1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  41 // over and over again and introducing subtle problems through small typos and
  42 // cutting and pasting mistakes. The macros below introduces a number
  43 // sequnce into the following two classes and the methods that access it.
  44 
  45 #define define_num_seq(name)                                                  \
  46 private:                                                                      \
  47   NumberSeq _all_##name##_times_ms;                                           \
  48 public:                                                                       \
  49   void record_##name##_time_ms(double ms) {                                   \
  50     _all_##name##_times_ms.add(ms);                                           \
  51   }                                                                           \
  52   NumberSeq* get_##name##_seq() {                                             \
  53     return &_all_##name##_times_ms;                                           \
  54   }
  55 
  56 class MainBodySummary;
  57 
  58 class PauseSummary: public CHeapObj {
  59   define_num_seq(total)
  60     define_num_seq(other)
  61 
  62 public:
  63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  64 };
  65 
  66 class MainBodySummary: public CHeapObj {
  67   define_num_seq(satb_drain) // optional
  68   define_num_seq(parallel) // parallel only
  69     define_num_seq(ext_root_scan)
  70     define_num_seq(mark_stack_scan)
  71     define_num_seq(update_rs)
  72     define_num_seq(scan_rs)
  73     define_num_seq(obj_copy)
  74     define_num_seq(termination) // parallel only
  75     define_num_seq(parallel_other) // parallel only
  76   define_num_seq(mark_closure)
  77   define_num_seq(clear_ct)  // parallel only
  78 };
  79 
  80 class Summary: public PauseSummary,
  81                public MainBodySummary {
  82 public:
  83   virtual MainBodySummary*    main_body_summary()    { return this; }
  84 };
  85 
  86 class G1CollectorPolicy: public CollectorPolicy {
  87 protected:
  88   // The number of pauses during the execution.
  89   long _n_pauses;
  90 
  91   // either equal to the number of parallel threads, if ParallelGCThreads
  92   // has been set, or 1 otherwise
  93   int _parallel_gc_threads;
  94 
  95   enum SomePrivateConstants {
  96     NumPrevPausesForHeuristics = 10
  97   };
  98 
  99   G1MMUTracker* _mmu_tracker;
 100 
 101   void initialize_flags();
 102 
 103   void initialize_all() {
 104     initialize_flags();
 105     initialize_size_info();
 106     initialize_perm_generation(PermGen::MarkSweepCompact);
 107   }
 108 
 109   virtual size_t default_init_heap_size() {
 110     // Pick some reasonable default.
 111     return 8*M;
 112   }
 113 
 114   double _cur_collection_start_sec;
 115   size_t _cur_collection_pause_used_at_start_bytes;
 116   size_t _cur_collection_pause_used_regions_at_start;
 117   size_t _prev_collection_pause_used_at_end_bytes;
 118   double _cur_collection_par_time_ms;
 119   double _cur_satb_drain_time_ms;
 120   double _cur_clear_ct_time_ms;
 121   bool   _satb_drain_time_set;
 122 
 123 #ifndef PRODUCT
 124   // Card Table Count Cache stats
 125   double _min_clear_cc_time_ms;         // min
 126   double _max_clear_cc_time_ms;         // max
 127   double _cur_clear_cc_time_ms;         // clearing time during current pause
 128   double _cum_clear_cc_time_ms;         // cummulative clearing time
 129   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 130 #endif
 131 
 132   // Statistics for recent GC pauses.  See below for how indexed.
 133   TruncatedSeq* _recent_rs_scan_times_ms;
 134 
 135   // These exclude marking times.
 136   TruncatedSeq* _recent_pause_times_ms;
 137   TruncatedSeq* _recent_gc_times_ms;
 138 
 139   TruncatedSeq* _recent_CS_bytes_used_before;
 140   TruncatedSeq* _recent_CS_bytes_surviving;
 141 
 142   TruncatedSeq* _recent_rs_sizes;
 143 
 144   TruncatedSeq* _concurrent_mark_init_times_ms;
 145   TruncatedSeq* _concurrent_mark_remark_times_ms;
 146   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 147 
 148   Summary*           _summary;
 149 
 150   NumberSeq* _all_pause_times_ms;
 151   NumberSeq* _all_full_gc_times_ms;
 152   double _stop_world_start;
 153   NumberSeq* _all_stop_world_times_ms;
 154   NumberSeq* _all_yield_times_ms;
 155 
 156   size_t     _region_num_young;
 157   size_t     _region_num_tenured;
 158   size_t     _prev_region_num_young;
 159   size_t     _prev_region_num_tenured;
 160 
