1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1MarkSweep.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  39 #include "gc_implementation/g1/vm_operations_g1.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "memory/gcLocker.inline.hpp"
  42 #include "memory/genOopClosures.inline.hpp"
  43 #include "memory/generationSpec.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.pcgc.inline.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/vmThread.hpp"
  48 
  49 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  50 
  51 // turn it on so that the contents of the young list (scan-only /
  52 // to-be-collected) are printed at "strategic" points before / during
  53 // / after the collection --- this is useful for debugging
  54 #define YOUNG_LIST_VERBOSE 0
  55 // CURRENT STATUS
  56 // This file is under construction.  Search for "FIXME".
  57 
  58 // INVARIANTS/NOTES
  59 //
  60 // All allocation activity covered by the G1CollectedHeap interface is
  61 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  62 // and allocate_new_tlab, which are the "entry" points to the
  63 // allocation code from the rest of the JVM.  (Note that this does not
  64 // apply to TLAB allocation, which is not part of this interface: it
  65 // is done by clients of this interface.)
  66 
  67 // Local to this file.
  68 
  69 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  70   SuspendibleThreadSet* _sts;
  71   G1RemSet* _g1rs;
  72   ConcurrentG1Refine* _cg1r;
  73   bool _concurrent;
  74 public:
  75   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  76                               G1RemSet* g1rs,
  77                               ConcurrentG1Refine* cg1r) :
  78     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  79   {}
  80   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  81     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  82     // This path is executed by the concurrent refine or mutator threads,
  83     // concurrently, and so we do not care if card_ptr contains references
  84     // that point into the collection set.
  85     assert(!oops_into_cset, "should be");
  86 
  87     if (_concurrent && _sts->should_yield()) {
  88       // Caller will actually yield.
  89       return false;
  90     }
  91     // Otherwise, we finished successfully; return true.
  92     return true;
  93   }
  94   void set_concurrent(bool b) { _concurrent = b; }
  95 };
  96 
  97 
  98 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  99   int _calls;
 100   G1CollectedHeap* _g1h;
 101   CardTableModRefBS* _ctbs;
 102   int _histo[256];
 103 public:
 104   ClearLoggedCardTableEntryClosure() :
 105     _calls(0)
 106   {
 107     _g1h = G1CollectedHeap::heap();
 108     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 109     for (int i = 0; i < 256; i++) _histo[i] = 0;
 110   }
 111   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 112     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 113       _calls++;
 114       unsigned char* ujb = (unsigned char*)card_ptr;
 115       int ind = (int)(*ujb);
 116       _histo[ind]++;
 117       *card_ptr = -1;
 118     }
 119     return true;
 120   }
 121   int calls() { return _calls; }
 122   void print_histo() {
 123     gclog_or_tty->print_cr("Card table value histogram:");
 124     for (int i = 0; i < 256; i++) {
 125       if (_histo[i] != 0) {
 126         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 127       }
 128     }
 129   }
 130 };
 131 
 132 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 133   int _calls;
 134   G1CollectedHeap* _g1h;
 135   CardTableModRefBS* _ctbs;
 136 public:
 137   RedirtyLoggedCardTableEntryClosure() :
 138     _calls(0)
 139   {
 140     _g1h = G1CollectedHeap::heap();
 141     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 142   }
 143   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 144     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 145       _calls++;
 146       *card_ptr = 0;
 147     }
 148     return true;
 149   }
 150   int calls() { return _calls; }
 151 };
 152 
 153 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 154 public:
 155   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 156     *card_ptr = CardTableModRefBS::dirty_card_val();
 157     return true;
 158   }
 159 };
 160 
 161 YoungList::YoungList(G1CollectedHeap* g1h)
 162   : _g1h(g1h), _head(NULL),
 163     _length(0),
 164     _last_sampled_rs_lengths(0),
 165     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 166 {
 167   guarantee( check_list_empty(false), "just making sure..." );
 168 }
 169 
 170 void YoungList::push_region(HeapRegion *hr) {
 171   assert(!hr->is_young(), "should not already be young");
 172   assert(hr->get_next_young_region() == NULL, "cause it should!");
 173 
 174   hr->set_next_young_region(_head);
 175   _head = hr;
 176 
 177   hr->set_young();
 178   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 179   ++_length;
 180 }
 181 
 182 void YoungList::add_survivor_region(HeapRegion* hr) {
 183   assert(hr->is_survivor(), "should be flagged as survivor region");
 184   assert(hr->get_next_young_region() == NULL, "cause it should!");
 185 
 186   hr->set_next_young_region(_survivor_head);
 187   if (_survivor_head == NULL) {
 188     _survivor_tail = hr;
 189   }
 190   _survivor_head = hr;
 191 
 192   ++_survivor_length;
 193 }
 194 
 195 void YoungList::empty_list(HeapRegion* list) {
 196   while (list != NULL) {
 197     HeapRegion* next = list->get_next_young_region();
 198     list->set_next_young_region(NULL);
 199     list->uninstall_surv_rate_group();
 200     list->set_not_young();
 201     list = next;
 202   }
 203 }
 204 
 205 void YoungList::empty_list() {
 206   assert(check_list_well_formed(), "young list should be well formed");
 207 
 208   empty_list(_head);
 209   _head = NULL;
 210   _length = 0;
 211 
 212   empty_list(_survivor_head);
 213   _survivor_head = NULL;
 214   _survivor_tail = NULL;
 215   _survivor_length = 0;
 216 
 217   _last_sampled_rs_lengths = 0;
 218 
 219   assert(check_list_empty(false), "just making sure...");
 220 }
 221 
 222 bool YoungList::check_list_well_formed() {
 223   bool ret = true;
 224 
 225   size_t length = 0;
 226   HeapRegion* curr = _head;
 227   HeapRegion* last = NULL;
 228   while (curr != NULL) {
 229     if (!curr->is_young()) {
 230       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 231                              "incorrectly tagged (y: %d, surv: %d)",
 232                              curr->bottom(), curr->end(),
 233                              curr->is_young(), curr->is_survivor());
 234       ret = false;
 235     }
 236     ++length;
 237     last = curr;
 238     curr = curr->get_next_young_region();
 239   }
 240   ret = ret && (length == _length);
 241 
 242   if (!ret) {
 243     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 244     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 245                            length, _length);
 246   }
 247 
 248   return ret;
 249 }
 250 
 251 bool YoungList::check_list_empty(bool check_sample) {
 252   bool ret = true;
 253 
 254   if (_length != 0) {
 255     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 256                   _length);
 257     ret = false;
 258   }
 259   if (check_sample && _last_sampled_rs_lengths != 0) {
 260     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 261     ret = false;
 262   }
 263   if (_head != NULL) {
 264     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 265     ret = false;
 266   }
 267   if (!ret) {
 268     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 269   }
 270 
 271   return ret;
 272 }
 273 
 274 void
 275 YoungList::rs_length_sampling_init() {
 276   _sampled_rs_lengths = 0;
 277   _curr               = _head;
 278 }
 279 
 280 bool
 281 YoungList::rs_length_sampling_more() {
 282   return _curr != NULL;
 283 }
 284 
 285 void
 286 YoungList::rs_length_sampling_next() {
 287   assert( _curr != NULL, "invariant" );
 288   size_t rs_length = _curr->rem_set()->occupied();
 289 
 290   _sampled_rs_lengths += rs_length;
 291 
 292   // The current region may not yet have been added to the
 293   // incremental collection set (it gets added when it is
 294   // retired as the current allocation region).
 295   if (_curr->in_collection_set()) {
 296     // Update the collection set policy information for this region
 297     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 298   }
 299 
 300   _curr = _curr->get_next_young_region();
 301   if (_curr == NULL) {
 302     _last_sampled_rs_lengths = _sampled_rs_lengths;
 303     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 304   }
 305 }
 306 
 307 void
 308 YoungList::reset_auxilary_lists() {
 309   guarantee( is_empty(), "young list should be empty" );
 310   assert(check_list_well_formed(), "young list should be well formed");
 311 
 312   // Add survivor regions to SurvRateGroup.
 313   _g1h->g1_policy()->note_start_adding_survivor_regions();
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 315 
 316   for (HeapRegion* curr = _survivor_head;
 317        curr != NULL;
 318        curr = curr->get_next_young_region()) {
 319     _g1h->g1_policy()->set_region_survivors(curr);
 320 
 321     // The region is a non-empty survivor so let's add it to
 322     // the incremental collection set for the next evacuation
 323     // pause.
 324     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 325   }
 326   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 327 
 328   _head   = _survivor_head;
 329   _length = _survivor_length;
 330   if (_survivor_head != NULL) {
 331     assert(_survivor_tail != NULL, "cause it shouldn't be");
 332     assert(_survivor_length > 0, "invariant");
 333     _survivor_tail->set_next_young_region(NULL);
 334   }
 335 
 336   // Don't clear the survivor list handles until the start of
 337   // the next evacuation pause - we need it in order to re-tag
 338   // the survivor regions from this evacuation pause as 'young'
 339   // at the start of the next.
 340 
 341   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 342 
 343   assert(check_list_well_formed(), "young list should be well formed");
 344 }
 345 
 346 void YoungList::print() {
 347   HeapRegion* lists[] = {_head,   _survivor_head};
 348   const char* names[] = {"YOUNG", "SURVIVOR"};
 349 
 350   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 351     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 352     HeapRegion *curr = lists[list];
 353     if (curr == NULL)
 354       gclog_or_tty->print_cr("  empty");
 355     while (curr != NULL) {
 356       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 357                              "age: %4d, y: %d, surv: %d",
 358                              curr->bottom(), curr->end(),
 359                              curr->top(),
 360                              curr->prev_top_at_mark_start(),
 361                              curr->next_top_at_mark_start(),
 362                              curr->top_at_conc_mark_count(),
 363                              curr->age_in_surv_rate_group_cond(),
 364                              curr->is_young(),
 365                              curr->is_survivor());
 366       curr = curr->get_next_young_region();
 367     }
 368   }
 369 
 370   gclog_or_tty->print_cr("");
 371 }
 372 
 373 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 374 {
 375   // Claim the right to put the region on the dirty cards region list
 376   // by installing a self pointer.
 377   HeapRegion* next = hr->get_next_dirty_cards_region();
 378   if (next == NULL) {
 379     HeapRegion* res = (HeapRegion*)
 380       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 381                           NULL);
 382     if (res == NULL) {
 383       HeapRegion* head;
 384       do {
 385         // Put the region to the dirty cards region list.
 386         head = _dirty_cards_region_list;
 387         next = (HeapRegion*)
 388           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 389         if (next == head) {
 390           assert(hr->get_next_dirty_cards_region() == hr,
 391                  "hr->get_next_dirty_cards_region() != hr");
 392           if (next == NULL) {
 393             // The last region in the list points to itself.
 394             hr->set_next_dirty_cards_region(hr);
 395           } else {
 396             hr->set_next_dirty_cards_region(next);
 397           }
 398         }
 399       } while (next != head);
 400     }
 401   }
 402 }
 403 
 404 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 405 {
 406   HeapRegion* head;
 407   HeapRegion* hr;
 408   do {
 409     head = _dirty_cards_region_list;
 410     if (head == NULL) {
 411       return NULL;
 412     }
 413     HeapRegion* new_head = head->get_next_dirty_cards_region();
 414     if (head == new_head) {
 415       // The last region.
 416       new_head = NULL;
 417     }
 418     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 419                                           head);
 420   } while (hr != head);
 421   assert(hr != NULL, "invariant");
 422   hr->set_next_dirty_cards_region(NULL);
 423   return hr;
 424 }
 425 
 426 void G1CollectedHeap::stop_conc_gc_threads() {
 427   _cg1r->stop();
 428   _cmThread->stop();
 429 }
 430 
 431 #ifdef ASSERT
 432 // A region is added to the collection set as it is retired
 433 // so an address p can point to a region which will be in the
 434 // collection set but has not yet been retired.  This method
 435 // therefore is only accurate during a GC pause after all
 436 // regions have been retired.  It is used for debugging
 437 // to check if an nmethod has references to objects that can
 438 // be move during a partial collection.  Though it can be
 439 // inaccurate, it is sufficient for G1 because the conservative
 440 // implementation of is_scavengable() for G1 will indicate that
 441 // all nmethods must be scanned during a partial collection.
 442 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 443   HeapRegion* hr = heap_region_containing(p);
 444   return hr != NULL && hr->in_collection_set();
 445 }
 446 #endif
 447 
 448 // Returns true if the reference points to an object that
 449 // can move in an incremental collecction.
 450 bool G1CollectedHeap::is_scavengable(const void* p) {
 451   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 452   G1CollectorPolicy* g1p = g1h->g1_policy();
 453   HeapRegion* hr = heap_region_containing(p);
 454   if (hr == NULL) {
 455      // perm gen (or null)
 456      return false;
 457   } else {
 458     return !hr->isHumongous();
 459   }
 460 }
 461 
 462 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 463   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 464   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 465 
 466   // Count the dirty cards at the start.
 467   CountNonCleanMemRegionClosure count1(this);
 468   ct_bs->mod_card_iterate(&count1);
 469   int orig_count = count1.n();
 470 
 471   // First clear the logged cards.
 472   ClearLoggedCardTableEntryClosure clear;
 473   dcqs.set_closure(&clear);
 474   dcqs.apply_closure_to_all_completed_buffers();
 475   dcqs.iterate_closure_all_threads(false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 489   dcqs.apply_closure_to_all_completed_buffers();
 490   dcqs.iterate_closure_all_threads(false);
 491   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 492                          clear.calls(), orig_count);
 493   guarantee(redirty.calls() == clear.calls(),
 494             "Or else mechanism is broken.");
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 
 504   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 505 }
 506 
 507 // Private class members.
 508 
 509 G1CollectedHeap* G1CollectedHeap::_g1h;
 510 
 511 // Private methods.
 512 
 513 HeapRegion*
 514 G1CollectedHeap::new_region_try_secondary_free_list() {
 515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 517     if (!_secondary_free_list.is_empty()) {
 518       if (G1ConcRegionFreeingVerbose) {
 519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 520                                "secondary_free_list has "SIZE_FORMAT" entries",
 521                                _secondary_free_list.length());
 522       }
 523       // It looks as if there are free regions available on the
 524       // secondary_free_list. Let's move them to the free_list and try
 525       // again to allocate from it.
 526       append_secondary_free_list();
 527 
 528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 529              "empty we should have moved at least one entry to the free_list");
 530       HeapRegion* res = _free_list.remove_head();
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "allocated "HR_FORMAT" from secondary_free_list",
 534                                HR_FORMAT_PARAMS(res));
 535       }
 536       return res;
 537     }
 538 
 539     // Wait here until we get notifed either when (a) there are no
 540     // more free regions coming or (b) some regions have been moved on
 541     // the secondary_free_list.
 542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 543   }
 544 
 545   if (G1ConcRegionFreeingVerbose) {
 546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 547                            "could not allocate from secondary_free_list");
 548   }
 549   return NULL;
 550 }
 551 
 552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 553   assert(!isHumongous(word_size) ||
 554                                   word_size <= (size_t) HeapRegion::GrainWords,
 555          "the only time we use this to allocate a humongous region is "
 556          "when we are allocating a single humongous region");
 557 
 558   HeapRegion* res;
 559   if (G1StressConcRegionFreeing) {
 560     if (!_secondary_free_list.is_empty()) {
 561       if (G1ConcRegionFreeingVerbose) {
 562         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                                "forced to look at the secondary_free_list");
 564       }
 565       res = new_region_try_secondary_free_list();
 566       if (res != NULL) {
 567         return res;
 568       }
 569     }
 570   }
 571   res = _free_list.remove_head_or_null();
 572   if (res == NULL) {
 573     if (G1ConcRegionFreeingVerbose) {
 574       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 575                              "res == NULL, trying the secondary_free_list");
 576     }
 577     res = new_region_try_secondary_free_list();
 578   }
 579   if (res == NULL && do_expand) {
 580     if (expand(word_size * HeapWordSize)) {
 581       // Even though the heap was expanded, it might not have reached
 582       // the desired size. So, we cannot assume that the allocation
 583       // will succeed.
 584       res = _free_list.remove_head_or_null();
 585     }
 586   }
 587   return res;
 588 }
 589 
 590 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
 591                                                           size_t word_size) {
 592   assert(isHumongous(word_size), "word_size should be humongous");
 593   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 594 
 595   size_t first = G1_NULL_HRS_INDEX;
 596   if (num_regions == 1) {
 597     // Only one region to allocate, no need to go through the slower
 598     // path. The caller will attempt the expasion if this fails, so
 599     // let's not try to expand here too.
 600     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 601     if (hr != NULL) {
 602       first = hr->hrs_index();
 603     } else {
 604       first = G1_NULL_HRS_INDEX;
 605     }
 606   } else {
 607     // We can't allocate humongous regions while cleanupComplete() is
 608     // running, since some of the regions we find to be empty might not
 609     // yet be added to the free list and it is not straightforward to
 610     // know which list they are on so that we can remove them. Note
 611     // that we only need to do this if we need to allocate more than
 612     // one region to satisfy the current humongous allocation
 613     // request. If we are only allocating one region we use the common
 614     // region allocation code (see above).
 615     wait_while_free_regions_coming();
 616     append_secondary_free_list_if_not_empty_with_lock();
 617 
 618     if (free_regions() >= num_regions) {
 619       first = _hrs.find_contiguous(num_regions);
 620       if (first != G1_NULL_HRS_INDEX) {
 621         for (size_t i = first; i < first + num_regions; ++i) {
 622           HeapRegion* hr = region_at(i);
 623           assert(hr->is_empty(), "sanity");
 624           assert(is_on_master_free_list(hr), "sanity");
 625           hr->set_pending_removal(true);
 626         }
 627         _free_list.remove_all_pending(num_regions);
 628       }
 629     }
 630   }
 631   return first;
 632 }
 633 
 634 HeapWord*
 635 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
 636                                                            size_t num_regions,
 637                                                            size_t word_size) {
 638   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 639   assert(isHumongous(word_size), "word_size should be humongous");
 640   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 641 
 642   // Index of last region in the series + 1.
 643   size_t last = first + num_regions;
 644 
 645   // We need to initialize the region(s) we just discovered. This is
 646   // a bit tricky given that it can happen concurrently with
 647   // refinement threads refining cards on these regions and
 648   // potentially wanting to refine the BOT as they are scanning
 649   // those cards (this can happen shortly after a cleanup; see CR
 650   // 6991377). So we have to set up the region(s) carefully and in
 651   // a specific order.
 652 
 653   // The word size sum of all the regions we will allocate.
 654   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 655   assert(word_size <= word_size_sum, "sanity");
 656 
 657   // This will be the "starts humongous" region.
 658   HeapRegion* first_hr = region_at(first);
 659   // The header of the new object will be placed at the bottom of
 660   // the first region.
 661   HeapWord* new_obj = first_hr->bottom();
 662   // This will be the new end of the first region in the series that
 663   // should also match the end of the last region in the seriers.
 664   HeapWord* new_end = new_obj + word_size_sum;
 665   // This will be the new top of the first region that will reflect
 666   // this allocation.
 667   HeapWord* new_top = new_obj + word_size;
 668 
 669   // First, we need to zero the header of the space that we will be
 670   // allocating. When we update top further down, some refinement
 671   // threads might try to scan the region. By zeroing the header we
 672   // ensure that any thread that will try to scan the region will
 673   // come across the zero klass word and bail out.
 674   //
 675   // NOTE: It would not have been correct to have used
 676   // CollectedHeap::fill_with_object() and make the space look like
 677   // an int array. The thread that is doing the allocation will
 678   // later update the object header to a potentially different array
 679   // type and, for a very short period of time, the klass and length
 680   // fields will be inconsistent. This could cause a refinement
 681   // thread to calculate the object size incorrectly.
 682   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 683 
 684   // We will set up the first region as "starts humongous". This
 685   // will also update the BOT covering all the regions to reflect
 686   // that there is a single object that starts at the bottom of the
 687   // first region.
 688   first_hr->set_startsHumongous(new_top, new_end);
 689 
 690   // Then, if there are any, we will set up the "continues
 691   // humongous" regions.
