1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  33 #include "runtime/arguments.hpp"
  34 #include "runtime/java.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "utilities/debug.hpp"
  37 
  38 #define PREDICTIONS_VERBOSE 0
  39 
  40 // <NEW PREDICTION>
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double fully_young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 // </NEW PREDICTION>
  83 
  84 // Help class for avoiding interleaved logging
  85 class LineBuffer: public StackObj {
  86 
  87 private:
  88   static const int BUFFER_LEN = 1024;
  89   static const int INDENT_CHARS = 3;
  90   char _buffer[BUFFER_LEN];
  91   int _indent_level;
  92   int _cur;
  93 
  94   void vappend(const char* format, va_list ap) {
  95     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
  96     if (res != -1) {
  97       _cur += res;
  98     } else {
  99       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
 100       _buffer[BUFFER_LEN -1] = 0;
 101       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
 102     }
 103   }
 104 
 105 public:
 106   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
 107     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
 108       _buffer[_cur] = ' ';
 109     }
 110   }
 111 
 112 #ifndef PRODUCT
 113   ~LineBuffer() {
 114     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
 115   }
 116 #endif
 117 
 118   void append(const char* format, ...) {
 119     va_list ap;
 120     va_start(ap, format);
 121     vappend(format, ap);
 122     va_end(ap);
 123   }
 124 
 125   void append_and_print_cr(const char* format, ...) {
 126     va_list ap;
 127     va_start(ap, format);
 128     vappend(format, ap);
 129     va_end(ap);
 130     gclog_or_tty->print_cr("%s", _buffer);
 131     _cur = _indent_level * INDENT_CHARS;
 132   }
 133 };
 134 
 135 G1CollectorPolicy::G1CollectorPolicy() :
 136   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
 137                         ? ParallelGCThreads : 1),
 138 
 139   _n_pauses(0),
 140   _recent_rs_scan_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 141   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 142   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
 143   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 144   _all_pause_times_ms(new NumberSeq()),
 145   _stop_world_start(0.0),
 146   _all_stop_world_times_ms(new NumberSeq()),
 147   _all_yield_times_ms(new NumberSeq()),
 148 
 149   _all_mod_union_times_ms(new NumberSeq()),
 150 
 151   _summary(new Summary()),
 152 
 153 #ifndef PRODUCT
 154   _cur_clear_ct_time_ms(0.0),
 155   _min_clear_cc_time_ms(-1.0),
 156   _max_clear_cc_time_ms(-1.0),
 157   _cur_clear_cc_time_ms(0.0),
 158   _cum_clear_cc_time_ms(0.0),
 159   _num_cc_clears(0L),
 160 #endif
 161 
 162   _region_num_young(0),
 163   _region_num_tenured(0),
 164   _prev_region_num_young(0),
 165   _prev_region_num_tenured(0),
 166 
 167   _aux_num(10),
 168   _all_aux_times_ms(new NumberSeq[_aux_num]),
 169   _cur_aux_start_times_ms(new double[_aux_num]),
 170   _cur_aux_times_ms(new double[_aux_num]),
 171   _cur_aux_times_set(new bool[_aux_num]),
 172 
 173   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 174   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 175   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 176 
 177   // <NEW PREDICTION>
 178 
 179   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 180   _prev_collection_pause_end_ms(0.0),
 181   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 182   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 183   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 184   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 185   _partially_young_cards_per_entry_ratio_seq(
 186                                          new TruncatedSeq(TruncatedSeqLength)),
 187   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 188   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 189   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 190   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 191   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 192   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 193   _non_young_other_cost_per_region_ms_seq(
 194                                          new TruncatedSeq(TruncatedSeqLength)),
 195 
 196   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 197   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 198   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 199 
 200   _pause_time_target_ms((double) MaxGCPauseMillis),
 201 
 202   // </NEW PREDICTION>
 203 
 204   _full_young_gcs(true),
 205   _full_young_pause_num(0),
 206   _partial_young_pause_num(0),
 207 
 208   _during_marking(false),
 209   _in_marking_window(false),
 210   _in_marking_window_im(false),
 211 
 212   _known_garbage_ratio(0.0),
 213   _known_garbage_bytes(0),
 214 
 215   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
 216 
 217    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
 218 
 219   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
 220   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
 221 
 222   _recent_avg_pause_time_ratio(0.0),
 223   _num_markings(0),
 224   _n_marks(0),
 225   _n_pauses_at_mark_end(0),
 226 
 227   _all_full_gc_times_ms(new NumberSeq()),
 228 
 229   // G1PausesBtwnConcMark defaults to -1
 230   // so the hack is to do the cast  QQQ FIXME
 231   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
 232   _n_marks_since_last_pause(0),
 233   _initiate_conc_mark_if_possible(false),
 234   _during_initial_mark_pause(false),
 235   _should_revert_to_full_young_gcs(false),
 236   _last_full_young_gc(false),
 237 
 238   _eden_bytes_before_gc(0),
 239   _survivor_bytes_before_gc(0),
 240   _capacity_before_gc(0),
 241 
 242   _prev_collection_pause_used_at_end_bytes(0),
 243 
 244   _collection_set(NULL),
 245   _collection_set_size(0),
 246   _collection_set_bytes_used_before(0),
 247 
 248   // Incremental CSet attributes
 249   _inc_cset_build_state(Inactive),
 250   _inc_cset_head(NULL),
 251   _inc_cset_tail(NULL),
 252   _inc_cset_size(0),
 253   _inc_cset_young_index(0),
 254   _inc_cset_bytes_used_before(0),
 255   _inc_cset_max_finger(NULL),
 256   _inc_cset_recorded_young_bytes(0),
 257   _inc_cset_recorded_rs_lengths(0),
 258   _inc_cset_predicted_elapsed_time_ms(0.0),
 259   _inc_cset_predicted_bytes_to_copy(0),
 260 
 261 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 262 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 263 #endif // _MSC_VER
 264 
 265   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 266                                                  G1YoungSurvRateNumRegionsSummary)),
 267   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 268                                               G1YoungSurvRateNumRegionsSummary)),
 269   // add here any more surv rate groups
 270   _recorded_survivor_regions(0),
 271   _recorded_survivor_head(NULL),
 272   _recorded_survivor_tail(NULL),
 273   _survivors_age_table(true),
 274 
 275   _gc_overhead_perc(0.0)
 276 
 277 {
 278   // Set up the region size and associated fields. Given that the
 279   // policy is created before the heap, we have to set this up here,
 280   // so it's done as soon as possible.
 281   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 282   HeapRegionRemSet::setup_remset_size();
 283 
 284   // Verify PLAB sizes
 285   const uint region_size = HeapRegion::GrainWords;
 286   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 287     char buffer[128];
 288     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
 289                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 290     vm_exit_during_initialization(buffer);
 291   }
 292 
 293   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 294   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 295 
 296   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
 297   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
 298   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
 299 
 300   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
 301   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
 302 
 303   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
 304 
 305   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
 306 
 307   _par_last_termination_times_ms = new double[_parallel_gc_threads];
 308   _par_last_termination_attempts = new double[_parallel_gc_threads];
 309   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
 310   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
 311 
 312   // start conservatively
 313   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
 314 
 315   // <NEW PREDICTION>
 316 
 317   int index;
 318   if (ParallelGCThreads == 0)
 319     index = 0;
 320   else if (ParallelGCThreads > 8)
 321     index = 7;
 322   else
 323     index = ParallelGCThreads - 1;
 324 
 325   _pending_card_diff_seq->add(0.0);
 326   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 327   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 328   _fully_young_cards_per_entry_ratio_seq->add(
 329                             fully_young_cards_per_entry_ratio_defaults[index]);
 330   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 331   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 332   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 333   _young_other_cost_per_region_ms_seq->add(
 334                                young_other_cost_per_region_ms_defaults[index]);
 335   _non_young_other_cost_per_region_ms_seq->add(
 336                            non_young_other_cost_per_region_ms_defaults[index]);
 337 
 338   // </NEW PREDICTION>
 339 
 340   // Below, we might need to calculate the pause time target based on
 341   // the pause interval. When we do so we are going to give G1 maximum
 342   // flexibility and allow it to do pauses when it needs to. So, we'll
 343   // arrange that the pause interval to be pause time target + 1 to
 344   // ensure that a) the pause time target is maximized with respect to
 345   // the pause interval and b) we maintain the invariant that pause
 346   // time target < pause interval. If the user does not want this
 347   // maximum flexibility, they will have to set the pause interval
 348   // explicitly.
 349 
 350   // First make sure that, if either parameter is set, its value is
 351   // reasonable.
 352   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 353     if (MaxGCPauseMillis < 1) {
 354       vm_exit_during_initialization("MaxGCPauseMillis should be "
 355                                     "greater than 0");
 356     }
 357   }
 358   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 359     if (GCPauseIntervalMillis < 1) {
 360       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 361                                     "greater than 0");
 362     }
 363   }
 364 
 365   // Then, if the pause time target parameter was not set, set it to
 366   // the default value.
 367   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 368     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 369       // The default pause time target in G1 is 200ms
 370       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 371     } else {
 372       // We do not allow the pause interval to be set without the
 373       // pause time target
 374       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 375                                     "without setting MaxGCPauseMillis");
 376     }
 377   }
 378 
 379   // Then, if the interval parameter was not set, set it according to
 380   // the pause time target (this will also deal with the case when the
 381   // pause time target is the default value).
 382   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 383     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 384   }
 385 
 386   // Finally, make sure that the two parameters are consistent.
 387   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 388     char buffer[256];
 389     jio_snprintf(buffer, 256,
 390                  "MaxGCPauseMillis (%u) should be less than "
 391                  "GCPauseIntervalMillis (%u)",
 392                  MaxGCPauseMillis, GCPauseIntervalMillis);
 393     vm_exit_during_initialization(buffer);
 394   }
 395 
 396   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 397   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 398   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 399   _sigma = (double) G1ConfidencePercent / 100.0;
 400 
 401   // start conservatively (around 50ms is about right)
 402   _concurrent_mark_init_times_ms->add(0.05);
 403   _concurrent_mark_remark_times_ms->add(0.05);
 404   _concurrent_mark_cleanup_times_ms->add(0.20);
 405   _tenuring_threshold = MaxTenuringThreshold;
 406 
 407   // if G1FixedSurvivorSpaceSize is 0 which means the size is not
 408   // fixed, then _max_survivor_regions will be calculated at
 409   // calculate_young_list_target_length during initialization
 410   _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
 411 
 412   assert(GCTimeRatio > 0,
 413          "we should have set it to a default value set_g1_gc_flags() "
 414          "if a user set it to 0");
 415   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 416 
 417   initialize_all();
 418 }
 419 
 420 // Increment "i", mod "len"
 421 static void inc_mod(int& i, int len) {
 422   i++; if (i == len) i = 0;
 423 }
 424 
 425 void G1CollectorPolicy::initialize_flags() {
 426   set_min_alignment(HeapRegion::GrainBytes);
 427   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 428   if (SurvivorRatio < 1) {
 429     vm_exit_during_initialization("Invalid survivor ratio specified");
 430   }
 431   CollectorPolicy::initialize_flags();
 432 }
 433 
 434 // The easiest way to deal with the parsing of the NewSize /
 435 // MaxNewSize / etc. parameteres is to re-use the code in the
 436 // TwoGenerationCollectorPolicy class. This is similar to what
 437 // ParallelScavenge does with its GenerationSizer class (see
 438 // ParallelScavengeHeap::initialize()). We might change this in the
 439 // future, but it's a good start.
 440 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
 441   size_t size_to_region_num(size_t byte_size) {
 442     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
 443   }
 444 
 445 public:
 446   G1YoungGenSizer() {
 447     initialize_flags();
 448     initialize_size_info();
 449   }
 450 
 451   size_t min_young_region_num() {
 452     return size_to_region_num(_min_gen0_size);
 453   }
 454   size_t initial_young_region_num() {
 455     return size_to_region_num(_initial_gen0_size);
 456   }
 457   size_t max_young_region_num() {
 458     return size_to_region_num(_max_gen0_size);
 459   }
 460 };
 461 
 462 void G1CollectorPolicy::init() {
 463   // Set aside an initial future to_space.