 161   NumberSeq* _all_mod_union_times_ms;
 162 
 163   int        _aux_num;
 164   NumberSeq* _all_aux_times_ms;
 165   double*    _cur_aux_start_times_ms;
 166   double*    _cur_aux_times_ms;
 167   bool*      _cur_aux_times_set;
 168 
 169   double* _par_last_gc_worker_start_times_ms;
 170   double* _par_last_ext_root_scan_times_ms;
 171   double* _par_last_mark_stack_scan_times_ms;
 172   double* _par_last_update_rs_times_ms;
 173   double* _par_last_update_rs_processed_buffers;
 174   double* _par_last_scan_rs_times_ms;
 175   double* _par_last_obj_copy_times_ms;
 176   double* _par_last_termination_times_ms;
 177   double* _par_last_termination_attempts;
 178   double* _par_last_gc_worker_end_times_ms;
 179   double* _par_last_gc_worker_times_ms;
 180 
 181   // indicates whether we are in full young or partially young GC mode
 182   bool _full_young_gcs;
 183 
 184   // if true, then it tries to dynamically adjust the length of the
 185   // young list
 186   bool _adaptive_young_list_length;
 187   size_t _young_list_min_length;
 188   size_t _young_list_target_length;
 189   size_t _young_list_fixed_length;
 190 
 191   // The max number of regions we can extend the eden by while the GC
 192   // locker is active. This should be >= _young_list_target_length;
 193   size_t _young_list_max_length;
 194 
 195   size_t _young_cset_length;
 196   bool   _last_young_gc_full;
 197 
 198   unsigned              _full_young_pause_num;
 199   unsigned              _partial_young_pause_num;
 200 
 201   bool                  _during_marking;
 202   bool                  _in_marking_window;
 203   bool                  _in_marking_window_im;
 204 
 205   SurvRateGroup*        _short_lived_surv_rate_group;
 206   SurvRateGroup*        _survivor_surv_rate_group;
 207   // add here any more surv rate groups
 208 
 209   double                _gc_overhead_perc;
 210 
 211   bool during_marking() {
 212     return _during_marking;
 213   }
 214 
 215   // <NEW PREDICTION>
 216 
 217 private:
 218   enum PredictionConstants {
 219     TruncatedSeqLength = 10
 220   };
 221 
 222   TruncatedSeq* _alloc_rate_ms_seq;
 223   double        _prev_collection_pause_end_ms;
 224 
 225   TruncatedSeq* _pending_card_diff_seq;
 226   TruncatedSeq* _rs_length_diff_seq;
 227   TruncatedSeq* _cost_per_card_ms_seq;
 228   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
 229   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
 230   TruncatedSeq* _cost_per_entry_ms_seq;
 231   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
 232   TruncatedSeq* _cost_per_byte_ms_seq;
 233   TruncatedSeq* _constant_other_time_ms_seq;
 234   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 235   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 236 
 237   TruncatedSeq* _pending_cards_seq;
 238   TruncatedSeq* _scanned_cards_seq;
 239   TruncatedSeq* _rs_lengths_seq;
 240 
 241   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 242 
 243   TruncatedSeq* _young_gc_eff_seq;
 244 
 245   TruncatedSeq* _max_conc_overhead_seq;
 246 
 247   size_t _recorded_young_regions;
 248   size_t _recorded_non_young_regions;
 249   size_t _recorded_region_num;
 250 
 251   size_t _free_regions_at_end_of_collection;
 252 
 253   size_t _recorded_rs_lengths;
 254   size_t _max_rs_lengths;
 255 
 256   size_t _recorded_marked_bytes;
 257   size_t _recorded_young_bytes;
 258 
 259   size_t _predicted_pending_cards;
 260   size_t _predicted_cards_scanned;
 261   size_t _predicted_rs_lengths;
 262   size_t _predicted_bytes_to_copy;
 263 
 264   double _predicted_survival_ratio;
 265   double _predicted_rs_update_time_ms;
 266   double _predicted_rs_scan_time_ms;
 267   double _predicted_object_copy_time_ms;
 268   double _predicted_constant_other_time_ms;
 269   double _predicted_young_other_time_ms;
 270   double _predicted_non_young_other_time_ms;
 271   double _predicted_pause_time_ms;
 272 
 273   double _vtime_diff_ms;
 274 
 275   double _recorded_young_free_cset_time_ms;
 276   double _recorded_non_young_free_cset_time_ms;
 277 
 278   double _sigma;
 279   double _expensive_region_limit_ms;
 280 
 281   size_t _rs_lengths_prediction;
 282 
 283   size_t _known_garbage_bytes;
 284   double _known_garbage_ratio;
 285 
 286   double sigma() {
 287     return _sigma;
 288   }
 289 
 290   // A function that prevents us putting too much stock in small sample
 291   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 292   // of samples.  5 or more samples yields one; fewer scales linearly from
 293   // 2.0 at 1 sample to 1.0 at 5.
