t _total_humongous;
3383   size_t _candidate_humongous;
3384 
3385   DirtyCardQueue _dcq;
3386 
3387   // We don't nominate objects with many remembered set entries, on
3388   // the assumption that such objects are likely still live.
3389   bool is_remset_small(HeapRegion* region) const {
3390     HeapRegionRemSet* const rset = region->rem_set();
3391     return G1EagerReclaimHumongousObjectsWithStaleRefs
3392       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3393       : rset->is_empty();
3394   }
3395 
3396   bool is_typeArray_region(HeapRegion* region) const {
3397     return oop(region->bottom())->is_typeArray();
3398   }
3399 
3400   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3401     assert(region->is_starts_humongous(), "Must start a humongous object");
3402 
3403     // Candidate selection must satisfy the following constraints
3404     // while concurrent marking is in progress:
3405     //
3406     // * In order to maintain SATB invariants, an object must not be
3407     // reclaimed if it was allocated before the start of marking and
3408     // has not had its references scanned.  Such an object must have
3409     // its references (including type metadata) scanned to ensure no
3410     // live objects are missed by the marking process.  Objects
3411     // allocated after the start of concurrent marking don't need to
3412     // be scanned.
3413     //
3414     // * An object must not be reclaimed if it is on the concurrent
3415     // mark stack.  Objects allocated after the start of concurrent
3416     // marking are never pushed on the mark stack.
3417     //
3418     // Nominating only objects allocated after the start of concurrent
3419     // marking is sufficient to meet both constraints.  This may miss
3420     // some objects that satisfy the constraints, but the marking data
3421     // structures don't support efficiently performing the needed
3422     // additional tests or scrubbing of the mark stack.
3423     //
3424     // However, we presently only nominate is_typeArray() objects.
3425     // A humongous object containing references induces remembered
3426     // set entries on other regions.  In order to reclaim such an
3427     // object, those remembered sets would need to be cleaned up.
3428     //
3429     // We also treat is_typeArray() objects specially, allowing them
3430     // to be reclaimed even if allocated before the start of
3431     // concurrent mark.  For this we rely on mark stack insertion to
3432     // exclude is_typeArray() objects, preventing reclaiming an object
3433     // that is in the mark stack.  We also rely on the metadata for
3434     // such objects to be built-in and so ensured to be kept live.
3435     // Frequent allocation and drop of large binary blobs is an
3436     // important use case for eager reclaim, and this special handling
3437     // may reduce needed headroom.
3438 
3439     return is_typeArray_region(region) && is_remset_small(region);
3440   }
3441 
3442  public:
3443   RegisterHumongousWithInCSetFastTestClosure()
3444   : _total_humongous(0),
3445     _candidate_humongous(0),
3446     _dcq(&JavaThread::dirty_card_queue_set()) {
3447   }
3448 
3449   virtual bool doHeapRegion(HeapRegion* r) {
3450     if (!r->is_starts_humongous()) {
3451       return false;
3452     }
3453     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3454 
3455     bool is_candidate = humongous_region_is_candidate(g1h, r);
3456     uint rindex = r->hrm_index();
3457     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3458     if (is_candidate) {
3459       _candidate_humongous++;
3460       g1h->register_humongous_region_with_cset(rindex);
3461       // Is_candidate already filters out humongous object with large remembered sets.
3462       // If we have a humongous object with a few remembered sets, we simply flush these
3463       // remembered set entries into the DCQS. That will result in automatic
3464       // re-evaluation of their remembered set entries during the following evacuation
3465       // phase.
3466       if (!r->rem_set()->is_empty()) {
3467         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3468                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3469         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3470         HeapRegionRemSetIterator hrrs(r->rem_set());
3471         size_t card_index;
3472         while (hrrs.has_next(card_index)) {
3473           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3474           // The remembered set might contain references to already freed
3475           // regions. Filter out such entries to avoid failing card table
3476           // verification.
3477           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3478             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3479               *card_ptr = CardTableModRefBS::dirty_card_val();
3480               _dcq.enqueue(card_ptr);
3481             }
3482           }
3483         }
3484         r->rem_set()->clear_locked();
3485       }
3486       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3487     }
3488     _total_humongous++;
3489 
3490     return false;
3491   }
3492 
3493   size_t total_humongous() const { return _total_humongous; }
3494   size_t candidate_humongous() const { return _candidate_humongous; }
3495 
3496   void flush_rem_set_entries() { _dcq.flush(); }
3497 };
3498 
3499 void G1CollectedHeap::register_humongous_regions_with_cset() {
3500   if (!G1EagerReclaimHumongousObjects) {
3501     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3502     return;
3503   }
3504   double time = os::elapsed_counter();
3505 
3506   // Collect reclaim candidate information and register candidates with cset.
3507   RegisterHumongousWithInCSetFastTestClosure cl;
3508   heap_region_iterate(&cl);
3509 
3510   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3511   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3512                                                                   cl.total_humongous(),
3513                                                                   cl.candidate_humongous());
3514   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3515 
3516   // Finally flush all remembered set entries to re-check into the global DCQS.
3517   cl.flush_rem_set_entries();
3518 }
3519 
3520 void
3521 G1CollectedHeap::setup_surviving_young_words() {
3522   assert(_surviving_young_words == NULL, "pre-condition");
3523   uint array_length = g1_policy()->young_cset_region_length();
3524   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3525   if (_surviving_young_words == NULL) {
3526     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3527                           "Not enough space for young surv words summary.");
3528   }
3529   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3530 #ifdef ASSERT
3531   for (uint i = 0;  i < array_length; ++i) {
3532     assert( _surviving_young_words[i] == 0, "memset above" );
3533   }
3534 #endif // !ASSERT
3535 }
3536 
3537 void
3538 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3539   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3540   uint array_length = g1_policy()->young_cset_region_length();
3541   for (uint i = 0; i < array_length; ++i) {
3542     _surviving_young_words[i] += surv_young_words[i];
3543   }
3544 }
3545 
3546 void
3547 G1CollectedHeap::cleanup_surviving_young_words() {
3548   guarantee( _surviving_young_words != NULL, "pre-condition" );
3549   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3550   _surviving_young_words = NULL;
3551 }
3552 
3553 #ifdef ASSERT
3554 class VerifyCSetClosure: public HeapRegionClosure {
3555 public:
3556   bool doHeapRegion(HeapRegion* hr) {
3557     // Here we check that the CSet region's RSet is ready for parallel
3558     // iteration. The fields that we'll verify are only manipulated
3559     // when the region is part of a CSet and is collected. Afterwards,
3560     // we reset these fields when we clear the region's RSet (when the
3561     // region is freed) so they are ready when the region is
3562     // re-allocated. The only exception to this is if there's an
3563     // evacuation failure and instead of freeing the region we leave
3564     // it in the heap. In that case, we reset these fields during
3565     // evacuation failure handling.
3566     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3567 
3568     // Here's a good place to add any other checks we'd like to
3569     // perform on CSet regions.
3570     return false;
3571   }
3572 };
3573 #endif // ASSERT
3574 
3575 #if TASKQUEUE_STATS
3576 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3577   st->print_raw_cr("GC Task Stats");
3578   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3579   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3580 }
3581 
3582 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3583   print_taskqueue_stats_hdr(st);
3584 
3585   TaskQueueStats totals;
3586   const uint n = workers()->total_workers();
3587   for (uint i = 0; i < n; ++i) {
3588     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3589     totals += task_queue(i)->stats;
3590   }
3591   st->print_raw("tot "); totals.print(st); st->cr();
3592 
3593   DEBUG_ONLY(totals.verify());
3594 }
3595 
3596 void G1CollectedHeap::reset_taskqueue_stats() {
3597   const uint n = workers()->total_workers();
3598   for (uint i = 0; i < n; ++i) {
3599     task_queue(i)->stats.reset();
3600   }
3601 }
3602 #endif // TASKQUEUE_STATS
3603 
3604 void G1CollectedHeap::log_gc_header() {
3605   if (!G1Log::fine()) {
3606     return;
3607   }
3608 
3609   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3610 
3611   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3612     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3613     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3614 
3615   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3616 }
3617 
3618 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3619   if (!G1Log::fine()) {
3620     return;
3621   }
3622 
3623   if (G1Log::finer()) {
3624     if (evacuation_failed()) {
3625       gclog_or_tty->print(" (to-space exhausted)");
3626     }
3627     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3628     g1_policy()->phase_times()->note_gc_end();
3629     g1_policy()->phase_times()->print(pause_time_sec);
3630     g1_policy()->print_detailed_heap_transition();
3631   } else {
3632     if (evacuation_failed()) {
3633       gclog_or_tty->print("--");
3634     }
3635     g1_policy()->print_heap_transition();
3636     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3637   }
3638   gclog_or_tty->flush();
3639 }
3640 
3641 bool
3642 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3643   assert_at_safepoint(true /* should_be_vm_thread */);
3644   guarantee(!is_gc_active(), "collection is not reentrant");
3645 
3646   if (GC_locker::check_active_before_gc()) {
3647     return false;
3648   }
3649 
3650   _gc_timer_stw->register_gc_start();
3651 
3652   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3653 
3654   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3655   ResourceMark rm;
3656 
3657   G1Log::update_level();
3658   print_heap_before_gc();
3659   trace_heap_before_gc(_gc_tracer_stw);
3660 
3661   verify_region_sets_optional();
3662   verify_dirty_young_regions();
3663 
3664   // This call will decide whether this pause is an initial-mark
3665   // pause. If it is, during_initial_mark_pause() will return true
3666   // for the duration of this pause.
3667   g1_policy()->decide_on_conc_mark_initiation();
3668 
3669   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3670   assert(!g1_policy()->during_initial_mark_pause() ||
3671           g1_policy()->gcs_are_young(), "sanity");
3672 
3673   // We also do not allow mixed GCs during marking.
3674   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3675 
3676   // Record whether this pause is an initial mark. When the current
3677   // thread has completed its logging output and it's safe to signal
3678   // the CM thread, the flag's value in the policy has been reset.
3679   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3680 
3681   // Inner scope for scope based logging, timers, and stats collection
3682   {
3683     EvacuationInfo evacuation_info;
3684 
3685     if (g1_policy()->during_initial_mark_pause()) {
3686       // We are about to start a marking cycle, so we increment the
3687       // full collection counter.
3688       increment_old_marking_cycles_started();
3689       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3690     }
3691 
3692     _gc_tracer_stw->report_yc_type(yc_type());
3693 
3694     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3695 
3696     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3697                                                                   workers()->active_workers(),
3698                                                                   Threads::number_of_non_daemon_threads());
3699     assert(UseDynamicNumberOfGCThreads ||
3700            active_workers == workers()->total_workers(),
3701            "If not dynamic should be using all the  workers");
3702     workers()->set_active_workers(active_workers);
3703 
3704     double pause_start_sec = os::elapsedTime();
3705     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3706     log_gc_header();
3707 
3708     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3709     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3710 
3711     // If the secondary_free_list is not empty, append it to the
3712     // free_list. No need to wait for the cleanup operation to finish;
3713     // the region allocation code will check the secondary_free_list
3714     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3715     // set, skip this step so that the region allocation code has to
3716     // get entries from the secondary_free_list.
3717     if (!G1StressConcRegionFreeing) {
3718       append_secondary_free_list_if_not_empty_with_lock();
3719     }
3720 
3721     assert(check_young_list_well_formed(), "young list should be well formed");
3722 
3723     // Don't dynamically change the number of GC threads this early.  A value of
3724     // 0 is used to indicate serial work.  When parallel work is done,
3725     // it will be set.
3726 
3727     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3728       IsGCActiveMark x;
3729 
3730       gc_prologue(false);
3731       increment_total_collections(false /* full gc */);
3732       increment_gc_time_stamp();
3733 
3734       verify_before_gc();
3735 
3736       check_bitmaps("GC Start");
3737 
3738       COMPILER2_PRESENT(DerivedPointerTable::clear());
3739 
3740       // Please see comment in g1CollectedHeap.hpp and
3741       // G1CollectedHeap::ref_processing_init() to see how
3742       // reference processing currently works in G1.
3743 
3744       // Enable discovery in the STW reference processor
3745       ref_processor_stw()->enable_discovery();
3746 
3747       {
3748         // We want to temporarily turn off discovery by the
3749         // CM ref processor, if necessary, and turn it back on
3750         // on again later if we do. Using a scoped
3751         // NoRefDiscovery object will do this.
3752         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3753 
3754         // Forget the current alloc region (we might even choose it to be part
3755         // of the collection set!).