 464   _g1 = G1CollectedHeap::heap();
 465 
 466   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 467 
 468   initialize_gc_policy_counters();
 469 
 470   G1YoungGenSizer sizer;
 471   size_t initial_region_num = sizer.initial_young_region_num();
 472 
 473   if (UseAdaptiveSizePolicy) {
 474     set_adaptive_young_list_length(true);
 475     _young_list_fixed_length = 0;
 476   } else {
 477     set_adaptive_young_list_length(false);
 478     _young_list_fixed_length = initial_region_num;
 479   }
 480   _free_regions_at_end_of_collection = _g1->free_regions();
 481   calculate_young_list_min_length();
 482   guarantee( _young_list_min_length == 0, "invariant, not enough info" );
 483   calculate_young_list_target_length();
 484 
 485   // We may immediately start allocating regions and placing them on the
 486   // collection set list. Initialize the per-collection set info
 487   start_incremental_cset_building();
 488 }
 489 
 490 // Create the jstat counters for the policy.
 491 void G1CollectorPolicy::initialize_gc_policy_counters()
 492 {
 493   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 494 }
 495 
 496 void G1CollectorPolicy::calculate_young_list_min_length() {
 497   _young_list_min_length = 0;
 498 
 499   if (!adaptive_young_list_length())
 500     return;
 501 
 502   if (_alloc_rate_ms_seq->num() > 3) {
 503     double now_sec = os::elapsedTime();
 504     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 505     double alloc_rate_ms = predict_alloc_rate_ms();
 506     size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
 507     size_t current_region_num = _g1->young_list()->length();
 508     _young_list_min_length = min_regions + current_region_num;
 509   }
 510 }
 511 
 512 void G1CollectorPolicy::calculate_young_list_target_length() {
 513   if (adaptive_young_list_length()) {
 514     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 515     calculate_young_list_target_length(rs_lengths);
 516   } else {
 517     if (full_young_gcs())
 518       _young_list_target_length = _young_list_fixed_length;
 519     else
 520       _young_list_target_length = _young_list_fixed_length / 2;
 521   }
 522 
 523   // Make sure we allow the application to allocate at least one
 524   // region before we need to do a collection again.
 525   size_t min_length = _g1->young_list()->length() + 1;
 526   _young_list_target_length = MAX2(_young_list_target_length, min_length);
 527   calculate_max_gc_locker_expansion();
 528   calculate_survivors_policy();
 529 }
 530 
 531 void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
 532   guarantee( adaptive_young_list_length(), "pre-condition" );
 533   guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
 534 
 535   double start_time_sec = os::elapsedTime();
 536   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
 537   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
 538   size_t reserve_regions =
 539     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
 540 
 541   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
 542     // we are in fully-young mode and there are free regions in the heap
 543 
 544     double survivor_regions_evac_time =
 545         predict_survivor_regions_evac_time();
 546 
 547     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 548     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 549     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 550     size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 551     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
 552                           + survivor_regions_evac_time;
 553 
 554     // the result
 555     size_t final_young_length = 0;
 556 
 557     size_t init_free_regions =
 558       MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
 559 
 560     // if we're still under the pause target...
 561     if (base_time_ms <= target_pause_time_ms) {
 562       // We make sure that the shortest young length that makes sense
 563       // fits within the target pause time.
 564       size_t min_young_length = 1;
 565 
 566       if (predict_will_fit(min_young_length, base_time_ms,
 567                                      init_free_regions, target_pause_time_ms)) {
 568         // The shortest young length will fit within the target pause time;
 569         // we'll now check whether the absolute maximum number of young
 570         // regions will fit in the target pause time. If not, we'll do
 571         // a binary search between min_young_length and max_young_length
 572         size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
 573         size_t max_young_length = abs_max_young_length;
 574 
 575         if (max_young_length > min_young_length) {
 576           // Let's check if the initial max young length will fit within the
 577           // target pause. If so then there is no need to search for a maximal
 578           // young length - we'll return the initial maximum
 579 
 580           if (predict_will_fit(max_young_length, base_time_ms,
 581                                 init_free_regions, target_pause_time_ms)) {
 582             // The maximum young length will satisfy the target pause time.
 583             // We are done so set min young length to this maximum length.
 584             // The code after the loop will then set final_young_length using
 585             // the value cached in the minimum length.
 586             min_young_length = max_young_length;
 587           } else {
 588             // The maximum possible number of young regions will not fit within
 589             // the target pause time so let's search....
 590 
 591             size_t diff = (max_young_length - min_young_length) / 2;
 592             max_young_length = min_young_length + diff;
 593 
 594             while (max_young_length > min_young_length) {
 595               if (predict_will_fit(max_young_length, base_time_ms,
 596                                         init_free_regions, target_pause_time_ms)) {
 597 
 598                 // The current max young length will fit within the target
 599                 // pause time. Note we do not exit the loop here. By setting
 600                 // min = max, and then increasing the max below means that
 601                 // we will continue searching for an upper bound in the
 602                 // range [max..max+diff]
 603                 min_young_length = max_young_length;
 604               }
 605               diff = (max_young_length - min_young_length) / 2;
 606               max_young_length = min_young_length + diff;
 607             }
 608             // the above loop found a maximal young length that will fit
 609             // within the target pause time.
 610           }
 611           assert(min_young_length <= abs_max_young_length, "just checking");
 612         }
 613         final_young_length = min_young_length;
 614       }
 615     }
 616     // and we're done!
 617 
 618     // we should have at least one region in the target young length
 619     _young_list_target_length =
 620                               final_young_length + _recorded_survivor_regions;
 621 
 622     // let's keep an eye of how long we spend on this calculation
 623     // right now, I assume that we'll print it when we need it; we
 624     // should really adde it to the breakdown of a pause
 625     double end_time_sec = os::elapsedTime();
 626     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
 627 
 628 #ifdef TRACE_CALC_YOUNG_LENGTH
 629     // leave this in for debugging, just in case
 630     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
 631                            "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
 632                            target_pause_time_ms,
 633                            _young_list_target_length
 634                            elapsed_time_ms,
 635                            full_young_gcs() ? "full" : "partial",
 636                            during_initial_mark_pause() ? " i-m" : "",
 637                            _in_marking_window,
 638                            _in_marking_window_im);
 639 #endif // TRACE_CALC_YOUNG_LENGTH
 640 
 641     if (_young_list_target_length < _young_list_min_length) {
 642       // bummer; this means that, if we do a pause when the maximal
 643       // length dictates, we'll violate the pause spacing target (the
 644       // min length was calculate based on the application's current
 645       // alloc rate);
 646 
 647       // so, we have to bite the bullet, and allocate the minimum
 648       // number. We'll violate our target, but we just can't meet it.
 649 
 650 #ifdef TRACE_CALC_YOUNG_LENGTH
 651       // leave this in for debugging, just in case
 652       gclog_or_tty->print_cr("adjusted target length from "
 653                              SIZE_FORMAT " to " SIZE_FORMAT,
 654                              _young_list_target_length, _young_list_min_length);
 655 #endif // TRACE_CALC_YOUNG_LENGTH
 656 
 657       _young_list_target_length = _young_list_min_length;
 658     }
 659   } else {
 660     // we are in a partially-young mode or we've run out of regions (due
 661     // to evacuation failure)
 662 
 663 #ifdef TRACE_CALC_YOUNG_LENGTH
 664     // leave this in for debugging, just in case
 665     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
 666                            _young_list_min_length);
 667 #endif // TRACE_CALC_YOUNG_LENGTH
 668     // we'll do the pause as soon as possible by choosing the minimum
 669     _young_list_target_length = _young_list_min_length;
 670   }
 671 
 672   _rs_lengths_prediction = rs_lengths;
 673 }
 674 
 675 // This is used by: calculate_young_list_target_length(rs_length). It
 676 // returns true iff:
 677 //   the predicted pause time for the given young list will not overflow
 678 //   the target pause time
 679 // and:
 680 //   the predicted amount of surviving data will not overflow the
 681 //   the amount of free space available for survivor regions.
 682 //
 683 bool
 684 G1CollectorPolicy::predict_will_fit(size_t young_length,
 685                                     double base_time_ms,
 686                                     size_t init_free_regions,
 687                                     double target_pause_time_ms) {
 688 
 689   if (young_length >= init_free_regions)
 690     // end condition 1: not enough space for the young regions
 691     return false;
 692 
 693   double accum_surv_rate_adj = 0.0;
 694   double accum_surv_rate =
 695     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
 696 
 697   size_t bytes_to_copy =
 698     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 699 
 700   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 701 
 702   double young_other_time_ms =
 703                        predict_young_other_time_ms(young_length);
 704 
 705   double pause_time_ms =
 706                    base_time_ms + copy_time_ms + young_other_time_ms;
 707 
 708   if (pause_time_ms > target_pause_time_ms)
 709     // end condition 2: over the target pause time
 710     return false;
 711 
 712   size_t free_bytes =
 713                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
 714 
 715   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
 716     // end condition 3: out of to-space (conservatively)
 717     return false;
 718 
 719   // success!
 720   return true;
 721 }
 722 
 723 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 724   double survivor_regions_evac_time = 0.0;
 725   for (HeapRegion * r = _recorded_survivor_head;
 726        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 727        r = r->get_next_young_region()) {
 728     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
 729   }
 730   return survivor_regions_evac_time;
 731 }
 732 
 733 void G1CollectorPolicy::check_prediction_validity() {
 734   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 735 
 736   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 737   if (rs_lengths > _rs_lengths_prediction) {
 738     // add 10% to avoid having to recalculate often
 739     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 740     calculate_young_list_target_length(rs_lengths_prediction);
 741   }
 742 }
 743 
 744 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 745                                                bool is_tlab,
 746                                                bool* gc_overhead_limit_was_exceeded) {
 747   guarantee(false, "Not using this policy feature yet.");
 748   return NULL;
 749 }
 750 
 751 // This method controls how a collector handles one or more
 752 // of its generations being fully allocated.
 753 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 754                                                        bool is_tlab) {
 755   guarantee(false, "Not using this policy feature yet.");
 756   return NULL;
 757 }
 758 
 759 
 760 #ifndef PRODUCT
 761 bool G1CollectorPolicy::verify_young_ages() {
 762   HeapRegion* head = _g1->young_list()->first_region();
 763   return
 764     verify_young_ages(head, _short_lived_surv_rate_group);
 765   // also call verify_young_ages on any additional surv rate groups
 766 }
 767 
 768 bool
 769 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 770                                      SurvRateGroup *surv_rate_group) {
 771   guarantee( surv_rate_group != NULL, "pre-condition" );
 772 
 773   const char* name = surv_rate_group->name();
 774   bool ret = true;
 775   int prev_age = -1;
 776 
 777   for (HeapRegion* curr = head;
 778        curr != NULL;
 779        curr = curr->get_next_young_region()) {
 780     SurvRateGroup* group = curr->surv_rate_group();
 781     if (group == NULL && !curr->is_survivor()) {
 782       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 783       ret = false;
 784     }
 785 
 786     if (surv_rate_group == group) {
 787       int age = curr->age_in_surv_rate_group();
 788 
 789       if (age < 0) {
 790         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 791         ret = false;
 792       }
 793 
 794       if (age <= prev_age) {
 795         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 796                                "(%d, %d)", name, age, prev_age);
 797         ret = false;
 798       }
 799       prev_age = age;
 800     }
 801   }
 802 
 803   return ret;
 804 }
 805 #endif // PRODUCT
 806 
 807 void G1CollectorPolicy::record_full_collection_start() {
 808   _cur_collection_start_sec = os::elapsedTime();
 809   // Release the future to-space so that it is available for compaction into.
 810   _g1->set_full_collection();
 811 }
 812 
 813 void G1CollectorPolicy::record_full_collection_end() {
 814   // Consider this like a collection pause for the purposes of allocation
 815   // since last pause.
 816   double end_sec = os::elapsedTime();
 817   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
 818   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 819 
 820   _all_full_gc_times_ms->add(full_gc_time_ms);
 821 
 822   update_recent_gc_times(end_sec, full_gc_time_ms);
 823 
 824   _g1->clear_full_collection();
 825 
 826   // "Nuke" the heuristics that control the fully/partially young GC
 827   // transitions and make sure we start with fully young GCs after the
 828   // Full GC.