 692   HeapRegion* hr = NULL;
 693   for (size_t i = first + 1; i < last; ++i) {
 694     hr = region_at(i);
 695     hr->set_continuesHumongous(first_hr);
 696   }
 697   // If we have "continues humongous" regions (hr != NULL), then the
 698   // end of the last one should match new_end.
 699   assert(hr == NULL || hr->end() == new_end, "sanity");
 700 
 701   // Up to this point no concurrent thread would have been able to
 702   // do any scanning on any region in this series. All the top
 703   // fields still point to bottom, so the intersection between
 704   // [bottom,top] and [card_start,card_end] will be empty. Before we
 705   // update the top fields, we'll do a storestore to make sure that
 706   // no thread sees the update to top before the zeroing of the
 707   // object header and the BOT initialization.
 708   OrderAccess::storestore();
 709 
 710   // Now that the BOT and the object header have been initialized,
 711   // we can update top of the "starts humongous" region.
 712   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 713          "new_top should be in this region");
 714   first_hr->set_top(new_top);
 715   if (_hr_printer.is_active()) {
 716     HeapWord* bottom = first_hr->bottom();
 717     HeapWord* end = first_hr->orig_end();
 718     if ((first + 1) == last) {
 719       // the series has a single humongous region
 720       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 721     } else {
 722       // the series has more than one humongous regions
 723       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 724     }
 725   }
 726 
 727   // Now, we will update the top fields of the "continues humongous"
 728   // regions. The reason we need to do this is that, otherwise,
 729   // these regions would look empty and this will confuse parts of
 730   // G1. For example, the code that looks for a consecutive number
 731   // of empty regions will consider them empty and try to
 732   // re-allocate them. We can extend is_empty() to also include
 733   // !continuesHumongous(), but it is easier to just update the top
 734   // fields here. The way we set top for all regions (i.e., top ==
 735   // end for all regions but the last one, top == new_top for the
 736   // last one) is actually used when we will free up the humongous
 737   // region in free_humongous_region().
 738   hr = NULL;
 739   for (size_t i = first + 1; i < last; ++i) {
 740     hr = region_at(i);
 741     if ((i + 1) == last) {
 742       // last continues humongous region
 743       assert(hr->bottom() < new_top && new_top <= hr->end(),
 744              "new_top should fall on this region");
 745       hr->set_top(new_top);
 746       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 747     } else {
 748       // not last one
 749       assert(new_top > hr->end(), "new_top should be above this region");
 750       hr->set_top(hr->end());
 751       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 752     }
 753   }
 754   // If we have continues humongous regions (hr != NULL), then the
 755   // end of the last one should match new_end and its top should
 756   // match new_top.
 757   assert(hr == NULL ||
 758          (hr->end() == new_end && hr->top() == new_top), "sanity");
 759 
 760   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 761   _summary_bytes_used += first_hr->used();
 762   _humongous_set.add(first_hr);
 763 
 764   return new_obj;
 765 }
 766 
 767 // If could fit into free regions w/o expansion, try.
 768 // Otherwise, if can expand, do so.
 769 // Otherwise, if using ex regions might help, try with ex given back.
 770 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 771   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 772 
 773   verify_region_sets_optional();
 774 
 775   size_t num_regions =
 776          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 777   size_t x_size = expansion_regions();
 778   size_t fs = _hrs.free_suffix();
 779   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
 780   if (first == G1_NULL_HRS_INDEX) {
 781     // The only thing we can do now is attempt expansion.
 782     if (fs + x_size >= num_regions) {
 783       // If the number of regions we're trying to allocate for this
 784       // object is at most the number of regions in the free suffix,
 785       // then the call to humongous_obj_allocate_find_first() above
 786       // should have succeeded and we wouldn't be here.
 787       //
 788       // We should only be trying to expand when the free suffix is
 789       // not sufficient for the object _and_ we have some expansion
 790       // room available.
 791       assert(num_regions > fs, "earlier allocation should have succeeded");
 792 
 793       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 794         // Even though the heap was expanded, it might not have
 795         // reached the desired size. So, we cannot assume that the
 796         // allocation will succeed.
 797         first = humongous_obj_allocate_find_first(num_regions, word_size);
 798       }
 799     }
 800   }
 801 
 802   HeapWord* result = NULL;
 803   if (first != G1_NULL_HRS_INDEX) {
 804     result =
 805       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 806     assert(result != NULL, "it should always return a valid result");
 807   }
 808 
 809   verify_region_sets_optional();
 810 
 811   return result;
 812 }
 813 
 814 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 815   assert_heap_not_locked_and_not_at_safepoint();
 816   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 817 
 818   unsigned int dummy_gc_count_before;
 819   return attempt_allocation(word_size, &dummy_gc_count_before);
 820 }
 821 
 822 HeapWord*
 823 G1CollectedHeap::mem_allocate(size_t word_size,
 824                               bool*  gc_overhead_limit_was_exceeded) {
 825   assert_heap_not_locked_and_not_at_safepoint();
 826 
 827   // Loop until the allocation is satisified, or unsatisfied after GC.
 828   for (int try_count = 1; /* we'll return */; try_count += 1) {
 829     unsigned int gc_count_before;
 830 
 831     HeapWord* result = NULL;
 832     if (!isHumongous(word_size)) {
 833       result = attempt_allocation(word_size, &gc_count_before);
 834     } else {
 835       result = attempt_allocation_humongous(word_size, &gc_count_before);
 836     }
 837     if (result != NULL) {
 838       return result;
 839     }
 840 
 841     // Create the garbage collection operation...
 842     VM_G1CollectForAllocation op(gc_count_before, word_size);
 843     // ...and get the VM thread to execute it.
 844     VMThread::execute(&op);
 845 
 846     if (op.prologue_succeeded() && op.pause_succeeded()) {
 847       // If the operation was successful we'll return the result even
 848       // if it is NULL. If the allocation attempt failed immediately
 849       // after a Full GC, it's unlikely we'll be able to allocate now.
 850       HeapWord* result = op.result();
 851       if (result != NULL && !isHumongous(word_size)) {
 852         // Allocations that take place on VM operations do not do any
 853         // card dirtying and we have to do it here. We only have to do
 854         // this for non-humongous allocations, though.
 855         dirty_young_block(result, word_size);
 856       }
 857       return result;
 858     } else {
 859       assert(op.result() == NULL,
 860              "the result should be NULL if the VM op did not succeed");
 861     }
 862 
 863     // Give a warning if we seem to be looping forever.
 864     if ((QueuedAllocationWarningCount > 0) &&
 865         (try_count % QueuedAllocationWarningCount == 0)) {
 866       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 867     }
 868   }
 869 
 870   ShouldNotReachHere();
 871   return NULL;
 872 }
 873 
 874 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 875                                            unsigned int *gc_count_before_ret) {
 876   // Make sure you read the note in attempt_allocation_humongous().
 877 
 878   assert_heap_not_locked_and_not_at_safepoint();
 879   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 880          "be called for humongous allocation requests");
 881 
 882   // We should only get here after the first-level allocation attempt
 883   // (attempt_allocation()) failed to allocate.
 884 
 885   // We will loop until a) we manage to successfully perform the
 886   // allocation or b) we successfully schedule a collection which
 887   // fails to perform the allocation. b) is the only case when we'll
 888   // return NULL.
 889   HeapWord* result = NULL;
 890   for (int try_count = 1; /* we'll return */; try_count += 1) {
 891     bool should_try_gc;
 892     unsigned int gc_count_before;
 893 
 894     {
 895       MutexLockerEx x(Heap_lock);
 896 
 897       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 898                                                       false /* bot_updates */);
 899       if (result != NULL) {
 900         return result;
 901       }
 902 
 903       // If we reach here, attempt_allocation_locked() above failed to
 904       // allocate a new region. So the mutator alloc region should be NULL.
 905       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 906 
 907       if (GC_locker::is_active_and_needs_gc()) {
 908         if (g1_policy()->can_expand_young_list()) {
 909           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 910                                                       false /* bot_updates */);
 911           if (result != NULL) {
 912             return result;
 913           }
 914         }
 915         should_try_gc = false;
 916       } else {
 917         // Read the GC count while still holding the Heap_lock.
 918         gc_count_before = SharedHeap::heap()->total_collections();
 919         should_try_gc = true;
 920       }
 921     }
 922 
 923     if (should_try_gc) {
 924       bool succeeded;
 925       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 926       if (result != NULL) {
 927         assert(succeeded, "only way to get back a non-NULL result");
 928         return result;
 929       }
 930 
 931       if (succeeded) {
 932         // If we get here we successfully scheduled a collection which
 933         // failed to allocate. No point in trying to allocate
 934         // further. We'll just return NULL.
 935         MutexLockerEx x(Heap_lock);
 936         *gc_count_before_ret = SharedHeap::heap()->total_collections();
 937         return NULL;
 938       }
 939     } else {
 940       GC_locker::stall_until_clear();
 941     }
 942 
 943     // We can reach here if we were unsuccessul in scheduling a
 944     // collection (because another thread beat us to it) or if we were
 945     // stalled due to the GC locker. In either can we should retry the
 946     // allocation attempt in case another thread successfully
 947     // performed a collection and reclaimed enough space. We do the
 948     // first attempt (without holding the Heap_lock) here and the
 949     // follow-on attempt will be at the start of the next loop
 950     // iteration (after taking the Heap_lock).
 951     result = _mutator_alloc_region.attempt_allocation(word_size,
 952                                                       false /* bot_updates */);
 953     if (result != NULL ){
 954       return result;
 955     }
 956 
 957     // Give a warning if we seem to be looping forever.
 958     if ((QueuedAllocationWarningCount > 0) &&
 959         (try_count % QueuedAllocationWarningCount == 0)) {
 960       warning("G1CollectedHeap::attempt_allocation_slow() "
 961               "retries %d times", try_count);
 962     }
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 970                                           unsigned int * gc_count_before_ret) {
 971   // The structure of this method has a lot of similarities to
 972   // attempt_allocation_slow(). The reason these two were not merged
 973   // into a single one is that such a method would require several "if
 974   // allocation is not humongous do this, otherwise do that"
 975   // conditional paths which would obscure its flow. In fact, an early
 976   // version of this code did use a unified method which was harder to
 977   // follow and, as a result, it had subtle bugs that were hard to
 978   // track down. So keeping these two methods separate allows each to
 979   // be more readable. It will be good to keep these two in sync as
 980   // much as possible.
 981 
 982   assert_heap_not_locked_and_not_at_safepoint();
 983   assert(isHumongous(word_size), "attempt_allocation_humongous() "
 984          "should only be called for humongous allocations");
 985 
 986   // We will loop until a) we manage to successfully perform the
 987   // allocation or b) we successfully schedule a collection which
 988   // fails to perform the allocation. b) is the only case when we'll
 989   // return NULL.
 990   HeapWord* result = NULL;
 991   for (int try_count = 1; /* we'll return */; try_count += 1) {
 992     bool should_try_gc;
 993     unsigned int gc_count_before;
 994 
 995     {
 996       MutexLockerEx x(Heap_lock);
 997 
 998       // Given that humongous objects are not allocated in young
 999       // regions, we'll first try to do the allocation without doing a
1000       // collection hoping that there's enough space in the heap.
1001       result = humongous_obj_allocate(word_size);
1002       if (result != NULL) {
1003         return result;
1004       }
1005 
1006       if (GC_locker::is_active_and_needs_gc()) {
1007         should_try_gc = false;
1008       } else {
1009         // Read the GC count while still holding the Heap_lock.
1010         gc_count_before = SharedHeap::heap()->total_collections();
1011         should_try_gc = true;
1012       }
1013     }
1014 
1015     if (should_try_gc) {
1016       // If we failed to allocate the humongous object, we should try to
1017       // do a collection pause (if we're allowed) in case it reclaims
1018       // enough space for the allocation to succeed after the pause.
1019 
1020       bool succeeded;
1021       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1022       if (result != NULL) {
1023         assert(succeeded, "only way to get back a non-NULL result");
1024         return result;
1025       }
1026 
1027       if (succeeded) {
1028         // If we get here we successfully scheduled a collection which
1029         // failed to allocate. No point in trying to allocate
1030         // further. We'll just return NULL.
1031         MutexLockerEx x(Heap_lock);
1032         *gc_count_before_ret = SharedHeap::heap()->total_collections();
1033         return NULL;
1034       }
1035     } else {
1036       GC_locker::stall_until_clear();
1037     }
1038 
1039     // We can reach here if we were unsuccessul in scheduling a
1040     // collection (because another thread beat us to it) or if we were
1041     // stalled due to the GC locker. In either can we should retry the
1042     // allocation attempt in case another thread successfully
1043     // performed a collection and reclaimed enough space.  Give a
1044     // warning if we seem to be looping forever.
1045 
1046     if ((QueuedAllocationWarningCount > 0) &&
1047         (try_count % QueuedAllocationWarningCount == 0)) {
1048       warning("G1CollectedHeap::attempt_allocation_humongous() "
1049               "retries %d times", try_count);
1050     }
1051   }
1052 
1053   ShouldNotReachHere();
1054   return NULL;
1055 }
1056 
1057 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1058                                        bool expect_null_mutator_alloc_region) {
1059   assert_at_safepoint(true /* should_be_vm_thread */);
1060   assert(_mutator_alloc_region.get() == NULL ||
1061                                              !expect_null_mutator_alloc_region,
1062          "the current alloc region was unexpectedly found to be non-NULL");
1063 
1064   if (!isHumongous(word_size)) {
1065     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1066                                                       false /* bot_updates */);
1067   } else {
1068     return humongous_obj_allocate(word_size);
1069   }
1070 
1071   ShouldNotReachHere();
1072 }
1073 
1074 class PostMCRemSetClearClosure: public HeapRegionClosure {
1075   ModRefBarrierSet* _mr_bs;
1076 public:
1077   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1078   bool doHeapRegion(HeapRegion* r) {
1079     r->reset_gc_time_stamp();
1080     if (r->continuesHumongous())
1081       return false;
1082     HeapRegionRemSet* hrrs = r->rem_set();
1083     if (hrrs != NULL) hrrs->clear();
1084     // You might think here that we could clear just the cards
1085     // corresponding to the used region.  But no: if we leave a dirty card
1086     // in a region we might allocate into, then it would prevent that card
1087     // from being enqueued, and cause it to be missed.
1088     // Re: the performance cost: we shouldn't be doing full GC anyway!
1089     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1090     return false;
1091   }
1092 };
1093 
1094 
1095 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1096   ModRefBarrierSet* _mr_bs;
1097 public:
1098   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1099   bool doHeapRegion(HeapRegion* r) {
1100     if (r->continuesHumongous()) return false;
1101     if (r->used_region().word_size() != 0) {
1102       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1103     }
1104     return false;
1105   }
1106 };
1107 
1108 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1109   G1CollectedHeap*   _g1h;
1110   UpdateRSOopClosure _cl;
1111   int                _worker_i;
1112 public:
1113   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1114     _cl(g1->g1_rem_set(), worker_i),
1115     _worker_i(worker_i),
1116     _g1h(g1)
1117   { }
1118 
1119   bool doHeapRegion(HeapRegion* r) {
1120     if (!r->continuesHumongous()) {
1121       _cl.set_from(r);
1122       r->oop_iterate(&_cl);
1123     }
1124     return false;
1125   }
1126 };
1127 
1128 class ParRebuildRSTask: public AbstractGangTask {
1129   G1CollectedHeap* _g1;
1130 public:
1131   ParRebuildRSTask(G1CollectedHeap* g1)
1132     : AbstractGangTask("ParRebuildRSTask"),
1133       _g1(g1)
1134   { }
1135 
1136   void work(int i) {
1137     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
1138     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1139                                          HeapRegion::RebuildRSClaimValue);
1140   }
1141 };
1142 
1143 class PostCompactionPrinterClosure: public HeapRegionClosure {
1144 private:
1145   G1HRPrinter* _hr_printer;
1146 public:
1147   bool doHeapRegion(HeapRegion* hr) {
1148     assert(!hr->is_young(), "not expecting to find young regions");
1149     // We only generate output for non-empty regions.
1150     if (!hr->is_empty()) {
1151       if (!hr->isHumongous()) {
1152         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1153       } else if (hr->startsHumongous()) {
1154         if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
1155           // single humongous region
1156           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1157         } else {
1158           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1159         }
1160       } else {
1161         assert(hr->continuesHumongous(), "only way to get here");
1162         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1163       }
1164     }
1165     return false;
1166   }
1167 
1168   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1169     : _hr_printer(hr_printer) { }
1170 };
1171 
1172 bool G1CollectedHeap::do_collection(bool explicit_gc,
1173                                     bool clear_all_soft_refs,
1174                                     size_t word_size) {
1175   assert_at_safepoint(true /* should_be_vm_thread */);
1176 
1177   if (GC_locker::check_active_before_gc()) {
1178     return false;
1179   }
1180 
1181   SvcGCMarker sgcm(SvcGCMarker::FULL);
1182   ResourceMark rm;
1183 
1184   if (PrintHeapAtGC) {
1185     Universe::print_heap_before_gc();
1186   }
1187 
1188   verify_region_sets_optional();
1189 
1190   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1191                            collector_policy()->should_clear_all_soft_refs();
1192 
1193   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1194 
1195   {
1196     IsGCActiveMark x;
1197 
1198     // Timing
1199     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1200     assert(!system_gc || explicit_gc, "invariant");
1201     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
1202     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1203     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1204                 PrintGC, true, gclog_or_tty);
1205 
1206     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1207     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1208 
1209     double start = os::elapsedTime();
1210     g1_policy()->record_full_collection_start();
1211 
1212     wait_while_free_regions_coming();
1213     append_secondary_free_list_if_not_empty_with_lock();
1214 
1215     gc_prologue(true);
1216     increment_total_collections(true /* full gc */);
1217 
1218     size_t g1h_prev_used = used();
1219     assert(used() == recalculate_used(), "Should be equal");
1220 
1221     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1222       HandleMark hm;  // Discard invalid handles created during verification
1223       gclog_or_tty->print(" VerifyBeforeGC:");
1224       prepare_for_verify();
1225       Universe::verify(/* allow dirty */ true,
1226                        /* silent      */ false,
1227                        /* option      */ VerifyOption_G1UsePrevMarking);
1228 
1229     }
1230 
1231     COMPILER2_PRESENT(DerivedPointerTable::clear());
1232 
1233     // We want to discover references, but not process them yet.
1234     // This mode is disabled in
1235     // instanceRefKlass::process_discovered_references if the
1236     // generation does some collection work, or
1237     // instanceRefKlass::enqueue_discovered_references if the
1238     // generation returns without doing any work.
1239     ref_processor()->disable_discovery();
1240     ref_processor()->abandon_partial_discovery();
1241     ref_processor()->verify_no_references_recorded();
1242 
1243     // Abandon current iterations of concurrent marking and concurrent
1244     // refinement, if any are in progress.
1245     concurrent_mark()->abort();
1246 
1247     // Make sure we'll choose a new allocation region afterwards.
1248     release_mutator_alloc_region();
1249     abandon_gc_alloc_regions();
1250     g1_rem_set()->cleanupHRRS();
1251     tear_down_region_lists();
1252 
1253     // We should call this after we retire any currently active alloc
1254     // regions so that all the ALLOC / RETIRE events are generated
1255     // before the start GC event.
1256     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1257 
1258     // We may have added regions to the current incremental collection
1259     // set between the last GC or pause and now. We need to clear the
1260     // incremental collection set and then start rebuilding it afresh
1261     // after this full GC.
1262     abandon_collection_set(g1_policy()->inc_cset_head());
1263     g1_policy()->clear_incremental_cset();
1264     g1_policy()->stop_incremental_cset_building();
1265 
1266     empty_young_list();
1267     g1_policy()->set_full_young_gcs(true);
1268 
1269     // See the comment in G1CollectedHeap::ref_processing_init() about
1270     // how reference processing currently works in G1.
1271 
1272     // Temporarily make reference _discovery_ single threaded (non-MT).