 294   double confidence_factor(int samples) {
 295     if (samples > 4) return 1.0;
 296     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 297   }
 298 
 299   double get_new_neg_prediction(TruncatedSeq* seq) {
 300     return seq->davg() - sigma() * seq->dsd();
 301   }
 302 
 303 #ifndef PRODUCT
 304   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 305 #endif // PRODUCT
 306 
 307   void adjust_concurrent_refinement(double update_rs_time,
 308                                     double update_rs_processed_buffers,
 309                                     double goal_ms);
 310 
 311 protected:
 312   double _pause_time_target_ms;
 313   double _recorded_young_cset_choice_time_ms;
 314   double _recorded_non_young_cset_choice_time_ms;
 315   bool   _within_target;
 316   size_t _pending_cards;
 317   size_t _max_pending_cards;
 318 
 319 public:
 320 
 321   void set_region_short_lived(HeapRegion* hr) {
 322     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 323   }
 324 
 325   void set_region_survivors(HeapRegion* hr) {
 326     hr->install_surv_rate_group(_survivor_surv_rate_group);
 327   }
 328 
 329 #ifndef PRODUCT
 330   bool verify_young_ages();
 331 #endif // PRODUCT
 332 
 333   double get_new_prediction(TruncatedSeq* seq) {
 334     return MAX2(seq->davg() + sigma() * seq->dsd(),
 335                 seq->davg() * confidence_factor(seq->num()));
 336   }
 337 
 338   size_t young_cset_length() {
 339     return _young_cset_length;
 340   }
 341 
 342   void record_max_rs_lengths(size_t rs_lengths) {
 343     _max_rs_lengths = rs_lengths;
 344   }
 345 
 346   size_t predict_pending_card_diff() {
 347     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 348     if (prediction < 0.00001)
 349       return 0;
 350     else
 351       return (size_t) prediction;
 352   }
 353 
 354   size_t predict_pending_cards() {
 355     size_t max_pending_card_num = _g1->max_pending_card_num();
 356     size_t diff = predict_pending_card_diff();
 357     size_t prediction;
 358     if (diff > max_pending_card_num)
 359       prediction = max_pending_card_num;
 360     else
 361       prediction = max_pending_card_num - diff;
 362 
 363     return prediction;
 364   }
 365 
 366   size_t predict_rs_length_diff() {
 367     return (size_t) get_new_prediction(_rs_length_diff_seq);
 368   }
 369 
 370   double predict_alloc_rate_ms() {
 371     return get_new_prediction(_alloc_rate_ms_seq);
 372   }
 373 
 374   double predict_cost_per_card_ms() {
 375     return get_new_prediction(_cost_per_card_ms_seq);
 376   }
 377 
 378   double predict_rs_update_time_ms(size_t pending_cards) {
 379     return (double) pending_cards * predict_cost_per_card_ms();
 380   }
 381 
 382   double predict_fully_young_cards_per_entry_ratio() {
 383     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
 384   }
 385 
 386   double predict_partially_young_cards_per_entry_ratio() {
 387     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
 388       return predict_fully_young_cards_per_entry_ratio();
 389     else
 390       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
 391   }
 392 
 393   size_t predict_young_card_num(size_t rs_length) {
 394     return (size_t) ((double) rs_length *
 395                      predict_fully_young_cards_per_entry_ratio());
 396   }
 397 
 398   size_t predict_non_young_card_num(size_t rs_length) {
 399     return (size_t) ((double) rs_length *
 400                      predict_partially_young_cards_per_entry_ratio());
 401   }
 402 
 403   double predict_rs_scan_time_ms(size_t card_num) {
 404     if (full_young_gcs())
 405       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 406     else
 407       return predict_partially_young_rs_scan_time_ms(card_num);
 408   }
 409 
 410   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
 411     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
 412       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 413     else
 414       return (double) card_num *
 415         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
 416   }
 417 
 418   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 419     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
 420       return 1.1 * (double) bytes_to_copy *
 421         get_new_prediction(_cost_per_byte_ms_seq);
 422     else
 423       return (double) bytes_to_copy *
 424         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 425   }
 426 
 427   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 428     if (_in_marking_window && !_in_marking_window_im)
 429       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 430     else
 431       return (double) bytes_to_copy *
 432         get_new_prediction(_cost_per_byte_ms_seq);
 433   }
 434 
 435   double predict_constant_other_time_ms() {
 436     return get_new_prediction(_constant_other_time_ms_seq);
 437   }
 438 
 439   double predict_young_other_time_ms(size_t young_num) {
 440     return
 441       (double) young_num *
 442       get_new_prediction(_young_other_cost_per_region_ms_seq);
 443   }
 444 
 445   double predict_non_young_other_time_ms(size_t non_young_num) {
 446     return
 447       (double) non_young_num *
 448       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 449   }
 450 
 451   void check_if_region_is_too_expensive(double predicted_time_ms);
 452 
 453   double predict_young_collection_elapsed_time_ms(size_t adjustment);
 454   double predict_base_elapsed_time_ms(size_t pending_cards);
 455   double predict_base_elapsed_time_ms(size_t pending_cards,
 456                                       size_t scanned_cards);
 457   size_t predict_bytes_to_copy(HeapRegion* hr);
 458   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 459 
 460     // for use by: calculate_young_list_target_length(rs_length)
 461   bool predict_will_fit(size_t young_region_num,
 462                         double base_time_ms,
 463                         size_t init_free_regions,
 464                         double target_pause_time_ms);
 465 
 466   void start_recording_regions();
 467   void record_cset_region_info(HeapRegion* hr, bool young);
 468   void record_non_young_cset_region(HeapRegion* hr);
 469 
 470   void set_recorded_young_regions(size_t n_regions);
 471   void set_recorded_young_bytes(size_t bytes);
 472   void set_recorded_rs_lengths(size_t rs_lengths);
 473   void set_predicted_bytes_to_copy(size_t bytes);
 474 
 475   void end_recording_regions();
 476 
 477   void record_vtime_diff_ms(double vtime_diff_ms) {
 478     _vtime_diff_ms = vtime_diff_ms;
 479   }
 480 
 481   void record_young_free_cset_time_ms(double time_ms) {
 482     _recorded_young_free_cset_time_ms = time_ms;
 483   }
 484 
 485   void record_non_young_free_cset_time_ms(double time_ms) {
 486     _recorded_non_young_free_cset_time_ms = time_ms;
 487   }
 488 
 489   double predict_young_gc_eff() {
 490     return get_new_neg_prediction(_young_gc_eff_seq);
 491   }
 492 
 493   double predict_survivor_regions_evac_time();
 494 
 495   // </NEW PREDICTION>
 496 
 497 public:
 498   void cset_regions_freed() {
 499     bool propagate = _last_young_gc_full && !_in_marking_window;
 500     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 501     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 502     // also call it on any more surv rate groups
 503   }
 504 
 505   void set_known_garbage_bytes(size_t known_garbage_bytes) {
 506     _known_garbage_bytes = known_garbage_bytes;
 507     size_t heap_bytes = _g1->capacity();
 508     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 509   }
 510 
 511   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
 512     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
 513 
 514     _known_garbage_bytes -= known_garbage_bytes;
 515     size_t heap_bytes = _g1->capacity();
 516     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 517   }
 518 
 519   G1MMUTracker* mmu_tracker() {
 520     return _mmu_tracker;
 521   }
 522 
 523   double max_pause_time_ms() {
 524     return _mmu_tracker->max_gc_time() * 1000.0;
 525   }
 526 
 527   double predict_init_time_ms() {
 528     return get_new_prediction(_concurrent_mark_init_times_ms);
 529   }
 530 
 531   double predict_remark_time_ms() {
 532     return get_new_prediction(_concurrent_mark_remark_times_ms);
 533   }
 534 
 535   double predict_cleanup_time_ms() {
 536     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 537   }
 538 
 539   // Returns an estimate of the survival rate of the region at yg-age
 540   // "yg_age".