 829   set_full_young_gcs(true);
 830   _last_full_young_gc = false;
 831   _should_revert_to_full_young_gcs = false;
 832   clear_initiate_conc_mark_if_possible();
 833   clear_during_initial_mark_pause();
 834   _known_garbage_bytes = 0;
 835   _known_garbage_ratio = 0.0;
 836   _in_marking_window = false;
 837   _in_marking_window_im = false;
 838 
 839   _short_lived_surv_rate_group->start_adding_regions();
 840   // also call this on any additional surv rate groups
 841 
 842   record_survivor_regions(0, NULL, NULL);
 843 
 844   _prev_region_num_young   = _region_num_young;
 845   _prev_region_num_tenured = _region_num_tenured;
 846 
 847   _free_regions_at_end_of_collection = _g1->free_regions();
 848   // Reset survivors SurvRateGroup.
 849   _survivor_surv_rate_group->reset();
 850   calculate_young_list_min_length();
 851   calculate_young_list_target_length();
 852 }
 853 
 854 void G1CollectorPolicy::record_stop_world_start() {
 855   _stop_world_start = os::elapsedTime();
 856 }
 857 
 858 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 859                                                       size_t start_used) {
 860   if (PrintGCDetails) {
 861     gclog_or_tty->stamp(PrintGCTimeStamps);
 862     gclog_or_tty->print("[GC pause");
 863     gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
 864   }
 865 
 866   assert(_g1->used() == _g1->recalculate_used(),
 867          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 868                  _g1->used(), _g1->recalculate_used()));
 869 
 870   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 871   _all_stop_world_times_ms->add(s_w_t_ms);
 872   _stop_world_start = 0.0;
 873 
 874   _cur_collection_start_sec = start_time_sec;
 875   _cur_collection_pause_used_at_start_bytes = start_used;
 876   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 877   _pending_cards = _g1->pending_card_num();
 878   _max_pending_cards = _g1->max_pending_card_num();
 879 
 880   _bytes_in_collection_set_before_gc = 0;
 881   _bytes_copied_during_gc = 0;
 882 
 883   YoungList* young_list = _g1->young_list();
 884   _eden_bytes_before_gc = young_list->eden_used_bytes();
 885   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
 886   _capacity_before_gc = _g1->capacity();
 887 
 888 #ifdef DEBUG
 889   // initialise these to something well known so that we can spot
 890   // if they are not set properly
 891 
 892   for (int i = 0; i < _parallel_gc_threads; ++i) {
 893     _par_last_gc_worker_start_times_ms[i] = -1234.0;
 894     _par_last_ext_root_scan_times_ms[i] = -1234.0;
 895     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
 896     _par_last_update_rs_times_ms[i] = -1234.0;
 897     _par_last_update_rs_processed_buffers[i] = -1234.0;
 898     _par_last_scan_rs_times_ms[i] = -1234.0;
 899     _par_last_obj_copy_times_ms[i] = -1234.0;
 900     _par_last_termination_times_ms[i] = -1234.0;
 901     _par_last_termination_attempts[i] = -1234.0;
 902     _par_last_gc_worker_end_times_ms[i] = -1234.0;
 903     _par_last_gc_worker_times_ms[i] = -1234.0;
 904   }
 905 #endif
 906 
 907   for (int i = 0; i < _aux_num; ++i) {
 908     _cur_aux_times_ms[i] = 0.0;
 909     _cur_aux_times_set[i] = false;
 910   }
 911 
 912   _satb_drain_time_set = false;
 913   _last_satb_drain_processed_buffers = -1;
 914 
 915   _last_young_gc_full = false;
 916 
 917   // do that for any other surv rate groups
 918   _short_lived_surv_rate_group->stop_adding_regions();
 919   _survivors_age_table.clear();
 920 
 921   assert( verify_young_ages(), "region age verification" );
 922 }
 923 
 924 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
 925   _mark_closure_time_ms = mark_closure_time_ms;
 926 }
 927 
 928 void G1CollectorPolicy::record_concurrent_mark_init_start() {
 929   _mark_init_start_sec = os::elapsedTime();
 930 }
 931 
 932 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
 933                                                    mark_init_elapsed_time_ms) {
 934   _during_marking = true;
 935   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 936   clear_during_initial_mark_pause();
 937   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 938 }
 939 
 940 void G1CollectorPolicy::record_concurrent_mark_init_end() {
 941   double end_time_sec = os::elapsedTime();
 942   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
 943   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
 944   record_concurrent_mark_init_end_pre(elapsed_time_ms);
 945 
 946   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
 947 }
 948 
 949 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 950   _mark_remark_start_sec = os::elapsedTime();
 951   _during_marking = false;
 952 }
 953 
 954 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 955   double end_time_sec = os::elapsedTime();
 956   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 957   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 958   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 959   _prev_collection_pause_end_ms += elapsed_time_ms;
 960 
 961   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 962 }
 963 
 964 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 965   _mark_cleanup_start_sec = os::elapsedTime();
 966 }
 967 
 968 void
 969 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
 970                                                       size_t max_live_bytes) {
 971   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
 972   record_concurrent_mark_cleanup_end_work2();
 973 }
 974 
 975 void
 976 G1CollectorPolicy::
 977 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 978                                          size_t max_live_bytes) {
 979   if (_n_marks < 2) _n_marks++;
 980   if (G1PolicyVerbose > 0)
 981     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
 982                            " (of " SIZE_FORMAT " MB heap).",
 983                            max_live_bytes/M, _g1->capacity()/M);
 984 }
 985 
 986 // The important thing about this is that it includes "os::elapsedTime".
 987 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
 988   double end_time_sec = os::elapsedTime();
 989   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
 990   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
 991   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 992   _prev_collection_pause_end_ms += elapsed_time_ms;
 993 
 994   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
 995 
 996   _num_markings++;
 997 
 998   // We did a marking, so reset the "since_last_mark" variables.
 999   double considerConcMarkCost = 1.0;
1000   // If there are available processors, concurrent activity is free...
1001   if (Threads::number_of_non_daemon_threads() * 2 <
1002       os::active_processor_count()) {
1003     considerConcMarkCost = 0.0;
1004   }
1005   _n_pauses_at_mark_end = _n_pauses;
1006   _n_marks_since_last_pause++;
1007 }
1008 
1009 void
1010 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
1011   _should_revert_to_full_young_gcs = false;
1012   _last_full_young_gc = true;
1013   _in_marking_window = false;
1014   if (adaptive_young_list_length())
1015     calculate_young_list_target_length();
1016 }
1017 
1018 void G1CollectorPolicy::record_concurrent_pause() {
1019   if (_stop_world_start > 0.0) {
1020     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
1021     _all_yield_times_ms->add(yield_ms);
1022   }
1023 }
1024 
1025 void G1CollectorPolicy::record_concurrent_pause_end() {
1026 }
1027 
1028 template<class T>
1029 T sum_of(T* sum_arr, int start, int n, int N) {
1030   T sum = (T)0;
1031   for (int i = 0; i < n; i++) {
1032     int j = (start + i) % N;
1033     sum += sum_arr[j];
1034   }
1035   return sum;
1036 }
1037 
1038 void G1CollectorPolicy::print_par_stats(int level,
1039                                         const char* str,
1040                                         double* data) {
1041   double min = data[0], max = data[0];
1042   double total = 0.0;
1043   LineBuffer buf(level);
1044   buf.append("[%s (ms):", str);
1045   for (uint i = 0; i < ParallelGCThreads; ++i) {
1046     double val = data[i];
1047     if (val < min)
1048       min = val;
1049     if (val > max)
1050       max = val;
1051     total += val;
1052     buf.append("  %3.1lf", val);
1053   }
1054   buf.append_and_print_cr("");
1055   double avg = total / (double) ParallelGCThreads;
1056   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
1057     avg, min, max, max - min);
1058 }
1059 
1060 void G1CollectorPolicy::print_par_sizes(int level,
1061                                         const char* str,
1062                                         double* data) {
1063   double min = data[0], max = data[0];
1064   double total = 0.0;
1065   LineBuffer buf(level);
1066   buf.append("[%s :", str);
1067   for (uint i = 0; i < ParallelGCThreads; ++i) {
1068     double val = data[i];
1069     if (val < min)
1070       min = val;
1071     if (val > max)
1072       max = val;
1073     total += val;
1074     buf.append(" %d", (int) val);
1075   }
1076   buf.append_and_print_cr("");
1077   double avg = total / (double) ParallelGCThreads;
1078   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
1079     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1080 }
1081 
1082 void G1CollectorPolicy::print_stats (int level,
1083                                      const char* str,
1084                                      double value) {
1085   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1086 }
1087 
1088 void G1CollectorPolicy::print_stats (int level,
1089                                      const char* str,
1090                                      int value) {
1091   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1092 }
1093 
1094 double G1CollectorPolicy::avg_value (double* data) {
1095   if (G1CollectedHeap::use_parallel_gc_threads()) {
1096     double ret = 0.0;
1097     for (uint i = 0; i < ParallelGCThreads; ++i)
1098       ret += data[i];
1099     return ret / (double) ParallelGCThreads;
1100   } else {
1101     return data[0];
1102   }
1103 }
1104 
1105 double G1CollectorPolicy::max_value (double* data) {
1106   if (G1CollectedHeap::use_parallel_gc_threads()) {
1107     double ret = data[0];
1108     for (uint i = 1; i < ParallelGCThreads; ++i)
1109       if (data[i] > ret)
1110         ret = data[i];
1111     return ret;
1112   } else {
1113     return data[0];
1114   }
1115 }
1116 
1117 double G1CollectorPolicy::sum_of_values (double* data) {
1118   if (G1CollectedHeap::use_parallel_gc_threads()) {
1119     double sum = 0.0;
1120     for (uint i = 0; i < ParallelGCThreads; i++)
1121       sum += data[i];
1122     return sum;
1123   } else {
1124     return data[0];
1125   }
1126 }
1127 
1128 double G1CollectorPolicy::max_sum (double* data1,
1129                                    double* data2) {
1130   double ret = data1[0] + data2[0];
1131 
1132   if (G1CollectedHeap::use_parallel_gc_threads()) {
1133     for (uint i = 1; i < ParallelGCThreads; ++i) {
1134       double data = data1[i] + data2[i];
1135       if (data > ret)
1136         ret = data;
1137     }
1138   }
1139   return ret;
1140 }
1141 
1142 // Anything below that is considered to be zero
1143 #define MIN_TIMER_GRANULARITY 0.0000001
1144 
1145 void G1CollectorPolicy::record_collection_pause_end() {
1146   double end_time_sec = os::elapsedTime();
1147   double elapsed_ms = _last_pause_time_ms;
1148   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1149   size_t rs_size =
1150     _cur_collection_pause_used_regions_at_start - collection_set_size();
1151   size_t cur_used_bytes = _g1->used();
1152   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1153   bool last_pause_included_initial_mark = false;
1154   bool update_stats = !_g1->evacuation_failed();
1155 
1156 #ifndef PRODUCT
1157   if (G1YoungSurvRateVerbose) {
1158     gclog_or_tty->print_cr("");
1159     _short_lived_surv_rate_group->print();
1160     // do that for any other surv rate groups too
1161   }
1162 #endif // PRODUCT
1163 
1164   last_pause_included_initial_mark = during_initial_mark_pause();
1165   if (last_pause_included_initial_mark)
1166     record_concurrent_mark_init_end_pre(0.0);
1167 
1168   size_t min_used_targ =
1169     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1170 
1171 
1172   if (!_g1->mark_in_progress() && !_last_full_young_gc) {
1173     assert(!last_pause_included_initial_mark, "invariant");
1174     if (cur_used_bytes > min_used_targ &&
1175       cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1176         assert(!during_initial_mark_pause(), "we should not see this here");
1177 
1178         // Note: this might have already been set, if during the last
1179         // pause we decided to start a cycle but at the beginning of
1180         // this pause we decided to postpone it. That's OK.
1181         set_initiate_conc_mark_if_possible();
1182     }
1183   }
1184 
1185   _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
1186 
1187   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
1188                           end_time_sec, false);
1189 
1190   guarantee(_cur_collection_pause_used_regions_at_start >=
1191             collection_set_size(),
1192             "Negative RS size?");
1193 
1194   // This assert is exempted when we're doing parallel collection pauses,
1195   // because the fragmentation caused by the parallel GC allocation buffers
1196   // can lead to more memory being used during collection than was used
1197   // before. Best leave this out until the fragmentation problem is fixed.