3756         _allocator->release_mutator_alloc_region();
3757 
3758         // We should call this after we retire the mutator alloc
3759         // region(s) so that all the ALLOC / RETIRE events are generated
3760         // before the start GC event.
3761         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3762 
3763         // This timing is only used by the ergonomics to handle our pause target.
3764         // It is unclear why this should not include the full pause. We will
3765         // investigate this in CR 7178365.
3766         //
3767         // Preserving the old comment here if that helps the investigation:
3768         //
3769         // The elapsed time induced by the start time below deliberately elides
3770         // the possible verification above.
3771         double sample_start_time_sec = os::elapsedTime();
3772 
3773 #if YOUNG_LIST_VERBOSE
3774         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3775         _young_list->print();
3776         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3777 #endif // YOUNG_LIST_VERBOSE
3778 
3779         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3780 
3781         double scan_wait_start = os::elapsedTime();
3782         // We have to wait until the CM threads finish scanning the
3783         // root regions as it's the only way to ensure that all the
3784         // objects on them have been correctly scanned before we start
3785         // moving them during the GC.
3786         bool waited = _cm->root_regions()->wait_until_scan_finished();
3787         double wait_time_ms = 0.0;
3788         if (waited) {
3789           double scan_wait_end = os::elapsedTime();
3790           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3791         }
3792         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3793 
3794 #if YOUNG_LIST_VERBOSE
3795         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3796         _young_list->print();
3797 #endif // YOUNG_LIST_VERBOSE
3798 
3799         if (g1_policy()->during_initial_mark_pause()) {
3800           concurrent_mark()->checkpointRootsInitialPre();
3801         }
3802 
3803 #if YOUNG_LIST_VERBOSE
3804         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3805         _young_list->print();
3806         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3807 #endif // YOUNG_LIST_VERBOSE
3808 
3809         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3810 
3811         register_humongous_regions_with_cset();
3812 
3813         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3814 
3815         _cm->note_start_of_gc();
3816         // We call this after finalize_cset() to
3817         // ensure that the CSet has been finalized.
3818         _cm->verify_no_cset_oops();
3819 
3820         if (_hr_printer.is_active()) {
3821           HeapRegion* hr = g1_policy()->collection_set();
3822           while (hr != NULL) {
3823             _hr_printer.cset(hr);
3824             hr = hr->next_in_collection_set();
3825           }
3826         }
3827 
3828 #ifdef ASSERT
3829         VerifyCSetClosure cl;
3830         collection_set_iterate(&cl);
3831 #endif // ASSERT
3832 
3833         setup_surviving_young_words();
3834 
3835         // Initialize the GC alloc regions.
3836         _allocator->init_gc_alloc_regions(evacuation_info);
3837 
3838         // Actually do the work...
3839         evacuate_collection_set(evacuation_info);
3840 
3841         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3842 
3843         eagerly_reclaim_humongous_regions();
3844 
3845         g1_policy()->clear_collection_set();
3846 
3847         cleanup_surviving_young_words();
3848 
3849         // Start a new incremental collection set for the next pause.
3850         g1_policy()->start_incremental_cset_building();
3851 
3852         clear_cset_fast_test();
3853 
3854         _young_list->reset_sampled_info();
3855 
3856         // Don't check the whole heap at this point as the
3857         // GC alloc regions from this pause have been tagged
3858         // as survivors and moved on to the survivor list.
3859         // Survivor regions will fail the !is_young() check.
3860         assert(check_young_list_empty(false /* check_heap */),
3861           "young list should be empty");
3862 
3863 #if YOUNG_LIST_VERBOSE
3864         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3865         _young_list->print();
3866 #endif // YOUNG_LIST_VERBOSE
3867 
3868         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3869                                              _young_list->first_survivor_region(),
3870                                              _young_list->last_survivor_region());
3871 
3872         _young_list->reset_auxilary_lists();
3873 
3874         if (evacuation_failed()) {
3875           _allocator->set_used(recalculate_used());
3876           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3877           for (uint i = 0; i < n_queues; i++) {
3878             if (_evacuation_failed_info_array[i].has_failed()) {
3879               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3880             }
3881           }
3882         } else {
3883           // The "used" of the the collection set have already been subtracted
3884           // when they were freed.  Add in the bytes evacuated.
3885           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3886         }
3887 
3888         if (g1_policy()->during_initial_mark_pause()) {
3889           // We have to do this before we notify the CM threads that
3890           // they can start working to make sure that all the
3891           // appropriate initialization is done on the CM object.
3892           concurrent_mark()->checkpointRootsInitialPost();
3893           set_marking_started();
3894           // Note that we don't actually trigger the CM thread at
3895           // this point. We do that later when we're sure that
3896           // the current thread has completed its logging output.
3897         }
3898 
3899         allocate_dummy_regions();
3900 
3901 #if YOUNG_LIST_VERBOSE
3902         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3903         _young_list->print();
3904         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3905 #endif // YOUNG_LIST_VERBOSE
3906 
3907         _allocator->init_mutator_alloc_region();
3908 
3909         {
3910           size_t expand_bytes = g1_policy()->expansion_amount();
3911           if (expand_bytes > 0) {
3912             size_t bytes_before = capacity();
3913             // No need for an ergo verbose message here,
3914             // expansion_amount() does this when it returns a value > 0.
3915             if (!expand(expand_bytes)) {
3916               // We failed to expand the heap. Cannot do anything about it.
3917             }
3918           }
3919         }
3920 
3921         // We redo the verification but now wrt to the new CSet which
3922         // has just got initialized after the previous CSet was freed.
3923         _cm->verify_no_cset_oops();
3924         _cm->note_end_of_gc();
3925 
3926         // This timing is only used by the ergonomics to handle our pause target.
3927         // It is unclear why this should not include the full pause. We will
3928         // investigate this in CR 7178365.
3929         double sample_end_time_sec = os::elapsedTime();
3930         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3931         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3932 
3933         MemoryService::track_memory_usage();
3934 
3935         // In prepare_for_verify() below we'll need to scan the deferred
3936         // update buffers to bring the RSets up-to-date if
3937         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3938         // the update buffers we'll probably need to scan cards on the
3939         // regions we just allocated to (i.e., the GC alloc
3940         // regions). However, during the last GC we called
3941         // set_saved_mark() on all the GC alloc regions, so card
3942         // scanning might skip the [saved_mark_word()...top()] area of
3943         // those regions (i.e., the area we allocated objects into
3944         // during the last GC). But it shouldn't. Given that
3945         // saved_mark_word() is conditional on whether the GC time stamp
3946         // on the region is current or not, by incrementing the GC time
3947         // stamp here we invalidate all the GC time stamps on all the
3948         // regions and saved_mark_word() will simply return top() for
3949         // all the regions. This is a nicer way of ensuring this rather
3950         // than iterating over the regions and fixing them. In fact, the
3951         // GC time stamp increment here also ensures that
3952         // saved_mark_word() will return top() between pauses, i.e.,
3953         // during concurrent refinement. So we don't need the
3954         // is_gc_active() check to decided which top to use when
3955         // scanning cards (see CR 7039627).
3956         increment_gc_time_stamp();
3957 
3958         verify_after_gc();
3959         check_bitmaps("GC End");
3960 
3961         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3962         ref_processor_stw()->verify_no_references_recorded();
3963 
3964         // CM reference discovery will be re-enabled if necessary.
3965       }
3966 
3967       // We should do this after we potentially expand the heap so
3968       // that all the COMMIT events are generated before the end GC
3969       // event, and after we retire the GC alloc regions so that all
3970       // RETIRE events are generated before the end GC event.
3971       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3972 
3973 #ifdef TRACESPINNING
3974       ParallelTaskTerminator::print_termination_counts();
3975 #endif
3976 
3977       gc_epilogue(false);
3978     }
3979 
3980     // Print the remainder of the GC log output.
3981     log_gc_footer(os::elapsedTime() - pause_start_sec);
3982 
3983     // It is not yet to safe to tell the concurrent mark to
3984     // start as we have some optional output below. We don't want the
3985     // output from the concurrent mark thread interfering with this
3986     // logging output either.
3987 
3988     _hrm.verify_optional();
3989     verify_region_sets_optional();
3990 
3991     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
3992     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3993 
3994     print_heap_after_gc();
3995     trace_heap_after_gc(_gc_tracer_stw);
3996 
3997     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3998     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3999     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4000     // before any GC notifications are raised.
4001     g1mm()->update_sizes();
4002 
4003     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4004     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4005     _gc_timer_stw->register_gc_end();
4006     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4007   }
4008   // It should now be safe to tell the concurrent mark thread to start
4009   // without its logging output interfering with the logging output
4010   // that came from the pause.
4011 
4012   if (should_start_conc_mark) {
4013     // CAUTION: after the doConcurrentMark() call below,
4014     // the concurrent marking thread(s) could be running
4015     // concurrently with us. Make sure that anything after
4016     // this point does not assume that we are the only GC thread
4017     // running. Note: of course, the actual marking work will
4018     // not start until the safepoint itself is released in
4019     // SuspendibleThreadSet::desynchronize().
4020     doConcurrentMark();
4021   }
4022 
4023   return true;
4024 }
4025 
4026 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4027   _drain_in_progress = false;
4028   set_evac_failure_closure(cl);
4029   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4030 }
4031 
4032 void G1CollectedHeap::finalize_for_evac_failure() {
4033   assert(_evac_failure_scan_stack != NULL &&
4034          _evac_failure_scan_stack->length() == 0,
4035          "Postcondition");
4036   assert(!_drain_in_progress, "Postcondition");
4037   delete _evac_failure_scan_stack;
4038   _evac_failure_scan_stack = NULL;
4039 }
4040 
4041 void G1CollectedHeap::remove_self_forwarding_pointers() {
4042   double remove_self_forwards_start = os::elapsedTime();
4043 
4044   set_par_threads();
4045   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4046   workers()->run_task(&rsfp_task);
4047   set_par_threads(0);
4048 
4049   // Now restore saved marks, if any.
4050   assert(_objs_with_preserved_marks.size() ==
4051             _preserved_marks_of_objs.size(), "Both or none.");
4052   while (!_objs_with_preserved_marks.is_empty()) {
4053     oop obj = _objs_with_preserved_marks.pop();
4054     markOop m = _preserved_marks_of_objs.pop();
4055     obj->set_mark(m);
4056   }
4057   _objs_with_preserved_marks.clear(true);
4058   _preserved_marks_of_objs.clear(true);
4059 
4060   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4061 }
4062 
4063 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4064   _evac_failure_scan_stack->push(obj);
4065 }
4066 
4067 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4068   assert(_evac_failure_scan_stack != NULL, "precondition");
4069 
4070   while (_evac_failure_scan_stack->length() > 0) {
4071      oop obj = _evac_failure_scan_stack->pop();
4072      _evac_failure_closure->set_region(heap_region_containing(obj));
4073      obj->oop_iterate_backwards(_evac_failure_closure);
4074   }
4075 }
4076 
4077 oop
4078 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4079                                                oop old) {
4080   assert(obj_in_cs(old),
4081          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4082                  p2i(old)));
4083   markOop m = old->mark();
4084   oop forward_ptr = old->forward_to_atomic(old);
4085   if (forward_ptr == NULL) {
4086     // Forward-to-self succeeded.
4087     assert(_par_scan_state != NULL, "par scan state");
4088     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4089     uint queue_num = _par_scan_state->queue_num();
4090 
4091     _evacuation_failed = true;
4092     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4093     if (_evac_failure_closure != cl) {
4094       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4095       assert(!_drain_in_progress,
4096              "Should only be true while someone holds the lock.");
4097       // Set the global evac-failure closure to the current thread's.
4098       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4099       set_evac_failure_closure(cl);
4100       // Now do the common part.
4101       handle_evacuation_failure_common(old, m);
4102       // Reset to NULL.
4103       set_evac_failure_closure(NULL);
4104     } else {
4105       // The lock is already held, and this is recursive.
4106       assert(_drain_in_progress, "This should only be the recursive case.");
4107       handle_evacuation_failure_common(old, m);
4108     }
4109     return old;
4110   } else {
4111     // Forward-to-self failed. Either someone else managed to allocate
4112     // space for this object (old != forward_ptr) or they beat us in
4113     // self-forwarding it (old == forward_ptr).