 541   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 542     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 543     if (seq->num() == 0)
 544       gclog_or_tty->print("BARF! age is %d", age);
 545     guarantee( seq->num() > 0, "invariant" );
 546     double pred = get_new_prediction(seq);
 547     if (pred > 1.0)
 548       pred = 1.0;
 549     return pred;
 550   }
 551 
 552   double predict_yg_surv_rate(int age) {
 553     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 554   }
 555 
 556   double accum_yg_surv_rate_pred(int age) {
 557     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 558   }
 559 
 560 protected:
 561   void print_stats(int level, const char* str, double value);
 562   void print_stats(int level, const char* str, int value);
 563 
 564   void print_par_stats(int level, const char* str, double* data);
 565   void print_par_sizes(int level, const char* str, double* data);
 566 
 567   void check_other_times(int level,
 568                          NumberSeq* other_times_ms,
 569                          NumberSeq* calc_other_times_ms) const;
 570 
 571   void print_summary (PauseSummary* stats) const;
 572 
 573   void print_summary (int level, const char* str, NumberSeq* seq) const;
 574   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 575 
 576   double avg_value (double* data);
 577   double max_value (double* data);
 578   double sum_of_values (double* data);
 579   double max_sum (double* data1, double* data2);
 580 
 581   int _last_satb_drain_processed_buffers;
 582   int _last_update_rs_processed_buffers;
 583   double _last_pause_time_ms;
 584 
 585   size_t _bytes_in_collection_set_before_gc;
 586   size_t _bytes_copied_during_gc;
 587 
 588   // Used to count used bytes in CS.
 589   friend class CountCSClosure;
 590 
 591   // Statistics kept per GC stoppage, pause or full.
 592   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 593 
 594   // We track markings.
 595   int _num_markings;
 596   double _mark_thread_startup_sec;       // Time at startup of marking thread
 597 
 598   // Add a new GC of the given duration and end time to the record.
 599   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 600 
 601   // The head of the list (via "next_in_collection_set()") representing the
 602   // current collection set. Set from the incrementally built collection
 603   // set at the start of the pause.
 604   HeapRegion* _collection_set;
 605 
 606   // The number of regions in the collection set. Set from the incrementally
 607   // built collection set at the start of an evacuation pause.
 608   size_t _collection_set_size;
 609 
 610   // The number of bytes in the collection set before the pause. Set from
 611   // the incrementally built collection set at the start of an evacuation
 612   // pause.
 613   size_t _collection_set_bytes_used_before;
 614 
 615   // The associated information that is maintained while the incremental
 616   // collection set is being built with young regions. Used to populate
 617   // the recorded info for the evacuation pause.
 618 
 619   enum CSetBuildType {
 620     Active,             // We are actively building the collection set
 621     Inactive            // We are not actively building the collection set
 622   };
 623 
 624   CSetBuildType _inc_cset_build_state;
 625 
 626   // The head of the incrementally built collection set.
 627   HeapRegion* _inc_cset_head;
 628 
 629   // The tail of the incrementally built collection set.
 630   HeapRegion* _inc_cset_tail;
 631 
 632   // The number of regions in the incrementally built collection set.
 633   // Used to set _collection_set_size at the start of an evacuation
 634   // pause.
 635   size_t _inc_cset_size;
 636 
 637   // Used as the index in the surving young words structure
 638   // which tracks the amount of space, for each young region,
 639   // that survives the pause.
 640   size_t _inc_cset_young_index;
 641 
 642   // The number of bytes in the incrementally built collection set.
 643   // Used to set _collection_set_bytes_used_before at the start of
 644   // an evacuation pause.
 645   size_t _inc_cset_bytes_used_before;
 646 
 647   // Used to record the highest end of heap region in collection set
 648   HeapWord* _inc_cset_max_finger;
 649 
 650   // The number of recorded used bytes in the young regions
 651   // of the collection set. This is the sum of the used() bytes
 652   // of retired young regions in the collection set.
 653   size_t _inc_cset_recorded_young_bytes;
 654 
 655   // The RSet lengths recorded for regions in the collection set
 656   // (updated by the periodic sampling of the regions in the
 657   // young list/collection set).
 658   size_t _inc_cset_recorded_rs_lengths;
 659 
 660   // The predicted elapsed time it will take to collect the regions
 661   // in the collection set (updated by the periodic sampling of the
 662   // regions in the young list/collection set).
 663   double _inc_cset_predicted_elapsed_time_ms;
 664 
 665   // The predicted bytes to copy for the regions in the collection
 666   // set (updated by the periodic sampling of the regions in the
 667   // young list/collection set).
 668   size_t _inc_cset_predicted_bytes_to_copy;
 669 
 670   // Info about marking.