1198   // Pauses in which evacuation failed can also lead to negative
1199   // collections, since no space is reclaimed from a region containing an
1200   // object whose evacuation failed.
1201   // Further, we're now always doing parallel collection.  But I'm still
1202   // leaving this here as a placeholder for a more precise assertion later.
1203   // (DLD, 10/05.)
1204   assert((true || parallel) // Always using GC LABs now.
1205          || _g1->evacuation_failed()
1206          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
1207          "Negative collection");
1208 
1209   size_t freed_bytes =
1210     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
1211   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1212 
1213   double survival_fraction =
1214     (double)surviving_bytes/
1215     (double)_collection_set_bytes_used_before;
1216 
1217   _n_pauses++;
1218 
1219   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1220   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
1221   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
1222   double update_rs_processed_buffers =
1223     sum_of_values(_par_last_update_rs_processed_buffers);
1224   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
1225   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
1226   double termination_time = avg_value(_par_last_termination_times_ms);
1227 
1228   double parallel_known_time = update_rs_time +
1229                                ext_root_scan_time +
1230                                mark_stack_scan_time +
1231                                scan_rs_time +
1232                                obj_copy_time +
1233                                termination_time;
1234 
1235   double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1236 
1237   PauseSummary* summary = _summary;
1238 
1239   if (update_stats) {
1240     _recent_rs_scan_times_ms->add(scan_rs_time);
1241     _recent_pause_times_ms->add(elapsed_ms);
1242     _recent_rs_sizes->add(rs_size);
1243 
1244     MainBodySummary* body_summary = summary->main_body_summary();
1245     guarantee(body_summary != NULL, "should not be null!");
1246 
1247     if (_satb_drain_time_set)
1248       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1249     else
1250       body_summary->record_satb_drain_time_ms(0.0);
1251 
1252     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1253     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
1254     body_summary->record_update_rs_time_ms(update_rs_time);
1255     body_summary->record_scan_rs_time_ms(scan_rs_time);
1256     body_summary->record_obj_copy_time_ms(obj_copy_time);
1257     if (parallel) {
1258       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
1259       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1260       body_summary->record_termination_time_ms(termination_time);
1261       body_summary->record_parallel_other_time_ms(parallel_other_time);
1262     }
1263     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
1264 
1265     // We exempt parallel collection from this check because Alloc Buffer
1266     // fragmentation can produce negative collections.  Same with evac
1267     // failure.
1268     // Further, we're now always doing parallel collection.  But I'm still
1269     // leaving this here as a placeholder for a more precise assertion later.
1270     // (DLD, 10/05.
1271     assert((true || parallel)
1272            || _g1->evacuation_failed()
1273            || surviving_bytes <= _collection_set_bytes_used_before,
1274            "Or else negative collection!");
1275     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
1276     _recent_CS_bytes_surviving->add(surviving_bytes);
1277 
1278     // this is where we update the allocation rate of the application
1279     double app_time_ms =
1280       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
1281     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1282       // This usually happens due to the timer not having the required
1283       // granularity. Some Linuxes are the usual culprits.
1284       // We'll just set it to something (arbitrarily) small.
1285       app_time_ms = 1.0;
1286     }
1287     size_t regions_allocated =
1288       (_region_num_young - _prev_region_num_young) +
1289       (_region_num_tenured - _prev_region_num_tenured);
1290     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1291     _alloc_rate_ms_seq->add(alloc_rate_ms);
1292     _prev_region_num_young   = _region_num_young;
1293     _prev_region_num_tenured = _region_num_tenured;
1294 
1295     double interval_ms =
1296       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1297     update_recent_gc_times(end_time_sec, elapsed_ms);
1298     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1299     if (recent_avg_pause_time_ratio() < 0.0 ||
1300         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1301 #ifndef PRODUCT
1302       // Dump info to allow post-facto debugging
1303       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1304       gclog_or_tty->print_cr("-------------------------------------------");
1305       gclog_or_tty->print_cr("Recent GC Times (ms):");
1306       _recent_gc_times_ms->dump();
1307       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1308       _recent_prev_end_times_for_all_gcs_sec->dump();
1309       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1310                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1311       // In debug mode, terminate the JVM if the user wants to debug at this point.
1312       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1313 #endif  // !PRODUCT
1314       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1315       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1316       if (_recent_avg_pause_time_ratio < 0.0) {
1317         _recent_avg_pause_time_ratio = 0.0;
1318       } else {
1319         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1320         _recent_avg_pause_time_ratio = 1.0;
1321       }
1322     }
1323   }
1324 
1325   if (G1PolicyVerbose > 1) {
1326     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
1327   }
1328 
1329   if (G1PolicyVerbose > 1) {
1330     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
1331                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
1332                            "      |RS|: " SIZE_FORMAT,
1333                            elapsed_ms, recent_avg_time_for_pauses_ms(),
1334                            scan_rs_time, recent_avg_time_for_rs_scan_ms(),
1335                            rs_size);
1336 
1337     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
1338                            "       At end " SIZE_FORMAT "K\n"
1339                            "       garbage      : " SIZE_FORMAT "K"
1340                            "       of     " SIZE_FORMAT "K\n"
1341                            "       survival     : %6.2f%%  (%6.2f%% avg)",
1342                            _cur_collection_pause_used_at_start_bytes/K,
1343                            _g1->used()/K, freed_bytes/K,
1344                            _collection_set_bytes_used_before/K,
1345                            survival_fraction*100.0,
1346                            recent_avg_survival_fraction()*100.0);
1347     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
1348                            recent_avg_pause_time_ratio() * 100.0);
1349   }
1350 
1351   double other_time_ms = elapsed_ms;
1352 
1353   if (_satb_drain_time_set) {
1354     other_time_ms -= _cur_satb_drain_time_ms;
1355   }
1356 
1357   if (parallel) {
1358     other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
1359   } else {
1360     other_time_ms -=
1361       update_rs_time +
1362       ext_root_scan_time + mark_stack_scan_time +
1363       scan_rs_time + obj_copy_time;
1364   }
1365 
1366   if (PrintGCDetails) {
1367     gclog_or_tty->print_cr("%s, %1.8lf secs]",
1368                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
1369                            elapsed_ms / 1000.0);
1370 
1371     if (_satb_drain_time_set) {
1372       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
1373     }
1374     if (_last_satb_drain_processed_buffers >= 0) {
1375       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
1376     }
1377     if (parallel) {
1378       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
1379       print_par_stats(2, "GC Worker Start Time", _par_last_gc_worker_start_times_ms);
1380       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1381       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1382       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
1383       print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
1384       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
1385       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
1386       print_par_stats(2, "Termination", _par_last_termination_times_ms);
1387       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
1388       print_par_stats(2, "GC Worker End Time", _par_last_gc_worker_end_times_ms);
1389 
1390       for (int i = 0; i < _parallel_gc_threads; i++) {
1391         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
1392       }
1393       print_par_stats(2, "GC Worker Times", _par_last_gc_worker_times_ms);
1394 
1395       print_stats(2, "Parallel Other", parallel_other_time);
1396       print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1397     } else {
1398       print_stats(1, "Update RS", update_rs_time);
1399       print_stats(2, "Processed Buffers",
1400                   (int)update_rs_processed_buffers);
1401       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
1402       print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
1403       print_stats(1, "Scan RS", scan_rs_time);
1404       print_stats(1, "Object Copying", obj_copy_time);
1405     }
1406 #ifndef PRODUCT
1407     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
1408     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
1409     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
1410     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
1411     if (_num_cc_clears > 0) {
1412       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
1413     }
1414 #endif
1415     print_stats(1, "Other", other_time_ms);
1416     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
1417 
1418     for (int i = 0; i < _aux_num; ++i) {
1419       if (_cur_aux_times_set[i]) {
1420         char buffer[96];
1421         sprintf(buffer, "Aux%d", i);
1422         print_stats(1, buffer, _cur_aux_times_ms[i]);
1423       }
1424     }
1425   }
1426 
1427   _all_pause_times_ms->add(elapsed_ms);
1428   if (update_stats) {
1429     summary->record_total_time_ms(elapsed_ms);
1430     summary->record_other_time_ms(other_time_ms);
1431   }
1432   for (int i = 0; i < _aux_num; ++i)
1433     if (_cur_aux_times_set[i])
1434       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1435 
1436   // Reset marks-between-pauses counter.
1437   _n_marks_since_last_pause = 0;
1438 
1439   // Update the efficiency-since-mark vars.
1440   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
1441   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
1442     // This usually happens due to the timer not having the required
1443     // granularity. Some Linuxes are the usual culprits.
1444     // We'll just set it to something (arbitrarily) small.
1445     proc_ms = 1.0;
1446   }
1447   double cur_efficiency = (double) freed_bytes / proc_ms;
1448 
1449   bool new_in_marking_window = _in_marking_window;
1450   bool new_in_marking_window_im = false;
1451   if (during_initial_mark_pause()) {
1452     new_in_marking_window = true;
1453     new_in_marking_window_im = true;
1454   }
1455 
1456   if (_last_full_young_gc) {
1457     set_full_young_gcs(false);
1458     _last_full_young_gc = false;
1459   }
1460 
1461   if ( !_last_young_gc_full ) {
1462     if ( _should_revert_to_full_young_gcs ||
1463       _known_garbage_ratio < 0.05 ||
1464       (adaptive_young_list_length() &&
1465       (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
1466         set_full_young_gcs(true);
1467     }
1468   }
1469   _should_revert_to_full_young_gcs = false;
1470 
1471   if (_last_young_gc_full && !_during_marking) {
1472     _young_gc_eff_seq->add(cur_efficiency);
1473   }
1474 
1475   _short_lived_surv_rate_group->start_adding_regions();
1476   // do that for any other surv rate groupsx
1477 
1478   // <NEW PREDICTION>
1479 
1480   if (update_stats) {
1481     double pause_time_ms = elapsed_ms;
1482 
1483     size_t diff = 0;
1484     if (_max_pending_cards >= _pending_cards)
1485       diff = _max_pending_cards - _pending_cards;
1486     _pending_card_diff_seq->add((double) diff);
1487 
1488     double cost_per_card_ms = 0.0;
1489     if (_pending_cards > 0) {
1490       cost_per_card_ms = update_rs_time / (double) _pending_cards;
1491       _cost_per_card_ms_seq->add(cost_per_card_ms);
1492     }
1493 
1494     size_t cards_scanned = _g1->cards_scanned();
1495 
1496     double cost_per_entry_ms = 0.0;
1497     if (cards_scanned > 10) {
1498       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1499       if (_last_young_gc_full)
1500         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1501       else
1502         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1503     }
1504 
1505     if (_max_rs_lengths > 0) {
1506       double cards_per_entry_ratio =
1507         (double) cards_scanned / (double) _max_rs_lengths;
1508       if (_last_young_gc_full)
1509         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1510       else
1511         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1512     }
1513 
1514     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1515     if (rs_length_diff >= 0)
1516       _rs_length_diff_seq->add((double) rs_length_diff);
1517 
1518     size_t copied_bytes = surviving_bytes;
1519     double cost_per_byte_ms = 0.0;
1520     if (copied_bytes > 0) {
1521       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1522       if (_in_marking_window)
1523         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1524       else
1525         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1526     }
1527 
1528     double all_other_time_ms = pause_time_ms -
1529       (update_rs_time + scan_rs_time + obj_copy_time +
1530        _mark_closure_time_ms + termination_time);
1531 
1532     double young_other_time_ms = 0.0;
1533     if (_recorded_young_regions > 0) {
