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1. Problem statement 
Once published, it is impossible to add methods to an interface without breaking existing 
implementations.  (Specifically, adding a method to an interface is not a source-
compatible change.)  The longer the time since a library has been published, the more 
likely it is that this restriction will cause grief for its maintainers.   

The addition of closures to the Java language in JDK 7 place additional stress on the 
aging Collection interfaces; one of the most significant benefits of closures is that it 
enables the development of more powerful libraries.  It would be disappointing to add a 
language feature that enables better libraries while at the same time not extending the 
core libraries to take advantage of that feature1.   

V1 of the Lambda Strawman proposed C#-style static extension methods as a means of 
creating the illusion of adding methods to existing classes and interfaces, but they have 
significant limitations – for example, they cannot be overridden by classes that 
implement the interface being extended, so implementations are stuck with the “one size 
fits all” implementation provided as an extension2, and they are not reflectively 
discoverable.   

2. Virtual extension methods3 
In this document, we outline a mechanism for adding new methods to existing interfaces, 
which we call virtual extension methods.  Existing interfaces can be augmented without 
compromising backward compatibility4 by adding extension methods to the interface, 
whose declaration would contain instructions for finding the default implementation in 
the event that implementers do not provide a method body. A key characteristic of 
extension methods is that they are virtual methods just like other interface methods, but 
provide a default implementation in the event that the implementing class does not 
provide a method body.  Listing 1 shows an example of the Set interface extended with a 
virtual extension method.  

public interface Set<T> extends Collection<T> { 
    public int size(); 

                                                 
1 Obvious candidates for evolving the Collections classes include the addition of methods like forEach(), 
filter(), map(), and reduce(). 
2 In general, static-ness is a source of all sorts of problems in Java, so adding more static mechanisms is 
likely a step in the wrong direction. 
3 In previous drafts these were also called defender methods. 
4 The exact details are both binary and source compatibility are already complicated today, and the 
compatibility considerations for extension methods are no exception.  In general we aim to make strong 
binary compatibility guarantees and slightly weaker source compatibility guarantees.   



    // The rest of the existing Set methods 
 
    public void forEach(Block<T> b) 
        default Collections.<T>setForEach; 
} 
 
class Collections {  
    ... 
    public static<T> void setForEach(Set<T> set,  
                                     Block<T> block) {...} 
} 
Listing 1.  Example virtual extension method. 

The declaration of forEach() tells us that this is an extension method, because it has a 
“default” clause5.  The default clause names the default implementation, which is a static 
method.  The signature of the default implementation must be compatible with that of the 
extension method, with the type of the enclosing interface inserted as the first argument6. 
It is an compile-time error if the default implementation cannot be found, or the signature 
is incompatible with the interface method.   

Implementations of Set are free to provide their own implementation of forEach (), since 
it is a virtual method just like any other interface method.  If they do not, the default 
implementation will be used instead.  An interface that has one or more extension 
methods is called an extended interface.  

From the perspective of a client of the interface, extension methods are no different from 
ordinary interface methods.  They are invoked via invokeinterface, they can be 
discovered and invoked reflectively, and the client does not care where the 
implementation comes from.   

2.1. Compatibility and adaptation of default implementation 
The signature of the default implementation must be compatible with that of the 
extension method.  Informally, the argument list of the default will be compatible with 
the arguments to the extension method with the receiver prepended onto the argument list.   

We define compatibility in terms of existing method resolution rules.  If the return type of 
the extension method on interface I is R, the arity n, the argument types Ai, and throwing 
checked exceptions Ej, then the following must be true of the signature of the default:  

 A call corresponding to m(I, A1, A2, …, An) must resolve according to the method 
resolution rules against the default.   

                                                 
5 It is a deliberate choice to not simply allow the programmer to include the code of the default inline 
within the interface.  Among other reasons, it would violate the long-held rule that “interfaces don’t have 
code”. 
6 The syntax of specifying the default implementation should match that of specifying method references, if 
method references are to be added to the language.   