1273     ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
1274 
1275     // Temporarily make refs discovery atomic
1276     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
1277 
1278     // Temporarily clear _is_alive_non_header
1279     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
1280 
1281     ref_processor()->enable_discovery();
1282     ref_processor()->setup_policy(do_clear_all_soft_refs);
1283     // Do collection work
1284     {
1285       HandleMark hm;  // Discard invalid handles created during gc
1286       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1287     }
1288     assert(free_regions() == 0, "we should not have added any free regions");
1289     rebuild_region_lists();
1290 
1291     _summary_bytes_used = recalculate_used();
1292 
1293     ref_processor()->enqueue_discovered_references();
1294 
1295     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1296 
1297     MemoryService::track_memory_usage();
1298 
1299     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1300       HandleMark hm;  // Discard invalid handles created during verification
1301       gclog_or_tty->print(" VerifyAfterGC:");
1302       prepare_for_verify();
1303       Universe::verify(/* allow dirty */ false,
1304                        /* silent      */ false,
1305                        /* option      */ VerifyOption_G1UsePrevMarking);
1306 
1307     }
1308     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1309 
1310     reset_gc_time_stamp();
1311     // Since everything potentially moved, we will clear all remembered
1312     // sets, and clear all cards.  Later we will rebuild remebered
1313     // sets. We will also reset the GC time stamps of the regions.
1314     PostMCRemSetClearClosure rs_clear(mr_bs());
1315     heap_region_iterate(&rs_clear);
1316 
1317     // Resize the heap if necessary.
1318     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1319 
1320     if (_hr_printer.is_active()) {
1321       // We should do this after we potentially resize the heap so
1322       // that all the COMMIT / UNCOMMIT events are generated before
1323       // the end GC event.
1324 
1325       PostCompactionPrinterClosure cl(hr_printer());
1326       heap_region_iterate(&cl);
1327 
1328       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1329     }
1330 
1331     if (_cg1r->use_cache()) {
1332       _cg1r->clear_and_record_card_counts();
1333       _cg1r->clear_hot_cache();
1334     }
1335 
1336     // Rebuild remembered sets of all regions.
1337 
1338     if (G1CollectedHeap::use_parallel_gc_threads()) {
1339       ParRebuildRSTask rebuild_rs_task(this);
1340       assert(check_heap_region_claim_values(
1341              HeapRegion::InitialClaimValue), "sanity check");
1342       set_par_threads(workers()->total_workers());
1343       workers()->run_task(&rebuild_rs_task);
1344       set_par_threads(0);
1345       assert(check_heap_region_claim_values(
1346              HeapRegion::RebuildRSClaimValue), "sanity check");
1347       reset_heap_region_claim_values();
1348     } else {
1349       RebuildRSOutOfRegionClosure rebuild_rs(this);
1350       heap_region_iterate(&rebuild_rs);
1351     }
1352 
1353     if (PrintGC) {
1354       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1355     }
1356 
1357     if (true) { // FIXME
1358       // Ask the permanent generation to adjust size for full collections
1359       perm()->compute_new_size();
1360     }
1361 
1362     // Start a new incremental collection set for the next pause
1363     assert(g1_policy()->collection_set() == NULL, "must be");
1364     g1_policy()->start_incremental_cset_building();
1365 
1366     // Clear the _cset_fast_test bitmap in anticipation of adding
1367     // regions to the incremental collection set for the next
1368     // evacuation pause.
1369     clear_cset_fast_test();
1370 
1371     init_mutator_alloc_region();
1372 
1373     double end = os::elapsedTime();
1374     g1_policy()->record_full_collection_end();
1375 
1376 #ifdef TRACESPINNING
1377     ParallelTaskTerminator::print_termination_counts();
1378 #endif
1379 
1380     gc_epilogue(true);
1381 
1382     // Discard all rset updates
1383     JavaThread::dirty_card_queue_set().abandon_logs();
1384     assert(!G1DeferredRSUpdate
1385            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1386   }
1387 
1388   _young_list->reset_sampled_info();
1389   // At this point there should be no regions in the
1390   // entire heap tagged as young.
1391   assert( check_young_list_empty(true /* check_heap */),
1392     "young list should be empty at this point");
1393 
1394   // Update the number of full collections that have been completed.
1395   increment_full_collections_completed(false /* concurrent */);
1396 
1397   _hrs.verify_optional();
1398   verify_region_sets_optional();
1399 
1400   if (PrintHeapAtGC) {
1401     Universe::print_heap_after_gc();
1402   }
1403   g1mm()->update_counters();
1404 
1405   return true;
1406 }
1407 
1408 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1409   // do_collection() will return whether it succeeded in performing
1410   // the GC. Currently, there is no facility on the
1411   // do_full_collection() API to notify the caller than the collection
1412   // did not succeed (e.g., because it was locked out by the GC
1413   // locker). So, right now, we'll ignore the return value.
1414   bool dummy = do_collection(true,                /* explicit_gc */
1415                              clear_all_soft_refs,
1416                              0                    /* word_size */);
1417 }
1418 
1419 // This code is mostly copied from TenuredGeneration.
1420 void
1421 G1CollectedHeap::
1422 resize_if_necessary_after_full_collection(size_t word_size) {
1423   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1424 
1425   // Include the current allocation, if any, and bytes that will be
1426   // pre-allocated to support collections, as "used".
1427   const size_t used_after_gc = used();
1428   const size_t capacity_after_gc = capacity();
1429   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1430 
1431   // This is enforced in arguments.cpp.
1432   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1433          "otherwise the code below doesn't make sense");
1434 
1435   // We don't have floating point command-line arguments
1436   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1437   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1438   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1439   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1440 
1441   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1442   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1443 
1444   // We have to be careful here as these two calculations can overflow
1445   // 32-bit size_t's.
1446   double used_after_gc_d = (double) used_after_gc;
1447   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1448   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1449 
1450   // Let's make sure that they are both under the max heap size, which
1451   // by default will make them fit into a size_t.
1452   double desired_capacity_upper_bound = (double) max_heap_size;
1453   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1454                                     desired_capacity_upper_bound);
1455   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1456                                     desired_capacity_upper_bound);
1457 
1458   // We can now safely turn them into size_t's.
1459   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1460   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1461 
1462   // This assert only makes sense here, before we adjust them
1463   // with respect to the min and max heap size.
1464   assert(minimum_desired_capacity <= maximum_desired_capacity,
1465          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1466                  "maximum_desired_capacity = "SIZE_FORMAT,
1467                  minimum_desired_capacity, maximum_desired_capacity));
1468 
1469   // Should not be greater than the heap max size. No need to adjust
1470   // it with respect to the heap min size as it's a lower bound (i.e.,
1471   // we'll try to make the capacity larger than it, not smaller).
1472   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1473   // Should not be less than the heap min size. No need to adjust it
1474   // with respect to the heap max size as it's an upper bound (i.e.,
1475   // we'll try to make the capacity smaller than it, not greater).
1476   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1477 
1478   if (PrintGC && Verbose) {
1479     const double free_percentage =
1480       (double) free_after_gc / (double) capacity_after_gc;
1481     gclog_or_tty->print_cr("Computing new size after full GC ");
1482     gclog_or_tty->print_cr("  "
1483                            "  minimum_free_percentage: %6.2f",
1484                            minimum_free_percentage);
1485     gclog_or_tty->print_cr("  "
1486                            "  maximum_free_percentage: %6.2f",
1487                            maximum_free_percentage);
1488     gclog_or_tty->print_cr("  "
1489                            "  capacity: %6.1fK"
1490                            "  minimum_desired_capacity: %6.1fK"
1491                            "  maximum_desired_capacity: %6.1fK",
1492                            (double) capacity_after_gc / (double) K,
1493                            (double) minimum_desired_capacity / (double) K,
1494                            (double) maximum_desired_capacity / (double) K);
1495     gclog_or_tty->print_cr("  "
1496                            "  free_after_gc: %6.1fK"
1497                            "  used_after_gc: %6.1fK",
1498                            (double) free_after_gc / (double) K,
1499                            (double) used_after_gc / (double) K);
1500     gclog_or_tty->print_cr("  "
1501                            "   free_percentage: %6.2f",
1502                            free_percentage);
1503   }
1504   if (capacity_after_gc < minimum_desired_capacity) {
1505     // Don't expand unless it's significant
1506     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1507     if (expand(expand_bytes)) {
1508       if (PrintGC && Verbose) {
1509         gclog_or_tty->print_cr("  "
1510                                "  expanding:"
1511                                "  max_heap_size: %6.1fK"
1512                                "  minimum_desired_capacity: %6.1fK"
1513                                "  expand_bytes: %6.1fK",
1514                                (double) max_heap_size / (double) K,
1515                                (double) minimum_desired_capacity / (double) K,
1516                                (double) expand_bytes / (double) K);
1517       }
1518     }
1519 
1520     // No expansion, now see if we want to shrink
1521   } else if (capacity_after_gc > maximum_desired_capacity) {
1522     // Capacity too large, compute shrinking size
1523     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1524     shrink(shrink_bytes);
1525     if (PrintGC && Verbose) {
1526       gclog_or_tty->print_cr("  "
1527                              "  shrinking:"
1528                              "  min_heap_size: %6.1fK"
1529                              "  maximum_desired_capacity: %6.1fK"
1530                              "  shrink_bytes: %6.1fK",
1531                              (double) min_heap_size / (double) K,
1532                              (double) maximum_desired_capacity / (double) K,
1533                              (double) shrink_bytes / (double) K);
1534     }
1535   }
1536 }
1537 
1538 
1539 HeapWord*
1540 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1541                                            bool* succeeded) {
1542   assert_at_safepoint(true /* should_be_vm_thread */);
1543 
1544   *succeeded = true;
1545   // Let's attempt the allocation first.
1546   HeapWord* result =
1547     attempt_allocation_at_safepoint(word_size,
1548                                  false /* expect_null_mutator_alloc_region */);
1549   if (result != NULL) {
1550     assert(*succeeded, "sanity");
1551     return result;
1552   }
1553 
1554   // In a G1 heap, we're supposed to keep allocation from failing by
1555   // incremental pauses.  Therefore, at least for now, we'll favor
1556   // expansion over collection.  (This might change in the future if we can
1557   // do something smarter than full collection to satisfy a failed alloc.)
1558   result = expand_and_allocate(word_size);
1559   if (result != NULL) {
1560     assert(*succeeded, "sanity");
1561     return result;
1562   }
1563 
1564   // Expansion didn't work, we'll try to do a Full GC.
1565   bool gc_succeeded = do_collection(false, /* explicit_gc */
1566                                     false, /* clear_all_soft_refs */
1567                                     word_size);
1568   if (!gc_succeeded) {
1569     *succeeded = false;
1570     return NULL;
1571   }
1572 
1573   // Retry the allocation
1574   result = attempt_allocation_at_safepoint(word_size,
1575                                   true /* expect_null_mutator_alloc_region */);
1576   if (result != NULL) {
1577     assert(*succeeded, "sanity");
1578     return result;
1579   }
1580 
1581   // Then, try a Full GC that will collect all soft references.
1582   gc_succeeded = do_collection(false, /* explicit_gc */
1583                                true,  /* clear_all_soft_refs */
1584                                word_size);
1585   if (!gc_succeeded) {
1586     *succeeded = false;
1587     return NULL;
1588   }
1589 
1590   // Retry the allocation once more
1591   result = attempt_allocation_at_safepoint(word_size,
1592                                   true /* expect_null_mutator_alloc_region */);
1593   if (result != NULL) {
1594     assert(*succeeded, "sanity");
1595     return result;
1596   }
1597 
1598   assert(!collector_policy()->should_clear_all_soft_refs(),
1599          "Flag should have been handled and cleared prior to this point");
1600 
1601   // What else?  We might try synchronous finalization later.  If the total
1602   // space available is large enough for the allocation, then a more
1603   // complete compaction phase than we've tried so far might be
1604   // appropriate.
1605   assert(*succeeded, "sanity");
1606   return NULL;
1607 }
1608 
1609 // Attempting to expand the heap sufficiently
1610 // to support an allocation of the given "word_size".  If
1611 // successful, perform the allocation and return the address of the
1612 // allocated block, or else "NULL".
1613 
1614 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1615   assert_at_safepoint(true /* should_be_vm_thread */);
1616 
1617   verify_region_sets_optional();
1618 
1619   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1620   if (expand(expand_bytes)) {
1621     _hrs.verify_optional();
1622     verify_region_sets_optional();
1623     return attempt_allocation_at_safepoint(word_size,
1624                                  false /* expect_null_mutator_alloc_region */);
1625   }
1626   return NULL;
1627 }
1628 
1629 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1630                                              HeapWord* new_end) {
1631   assert(old_end != new_end, "don't call this otherwise");
1632   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1633 
1634   // Update the committed mem region.
1635   _g1_committed.set_end(new_end);
1636   // Tell the card table about the update.
1637   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1638   // Tell the BOT about the update.
1639   _bot_shared->resize(_g1_committed.word_size());
1640 }
1641 
1642 bool G1CollectedHeap::expand(size_t expand_bytes) {
1643   size_t old_mem_size = _g1_storage.committed_size();
1644   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1645   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1646                                        HeapRegion::GrainBytes);
1647 
1648   if (Verbose && PrintGC) {
1649     gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
1650                            old_mem_size/K, aligned_expand_bytes/K);
1651   }
1652 
1653   // First commit the memory.
1654   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1655   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1656   if (successful) {
1657     // Then propagate this update to the necessary data structures.
1658     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1659     update_committed_space(old_end, new_end);
1660 
1661     FreeRegionList expansion_list("Local Expansion List");
1662     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1663     assert(mr.start() == old_end, "post-condition");
1664     // mr might be a smaller region than what was requested if
1665     // expand_by() was unable to allocate the HeapRegion instances
1666     assert(mr.end() <= new_end, "post-condition");
1667 
1668     size_t actual_expand_bytes = mr.byte_size();
1669     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1670     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1671            "post-condition");
1672     if (actual_expand_bytes < aligned_expand_bytes) {
1673       // We could not expand _hrs to the desired size. In this case we
1674       // need to shrink the committed space accordingly.
1675       assert(mr.end() < new_end, "invariant");
1676 
1677       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1678       // First uncommit the memory.
1679       _g1_storage.shrink_by(diff_bytes);
1680       // Then propagate this update to the necessary data structures.
1681       update_committed_space(new_end, mr.end());
1682     }
1683     _free_list.add_as_tail(&expansion_list);
1684 
1685     if (_hr_printer.is_active()) {
1686       HeapWord* curr = mr.start();
1687       while (curr < mr.end()) {
1688         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1689         _hr_printer.commit(curr, curr_end);
1690         curr = curr_end;
1691       }
1692       assert(curr == mr.end(), "post-condition");
1693     }
1694   } else {
1695     // The expansion of the virtual storage space was unsuccessful.
1696     // Let's see if it was because we ran out of swap.
1697     if (G1ExitOnExpansionFailure &&
1698         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1699       // We had head room...
1700       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1701     }
1702   }
1703 
1704   if (Verbose && PrintGC) {
1705     size_t new_mem_size = _g1_storage.committed_size();
1706     gclog_or_tty->print_cr("...%s, expanded to %ldK",
1707                            (successful ? "Successful" : "Failed"),
1708                            new_mem_size/K);
1709   }
1710   return successful;
1711 }
1712 
1713 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1714   size_t old_mem_size = _g1_storage.committed_size();
1715   size_t aligned_shrink_bytes =
1716     ReservedSpace::page_align_size_down(shrink_bytes);
1717   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1718                                          HeapRegion::GrainBytes);
1719   size_t num_regions_deleted = 0;
1720   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1721   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1722   assert(mr.end() == old_end, "post-condition");
1723   if (mr.byte_size() > 0) {
1724     if (_hr_printer.is_active()) {
1725       HeapWord* curr = mr.end();
1726       while (curr > mr.start()) {
1727         HeapWord* curr_end = curr;
1728         curr -= HeapRegion::GrainWords;
1729         _hr_printer.uncommit(curr, curr_end);
1730       }
1731       assert(curr == mr.start(), "post-condition");
1732     }
1733 
1734     _g1_storage.shrink_by(mr.byte_size());
1735     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1736     assert(mr.start() == new_end, "post-condition");
1737 
1738     _expansion_regions += num_regions_deleted;
1739     update_committed_space(old_end, new_end);
1740     HeapRegionRemSet::shrink_heap(n_regions());
1741 
1742     if (Verbose && PrintGC) {
1743       size_t new_mem_size = _g1_storage.committed_size();
1744       gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1745                              old_mem_size/K, aligned_shrink_bytes/K,
1746                              new_mem_size/K);
1747     }
1748   }
1749 }
1750 
1751 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1752   verify_region_sets_optional();
1753 
1754   // We should only reach here at the end of a Full GC which means we
1755   // should not not be holding to any GC alloc regions. The method
1756   // below will make sure of that and do any remaining clean up.
1757   abandon_gc_alloc_regions();
1758 
1759   // Instead of tearing down / rebuilding the free lists here, we
1760   // could instead use the remove_all_pending() method on free_list to
1761   // remove only the ones that we need to remove.
1762   tear_down_region_lists();  // We will rebuild them in a moment.
1763   shrink_helper(shrink_bytes);
1764   rebuild_region_lists();
1765 
1766   _hrs.verify_optional();
1767   verify_region_sets_optional();
1768 }
1769 
1770 // Public methods.
1771 
1772 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1773 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1774 #endif // _MSC_VER
1775 
1776 
1777 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1778   SharedHeap(policy_),
1779   _g1_policy(policy_),
1780   _dirty_card_queue_set(false),
1781   _into_cset_dirty_card_queue_set(false),
1782   _is_alive_closure(this),
1783   _ref_processor(NULL),
1784   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1785   _bot_shared(NULL),
1786   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1787   _evac_failure_scan_stack(NULL) ,
1788   _mark_in_progress(false),
1789   _cg1r(NULL), _summary_bytes_used(0),
1790   _refine_cte_cl(NULL),
1791   _full_collection(false),
1792   _free_list("Master Free List"),
1793   _secondary_free_list("Secondary Free List"),
1794   _humongous_set("Master Humongous Set"),
1795   _free_regions_coming(false),
1796   _young_list(new YoungList(this)),
1797   _gc_time_stamp(0),
1798   _retained_old_gc_alloc_region(NULL),
1799   _surviving_young_words(NULL),
1800   _full_collections_completed(0),
1801   _in_cset_fast_test(NULL),
1802   _in_cset_fast_test_base(NULL),
1803   _dirty_cards_region_list(NULL) {
1804   _g1h = this; // To catch bugs.
1805   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1806     vm_exit_during_initialization("Failed necessary allocation.");
1807   }
1808 
1809   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1810 
1811   int n_queues = MAX2((int)ParallelGCThreads, 1);
1812   _task_queues = new RefToScanQueueSet(n_queues);
1813 
1814   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1815   assert(n_rem_sets > 0, "Invariant.");
1816 
1817   HeapRegionRemSetIterator** iter_arr =
1818     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1819   for (int i = 0; i < n_queues; i++) {
1820     iter_arr[i] = new HeapRegionRemSetIterator();
1821   }
1822   _rem_set_iterator = iter_arr;
1823 
1824   for (int i = 0; i < n_queues; i++) {
1825     RefToScanQueue* q = new RefToScanQueue();
1826     q->initialize();
1827     _task_queues->register_queue(i, q);
1828   }
1829 
1830   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1831 }
1832 
1833 jint G1CollectedHeap::initialize() {
1834   CollectedHeap::pre_initialize();
1835   os::enable_vtime();
1836 
1837   // Necessary to satisfy locking discipline assertions.
1838 
1839   MutexLocker x(Heap_lock);
1840 
1841   // We have to initialize the printer before committing the heap, as
1842   // it will be used then.
1843   _hr_printer.set_active(G1PrintHeapRegions);
1844 
1845   // While there are no constraints in the GC code that HeapWordSize
1846   // be any particular value, there are multiple other areas in the
1847   // system which believe this to be true (e.g. oop->object_size in some
1848   // cases incorrectly returns the size in wordSize units rather than
1849   // HeapWordSize).
1850   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1851 
1852   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1853   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1854 
1855   // Ensure that the sizes are properly aligned.
1856   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1857   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1858 
1859   _cg1r = new ConcurrentG1Refine();
1860 
1861   // Reserve the maximum.