 671   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
 672 
 673   // The number of collection pauses at the end of the last mark.
 674   size_t _n_pauses_at_mark_end;
 675 
 676   // Stash a pointer to the g1 heap.
 677   G1CollectedHeap* _g1;
 678 
 679   // The average time in ms per collection pause, averaged over recent pauses.
 680   double recent_avg_time_for_pauses_ms();
 681 
 682   // The average time in ms for RS scanning, per pause, averaged
 683   // over recent pauses. (Note the RS scanning time for a pause
 684   // is itself an average of the RS scanning time for each worker
 685   // thread.)
 686   double recent_avg_time_for_rs_scan_ms();
 687 
 688   // The number of "recent" GCs recorded in the number sequences
 689   int number_of_recent_gcs();
 690 
 691   // The average survival ratio, computed by the total number of bytes
 692   // suriviving / total number of bytes before collection over the last
 693   // several recent pauses.
 694   double recent_avg_survival_fraction();
 695   // The survival fraction of the most recent pause; if there have been no
 696   // pauses, returns 1.0.
 697   double last_survival_fraction();
 698 
 699   // Returns a "conservative" estimate of the recent survival rate, i.e.,
 700   // one that may be higher than "recent_avg_survival_fraction".
 701   // This is conservative in several ways:
 702   //   If there have been few pauses, it will assume a potential high
 703   //     variance, and err on the side of caution.
 704   //   It puts a lower bound (currently 0.1) on the value it will return.
 705   //   To try to detect phase changes, if the most recent pause ("latest") has a
 706   //     higher-than average ("avg") survival rate, it returns that rate.
 707   // "work" version is a utility function; young is restricted to young regions.
 708   double conservative_avg_survival_fraction_work(double avg,
 709                                                  double latest);
 710 
 711   // The arguments are the two sequences that keep track of the number of bytes
 712   //   surviving and the total number of bytes before collection, resp.,
 713   //   over the last evereal recent pauses
 714   // Returns the survival rate for the category in the most recent pause.
 715   // If there have been no pauses, returns 1.0.
 716   double last_survival_fraction_work(TruncatedSeq* surviving,
 717                                      TruncatedSeq* before);
 718 
 719   // The arguments are the two sequences that keep track of the number of bytes
 720   //   surviving and the total number of bytes before collection, resp.,
 721   //   over the last several recent pauses
 722   // Returns the average survival ration over the last several recent pauses
 723   // If there have been no pauses, return 1.0
 724   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
 725                                            TruncatedSeq* before);
 726 
 727   double conservative_avg_survival_fraction() {
 728     double avg = recent_avg_survival_fraction();
 729     double latest = last_survival_fraction();
 730     return conservative_avg_survival_fraction_work(avg, latest);
 731   }
 732 
 733   // The ratio of gc time to elapsed time, computed over recent pauses.
 734   double _recent_avg_pause_time_ratio;
 735 
 736   double recent_avg_pause_time_ratio() {
 737     return _recent_avg_pause_time_ratio;
 738   }
 739 
 740   // Number of pauses between concurrent marking.
 741   size_t _pauses_btwn_concurrent_mark;
 742 
 743   size_t _n_marks_since_last_pause;
 744 
 745   // At the end of a pause we check the heap occupancy and we decide
 746   // whether we will start a marking cycle during the next pause. If
 747   // we decide that we want to do that, we will set this parameter to
 748   // true. So, this parameter will stay true between the end of a
 749   // pause and the beginning of a subsequent pause (not necessarily
 750   // the next one, see the comments on the next field) when we decide
 751   // that we will indeed start a marking cycle and do the initial-mark
 752   // work.
 753   volatile bool _initiate_conc_mark_if_possible;
 754 
 755   // If initiate_conc_mark_if_possible() is set at the beginning of a
 756   // pause, it is a suggestion that the pause should start a marking
 757   // cycle by doing the initial-mark work. However, it is possible
 758   // that the concurrent marking thread is still finishing up the
 759   // previous marking cycle (e.g., clearing the next marking
 760   // bitmap). If that is the case we cannot start a new cycle and
 761   // we'll have to wait for the concurrent marking thread to finish
 762   // what it is doing. In this case we will postpone the marking cycle
 763   // initiation decision for the next pause. When we eventually decide
 764   // to start a cycle, we will set _during_initial_mark_pause which
 765   // will stay true until the end of the initial-mark pause and it's
 766   // the condition that indicates that a pause is doing the
 767   // initial-mark work.
 768   volatile bool _during_initial_mark_pause;
 769 
 770   bool _should_revert_to_full_young_gcs;
 771   bool _last_full_young_gc;
 772 
 773   // This set of variables tracks the collector efficiency, in order to
 774   // determine whether we should initiate a new marking.
 775   double _cur_mark_stop_world_time_ms;
 776   double _mark_init_start_sec;
 777   double _mark_remark_start_sec;
 778   double _mark_cleanup_start_sec;
 779   double _mark_closure_time_ms;
 780 
 781   void   calculate_young_list_min_length();
 782   void   calculate_young_list_target_length();
 783   void   calculate_young_list_target_length(size_t rs_lengths);
 784 
 785 public:
 786 
 787   G1CollectorPolicy();
 788 
 789   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 790 
 791   virtual CollectorPolicy::Name kind() {
 792     return CollectorPolicy::G1CollectorPolicyKind;
 793   }
 794 
 795   void check_prediction_validity();
 796 
 797   size_t bytes_in_collection_set() {
 798     return _bytes_in_collection_set_before_gc;
 799   }
 800 
 801   unsigned calc_gc_alloc_time_stamp() {
 802     return _all_pause_times_ms->num() + 1;
 803   }
 804 
 805 protected:
 806 
 807   // Count the number of bytes used in the CS.