1534       young_other_time_ms =
1535         _recorded_young_cset_choice_time_ms +
1536         _recorded_young_free_cset_time_ms;
1537       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1538                                              (double) _recorded_young_regions);
1539     }
1540     double non_young_other_time_ms = 0.0;
1541     if (_recorded_non_young_regions > 0) {
1542       non_young_other_time_ms =
1543         _recorded_non_young_cset_choice_time_ms +
1544         _recorded_non_young_free_cset_time_ms;
1545 
1546       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1547                                          (double) _recorded_non_young_regions);
1548     }
1549 
1550     double constant_other_time_ms = all_other_time_ms -
1551       (young_other_time_ms + non_young_other_time_ms);
1552     _constant_other_time_ms_seq->add(constant_other_time_ms);
1553 
1554     double survival_ratio = 0.0;
1555     if (_bytes_in_collection_set_before_gc > 0) {
1556       survival_ratio = (double) _bytes_copied_during_gc /
1557                                    (double) _bytes_in_collection_set_before_gc;
1558     }
1559 
1560     _pending_cards_seq->add((double) _pending_cards);
1561     _scanned_cards_seq->add((double) cards_scanned);
1562     _rs_lengths_seq->add((double) _max_rs_lengths);
1563 
1564     double expensive_region_limit_ms =
1565       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1566     if (expensive_region_limit_ms < 0.0) {
1567       // this means that the other time was predicted to be longer than
1568       // than the max pause time
1569       expensive_region_limit_ms = (double) MaxGCPauseMillis;
1570     }
1571     _expensive_region_limit_ms = expensive_region_limit_ms;
1572 
1573     if (PREDICTIONS_VERBOSE) {
1574       gclog_or_tty->print_cr("");
1575       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
1576                     "REGIONS %d %d %d "
1577                     "PENDING_CARDS %d %d "
1578                     "CARDS_SCANNED %d %d "
1579                     "RS_LENGTHS %d %d "
1580                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
1581                     "SURVIVAL_RATIO %1.6lf %1.6lf "
1582                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
1583                     "OTHER_YOUNG %1.6lf %1.6lf "
1584                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
1585                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
1586                     "ELAPSED %1.6lf %1.6lf ",
1587                     _cur_collection_start_sec,
1588                     (!_last_young_gc_full) ? 2 :
1589                     (last_pause_included_initial_mark) ? 1 : 0,
1590                     _recorded_region_num,
1591                     _recorded_young_regions,
1592                     _recorded_non_young_regions,
1593                     _predicted_pending_cards, _pending_cards,
1594                     _predicted_cards_scanned, cards_scanned,
1595                     _predicted_rs_lengths, _max_rs_lengths,
1596                     _predicted_rs_update_time_ms, update_rs_time,
1597                     _predicted_rs_scan_time_ms, scan_rs_time,
1598                     _predicted_survival_ratio, survival_ratio,
1599                     _predicted_object_copy_time_ms, obj_copy_time,
1600                     _predicted_constant_other_time_ms, constant_other_time_ms,
1601                     _predicted_young_other_time_ms, young_other_time_ms,
1602                     _predicted_non_young_other_time_ms,
1603                     non_young_other_time_ms,
1604                     _vtime_diff_ms, termination_time,
1605                     _predicted_pause_time_ms, elapsed_ms);
1606     }
1607 
1608     if (G1PolicyVerbose > 0) {
1609       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
1610                     _predicted_pause_time_ms,
1611                     (_within_target) ? "within" : "outside",
1612                     elapsed_ms);
1613     }
1614 
1615   }
1616 
1617   _in_marking_window = new_in_marking_window;
1618   _in_marking_window_im = new_in_marking_window_im;
1619   _free_regions_at_end_of_collection = _g1->free_regions();
1620   calculate_young_list_min_length();
1621   calculate_young_list_target_length();
1622 
1623   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1624   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1625   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1626   // </NEW PREDICTION>
1627 }
1628 
1629 #define EXT_SIZE_FORMAT "%d%s"
1630 #define EXT_SIZE_PARAMS(bytes)                                  \
1631   byte_size_in_proper_unit((bytes)),                            \
1632   proper_unit_for_byte_size((bytes))
1633 
1634 void G1CollectorPolicy::print_heap_transition() {
1635   if (PrintGCDetails) {
1636     YoungList* young_list = _g1->young_list();
1637     size_t eden_bytes = young_list->eden_used_bytes();
1638     size_t survivor_bytes = young_list->survivor_used_bytes();
1639     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1640     size_t used = _g1->used();
1641     size_t capacity = _g1->capacity();
1642 
1643     gclog_or_tty->print_cr(
1644          "   [Eden: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1645              "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1646              "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1647                      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1648              EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1649                EXT_SIZE_PARAMS(eden_bytes),
1650              EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1651                EXT_SIZE_PARAMS(survivor_bytes),
1652              EXT_SIZE_PARAMS(used_before_gc),
1653              EXT_SIZE_PARAMS(_capacity_before_gc),
1654                EXT_SIZE_PARAMS(used),
1655                EXT_SIZE_PARAMS(capacity));
1656   } else if (PrintGC) {
1657     _g1->print_size_transition(gclog_or_tty,
1658                                _cur_collection_pause_used_at_start_bytes,
1659                                _g1->used(), _g1->capacity());
1660   }
1661 }
1662 
1663 // <NEW PREDICTION>
1664 
1665 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1666                                                      double update_rs_processed_buffers,
1667                                                      double goal_ms) {
1668   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1669   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1670 
1671   if (G1UseAdaptiveConcRefinement) {
1672     const int k_gy = 3, k_gr = 6;
1673     const double inc_k = 1.1, dec_k = 0.9;
1674 
1675     int g = cg1r->green_zone();
1676     if (update_rs_time > goal_ms) {
1677       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1678     } else {
1679       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1680         g = (int)MAX2(g * inc_k, g + 1.0);
1681       }
1682     }
1683     // Change the refinement threads params
1684     cg1r->set_green_zone(g);
1685     cg1r->set_yellow_zone(g * k_gy);
1686     cg1r->set_red_zone(g * k_gr);
1687     cg1r->reinitialize_threads();
1688 
1689     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1690     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1691                                     cg1r->yellow_zone());
1692     // Change the barrier params
1693     dcqs.set_process_completed_threshold(processing_threshold);
1694     dcqs.set_max_completed_queue(cg1r->red_zone());
1695   }
1696 
1697   int curr_queue_size = dcqs.completed_buffers_num();
1698   if (curr_queue_size >= cg1r->yellow_zone()) {
1699     dcqs.set_completed_queue_padding(curr_queue_size);
1700   } else {
1701     dcqs.set_completed_queue_padding(0);
1702   }
1703   dcqs.notify_if_necessary();
1704 }
1705 
1706 double
1707 G1CollectorPolicy::
1708 predict_young_collection_elapsed_time_ms(size_t adjustment) {
1709   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
1710 
1711   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1712   size_t young_num = g1h->young_list()->length();
1713   if (young_num == 0)
1714     return 0.0;
1715 
1716   young_num += adjustment;
1717   size_t pending_cards = predict_pending_cards();
1718   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1719                       predict_rs_length_diff();
1720   size_t card_num;
1721   if (full_young_gcs())
1722     card_num = predict_young_card_num(rs_lengths);
1723   else
1724     card_num = predict_non_young_card_num(rs_lengths);
1725   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
1726   double accum_yg_surv_rate =
1727     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
1728 
1729   size_t bytes_to_copy =
1730     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
1731 
1732   return
1733     predict_rs_update_time_ms(pending_cards) +
1734     predict_rs_scan_time_ms(card_num) +
1735     predict_object_copy_time_ms(bytes_to_copy) +
1736     predict_young_other_time_ms(young_num) +
1737     predict_constant_other_time_ms();
1738 }
1739 
1740 double
1741 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1742   size_t rs_length = predict_rs_length_diff();
1743   size_t card_num;
1744   if (full_young_gcs())
1745     card_num = predict_young_card_num(rs_length);
1746   else
1747     card_num = predict_non_young_card_num(rs_length);
1748   return predict_base_elapsed_time_ms(pending_cards, card_num);
1749 }
1750 
1751 double
1752 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1753                                                 size_t scanned_cards) {
1754   return
1755     predict_rs_update_time_ms(pending_cards) +
1756     predict_rs_scan_time_ms(scanned_cards) +
1757     predict_constant_other_time_ms();
1758 }
1759 
1760 double
1761 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1762                                                   bool young) {
1763   size_t rs_length = hr->rem_set()->occupied();
1764   size_t card_num;
1765   if (full_young_gcs())
1766     card_num = predict_young_card_num(rs_length);
1767   else
1768     card_num = predict_non_young_card_num(rs_length);
1769   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1770 
1771   double region_elapsed_time_ms =
1772     predict_rs_scan_time_ms(card_num) +
1773     predict_object_copy_time_ms(bytes_to_copy);
1774 
1775   if (young)
1776     region_elapsed_time_ms += predict_young_other_time_ms(1);
1777   else
1778     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1779 
1780   return region_elapsed_time_ms;
1781 }
1782 
1783 size_t
1784 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1785   size_t bytes_to_copy;
1786   if (hr->is_marked())
1787     bytes_to_copy = hr->max_live_bytes();
1788   else {
1789     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
1790                "invariant" );
1791     int age = hr->age_in_surv_rate_group();
1792     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1793     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1794   }
1795 
1796   return bytes_to_copy;
1797 }
1798 
1799 void
1800 G1CollectorPolicy::start_recording_regions() {
1801   _recorded_rs_lengths            = 0;
1802   _recorded_young_regions         = 0;
1803   _recorded_non_young_regions     = 0;
1804 
1805 #if PREDICTIONS_VERBOSE
1806   _recorded_marked_bytes          = 0;
1807   _recorded_young_bytes           = 0;
1808   _predicted_bytes_to_copy        = 0;
1809   _predicted_rs_lengths           = 0;
1810   _predicted_cards_scanned        = 0;
1811 #endif // PREDICTIONS_VERBOSE
1812 }
1813 
1814 void
1815 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
1816 #if PREDICTIONS_VERBOSE
1817   if (!young) {
1818     _recorded_marked_bytes += hr->max_live_bytes();
1819   }
1820   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
1821 #endif // PREDICTIONS_VERBOSE
1822 
1823   size_t rs_length = hr->rem_set()->occupied();
1824   _recorded_rs_lengths += rs_length;
1825 }
1826 
1827 void
1828 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
1829   assert(!hr->is_young(), "should not call this");
1830   ++_recorded_non_young_regions;
1831   record_cset_region_info(hr, false);
1832 }
1833 
1834 void
1835 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
1836   _recorded_young_regions = n_regions;
1837 }
1838 
1839 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
1840 #if PREDICTIONS_VERBOSE
1841   _recorded_young_bytes = bytes;
1842 #endif // PREDICTIONS_VERBOSE
1843 }
1844 
1845 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1846   _recorded_rs_lengths = rs_lengths;
1847 }
1848 
1849 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
1850   _predicted_bytes_to_copy = bytes;
1851 }
1852 
1853 void
1854 G1CollectorPolicy::end_recording_regions() {
1855   // The _predicted_pause_time_ms field is referenced in code
1856   // not under PREDICTIONS_VERBOSE. Let's initialize it.
1857   _predicted_pause_time_ms = -1.0;
1858 
1859 #if PREDICTIONS_VERBOSE
1860   _predicted_pending_cards = predict_pending_cards();
1861   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
1862   if (full_young_gcs())
1863     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
1864   else
1865     _predicted_cards_scanned +=
1866       predict_non_young_card_num(_predicted_rs_lengths);
1867   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
1868 
1869   _predicted_rs_update_time_ms =
1870     predict_rs_update_time_ms(_g1->pending_card_num());
1871   _predicted_rs_scan_time_ms =
1872     predict_rs_scan_time_ms(_predicted_cards_scanned);
1873   _predicted_object_copy_time_ms =
1874     predict_object_copy_time_ms(_predicted_bytes_to_copy);
1875   _predicted_constant_other_time_ms =
1876     predict_constant_other_time_ms();
1877   _predicted_young_other_time_ms =
1878     predict_young_other_time_ms(_recorded_young_regions);
1879   _predicted_non_young_other_time_ms =
1880     predict_non_young_other_time_ms(_recorded_non_young_regions);
1881 
1882   _predicted_pause_time_ms =
1883     _predicted_rs_update_time_ms +
1884     _predicted_rs_scan_time_ms +
1885     _predicted_object_copy_time_ms +
1886     _predicted_constant_other_time_ms +
1887     _predicted_young_other_time_ms +
1888     _predicted_non_young_other_time_ms;
1889 #endif // PREDICTIONS_VERBOSE
1890 }
1891 
1892 void G1CollectorPolicy::check_if_region_is_too_expensive(double
1893                                                            predicted_time_ms) {
1894   // I don't think we need to do this when in young GC mode since
1895   // marking will be initiated next time we hit the soft limit anyway...