4114     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4115            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4116                    "should not be in the CSet",
4117                    p2i(old), p2i(forward_ptr)));
4118     return forward_ptr;
4119   }
4120 }
4121 
4122 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4123   preserve_mark_if_necessary(old, m);
4124 
4125   HeapRegion* r = heap_region_containing(old);
4126   if (!r->evacuation_failed()) {
4127     r->set_evacuation_failed(true);
4128     _hr_printer.evac_failure(r);
4129   }
4130 
4131   push_on_evac_failure_scan_stack(old);
4132 
4133   if (!_drain_in_progress) {
4134     // prevent recursion in copy_to_survivor_space()
4135     _drain_in_progress = true;
4136     drain_evac_failure_scan_stack();
4137     _drain_in_progress = false;
4138   }
4139 }
4140 
4141 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4142   assert(evacuation_failed(), "Oversaving!");
4143   // We want to call the "for_promotion_failure" version only in the
4144   // case of a promotion failure.
4145   if (m->must_be_preserved_for_promotion_failure(obj)) {
4146     _objs_with_preserved_marks.push(obj);
4147     _preserved_marks_of_objs.push(m);
4148   }
4149 }
4150 
4151 void G1ParCopyHelper::mark_object(oop obj) {
4152   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4153 
4154   // We know that the object is not moving so it's safe to read its size.
4155   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4156 }
4157 
4158 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4159   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4160   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4161   assert(from_obj != to_obj, "should not be self-forwarded");
4162 
4163   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4164   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4165 
4166   // The object might be in the process of being copied by another
4167   // worker so we cannot trust that its to-space image is
4168   // well-formed. So we have to read its size from its from-space
4169   // image which we know should not be changing.
4170   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4171 }
4172 
4173 template <class T>
4174 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4175   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4176     _scanned_klass->record_modified_oops();
4177   }
4178 }
4179 
4180 template <G1Barrier barrier, G1Mark do_mark_object>
4181 template <class T>
4182 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4183   T heap_oop = oopDesc::load_heap_oop(p);
4184 
4185   if (oopDesc::is_null(heap_oop)) {
4186     return;
4187   }
4188 
4189   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4190 
4191   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4192 
4193   const InCSetState state = _g1->in_cset_state(obj);
4194   if (state.is_in_cset()) {
4195     oop forwardee;
4196     markOop m = obj->mark();
4197     if (m->is_marked()) {
4198       forwardee = (oop) m->decode_pointer();
4199     } else {
4200       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4201     }
4202     assert(forwardee != NULL, "forwardee should not be NULL");
4203     oopDesc::encode_store_heap_oop(p, forwardee);
4204     if (do_mark_object != G1MarkNone && forwardee != obj) {
4205       // If the object is self-forwarded we don't need to explicitly
4206       // mark it, the evacuation failure protocol will do so.
4207       mark_forwarded_object(obj, forwardee);
4208     }
4209 
4210     if (barrier == G1BarrierKlass) {
4211       do_klass_barrier(p, forwardee);
4212     }
4213   } else {
4214     if (state.is_humongous()) {
4215       _g1->set_humongous_is_live(obj);
4216     }
4217     // The object is not in collection set. If we're a root scanning
4218     // closure during an initial mark pause then attempt to mark the object.
4219     if (do_mark_object == G1MarkFromRoot) {
4220       mark_object(obj);
4221     }
4222   }
4223 
4224   if (barrier == G1BarrierEvac) {
4225     _par_scan_state->update_rs(_from, p, _worker_id);
4226   }
4227 }
4228 
4229 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4230 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4231 
4232 class G1ParEvacuateFollowersClosure : public VoidClosure {
4233 protected:
4234   G1CollectedHeap*              _g1h;
4235   G1ParScanThreadState*         _par_scan_state;
4236   RefToScanQueueSet*            _queues;
4237   ParallelTaskTerminator*       _terminator;
4238 
4239   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4240   RefToScanQueueSet*      queues()         { return _queues; }
4241   ParallelTaskTerminator* terminator()     { return _terminator; }
4242 
4243 public:
4244   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4245                                 G1ParScanThreadState* par_scan_state,
4246                                 RefToScanQueueSet* queues,
4247                                 ParallelTaskTerminator* terminator)
4248     : _g1h(g1h), _par_scan_state(par_scan_state),
4249       _queues(queues), _terminator(terminator) {}
4250 
4251   void do_void();
4252 
4253 private:
4254   inline bool offer_termination();
4255 };
4256 
4257 bool G1ParEvacuateFollowersClosure::offer_termination() {
4258   G1ParScanThreadState* const pss = par_scan_state();
4259   pss->start_term_time();
4260   const bool res = terminator()->offer_termination();
4261   pss->end_term_time();
4262   return res;
4263 }
4264 
4265 void G1ParEvacuateFollowersClosure::do_void() {
4266   G1ParScanThreadState* const pss = par_scan_state();
4267   pss->trim_queue();
4268   do {
4269     pss->steal_and_trim_queue(queues());
4270   } while (!offer_termination());
4271 }
4272 
4273 class G1KlassScanClosure : public KlassClosure {
4274  G1ParCopyHelper* _closure;
4275  bool             _process_only_dirty;
4276  int              _count;
4277  public:
4278   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4279       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4280   void do_klass(Klass* klass) {
4281     // If the klass has not been dirtied we know that there's
4282     // no references into  the young gen and we can skip it.
4283    if (!_process_only_dirty || klass->has_modified_oops()) {
4284       // Clean the klass since we're going to scavenge all the metadata.
4285       klass->clear_modified_oops();
4286 
4287       // Tell the closure that this klass is the Klass to scavenge
4288       // and is the one to dirty if oops are left pointing into the young gen.
4289       _closure->set_scanned_klass(klass);
4290 
4291       klass->oops_do(_closure);
4292 
4293       _closure->set_scanned_klass(NULL);
4294     }
4295     _count++;
4296   }
4297 };
4298 
4299 class G1ParTask : public AbstractGangTask {
4300 protected:
4301   G1CollectedHeap*       _g1h;
4302   RefToScanQueueSet      *_queues;
4303   G1RootProcessor*       _root_processor;
4304   ParallelTaskTerminator _terminator;
4305   uint _n_workers;
4306 
4307   Mutex _stats_lock;
4308   Mutex* stats_lock() { return &_stats_lock; }
4309 
4310 public:
4311   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4312     : AbstractGangTask("G1 collection"),
4313       _g1h(g1h),
4314       _queues(task_queues),
4315       _root_processor(root_processor),
4316       _terminator(0, _queues),
4317       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4318   {}
4319 
4320   RefToScanQueueSet* queues() { return _queues; }
4321 
4322   RefToScanQueue *work_queue(int i) {
4323     return queues()->queue(i);
4324   }
4325 
4326   ParallelTaskTerminator* terminator() { return &_terminator; }
4327 
4328   virtual void set_for_termination(uint active_workers) {
4329     _root_processor->set_num_workers(active_workers);
4330     terminator()->reset_for_reuse(active_workers);
4331     _n_workers = active_workers;
4332   }
4333 
4334   // Helps out with CLD processing.
4335   //
4336   // During InitialMark we need to:
4337   // 1) Scavenge all CLDs for the young GC.
4338   // 2) Mark all objects directly reachable from strong CLDs.
4339   template <G1Mark do_mark_object>
4340   class G1CLDClosure : public CLDClosure {
4341     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4342     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4343     G1KlassScanClosure                                _klass_in_cld_closure;
4344     bool                                              _claim;
4345 
4346    public:
4347     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4348                  bool only_young, bool claim)
4349         : _oop_closure(oop_closure),
4350           _oop_in_klass_closure(oop_closure->g1(),
4351                                 oop_closure->pss(),
4352                                 oop_closure->rp()),
4353           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4354           _claim(claim) {
4355 
4356     }
4357 
4358     void do_cld(ClassLoaderData* cld) {
4359       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4360     }
4361   };
4362 
4363   void work(uint worker_id) {
4364     if (worker_id >= _n_workers) return;  // no work needed this round
4365 
4366     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4367 
4368     {
4369       ResourceMark rm;
4370       HandleMark   hm;
4371 
4372       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4373 
4374       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4375       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4376 
4377       pss.set_evac_failure_closure(&evac_failure_cl);
4378 
4379       bool only_young = _g1h->g1_policy()->gcs_are_young();
4380 
4381       // Non-IM young GC.
4382       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4383       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4384                                                                                only_young, // Only process dirty klasses.
4385                                                                                false);     // No need to claim CLDs.
4386       // IM young GC.
4387       //    Strong roots closures.
4388       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4389       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4390                                                                                false, // Process all klasses.
4391                                                                                true); // Need to claim CLDs.
4392       //    Weak roots closures.
4393       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4394       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4395                                                                                     false, // Process all klasses.
4396                                                                                     true); // Need to claim CLDs.
4397 
4398       OopClosure* strong_root_cl;
4399       OopClosure* weak_root_cl;
4400       CLDClosure* strong_cld_cl;
4401       CLDClosure* weak_cld_cl;
4402 
4403       bool trace_metadata = false;
4404 
4405       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4406         // We also need to mark copied objects.
4407         strong_root_cl = &scan_mark_root_cl;
4408         strong_cld_cl  = &scan_mark_cld_cl;
4409         if (ClassUnloadingWithConcurrentMark) {
4410           weak_root_cl = &scan_mark_weak_root_cl;
4411           weak_cld_cl  = &scan_mark_weak_cld_cl;
4412           trace_metadata = true;
4413         } else {
4414           weak_root_cl = &scan_mark_root_cl;
4415           weak_cld_cl  = &scan_mark_cld_cl;
4416         }
4417       } else {
4418         strong_root_cl = &scan_only_root_cl;
4419         weak_root_cl   = &scan_only_root_cl;
4420         strong_cld_cl  = &scan_only_cld_cl;
4421         weak_cld_cl    = &scan_only_cld_cl;
4422       }
4423 
4424       pss.start_strong_roots();
4425 
4426       _root_processor->evacuate_roots(strong_root_cl,
4427                                       weak_root_cl,
4428                                       strong_cld_cl,
4429                                       weak_cld_cl,
4430                                       trace_metadata,
4431                                       worker_id);
4432 
4433       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4434       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4435                                             weak_root_cl,
4436                                             worker_id);
4437       pss.end_strong_roots();
4438 
4439       {
4440         double start = os::elapsedTime();
4441         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4442         evac.do_void();
4443         double elapsed_sec = os::elapsedTime() - start;
4444         double term_sec = pss.term_time();
4445         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4446         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4447         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4448       }
4449       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4450       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4451 
4452       if (PrintTerminationStats) {
4453         MutexLocker x(stats_lock());
4454         pss.print_termination_stats(worker_id);
4455       }
4456 
4457       assert(pss.queue_is_empty(), "should be empty");
4458 
4459       // Close the inner scope so that the ResourceMark and HandleMark
4460       // destructors are executed here and are included as part of the
4461       // "GC Worker Time".
4462     }
4463     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4464   }
4465 };
4466 
4467 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4468 private:
4469   BoolObjectClosure* _is_alive;
4470   int _initial_string_table_size;
4471   int _initial_symbol_table_size;
4472 
4473   bool  _process_strings;
4474   int _strings_processed;
4475   int _strings_removed;
4476 
4477   bool  _process_symbols;
4478   int _symbols_processed;
4479   int _symbols_removed;
4480 
4481 public:
4482   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4483     AbstractGangTask("String/Symbol Unlinking"),
4484     _is_alive(is_alive),
4485     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4486     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4487 
4488     _initial_string_table_size = StringTable::the_table()->table_size();
4489     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4490     if (process_strings) {
4491       StringTable::clear_parallel_claimed_index();
4492     }
4493     if (process_symbols) {
4494       SymbolTable::clear_parallel_claimed_index();
4495     }
4496   }
4497 
4498   ~G1StringSymbolTableUnlinkTask() {
4499     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4500               err_msg("claim value %d after unlink less than initial string table size %d",
4501                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4502     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4503               err_msg("claim value %d after unlink less than initial symbol table size %d",
4504                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4505 
4506     if (G1TraceStringSymbolTableScrubbing) {
4507       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4508                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4509                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4510                              strings_processed(), strings_removed(),
4511                              symbols_processed(), symbols_removed());
4512     }
4513   }
4514 
4515   void work(uint worker_id) {
4516     int strings_processed = 0;
4517     int strings_removed = 0;
4518     int symbols_processed = 0;
4519     int symbols_removed = 0;
4520     if (_process_strings) {
4521       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4522       Atomic::add(strings_processed, &_strings_processed);
4523       Atomic::add(strings_removed, &_strings_removed);
4524     }
4525     if (_process_symbols) {
4526       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4527       Atomic::add(symbols_processed, &_symbols_processed);
4528       Atomic::add(symbols_removed, &_symbols_removed);
4529     }
4530   }
4531 
4532   size_t strings_processed() const { return (size_t)_strings_processed; }
4533   size_t strings_removed()   const { return (size_t)_strings_removed; }
4534 
4535   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4536   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4537 };
4538 
4539 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4540 private:
4541   static Monitor* _lock;
4542 
4543   BoolObjectClosure* const _is_alive;
4544   const bool               _unloading_occurred;
4545   const uint               _num_workers;
4546 
4547   // Variables used to claim nmethods.