 808   void count_CS_bytes_used();
 809 
 810   // Together these do the base cleanup-recording work.  Subclasses might
 811   // want to put something between them.
 812   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 813                                                 size_t max_live_bytes);
 814   void record_concurrent_mark_cleanup_end_work2();
 815 
 816 public:
 817 
 818   virtual void init();
 819 
 820   // Create jstat counters for the policy.
 821   virtual void initialize_gc_policy_counters();
 822 
 823   virtual HeapWord* mem_allocate_work(size_t size,
 824                                       bool is_tlab,
 825                                       bool* gc_overhead_limit_was_exceeded);
 826 
 827   // This method controls how a collector handles one or more
 828   // of its generations being fully allocated.
 829   virtual HeapWord* satisfy_failed_allocation(size_t size,
 830                                               bool is_tlab);
 831 
 832   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 833 
 834   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 835 
 836   // The number of collection pauses so far.
 837   long n_pauses() const { return _n_pauses; }
 838 
 839   // Update the heuristic info to record a collection pause of the given
 840   // start time, where the given number of bytes were used at the start.
 841   // This may involve changing the desired size of a collection set.
 842 
 843   virtual void record_stop_world_start();
 844 
 845   virtual void record_collection_pause_start(double start_time_sec,
 846                                              size_t start_used);
 847 
 848   // Must currently be called while the world is stopped.
 849   virtual void record_concurrent_mark_init_start();
 850   virtual void record_concurrent_mark_init_end();
 851   void record_concurrent_mark_init_end_pre(double
 852                                            mark_init_elapsed_time_ms);
 853 
 854   void record_mark_closure_time(double mark_closure_time_ms);
 855 
 856   virtual void record_concurrent_mark_remark_start();
 857   virtual void record_concurrent_mark_remark_end();
 858 
 859   virtual void record_concurrent_mark_cleanup_start();
 860   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
 861                                                   size_t max_live_bytes);
 862   virtual void record_concurrent_mark_cleanup_completed();
 863 
 864   virtual void record_concurrent_pause();
 865   virtual void record_concurrent_pause_end();
 866 
 867   virtual void record_collection_pause_end();
 868   void print_heap_transition();
 869 
 870   // Record the fact that a full collection occurred.
 871   virtual void record_full_collection_start();
 872   virtual void record_full_collection_end();
 873 
 874   void record_gc_worker_start_time(int worker_i, double ms) {
 875     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 876   }
 877 
 878   void record_ext_root_scan_time(int worker_i, double ms) {
 879     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 880   }
 881 
 882   void record_mark_stack_scan_time(int worker_i, double ms) {
 883     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
 884   }
 885 
 886   void record_satb_drain_time(double ms) {
 887     _cur_satb_drain_time_ms = ms;
 888     _satb_drain_time_set    = true;
 889   }
 890 
 891   void record_satb_drain_processed_buffers (int processed_buffers) {
 892     _last_satb_drain_processed_buffers = processed_buffers;
 893   }
 894 
 895   void record_mod_union_time(double ms) {
 896     _all_mod_union_times_ms->add(ms);
 897   }
 898 
 899   void record_update_rs_time(int thread, double ms) {
 900     _par_last_update_rs_times_ms[thread] = ms;
 901   }
 902 
 903   void record_update_rs_processed_buffers (int thread,
 904                                            double processed_buffers) {
 905     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 906   }
 907 
 908   void record_scan_rs_time(int thread, double ms) {
 909     _par_last_scan_rs_times_ms[thread] = ms;
 910   }
 911 
 912   void reset_obj_copy_time(int thread) {
 913     _par_last_obj_copy_times_ms[thread] = 0.0;
 914   }
 915 
 916   void reset_obj_copy_time() {
 917     reset_obj_copy_time(0);
 918   }
 919 
 920   void record_obj_copy_time(int thread, double ms) {
 921     _par_last_obj_copy_times_ms[thread] += ms;
 922   }
 923 
 924   void record_termination(int thread, double ms, size_t attempts) {
 925     _par_last_termination_times_ms[thread] = ms;
 926     _par_last_termination_attempts[thread] = (double) attempts;
 927   }
 928 
 929   void record_gc_worker_end_time(int worker_i, double ms) {
 930     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 931   }
 932 
 933   void record_pause_time_ms(double ms) {
 934     _last_pause_time_ms = ms;
 935   }
 936 
 937   void record_clear_ct_time(double ms) {
 938     _cur_clear_ct_time_ms = ms;
 939   }
 940 
 941   void record_par_time(double ms) {
 942     _cur_collection_par_time_ms = ms;
 943   }
 944 
 945   void record_aux_start_time(int i) {
 946     guarantee(i < _aux_num, "should be within range");
 947     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 948   }
 949 
 950   void record_aux_end_time(int i) {
 951     guarantee(i < _aux_num, "should be within range");
 952     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 953     _cur_aux_times_set[i] = true;
 954     _cur_aux_times_ms[i] += ms;
 955   }
 956 
 957 #ifndef PRODUCT
 958   void record_cc_clear_time(double ms) {
 959     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 960       _min_clear_cc_time_ms = ms;
 961     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 962       _max_clear_cc_time_ms = ms;
 963     _cur_clear_cc_time_ms = ms;
 964     _cum_clear_cc_time_ms += ms;
 965     _num_cc_clears++;
 966   }
 967 #endif
 968 
 969   // Record how much space we copied during a GC. This is typically
 970   // called when a GC alloc region is being retired.