1896   if (predicted_time_ms > _expensive_region_limit_ms) {
1897     // no point in doing another partial one
1898     _should_revert_to_full_young_gcs = true;
1899   }
1900 }
1901 
1902 // </NEW PREDICTION>
1903 
1904 
1905 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1906                                                double elapsed_ms) {
1907   _recent_gc_times_ms->add(elapsed_ms);
1908   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1909   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1910 }
1911 
1912 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
1913   if (_recent_pause_times_ms->num() == 0) {
1914     return (double) MaxGCPauseMillis;
1915   }
1916   return _recent_pause_times_ms->avg();
1917 }
1918 
1919 double G1CollectorPolicy::recent_avg_time_for_rs_scan_ms() {
1920   if (_recent_rs_scan_times_ms->num() == 0) {
1921     return (double)MaxGCPauseMillis/3.0;
1922   }
1923   return _recent_rs_scan_times_ms->avg();
1924 }
1925 
1926 int G1CollectorPolicy::number_of_recent_gcs() {
1927   assert(_recent_rs_scan_times_ms->num() ==
1928          _recent_pause_times_ms->num(), "Sequence out of sync");
1929   assert(_recent_pause_times_ms->num() ==
1930          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
1931   assert(_recent_CS_bytes_used_before->num() ==
1932          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
1933 
1934   return _recent_pause_times_ms->num();
1935 }
1936 
1937 double G1CollectorPolicy::recent_avg_survival_fraction() {
1938   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
1939                                            _recent_CS_bytes_used_before);
1940 }
1941 
1942 double G1CollectorPolicy::last_survival_fraction() {
1943   return last_survival_fraction_work(_recent_CS_bytes_surviving,
1944                                      _recent_CS_bytes_used_before);
1945 }
1946 
1947 double
1948 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
1949                                                      TruncatedSeq* before) {
1950   assert(surviving->num() == before->num(), "Sequence out of sync");
1951   if (before->sum() > 0.0) {
1952       double recent_survival_rate = surviving->sum() / before->sum();
1953       // We exempt parallel collection from this check because Alloc Buffer
1954       // fragmentation can produce negative collections.
1955       // Further, we're now always doing parallel collection.  But I'm still
1956       // leaving this here as a placeholder for a more precise assertion later.
1957       // (DLD, 10/05.)
1958       assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
1959              _g1->evacuation_failed() ||
1960              recent_survival_rate <= 1.0, "Or bad frac");
1961       return recent_survival_rate;
1962   } else {
1963     return 1.0; // Be conservative.
1964   }
1965 }
1966 
1967 double
1968 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
1969                                                TruncatedSeq* before) {
1970   assert(surviving->num() == before->num(), "Sequence out of sync");
1971   if (surviving->num() > 0 && before->last() > 0.0) {
1972     double last_survival_rate = surviving->last() / before->last();
1973     // We exempt parallel collection from this check because Alloc Buffer
1974     // fragmentation can produce negative collections.
1975     // Further, we're now always doing parallel collection.  But I'm still
1976     // leaving this here as a placeholder for a more precise assertion later.
1977     // (DLD, 10/05.)
1978     assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
1979            last_survival_rate <= 1.0, "Or bad frac");
1980     return last_survival_rate;
1981   } else {
1982     return 1.0;
1983   }
1984 }
1985 
1986 static const int survival_min_obs = 5;
1987 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
1988 static const double min_survival_rate = 0.1;
1989 
1990 double
1991 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
1992                                                            double latest) {
1993   double res = avg;
1994   if (number_of_recent_gcs() < survival_min_obs) {
1995     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
1996   }
1997   res = MAX2(res, latest);
1998   res = MAX2(res, min_survival_rate);
1999   // In the parallel case, LAB fragmentation can produce "negative
2000   // collections"; so can evac failure.  Cap at 1.0
2001   res = MIN2(res, 1.0);
2002   return res;
2003 }
2004 
2005 size_t G1CollectorPolicy::expansion_amount() {
2006   if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
2007     // We will double the existing space, or take
2008     // G1ExpandByPercentOfAvailable % of the available expansion
2009     // space, whichever is smaller, bounded below by a minimum
2010     // expansion (unless that's all that's left.)
2011     const size_t min_expand_bytes = 1*M;
2012     size_t reserved_bytes = _g1->max_capacity();
2013     size_t committed_bytes = _g1->capacity();
2014     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
2015     size_t expand_bytes;
2016     size_t expand_bytes_via_pct =
2017       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
2018     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
2019     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
2020     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
2021     if (G1PolicyVerbose > 1) {
2022       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
2023                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
2024                  "                   Answer = %d.\n",
2025                  recent_avg_pause_time_ratio(),
2026                  byte_size_in_proper_unit(committed_bytes),
2027                  proper_unit_for_byte_size(committed_bytes),
2028                  byte_size_in_proper_unit(uncommitted_bytes),
2029                  proper_unit_for_byte_size(uncommitted_bytes),
2030                  byte_size_in_proper_unit(expand_bytes_via_pct),
2031                  proper_unit_for_byte_size(expand_bytes_via_pct),
2032                  byte_size_in_proper_unit(expand_bytes),
2033                  proper_unit_for_byte_size(expand_bytes));
2034     }
2035     return expand_bytes;
2036   } else {
2037     return 0;
2038   }
2039 }
2040 
2041 void G1CollectorPolicy::note_start_of_mark_thread() {
2042   _mark_thread_startup_sec = os::elapsedTime();
2043 }
2044 
2045 class CountCSClosure: public HeapRegionClosure {
2046   G1CollectorPolicy* _g1_policy;
2047 public:
2048   CountCSClosure(G1CollectorPolicy* g1_policy) :
2049     _g1_policy(g1_policy) {}
2050   bool doHeapRegion(HeapRegion* r) {
2051     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
2052     return false;
2053   }
2054 };
2055 
2056 void G1CollectorPolicy::count_CS_bytes_used() {
2057   CountCSClosure cs_closure(this);
2058   _g1->collection_set_iterate(&cs_closure);
2059 }
2060 
2061 void G1CollectorPolicy::print_summary (int level,
2062                                        const char* str,
2063                                        NumberSeq* seq) const {
2064   double sum = seq->sum();
2065   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
2066                 str, sum / 1000.0, seq->avg());
2067 }
2068 
2069 void G1CollectorPolicy::print_summary_sd (int level,
2070                                           const char* str,
2071                                           NumberSeq* seq) const {
2072   print_summary(level, str, seq);
2073   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2074                 seq->num(), seq->sd(), seq->maximum());
2075 }
2076 
2077 void G1CollectorPolicy::check_other_times(int level,
2078                                         NumberSeq* other_times_ms,
2079                                         NumberSeq* calc_other_times_ms) const {
2080   bool should_print = false;
2081   LineBuffer buf(level + 2);
2082 
2083   double max_sum = MAX2(fabs(other_times_ms->sum()),
2084                         fabs(calc_other_times_ms->sum()));
2085   double min_sum = MIN2(fabs(other_times_ms->sum()),
2086                         fabs(calc_other_times_ms->sum()));
2087   double sum_ratio = max_sum / min_sum;
2088   if (sum_ratio > 1.1) {
2089     should_print = true;
2090     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
2091   }
2092 
2093   double max_avg = MAX2(fabs(other_times_ms->avg()),
2094                         fabs(calc_other_times_ms->avg()));
2095   double min_avg = MIN2(fabs(other_times_ms->avg()),
2096                         fabs(calc_other_times_ms->avg()));
2097   double avg_ratio = max_avg / min_avg;
2098   if (avg_ratio > 1.1) {
2099     should_print = true;
2100     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
2101   }
2102 
2103   if (other_times_ms->sum() < -0.01) {
2104     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
2105   }
2106 
2107   if (other_times_ms->avg() < -0.01) {
2108     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
2109   }
2110 
2111   if (calc_other_times_ms->sum() < -0.01) {
2112     should_print = true;
2113     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
2114   }
2115 
2116   if (calc_other_times_ms->avg() < -0.01) {
2117     should_print = true;
2118     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
2119   }
2120 
2121   if (should_print)
2122     print_summary(level, "Other(Calc)", calc_other_times_ms);
2123 }
2124 
2125 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
2126   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
2127   MainBodySummary*    body_summary = summary->main_body_summary();
2128   if (summary->get_total_seq()->num() > 0) {
2129     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
2130     if (body_summary != NULL) {
2131       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
2132       if (parallel) {
2133         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
2134         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
2135         print_summary(2, "Ext Root Scanning",
2136                       body_summary->get_ext_root_scan_seq());
2137         print_summary(2, "Mark Stack Scanning",
2138                       body_summary->get_mark_stack_scan_seq());
2139         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
2140         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
2141         print_summary(2, "Termination", body_summary->get_termination_seq());
2142         print_summary(2, "Other", body_summary->get_parallel_other_seq());
2143         {
2144           NumberSeq* other_parts[] = {
2145             body_summary->get_update_rs_seq(),
2146             body_summary->get_ext_root_scan_seq(),
2147             body_summary->get_mark_stack_scan_seq(),
2148             body_summary->get_scan_rs_seq(),
2149             body_summary->get_obj_copy_seq(),
2150             body_summary->get_termination_seq()
2151           };
2152           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
2153                                         6, other_parts);
2154           check_other_times(2, body_summary->get_parallel_other_seq(),
2155                             &calc_other_times_ms);
2156         }
2157         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
2158         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
2159       } else {
2160         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
2161         print_summary(1, "Ext Root Scanning",
2162                       body_summary->get_ext_root_scan_seq());
2163         print_summary(1, "Mark Stack Scanning",
2164                       body_summary->get_mark_stack_scan_seq());
2165         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
2166         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
2167       }
2168     }
2169     print_summary(1, "Other", summary->get_other_seq());
2170     {
2171       if (body_summary != NULL) {
2172         NumberSeq calc_other_times_ms;
2173         if (parallel) {
2174           // parallel
2175           NumberSeq* other_parts[] = {
2176             body_summary->get_satb_drain_seq(),
2177             body_summary->get_parallel_seq(),
2178             body_summary->get_clear_ct_seq()
2179           };
2180           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2181                                                 3, other_parts);
2182         } else {
2183           // serial
2184           NumberSeq* other_parts[] = {
2185             body_summary->get_satb_drain_seq(),
2186             body_summary->get_update_rs_seq(),
2187             body_summary->get_ext_root_scan_seq(),
2188             body_summary->get_mark_stack_scan_seq(),
2189             body_summary->get_scan_rs_seq(),
2190             body_summary->get_obj_copy_seq()
2191           };
2192           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2193                                                 6, other_parts);
2194         }
2195         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2196       }
2197     }
2198   } else {
2199     LineBuffer(1).append_and_print_cr("none");
2200   }
2201   LineBuffer(0).append_and_print_cr("");
2202 }
2203 
2204 void G1CollectorPolicy::print_tracing_info() const {
2205   if (TraceGen0Time) {
2206     gclog_or_tty->print_cr("ALL PAUSES");
2207     print_summary_sd(0, "Total", _all_pause_times_ms);
2208     gclog_or_tty->print_cr("");
2209     gclog_or_tty->print_cr("");
2210     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
2211     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
2212     gclog_or_tty->print_cr("");
2213 
2214     gclog_or_tty->print_cr("EVACUATION PAUSES");
2215     print_summary(_summary);
2216 
2217     gclog_or_tty->print_cr("MISC");
2218     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
2219     print_summary_sd(0, "Yields", _all_yield_times_ms);
2220     for (int i = 0; i < _aux_num; ++i) {
2221       if (_all_aux_times_ms[i].num() > 0) {
2222         char buffer[96];
2223         sprintf(buffer, "Aux%d", i);
2224         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
2225       }
2226     }
2227 
2228     size_t all_region_num = _region_num_young + _region_num_tenured;
2229     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
2230                "Tenured %8d (%6.2lf%%)",
2231                all_region_num,
2232                _region_num_young,
2233                (double) _region_num_young / (double) all_region_num * 100.0,
2234                _region_num_tenured,
2235                (double) _region_num_tenured / (double) all_region_num * 100.0);
2236   }
2237   if (TraceGen1Time) {
2238     if (_all_full_gc_times_ms->num() > 0) {
2239       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2240                  _all_full_gc_times_ms->num(),
2241                  _all_full_gc_times_ms->sum() / 1000.0);
2242       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
2243       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2244                     _all_full_gc_times_ms->sd(),
2245                     _all_full_gc_times_ms->maximum());
2246     }
2247   }
2248 }
2249 
2250 void G1CollectorPolicy::print_yg_surv_rate_info() const {
2251 #ifndef PRODUCT
2252   _short_lived_surv_rate_group->print_surv_rate_summary();
2253   // add this call for any other surv rate groups
2254 #endif // PRODUCT
2255 }
2256 
2257 void
2258 G1CollectorPolicy::update_region_num(bool young) {
2259   if (young) {
2260     ++_region_num_young;
2261   } else {
2262     ++_region_num_tenured;
2263   }
2264 }
2265 
2266 #ifndef PRODUCT
2267 // for debugging, bit of a hack...