1862   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1863   // Includes the perm-gen.
1864 
1865   // When compressed oops are enabled, the preferred heap base
1866   // is calculated by subtracting the requested size from the
1867   // 32Gb boundary and using the result as the base address for
1868   // heap reservation. If the requested size is not aligned to
1869   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1870   // into the ReservedHeapSpace constructor) then the actual
1871   // base of the reserved heap may end up differing from the
1872   // address that was requested (i.e. the preferred heap base).
1873   // If this happens then we could end up using a non-optimal
1874   // compressed oops mode.
1875 
1876   // Since max_byte_size is aligned to the size of a heap region (checked
1877   // above), we also need to align the perm gen size as it might not be.
1878   const size_t total_reserved = max_byte_size +
1879                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1880   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1881 
1882   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1883 
1884   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1885                             UseLargePages, addr);
1886 
1887   if (UseCompressedOops) {
1888     if (addr != NULL && !heap_rs.is_reserved()) {
1889       // Failed to reserve at specified address - the requested memory
1890       // region is taken already, for example, by 'java' launcher.
1891       // Try again to reserver heap higher.
1892       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1893 
1894       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1895                                  UseLargePages, addr);
1896 
1897       if (addr != NULL && !heap_rs0.is_reserved()) {
1898         // Failed to reserve at specified address again - give up.
1899         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1900         assert(addr == NULL, "");
1901 
1902         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1903                                    UseLargePages, addr);
1904         heap_rs = heap_rs1;
1905       } else {
1906         heap_rs = heap_rs0;
1907       }
1908     }
1909   }
1910 
1911   if (!heap_rs.is_reserved()) {
1912     vm_exit_during_initialization("Could not reserve enough space for object heap");
1913     return JNI_ENOMEM;
1914   }
1915 
1916   // It is important to do this in a way such that concurrent readers can't
1917   // temporarily think somethings in the heap.  (I've actually seen this
1918   // happen in asserts: DLD.)
1919   _reserved.set_word_size(0);
1920   _reserved.set_start((HeapWord*)heap_rs.base());
1921   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1922 
1923   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1924 
1925   // Create the gen rem set (and barrier set) for the entire reserved region.
1926   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1927   set_barrier_set(rem_set()->bs());
1928   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1929     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1930   } else {
1931     vm_exit_during_initialization("G1 requires a mod ref bs.");
1932     return JNI_ENOMEM;
1933   }
1934 
1935   // Also create a G1 rem set.
1936   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1937     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1938   } else {
1939     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1940     return JNI_ENOMEM;
1941   }
1942 
1943   // Carve out the G1 part of the heap.
1944 
1945   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1946   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1947                            g1_rs.size()/HeapWordSize);
1948   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1949 
1950   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1951 
1952   _g1_storage.initialize(g1_rs, 0);
1953   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1954   _hrs.initialize((HeapWord*) _g1_reserved.start(),
1955                   (HeapWord*) _g1_reserved.end(),
1956                   _expansion_regions);
1957 
1958   // 6843694 - ensure that the maximum region index can fit
1959   // in the remembered set structures.
1960   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1961   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1962 
1963   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1964   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1965   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
1966             "too many cards per region");
1967 
1968   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
1969 
1970   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1971                                              heap_word_size(init_byte_size));
1972 
1973   _g1h = this;
1974 
1975    _in_cset_fast_test_length = max_regions();
1976    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
1977 
1978    // We're biasing _in_cset_fast_test to avoid subtracting the
1979    // beginning of the heap every time we want to index; basically
1980    // it's the same with what we do with the card table.
1981    _in_cset_fast_test = _in_cset_fast_test_base -
1982                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
1983 
1984    // Clear the _cset_fast_test bitmap in anticipation of adding
1985    // regions to the incremental collection set for the first
1986    // evacuation pause.
1987    clear_cset_fast_test();
1988 
1989   // Create the ConcurrentMark data structure and thread.
1990   // (Must do this late, so that "max_regions" is defined.)
1991   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
1992   _cmThread = _cm->cmThread();
1993 
1994   // Initialize the from_card cache structure of HeapRegionRemSet.
1995   HeapRegionRemSet::init_heap(max_regions());
1996 
1997   // Now expand into the initial heap size.
1998   if (!expand(init_byte_size)) {
1999     vm_exit_during_initialization("Failed to allocate initial heap.");
2000     return JNI_ENOMEM;
2001   }
2002 
2003   // Perform any initialization actions delegated to the policy.
2004   g1_policy()->init();
2005 
2006   g1_policy()->note_start_of_mark_thread();
2007 
2008   _refine_cte_cl =
2009     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2010                                     g1_rem_set(),
2011                                     concurrent_g1_refine());
2012   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2013 
2014   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2015                                                SATB_Q_FL_lock,
2016                                                G1SATBProcessCompletedThreshold,
2017                                                Shared_SATB_Q_lock);
2018 
2019   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2020                                                 DirtyCardQ_FL_lock,
2021                                                 concurrent_g1_refine()->yellow_zone(),
2022                                                 concurrent_g1_refine()->red_zone(),
2023                                                 Shared_DirtyCardQ_lock);
2024 
2025   if (G1DeferredRSUpdate) {
2026     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2027                                       DirtyCardQ_FL_lock,
2028                                       -1, // never trigger processing
2029                                       -1, // no limit on length
2030                                       Shared_DirtyCardQ_lock,
2031                                       &JavaThread::dirty_card_queue_set());
2032   }
2033 
2034   // Initialize the card queue set used to hold cards containing
2035   // references into the collection set.
2036   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2037                                              DirtyCardQ_FL_lock,
2038                                              -1, // never trigger processing
2039                                              -1, // no limit on length
2040                                              Shared_DirtyCardQ_lock,
2041                                              &JavaThread::dirty_card_queue_set());
2042 
2043   // In case we're keeping closure specialization stats, initialize those
2044   // counts and that mechanism.
2045   SpecializationStats::clear();
2046 
2047   // Do later initialization work for concurrent refinement.
2048   _cg1r->init();
2049 
2050   // Here we allocate the dummy full region that is required by the
2051   // G1AllocRegion class. If we don't pass an address in the reserved
2052   // space here, lots of asserts fire.
2053 
2054   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2055                                              _g1_reserved.start());
2056   // We'll re-use the same region whether the alloc region will
2057   // require BOT updates or not and, if it doesn't, then a non-young
2058   // region will complain that it cannot support allocations without
2059   // BOT updates. So we'll tag the dummy region as young to avoid that.
2060   dummy_region->set_young();
2061   // Make sure it's full.
2062   dummy_region->set_top(dummy_region->end());
2063   G1AllocRegion::setup(this, dummy_region);
2064 
2065   init_mutator_alloc_region();
2066 
2067   // Do create of the monitoring and management support so that
2068   // values in the heap have been properly initialized.
2069   _g1mm = new G1MonitoringSupport(this, &_g1_storage);
2070 
2071   return JNI_OK;
2072 }
2073 
2074 void G1CollectedHeap::ref_processing_init() {
2075   // Reference processing in G1 currently works as follows:
2076   //
2077   // * There is only one reference processor instance that
2078   //   'spans' the entire heap. It is created by the code
2079   //   below.
2080   // * Reference discovery is not enabled during an incremental
2081   //   pause (see 6484982).
2082   // * Discoverered refs are not enqueued nor are they processed
2083   //   during an incremental pause (see 6484982).
2084   // * Reference discovery is enabled at initial marking.
2085   // * Reference discovery is disabled and the discovered
2086   //   references processed etc during remarking.
2087   // * Reference discovery is MT (see below).
2088   // * Reference discovery requires a barrier (see below).
2089   // * Reference processing is currently not MT (see 6608385).
2090   // * A full GC enables (non-MT) reference discovery and
2091   //   processes any discovered references.
2092 
2093   SharedHeap::ref_processing_init();
2094   MemRegion mr = reserved_region();
2095   _ref_processor =
2096     new ReferenceProcessor(mr,    // span
2097                            ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
2098                            (int) ParallelGCThreads,   // degree of mt processing
2099                            ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
2100                            (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
2101                            false,                     // Reference discovery is not atomic
2102                            &_is_alive_closure,        // is alive closure for efficiency
2103                            true);                     // Setting next fields of discovered
2104                                                       // lists requires a barrier.
2105 }
2106 
2107 size_t G1CollectedHeap::capacity() const {
2108   return _g1_committed.byte_size();
2109 }
2110 
2111 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2112                                                  DirtyCardQueue* into_cset_dcq,
2113                                                  bool concurrent,
2114                                                  int worker_i) {
2115   // Clean cards in the hot card cache
2116   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2117 
2118   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2119   int n_completed_buffers = 0;
2120   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2121     n_completed_buffers++;
2122   }
2123   g1_policy()->record_update_rs_processed_buffers(worker_i,
2124                                                   (double) n_completed_buffers);
2125   dcqs.clear_n_completed_buffers();
2126   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2127 }
2128 
2129 
2130 // Computes the sum of the storage used by the various regions.
2131 
2132 size_t G1CollectedHeap::used() const {
2133   assert(Heap_lock->owner() != NULL,
2134          "Should be owned on this thread's behalf.");
2135   size_t result = _summary_bytes_used;
2136   // Read only once in case it is set to NULL concurrently
2137   HeapRegion* hr = _mutator_alloc_region.get();
2138   if (hr != NULL)
2139     result += hr->used();
2140   return result;
2141 }
2142 
2143 size_t G1CollectedHeap::used_unlocked() const {
2144   size_t result = _summary_bytes_used;
2145   return result;
2146 }
2147 
2148 class SumUsedClosure: public HeapRegionClosure {
2149   size_t _used;
2150 public:
2151   SumUsedClosure() : _used(0) {}
2152   bool doHeapRegion(HeapRegion* r) {
2153     if (!r->continuesHumongous()) {
2154       _used += r->used();
2155     }
2156     return false;
2157   }
2158   size_t result() { return _used; }
2159 };
2160 
2161 size_t G1CollectedHeap::recalculate_used() const {
2162   SumUsedClosure blk;
2163   heap_region_iterate(&blk);
2164   return blk.result();
2165 }
2166 
2167 size_t G1CollectedHeap::unsafe_max_alloc() {
2168   if (free_regions() > 0) return HeapRegion::GrainBytes;
2169   // otherwise, is there space in the current allocation region?
2170 
2171   // We need to store the current allocation region in a local variable
2172   // here. The problem is that this method doesn't take any locks and
2173   // there may be other threads which overwrite the current allocation
2174   // region field. attempt_allocation(), for example, sets it to NULL
2175   // and this can happen *after* the NULL check here but before the call
2176   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2177   // to be a problem in the optimized build, since the two loads of the
2178   // current allocation region field are optimized away.
2179   HeapRegion* hr = _mutator_alloc_region.get();
2180   if (hr == NULL) {
2181     return 0;
2182   }
2183   return hr->free();
2184 }
2185 
2186 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2187   return
2188     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
2189      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
2190 }
2191 
2192 #ifndef PRODUCT
2193 void G1CollectedHeap::allocate_dummy_regions() {
2194   // Let's fill up most of the region
2195   size_t word_size = HeapRegion::GrainWords - 1024;
2196   // And as a result the region we'll allocate will be humongous.
2197   guarantee(isHumongous(word_size), "sanity");
2198 
2199   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2200     // Let's use the existing mechanism for the allocation
2201     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2202     if (dummy_obj != NULL) {
2203       MemRegion mr(dummy_obj, word_size);
2204       CollectedHeap::fill_with_object(mr);
2205     } else {
2206       // If we can't allocate once, we probably cannot allocate
2207       // again. Let's get out of the loop.
2208       break;
2209     }
2210   }
2211 }
2212 #endif // !PRODUCT
2213 
2214 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2215   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2216 
2217   // We assume that if concurrent == true, then the caller is a
2218   // concurrent thread that was joined the Suspendible Thread
2219   // Set. If there's ever a cheap way to check this, we should add an
2220   // assert here.
2221 
2222   // We have already incremented _total_full_collections at the start
2223   // of the GC, so total_full_collections() represents how many full
2224   // collections have been started.
2225   unsigned int full_collections_started = total_full_collections();
2226 
2227   // Given that this method is called at the end of a Full GC or of a
2228   // concurrent cycle, and those can be nested (i.e., a Full GC can
2229   // interrupt a concurrent cycle), the number of full collections
2230   // completed should be either one (in the case where there was no
2231   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2232   // behind the number of full collections started.
2233 
2234   // This is the case for the inner caller, i.e. a Full GC.
2235   assert(concurrent ||
2236          (full_collections_started == _full_collections_completed + 1) ||
2237          (full_collections_started == _full_collections_completed + 2),
2238          err_msg("for inner caller (Full GC): full_collections_started = %u "
2239                  "is inconsistent with _full_collections_completed = %u",
2240                  full_collections_started, _full_collections_completed));
2241 
2242   // This is the case for the outer caller, i.e. the concurrent cycle.
2243   assert(!concurrent ||
2244          (full_collections_started == _full_collections_completed + 1),
2245          err_msg("for outer caller (concurrent cycle): "
2246                  "full_collections_started = %u "
2247                  "is inconsistent with _full_collections_completed = %u",
2248                  full_collections_started, _full_collections_completed));
2249 
2250   _full_collections_completed += 1;
2251 
2252   // We need to clear the "in_progress" flag in the CM thread before
2253   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2254   // is set) so that if a waiter requests another System.gc() it doesn't
2255   // incorrectly see that a marking cyle is still in progress.
2256   if (concurrent) {
2257     _cmThread->clear_in_progress();
2258   }
2259 
2260   // This notify_all() will ensure that a thread that called
2261   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2262   // and it's waiting for a full GC to finish will be woken up. It is
2263   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2264   FullGCCount_lock->notify_all();
2265 }
2266 
2267 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2268   assert_at_safepoint(true /* should_be_vm_thread */);
2269   GCCauseSetter gcs(this, cause);
2270   switch (cause) {
2271     case GCCause::_heap_inspection:
2272     case GCCause::_heap_dump: {
2273       HandleMark hm;
2274       do_full_collection(false);         // don't clear all soft refs
2275       break;
2276     }
2277     default: // XXX FIX ME
2278       ShouldNotReachHere(); // Unexpected use of this function
2279   }
2280 }
2281 
2282 void G1CollectedHeap::collect(GCCause::Cause cause) {
2283   // The caller doesn't have the Heap_lock
2284   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2285 
2286   unsigned int gc_count_before;
2287   unsigned int full_gc_count_before;
2288   {
2289     MutexLocker ml(Heap_lock);
2290 
2291     // Read the GC count while holding the Heap_lock
2292     gc_count_before = SharedHeap::heap()->total_collections();
2293     full_gc_count_before = SharedHeap::heap()->total_full_collections();
2294   }
2295 
2296   if (should_do_concurrent_full_gc(cause)) {
2297     // Schedule an initial-mark evacuation pause that will start a
2298     // concurrent cycle. We're setting word_size to 0 which means that
2299     // we are not requesting a post-GC allocation.
2300     VM_G1IncCollectionPause op(gc_count_before,
2301                                0,     /* word_size */
2302                                true,  /* should_initiate_conc_mark */
2303                                g1_policy()->max_pause_time_ms(),
2304                                cause);
2305     VMThread::execute(&op);
2306   } else {
2307     if (cause == GCCause::_gc_locker
2308         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2309 
2310       // Schedule a standard evacuation pause. We're setting word_size
2311       // to 0 which means that we are not requesting a post-GC allocation.
2312       VM_G1IncCollectionPause op(gc_count_before,
2313                                  0,     /* word_size */
2314                                  false, /* should_initiate_conc_mark */
2315                                  g1_policy()->max_pause_time_ms(),
2316                                  cause);
2317       VMThread::execute(&op);
2318     } else {
2319       // Schedule a Full GC.
2320       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2321       VMThread::execute(&op);
2322     }
2323   }
2324 }
2325 
2326 bool G1CollectedHeap::is_in(const void* p) const {
2327   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
2328   if (hr != NULL) {
2329     return hr->is_in(p);
2330   } else {
2331     return _perm_gen->as_gen()->is_in(p);
2332   }
2333 }
2334 
2335 // Iteration functions.
2336 
2337 // Iterates an OopClosure over all ref-containing fields of objects
2338 // within a HeapRegion.
2339 
2340 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2341   MemRegion _mr;
2342   OopClosure* _cl;
2343 public:
2344   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2345     : _mr(mr), _cl(cl) {}
2346   bool doHeapRegion(HeapRegion* r) {
2347     if (! r->continuesHumongous()) {
2348       r->oop_iterate(_cl);
2349     }
2350     return false;
2351   }
2352 };
2353 
2354 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2355   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2356   heap_region_iterate(&blk);
2357   if (do_perm) {
2358     perm_gen()->oop_iterate(cl);
2359   }
2360 }
2361 
2362 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2363   IterateOopClosureRegionClosure blk(mr, cl);
2364   heap_region_iterate(&blk);
2365   if (do_perm) {
2366     perm_gen()->oop_iterate(cl);
2367   }
2368 }
2369 
2370 // Iterates an ObjectClosure over all objects within a HeapRegion.
2371 
2372 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2373   ObjectClosure* _cl;
2374 public:
2375   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2376   bool doHeapRegion(HeapRegion* r) {
2377     if (! r->continuesHumongous()) {
2378       r->object_iterate(_cl);
2379     }
2380     return false;
2381   }
2382 };
2383 
2384 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2385   IterateObjectClosureRegionClosure blk(cl);
2386   heap_region_iterate(&blk);
2387   if (do_perm) {
2388     perm_gen()->object_iterate(cl);
2389   }
2390 }
2391 
2392 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2393   // FIXME: is this right?
2394   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2395 }
2396 
2397 // Calls a SpaceClosure on a HeapRegion.
2398 
2399 class SpaceClosureRegionClosure: public HeapRegionClosure {
2400   SpaceClosure* _cl;
2401 public:
2402   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2403   bool doHeapRegion(HeapRegion* r) {
2404     _cl->do_space(r);
2405     return false;
2406   }
2407 };
2408 
2409 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2410   SpaceClosureRegionClosure blk(cl);
2411   heap_region_iterate(&blk);
2412 }
2413 
2414 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2415   _hrs.iterate(cl);
2416 }
2417 
2418 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2419                                                HeapRegionClosure* cl) const {
2420   _hrs.iterate_from(r, cl);
2421 }
2422 
2423 void
2424 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2425                                                  int worker,
2426                                                  jint claim_value) {
2427   const size_t regions = n_regions();
2428   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2429   // try to spread out the starting points of the workers
2430   const size_t start_index = regions / worker_num * (size_t) worker;
2431 
2432   // each worker will actually look at all regions
2433   for (size_t count = 0; count < regions; ++count) {
2434     const size_t index = (start_index + count) % regions;
2435     assert(0 <= index && index < regions, "sanity");
2436     HeapRegion* r = region_at(index);
2437     // we'll ignore "continues humongous" regions (we'll process them
2438     // when we come across their corresponding "start humongous"
2439     // region) and regions already claimed
2440     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2441       continue;
2442     }
2443     // OK, try to claim it
2444     if (r->claimHeapRegion(claim_value)) {
2445       // success!
2446       assert(!r->continuesHumongous(), "sanity");
2447       if (r->startsHumongous()) {
2448         // If the region is "starts humongous" we'll iterate over its
2449         // "continues humongous" first; in fact we'll do them
2450         // first. The order is important. In on case, calling the
2451         // closure on the "starts humongous" region might de-allocate
2452         // and clear all its "continues humongous" regions and, as a
2453         // result, we might end up processing them twice. So, we'll do
2454         // them first (notice: most closures will ignore them anyway) and
2455         // then we'll do the "starts humongous" region.
2456         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
2457           HeapRegion* chr = region_at(ch_index);
2458 
2459           // if the region has already been claimed or it's not
2460           // "continues humongous" we're done
2461           if (chr->claim_value() == claim_value ||
2462               !chr->continuesHumongous()) {
2463             break;
2464           }
2465 
2466           // Noone should have claimed it directly. We can given
2467           // that we claimed its "starts humongous" region.