 The return type R of the extension method must be a supertype of the return type 
of the default (covariant return), or the return type the extension method must be 
void 

 For each checked exception type of the default, it must be a subtype of some 
checked exception type of the extension method 

These rules allow for not only covariant return types and contravariant argument types, 
but also conversions such as such as widening conversions (int to long), boxing 
conversions (int to Integer), and even varargs.  In the case that conversion is needed, 
when linking the call site the bootstrap method must identify any needed conversions and 
use appropriate method handle combinators to adapt the types in the signature of the 
extension method to the types in the signature of the default.   

2.2. Accessibility 
The static method referenced by the default clause must be accessible to the extended 
interface, but need not be public.   

3. Method dispatch 
The addition of extension methods adds an extra phase to the runtime method dispatch 
algorithm.  In Java SE 7, for a method invocation on a receiver of type D, first D is 
searched for a matching non-abstract method, then its superclass, and so on until we 
reach Object, and if an implementation is not found, a linkage exception is thrown.  To 
support extension methods, we add another step before we throw the linkage exception: 
we search D and its superclasses for a matching method (abstract or not), and if we do not 
find an implementation of the method in the implementation hierarchy, we then search 
for a unique mostspecific interface providing a default for the method among D’s 
interfaces.  If we cannot find a unique most specific default, we throw a linkage 
exception (which may indicate no default found, or may indicate multiple competing 
defaults found.)   

Method resolution supporting extension methods is as follows:  

1. First search for a matching method in the superclass hierarchy, from receiver class 
proceeding upward through superclasses to Object.  If a non-abstrac method is 
found, the search is resolved successfully.  If an abstract method is found, the 
search fails and extension methods are not considered in the resolution. 

2. Construct the list of interfaces implemented by D, directly or indirectly, which 
contain a matching extension method.   

3. Remove all interfaces from this list which is a superinterface of any other 
interface on the list (e.g., if D implements both Set and Collection, and both 
provide a default for this method, remove Collection from the list.)   

4. If the resulting list of interfaces contains a single interface, the search is resolved 
successfully; the default implementation named in that interface is the resolution.  
If the resulting set has multiple items, then throw a linkage exception indicating 
conflicting extension methods.   

Resolution need be performed only once per extension method per implementing class.   



The description here is only intended to be a rough description of how method resolution 
is performed.  The exact resolution algorithm is modeled formally in the paper 
Featherweight Defenders.   

3.1. Resolution examples 
In the following example, we have a diamond-shaped hierarchy: 

interface A { void m() default X.a; } 
interface B extends A { } 
interface C extends A { } 
class D implements B, C { } 
In this example, even though D inherits m() from both B and C, when we construct the 
list of interfaces that provide a default for m(), we see there is only one – A.  So m() in D 
resolves to X.a.   

One of B or C (but not both) could still override m() without causing resolution to fail: 

interface A { void m() default X.a; } 
interface B extends A { void m() default X.b; } 
interface C extends A { } 
class D implements B, C { } 
Here, when we construct the list of interfaces providing a default (step 2), we get A and B, 
but then in step 3 we remove A because the default provided by B is more specific.  We 
then get a unique most-specific provider of default – B – and D.m() resolves to X.b.   

If both B and C were to override m(): 

interface A { void m() default X.a; } 
interface B extends A { void m() default X.b; } 
interface C extends A { void m() default X.b; } 
class D implements B, C { } 
In this case, the inheritance of m() in D would be ambiguous (because the set of most-
specific default-providing interfaces contains both B and C).  At compile time D would 
be rejected unless D implements a body for m().   

3.2. Abstract methods 
In searching the superclass hierarchy, we prefer a declaration in a superclass to a default 
in an interface.  This preference includes abstract methods in superclasses as well; the 
defaults are only considered when the entire implementation hierarchy is silent on the 
status of the method in question.  (This provides us with a simple rule: “the superclass 
always wins.”)   