 971   void record_bytes_copied_during_gc(size_t bytes) {
 972     _bytes_copied_during_gc += bytes;
 973   }
 974 
 975   // The amount of space we copied during a GC.
 976   size_t bytes_copied_during_gc() {
 977     return _bytes_copied_during_gc;
 978   }
 979 
 980   // Choose a new collection set.  Marks the chosen regions as being
 981   // "in_collection_set", and links them together.  The head and number of
 982   // the collection set are available via access methods.
 983   virtual void choose_collection_set(double target_pause_time_ms) = 0;
 984 
 985   // The head of the list (via "next_in_collection_set()") representing the
 986   // current collection set.
 987   HeapRegion* collection_set() { return _collection_set; }
 988 
 989   void clear_collection_set() { _collection_set = NULL; }
 990 
 991   // The number of elements in the current collection set.
 992   size_t collection_set_size() { return _collection_set_size; }
 993 
 994   // Add "hr" to the CS.
 995   void add_to_collection_set(HeapRegion* hr);
 996 
 997   // Incremental CSet Support
 998 
 999   // The head of the incrementally built collection set.
1000   HeapRegion* inc_cset_head() { return _inc_cset_head; }
1001 
1002   // The tail of the incrementally built collection set.
1003   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
1004 
1005   // The number of elements in the incrementally built collection set.
1006   size_t inc_cset_size() { return _inc_cset_size; }
1007 
1008   // Initialize incremental collection set info.
1009   void start_incremental_cset_building();
1010 
1011   void clear_incremental_cset() {
1012     _inc_cset_head = NULL;
1013     _inc_cset_tail = NULL;
1014   }
1015 
1016   // Stop adding regions to the incremental collection set
1017   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
1018 
1019   // Add/remove information about hr to the aggregated information
1020   // for the incrementally built collection set.
1021   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
1022   void remove_from_incremental_cset_info(HeapRegion* hr);
1023 
1024   // Update information about hr in the aggregated information for
1025   // the incrementally built collection set.
1026   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
1027 
1028 private:
1029   // Update the incremental cset information when adding a region
1030   // (should not be called directly).
1031   void add_region_to_incremental_cset_common(HeapRegion* hr);
1032 
1033 public:
1034   // Add hr to the LHS of the incremental collection set.
1035   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
1036 
1037   // Add hr to the RHS of the incremental collection set.
1038   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
1039 
1040 #ifndef PRODUCT
1041   void print_collection_set(HeapRegion* list_head, outputStream* st);
1042 #endif // !PRODUCT
1043 
1044   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
1045   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
1046   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
1047 
1048   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
1049   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
1050   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
1051 
1052   // This sets the initiate_conc_mark_if_possible() flag to start a
1053   // new cycle, as long as we are not already in one. It's best if it
1054   // is called during a safepoint when the test whether a cycle is in
1055   // progress or not is stable.
1056   bool force_initial_mark_if_outside_cycle();
1057 
1058   // This is called at the very beginning of an evacuation pause (it
1059   // has to be the first thing that the pause does). If
1060   // initiate_conc_mark_if_possible() is true, and the concurrent
1061   // marking thread has completed its work during the previous cycle,
1062   // it will set during_initial_mark_pause() to so that the pause does
1063   // the initial-mark work and start a marking cycle.
1064   void decide_on_conc_mark_initiation();
1065 
1066   // If an expansion would be appropriate, because recent GC overhead had
1067   // exceeded the desired limit, return an amount to expand by.
1068   virtual size_t expansion_amount();
1069 
1070   // note start of mark thread
1071   void note_start_of_mark_thread();
1072 
1073   // The marked bytes of the "r" has changed; reclassify it's desirability
1074   // for marking.  Also asserts that "r" is eligible for a CS.
1075   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
1076 
1077 #ifndef PRODUCT
1078   // Check any appropriate marked bytes info, asserting false if
1079   // something's wrong, else returning "true".
1080   virtual bool assertMarkedBytesDataOK() = 0;
1081 #endif
1082 
1083   // Print tracing information.
1084   void print_tracing_info() const;
1085 
1086   // Print stats on young survival ratio
1087   void print_yg_surv_rate_info() const;
1088 
1089   void finished_recalculating_age_indexes(bool is_survivors) {
1090     if (is_survivors) {
1091       _survivor_surv_rate_group->finished_recalculating_age_indexes();
1092     } else {
1093       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1094     }
1095     // do that for any other surv rate groups
1096   }
1097 
1098   bool is_young_list_full() {
1099     size_t young_list_length = _g1->young_list()->length();
1100     size_t young_list_target_length = _young_list_target_length;
1101     if (G1FixedEdenSize) {
1102       young_list_target_length -= _max_survivor_regions;
1103     }
1104     return young_list_length >= young_list_target_length;
1105   }
1106 
1107   bool can_expand_young_list() {
1108     size_t young_list_length = _g1->young_list()->length();
1109     size_t young_list_max_length = _young_list_max_length;
1110     if (G1FixedEdenSize) {
1111       young_list_max_length -= _max_survivor_regions;
1112     }
1113     return young_list_length < young_list_max_length;
1114   }
1115 
1116   void update_region_num(bool young);
1117 
1118   bool full_young_gcs() {
1119     return _full_young_gcs;
1120   }
1121   void set_full_young_gcs(bool full_young_gcs) {
1122     _full_young_gcs = full_young_gcs;
1123   }
1124 
1125   bool adaptive_young_list_length() {
1126     return _adaptive_young_list_length;
1127   }
1128   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1129     _adaptive_young_list_length = adaptive_young_list_length;
1130   }
1131 
1132   inline double get_gc_eff_factor() {
1133     double ratio = _known_garbage_ratio;
1134 
1135     double square = ratio * ratio;
1136     // square = square * square;
1137     double ret = square * 9.0 + 1.0;
1138 #if 0
1139     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1140 #endif // 0
1141     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1142     return ret;
1143   }
1144 
1145   //
1146   // Survivor regions policy.