2468           assert(chr->claim_value() != claim_value, "sanity");
2469           assert(chr->humongous_start_region() == r, "sanity");
2470 
2471           if (chr->claimHeapRegion(claim_value)) {
2472             // we should always be able to claim it; noone else should
2473             // be trying to claim this region
2474 
2475             bool res2 = cl->doHeapRegion(chr);
2476             assert(!res2, "Should not abort");
2477 
2478             // Right now, this holds (i.e., no closure that actually
2479             // does something with "continues humongous" regions
2480             // clears them). We might have to weaken it in the future,
2481             // but let's leave these two asserts here for extra safety.
2482             assert(chr->continuesHumongous(), "should still be the case");
2483             assert(chr->humongous_start_region() == r, "sanity");
2484           } else {
2485             guarantee(false, "we should not reach here");
2486           }
2487         }
2488       }
2489 
2490       assert(!r->continuesHumongous(), "sanity");
2491       bool res = cl->doHeapRegion(r);
2492       assert(!res, "Should not abort");
2493     }
2494   }
2495 }
2496 
2497 class ResetClaimValuesClosure: public HeapRegionClosure {
2498 public:
2499   bool doHeapRegion(HeapRegion* r) {
2500     r->set_claim_value(HeapRegion::InitialClaimValue);
2501     return false;
2502   }
2503 };
2504 
2505 void
2506 G1CollectedHeap::reset_heap_region_claim_values() {
2507   ResetClaimValuesClosure blk;
2508   heap_region_iterate(&blk);
2509 }
2510 
2511 #ifdef ASSERT
2512 // This checks whether all regions in the heap have the correct claim
2513 // value. I also piggy-backed on this a check to ensure that the
2514 // humongous_start_region() information on "continues humongous"
2515 // regions is correct.
2516 
2517 class CheckClaimValuesClosure : public HeapRegionClosure {
2518 private:
2519   jint _claim_value;
2520   size_t _failures;
2521   HeapRegion* _sh_region;
2522 public:
2523   CheckClaimValuesClosure(jint claim_value) :
2524     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2525   bool doHeapRegion(HeapRegion* r) {
2526     if (r->claim_value() != _claim_value) {
2527       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2528                              "claim value = %d, should be %d",
2529                              r->bottom(), r->end(), r->claim_value(),
2530                              _claim_value);
2531       ++_failures;
2532     }
2533     if (!r->isHumongous()) {
2534       _sh_region = NULL;
2535     } else if (r->startsHumongous()) {
2536       _sh_region = r;
2537     } else if (r->continuesHumongous()) {
2538       if (r->humongous_start_region() != _sh_region) {
2539         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2540                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2541                                r->bottom(), r->end(),
2542                                r->humongous_start_region(),
2543                                _sh_region);
2544         ++_failures;
2545       }
2546     }
2547     return false;
2548   }
2549   size_t failures() {
2550     return _failures;
2551   }
2552 };
2553 
2554 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2555   CheckClaimValuesClosure cl(claim_value);
2556   heap_region_iterate(&cl);
2557   return cl.failures() == 0;
2558 }
2559 #endif // ASSERT
2560 
2561 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2562   HeapRegion* r = g1_policy()->collection_set();
2563   while (r != NULL) {
2564     HeapRegion* next = r->next_in_collection_set();
2565     if (cl->doHeapRegion(r)) {
2566       cl->incomplete();
2567       return;
2568     }
2569     r = next;
2570   }
2571 }
2572 
2573 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2574                                                   HeapRegionClosure *cl) {
2575   if (r == NULL) {
2576     // The CSet is empty so there's nothing to do.
2577     return;
2578   }
2579 
2580   assert(r->in_collection_set(),
2581          "Start region must be a member of the collection set.");
2582   HeapRegion* cur = r;
2583   while (cur != NULL) {
2584     HeapRegion* next = cur->next_in_collection_set();
2585     if (cl->doHeapRegion(cur) && false) {
2586       cl->incomplete();
2587       return;
2588     }
2589     cur = next;
2590   }
2591   cur = g1_policy()->collection_set();
2592   while (cur != r) {
2593     HeapRegion* next = cur->next_in_collection_set();
2594     if (cl->doHeapRegion(cur) && false) {
2595       cl->incomplete();
2596       return;
2597     }
2598     cur = next;
2599   }
2600 }
2601 
2602 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2603   return n_regions() > 0 ? region_at(0) : NULL;
2604 }
2605 
2606 
2607 Space* G1CollectedHeap::space_containing(const void* addr) const {
2608   Space* res = heap_region_containing(addr);
2609   if (res == NULL)
2610     res = perm_gen()->space_containing(addr);
2611   return res;
2612 }
2613 
2614 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2615   Space* sp = space_containing(addr);
2616   if (sp != NULL) {
2617     return sp->block_start(addr);
2618   }
2619   return NULL;
2620 }
2621 
2622 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2623   Space* sp = space_containing(addr);
2624   assert(sp != NULL, "block_size of address outside of heap");
2625   return sp->block_size(addr);
2626 }
2627 
2628 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2629   Space* sp = space_containing(addr);
2630   return sp->block_is_obj(addr);
2631 }
2632 
2633 bool G1CollectedHeap::supports_tlab_allocation() const {
2634   return true;
2635 }
2636 
2637 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2638   return HeapRegion::GrainBytes;
2639 }
2640 
2641 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2642   // Return the remaining space in the cur alloc region, but not less than
2643   // the min TLAB size.
2644 
2645   // Also, this value can be at most the humongous object threshold,
2646   // since we can't allow tlabs to grow big enough to accomodate
2647   // humongous objects.
2648 
2649   HeapRegion* hr = _mutator_alloc_region.get();
2650   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2651   if (hr == NULL) {
2652     return max_tlab_size;
2653   } else {
2654     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2655   }
2656 }
2657 
2658 size_t G1CollectedHeap::max_capacity() const {
2659   return _g1_reserved.byte_size();
2660 }
2661 
2662 jlong G1CollectedHeap::millis_since_last_gc() {
2663   // assert(false, "NYI");
2664   return 0;
2665 }
2666 
2667 void G1CollectedHeap::prepare_for_verify() {
2668   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2669     ensure_parsability(false);
2670   }
2671   g1_rem_set()->prepare_for_verify();
2672 }
2673 
2674 class VerifyLivenessOopClosure: public OopClosure {
2675   G1CollectedHeap* _g1h;
2676   VerifyOption _vo;
2677 public:
2678   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2679     _g1h(g1h), _vo(vo)
2680   { }
2681   void do_oop(narrowOop *p) { do_oop_work(p); }
2682   void do_oop(      oop *p) { do_oop_work(p); }
2683 
2684   template <class T> void do_oop_work(T *p) {
2685     oop obj = oopDesc::load_decode_heap_oop(p);
2686     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2687               "Dead object referenced by a not dead object");
2688   }
2689 };
2690 
2691 class VerifyObjsInRegionClosure: public ObjectClosure {
2692 private:
2693   G1CollectedHeap* _g1h;
2694   size_t _live_bytes;
2695   HeapRegion *_hr;
2696   VerifyOption _vo;
2697 public:
2698   // _vo == UsePrevMarking -> use "prev" marking information,
2699   // _vo == UseNextMarking -> use "next" marking information,
2700   // _vo == UseMarkWord    -> use mark word from object header.
2701   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2702     : _live_bytes(0), _hr(hr), _vo(vo) {
2703     _g1h = G1CollectedHeap::heap();
2704   }
2705   void do_object(oop o) {
2706     VerifyLivenessOopClosure isLive(_g1h, _vo);
2707     assert(o != NULL, "Huh?");
2708     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2709       // If the object is alive according to the mark word,
2710       // then verify that the marking information agrees.
2711       // Note we can't verify the contra-positive of the
2712       // above: if the object is dead (according to the mark
2713       // word), it may not be marked, or may have been marked
2714       // but has since became dead, or may have been allocated
2715       // since the last marking.
2716       if (_vo == VerifyOption_G1UseMarkWord) {
2717         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2718       }
2719 
2720       o->oop_iterate(&isLive);
2721       if (!_hr->obj_allocated_since_prev_marking(o)) {
2722         size_t obj_size = o->size();    // Make sure we don't overflow
2723         _live_bytes += (obj_size * HeapWordSize);
2724       }
2725     }
2726   }
2727   size_t live_bytes() { return _live_bytes; }
2728 };
2729 
2730 class PrintObjsInRegionClosure : public ObjectClosure {
2731   HeapRegion *_hr;
2732   G1CollectedHeap *_g1;
2733 public:
2734   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2735     _g1 = G1CollectedHeap::heap();
2736   };
2737 
2738   void do_object(oop o) {
2739     if (o != NULL) {
2740       HeapWord *start = (HeapWord *) o;
2741       size_t word_sz = o->size();
2742       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2743                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2744                           (void*) o, word_sz,
2745                           _g1->isMarkedPrev(o),
2746                           _g1->isMarkedNext(o),
2747                           _hr->obj_allocated_since_prev_marking(o));
2748       HeapWord *end = start + word_sz;
2749       HeapWord *cur;
2750       int *val;
2751       for (cur = start; cur < end; cur++) {
2752         val = (int *) cur;
2753         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2754       }
2755     }
2756   }
2757 };
2758 
2759 class VerifyRegionClosure: public HeapRegionClosure {
2760 private:
2761   bool         _allow_dirty;
2762   bool         _par;
2763   VerifyOption _vo;
2764   bool         _failures;
2765 public:
2766   // _vo == UsePrevMarking -> use "prev" marking information,
2767   // _vo == UseNextMarking -> use "next" marking information,
2768   // _vo == UseMarkWord    -> use mark word from object header.
2769   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2770     : _allow_dirty(allow_dirty),
2771       _par(par),
2772       _vo(vo),
2773       _failures(false) {}
2774 
2775   bool failures() {
2776     return _failures;
2777   }
2778 
2779   bool doHeapRegion(HeapRegion* r) {
2780     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2781               "Should be unclaimed at verify points.");
2782     if (!r->continuesHumongous()) {
2783       bool failures = false;
2784       r->verify(_allow_dirty, _vo, &failures);
2785       if (failures) {
2786         _failures = true;
2787       } else {
2788         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2789         r->object_iterate(&not_dead_yet_cl);
2790         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2791           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2792                                  "max_live_bytes "SIZE_FORMAT" "
2793                                  "< calculated "SIZE_FORMAT,
2794                                  r->bottom(), r->end(),
2795                                  r->max_live_bytes(),
2796                                  not_dead_yet_cl.live_bytes());
2797           _failures = true;
2798         }
2799       }
2800     }
2801     return false; // stop the region iteration if we hit a failure
2802   }
2803 };
2804 
2805 class VerifyRootsClosure: public OopsInGenClosure {
2806 private:
2807   G1CollectedHeap* _g1h;
2808   VerifyOption     _vo;
2809   bool             _failures;
2810 public:
2811   // _vo == UsePrevMarking -> use "prev" marking information,
2812   // _vo == UseNextMarking -> use "next" marking information,
2813   // _vo == UseMarkWord    -> use mark word from object header.
2814   VerifyRootsClosure(VerifyOption vo) :
2815     _g1h(G1CollectedHeap::heap()),
2816     _vo(vo),
2817     _failures(false) { }
2818 
2819   bool failures() { return _failures; }
2820 
2821   template <class T> void do_oop_nv(T* p) {
2822     T heap_oop = oopDesc::load_heap_oop(p);
2823     if (!oopDesc::is_null(heap_oop)) {
2824       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2825       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2826         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2827                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2828         if (_vo == VerifyOption_G1UseMarkWord) {
2829           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2830         }
2831         obj->print_on(gclog_or_tty);
2832         _failures = true;
2833       }
2834     }
2835   }
2836 
2837   void do_oop(oop* p)       { do_oop_nv(p); }
2838   void do_oop(narrowOop* p) { do_oop_nv(p); }
2839 };
2840 
2841 // This is the task used for parallel heap verification.
2842 
2843 class G1ParVerifyTask: public AbstractGangTask {
2844 private:
2845   G1CollectedHeap* _g1h;
2846   bool             _allow_dirty;
2847   VerifyOption     _vo;
2848   bool             _failures;
2849 
2850 public:
2851   // _vo == UsePrevMarking -> use "prev" marking information,
2852   // _vo == UseNextMarking -> use "next" marking information,
2853   // _vo == UseMarkWord    -> use mark word from object header.
2854   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
2855     AbstractGangTask("Parallel verify task"),
2856     _g1h(g1h),
2857     _allow_dirty(allow_dirty),
2858     _vo(vo),
2859     _failures(false) { }
2860 
2861   bool failures() {
2862     return _failures;
2863   }
2864 
2865   void work(int worker_i) {
2866     HandleMark hm;
2867     VerifyRegionClosure blk(_allow_dirty, true, _vo);
2868     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2869                                           HeapRegion::ParVerifyClaimValue);
2870     if (blk.failures()) {
2871       _failures = true;
2872     }
2873   }
2874 };
2875 
2876 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2877   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
2878 }
2879 
2880 void G1CollectedHeap::verify(bool allow_dirty,
2881                              bool silent,
2882                              VerifyOption vo) {
2883   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2884     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
2885     VerifyRootsClosure rootsCl(vo);
2886     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2887 
2888     // We apply the relevant closures to all the oops in the
2889     // system dictionary, the string table and the code cache.
2890     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
2891 
2892     process_strong_roots(true,      // activate StrongRootsScope
2893                          true,      // we set "collecting perm gen" to true,
2894                                     // so we don't reset the dirty cards in the perm gen.
2895                          SharedHeap::ScanningOption(so),  // roots scanning options
2896                          &rootsCl,
2897                          &blobsCl,
2898                          &rootsCl);
2899 
2900     // If we're verifying after the marking phase of a Full GC then we can't
2901     // treat the perm gen as roots into the G1 heap. Some of the objects in
2902     // the perm gen may be dead and hence not marked. If one of these dead
2903     // objects is considered to be a root then we may end up with a false
2904     // "Root location <x> points to dead ob <y>" failure.
2905     if (vo != VerifyOption_G1UseMarkWord) {
2906       // Since we used "collecting_perm_gen" == true above, we will not have
2907       // checked the refs from perm into the G1-collected heap. We check those
2908       // references explicitly below. Whether the relevant cards are dirty
2909       // is checked further below in the rem set verification.
2910       if (!silent) { gclog_or_tty->print("Permgen roots "); }
2911       perm_gen()->oop_iterate(&rootsCl);
2912     }
2913     bool failures = rootsCl.failures();
2914 
2915     if (vo != VerifyOption_G1UseMarkWord) {
2916       // If we're verifying during a full GC then the region sets
2917       // will have been torn down at the start of the GC. Therefore
2918       // verifying the region sets will fail. So we only verify
2919       // the region sets when not in a full GC.
2920       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
2921       verify_region_sets();
2922     }
2923 
2924     if (!silent) { gclog_or_tty->print("HeapRegions "); }
2925     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
2926       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2927              "sanity check");
2928 
2929       G1ParVerifyTask task(this, allow_dirty, vo);
2930       int n_workers = workers()->total_workers();
2931       set_par_threads(n_workers);
2932       workers()->run_task(&task);
2933       set_par_threads(0);
2934       if (task.failures()) {
2935         failures = true;
2936       }
2937 
2938       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
2939              "sanity check");
2940 
2941       reset_heap_region_claim_values();
2942 
2943       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2944              "sanity check");
2945     } else {
2946       VerifyRegionClosure blk(allow_dirty, false, vo);
2947       heap_region_iterate(&blk);
2948       if (blk.failures()) {
2949         failures = true;
2950       }
2951     }
2952     if (!silent) gclog_or_tty->print("RemSet ");
2953     rem_set()->verify();
2954 
2955     if (failures) {
2956       gclog_or_tty->print_cr("Heap:");
2957       print_on(gclog_or_tty, true /* extended */);
2958       gclog_or_tty->print_cr("");
2959 #ifndef PRODUCT
2960       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2961         concurrent_mark()->print_reachable("at-verification-failure",
2962                                            vo, false /* all */);
2963       }
2964 #endif
2965       gclog_or_tty->flush();
2966     }
2967     guarantee(!failures, "there should not have been any failures");
2968   } else {
2969     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2970   }
2971 }
2972 
2973 class PrintRegionClosure: public HeapRegionClosure {
2974   outputStream* _st;
2975 public:
2976   PrintRegionClosure(outputStream* st) : _st(st) {}
2977   bool doHeapRegion(HeapRegion* r) {
2978     r->print_on(_st);
2979     return false;
2980   }
2981 };
2982 
2983 void G1CollectedHeap::print() const { print_on(tty); }
2984 
2985 void G1CollectedHeap::print_on(outputStream* st) const {
2986   print_on(st, PrintHeapAtGCExtended);
2987 }
2988 
2989 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
2990   st->print(" %-20s", "garbage-first heap");
2991   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2992             capacity()/K, used_unlocked()/K);
2993   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
2994             _g1_storage.low_boundary(),
2995             _g1_storage.high(),
2996             _g1_storage.high_boundary());
2997   st->cr();
2998   st->print("  region size " SIZE_FORMAT "K, ",
2999             HeapRegion::GrainBytes/K);
3000   size_t young_regions = _young_list->length();
3001   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
3002             young_regions, young_regions * HeapRegion::GrainBytes / K);
3003   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
3004   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
3005             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
3006   st->cr();
3007   perm()->as_gen()->print_on(st);
3008   if (extended) {
3009     st->cr();
3010     print_on_extended(st);
3011   }
3012 }
3013 
3014 void G1CollectedHeap::print_on_extended(outputStream* st) const {
3015   PrintRegionClosure blk(st);
3016   heap_region_iterate(&blk);
3017 }
3018 
3019 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3020   if (G1CollectedHeap::use_parallel_gc_threads()) {
3021     workers()->print_worker_threads_on(st);
3022   }
3023   _cmThread->print_on(st);
3024   st->cr();
3025   _cm->print_worker_threads_on(st);
3026   _cg1r->print_worker_threads_on(st);
3027   st->cr();
3028 }
3029 
3030 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3031   if (G1CollectedHeap::use_parallel_gc_threads()) {
3032     workers()->threads_do(tc);
3033   }
3034   tc->do_thread(_cmThread);
3035   _cg1r->threads_do(tc);
3036 }
3037 
3038 void G1CollectedHeap::print_tracing_info() const {
3039   // We'll overload this to mean "trace GC pause statistics."
3040   if (TraceGen0Time || TraceGen1Time) {
3041     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3042     // to that.
3043     g1_policy()->print_tracing_info();
3044   }
3045   if (G1SummarizeRSetStats) {
3046     g1_rem_set()->print_summary_info();
3047   }
3048   if (G1SummarizeConcMark) {
3049     concurrent_mark()->print_summary_info();
3050   }
3051   g1_policy()->print_yg_surv_rate_info();
3052   SpecializationStats::print();
3053 }
3054 
3055 #ifndef PRODUCT
3056 // Helpful for debugging RSet issues.
3057 
3058 class PrintRSetsClosure : public HeapRegionClosure {
3059 private:
3060   const char* _msg;
3061   size_t _occupied_sum;
3062 
3063 public:
3064   bool doHeapRegion(HeapRegion* r) {
3065     HeapRegionRemSet* hrrs = r->rem_set();
3066     size_t occupied = hrrs->occupied();
3067     _occupied_sum += occupied;
3068 
3069     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3070                            HR_FORMAT_PARAMS(r));
3071     if (occupied == 0) {
3072       gclog_or_tty->print_cr("  RSet is empty");
3073     } else {
3074       hrrs->print();
3075     }
3076     gclog_or_tty->print_cr("----------");
3077     return false;
3078   }
3079 
3080   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3081     gclog_or_tty->cr();
3082     gclog_or_tty->print_cr("========================================");
3083     gclog_or_tty->print_cr(msg);
3084     gclog_or_tty->cr();
3085   }
3086 
3087   ~PrintRSetsClosure() {
3088     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3089     gclog_or_tty->print_cr("========================================");
3090     gclog_or_tty->cr();
3091   }
3092 };
3093 
3094 void G1CollectedHeap::print_cset_rsets() {
3095   PrintRSetsClosure cl("Printing CSet RSets");
3096   collection_set_iterate(&cl);
3097 }
3098 
3099 void G1CollectedHeap::print_all_rsets() {
3100   PrintRSetsClosure cl("Printing All RSets");;
3101   heap_region_iterate(&cl);
3102 }
3103 #endif // PRODUCT
3104 
3105 G1CollectedHeap* G1CollectedHeap::heap() {
3106   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3107          "not a garbage-first heap");
3108   return _g1h;
3109 }
3110 
3111 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3112   // always_do_update_barrier = false;
3113   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3114   // Call allocation profiler
3115   AllocationProfiler::iterate_since_last_gc();
3116   // Fill TLAB's and such
3117   ensure_parsability(true);
3118 }
3119 
3120 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3121   // FIXME: what is this about?