4548   nmethod* _first_nmethod;
4549   volatile nmethod* _claimed_nmethod;
4550 
4551   // The list of nmethods that need to be processed by the second pass.
4552   volatile nmethod* _postponed_list;
4553   volatile uint     _num_entered_barrier;
4554 
4555  public:
4556   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4557       _is_alive(is_alive),
4558       _unloading_occurred(unloading_occurred),
4559       _num_workers(num_workers),
4560       _first_nmethod(NULL),
4561       _claimed_nmethod(NULL),
4562       _postponed_list(NULL),
4563       _num_entered_barrier(0)
4564   {
4565     nmethod::increase_unloading_clock();
4566     // Get first alive nmethod
4567     NMethodIterator iter = NMethodIterator();
4568     if(iter.next_alive()) {
4569       _first_nmethod = iter.method();
4570     }
4571     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4572   }
4573 
4574   ~G1CodeCacheUnloadingTask() {
4575     CodeCache::verify_clean_inline_caches();
4576 
4577     CodeCache::set_needs_cache_clean(false);
4578     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4579 
4580     CodeCache::verify_icholder_relocations();
4581   }
4582 
4583  private:
4584   void add_to_postponed_list(nmethod* nm) {
4585       nmethod* old;
4586       do {
4587         old = (nmethod*)_postponed_list;
4588         nm->set_unloading_next(old);
4589       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4590   }
4591 
4592   void clean_nmethod(nmethod* nm) {
4593     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4594 
4595     if (postponed) {
4596       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4597       add_to_postponed_list(nm);
4598     }
4599 
4600     // Mark that this thread has been cleaned/unloaded.
4601     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4602     nm->set_unloading_clock(nmethod::global_unloading_clock());
4603   }
4604 
4605   void clean_nmethod_postponed(nmethod* nm) {
4606     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4607   }
4608 
4609   static const int MaxClaimNmethods = 16;
4610 
4611   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4612     nmethod* first;
4613     NMethodIterator last;
4614 
4615     do {
4616       *num_claimed_nmethods = 0;
4617 
4618       first = (nmethod*)_claimed_nmethod;
4619       last = NMethodIterator(first);
4620 
4621       if (first != NULL) {
4622 
4623         for (int i = 0; i < MaxClaimNmethods; i++) {
4624           if (!last.next_alive()) {
4625             break;
4626           }
4627           claimed_nmethods[i] = last.method();
4628           (*num_claimed_nmethods)++;
4629         }
4630       }
4631 
4632     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4633   }
4634 
4635   nmethod* claim_postponed_nmethod() {
4636     nmethod* claim;
4637     nmethod* next;
4638 
4639     do {
4640       claim = (nmethod*)_postponed_list;
4641       if (claim == NULL) {
4642         return NULL;
4643       }
4644 
4645       next = claim->unloading_next();
4646 
4647     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4648 
4649     return claim;
4650   }
4651 
4652  public:
4653   // Mark that we're done with the first pass of nmethod cleaning.
4654   void barrier_mark(uint worker_id) {
4655     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4656     _num_entered_barrier++;
4657     if (_num_entered_barrier == _num_workers) {
4658       ml.notify_all();
4659     }
4660   }
4661 
4662   // See if we have to wait for the other workers to
4663   // finish their first-pass nmethod cleaning work.
4664   void barrier_wait(uint worker_id) {
4665     if (_num_entered_barrier < _num_workers) {
4666       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4667       while (_num_entered_barrier < _num_workers) {
4668           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4669       }
4670     }
4671   }
4672 
4673   // Cleaning and unloading of nmethods. Some work has to be postponed
4674   // to the second pass, when we know which nmethods survive.
4675   void work_first_pass(uint worker_id) {
4676     // The first nmethods is claimed by the first worker.
4677     if (worker_id == 0 && _first_nmethod != NULL) {
4678       clean_nmethod(_first_nmethod);
4679       _first_nmethod = NULL;
4680     }
4681 
4682     int num_claimed_nmethods;
4683     nmethod* claimed_nmethods[MaxClaimNmethods];
4684 
4685     while (true) {
4686       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4687 
4688       if (num_claimed_nmethods == 0) {
4689         break;
4690       }
4691 
4692       for (int i = 0; i < num_claimed_nmethods; i++) {
4693         clean_nmethod(claimed_nmethods[i]);
4694       }
4695     }
4696   }
4697 
4698   void work_second_pass(uint worker_id) {
4699     nmethod* nm;
4700     // Take care of postponed nmethods.
4701     while ((nm = claim_postponed_nmethod()) != NULL) {
4702       clean_nmethod_postponed(nm);
4703     }
4704   }
4705 };
4706 
4707 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4708 
4709 class G1KlassCleaningTask : public StackObj {
4710   BoolObjectClosure*                      _is_alive;
4711   volatile jint                           _clean_klass_tree_claimed;
4712   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4713 
4714  public:
4715   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4716       _is_alive(is_alive),
4717       _clean_klass_tree_claimed(0),
4718       _klass_iterator() {
4719   }
4720 
4721  private:
4722   bool claim_clean_klass_tree_task() {
4723     if (_clean_klass_tree_claimed) {
4724       return false;
4725     }
4726 
4727     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4728   }
4729 
4730   InstanceKlass* claim_next_klass() {
4731     Klass* klass;
4732     do {
4733       klass =_klass_iterator.next_klass();
4734     } while (klass != NULL && !klass->oop_is_instance());
4735 
4736     return (InstanceKlass*)klass;
4737   }
4738 
4739 public:
4740 
4741   void clean_klass(InstanceKlass* ik) {
4742     ik->clean_implementors_list(_is_alive);
4743     ik->clean_method_data(_is_alive);
4744 
4745     // G1 specific cleanup work that has
4746     // been moved here to be done in parallel.
4747     ik->clean_dependent_nmethods();
4748   }
4749 
4750   void work() {
4751     ResourceMark rm;
4752 
4753     // One worker will clean the subklass/sibling klass tree.
4754     if (claim_clean_klass_tree_task()) {
4755       Klass::clean_subklass_tree(_is_alive);
4756     }
4757 
4758     // All workers will help cleaning the classes,
4759     InstanceKlass* klass;
4760     while ((klass = claim_next_klass()) != NULL) {
4761       clean_klass(klass);
4762     }
4763   }
4764 };
4765 
4766 // To minimize the remark pause times, the tasks below are done in parallel.
4767 class G1ParallelCleaningTask : public AbstractGangTask {
4768 private:
4769   G1StringSymbolTableUnlinkTask _string_symbol_task;
4770   G1CodeCacheUnloadingTask      _code_cache_task;
4771   G1KlassCleaningTask           _klass_cleaning_task;
4772 
4773 public:
4774   // The constructor is run in the VMThread.
4775   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4776       AbstractGangTask("Parallel Cleaning"),
4777       _string_symbol_task(is_alive, process_strings, process_symbols),
4778       _code_cache_task(num_workers, is_alive, unloading_occurred),
4779       _klass_cleaning_task(is_alive) {
4780   }
4781 
4782   // The parallel work done by all worker threads.
4783   void work(uint worker_id) {
4784     // Do first pass of code cache cleaning.
4785     _code_cache_task.work_first_pass(worker_id);
4786 
4787     // Let the threads mark that the first pass is done.
4788     _code_cache_task.barrier_mark(worker_id);
4789 
4790     // Clean the Strings and Symbols.
4791     _string_symbol_task.work(worker_id);
4792 
4793     // Wait for all workers to finish the first code cache cleaning pass.
4794     _code_cache_task.barrier_wait(worker_id);
4795 
4796     // Do the second code cache cleaning work, which realize on
4797     // the liveness information gathered during the first pass.
4798     _code_cache_task.work_second_pass(worker_id);
4799 
4800     // Clean all klasses that were not unloaded.
4801     _klass_cleaning_task.work();
4802   }
4803 };
4804 
4805 
4806 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4807                                         bool process_strings,
4808                                         bool process_symbols,
4809                                         bool class_unloading_occurred) {
4810   uint n_workers = workers()->active_workers();
4811 
4812   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4813                                         n_workers, class_unloading_occurred);
4814   set_par_threads(n_workers);
4815   workers()->run_task(&g1_unlink_task);
4816   set_par_threads(0);
4817 }
4818 
4819 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4820                                                      bool process_strings, bool process_symbols) {
4821   {
4822     uint n_workers = workers()->active_workers();
4823     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4824     set_par_threads(n_workers);
4825     workers()->run_task(&g1_unlink_task);
4826     set_par_threads(0);
4827   }
4828 
4829   if (G1StringDedup::is_enabled()) {
4830     G1StringDedup::unlink(is_alive);
4831   }
4832 }
4833 
4834 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4835  private:
4836   DirtyCardQueueSet* _queue;
4837  public:
4838   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4839 
4840   virtual void work(uint worker_id) {
4841     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4842     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4843 
4844     RedirtyLoggedCardTableEntryClosure cl;
4845     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4846 
4847     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4848   }
4849 };
4850 
4851 void G1CollectedHeap::redirty_logged_cards() {
4852   double redirty_logged_cards_start = os::elapsedTime();
4853 
4854   uint n_workers = workers()->active_workers();
4855 
4856   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4857   dirty_card_queue_set().reset_for_par_iteration();
4858   set_par_threads(n_workers);
4859   workers()->run_task(&redirty_task);
4860   set_par_threads(0);
4861 
4862   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4863   dcq.merge_bufferlists(&dirty_card_queue_set());
4864   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4865 
4866   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4867 }
4868 
4869 // Weak Reference Processing support
4870 
4871 // An always "is_alive" closure that is used to preserve referents.
4872 // If the object is non-null then it's alive.  Used in the preservation
4873 // of referent objects that are pointed to by reference objects
4874 // discovered by the CM ref processor.
4875 class G1AlwaysAliveClosure: public BoolObjectClosure {
4876   G1CollectedHeap* _g1;
4877 public:
4878   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4879   bool do_object_b(oop p) {
4880     if (p != NULL) {
4881       return true;
4882     }
4883     return false;
4884   }
4885 };
4886 
4887 bool G1STWIsAliveClosure::do_object_b(oop p) {
4888   // An object is reachable if it is outside the collection set,
4889   // or is inside and copied.
4890   return !_g1->obj_in_cs(p) || p->is_forwarded();
4891 }
4892 
4893 // Non Copying Keep Alive closure
4894 class G1KeepAliveClosure: public OopClosure {
4895   G1CollectedHeap* _g1;
4896 public:
4897   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4898   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4899   void do_oop(oop* p) {
4900     oop obj = *p;
4901     assert(obj != NULL, "the caller should have filtered out NULL values");
4902 
4903     const InCSetState cset_state = _g1->in_cset_state(obj);
4904     if (!cset_state.is_in_cset_or_humongous()) {
4905       return;
4906     }
4907     if (cset_state.is_in_cset()) {
4908       assert( obj->is_forwarded(), "invariant" );
4909       *p = obj->forwardee();
4910     } else {
4911       assert(!obj->is_forwarded(), "invariant" );
4912       assert(cset_state.is_humongous(),
4913              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4914       _g1->set_humongous_is_live(obj);
4915     }
4916   }
4917 };
4918 
4919 // Copying Keep Alive closure - can be called from both
4920 // serial and parallel code as long as different worker
4921 // threads utilize different G1ParScanThreadState instances
4922 // and different queues.
4923 
4924 class G1CopyingKeepAliveClosure: public OopClosure {
4925   G1CollectedHeap*         _g1h;
4926   OopClosure*              _copy_non_heap_obj_cl;
4927   G1ParScanThreadState*    _par_scan_state;
4928 
4929 public:
4930   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4931                             OopClosure* non_heap_obj_cl,
4932                             G1ParScanThreadState* pss):
4933     _g1h(g1h),
4934     _copy_non_heap_obj_cl(non_heap_obj_cl),
4935     _par_scan_state(pss)
4936   {}
4937 
4938   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4939   virtual void do_oop(      oop* p) { do_oop_work(p); }
4940 
4941   template <class T> void do_oop_work(T* p) {
4942     oop obj = oopDesc::load_decode_heap_oop(p);
4943 
4944     if (_g1h->is_in_cset_or_humongous(obj)) {
4945       // If the referent object has been forwarded (either copied
4946       // to a new location or to itself in the event of an
4947       // evacuation failure) then we need to update the reference
4948       // field and, if both reference and referent are in the G1
4949       // heap, update the RSet for the referent.