1147   //
1148 protected:
1149 
1150   // Current tenuring threshold, set to 0 if the collector reaches the
1151   // maximum amount of suvivors regions.
1152   int _tenuring_threshold;
1153 
1154   // The limit on the number of regions allocated for survivors.
1155   size_t _max_survivor_regions;
1156 
1157   // For reporting purposes.
1158   size_t _eden_bytes_before_gc;
1159   size_t _survivor_bytes_before_gc;
1160   size_t _capacity_before_gc;
1161 
1162   // The amount of survor regions after a collection.
1163   size_t _recorded_survivor_regions;
1164   // List of survivor regions.
1165   HeapRegion* _recorded_survivor_head;
1166   HeapRegion* _recorded_survivor_tail;
1167 
1168   ageTable _survivors_age_table;
1169 
1170 public:
1171 
1172   inline GCAllocPurpose
1173     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1174       if (age < _tenuring_threshold && src_region->is_young()) {
1175         return GCAllocForSurvived;
1176       } else {
1177         return GCAllocForTenured;
1178       }
1179   }
1180 
1181   inline bool track_object_age(GCAllocPurpose purpose) {
1182     return purpose == GCAllocForSurvived;
1183   }
1184 
1185   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
1186 
1187   size_t max_regions(int purpose);
1188 
1189   // The limit on regions for a particular purpose is reached.
1190   void note_alloc_region_limit_reached(int purpose) {
1191     if (purpose == GCAllocForSurvived) {
1192       _tenuring_threshold = 0;
1193     }
1194   }
1195 
1196   void note_start_adding_survivor_regions() {
1197     _survivor_surv_rate_group->start_adding_regions();
1198   }
1199 
1200   void note_stop_adding_survivor_regions() {
1201     _survivor_surv_rate_group->stop_adding_regions();
1202   }
1203 
1204   void record_survivor_regions(size_t      regions,
1205                                HeapRegion* head,
1206                                HeapRegion* tail) {
1207     _recorded_survivor_regions = regions;
1208     _recorded_survivor_head    = head;
1209     _recorded_survivor_tail    = tail;
1210   }
1211 
1212   size_t recorded_survivor_regions() {
1213     return _recorded_survivor_regions;
1214   }
1215 
1216   void record_thread_age_table(ageTable* age_table)
1217   {
1218     _survivors_age_table.merge_par(age_table);
1219   }
1220 
1221   void calculate_max_gc_locker_expansion();
1222 
1223   // Calculates survivor space parameters.
1224   void calculate_survivors_policy();
1225 
1226 };
1227 
1228 // This encapsulates a particular strategy for a g1 Collector.
1229 //
1230 //      Start a concurrent mark when our heap size is n bytes
1231 //            greater then our heap size was at the last concurrent
1232 //            mark.  Where n is a function of the CMSTriggerRatio
1233 //            and the MinHeapFreeRatio.
1234 //
1235 //      Start a g1 collection pause when we have allocated the
1236 //            average number of bytes currently being freed in
1237 //            a collection, but only if it is at least one region
1238 //            full
1239 //
1240 //      Resize Heap based on desired
1241 //      allocation space, where desired allocation space is
1242 //      a function of survival rate and desired future to size.
1243 //
1244 //      Choose collection set by first picking all older regions
1245 //      which have a survival rate which beats our projected young
1246 //      survival rate.  Then fill out the number of needed regions
1247 //      with young regions.
1248 
1249 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
1250   CollectionSetChooser* _collectionSetChooser;
1251   // If the estimated is less then desirable, resize if possible.
1252   void expand_if_possible(size_t numRegions);
1253 
1254   virtual void choose_collection_set(double target_pause_time_ms);
1255   virtual void record_collection_pause_start(double start_time_sec,
1256                                              size_t start_used);
1257   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
1258                                                   size_t max_live_bytes);
1259   virtual void record_full_collection_end();
1260 
1261 public:
1262   G1CollectorPolicy_BestRegionsFirst() {
1263     _collectionSetChooser = new CollectionSetChooser();
1264   }
1265   void record_collection_pause_end();
1266   // This is not needed any more, after the CSet choosing code was
1267   // changed to use the pause prediction work. But let's leave the
1268   // hook in just in case.
1269   void note_change_in_marked_bytes(HeapRegion* r) { }
1270 #ifndef PRODUCT
1271   bool assertMarkedBytesDataOK();
1272 #endif
1273 };
1274 
1275 // This should move to some place more general...
1276 
1277 // If we have "n" measurements, and we've kept track of their "sum" and the
1278 // "sum_of_squares" of the measurements, this returns the variance of the
1279 // sequence.
1280 inline double variance(int n, double sum_of_squares, double sum) {
1281   double n_d = (double)n;
1282   double avg = sum/n_d;
1283   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1284 }
1285 
1286 // Local Variables: ***
1287 // c-indentation-style: gnu ***
1288 // End: ***
1289 
1290 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP