
Pattern Coverage

Brian Goetz and Gavin Bierman

March 24, 2022

1 Coverage

A switch expression must be exhaustive on its target; this means that when
switching over an expression of type T , for any operand expression, some case
should match, and the compiler will want to statically type-check this exhaus-
tiveness. (Other pattern-aware constructs, such as pattern assignment or state-
ment switches using patterns, may have similar requirements.) We express this
by saying that the set of case patterns in a switch must cover the target type
of the switch.

We define a relation, written ∆ ` P covers T , to denote that a set of
patterns P covers the (expressible) type T . Coverage is used in static type
checking to assess whether the patterns in a construct such as switch covers
the target type.

Coverage is a relationship between a set of patterns and a type; if we want
to talk about an individual pattern covering a type, we can do so by evaluating
whether the singleton set containing that patterns covers the desired type.

A set containing only the total type pattern on T , or an any pattern, covers
T :

T-Any
∆ ` { any } covers T

T-Type
∆ ` { T t } covers T

If a set of patterns covers a type, adding more patterns to the set does affect
coverage (coverage is contravariant with subsetting), and if a set of patterns
covers a type, it covers all the subtypes of that type (coverage is covariant with
subtyping):

T-Subset
∆ ` P covers T P ⊆ Q

∆ ` Q covers T

T-Subtype
∆ ` P covers T T ′ <: T

∆ ` P covers T ′

1



2 Sealing

A sealed class is one that restricts extension to an enumerated set of classes.
Sealing offers another source of exhaustiveness information; if class C is sealed
to permit only A and B, then if a set of patterns covers each of A and B, we
know it also covers C, without requiring an explicit total pattern on C or a
default case. This enables better type checking, because a switch that intends
to explicitly cover all cases, and does not provide a default, will get help from the
compiler to validate the assumption of coverage, and will be alerted if someone
later redefines C to have additional permitted subtypes.

It is possible that for a given parameterization of a sealed class, one or more
of its permitted subtypes may not be applicable. For example, given:

sealed interface Node<T>

permits StringNode, IntNode, PlusNode { }

record StringNode(String s) implements Node<String> { }

record IntNode(String s) implements Node<Integer> { }

record PlusNode<T>(T a, T b) implements Node<T> { }

For a switch with a target type of Node<Double>, the patterns for StringNode
and IntNode are not going to be applicable, because a Node<Double> cannot
be either of these types. In this case, we need not consider these impossible
subclasses when computing exhaustiveness. We appeal to cast conversion to
exclude such implausible patterns. We write castable(T,U) to indicate that T
is castable to U without an unchecked conversion.

A set of patterns covers an instantiation of a sealed class if it covers all of
the permitted subtypes of that class. We use the generic information to exclude
implausible subtype patterns; once this is done, for purposes of computing cov-
erage, we need not consider the parameterizations, and can work with wildcard
types.

T-Sealed

abstract sealed class C<X> permits N1, . . . , Nn

∀i ∆ ` P covers Ni<?> ∨ ¬ castable(C<A>, Ni<?>)

∆ ` P covers C<A>

2.1 Coverage on records

We now extend coverage to record patterns. Given a record declaration

record R(T1 t1, . . . ,Tn tn)

a record pattern is denoted R(p1, . . . , pn), where each pi is applicable to
Ti.

For a record with a single component of type T , and a set of patterns that
cover T , we can construct a set of patterns that cover R simply by wrapping
each pattern in a record pattern:

2



T-RecBase

∆ ` P covers T
record R(T t)

∆ ` { R(p) : p ∈ P } covers R

For records with more than one component, we can define coverage by in-
duction on the number of components. For a record R with n components, for
n > 1, we define its tail record, denoted Rt, as the record with the trailing n− 1
components of R.

If we denote the set of all patterns on type T as P[T ], we can define two
functions for decomposing a record pattern, head and tail:

head : P[R]→ P[T1] (1)

tail : P[R]→ P[Rt] (2)

These functions have the obvious definition; for a record pattern R(p1, . . . , pn),
the head pattern is p1 and the tail pattern is Rt(p2, . . . , pn).

In the absence of sealing information, a covering set of patterns must have
some pattern that by itself covers the target. Record patterns are no different;
we could require that to cover a switch on R, there must be some pattern
R(p1, . . . , pn) where each of the pi covers the correponding component. But
instead, we’ll define coverage so that we can more easily define how sealing
affects record patterns.

We will do this by taking the record patterns on R whose head pattern covers
the first component of R – and then taking the tail patterns of these patterns,
and asking whether the corresponding set of tail patterns also cover Rt:

T-RecInduct

record R<X>(T1 t1, . . . ,Tn tn)

Q ⊆ P[R]
∆ ` { head(q) : q ∈ Q } covers T1[X := A]

∆ ` { tail(q) : q ∈ Q, ∆ ` head(q) covers T1 } covers Rt[X := A]

∆ ` Q covers R<A>

So far, this is just a fancy way to ask whether there is a single record pattern
on R whose subpatterns cover all the components of R. But this becomes much
more useful when one or more of the component types of R are sealed. To
define coverage when one of the record components is sealed, we must first define
another projection on records. For a record R, the first-component-projection
to X, denoted Rh=X , is the record whose components are identical to that of
R, except the type of the first component is X.

3



T-RecSealed

abstract sealed class C<X> permits N1, . . . , Nn

record R(C<A>, T2, . . . , Tn)

Q ⊆ P[R]

∀i ∆ ` Q covers Rh=Ni[X:=A]

∆ ` Q covers R

Here is a simple example of how these rules work together.

sealed interface C permits A, B { }

final class A extends C { }

final class B extends C { }

record R(C x, C y) { }

switch (r) {

case R(C x, A y): ...

case R(A x, B y): ...

case R(B x, B y): ...

}

The switch in the example covers R. We can first apply T-RecSealed,
which says we can individually look at A and B in the first position. We then
apply T-RecInduct twice. For A, both A x and C x cover A, sowe take the
set of corresponding tail patterns (the first and second cases), and ask whether
the set {Rt(A y), Rt(B y)} covers the tail record. We then repeat the same for
B, and take the tail patterns from the first and third cases, and ask the same
question. We can answer both of these questions by appealing to T-RecBase.
The important thing is that we may use the tail patterns from different subsets
of the original for each permitted subtype.

4