2268 static char*
2269 region_num_to_mbs(int length) {
2270   static char buffer[64];
2271   double bytes = (double) (length * HeapRegion::GrainBytes);
2272   double mbs = bytes / (double) (1024 * 1024);
2273   sprintf(buffer, "%7.2lfMB", mbs);
2274   return buffer;
2275 }
2276 #endif // PRODUCT
2277 
2278 size_t G1CollectorPolicy::max_regions(int purpose) {
2279   switch (purpose) {
2280     case GCAllocForSurvived:
2281       return _max_survivor_regions;
2282     case GCAllocForTenured:
2283       return REGIONS_UNLIMITED;
2284     default:
2285       ShouldNotReachHere();
2286       return REGIONS_UNLIMITED;
2287   };
2288 }
2289 
2290 void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
2291   size_t expansion_region_num = 0;
2292   if (GCLockerEdenExpansionPercent > 0) {
2293     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
2294     double expansion_region_num_d = perc * (double) _young_list_target_length;
2295     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
2296     // less than 1.0) we'll get 1.
2297     expansion_region_num = (size_t) ceil(expansion_region_num_d);
2298   } else {
2299     assert(expansion_region_num == 0, "sanity");
2300   }
2301   _young_list_max_length = _young_list_target_length + expansion_region_num;
2302   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
2303 }
2304 
2305 // Calculates survivor space parameters.
2306 void G1CollectorPolicy::calculate_survivors_policy()
2307 {
2308   if (G1FixedSurvivorSpaceSize == 0) {
2309     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
2310   } else {
2311     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
2312   }
2313 
2314   if (G1FixedTenuringThreshold) {
2315     _tenuring_threshold = MaxTenuringThreshold;
2316   } else {
2317     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2318         HeapRegion::GrainWords * _max_survivor_regions);
2319   }
2320 }
2321 
2322 #ifndef PRODUCT
2323 class HRSortIndexIsOKClosure: public HeapRegionClosure {
2324   CollectionSetChooser* _chooser;
2325 public:
2326   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
2327     _chooser(chooser) {}
2328 
2329   bool doHeapRegion(HeapRegion* r) {
2330     if (!r->continuesHumongous()) {
2331       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
2332     }
2333     return false;
2334   }
2335 };
2336 
2337 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
2338   HRSortIndexIsOKClosure cl(_collectionSetChooser);
2339   _g1->heap_region_iterate(&cl);
2340   return true;
2341 }
2342 #endif
2343 
2344 bool
2345 G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
2346   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2347   if (!during_cycle) {
2348     set_initiate_conc_mark_if_possible();
2349     return true;
2350   } else {
2351     return false;
2352   }
2353 }
2354 
2355 void
2356 G1CollectorPolicy::decide_on_conc_mark_initiation() {
2357   // We are about to decide on whether this pause will be an
2358   // initial-mark pause.
2359 
2360   // First, during_initial_mark_pause() should not be already set. We
2361   // will set it here if we have to. However, it should be cleared by
2362   // the end of the pause (it's only set for the duration of an
2363   // initial-mark pause).
2364   assert(!during_initial_mark_pause(), "pre-condition");
2365 
2366   if (initiate_conc_mark_if_possible()) {
2367     // We had noticed on a previous pause that the heap occupancy has
2368     // gone over the initiating threshold and we should start a
2369     // concurrent marking cycle. So we might initiate one.
2370 
2371     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2372     if (!during_cycle) {
2373       // The concurrent marking thread is not "during a cycle", i.e.,
2374       // it has completed the last one. So we can go ahead and
2375       // initiate a new cycle.
2376 
2377       set_during_initial_mark_pause();
2378 
2379       // And we can now clear initiate_conc_mark_if_possible() as
2380       // we've already acted on it.
2381       clear_initiate_conc_mark_if_possible();
2382     } else {
2383       // The concurrent marking thread is still finishing up the
2384       // previous cycle. If we start one right now the two cycles
2385       // overlap. In particular, the concurrent marking thread might
2386       // be in the process of clearing the next marking bitmap (which
2387       // we will use for the next cycle if we start one). Starting a
2388       // cycle now will be bad given that parts of the marking
2389       // information might get cleared by the marking thread. And we
2390       // cannot wait for the marking thread to finish the cycle as it
2391       // periodically yields while clearing the next marking bitmap
2392       // and, if it's in a yield point, it's waiting for us to
2393       // finish. So, at this point we will not start a cycle and we'll
2394       // let the concurrent marking thread complete the last one.
2395     }
2396   }
2397 }
2398 
2399 void
2400 G1CollectorPolicy_BestRegionsFirst::
2401 record_collection_pause_start(double start_time_sec, size_t start_used) {
2402   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
2403 }
2404 
2405 class KnownGarbageClosure: public HeapRegionClosure {
2406   CollectionSetChooser* _hrSorted;
2407 
2408 public:
2409   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2410     _hrSorted(hrSorted)
2411   {}
2412 
2413   bool doHeapRegion(HeapRegion* r) {
2414     // We only include humongous regions in collection
2415     // sets when concurrent mark shows that their contained object is
2416     // unreachable.
2417 
2418     // Do we have any marking information for this region?
2419     if (r->is_marked()) {
2420       // We don't include humongous regions in collection
2421       // sets because we collect them immediately at the end of a marking
2422       // cycle.  We also don't include young regions because we *must*
2423       // include them in the next collection pause.
2424       if (!r->isHumongous() && !r->is_young()) {
2425         _hrSorted->addMarkedHeapRegion(r);
2426       }
2427     }
2428     return false;
2429   }
2430 };
2431 
2432 class ParKnownGarbageHRClosure: public HeapRegionClosure {
2433   CollectionSetChooser* _hrSorted;
2434   jint _marked_regions_added;
2435   jint _chunk_size;
2436   jint _cur_chunk_idx;
2437   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
2438   int _worker;
2439   int _invokes;
2440 
2441   void get_new_chunk() {
2442     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
2443     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
2444   }
2445   void add_region(HeapRegion* r) {
2446     if (_cur_chunk_idx == _cur_chunk_end) {
2447       get_new_chunk();
2448     }
2449     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
2450     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
2451     _marked_regions_added++;
2452     _cur_chunk_idx++;
2453   }
2454 
2455 public:
2456   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
2457                            jint chunk_size,
2458                            int worker) :
2459     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
2460     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
2461     _invokes(0)
2462   {}
2463 
2464   bool doHeapRegion(HeapRegion* r) {
2465     // We only include humongous regions in collection
2466     // sets when concurrent mark shows that their contained object is
2467     // unreachable.
2468     _invokes++;
2469 
2470     // Do we have any marking information for this region?
2471     if (r->is_marked()) {
2472       // We don't include humongous regions in collection
2473       // sets because we collect them immediately at the end of a marking
2474       // cycle.
2475       // We also do not include young regions in collection sets
2476       if (!r->isHumongous() && !r->is_young()) {
2477         add_region(r);
2478       }
2479     }
2480     return false;
2481   }
2482   jint marked_regions_added() { return _marked_regions_added; }
2483   int invokes() { return _invokes; }
2484 };
2485 
2486 class ParKnownGarbageTask: public AbstractGangTask {
2487   CollectionSetChooser* _hrSorted;
2488   jint _chunk_size;
2489   G1CollectedHeap* _g1;
2490 public:
2491   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
2492     AbstractGangTask("ParKnownGarbageTask"),
2493     _hrSorted(hrSorted), _chunk_size(chunk_size),
2494     _g1(G1CollectedHeap::heap())
2495   {}
2496 
2497   void work(int i) {
2498     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
2499     // Back to zero for the claim value.
2500     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
2501                                          HeapRegion::InitialClaimValue);
2502     jint regions_added = parKnownGarbageCl.marked_regions_added();
2503     _hrSorted->incNumMarkedHeapRegions(regions_added);
2504     if (G1PrintParCleanupStats) {
2505       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2506                  i, parKnownGarbageCl.invokes(), regions_added);
2507     }
2508   }
2509 };
2510 
2511 void
2512 G1CollectorPolicy_BestRegionsFirst::
2513 record_concurrent_mark_cleanup_end(size_t freed_bytes,
2514                                    size_t max_live_bytes) {
2515   double start;
2516   if (G1PrintParCleanupStats) start = os::elapsedTime();
2517   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
2518 
2519   _collectionSetChooser->clearMarkedHeapRegions();
2520   double clear_marked_end;
2521   if (G1PrintParCleanupStats) {
2522     clear_marked_end = os::elapsedTime();
2523     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
2524                   (clear_marked_end - start)*1000.0);
2525   }
2526   if (G1CollectedHeap::use_parallel_gc_threads()) {
2527     const size_t OverpartitionFactor = 4;
2528     const size_t MinWorkUnit = 8;
2529     const size_t WorkUnit =
2530       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2531            MinWorkUnit);
2532     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2533                                                              WorkUnit);
2534     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2535                                             (int) WorkUnit);
2536     _g1->workers()->run_task(&parKnownGarbageTask);
2537 
2538     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2539            "sanity check");
2540   } else {
2541     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
2542     _g1->heap_region_iterate(&knownGarbagecl);
2543   }
2544   double known_garbage_end;
2545   if (G1PrintParCleanupStats) {
2546     known_garbage_end = os::elapsedTime();
2547     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2548                   (known_garbage_end - clear_marked_end)*1000.0);
2549   }
2550   _collectionSetChooser->sortMarkedHeapRegions();
2551   double sort_end;
2552   if (G1PrintParCleanupStats) {
2553     sort_end = os::elapsedTime();
2554     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2555                   (sort_end - known_garbage_end)*1000.0);
2556   }
2557 
2558   record_concurrent_mark_cleanup_end_work2();
2559   double work2_end;
2560   if (G1PrintParCleanupStats) {
2561     work2_end = os::elapsedTime();
2562     gclog_or_tty->print_cr("  work2: %8.3f ms.",
2563                   (work2_end - sort_end)*1000.0);
2564   }
2565 }
2566 
2567 // Add the heap region at the head of the non-incremental collection set
2568 void G1CollectorPolicy::
2569 add_to_collection_set(HeapRegion* hr) {
2570   assert(_inc_cset_build_state == Active, "Precondition");
2571   assert(!hr->is_young(), "non-incremental add of young region");
2572 
2573   if (_g1->mark_in_progress())
2574     _g1->concurrent_mark()->registerCSetRegion(hr);
2575 
2576   assert(!hr->in_collection_set(), "should not already be in the CSet");
2577   hr->set_in_collection_set(true);
2578   hr->set_next_in_collection_set(_collection_set);
2579   _collection_set = hr;
2580   _collection_set_size++;
2581   _collection_set_bytes_used_before += hr->used();
2582   _g1->register_region_with_in_cset_fast_test(hr);
2583 }
2584 
2585 // Initialize the per-collection-set information
2586 void G1CollectorPolicy::start_incremental_cset_building() {
2587   assert(_inc_cset_build_state == Inactive, "Precondition");
2588 
2589   _inc_cset_head = NULL;
2590   _inc_cset_tail = NULL;
2591   _inc_cset_size = 0;
2592   _inc_cset_bytes_used_before = 0;
2593 
2594   _inc_cset_young_index = 0;
2595 
2596   _inc_cset_max_finger = 0;
2597   _inc_cset_recorded_young_bytes = 0;
2598   _inc_cset_recorded_rs_lengths = 0;
2599   _inc_cset_predicted_elapsed_time_ms = 0;
2600   _inc_cset_predicted_bytes_to_copy = 0;
2601   _inc_cset_build_state = Active;
2602 }
2603 
2604 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
2605   // This routine is used when:
2606   // * adding survivor regions to the incremental cset at the end of an
2607   //   evacuation pause,
2608   // * adding the current allocation region to the incremental cset
2609   //   when it is retired, and
2610   // * updating existing policy information for a region in the
2611   //   incremental cset via young list RSet sampling.