4950       //
4951       // If the referent has not been forwarded then we have to keep
4952       // it alive by policy. Therefore we have copy the referent.
4953       //
4954       // If the reference field is in the G1 heap then we can push
4955       // on the PSS queue. When the queue is drained (after each
4956       // phase of reference processing) the object and it's followers
4957       // will be copied, the reference field set to point to the
4958       // new location, and the RSet updated. Otherwise we need to
4959       // use the the non-heap or metadata closures directly to copy
4960       // the referent object and update the pointer, while avoiding
4961       // updating the RSet.
4962 
4963       if (_g1h->is_in_g1_reserved(p)) {
4964         _par_scan_state->push_on_queue(p);
4965       } else {
4966         assert(!Metaspace::contains((const void*)p),
4967                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
4968         _copy_non_heap_obj_cl->do_oop(p);
4969       }
4970     }
4971   }
4972 };
4973 
4974 // Serial drain queue closure. Called as the 'complete_gc'
4975 // closure for each discovered list in some of the
4976 // reference processing phases.
4977 
4978 class G1STWDrainQueueClosure: public VoidClosure {
4979 protected:
4980   G1CollectedHeap* _g1h;
4981   G1ParScanThreadState* _par_scan_state;
4982 
4983   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4984 
4985 public:
4986   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4987     _g1h(g1h),
4988     _par_scan_state(pss)
4989   { }
4990 
4991   void do_void() {
4992     G1ParScanThreadState* const pss = par_scan_state();
4993     pss->trim_queue();
4994   }
4995 };
4996 
4997 // Parallel Reference Processing closures
4998 
4999 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5000 // processing during G1 evacuation pauses.
5001 
5002 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5003 private:
5004   G1CollectedHeap*   _g1h;
5005   RefToScanQueueSet* _queues;
5006   FlexibleWorkGang*  _workers;
5007   uint               _active_workers;
5008 
5009 public:
5010   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5011                            FlexibleWorkGang* workers,
5012                            RefToScanQueueSet *task_queues,
5013                            uint n_workers) :
5014     _g1h(g1h),
5015     _queues(task_queues),
5016     _workers(workers),
5017     _active_workers(n_workers)
5018   {
5019     assert(n_workers > 0, "shouldn't call this otherwise");
5020   }
5021 
5022   // Executes the given task using concurrent marking worker threads.
5023   virtual void execute(ProcessTask& task);
5024   virtual void execute(EnqueueTask& task);
5025 };
5026 
5027 // Gang task for possibly parallel reference processing
5028 
5029 class G1STWRefProcTaskProxy: public AbstractGangTask {
5030   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5031   ProcessTask&     _proc_task;
5032   G1CollectedHeap* _g1h;
5033   RefToScanQueueSet *_task_queues;
5034   ParallelTaskTerminator* _terminator;
5035 
5036 public:
5037   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5038                      G1CollectedHeap* g1h,
5039                      RefToScanQueueSet *task_queues,
5040                      ParallelTaskTerminator* terminator) :
5041     AbstractGangTask("Process reference objects in parallel"),
5042     _proc_task(proc_task),
5043     _g1h(g1h),
5044     _task_queues(task_queues),
5045     _terminator(terminator)
5046   {}
5047 
5048   virtual void work(uint worker_id) {
5049     // The reference processing task executed by a single worker.
5050     ResourceMark rm;
5051     HandleMark   hm;
5052 
5053     G1STWIsAliveClosure is_alive(_g1h);
5054 
5055     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5056     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5057 
5058     pss.set_evac_failure_closure(&evac_failure_cl);
5059 
5060     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5061 
5062     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5063 
5064     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5065 
5066     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5067       // We also need to mark copied objects.
5068       copy_non_heap_cl = &copy_mark_non_heap_cl;
5069     }
5070 
5071     // Keep alive closure.
5072     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5073 
5074     // Complete GC closure
5075     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5076 
5077     // Call the reference processing task's work routine.
5078     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5079 
5080     // Note we cannot assert that the refs array is empty here as not all
5081     // of the processing tasks (specifically phase2 - pp2_work) execute
5082     // the complete_gc closure (which ordinarily would drain the queue) so
5083     // the queue may not be empty.
5084   }
5085 };
5086 
5087 // Driver routine for parallel reference processing.
5088 // Creates an instance of the ref processing gang
5089 // task and has the worker threads execute it.
5090 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5091   assert(_workers != NULL, "Need parallel worker threads.");
5092 
5093   ParallelTaskTerminator terminator(_active_workers, _queues);
5094   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5095 
5096   _g1h->set_par_threads(_active_workers);
5097   _workers->run_task(&proc_task_proxy);
5098   _g1h->set_par_threads(0);
5099 }
5100 
5101 // Gang task for parallel reference enqueueing.
5102 
5103 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5104   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5105   EnqueueTask& _enq_task;
5106 
5107 public:
5108   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5109     AbstractGangTask("Enqueue reference objects in parallel"),
5110     _enq_task(enq_task)
5111   { }
5112 
5113   virtual void work(uint worker_id) {
5114     _enq_task.work(worker_id);
5115   }
5116 };
5117 
5118 // Driver routine for parallel reference enqueueing.
5119 // Creates an instance of the ref enqueueing gang
5120 // task and has the worker threads execute it.
5121 
5122 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5123   assert(_workers != NULL, "Need parallel worker threads.");
5124 
5125   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5126 
5127   _g1h->set_par_threads(_active_workers);
5128   _workers->run_task(&enq_task_proxy);
5129   _g1h->set_par_threads(0);
5130 }
5131 
5132 // End of weak reference support closures
5133 
5134 // Abstract task used to preserve (i.e. copy) any referent objects
5135 // that are in the collection set and are pointed to by reference
5136 // objects discovered by the CM ref processor.
5137 
5138 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5139 protected:
5140   G1CollectedHeap* _g1h;
5141   RefToScanQueueSet      *_queues;
5142   ParallelTaskTerminator _terminator;
5143   uint _n_workers;
5144 
5145 public:
5146   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5147     AbstractGangTask("ParPreserveCMReferents"),
5148     _g1h(g1h),
5149     _queues(task_queues),
5150     _terminator(workers, _queues),
5151     _n_workers(workers)
5152   { }
5153 
5154   void work(uint worker_id) {
5155     ResourceMark rm;
5156     HandleMark   hm;
5157 
5158     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5159     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5160 
5161     pss.set_evac_failure_closure(&evac_failure_cl);
5162 
5163     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5164 
5165     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5166 
5167     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5168 
5169     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5170 
5171     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5172       // We also need to mark copied objects.
5173       copy_non_heap_cl = &copy_mark_non_heap_cl;
5174     }
5175 
5176     // Is alive closure
5177     G1AlwaysAliveClosure always_alive(_g1h);
5178 
5179     // Copying keep alive closure. Applied to referent objects that need
5180     // to be copied.
5181     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5182 
5183     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5184 
5185     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5186     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5187 
5188     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5189     // So this must be true - but assert just in case someone decides to
5190     // change the worker ids.
5191     assert(worker_id < limit, "sanity");
5192     assert(!rp->discovery_is_atomic(), "check this code");
5193 
5194     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5195     for (uint idx = worker_id; idx < limit; idx += stride) {
5196       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5197 
5198       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5199       while (iter.has_next()) {
5200         // Since discovery is not atomic for the CM ref processor, we
5201         // can see some null referent objects.
5202         iter.load_ptrs(DEBUG_ONLY(true));
5203         oop ref = iter.obj();
5204 
5205         // This will filter nulls.
5206         if (iter.is_referent_alive()) {
5207           iter.make_referent_alive();
5208         }
5209         iter.move_to_next();
5210       }
5211     }
5212 
5213     // Drain the queue - which may cause stealing
5214     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5215     drain_queue.do_void();
5216     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5217     assert(pss.queue_is_empty(), "should be");
5218   }
5219 };
5220 
5221 // Weak Reference processing during an evacuation pause (part 1).
5222 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5223   double ref_proc_start = os::elapsedTime();
5224 
5225   ReferenceProcessor* rp = _ref_processor_stw;
5226   assert(rp->discovery_enabled(), "should have been enabled");
5227 
5228   // Any reference objects, in the collection set, that were 'discovered'
5229   // by the CM ref processor should have already been copied (either by
5230   // applying the external root copy closure to the discovered lists, or
5231   // by following an RSet entry).
5232   //
5233   // But some of the referents, that are in the collection set, that these
5234   // reference objects point to may not have been copied: the STW ref
5235   // processor would have seen that the reference object had already
5236   // been 'discovered' and would have skipped discovering the reference,
5237   // but would not have treated the reference object as a regular oop.
5238   // As a result the copy closure would not have been applied to the
5239   // referent object.
5240   //
5241   // We need to explicitly copy these referent objects - the references
5242   // will be processed at the end of remarking.
5243   //
5244   // We also need to do this copying before we process the reference
5245   // objects discovered by the STW ref processor in case one of these
5246   // referents points to another object which is also referenced by an
5247   // object discovered by the STW ref processor.
5248 
5249   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5250 
5251   set_par_threads(no_of_gc_workers);
5252   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5253                                                  no_of_gc_workers,
5254                                                  _task_queues);
5255 
5256   workers()->run_task(&keep_cm_referents);
5257 
5258   set_par_threads(0);
5259 
5260   // Closure to test whether a referent is alive.
5261   G1STWIsAliveClosure is_alive(this);
5262 
5263   // Even when parallel reference processing is enabled, the processing
5264   // of JNI refs is serial and performed serially by the current thread
5265   // rather than by a worker. The following PSS will be used for processing
5266   // JNI refs.
5267 
5268   // Use only a single queue for this PSS.
5269   G1ParScanThreadState            pss(this, 0, NULL);
5270 
5271   // We do not embed a reference processor in the copying/scanning
5272   // closures while we're actually processing the discovered
5273   // reference objects.
5274   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5275 
5276   pss.set_evac_failure_closure(&evac_failure_cl);
5277 
5278   assert(pss.queue_is_empty(), "pre-condition");
5279 
5280   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5281 
5282   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5283 
5284   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5285 
5286   if (g1_policy()->during_initial_mark_pause()) {
5287     // We also need to mark copied objects.
5288     copy_non_heap_cl = &copy_mark_non_heap_cl;
5289   }
5290 
5291   // Keep alive closure.
5292   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5293 
5294   // Serial Complete GC closure
5295   G1STWDrainQueueClosure drain_queue(this, &pss);
5296 
5297   // Setup the soft refs policy...
5298   rp->setup_policy(false);
5299 
5300   ReferenceProcessorStats stats;
5301   if (!rp->processing_is_mt()) {
5302     // Serial reference processing...
5303     stats = rp->process_discovered_references(&is_alive,
5304                                               &keep_alive,
5305                                               &drain_queue,
5306                                               NULL,
5307                                               _gc_timer_stw,
5308                                               _gc_tracer_stw->gc_id());
5309   } else {
5310     // Parallel reference processing
5311     assert(rp->num_q() == no_of_gc_workers, "sanity");
5312     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5313 
5314     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5315     stats = rp->process_discovered_references(&is_alive,
5316                                               &keep_alive,
5317                                               &drain_queue,
5318                                               &par_task_executor,
5319                                               _gc_timer_stw,
5320                                               _gc_tracer_stw->gc_id());
5321   }
5322 
5323   _gc_tracer_stw->report_gc_reference_stats(stats);
5324 
5325   // We have completed copying any necessary live referent objects.
5326   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5327 
5328   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5329   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5330 }
5331 
5332 // Weak Reference processing during an evacuation pause (part 2).
5333 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5334   double ref_enq_start = os::elapsedTime();
5335 
5336   ReferenceProcessor* rp = _ref_processor_stw;
5337   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5338 
5339   // Now enqueue any remaining on the discovered lists on to
5340   // the pending list.
5341   if (!rp->processing_is_mt()) {
5342     // Serial reference processing...
5343     rp->enqueue_discovered_references();
5344   } else {
5345     // Parallel reference enqueueing
5346 
5347     assert(no_of_gc_workers == workers()->active_workers(),
5348            "Need to reset active workers");
5349     assert(rp->num_q() == no_of_gc_workers, "sanity");
5350     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5351 
5352     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5353     rp->enqueue_discovered_references(&par_task_executor);
5354   }
5355 
5356   rp->verify_no_references_recorded();
5357   assert(!rp->discovery_enabled(), "should have been disabled");
5358 
5359   // FIXME
5360   // CM's reference processing also cleans up the string and symbol tables.