In the following example, m() is considered abstract in D even though a default is 
available from A, because the abstract declaration in C takes precedence over the default: 

interface A { void m() default X.a; } 
class C { abstract void m(); } 
class D extends C implements A { } 
 



3.3. Conflicting defaults 
Step (3) in the resolution procedure above addresses the case of ambiguous default 
implementations.  It is allowable to inherit a default through multiple paths (such as 
through a diamond-shaped interface hierarchy), but the resolution procedure is looking 
for a unique, most specific default-providing interface.  If one default “shadows” another 
(where a subinterface provides a different default for an extension method declared in a 
superinterface), then the less specific interface is pruned from consideration – no matter 
where it appears in the inheritance hierarchy.  If two or more extended interfaces provide 
default implementations, and one is not a superinterface of the other, then neither is used 
and a linkage exception is thrown indicating conflicting default implementations.7 

3.4. Covariant overrides 
Interface methods can be overridden with covariant return types (where the more specific 
interface provides a more specific return type).  If the interface method being overridden 
has a default, the subinterface must either provide a new default or remove the default 
(the old default is not guaranteed to be type-safe with respect to the more specific return 
type.)   

3.5. “Pass-through” of defaults 
In the following case: 

interface A { void m() default X.a; } 
interface B extends A { void m(); } 
The declaration of B does not have the effect of removing the default from A.  From the 
perspective of resolving the default for m(), this declaration of B is identical to one that 
does not declare m() at all.   

3.6. Removal of defaults 
There may be situations in which an interface method overrides a method with a default, 
and it is more desirable to remove the default than to provide a new default (in that case 
the subinterface could specify “default none”.)  For purposes of identifying the most 
specific default-providing interface, an interface specifying “default none” is still 
considered to provide a default (just as we treat both method bodies and abstract methods 
in classes identically for purposes of determining whether to search for a default.)  If the 
compiler determines that the unique most-specific default-providing interface specifies 
no default implementation, it will require implementing classes to provide a method body 
just as if the method were an ordinary abstract interface method. 

For purposes of extension method resolution, extension methods with their defaults 
removed are not treated the same as abstract interface methods.  Effectively, there are 
three states an interface method can be in with respect to defaults: an ordinary abstract 
interface method, an extension method with a default, and an extension method with its 
default removed. Once a method has been given a default, that default can be removed, 
but there is no way to return it to being an ordinary abstract interface method.  (Once an 
                                                 
7Note that conflicting defaults can only arise from inconsistent separate compilation; the compiler will 
reject conflicting defaults if they are present at compile time.   



extension method, always an extension method.) In the following example, A declares a 
default for m(), and B overrides m() and removes the default.  In both D and E, m() is 
considered abstract and must provide an implementation; class F fails to compile because 
there is not a unique most-specific default-providing interface (both B and C are 
competing to provide the default in F).   

interface A { void m() default X.a; } 
interface B extends A { void m() default none; } 
interface C extends A { void m() default X.c; } 
class D implements B { } 
class E implements A,B { } 
class F implements B,C { } 
It is a compile-time error if an interface method specifies “default none” and none of its 
superinterfaces declare a default for that method.   

3.7. Super-calls 
A concrete class method or interface extension method may wish to override an extension 
method, but still refer to the inherited default from one of its superinterfaces, say to 
choose between conflicting defaults methods, or to decorate the call to the default from 
the interface.   

interface A { void m() default X.a; } 
interface B { void m() default X.b; } 
class C implements A, B {  
    public void m() { A.super.m(); } 
}  
class D implements A {  
    public void m() { println(“Calling m”); A.super.m(); } 
} 
 

An implementation of an extension method in a class can refer to the default 
implementation from a superinterface by “InterfaceName.super.methodName()”, using 
syntax inspired by references to enclosing class instances of inner classes.  If the class 
does not have multiple supertypes that specify this method name and a compatible 
signature, we may wish to additionally allow the simpler syntax “super.methodName()”.  
The use of this mechanism is restricted to the contexts where one can use the super.m() 
construct in Java SE 7.  The interfaces through which you can call up to superinterface 
defaults is restricted to the immediate superinterfaces of the class.   

Further, because it is a compile time error for an interface to have conflicting defaults, the 
default clause in an extension method declaration also may need to refer to the default in 
one of its superinterfaces: 

interface A { void m() default X.a; } 
interface B { void m() default X.b; } 
interface Q extends A, B {  
    public void m() default B.super.m; 
} 



4. Classfile support 
The compilation of extended interfaces and extension methods is very similar to ordinary 
interfaces.  Extension methods are compiled as abstract methods just as ordinary interface 
methods.  The only differences are: 

 The class should be identifiable as an extended interface.  This could be done by 
an additional accessibility bit (ACC_EXTENDED_INTERFACE), an additional 
class attribute, or simply inferred from the presence of extension methods.  
(Because classfile bits are in short supply, we will likely choose the latter route, 
and infer that a method is an extension method or that an interface is an extended 
interface entirely from the presence of extension method attributes rather than by 
accessibility bits for the class or method.)   