3122   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3123   // is set.
3124   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3125                         "derived pointer present"));
3126   // always_do_update_barrier = true;
3127 }
3128 
3129 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3130                                                unsigned int gc_count_before,
3131                                                bool* succeeded) {
3132   assert_heap_not_locked_and_not_at_safepoint();
3133   g1_policy()->record_stop_world_start();
3134   VM_G1IncCollectionPause op(gc_count_before,
3135                              word_size,
3136                              false, /* should_initiate_conc_mark */
3137                              g1_policy()->max_pause_time_ms(),
3138                              GCCause::_g1_inc_collection_pause);
3139   VMThread::execute(&op);
3140 
3141   HeapWord* result = op.result();
3142   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3143   assert(result == NULL || ret_succeeded,
3144          "the result should be NULL if the VM did not succeed");
3145   *succeeded = ret_succeeded;
3146 
3147   assert_heap_not_locked();
3148   return result;
3149 }
3150 
3151 void
3152 G1CollectedHeap::doConcurrentMark() {
3153   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3154   if (!_cmThread->in_progress()) {
3155     _cmThread->set_started();
3156     CGC_lock->notify();
3157   }
3158 }
3159 
3160 void G1CollectedHeap::do_sync_mark() {
3161   _cm->checkpointRootsInitial();
3162   _cm->markFromRoots();
3163   _cm->checkpointRootsFinal(false);
3164 }
3165 
3166 // <NEW PREDICTION>
3167 
3168 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
3169                                                        bool young) {
3170   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
3171 }
3172 
3173 void G1CollectedHeap::check_if_region_is_too_expensive(double
3174                                                            predicted_time_ms) {
3175   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
3176 }
3177 
3178 size_t G1CollectedHeap::pending_card_num() {
3179   size_t extra_cards = 0;
3180   JavaThread *curr = Threads::first();
3181   while (curr != NULL) {
3182     DirtyCardQueue& dcq = curr->dirty_card_queue();
3183     extra_cards += dcq.size();
3184     curr = curr->next();
3185   }
3186   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3187   size_t buffer_size = dcqs.buffer_size();
3188   size_t buffer_num = dcqs.completed_buffers_num();
3189   return buffer_size * buffer_num + extra_cards;
3190 }
3191 
3192 size_t G1CollectedHeap::max_pending_card_num() {
3193   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3194   size_t buffer_size = dcqs.buffer_size();
3195   size_t buffer_num  = dcqs.completed_buffers_num();
3196   int thread_num  = Threads::number_of_threads();
3197   return (buffer_num + thread_num) * buffer_size;
3198 }
3199 
3200 size_t G1CollectedHeap::cards_scanned() {
3201   return g1_rem_set()->cardsScanned();
3202 }
3203 
3204 void
3205 G1CollectedHeap::setup_surviving_young_words() {
3206   guarantee( _surviving_young_words == NULL, "pre-condition" );
3207   size_t array_length = g1_policy()->young_cset_length();
3208   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
3209   if (_surviving_young_words == NULL) {
3210     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3211                           "Not enough space for young surv words summary.");
3212   }
3213   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3214 #ifdef ASSERT
3215   for (size_t i = 0;  i < array_length; ++i) {
3216     assert( _surviving_young_words[i] == 0, "memset above" );
3217   }
3218 #endif // !ASSERT
3219 }
3220 
3221 void
3222 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3223   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3224   size_t array_length = g1_policy()->young_cset_length();
3225   for (size_t i = 0; i < array_length; ++i)
3226     _surviving_young_words[i] += surv_young_words[i];
3227 }
3228 
3229 void
3230 G1CollectedHeap::cleanup_surviving_young_words() {
3231   guarantee( _surviving_young_words != NULL, "pre-condition" );
3232   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3233   _surviving_young_words = NULL;
3234 }
3235 
3236 // </NEW PREDICTION>
3237 
3238 #ifdef ASSERT
3239 class VerifyCSetClosure: public HeapRegionClosure {
3240 public:
3241   bool doHeapRegion(HeapRegion* hr) {
3242     // Here we check that the CSet region's RSet is ready for parallel
3243     // iteration. The fields that we'll verify are only manipulated
3244     // when the region is part of a CSet and is collected. Afterwards,
3245     // we reset these fields when we clear the region's RSet (when the
3246     // region is freed) so they are ready when the region is
3247     // re-allocated. The only exception to this is if there's an
3248     // evacuation failure and instead of freeing the region we leave
3249     // it in the heap. In that case, we reset these fields during
3250     // evacuation failure handling.
3251     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3252 
3253     // Here's a good place to add any other checks we'd like to
3254     // perform on CSet regions.
3255     return false;
3256   }
3257 };
3258 #endif // ASSERT
3259 
3260 #if TASKQUEUE_STATS
3261 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3262   st->print_raw_cr("GC Task Stats");
3263   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3264   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3265 }
3266 
3267 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3268   print_taskqueue_stats_hdr(st);
3269 
3270   TaskQueueStats totals;
3271   const int n = workers() != NULL ? workers()->total_workers() : 1;
3272   for (int i = 0; i < n; ++i) {
3273     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3274     totals += task_queue(i)->stats;
3275   }
3276   st->print_raw("tot "); totals.print(st); st->cr();
3277 
3278   DEBUG_ONLY(totals.verify());
3279 }
3280 
3281 void G1CollectedHeap::reset_taskqueue_stats() {
3282   const int n = workers() != NULL ? workers()->total_workers() : 1;
3283   for (int i = 0; i < n; ++i) {
3284     task_queue(i)->stats.reset();
3285   }
3286 }
3287 #endif // TASKQUEUE_STATS
3288 
3289 bool
3290 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3291   assert_at_safepoint(true /* should_be_vm_thread */);
3292   guarantee(!is_gc_active(), "collection is not reentrant");
3293 
3294   if (GC_locker::check_active_before_gc()) {
3295     return false;
3296   }
3297 
3298   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3299   ResourceMark rm;
3300 
3301   if (PrintHeapAtGC) {
3302     Universe::print_heap_before_gc();
3303   }
3304 
3305   verify_region_sets_optional();
3306   verify_dirty_young_regions();
3307 
3308   {
3309     // This call will decide whether this pause is an initial-mark
3310     // pause. If it is, during_initial_mark_pause() will return true
3311     // for the duration of this pause.
3312     g1_policy()->decide_on_conc_mark_initiation();
3313 
3314     char verbose_str[128];
3315     sprintf(verbose_str, "GC pause ");
3316     if (g1_policy()->full_young_gcs()) {
3317       strcat(verbose_str, "(young)");
3318     } else {
3319       strcat(verbose_str, "(partial)");
3320     }
3321     if (g1_policy()->during_initial_mark_pause()) {
3322       strcat(verbose_str, " (initial-mark)");
3323       // We are about to start a marking cycle, so we increment the
3324       // full collection counter.
3325       increment_total_full_collections();
3326     }
3327 
3328     // if PrintGCDetails is on, we'll print long statistics information
3329     // in the collector policy code, so let's not print this as the output
3330     // is messy if we do.
3331     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
3332     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3333     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3334 
3335     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3336     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3337 
3338     // If the secondary_free_list is not empty, append it to the
3339     // free_list. No need to wait for the cleanup operation to finish;
3340     // the region allocation code will check the secondary_free_list
3341     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3342     // set, skip this step so that the region allocation code has to
3343     // get entries from the secondary_free_list.
3344     if (!G1StressConcRegionFreeing) {
3345       append_secondary_free_list_if_not_empty_with_lock();
3346     }
3347 
3348     assert(check_young_list_well_formed(),
3349       "young list should be well formed");
3350 
3351     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3352       IsGCActiveMark x;
3353 
3354       gc_prologue(false);
3355       increment_total_collections(false /* full gc */);
3356       increment_gc_time_stamp();
3357 
3358       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3359         HandleMark hm;  // Discard invalid handles created during verification
3360         gclog_or_tty->print(" VerifyBeforeGC:");
3361         prepare_for_verify();
3362         Universe::verify(/* allow dirty */ false,
3363                          /* silent      */ false,
3364                          /* option      */ VerifyOption_G1UsePrevMarking);
3365 
3366       }
3367 
3368       COMPILER2_PRESENT(DerivedPointerTable::clear());
3369 
3370       // Please see comment in G1CollectedHeap::ref_processing_init()
3371       // to see how reference processing currently works in G1.
3372       //
3373       // We want to turn off ref discovery, if necessary, and turn it back on
3374       // on again later if we do. XXX Dubious: why is discovery disabled?
3375       bool was_enabled = ref_processor()->discovery_enabled();
3376       if (was_enabled) ref_processor()->disable_discovery();
3377 
3378       // Forget the current alloc region (we might even choose it to be part
3379       // of the collection set!).
3380       release_mutator_alloc_region();
3381 
3382       // We should call this after we retire the mutator alloc
3383       // region(s) so that all the ALLOC / RETIRE events are generated
3384       // before the start GC event.
3385       _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3386 
3387       // The elapsed time induced by the start time below deliberately elides
3388       // the possible verification above.
3389       double start_time_sec = os::elapsedTime();
3390       size_t start_used_bytes = used();
3391 
3392 #if YOUNG_LIST_VERBOSE
3393       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3394       _young_list->print();
3395       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3396 #endif // YOUNG_LIST_VERBOSE
3397 
3398       g1_policy()->record_collection_pause_start(start_time_sec,
3399                                                  start_used_bytes);
3400 
3401 #if YOUNG_LIST_VERBOSE
3402       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3403       _young_list->print();
3404 #endif // YOUNG_LIST_VERBOSE
3405 
3406       if (g1_policy()->during_initial_mark_pause()) {
3407         concurrent_mark()->checkpointRootsInitialPre();
3408       }
3409       perm_gen()->save_marks();
3410 
3411       // We must do this before any possible evacuation that should propagate
3412       // marks.
3413       if (mark_in_progress()) {
3414         double start_time_sec = os::elapsedTime();
3415 
3416         _cm->drainAllSATBBuffers();
3417         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
3418         g1_policy()->record_satb_drain_time(finish_mark_ms);
3419       }
3420       // Record the number of elements currently on the mark stack, so we
3421       // only iterate over these.  (Since evacuation may add to the mark
3422       // stack, doing more exposes race conditions.)  If no mark is in
3423       // progress, this will be zero.
3424       _cm->set_oops_do_bound();
3425 
3426       if (mark_in_progress()) {
3427         concurrent_mark()->newCSet();
3428       }
3429 
3430 #if YOUNG_LIST_VERBOSE
3431       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3432       _young_list->print();
3433       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3434 #endif // YOUNG_LIST_VERBOSE
3435 
3436       g1_policy()->choose_collection_set(target_pause_time_ms);
3437 
3438       if (_hr_printer.is_active()) {
3439         HeapRegion* hr = g1_policy()->collection_set();
3440         while (hr != NULL) {
3441           G1HRPrinter::RegionType type;
3442           if (!hr->is_young()) {
3443             type = G1HRPrinter::Old;
3444           } else if (hr->is_survivor()) {
3445             type = G1HRPrinter::Survivor;
3446           } else {
3447             type = G1HRPrinter::Eden;
3448           }
3449           _hr_printer.cset(hr);
3450           hr = hr->next_in_collection_set();
3451         }
3452       }
3453 
3454       // We have chosen the complete collection set. If marking is
3455       // active then, we clear the region fields of any of the
3456       // concurrent marking tasks whose region fields point into
3457       // the collection set as these values will become stale. This
3458       // will cause the owning marking threads to claim a new region
3459       // when marking restarts.
3460       if (mark_in_progress()) {
3461         concurrent_mark()->reset_active_task_region_fields_in_cset();
3462       }
3463 
3464 #ifdef ASSERT
3465       VerifyCSetClosure cl;
3466       collection_set_iterate(&cl);
3467 #endif // ASSERT
3468 
3469       setup_surviving_young_words();
3470 
3471       // Initialize the GC alloc regions.
3472       init_gc_alloc_regions();
3473 
3474       // Actually do the work...
3475       evacuate_collection_set();
3476 
3477       free_collection_set(g1_policy()->collection_set());
3478       g1_policy()->clear_collection_set();
3479 
3480       cleanup_surviving_young_words();
3481 
3482       // Start a new incremental collection set for the next pause.
3483       g1_policy()->start_incremental_cset_building();
3484 
3485       // Clear the _cset_fast_test bitmap in anticipation of adding
3486       // regions to the incremental collection set for the next
3487       // evacuation pause.
3488       clear_cset_fast_test();
3489 
3490       _young_list->reset_sampled_info();
3491 
3492       // Don't check the whole heap at this point as the
3493       // GC alloc regions from this pause have been tagged
3494       // as survivors and moved on to the survivor list.
3495       // Survivor regions will fail the !is_young() check.
3496       assert(check_young_list_empty(false /* check_heap */),
3497         "young list should be empty");
3498 
3499 #if YOUNG_LIST_VERBOSE
3500       gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3501       _young_list->print();
3502 #endif // YOUNG_LIST_VERBOSE
3503 
3504       g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3505         _young_list->first_survivor_region(),
3506         _young_list->last_survivor_region());
3507 
3508       _young_list->reset_auxilary_lists();
3509 
3510       if (evacuation_failed()) {
3511         _summary_bytes_used = recalculate_used();
3512       } else {
3513         // The "used" of the the collection set have already been subtracted
3514         // when they were freed.  Add in the bytes evacuated.
3515         _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3516       }
3517 
3518       if (g1_policy()->during_initial_mark_pause()) {
3519         concurrent_mark()->checkpointRootsInitialPost();
3520         set_marking_started();
3521         // CAUTION: after the doConcurrentMark() call below,
3522         // the concurrent marking thread(s) could be running
3523         // concurrently with us. Make sure that anything after
3524         // this point does not assume that we are the only GC thread
3525         // running. Note: of course, the actual marking work will
3526         // not start until the safepoint itself is released in
3527         // ConcurrentGCThread::safepoint_desynchronize().
3528         doConcurrentMark();
3529       }
3530 
3531       allocate_dummy_regions();
3532 
3533 #if YOUNG_LIST_VERBOSE
3534       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3535       _young_list->print();
3536       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3537 #endif // YOUNG_LIST_VERBOSE
3538 
3539       init_mutator_alloc_region();
3540 
3541       double end_time_sec = os::elapsedTime();
3542       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3543       g1_policy()->record_pause_time_ms(pause_time_ms);
3544       g1_policy()->record_collection_pause_end();
3545 
3546       MemoryService::track_memory_usage();
3547 
3548       // In prepare_for_verify() below we'll need to scan the deferred
3549       // update buffers to bring the RSets up-to-date if
3550       // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3551       // the update buffers we'll probably need to scan cards on the
3552       // regions we just allocated to (i.e., the GC alloc
3553       // regions). However, during the last GC we called
3554       // set_saved_mark() on all the GC alloc regions, so card
3555       // scanning might skip the [saved_mark_word()...top()] area of
3556       // those regions (i.e., the area we allocated objects into
3557       // during the last GC). But it shouldn't. Given that
3558       // saved_mark_word() is conditional on whether the GC time stamp
3559       // on the region is current or not, by incrementing the GC time
3560       // stamp here we invalidate all the GC time stamps on all the
3561       // regions and saved_mark_word() will simply return top() for
3562       // all the regions. This is a nicer way of ensuring this rather
3563       // than iterating over the regions and fixing them. In fact, the
3564       // GC time stamp increment here also ensures that
3565       // saved_mark_word() will return top() between pauses, i.e.,
3566       // during concurrent refinement. So we don't need the
3567       // is_gc_active() check to decided which top to use when
3568       // scanning cards (see CR 7039627).
3569       increment_gc_time_stamp();
3570 
3571       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3572         HandleMark hm;  // Discard invalid handles created during verification
3573         gclog_or_tty->print(" VerifyAfterGC:");
3574         prepare_for_verify();
3575         Universe::verify(/* allow dirty */ true,
3576                          /* silent      */ false,
3577                          /* option      */ VerifyOption_G1UsePrevMarking);
3578       }
3579 
3580       if (was_enabled) ref_processor()->enable_discovery();
3581 
3582       {
3583         size_t expand_bytes = g1_policy()->expansion_amount();
3584         if (expand_bytes > 0) {
3585           size_t bytes_before = capacity();
3586           if (!expand(expand_bytes)) {
3587             // We failed to expand the heap so let's verify that
3588             // committed/uncommitted amount match the backing store
3589             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3590             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3591           }
3592         }
3593       }
3594 
3595       // We should do this after we potentially expand the heap so
3596       // that all the COMMIT events are generated before the end GC
3597       // event, and after we retire the GC alloc regions so that all
3598       // RETIRE events are generated before the end GC event.
3599       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3600 
3601       // We have to do this after we decide whether to expand the heap or not.
3602       g1_policy()->print_heap_transition();
3603 
3604       if (mark_in_progress()) {
3605         concurrent_mark()->update_g1_committed();
3606       }
3607 
3608 #ifdef TRACESPINNING
3609       ParallelTaskTerminator::print_termination_counts();
3610 #endif
3611 
3612       gc_epilogue(false);
3613     }
3614 
3615     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3616       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3617       print_tracing_info();
3618       vm_exit(-1);
3619     }
3620   }
3621 
3622   _hrs.verify_optional();
3623   verify_region_sets_optional();
3624 
3625   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3626   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3627 
3628   if (PrintHeapAtGC) {
3629     Universe::print_heap_after_gc();
3630   }
3631   g1mm()->update_counters();
3632 
3633   if (G1SummarizeRSetStats &&
3634       (G1SummarizeRSetStatsPeriod > 0) &&
3635       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3636     g1_rem_set()->print_summary_info();
3637   }
3638 
3639   return true;
3640 }
3641 
3642 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3643 {
3644   size_t gclab_word_size;
3645   switch (purpose) {
3646     case GCAllocForSurvived:
3647       gclab_word_size = YoungPLABSize;
3648       break;
3649     case GCAllocForTenured:
3650       gclab_word_size = OldPLABSize;
3651       break;
3652     default:
3653       assert(false, "unknown GCAllocPurpose");
3654       gclab_word_size = OldPLABSize;
3655       break;
3656   }
3657   return gclab_word_size;
3658 }
3659 
3660 void G1CollectedHeap::init_mutator_alloc_region() {
3661   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3662   _mutator_alloc_region.init();
3663 }
3664 
3665 void G1CollectedHeap::release_mutator_alloc_region() {
3666   _mutator_alloc_region.release();
3667   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3668 }
3669 
3670 void G1CollectedHeap::init_gc_alloc_regions() {
3671   assert_at_safepoint(true /* should_be_vm_thread */);
3672 
3673   _survivor_gc_alloc_region.init();
3674   _old_gc_alloc_region.init();
3675   HeapRegion* retained_region = _retained_old_gc_alloc_region;
3676   _retained_old_gc_alloc_region = NULL;
3677 
3678   // We will discard the current GC alloc region if:
3679   // a) it's in the collection set (it can happen!),
3680   // b) it's already full (no point in using it),
3681   // c) it's empty (this means that it was emptied during
3682   // a cleanup and it should be on the free list now), or
3683   // d) it's humongous (this means that it was emptied
3684   // during a cleanup and was added to the free list, but
3685   // has been subseqently used to allocate a humongous
3686   // object that may be less than the region size).
3687   if (retained_region != NULL &&
3688       !retained_region->in_collection_set() &&
3689       !(retained_region->top() == retained_region->end()) &&
3690       !retained_region->is_empty() &&
3691       !retained_region->isHumongous()) {
3692     retained_region->set_saved_mark();
3693     _old_gc_alloc_region.set(retained_region);
3694     _hr_printer.reuse(retained_region);
3695   }
3696 }
3697 
3698 void G1CollectedHeap::release_gc_alloc_regions() {
3699   _survivor_gc_alloc_region.release();
3700   // If we have an old GC alloc region to release, we'll save it in
3701   // _retained_old_gc_alloc_region. If we don't
3702   // _retained_old_gc_alloc_region will become NULL. This is what we
3703   // want either way so no reason to check explicitly for either
3704   // condition.
3705   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3706 }
3707 
3708 void G1CollectedHeap::abandon_gc_alloc_regions() {
3709   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
3710   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
3711   _retained_old_gc_alloc_region = NULL;
3712 }
3713 
3714 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
3715   _drain_in_progress = false;
3716   set_evac_failure_closure(cl);
3717   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3718 }
3719 
3720 void G1CollectedHeap::finalize_for_evac_failure() {
3721   assert(_evac_failure_scan_stack != NULL &&
3722          _evac_failure_scan_stack->length() == 0,
3723          "Postcondition");
3724   assert(!_drain_in_progress, "Postcondition");
3725   delete _evac_failure_scan_stack;
3726   _evac_failure_scan_stack = NULL;
3727 }
3728 
3729 // *** Sequential G1 Evacuation
3730 
3731 class G1IsAliveClosure: public BoolObjectClosure {
3732   G1CollectedHeap* _g1;
3733 public:
3734   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3735   void do_object(oop p) { assert(false, "Do not call."); }
3736   bool do_object_b(oop p) {
3737     // It is reachable if it is outside the collection set, or is inside
3738     // and forwarded.
3739 
3740 #ifdef G1_DEBUG
3741     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
3742                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
3743                            !_g1->obj_in_cs(p) || p->is_forwarded());
3744 #endif // G1_DEBUG
3745 
3746     return !_g1->obj_in_cs(p) || p->is_forwarded();
3747   }
3748 };
3749 
3750 class G1KeepAliveClosure: public OopClosure {
3751   G1CollectedHeap* _g1;
3752 public:
3753   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3754   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3755   void do_oop(      oop* p) {
3756     oop obj = *p;
3757 #ifdef G1_DEBUG
3758     if (PrintGC && Verbose) {
3759       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
3760                              p, (void*) obj, (void*) *p);
3761     }
3762 #endif // G1_DEBUG
3763 
3764     if (_g1->obj_in_cs(obj)) {
3765       assert( obj->is_forwarded(), "invariant" );
3766       *p = obj->forwardee();
3767 #ifdef G1_DEBUG
3768       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
3769                              (void*) obj, (void*) *p);
3770 #endif // G1_DEBUG
3771     }
3772   }
3773 };
3774 
3775 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3776 private:
3777   G1CollectedHeap* _g1;
3778   DirtyCardQueue *_dcq;
3779   CardTableModRefBS* _ct_bs;
3780 
3781 public:
3782   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3783     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3784 
3785   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3786   virtual void do_oop(      oop* p) { do_oop_work(p); }
3787   template <class T> void do_oop_work(T* p) {
3788     assert(_from->is_in_reserved(p), "paranoia");
3789     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
3790         !_from->is_survivor()) {
3791       size_t card_index = _ct_bs->index_for(p);
3792       if (_ct_bs->mark_card_deferred(card_index)) {
3793         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3794       }
3795     }
3796   }
3797 };
3798 
3799 class RemoveSelfPointerClosure: public ObjectClosure {
3800 private:
3801   G1CollectedHeap* _g1;
3802   ConcurrentMark* _cm;
3803   HeapRegion* _hr;
3804   size_t _prev_marked_bytes;
3805   size_t _next_marked_bytes;
3806   OopsInHeapRegionClosure *_cl;
3807 public:
3808   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
3809                            OopsInHeapRegionClosure* cl) :
3810     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3811     _next_marked_bytes(0), _cl(cl) {}
3812 
3813   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3814   size_t next_marked_bytes() { return _next_marked_bytes; }
3815 
3816   // <original comment>
3817   // The original idea here was to coalesce evacuated and dead objects.
3818   // However that caused complications with the block offset table (BOT).
3819   // In particular if there were two TLABs, one of them partially refined.
3820   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
3821   // The BOT entries of the unrefined part of TLAB_2 point to the start
3822   // of TLAB_2. If the last object of the TLAB_1 and the first object
3823   // of TLAB_2 are coalesced, then the cards of the unrefined part
3824   // would point into middle of the filler object.
3825   // The current approach is to not coalesce and leave the BOT contents intact.
3826   // </original comment>
3827   //
3828   // We now reset the BOT when we start the object iteration over the
3829   // region and refine its entries for every object we come across. So
3830   // the above comment is not really relevant and we should be able
3831   // to coalesce dead objects if we want to.
3832   void do_object(oop obj) {
3833     HeapWord* obj_addr = (HeapWord*) obj;
3834     assert(_hr->is_in(obj_addr), "sanity");
3835     size_t obj_size = obj->size();
3836     _hr->update_bot_for_object(obj_addr, obj_size);
3837     if (obj->is_forwarded() && obj->forwardee() == obj) {
3838       // The object failed to move.
3839       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
3840       _cm->markPrev(obj);
3841       assert(_cm->isPrevMarked(obj), "Should be marked!");
3842       _prev_marked_bytes += (obj_size * HeapWordSize);
3843       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
3844         _cm->markAndGrayObjectIfNecessary(obj);
3845       }
3846       obj->set_mark(markOopDesc::prototype());
3847       // While we were processing RSet buffers during the
3848       // collection, we actually didn't scan any cards on the
3849       // collection set, since we didn't want to update remebered
3850       // sets with entries that point into the collection set, given
3851       // that live objects fromthe collection set are about to move
3852       // and such entries will be stale very soon. This change also
3853       // dealt with a reliability issue which involved scanning a
3854       // card in the collection set and coming across an array that
3855       // was being chunked and looking malformed. The problem is
3856       // that, if evacuation fails, we might have remembered set
3857       // entries missing given that we skipped cards on the
3858       // collection set. So, we'll recreate such entries now.
3859       obj->oop_iterate(_cl);
3860       assert(_cm->isPrevMarked(obj), "Should be marked!");
3861     } else {
3862       // The object has been either evacuated or is dead. Fill it with a
3863       // dummy object.
3864       MemRegion mr((HeapWord*)obj, obj_size);
3865       CollectedHeap::fill_with_object(mr);
3866       _cm->clearRangeBothMaps(mr);
3867     }
3868   }
3869 };
3870 
3871 void G1CollectedHeap::remove_self_forwarding_pointers() {
3872   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3873   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
3874   UpdateRSetDeferred deferred_update(_g1h, &dcq);
3875   OopsInHeapRegionClosure *cl;
3876   if (G1DeferredRSUpdate) {
3877     cl = &deferred_update;
3878   } else {
3879     cl = &immediate_update;
3880   }
3881   HeapRegion* cur = g1_policy()->collection_set();
3882   while (cur != NULL) {
3883     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3884     assert(!cur->isHumongous(), "sanity");
3885 
3886     if (cur->evacuation_failed()) {
3887       assert(cur->in_collection_set(), "bad CS");
3888       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
3889 
3890       // In the common case we make sure that this is done when the
3891       // region is freed so that it is "ready-to-go" when it's
3892       // re-allocated. However, when evacuation failure happens, a
3893       // region will remain in the heap and might ultimately be added
3894       // to a CSet in the future. So we have to be careful here and
3895       // make sure the region's RSet is ready for parallel iteration
3896       // whenever this might be required in the future.
3897       cur->rem_set()->reset_for_par_iteration();
3898       cur->reset_bot();
3899       cl->set_region(cur);
3900       cur->object_iterate(&rspc);
3901 
3902       // A number of manipulations to make the TAMS be the current top,
3903       // and the marked bytes be the ones observed in the iteration.
3904       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
3905         // The comments below are the postconditions achieved by the
3906         // calls.  Note especially the last such condition, which says that
3907         // the count of marked bytes has been properly restored.
3908         cur->note_start_of_marking(false);
3909         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3910         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
3911         // _next_marked_bytes == prev_marked_bytes.
3912         cur->note_end_of_marking();
3913         // _prev_top_at_mark_start == top(),
3914         // _prev_marked_bytes == prev_marked_bytes
3915       }
3916       // If there is no mark in progress, we modified the _next variables
3917       // above needlessly, but harmlessly.
3918       if (_g1h->mark_in_progress()) {
3919         cur->note_start_of_marking(false);
3920         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3921         // _next_marked_bytes == next_marked_bytes.
3922       }
3923 
3924       // Now make sure the region has the right index in the sorted array.
3925       g1_policy()->note_change_in_marked_bytes(cur);
3926     }
3927     cur = cur->next_in_collection_set();
3928   }
3929   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3930 
3931   // Now restore saved marks, if any.
3932   if (_objs_with_preserved_marks != NULL) {
3933     assert(_preserved_marks_of_objs != NULL, "Both or none.");
3934     guarantee(_objs_with_preserved_marks->length() ==
3935               _preserved_marks_of_objs->length(), "Both or none.");
3936     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
3937       oop obj   = _objs_with_preserved_marks->at(i);
3938       markOop m = _preserved_marks_of_objs->at(i);
3939       obj->set_mark(m);
3940     }
3941     // Delete the preserved marks growable arrays (allocated on the C heap).
3942     delete _objs_with_preserved_marks;
3943     delete _preserved_marks_of_objs;
3944     _objs_with_preserved_marks = NULL;
3945     _preserved_marks_of_objs = NULL;
3946   }
3947 }
3948 
3949 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
3950   _evac_failure_scan_stack->push(obj);
3951 }
3952 
3953 void G1CollectedHeap::drain_evac_failure_scan_stack() {
3954   assert(_evac_failure_scan_stack != NULL, "precondition");
3955 
3956   while (_evac_failure_scan_stack->length() > 0) {
3957      oop obj = _evac_failure_scan_stack->pop();
3958      _evac_failure_closure->set_region(heap_region_containing(obj));
3959      obj->oop_iterate_backwards(_evac_failure_closure);
3960   }
3961 }
3962 
3963 oop
3964 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
3965                                                oop old) {
3966   assert(obj_in_cs(old),
3967          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
3968                  (HeapWord*) old));
3969   markOop m = old->mark();
3970   oop forward_ptr = old->forward_to_atomic(old);
3971   if (forward_ptr == NULL) {
3972     // Forward-to-self succeeded.
3973     if (_evac_failure_closure != cl) {
3974       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
3975       assert(!_drain_in_progress,
3976              "Should only be true while someone holds the lock.");
3977       // Set the global evac-failure closure to the current thread's.
3978       assert(_evac_failure_closure == NULL, "Or locking has failed.");
3979       set_evac_failure_closure(cl);
3980       // Now do the common part.
3981       handle_evacuation_failure_common(old, m);
3982       // Reset to NULL.
3983       set_evac_failure_closure(NULL);
3984     } else {
3985       // The lock is already held, and this is recursive.
3986       assert(_drain_in_progress, "This should only be the recursive case.");
3987       handle_evacuation_failure_common(old, m);
3988     }
3989     return old;
3990   } else {
3991     // Forward-to-self failed. Either someone else managed to allocate
3992     // space for this object (old != forward_ptr) or they beat us in
3993     // self-forwarding it (old == forward_ptr).
3994     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
3995            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
3996                    "should not be in the CSet",
3997                    (HeapWord*) old, (HeapWord*) forward_ptr));
3998     return forward_ptr;
3999   }
4000 }
4001 
4002 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4003   set_evacuation_failed(true);
4004 
4005   preserve_mark_if_necessary(old, m);
4006 
4007   HeapRegion* r = heap_region_containing(old);
4008   if (!r->evacuation_failed()) {
4009     r->set_evacuation_failed(true);
4010     _hr_printer.evac_failure(r);
4011   }
4012 
4013   push_on_evac_failure_scan_stack(old);
4014 
4015   if (!_drain_in_progress) {
4016     // prevent recursion in copy_to_survivor_space()
4017     _drain_in_progress = true;
4018     drain_evac_failure_scan_stack();
4019     _drain_in_progress = false;
4020   }
4021 }
4022 
4023 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4024   assert(evacuation_failed(), "Oversaving!");
4025   // We want to call the "for_promotion_failure" version only in the
4026   // case of a promotion failure.
4027   if (m->must_be_preserved_for_promotion_failure(obj)) {
4028     if (_objs_with_preserved_marks == NULL) {
4029       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4030       _objs_with_preserved_marks =
4031         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4032       _preserved_marks_of_objs =
4033         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4034     }
4035     _objs_with_preserved_marks->push(obj);
4036     _preserved_marks_of_objs->push(m);
4037   }
4038 }
4039 
4040 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4041                                                   size_t word_size) {
4042   if (purpose == GCAllocForSurvived) {
4043     HeapWord* result = survivor_attempt_allocation(word_size);
4044     if (result != NULL) {
4045       return result;
4046     } else {
4047       // Let's try to allocate in the old gen in case we can fit the
4048       // object there.
4049       return old_attempt_allocation(word_size);
4050     }
4051   } else {
4052     assert(purpose ==  GCAllocForTenured, "sanity");
4053     HeapWord* result = old_attempt_allocation(word_size);
4054     if (result != NULL) {
4055       return result;
4056     } else {
4057       // Let's try to allocate in the survivors in case we can fit the
4058       // object there.
4059       return survivor_attempt_allocation(word_size);
4060     }
4061   }
4062 
4063   ShouldNotReachHere();
4064   // Trying to keep some compilers happy.
4065   return NULL;
4066 }
4067 
4068 #ifndef PRODUCT
4069 bool GCLabBitMapClosure::do_bit(size_t offset) {
4070   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
4071   guarantee(_cm->isMarked(oop(addr)), "it should be!");
4072   return true;
4073 }
4074 #endif // PRODUCT
4075 
4076 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
4077   : _g1h(g1h),
4078     _refs(g1h->task_queue(queue_num)),
4079     _dcq(&g1h->dirty_card_queue_set()),
4080     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4081     _g1_rem(g1h->g1_rem_set()),
4082     _hash_seed(17), _queue_num(queue_num),
4083     _term_attempts(0),
4084     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4085     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4086     _age_table(false),
4087     _strong_roots_time(0), _term_time(0),
4088     _alloc_buffer_waste(0), _undo_waste(0)
4089 {
4090   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4091   // we "sacrifice" entry 0 to keep track of surviving bytes for
4092   // non-young regions (where the age is -1)
4093   // We also add a few elements at the beginning and at the end in
4094   // an attempt to eliminate cache contention
4095   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
4096   size_t array_length = PADDING_ELEM_NUM +
4097                         real_length +
4098                         PADDING_ELEM_NUM;
4099   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4100   if (_surviving_young_words_base == NULL)
4101     vm_exit_out_of_memory(array_length * sizeof(size_t),
4102                           "Not enough space for young surv histo.");
4103   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4104   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
4105 
4106   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4107   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4108 
4109   _start = os::elapsedTime();
4110 }
4111 
4112 void
4113 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4114 {
4115   st->print_raw_cr("GC Termination Stats");
4116   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4117                    " ------waste (KiB)------");
4118   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4119                    "  total   alloc    undo");
4120   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4121                    " ------- ------- -------");
4122 }
4123 
4124 void
4125 G1ParScanThreadState::print_termination_stats(int i,
4126                                               outputStream* const st) const
4127 {
4128   const double elapsed_ms = elapsed_time() * 1000.0;
4129   const double s_roots_ms = strong_roots_time() * 1000.0;
4130   const double term_ms    = term_time() * 1000.0;
4131   st->print_cr("%3d %9.2f %9.2f %6.2f "
4132                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4133                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4134                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4135                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4136                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4137                alloc_buffer_waste() * HeapWordSize / K,
4138                undo_waste() * HeapWordSize / K);
4139 }
4140 
4141 #ifdef ASSERT
4142 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4143   assert(ref != NULL, "invariant");
4144   assert(UseCompressedOops, "sanity");
4145   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4146   oop p = oopDesc::load_decode_heap_oop(ref);
4147   assert(_g1h->is_in_g1_reserved(p),
4148          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4149   return true;
4150 }
4151 
4152 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4153   assert(ref != NULL, "invariant");
4154   if (has_partial_array_mask(ref)) {
4155     // Must be in the collection set--it's already been copied.
4156     oop p = clear_partial_array_mask(ref);
4157     assert(_g1h->obj_in_cs(p),
4158            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4159   } else {
4160     oop p = oopDesc::load_decode_heap_oop(ref);
4161     assert(_g1h->is_in_g1_reserved(p),
4162            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4163   }
4164   return true;
4165 }
4166 
4167 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4168   if (ref.is_narrow()) {
4169     return verify_ref((narrowOop*) ref);
4170   } else {
4171     return verify_ref((oop*) ref);
4172   }
4173 }
4174 #endif // ASSERT
4175 
4176 void G1ParScanThreadState::trim_queue() {
4177   StarTask ref;
4178   do {
4179     // Drain the overflow stack first, so other threads can steal.
4180     while (refs()->pop_overflow(ref)) {
4181       deal_with_reference(ref);
4182     }
4183     while (refs()->pop_local(ref)) {
4184       deal_with_reference(ref);
4185     }
4186   } while (!refs()->is_empty());
4187 }
4188 
4189 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4190   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4191   _par_scan_state(par_scan_state) { }
4192 
4193 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4194   // This is called _after_ do_oop_work has been called, hence after
4195   // the object has been relocated to its new location and *p points
4196   // to its new location.
4197 
4198   T heap_oop = oopDesc::load_heap_oop(p);
4199   if (!oopDesc::is_null(heap_oop)) {
4200     oop obj = oopDesc::decode_heap_oop(heap_oop);
4201     HeapWord* addr = (HeapWord*)obj;
4202     if (_g1->is_in_g1_reserved(addr)) {
4203       _cm->grayRoot(oop(addr));
4204     }
4205   }
4206 }
4207 
4208 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
4209   size_t    word_sz = old->size();
4210   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4211   // +1 to make the -1 indexes valid...
4212   int       young_index = from_region->young_index_in_cset()+1;
4213   assert( (from_region->is_young() && young_index > 0) ||
4214           (!from_region->is_young() && young_index == 0), "invariant" );
4215   G1CollectorPolicy* g1p = _g1->g1_policy();
4216   markOop m = old->mark();
4217   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4218                                            : m->age();
4219   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4220                                                              word_sz);
4221   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4222   oop       obj     = oop(obj_ptr);
4223 
4224   if (obj_ptr == NULL) {
4225     // This will either forward-to-self, or detect that someone else has
4226     // installed a forwarding pointer.
4227     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4228     return _g1->handle_evacuation_failure_par(cl, old);
4229   }
4230 
4231   // We're going to allocate linearly, so might as well prefetch ahead.
4232   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4233 
4234   oop forward_ptr = old->forward_to_atomic(obj);
4235   if (forward_ptr == NULL) {
4236     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4237     if (g1p->track_object_age(alloc_purpose)) {
4238       // We could simply do obj->incr_age(). However, this causes a
4239       // performance issue. obj->incr_age() will first check whether
4240       // the object has a displaced mark by checking its mark word;
4241       // getting the mark word from the new location of the object
4242       // stalls. So, given that we already have the mark word and we
4243       // are about to install it anyway, it's better to increase the
4244       // age on the mark word, when the object does not have a
4245       // displaced mark word. We're not expecting many objects to have
4246       // a displaced marked word, so that case is not optimized
4247       // further (it could be...) and we simply call obj->incr_age().