5361   // Should we do that here also? We could, but it is a serial operation
5362   // and could significantly increase the pause time.
5363 
5364   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5365   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5366 }
5367 
5368 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5369   _expand_heap_after_alloc_failure = true;
5370   _evacuation_failed = false;
5371 
5372   // Should G1EvacuationFailureALot be in effect for this GC?
5373   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5374 
5375   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5376 
5377   // Disable the hot card cache.
5378   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5379   hot_card_cache->reset_hot_cache_claimed_index();
5380   hot_card_cache->set_use_cache(false);
5381 
5382   const uint n_workers = workers()->active_workers();
5383   assert(UseDynamicNumberOfGCThreads ||
5384          n_workers == workers()->total_workers(),
5385          "If not dynamic should be using all the  workers");
5386   set_par_threads(n_workers);
5387 
5388 
5389   init_for_evac_failure(NULL);
5390 
5391   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5392   double start_par_time_sec = os::elapsedTime();
5393   double end_par_time_sec;
5394 
5395   {
5396     G1RootProcessor root_processor(this);
5397     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5398     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5399     if (g1_policy()->during_initial_mark_pause()) {
5400       ClassLoaderDataGraph::clear_claimed_marks();
5401     }
5402 
5403      // The individual threads will set their evac-failure closures.
5404      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5405      // These tasks use ShareHeap::_process_strong_tasks
5406      assert(UseDynamicNumberOfGCThreads ||
5407             workers()->active_workers() == workers()->total_workers(),
5408             "If not dynamic should be using all the  workers");
5409     workers()->run_task(&g1_par_task);
5410     end_par_time_sec = os::elapsedTime();
5411 
5412     // Closing the inner scope will execute the destructor
5413     // for the G1RootProcessor object. We record the current
5414     // elapsed time before closing the scope so that time
5415     // taken for the destructor is NOT included in the
5416     // reported parallel time.
5417   }
5418 
5419   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5420 
5421   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5422   phase_times->record_par_time(par_time_ms);
5423 
5424   double code_root_fixup_time_ms =
5425         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5426   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5427 
5428   set_par_threads(0);
5429 
5430   // Process any discovered reference objects - we have
5431   // to do this _before_ we retire the GC alloc regions
5432   // as we may have to copy some 'reachable' referent
5433   // objects (and their reachable sub-graphs) that were
5434   // not copied during the pause.
5435   process_discovered_references(n_workers);
5436 
5437   if (G1StringDedup::is_enabled()) {
5438     double fixup_start = os::elapsedTime();
5439 
5440     G1STWIsAliveClosure is_alive(this);
5441     G1KeepAliveClosure keep_alive(this);
5442     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5443 
5444     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5445     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5446   }
5447 
5448   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5449   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5450 
5451   // Reset and re-enable the hot card cache.
5452   // Note the counts for the cards in the regions in the
5453   // collection set are reset when the collection set is freed.
5454   hot_card_cache->reset_hot_cache();
5455   hot_card_cache->set_use_cache(true);
5456 
5457   purge_code_root_memory();
5458 
5459   finalize_for_evac_failure();
5460 
5461   if (evacuation_failed()) {
5462     remove_self_forwarding_pointers();
5463 
5464     // Reset the G1EvacuationFailureALot counters and flags
5465     // Note: the values are reset only when an actual
5466     // evacuation failure occurs.
5467     NOT_PRODUCT(reset_evacuation_should_fail();)
5468   }
5469 
5470   // Enqueue any remaining references remaining on the STW
5471   // reference processor's discovered lists. We need to do
5472   // this after the card table is cleaned (and verified) as
5473   // the act of enqueueing entries on to the pending list
5474   // will log these updates (and dirty their associated
5475   // cards). We need these updates logged to update any
5476   // RSets.
5477   enqueue_discovered_references(n_workers);
5478 
5479   redirty_logged_cards();
5480   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5481 }
5482 
5483 void G1CollectedHeap::free_region(HeapRegion* hr,
5484                                   FreeRegionList* free_list,
5485                                   bool par,
5486                                   bool locked) {
5487   assert(!hr->is_free(), "the region should not be free");
5488   assert(!hr->is_empty(), "the region should not be empty");
5489   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5490   assert(free_list != NULL, "pre-condition");
5491 
5492   if (G1VerifyBitmaps) {
5493     MemRegion mr(hr->bottom(), hr->end());
5494     concurrent_mark()->clearRangePrevBitmap(mr);
5495   }
5496 
5497   // Clear the card counts for this region.
5498   // Note: we only need to do this if the region is not young
5499   // (since we don't refine cards in young regions).
5500   if (!hr->is_young()) {
5501     _cg1r->hot_card_cache()->reset_card_counts(hr);
5502   }
5503   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5504   free_list->add_ordered(hr);
5505 }
5506 
5507 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5508                                      FreeRegionList* free_list,
5509                                      bool par) {
5510   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5511   assert(free_list != NULL, "pre-condition");
5512 
5513   size_t hr_capacity = hr->capacity();
5514   // We need to read this before we make the region non-humongous,
5515   // otherwise the information will be gone.
5516   uint last_index = hr->last_hc_index();
5517   hr->clear_humongous();
5518   free_region(hr, free_list, par);
5519 
5520   uint i = hr->hrm_index() + 1;
5521   while (i < last_index) {
5522     HeapRegion* curr_hr = region_at(i);
5523     assert(curr_hr->is_continues_humongous(), "invariant");
5524     curr_hr->clear_humongous();
5525     free_region(curr_hr, free_list, par);
5526     i += 1;
5527   }
5528 }
5529 
5530 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5531                                        const HeapRegionSetCount& humongous_regions_removed) {
5532   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5533     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5534     _old_set.bulk_remove(old_regions_removed);
5535     _humongous_set.bulk_remove(humongous_regions_removed);
5536   }
5537 
5538 }
5539 
5540 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5541   assert(list != NULL, "list can't be null");
5542   if (!list->is_empty()) {
5543     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5544     _hrm.insert_list_into_free_list(list);
5545   }
5546 }
5547 
5548 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5549   _allocator->decrease_used(bytes);
5550 }
5551 
5552 class G1ParCleanupCTTask : public AbstractGangTask {
5553   G1SATBCardTableModRefBS* _ct_bs;
5554   G1CollectedHeap* _g1h;
5555   HeapRegion* volatile _su_head;
5556 public:
5557   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5558                      G1CollectedHeap* g1h) :
5559     AbstractGangTask("G1 Par Cleanup CT Task"),
5560     _ct_bs(ct_bs), _g1h(g1h) { }
5561 
5562   void work(uint worker_id) {
5563     HeapRegion* r;
5564     while (r = _g1h->pop_dirty_cards_region()) {
5565       clear_cards(r);
5566     }
5567   }
5568 
5569   void clear_cards(HeapRegion* r) {
5570     // Cards of the survivors should have already been dirtied.
5571     if (!r->is_survivor()) {
5572       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5573     }
5574   }
5575 };
5576 
5577 #ifndef PRODUCT
5578 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5579   G1CollectedHeap* _g1h;
5580   G1SATBCardTableModRefBS* _ct_bs;
5581 public:
5582   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5583     : _g1h(g1h), _ct_bs(ct_bs) { }
5584   virtual bool doHeapRegion(HeapRegion* r) {
5585     if (r->is_survivor()) {
5586       _g1h->verify_dirty_region(r);
5587     } else {
5588       _g1h->verify_not_dirty_region(r);
5589     }
5590     return false;
5591   }
5592 };
5593 
5594 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5595   // All of the region should be clean.
5596   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5597   MemRegion mr(hr->bottom(), hr->end());
5598   ct_bs->verify_not_dirty_region(mr);
5599 }
5600 
5601 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5602   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5603   // dirty allocated blocks as they allocate them. The thread that
5604   // retires each region and replaces it with a new one will do a
5605   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5606   // not dirty that area (one less thing to have to do while holding
5607   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5608   // is dirty.
5609   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5610   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5611   if (hr->is_young()) {
5612     ct_bs->verify_g1_young_region(mr);
5613   } else {
5614     ct_bs->verify_dirty_region(mr);
5615   }
5616 }
5617 
5618 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5619   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5620   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5621     verify_dirty_region(hr);
5622   }
5623 }
5624 
5625 void G1CollectedHeap::verify_dirty_young_regions() {
5626   verify_dirty_young_list(_young_list->first_region());
5627 }
5628 
5629 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5630                                                HeapWord* tams, HeapWord* end) {
5631   guarantee(tams <= end,
5632             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5633   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5634   if (result < end) {
5635     gclog_or_tty->cr();
5636     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5637                            bitmap_name, p2i(result));
5638     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5639                            bitmap_name, p2i(tams), p2i(end));
5640     return false;
5641   }
5642   return true;
5643 }
5644 
5645 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5646   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5647   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5648 
5649   HeapWord* bottom = hr->bottom();
5650   HeapWord* ptams  = hr->prev_top_at_mark_start();
5651   HeapWord* ntams  = hr->next_top_at_mark_start();
5652   HeapWord* end    = hr->end();
5653 
5654   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5655 
5656   bool res_n = true;
5657   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5658   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5659   // if we happen to be in that state.
5660   if (mark_in_progress() || !_cmThread->in_progress()) {
5661     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5662   }
5663   if (!res_p || !res_n) {
5664     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5665                            HR_FORMAT_PARAMS(hr));
5666     gclog_or_tty->print_cr("#### Caller: %s", caller);
5667     return false;
5668   }
5669   return true;
5670 }
5671 
5672 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5673   if (!G1VerifyBitmaps) return;
5674 
5675   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5676 }
5677 
5678 class G1VerifyBitmapClosure : public HeapRegionClosure {
5679 private:
5680   const char* _caller;
5681   G1CollectedHeap* _g1h;
5682   bool _failures;
5683 
5684 public:
5685   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5686     _caller(caller), _g1h(g1h), _failures(false) { }
5687 
5688   bool failures() { return _failures; }
5689 
5690   virtual bool doHeapRegion(HeapRegion* hr) {
5691     if (hr->is_continues_humongous()) return false;
5692 
5693     bool result = _g1h->verify_bitmaps(_caller, hr);
5694     if (!result) {
5695       _failures = true;
5696     }
5697     return false;
5698   }
5699 };
5700 
5701 void G1CollectedHeap::check_bitmaps(const char* caller) {
5702   if (!G1VerifyBitmaps) return;
5703 
5704   G1VerifyBitmapClosure cl(caller, this);
5705   heap_region_iterate(&cl);
5706   guarantee(!cl.failures(), "bitmap verification");
5707 }
5708 
5709 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5710  private:
5711   bool _failures;
5712  public:
5713   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5714 
5715   virtual bool doHeapRegion(HeapRegion* hr) {
5716     uint i = hr->hrm_index();
5717     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5718     if (hr->is_humongous()) {
5719       if (hr->in_collection_set()) {
5720         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5721         _failures = true;
5722         return true;
5723       }
5724       if (cset_state.is_in_cset()) {
5725         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5726         _failures = true;
5727         return true;
5728       }
5729       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5730         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5731         _failures = true;
5732         return true;
5733       }
5734     } else {
5735       if (cset_state.is_humongous()) {
5736         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5737         _failures = true;
5738         return true;
5739       }
5740       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5741         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5742                                hr->in_collection_set(), cset_state.value(), i);
5743         _failures = true;
5744         return true;
5745       }
5746       if (cset_state.is_in_cset()) {
5747         if (hr->is_young() != (cset_state.is_young())) {
5748           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5749                                  hr->is_young(), cset_state.value(), i);
5750           _failures = true;
5751           return true;
5752         }
5753         if (hr->is_old() != (cset_state.is_old())) {
5754           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5755                                  hr->is_old(), cset_state.value(), i);
5756           _failures = true;
5757           return true;
5758         }
5759       }
5760     }
5761     return false;
5762   }
5763 
5764   bool failures() const { return _failures; }
5765 };
5766 
5767 bool G1CollectedHeap::check_cset_fast_test() {
5768   G1CheckCSetFastTableClosure cl;
5769   _hrm.iterate(&cl);
5770   return !cl.failures();
5771 }
5772 #endif // PRODUCT
5773 
5774 void G1CollectedHeap::cleanUpCardTable() {
5775   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5776   double start = os::elapsedTime();
5777 
5778   {
5779     // Iterate over the dirty cards region list.