 Extension methods should refer to their default implementation.  This requires an 
additional attribute in the method_info structure which will store a reference to 
the default implementation (see below.)  We could also include setting an 
additional accessibility bit (ACC_DEFENDER) in the access_flags field of the 
method_info structure, but will likely not for reasons of flag real estate 
management. 

struct Defender_attribute {         
   u2 class_index; 
   u2 method_index; 
} 

5. Reflection support 
Adding extension methods creates the need for several additional reflective methods in 
java.lang.Class and java.lang.Method to identify extended interfaces, extension methods, 
and to find the default for an extension method.   

class Class {  
    // Is this class an extended interface? 
    public boolean hasExtensionMethods(); 
} 
 
class Method { 
    // Is this method an extension method? 
    public boolean isExtensionMethod(); 
 
    // For an extension method, what is its default? 
    public Method getDefaultImplementation(); 
} 

Listing 2.  Reflection support. 

The implementations for these methods map straightforwardly to the existence and 
contents of Defender attributes in the class.  Because the default implementation exists in 
another class than the specifying interface, the getDefaultImplementation() method may 
trigger loading of the class hosting the default implementation.   



6.  Compile-time vs runtime 
The compile-time type checking rules are strict, with the goal that a program that 
compiles globally (i.e., compilation succeeds when all classes are compiled together) will 
always link properly.  However, it is possible, through separate compilation, to create 
programs that cannot link (such as recompiling an interface to remove a default, or 
adding a default that would make default resolution ambiguous.)  The Featherweight 
Defenders paper separately specifies the compile-time vs run-time semantics.   

We may choose to relax the runtime semantics to make a program more robust against 
conflicts introduced by inconsistent separate compilation, since this hazard can come 
about quite innocently when a class implements interfaces from two separately 
maintained libraries.  There are a variety of schemes that might increase the set of 
changes to supertypes that could be considered binary or source compatible (though they 
also increase complexity).   

7. Invocation of extension methods 
Extension methods should be invoked like any other virtual method, with invokevirtual 
or invokeinterface8.  When invoking an extension method defined on interface A 
implemented by class C, the caller should see the same result whether the method is 
invoked with invokevirtual or invokeinterface9.  Therefore all invocation paths to a 
method on a given receiver (whether invokevirtual, or invokeinterface through any 
interface) should arrive at the same target method.   

8. Implementation strategies 
There are several possible implementation strategies, with varying impact on the VM and 
tools ecosystem.  The two most credible strategies are: 

1. At class load time, for non-abstract classes that implement extended interfaces 
and do not implement all the extended methods of that interface, a synthetic 
method is woven in that invokes the appropriate default implementation.  In the 
general case this is done by the class loader at execution time, but can also be 
done before execution when a module is loaded into a module repository.   

2. Modify the behavior of invokevirtual / invokeinterface in the JVM to implement 
the invocation semantics described here.  (This approach is more invasive, but is 
more in keeping with the spirit of dynamic linking and lazy resolution.)   

                                                 
8 One translation strategy that was initially considered but rejected was to have calls to extension methods 
translated as invokedynamic.  However, this would make adding or removing a default a binary-
incompatible change in all cases, and would have placed a burden on classfile consumers (such as language 
compilers) to keep track of yet another form of method invocation.   
9 Because the default is specified by the interface, it is theoretically possible to disambiguate between two 
conflicting extension methods when the method is invoked via invokeinterface rather than invokevirtual. 
However, this would be confusing; historically, Java objects have only had one implementation of a 
method even when it is specified in multiple interfaces.   



8.1. Implementation recommendation: lazy vtable building 
The implementation approach we recommend is to add in default resolution to the 
standard method resolution in invokevirtual / invokedynamic, deferring resolution to the 
first time a given method is invoked on an instance of a given class.   