2612   // Therefore this routine may be called at a safepoint by the
2613   // VM thread, or in-between safepoints by mutator threads (when
2614   // retiring the current allocation region) or a concurrent
2615   // refine thread (RSet sampling).
2616 
2617   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2618   size_t used_bytes = hr->used();
2619 
2620   _inc_cset_recorded_rs_lengths += rs_length;
2621   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
2622 
2623   _inc_cset_bytes_used_before += used_bytes;
2624 
2625   // Cache the values we have added to the aggregated informtion
2626   // in the heap region in case we have to remove this region from
2627   // the incremental collection set, or it is updated by the
2628   // rset sampling code
2629   hr->set_recorded_rs_length(rs_length);
2630   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
2631 
2632 #if PREDICTIONS_VERBOSE
2633   size_t bytes_to_copy = predict_bytes_to_copy(hr);
2634   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
2635 
2636   // Record the number of bytes used in this region
2637   _inc_cset_recorded_young_bytes += used_bytes;
2638 
2639   // Cache the values we have added to the aggregated informtion
2640   // in the heap region in case we have to remove this region from
2641   // the incremental collection set, or it is updated by the
2642   // rset sampling code
2643   hr->set_predicted_bytes_to_copy(bytes_to_copy);
2644 #endif // PREDICTIONS_VERBOSE
2645 }
2646 
2647 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
2648   // This routine is currently only called as part of the updating of
2649   // existing policy information for regions in the incremental cset that
2650   // is performed by the concurrent refine thread(s) as part of young list
2651   // RSet sampling. Therefore we should not be at a safepoint.
2652 
2653   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
2654   assert(hr->is_young(), "it should be");
2655 
2656   size_t used_bytes = hr->used();
2657   size_t old_rs_length = hr->recorded_rs_length();
2658   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2659 
2660   // Subtract the old recorded/predicted policy information for
2661   // the given heap region from the collection set info.
2662   _inc_cset_recorded_rs_lengths -= old_rs_length;
2663   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
2664 
2665   _inc_cset_bytes_used_before -= used_bytes;
2666 
2667   // Clear the values cached in the heap region
2668   hr->set_recorded_rs_length(0);
2669   hr->set_predicted_elapsed_time_ms(0);
2670 
2671 #if PREDICTIONS_VERBOSE
2672   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
2673   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
2674 
2675   // Subtract the number of bytes used in this region
2676   _inc_cset_recorded_young_bytes -= used_bytes;
2677 
2678   // Clear the values cached in the heap region
2679   hr->set_predicted_bytes_to_copy(0);
2680 #endif // PREDICTIONS_VERBOSE
2681 }
2682 
2683 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
2684   // Update the collection set information that is dependent on the new RS length
2685   assert(hr->is_young(), "Precondition");
2686 
2687   remove_from_incremental_cset_info(hr);
2688   add_to_incremental_cset_info(hr, new_rs_length);
2689 }
2690 
2691 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2692   assert( hr->is_young(), "invariant");
2693   assert( hr->young_index_in_cset() == -1, "invariant" );
2694   assert(_inc_cset_build_state == Active, "Precondition");
2695 
2696   // We need to clear and set the cached recorded/cached collection set
2697   // information in the heap region here (before the region gets added
2698   // to the collection set). An individual heap region's cached values
2699   // are calculated, aggregated with the policy collection set info,
2700   // and cached in the heap region here (initially) and (subsequently)
2701   // by the Young List sampling code.
2702 
2703   size_t rs_length = hr->rem_set()->occupied();
2704   add_to_incremental_cset_info(hr, rs_length);
2705 
2706   HeapWord* hr_end = hr->end();
2707   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
2708 
2709   assert(!hr->in_collection_set(), "invariant");
2710   hr->set_in_collection_set(true);
2711   assert( hr->next_in_collection_set() == NULL, "invariant");
2712 
2713   _inc_cset_size++;
2714   _g1->register_region_with_in_cset_fast_test(hr);
2715 
2716   hr->set_young_index_in_cset((int) _inc_cset_young_index);
2717   ++_inc_cset_young_index;
2718 }
2719 
2720 // Add the region at the RHS of the incremental cset
2721 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
2722   // We should only ever be appending survivors at the end of a pause
2723   assert( hr->is_survivor(), "Logic");
2724 
2725   // Do the 'common' stuff
2726   add_region_to_incremental_cset_common(hr);
2727 
2728   // Now add the region at the right hand side
2729   if (_inc_cset_tail == NULL) {
2730     assert(_inc_cset_head == NULL, "invariant");
2731     _inc_cset_head = hr;
2732   } else {
2733     _inc_cset_tail->set_next_in_collection_set(hr);
2734   }
2735   _inc_cset_tail = hr;
2736 }
2737 
2738 // Add the region to the LHS of the incremental cset
2739 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2740   // Survivors should be added to the RHS at the end of a pause
2741   assert(!hr->is_survivor(), "Logic");
2742 
2743   // Do the 'common' stuff
2744   add_region_to_incremental_cset_common(hr);
2745 
2746   // Add the region at the left hand side
2747   hr->set_next_in_collection_set(_inc_cset_head);
2748   if (_inc_cset_head == NULL) {
2749     assert(_inc_cset_tail == NULL, "Invariant");
2750     _inc_cset_tail = hr;
2751   }
2752   _inc_cset_head = hr;
2753 }
2754 
2755 #ifndef PRODUCT
2756 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2757   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2758 
2759   st->print_cr("\nCollection_set:");
2760   HeapRegion* csr = list_head;
2761   while (csr != NULL) {
2762     HeapRegion* next = csr->next_in_collection_set();
2763     assert(csr->in_collection_set(), "bad CS");
2764     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
2765                  "age: %4d, y: %d, surv: %d",
2766                         csr->bottom(), csr->end(),
2767                         csr->top(),
2768                         csr->prev_top_at_mark_start(),
2769                         csr->next_top_at_mark_start(),
2770                         csr->top_at_conc_mark_count(),
2771                         csr->age_in_surv_rate_group_cond(),
2772                         csr->is_young(),
2773                         csr->is_survivor());
2774     csr = next;
2775   }
2776 }
2777 #endif // !PRODUCT
2778 
2779 void
2780 G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
2781                                                   double target_pause_time_ms) {
2782   // Set this here - in case we're not doing young collections.
2783   double non_young_start_time_sec = os::elapsedTime();
2784 
2785   start_recording_regions();
2786 
2787   guarantee(target_pause_time_ms > 0.0,
2788             err_msg("target_pause_time_ms = %1.6lf should be positive",
2789                     target_pause_time_ms));
2790   guarantee(_collection_set == NULL, "Precondition");
2791 
2792   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2793   double predicted_pause_time_ms = base_time_ms;
2794 
2795   double time_remaining_ms = target_pause_time_ms - base_time_ms;
2796 
2797   // the 10% and 50% values are arbitrary...
2798   if (time_remaining_ms < 0.10 * target_pause_time_ms) {
2799     time_remaining_ms = 0.50 * target_pause_time_ms;
2800     _within_target = false;
2801   } else {
2802     _within_target = true;
2803   }
2804 
2805   // We figure out the number of bytes available for future to-space.
2806   // For new regions without marking information, we must assume the
2807   // worst-case of complete survival.  If we have marking information for a
2808   // region, we can bound the amount of live data.  We can add a number of
2809   // such regions, as long as the sum of the live data bounds does not
2810   // exceed the available evacuation space.
2811   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
2812 
2813   size_t expansion_bytes =
2814     _g1->expansion_regions() * HeapRegion::GrainBytes;
2815 
2816   _collection_set_bytes_used_before = 0;
2817   _collection_set_size = 0;
2818 
2819   // Adjust for expansion and slop.
2820   max_live_bytes = max_live_bytes + expansion_bytes;
2821 
2822   HeapRegion* hr;
2823   double young_start_time_sec = os::elapsedTime();
2824 
2825   if (G1PolicyVerbose > 0) {
2826     gclog_or_tty->print_cr("Adding %d young regions to the CSet",
2827       _g1->young_list()->length());
2828   }
2829 
2830   _young_cset_length  = 0;
2831   _last_young_gc_full = full_young_gcs() ? true : false;
2832 
2833   if (_last_young_gc_full)
2834     ++_full_young_pause_num;
2835   else
2836     ++_partial_young_pause_num;
2837 
2838   // The young list is laid with the survivor regions from the previous
2839   // pause are appended to the RHS of the young list, i.e.
2840   //   [Newly Young Regions ++ Survivors from last pause].
2841 
2842   hr = _g1->young_list()->first_survivor_region();
2843   while (hr != NULL) {
2844     assert(hr->is_survivor(), "badly formed young list");
2845     hr->set_young();
2846     hr = hr->get_next_young_region();
2847   }
2848 
2849   // Clear the fields that point to the survivor list - they are
2850   // all young now.
2851   _g1->young_list()->clear_survivors();
2852 
2853   if (_g1->mark_in_progress())
2854     _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
2855 
2856   _young_cset_length = _inc_cset_young_index;
2857   _collection_set = _inc_cset_head;
2858   _collection_set_size = _inc_cset_size;
2859   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2860 
2861   // For young regions in the collection set, we assume the worst
2862   // case of complete survival
2863   max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
2864 
2865   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
2866   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2867 
2868   // The number of recorded young regions is the incremental
2869   // collection set's current size
2870   set_recorded_young_regions(_inc_cset_size);
2871   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2872   set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
2873 #if PREDICTIONS_VERBOSE
2874   set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
2875 #endif // PREDICTIONS_VERBOSE
2876 
2877   if (G1PolicyVerbose > 0) {
2878     gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
2879       _inc_cset_size);
2880     gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
2881       max_live_bytes/K);
2882   }
2883 
2884   assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
2885 
2886   double young_end_time_sec = os::elapsedTime();
2887   _recorded_young_cset_choice_time_ms =
2888     (young_end_time_sec - young_start_time_sec) * 1000.0;
2889 
2890   // We are doing young collections so reset this.
2891   non_young_start_time_sec = young_end_time_sec;
2892 
2893   // Note we can use either _collection_set_size or
2894   // _young_cset_length here
2895   if (_collection_set_size > 0 && _last_young_gc_full) {
2896     // don't bother adding more regions...
2897     goto choose_collection_set_end;
2898   }
2899 
2900   if (!full_young_gcs()) {
2901     bool should_continue = true;
2902     NumberSeq seq;
2903     double avg_prediction = 100000000000000000.0; // something very large
2904 
2905     do {
2906       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
2907                                                       avg_prediction);
2908       if (hr != NULL) {
2909         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
2910         time_remaining_ms -= predicted_time_ms;
2911         predicted_pause_time_ms += predicted_time_ms;
2912         add_to_collection_set(hr);
2913         record_non_young_cset_region(hr);
2914         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
2915         if (G1PolicyVerbose > 0) {
2916           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
2917                         max_live_bytes/K);
2918         }
2919         seq.add(predicted_time_ms);
2920         avg_prediction = seq.avg() + seq.sd();
2921       }
2922       should_continue =
2923         ( hr != NULL) &&
2924         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
2925           : _collection_set_size < _young_list_fixed_length );
2926     } while (should_continue);
2927 
2928     if (!adaptive_young_list_length() &&
2929         _collection_set_size < _young_list_fixed_length)
2930       _should_revert_to_full_young_gcs  = true;
2931   }
2932 
2933 choose_collection_set_end:
2934   stop_incremental_cset_building();
2935 
2936   count_CS_bytes_used();
2937 
2938   end_recording_regions();
2939 
2940   double non_young_end_time_sec = os::elapsedTime();
2941   _recorded_non_young_cset_choice_time_ms =
2942     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
2943 }
2944 
2945 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
2946   G1CollectorPolicy::record_full_collection_end();
2947   _collectionSetChooser->updateAfterFullCollection();
2948 }
2949 
2950 void G1CollectorPolicy_BestRegionsFirst::
2951 expand_if_possible(size_t numRegions) {
2952   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
2953   _g1->expand(expansion_bytes);
2954 }
2955 
2956 void G1CollectorPolicy_BestRegionsFirst::
2957 record_collection_pause_end() {
2958   G1CollectorPolicy::record_collection_pause_end();
2959   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
2960 }