5780     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5781 
5782     set_par_threads();
5783     workers()->run_task(&cleanup_task);
5784     set_par_threads(0);
5785 #ifndef PRODUCT
5786     if (G1VerifyCTCleanup || VerifyAfterGC) {
5787       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5788       heap_region_iterate(&cleanup_verifier);
5789     }
5790 #endif
5791   }
5792 
5793   double elapsed = os::elapsedTime() - start;
5794   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5795 }
5796 
5797 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5798   size_t pre_used = 0;
5799   FreeRegionList local_free_list("Local List for CSet Freeing");
5800 
5801   double young_time_ms     = 0.0;
5802   double non_young_time_ms = 0.0;
5803 
5804   // Since the collection set is a superset of the the young list,
5805   // all we need to do to clear the young list is clear its
5806   // head and length, and unlink any young regions in the code below
5807   _young_list->clear();
5808 
5809   G1CollectorPolicy* policy = g1_policy();
5810 
5811   double start_sec = os::elapsedTime();
5812   bool non_young = true;
5813 
5814   HeapRegion* cur = cs_head;
5815   int age_bound = -1;
5816   size_t rs_lengths = 0;
5817 
5818   while (cur != NULL) {
5819     assert(!is_on_master_free_list(cur), "sanity");
5820     if (non_young) {
5821       if (cur->is_young()) {
5822         double end_sec = os::elapsedTime();
5823         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5824         non_young_time_ms += elapsed_ms;
5825 
5826         start_sec = os::elapsedTime();
5827         non_young = false;
5828       }
5829     } else {
5830       if (!cur->is_young()) {
5831         double end_sec = os::elapsedTime();
5832         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5833         young_time_ms += elapsed_ms;
5834 
5835         start_sec = os::elapsedTime();
5836         non_young = true;
5837       }
5838     }
5839 
5840     rs_lengths += cur->rem_set()->occupied_locked();
5841 
5842     HeapRegion* next = cur->next_in_collection_set();
5843     assert(cur->in_collection_set(), "bad CS");
5844     cur->set_next_in_collection_set(NULL);
5845     clear_in_cset(cur);
5846 
5847     if (cur->is_young()) {
5848       int index = cur->young_index_in_cset();
5849       assert(index != -1, "invariant");
5850       assert((uint) index < policy->young_cset_region_length(), "invariant");
5851       size_t words_survived = _surviving_young_words[index];
5852       cur->record_surv_words_in_group(words_survived);
5853 
5854       // At this point the we have 'popped' cur from the collection set
5855       // (linked via next_in_collection_set()) but it is still in the
5856       // young list (linked via next_young_region()). Clear the
5857       // _next_young_region field.
5858       cur->set_next_young_region(NULL);
5859     } else {
5860       int index = cur->young_index_in_cset();
5861       assert(index == -1, "invariant");
5862     }
5863 
5864     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5865             (!cur->is_young() && cur->young_index_in_cset() == -1),
5866             "invariant" );
5867 
5868     if (!cur->evacuation_failed()) {
5869       MemRegion used_mr = cur->used_region();
5870 
5871       // And the region is empty.
5872       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5873       pre_used += cur->used();
5874       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5875     } else {
5876       cur->uninstall_surv_rate_group();
5877       if (cur->is_young()) {
5878         cur->set_young_index_in_cset(-1);
5879       }
5880       cur->set_evacuation_failed(false);
5881       // The region is now considered to be old.
5882       cur->set_old();
5883       _old_set.add(cur);
5884       evacuation_info.increment_collectionset_used_after(cur->used());
5885     }
5886     cur = next;
5887   }
5888 
5889   evacuation_info.set_regions_freed(local_free_list.length());
5890   policy->record_max_rs_lengths(rs_lengths);
5891   policy->cset_regions_freed();
5892 
5893   double end_sec = os::elapsedTime();
5894   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5895 
5896   if (non_young) {
5897     non_young_time_ms += elapsed_ms;
5898   } else {
5899     young_time_ms += elapsed_ms;
5900   }
5901 
5902   prepend_to_freelist(&local_free_list);
5903   decrement_summary_bytes(pre_used);
5904   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5905   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5906 }
5907 
5908 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5909  private:
5910   FreeRegionList* _free_region_list;
5911   HeapRegionSet* _proxy_set;
5912   HeapRegionSetCount _humongous_regions_removed;
5913   size_t _freed_bytes;
5914  public:
5915 
5916   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5917     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5918   }
5919 
5920   virtual bool doHeapRegion(HeapRegion* r) {
5921     if (!r->is_starts_humongous()) {
5922       return false;
5923     }
5924 
5925     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5926 
5927     oop obj = (oop)r->bottom();
5928     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5929 
5930     // The following checks whether the humongous object is live are sufficient.
5931     // The main additional check (in addition to having a reference from the roots
5932     // or the young gen) is whether the humongous object has a remembered set entry.
5933     //
5934     // A humongous object cannot be live if there is no remembered set for it
5935     // because:
5936     // - there can be no references from within humongous starts regions referencing
5937     // the object because we never allocate other objects into them.
5938     // (I.e. there are no intra-region references that may be missed by the
5939     // remembered set)
5940     // - as soon there is a remembered set entry to the humongous starts region
5941     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5942     // until the end of a concurrent mark.
5943     //
5944     // It is not required to check whether the object has been found dead by marking
5945     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5946     // all objects allocated during that time are considered live.
5947     // SATB marking is even more conservative than the remembered set.
5948     // So if at this point in the collection there is no remembered set entry,
5949     // nobody has a reference to it.
5950     // At the start of collection we flush all refinement logs, and remembered sets
5951     // are completely up-to-date wrt to references to the humongous object.
5952     //
5953     // Other implementation considerations:
5954     // - never consider object arrays at this time because they would pose
5955     // considerable effort for cleaning up the the remembered sets. This is
5956     // required because stale remembered sets might reference locations that
5957     // are currently allocated into.
5958     uint region_idx = r->hrm_index();
5959     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5960         !r->rem_set()->is_empty()) {
5961 
5962       if (G1TraceEagerReclaimHumongousObjects) {
5963         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5964                                region_idx,
5965                                (size_t)obj->size() * HeapWordSize,
5966                                p2i(r->bottom()),
5967                                r->region_num(),
5968                                r->rem_set()->occupied(),
5969                                r->rem_set()->strong_code_roots_list_length(),
5970                                next_bitmap->isMarked(r->bottom()),
5971                                g1h->is_humongous_reclaim_candidate(region_idx),
5972                                obj->is_typeArray()
5973                               );
5974       }
5975 
5976       return false;
5977     }
5978 
5979     guarantee(obj->is_typeArray(),
5980               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
5981                       PTR_FORMAT " is not.",
5982                       p2i(r->bottom())));
5983 
5984     if (G1TraceEagerReclaimHumongousObjects) {
5985       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5986                              region_idx,
5987                              (size_t)obj->size() * HeapWordSize,
5988                              p2i(r->bottom()),
5989                              r->region_num(),
5990                              r->rem_set()->occupied(),
5991                              r->rem_set()->strong_code_roots_list_length(),
5992                              next_bitmap->isMarked(r->bottom()),
5993                              g1h->is_humongous_reclaim_candidate(region_idx),
5994                              obj->is_typeArray()
5995                             );
5996     }
5997     // Need to clear mark bit of the humongous object if already set.
5998     if (next_bitmap->isMarked(r->bottom())) {
5999       next_bitmap->clear(r->bottom());
6000     }
6001     _freed_bytes += r->used();
6002     r->set_containing_set(NULL);
6003     _humongous_regions_removed.increment(1u, r->capacity());
6004     g1h->free_humongous_region(r, _free_region_list, false);
6005 
6006     return false;
6007   }
6008 
6009   HeapRegionSetCount& humongous_free_count() {
6010     return _humongous_regions_removed;
6011   }
6012 
6013   size_t bytes_freed() const {
6014     return _freed_bytes;
6015   }
6016 
6017   size_t humongous_reclaimed() const {
6018     return _humongous_regions_removed.length();
6019   }
6020 };
6021 
6022 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6023   assert_at_safepoint(true);
6024 
6025   if (!G1EagerReclaimHumongousObjects ||
6026       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6027     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6028     return;
6029   }
6030 
6031   double start_time = os::elapsedTime();
6032 
6033   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6034 
6035   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6036   heap_region_iterate(&cl);
6037 
6038   HeapRegionSetCount empty_set;
6039   remove_from_old_sets(empty_set, cl.humongous_free_count());
6040 
6041   G1HRPrinter* hrp = hr_printer();
6042   if (hrp->is_active()) {
6043     FreeRegionListIterator iter(&local_cleanup_list);
6044     while (iter.more_available()) {
6045       HeapRegion* hr = iter.get_next();
6046       hrp->cleanup(hr);
6047     }
6048   }
6049 
6050   prepend_to_freelist(&local_cleanup_list);
6051   decrement_summary_bytes(cl.bytes_freed());
6052 
6053   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6054                                                                     cl.humongous_reclaimed());
6055 }
6056 
6057 // This routine is similar to the above but does not record
6058 // any policy statistics or update free lists; we are abandoning
6059 // the current incremental collection set in preparation of a
6060 // full collection. After the full GC we will start to build up
6061 // the incremental collection set again.
6062 // This is only called when we're doing a full collection
6063 // and is immediately followed by the tearing down of the young list.
6064 
6065 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6066   HeapRegion* cur = cs_head;
6067 
6068   while (cur != NULL) {
6069     HeapRegion* next = cur->next_in_collection_set();
6070     assert(cur->in_collection_set(), "bad CS");
6071     cur->set_next_in_collection_set(NULL);
6072     clear_in_cset(cur);
6073     cur->set_young_index_in_cset(-1);
6074     cur = next;
6075   }
6076 }
6077 
6078 void G1CollectedHeap::set_free_regions_coming() {
6079   if (G1ConcRegionFreeingVerbose) {
6080     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6081                            "setting free regions coming");
6082   }
6083 
6084   assert(!free_regions_coming(), "pre-condition");
6085   _free_regions_coming = true;
6086 }
6087 
6088 void G1CollectedHeap::reset_free_regions_coming() {
6089   assert(free_regions_coming(), "pre-condition");
6090 
6091   {
6092     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6093     _free_regions_coming = false;
6094     SecondaryFreeList_lock->notify_all();
6095   }
6096 
6097   if (G1ConcRegionFreeingVerbose) {
6098     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6099                            "reset free regions coming");
6100   }
6101 }
6102 
6103 void G1CollectedHeap::wait_while_free_regions_coming() {
6104   // Most of the time we won't have to wait, so let's do a quick test
6105   // first before we take the lock.
6106   if (!free_regions_coming()) {
6107     return;
6108   }
6109 
6110   if (G1ConcRegionFreeingVerbose) {
6111     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6112                            "waiting for free regions");
6113   }
6114 
6115   {
6116     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6117     while (free_regions_coming()) {
6118       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6119     }
6120   }
6121 
6122   if (G1ConcRegionFreeingVerbose) {
6123     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6124                            "done waiting for free regions");
6125   }
6126 }
6127 
6128 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6129   _young_list->push_region(hr);
6130 }
6131 
6132 class NoYoungRegionsClosure: public HeapRegionClosure {
6133 private:
6134   bool _success;
6135 public:
6136   NoYoungRegionsClosure() : _success(true) { }
6137   bool doHeapRegion(HeapRegion* r) {
6138     if (r->is_young()) {
6139       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6140                              p2i(r->bottom()), p2i(r->end()));
6141       _success = false;
6142     }
6143     return false;
6144   }
6145   bool success() { return _success; }
6146 };
6147 
6148 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6149   bool ret = _young_list->check_list_empty(check_sample);
6150 
6151   if (check_heap) {
6152     NoYoungRegionsClosure closure;
6153     heap_region_iterate(&closure);
6154     ret = ret && closure.success();
6155   }
6156 
6157   return ret;
6158 }
6159 
6160 class TearDownRegionSetsClosure : public HeapRegionClosure {
6161 private:
6162   HeapRegionSet *_old_set;
6163 
6164 public:
6165   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6166 
6167   bool doHeapRegion(HeapRegion* r) {
6168     if (r->is_old()) {
6169       _old_set->remove(r);
6170     } else {
6171       // We ignore free regions, we'll empty the free list afterwards.
6172       // We ignore young regions, we'll empty the young list afterwards.
6173       // We ignore humongous regions, we're not tearing down the
6174       // humongous regions set.