Resolution requires computing the set of superinterfaces that provide (or remove) a 
default for the method being resolved.  This can be done on each resolution request, or 
(as a time-space tradeoff) we can associate (perhaps via a ClassValue) summarized 
default resolution data with each interface so that we need only examine the immediate 
superinterfaces of a class when resolving a method in that class.   

8.2. Bridge methods 
A significant complication for resolution of extension methods is bridge methods.  Bridge 
methods are synthetic methods inserted by the compiler to make up for differences 
between the compile-time (generic) type system and the run-time (erased) type system.  
There are two significant cases where bridge methods are relevant to extension methods: 
covariant overrides and generic substitution.   

The following example shows a covariant override: 

interface A { public Object make(); } 
interface B extends A { public String make(); } 

At the language level, A class that implements B has a single method make(), which 
returns String.  But at the VM level, it must respond to invocations for both of the 
following method signatures, which from the VM’s perspective are two completely 
different methods: 

make()Ljava/lang/Object; 
make()Ljava/lang/String; 

The compiler helps us out by ensuring that any class implementing B and providing a 
body for the String-bearing version of make() also gets a synthetic implementation 
(bridge method) for the Object-bearing version of make(), which just turns around and 
calls the String-bearing version.   

This is necessary because if someone casts the B to an A, and invokes make() on that, the 
signature from A will be used to resolve the method, and the object had better respond to 
that invocation.   

The other condition where bridge methods arise is generic substitution.  Consider:  

interface A { public void foo(String s); } 
interface B<T> { public void foo(T t); } 
class C implements A, B<String> { ... } 

Here, the developer will provide a method body for foo(String).  But, the signature of the 
(erasure of the) method in B is foo(Ljava/lang/Object;).  Again, the compiler has to 
provide a bridge method.   

The compiler only generates bridge methods where a concrete method implementation is 
present.  This means that when we resolve extension methods in a class C, the VM must 
be prepared to resolve bridges for those extension methods too (and figure out that the 
Object-bearing make() is a bridge for the String-bearing make()).  This introduces 



additional complexity as the determination of which methods require bridging to which 
other methods may require analysis of generic type signatures.  While there are cases 
where the static compiler can embed additional information in the classfile to accelerate 
this process, these cases do not account for 100% of the time where bridge methods are 
required.10 

8.3. Implementation strategy for super-calls 
Calls to “super” defaults will be translated using invokedynamic, where the method name 
and argument list encodes the desired interface, method name, and method signature.  
The bootstrap method will be a language runtime method in java.lang.invoke, which 
determines which default is being called, and permanently links the call site using a 
ConstantCallSite.   

9. Compatibility considerations 
There are two primary types of compatibility issues we care about: binary compatibility 
and source compatibility.  To say a change is binary compatible means that a classfile in 
a program could be replaced and all call sites within the program that linked before the 
change will continue to link after the change.  To say a change is source compatible 
means that if the entire program compiled before the change, then the entire program 
should compile after the change.   

As the Java language as it now stands, a number of operations on supertypes could 
introduce compatibility issues: 

 Add concrete method to superclass.  This is binary-compatible, but (in rare cases) 
source-incompatible (there could be a return-type conflict with another method of 
the same name in a subclass.)   

 Add method to interface.  Binary compatible, but source-incompatible.  

 Change concrete method implementation.  Binary and source compatible.   

 Remove method from superclass.  Binary and source incompatible.   

 Remove method from interface.  Binary and source incompatible.   

With extension methods in the language, we must consider some new operations: 

 Add method to interface with default (add-defmeth).   

 Add default to existing interface method (add-def). 

 Change default on existing extension method (mod-def). 

 Remove a default but leave the method (rem-def). 

 Remove a method and its default (rem-defmeth.)   

                                                 
10 One might argue that it would have been better to add bridge method handling as a VM feature rather 
than a compiler feature.  In 2004 having the static compiler generate bridges seemed like a pretty darn 
clever idea.  Today’s problems come from yesterday’s solutions.   



9.1. Source compatibility 
Under the semantics currently defined, only mod-def is strictly source-compatible, 
though most instances of add-defmeth and add-def are likely to not cause source 
compatibility issues in practice.  The situations where add-defmeth and add-def could 
cause problems are those where the addition of the method or the default would cause an 
extension method which properly resolved in a subclass prior to the change to become 
ambiguous, or those which introduce a signature incompatibility with another method of 
the same name.  These are roughly analogous to the cases where adding a concrete 
superclass method would be incompatible.  (We are investigating mechanisms of 
mitigating this problem.)   

9.2. Binary compatibility 
Under the semantics currently defined, only mod-def is strictly binary-compatible, though 
most instances of add-defmeth and add-def are likely to not cause binary compatibility 
issues in practice.  The situations where add-defmeth and add-def could cause problems 
are those where the addition of the method or the default would cause an extension 
method which properly resolved in a subclass prior to the change to become ambiguous.   

Note that any program which fails to link after such a change would also fail to compile, 
which means that the changes which are binary incompatible are also source 
incompatible.  Conversely, if a program can be globally compiled successfully, then all 
invocations of extension methods are guaranteed to link correctly.  Therefore, binary 
compatibilities only happen in the case of programs that have been “broken” by separate 
compilation.   

There are three categories of mechanisms we might use to increase binary compatibility 
for broken programs (at the cost of increased complexity):  

 Structural approaches, such as imposing a linearization ordering on interfaces that 
is used to break ambiguities; 

 Historical approaches, such as remembering things in the classfile about default 
resolution (such as the identity of the default, or the interface from which it is 
inherited, or the inheritance path to that interface) that could be used to 
disambiguate the default; 

 Call-site-based approaches, such as using the interface name at an invokeinterface 
site to identify a “preferred” inheritance path for an ambiguous default.   

None of these are perfect solutions; each reduces the set of binary-incompatible changes 
in a different way.  The only value these approaches have is to render implementation 
classes more robust to separately compiled changes to superinterfaces (such as changes to 
interfaces from libraries that an application class implements.)   

10. Unintended consequences for the language 
The intent of this feature is to render interfaces more malleable, allowing them to be 
extended over time by providing new methods so long as a default (which is restricted to 
using the public interface of the interface being extended) is provided.  This addition to 
the language moves us a step towards interfaces being more like “mixins” or “traits”.  



However, developers may choose to start using this feature for new interfaces for reasons 
other than interface evolution. 

For example, it is quite conceivable that developers might choose to give up on abstract 
classes entirely, instead preferring to use extension methods for all but a few interface 
methods.  This might result in an interface like Set looking like Listing 2.   

public interface Set<T> extends Collection<T> { 
    public int size() 
        default AbstractSetMethods.size; 
 
    public boolean isEmpty() 
        default AbstractSetMethods.isEmpty; 
 
    // The rest of the Set methods, most having defaults 
} 
Listing 3.  Possible use of extension methods. 

The prevailing wisdom in API design (see Effective Java) is to define types with 
interfaces and skeletal implementations with companion abstract classes.  Extension 
methods allow users to skip the skeletal implementation.  This has the disadvantage of 
adding another way to do something that is already well served, but the new way has 
advantages too, allowing the inheritance of behavior (but not state) from multiple sources, 
reducing code duplication or forwarding methods.   

11. Effect on dynamic proxies 
Authors of dynamic proxies may well have assumed that the set of methods implemented 
by a given interface was fixed, and embodied this assumption into any dynamic proxies 
coded for that interface.  Such dynamic proxy implementations may well fail when an 
extension method is called on the proxy.  However, defensively coded dynamic proxies 
will likely continue to work, since most proxies intercept a specific subset of methods but 
pass others on to the underlying proxied object.  

12. Restrictions 
Extension methods will not be allowed on annotation interfaces (@interfaces.)   

13. Java ME considerations 
Java ME applications differ from Java SE applications because they undergo a linking 
and packaging step that is not performed in Java SE applications, and may not support 
invokedynamic.  However, the packager can perform a closed-world calculation of all 
extension methods and their bridges, and directly weave in stubs to classes implementing 
extended interfaces, eliminating the need for runtime resolution.  Similarly, for super-
calls, the packager can recognize the invokedynamic calls (by their known bootstrap) and 
replace these with static invocations of the appropriate default implementation.   

 