6175       assert(r->is_free() || r->is_young() || r->is_humongous(),
6176              "it cannot be another type");
6177     }
6178     return false;
6179   }
6180 
6181   ~TearDownRegionSetsClosure() {
6182     assert(_old_set->is_empty(), "post-condition");
6183   }
6184 };
6185 
6186 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6187   assert_at_safepoint(true /* should_be_vm_thread */);
6188 
6189   if (!free_list_only) {
6190     TearDownRegionSetsClosure cl(&_old_set);
6191     heap_region_iterate(&cl);
6192 
6193     // Note that emptying the _young_list is postponed and instead done as
6194     // the first step when rebuilding the regions sets again. The reason for
6195     // this is that during a full GC string deduplication needs to know if
6196     // a collected region was young or old when the full GC was initiated.
6197   }
6198   _hrm.remove_all_free_regions();
6199 }
6200 
6201 class RebuildRegionSetsClosure : public HeapRegionClosure {
6202 private:
6203   bool            _free_list_only;
6204   HeapRegionSet*   _old_set;
6205   HeapRegionManager*   _hrm;
6206   size_t          _total_used;
6207 
6208 public:
6209   RebuildRegionSetsClosure(bool free_list_only,
6210                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6211     _free_list_only(free_list_only),
6212     _old_set(old_set), _hrm(hrm), _total_used(0) {
6213     assert(_hrm->num_free_regions() == 0, "pre-condition");
6214     if (!free_list_only) {
6215       assert(_old_set->is_empty(), "pre-condition");
6216     }
6217   }
6218 
6219   bool doHeapRegion(HeapRegion* r) {
6220     if (r->is_continues_humongous()) {
6221       return false;
6222     }
6223 
6224     if (r->is_empty()) {
6225       // Add free regions to the free list
6226       r->set_free();
6227       r->set_allocation_context(AllocationContext::system());
6228       _hrm->insert_into_free_list(r);
6229     } else if (!_free_list_only) {
6230       assert(!r->is_young(), "we should not come across young regions");
6231 
6232       if (r->is_humongous()) {
6233         // We ignore humongous regions, we left the humongous set unchanged
6234       } else {
6235         // Objects that were compacted would have ended up on regions
6236         // that were previously old or free.
6237         assert(r->is_free() || r->is_old(), "invariant");
6238         // We now consider them old, so register as such.
6239         r->set_old();
6240         _old_set->add(r);
6241       }
6242       _total_used += r->used();
6243     }
6244 
6245     return false;
6246   }
6247 
6248   size_t total_used() {
6249     return _total_used;
6250   }
6251 };
6252 
6253 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6254   assert_at_safepoint(true /* should_be_vm_thread */);
6255 
6256   if (!free_list_only) {
6257     _young_list->empty_list();
6258   }
6259 
6260   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6261   heap_region_iterate(&cl);
6262 
6263   if (!free_list_only) {
6264     _allocator->set_used(cl.total_used());
6265   }
6266   assert(_allocator->used_unlocked() == recalculate_used(),
6267          err_msg("inconsistent _allocator->used_unlocked(), "
6268                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6269                  _allocator->used_unlocked(), recalculate_used()));
6270 }
6271 
6272 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6273   _refine_cte_cl->set_concurrent(concurrent);
6274 }
6275 
6276 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6277   HeapRegion* hr = heap_region_containing(p);
6278   return hr->is_in(p);
6279 }
6280 
6281 // Methods for the mutator alloc region
6282 
6283 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6284                                                       bool force) {
6285   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6286   assert(!force || g1_policy()->can_expand_young_list(),
6287          "if force is true we should be able to expand the young list");
6288   bool young_list_full = g1_policy()->is_young_list_full();
6289   if (force || !young_list_full) {
6290     HeapRegion* new_alloc_region = new_region(word_size,
6291                                               false /* is_old */,
6292                                               false /* do_expand */);
6293     if (new_alloc_region != NULL) {
6294       set_region_short_lived_locked(new_alloc_region);
6295       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6296       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6297       return new_alloc_region;
6298     }
6299   }
6300   return NULL;
6301 }
6302 
6303 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6304                                                   size_t allocated_bytes) {
6305   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6306   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6307 
6308   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6309   _allocator->increase_used(allocated_bytes);
6310   _hr_printer.retire(alloc_region);
6311   // We update the eden sizes here, when the region is retired,
6312   // instead of when it's allocated, since this is the point that its
6313   // used space has been recored in _summary_bytes_used.
6314   g1mm()->update_eden_size();
6315 }
6316 
6317 void G1CollectedHeap::set_par_threads() {
6318   // Don't change the number of workers.  Use the value previously set
6319   // in the workgroup.
6320   uint n_workers = workers()->active_workers();
6321   assert(UseDynamicNumberOfGCThreads ||
6322            n_workers == workers()->total_workers(),
6323       "Otherwise should be using the total number of workers");
6324   if (n_workers == 0) {
6325     assert(false, "Should have been set in prior evacuation pause.");
6326     n_workers = ParallelGCThreads;
6327     workers()->set_active_workers(n_workers);
6328   }
6329   set_par_threads(n_workers);
6330 }
6331 
6332 // Methods for the GC alloc regions
6333 
6334 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6335                                                  uint count,
6336                                                  InCSetState dest) {
6337   assert(FreeList_lock->owned_by_self(), "pre-condition");
6338 
6339   if (count < g1_policy()->max_regions(dest)) {
6340     const bool is_survivor = (dest.is_young());
6341     HeapRegion* new_alloc_region = new_region(word_size,
6342                                               !is_survivor,
6343                                               true /* do_expand */);
6344     if (new_alloc_region != NULL) {
6345       // We really only need to do this for old regions given that we
6346       // should never scan survivors. But it doesn't hurt to do it
6347       // for survivors too.
6348       new_alloc_region->record_timestamp();
6349       if (is_survivor) {
6350         new_alloc_region->set_survivor();
6351         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6352         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6353       } else {
6354         new_alloc_region->set_old();
6355         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6356         check_bitmaps("Old Region Allocation", new_alloc_region);
6357       }
6358       bool during_im = g1_policy()->during_initial_mark_pause();
6359       new_alloc_region->note_start_of_copying(during_im);
6360       return new_alloc_region;
6361     }
6362   }
6363   return NULL;
6364 }
6365 
6366 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6367                                              size_t allocated_bytes,
6368                                              InCSetState dest) {
6369   bool during_im = g1_policy()->during_initial_mark_pause();
6370   alloc_region->note_end_of_copying(during_im);
6371   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6372   if (dest.is_young()) {
6373     young_list()->add_survivor_region(alloc_region);
6374   } else {
6375     _old_set.add(alloc_region);
6376   }
6377   _hr_printer.retire(alloc_region);
6378 }
6379 
6380 // Heap region set verification
6381 
6382 class VerifyRegionListsClosure : public HeapRegionClosure {
6383 private:
6384   HeapRegionSet*   _old_set;
6385   HeapRegionSet*   _humongous_set;
6386   HeapRegionManager*   _hrm;
6387 
6388 public:
6389   HeapRegionSetCount _old_count;
6390   HeapRegionSetCount _humongous_count;
6391   HeapRegionSetCount _free_count;
6392 
6393   VerifyRegionListsClosure(HeapRegionSet* old_set,
6394                            HeapRegionSet* humongous_set,
6395                            HeapRegionManager* hrm) :
6396     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6397     _old_count(), _humongous_count(), _free_count(){ }
6398 
6399   bool doHeapRegion(HeapRegion* hr) {
6400     if (hr->is_continues_humongous()) {
6401       return false;
6402     }
6403 
6404     if (hr->is_young()) {
6405       // TODO
6406     } else if (hr->is_starts_humongous()) {
6407       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6408       _humongous_count.increment(1u, hr->capacity());
6409     } else if (hr->is_empty()) {
6410       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6411       _free_count.increment(1u, hr->capacity());
6412     } else if (hr->is_old()) {
6413       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6414       _old_count.increment(1u, hr->capacity());
6415     } else {
6416       ShouldNotReachHere();
6417     }
6418     return false;
6419   }
6420 
6421   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6422     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6423     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6424         old_set->total_capacity_bytes(), _old_count.capacity()));
6425 
6426     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6427     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6428         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6429 
6430     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6431     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6432         free_list->total_capacity_bytes(), _free_count.capacity()));
6433   }
6434 };
6435 
6436 void G1CollectedHeap::verify_region_sets() {
6437   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6438 
6439   // First, check the explicit lists.
6440   _hrm.verify();
6441   {
6442     // Given that a concurrent operation might be adding regions to
6443     // the secondary free list we have to take the lock before
6444     // verifying it.
6445     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6446     _secondary_free_list.verify_list();
6447   }
6448 
6449   // If a concurrent region freeing operation is in progress it will
6450   // be difficult to correctly attributed any free regions we come
6451   // across to the correct free list given that they might belong to
6452   // one of several (free_list, secondary_free_list, any local lists,
6453   // etc.). So, if that's the case we will skip the rest of the
6454   // verification operation. Alternatively, waiting for the concurrent
6455   // operation to complete will have a non-trivial effect on the GC's
6456   // operation (no concurrent operation will last longer than the
6457   // interval between two calls to verification) and it might hide
6458   // any issues that we would like to catch during testing.
6459   if (free_regions_coming()) {
6460     return;
6461   }
6462 
6463   // Make sure we append the secondary_free_list on the free_list so
6464   // that all free regions we will come across can be safely
6465   // attributed to the free_list.
6466   append_secondary_free_list_if_not_empty_with_lock();
6467 
6468   // Finally, make sure that the region accounting in the lists is
6469   // consistent with what we see in the heap.
6470 
6471   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6472   heap_region_iterate(&cl);
6473   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6474 }
6475 
6476 // Optimized nmethod scanning
6477 
6478 class RegisterNMethodOopClosure: public OopClosure {
6479   G1CollectedHeap* _g1h;
6480   nmethod* _nm;
6481 
6482   template <class T> void do_oop_work(T* p) {
6483     T heap_oop = oopDesc::load_heap_oop(p);
6484     if (!oopDesc::is_null(heap_oop)) {
6485       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6486       HeapRegion* hr = _g1h->heap_region_containing(obj);
6487       assert(!hr->is_continues_humongous(),
6488              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6489                      " starting at "HR_FORMAT,
6490                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6491 
6492       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6493       hr->add_strong_code_root_locked(_nm);
6494     }
6495   }
6496 
6497 public:
6498   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6499     _g1h(g1h), _nm(nm) {}
6500 
6501   void do_oop(oop* p)       { do_oop_work(p); }
6502   void do_oop(narrowOop* p) { do_oop_work(p); }
6503 };
6504 
6505 class UnregisterNMethodOopClosure: public OopClosure {
6506   G1CollectedHeap* _g1h;
6507   nmethod* _nm;
6508 
6509   template <class T> void do_oop_work(T* p) {
6510     T heap_oop = oopDesc::load_heap_oop(p);
6511     if (!oopDesc::is_null(heap_oop)) {
6512       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6513       HeapRegion* hr = _g1h->heap_region_containing(obj);
6514       assert(!hr->is_continues_humongous(),
6515              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6516                      " starting at "HR_FORMAT,
6517                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6518 
6519       hr->remove_strong_code_root(_nm);
6520     }
6521   }
6522 
6523 public:
6524   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6525     _g1h(g1h), _nm(nm) {}
6526 
6527   void do_oop(oop* p)       { do_oop_work(p); }
6528   void do_oop(narrowOop* p) { do_oop_work(p); }
6529 };
6530 
6531 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6532   CollectedHeap::register_nmethod(nm);
6533 
6534   guarantee(nm != NULL, "sanity");
6535   RegisterNMethodOopClosure reg_cl(this, nm);
6536   nm->oops_do(&reg_cl);
6537 }
6538 
6539 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6540   CollectedHeap::unregister_nmethod(nm);
6541 
6542   guarantee(nm != NULL, "sanity");
6543   UnregisterNMethodOopClosure reg_cl(this, nm);
6544   nm->oops_do(&reg_cl, true);
6545 }
6546 
6547 void G1CollectedHeap::purge_code_root_memory() {
6548   double purge_start = os::elapsedTime();
6549   G1CodeRootSet::purge();
6550   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6551   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6552 }
6553 
6554 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6555   G1CollectedHeap* _g1h;
6556 
6557 public:
6558   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6559     _g1h(g1h) {}
6560 
6561   void do_code_blob(CodeBlob* cb) {
6562     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6563     if (nm == NULL) {
6564       return;
6565     }
6566 
6567     if (ScavengeRootsInCode) {
6568       _g1h->register_nmethod(nm);
6569     }
6570   }
6571 };
6572 
6573 void G1CollectedHeap::rebuild_strong_code_roots() {
6574   RebuildStrongCodeRootClosure blob_cl(this);
6575   CodeCache::blobs_do(&blob_cl);
6576 }