4248 
4249       if (m->has_displaced_mark_helper()) {
4250         // in this case, we have to install the mark word first,
4251         // otherwise obj looks to be forwarded (the old mark word,
4252         // which contains the forward pointer, was copied)
4253         obj->set_mark(m);
4254         obj->incr_age();
4255       } else {
4256         m = m->incr_age();
4257         obj->set_mark(m);
4258       }
4259       _par_scan_state->age_table()->add(obj, word_sz);
4260     } else {
4261       obj->set_mark(m);
4262     }
4263 
4264     // preserve "next" mark bit
4265     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
4266       if (!use_local_bitmaps ||
4267           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4268         // if we couldn't mark it on the local bitmap (this happens when
4269         // the object was not allocated in the GCLab), we have to bite
4270         // the bullet and do the standard parallel mark
4271         _cm->markAndGrayObjectIfNecessary(obj);
4272       }
4273 #if 1
4274       if (_g1->isMarkedNext(old)) {
4275         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4276       }
4277 #endif
4278     }
4279 
4280     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4281     surv_young_words[young_index] += word_sz;
4282 
4283     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4284       arrayOop(old)->set_length(0);
4285       oop* old_p = set_partial_array_mask(old);
4286       _par_scan_state->push_on_queue(old_p);
4287     } else {
4288       // No point in using the slower heap_region_containing() method,
4289       // given that we know obj is in the heap.
4290       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4291       obj->oop_iterate_backwards(_scanner);
4292     }
4293   } else {
4294     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4295     obj = forward_ptr;
4296   }
4297   return obj;
4298 }
4299 
4300 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4301 template <class T>
4302 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4303 ::do_oop_work(T* p) {
4304   oop obj = oopDesc::load_decode_heap_oop(p);
4305   assert(barrier != G1BarrierRS || obj != NULL,
4306          "Precondition: G1BarrierRS implies obj is nonNull");
4307 
4308   // here the null check is implicit in the cset_fast_test() test
4309   if (_g1->in_cset_fast_test(obj)) {
4310     if (obj->is_forwarded()) {
4311       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4312     } else {
4313       oop copy_oop = copy_to_survivor_space(obj);
4314       oopDesc::encode_store_heap_oop(p, copy_oop);
4315     }
4316     // When scanning the RS, we only care about objs in CS.
4317     if (barrier == G1BarrierRS) {
4318       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4319     }
4320   }
4321 
4322   if (barrier == G1BarrierEvac && obj != NULL) {
4323     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4324   }
4325 
4326   if (do_gen_barrier && obj != NULL) {
4327     par_do_barrier(p);
4328   }
4329 }
4330 
4331 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4332 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4333 
4334 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4335   assert(has_partial_array_mask(p), "invariant");
4336   oop old = clear_partial_array_mask(p);
4337   assert(old->is_objArray(), "must be obj array");
4338   assert(old->is_forwarded(), "must be forwarded");
4339   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4340 
4341   objArrayOop obj = objArrayOop(old->forwardee());
4342   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4343   // Process ParGCArrayScanChunk elements now
4344   // and push the remainder back onto queue
4345   int start     = arrayOop(old)->length();
4346   int end       = obj->length();
4347   int remainder = end - start;
4348   assert(start <= end, "just checking");
4349   if (remainder > 2 * ParGCArrayScanChunk) {
4350     // Test above combines last partial chunk with a full chunk
4351     end = start + ParGCArrayScanChunk;
4352     arrayOop(old)->set_length(end);
4353     // Push remainder.
4354     oop* old_p = set_partial_array_mask(old);
4355     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4356     _par_scan_state->push_on_queue(old_p);
4357   } else {
4358     // Restore length so that the heap remains parsable in
4359     // case of evacuation failure.
4360     arrayOop(old)->set_length(end);
4361   }
4362   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4363   // process our set of indices (include header in first chunk)
4364   obj->oop_iterate_range(&_scanner, start, end);
4365 }
4366 
4367 class G1ParEvacuateFollowersClosure : public VoidClosure {
4368 protected:
4369   G1CollectedHeap*              _g1h;
4370   G1ParScanThreadState*         _par_scan_state;
4371   RefToScanQueueSet*            _queues;
4372   ParallelTaskTerminator*       _terminator;
4373 
4374   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4375   RefToScanQueueSet*      queues()         { return _queues; }
4376   ParallelTaskTerminator* terminator()     { return _terminator; }
4377 
4378 public:
4379   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4380                                 G1ParScanThreadState* par_scan_state,
4381                                 RefToScanQueueSet* queues,
4382                                 ParallelTaskTerminator* terminator)
4383     : _g1h(g1h), _par_scan_state(par_scan_state),
4384       _queues(queues), _terminator(terminator) {}
4385 
4386   void do_void();
4387 
4388 private:
4389   inline bool offer_termination();
4390 };
4391 
4392 bool G1ParEvacuateFollowersClosure::offer_termination() {
4393   G1ParScanThreadState* const pss = par_scan_state();
4394   pss->start_term_time();
4395   const bool res = terminator()->offer_termination();
4396   pss->end_term_time();
4397   return res;
4398 }
4399 
4400 void G1ParEvacuateFollowersClosure::do_void() {
4401   StarTask stolen_task;
4402   G1ParScanThreadState* const pss = par_scan_state();
4403   pss->trim_queue();
4404 
4405   do {
4406     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4407       assert(pss->verify_task(stolen_task), "sanity");
4408       if (stolen_task.is_narrow()) {
4409         pss->deal_with_reference((narrowOop*) stolen_task);
4410       } else {
4411         pss->deal_with_reference((oop*) stolen_task);
4412       }
4413 
4414       // We've just processed a reference and we might have made
4415       // available new entries on the queues. So we have to make sure
4416       // we drain the queues as necessary.
4417       pss->trim_queue();
4418     }
4419   } while (!offer_termination());
4420 
4421   pss->retire_alloc_buffers();
4422 }
4423 
4424 class G1ParTask : public AbstractGangTask {
4425 protected:
4426   G1CollectedHeap*       _g1h;
4427   RefToScanQueueSet      *_queues;
4428   ParallelTaskTerminator _terminator;
4429   int _n_workers;
4430 
4431   Mutex _stats_lock;
4432   Mutex* stats_lock() { return &_stats_lock; }
4433 
4434   size_t getNCards() {
4435     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4436       / G1BlockOffsetSharedArray::N_bytes;
4437   }
4438 
4439 public:
4440   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4441     : AbstractGangTask("G1 collection"),
4442       _g1h(g1h),
4443       _queues(task_queues),
4444       _terminator(workers, _queues),
4445       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
4446       _n_workers(workers)
4447   {}
4448 
4449   RefToScanQueueSet* queues() { return _queues; }
4450 
4451   RefToScanQueue *work_queue(int i) {
4452     return queues()->queue(i);
4453   }
4454 
4455   void work(int i) {
4456     if (i >= _n_workers) return;  // no work needed this round
4457 
4458     double start_time_ms = os::elapsedTime() * 1000.0;
4459     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4460 
4461     ResourceMark rm;
4462     HandleMark   hm;
4463 
4464     G1ParScanThreadState            pss(_g1h, i);
4465     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
4466     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
4467     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4468 
4469     pss.set_evac_closure(&scan_evac_cl);
4470     pss.set_evac_failure_closure(&evac_failure_cl);
4471     pss.set_partial_scan_closure(&partial_scan_cl);
4472 
4473     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
4474     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
4475     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4476     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4477 
4478     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
4479     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
4480     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
4481 
4482     OopsInHeapRegionClosure        *scan_root_cl;
4483     OopsInHeapRegionClosure        *scan_perm_cl;
4484 
4485     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4486       scan_root_cl = &scan_mark_root_cl;
4487       scan_perm_cl = &scan_mark_perm_cl;
4488     } else {
4489       scan_root_cl = &only_scan_root_cl;
4490       scan_perm_cl = &only_scan_perm_cl;
4491     }
4492 
4493     pss.start_strong_roots();
4494     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4495                                   SharedHeap::SO_AllClasses,
4496                                   scan_root_cl,
4497                                   &push_heap_rs_cl,
4498                                   scan_perm_cl,
4499                                   i);
4500     pss.end_strong_roots();
4501 
4502     {
4503       double start = os::elapsedTime();
4504       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4505       evac.do_void();
4506       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4507       double term_ms = pss.term_time()*1000.0;
4508       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4509       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4510     }
4511     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4512     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4513 
4514     // Clean up any par-expanded rem sets.
4515     HeapRegionRemSet::par_cleanup();
4516 
4517     if (ParallelGCVerbose) {
4518       MutexLocker x(stats_lock());
4519       pss.print_termination_stats(i);
4520     }
4521 
4522     assert(pss.refs()->is_empty(), "should be empty");
4523     double end_time_ms = os::elapsedTime() * 1000.0;
4524     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4525   }
4526 };
4527 
4528 // *** Common G1 Evacuation Stuff
4529 
4530 // This method is run in a GC worker.
4531 
4532 void
4533 G1CollectedHeap::
4534 g1_process_strong_roots(bool collecting_perm_gen,
4535                         SharedHeap::ScanningOption so,
4536                         OopClosure* scan_non_heap_roots,
4537                         OopsInHeapRegionClosure* scan_rs,
4538                         OopsInGenClosure* scan_perm,
4539                         int worker_i) {
4540   // First scan the strong roots, including the perm gen.
4541   double ext_roots_start = os::elapsedTime();
4542   double closure_app_time_sec = 0.0;
4543 
4544   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4545   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4546   buf_scan_perm.set_generation(perm_gen());
4547 
4548   // Walk the code cache w/o buffering, because StarTask cannot handle
4549   // unaligned oop locations.
4550   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4551 
4552   process_strong_roots(false, // no scoping; this is parallel code
4553                        collecting_perm_gen, so,
4554                        &buf_scan_non_heap_roots,
4555                        &eager_scan_code_roots,
4556                        &buf_scan_perm);
4557 
4558   // Now the ref_processor roots.
4559   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4560     // We need to treat the discovered reference lists as roots and
4561     // keep entries (which are added by the marking threads) on them
4562     // live until they can be processed at the end of marking.
4563     ref_processor()->weak_oops_do(&buf_scan_non_heap_roots);
4564     ref_processor()->oops_do(&buf_scan_non_heap_roots);
4565   }
4566 
4567   // Finish up any enqueued closure apps (attributed as object copy time).
4568   buf_scan_non_heap_roots.done();
4569   buf_scan_perm.done();
4570 
4571   double ext_roots_end = os::elapsedTime();
4572 
4573   g1_policy()->reset_obj_copy_time(worker_i);
4574   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4575                                 buf_scan_non_heap_roots.closure_app_seconds();
4576   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4577 
4578   double ext_root_time_ms =
4579     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4580 
4581   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4582 
4583   // Scan strong roots in mark stack.
4584   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4585     concurrent_mark()->oops_do(scan_non_heap_roots);
4586   }
4587   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4588   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4589 
4590   // Now scan the complement of the collection set.
4591   if (scan_rs != NULL) {
4592     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4593   }
4594 
4595   _process_strong_tasks->all_tasks_completed();
4596 }
4597 
4598 void
4599 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4600                                        OopClosure* non_root_closure) {
4601   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4602   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4603 }
4604 
4605 void G1CollectedHeap::evacuate_collection_set() {
4606   set_evacuation_failed(false);
4607 
4608   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4609   concurrent_g1_refine()->set_use_cache(false);
4610   concurrent_g1_refine()->clear_hot_cache_claimed_index();
4611 
4612   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4613   set_par_threads(n_workers);
4614   G1ParTask g1_par_task(this, n_workers, _task_queues);
4615 
4616   init_for_evac_failure(NULL);
4617 
4618   rem_set()->prepare_for_younger_refs_iterate(true);
4619 
4620   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4621   double start_par = os::elapsedTime();
4622   if (G1CollectedHeap::use_parallel_gc_threads()) {
4623     // The individual threads will set their evac-failure closures.
4624     StrongRootsScope srs(this);
4625     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4626     workers()->run_task(&g1_par_task);
4627   } else {
4628     StrongRootsScope srs(this);
4629     g1_par_task.work(0);
4630   }
4631 
4632   double par_time = (os::elapsedTime() - start_par) * 1000.0;
4633   g1_policy()->record_par_time(par_time);
4634   set_par_threads(0);
4635 
4636   // Weak root processing.
4637   // Note: when JSR 292 is enabled and code blobs can contain
4638   // non-perm oops then we will need to process the code blobs
4639   // here too.
4640   {
4641     G1IsAliveClosure is_alive(this);
4642     G1KeepAliveClosure keep_alive(this);
4643     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4644   }
4645   release_gc_alloc_regions();
4646   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4647 
4648   concurrent_g1_refine()->clear_hot_cache();
4649   concurrent_g1_refine()->set_use_cache(true);
4650 
4651   finalize_for_evac_failure();
4652 
4653   // Must do this before removing self-forwarding pointers, which clears
4654   // the per-region evac-failure flags.
4655   concurrent_mark()->complete_marking_in_collection_set();
4656 
4657   if (evacuation_failed()) {
4658     remove_self_forwarding_pointers();
4659     if (PrintGCDetails) {
4660       gclog_or_tty->print(" (to-space overflow)");
4661     } else if (PrintGC) {
4662       gclog_or_tty->print("--");
4663     }
4664   }
4665 
4666   if (G1DeferredRSUpdate) {
4667     RedirtyLoggedCardTableEntryFastClosure redirty;
4668     dirty_card_queue_set().set_closure(&redirty);
4669     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4670 
4671     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4672     dcq.merge_bufferlists(&dirty_card_queue_set());
4673     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4674   }
4675   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4676 }
4677 
4678 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4679                                      size_t* pre_used,
4680                                      FreeRegionList* free_list,
4681                                      HumongousRegionSet* humongous_proxy_set,
4682                                      HRRSCleanupTask* hrrs_cleanup_task,
4683                                      bool par) {
4684   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
4685     if (hr->isHumongous()) {
4686       assert(hr->startsHumongous(), "we should only see starts humongous");
4687       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
4688     } else {
4689       free_region(hr, pre_used, free_list, par);
4690     }
4691   } else {
4692     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
4693   }
4694 }
4695 
4696 void G1CollectedHeap::free_region(HeapRegion* hr,
4697                                   size_t* pre_used,
4698                                   FreeRegionList* free_list,
4699                                   bool par) {
4700   assert(!hr->isHumongous(), "this is only for non-humongous regions");
4701   assert(!hr->is_empty(), "the region should not be empty");
4702   assert(free_list != NULL, "pre-condition");
4703 
4704   *pre_used += hr->used();
4705   hr->hr_clear(par, true /* clear_space */);
4706   free_list->add_as_head(hr);
4707 }
4708 
4709 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4710                                      size_t* pre_used,
4711                                      FreeRegionList* free_list,
4712                                      HumongousRegionSet* humongous_proxy_set,
4713                                      bool par) {
4714   assert(hr->startsHumongous(), "this is only for starts humongous regions");
4715   assert(free_list != NULL, "pre-condition");
4716   assert(humongous_proxy_set != NULL, "pre-condition");
4717 
4718   size_t hr_used = hr->used();
4719   size_t hr_capacity = hr->capacity();
4720   size_t hr_pre_used = 0;
4721   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
4722   hr->set_notHumongous();
4723   free_region(hr, &hr_pre_used, free_list, par);
4724 
4725   size_t i = hr->hrs_index() + 1;
4726   size_t num = 1;
4727   while (i < n_regions()) {
4728     HeapRegion* curr_hr = region_at(i);
4729     if (!curr_hr->continuesHumongous()) {
4730       break;
4731     }
4732     curr_hr->set_notHumongous();
4733     free_region(curr_hr, &hr_pre_used, free_list, par);
4734     num += 1;
4735     i += 1;
4736   }
4737   assert(hr_pre_used == hr_used,
4738          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
4739                  "should be the same", hr_pre_used, hr_used));
4740   *pre_used += hr_pre_used;
4741 }
4742 
4743 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
4744                                        FreeRegionList* free_list,
4745                                        HumongousRegionSet* humongous_proxy_set,
4746                                        bool par) {
4747   if (pre_used > 0) {
4748     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
4749     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4750     assert(_summary_bytes_used >= pre_used,
4751            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
4752                    "should be >= pre_used: "SIZE_FORMAT,
4753                    _summary_bytes_used, pre_used));
4754     _summary_bytes_used -= pre_used;
4755   }
4756   if (free_list != NULL && !free_list->is_empty()) {
4757     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4758     _free_list.add_as_head(free_list);
4759   }
4760   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
4761     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4762     _humongous_set.update_from_proxy(humongous_proxy_set);
4763   }
4764 }
4765 
4766 class G1ParCleanupCTTask : public AbstractGangTask {
4767   CardTableModRefBS* _ct_bs;
4768   G1CollectedHeap* _g1h;
4769   HeapRegion* volatile _su_head;
4770 public:
4771   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4772                      G1CollectedHeap* g1h) :
4773     AbstractGangTask("G1 Par Cleanup CT Task"),
4774     _ct_bs(ct_bs), _g1h(g1h) { }
4775 
4776   void work(int i) {
4777     HeapRegion* r;
4778     while (r = _g1h->pop_dirty_cards_region()) {
4779       clear_cards(r);
4780     }
4781   }
4782 
4783   void clear_cards(HeapRegion* r) {
4784     // Cards of the survivors should have already been dirtied.
4785     if (!r->is_survivor()) {
4786       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4787     }
4788   }
4789 };
4790 
4791 #ifndef PRODUCT
4792 class G1VerifyCardTableCleanup: public HeapRegionClosure {
4793   G1CollectedHeap* _g1h;
4794   CardTableModRefBS* _ct_bs;
4795 public:
4796   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
4797     : _g1h(g1h), _ct_bs(ct_bs) { }
4798   virtual bool doHeapRegion(HeapRegion* r) {
4799     if (r->is_survivor()) {
4800       _g1h->verify_dirty_region(r);
4801     } else {
4802       _g1h->verify_not_dirty_region(r);
4803     }
4804     return false;
4805   }
4806 };
4807 
4808 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
4809   // All of the region should be clean.
4810   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
4811   MemRegion mr(hr->bottom(), hr->end());
4812   ct_bs->verify_not_dirty_region(mr);
4813 }
4814 
4815 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
4816   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
4817   // dirty allocated blocks as they allocate them. The thread that
4818   // retires each region and replaces it with a new one will do a
4819   // maximal allocation to fill in [pre_dummy_top(),end()] but will
4820   // not dirty that area (one less thing to have to do while holding
4821   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
4822   // is dirty.
4823   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4824   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
4825   ct_bs->verify_dirty_region(mr);
4826 }
4827 
4828 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
4829   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4830   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
4831     verify_dirty_region(hr);
4832   }
4833 }
4834 
4835 void G1CollectedHeap::verify_dirty_young_regions() {
4836   verify_dirty_young_list(_young_list->first_region());
4837   verify_dirty_young_list(_young_list->first_survivor_region());
4838 }
4839 #endif
4840 
4841 void G1CollectedHeap::cleanUpCardTable() {
4842   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
4843   double start = os::elapsedTime();
4844 
4845   // Iterate over the dirty cards region list.
4846   G1ParCleanupCTTask cleanup_task(ct_bs, this);
4847 
4848   if (ParallelGCThreads > 0) {
4849     set_par_threads(workers()->total_workers());
4850     workers()->run_task(&cleanup_task);
4851     set_par_threads(0);
4852   } else {
4853     while (_dirty_cards_region_list) {
4854       HeapRegion* r = _dirty_cards_region_list;
4855       cleanup_task.clear_cards(r);
4856       _dirty_cards_region_list = r->get_next_dirty_cards_region();
4857       if (_dirty_cards_region_list == r) {
4858         // The last region.
4859         _dirty_cards_region_list = NULL;
4860       }
4861       r->set_next_dirty_cards_region(NULL);
4862     }
4863   }
4864 
4865   double elapsed = os::elapsedTime() - start;
4866   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4867 #ifndef PRODUCT
4868   if (G1VerifyCTCleanup || VerifyAfterGC) {
4869     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
4870     heap_region_iterate(&cleanup_verifier);
4871   }
4872 #endif
4873 }
4874 
4875 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4876   size_t pre_used = 0;
4877   FreeRegionList local_free_list("Local List for CSet Freeing");
4878 
4879   double young_time_ms     = 0.0;
4880   double non_young_time_ms = 0.0;
4881 
4882   // Since the collection set is a superset of the the young list,
4883   // all we need to do to clear the young list is clear its
4884   // head and length, and unlink any young regions in the code below
4885   _young_list->clear();
4886 
4887   G1CollectorPolicy* policy = g1_policy();
4888 
4889   double start_sec = os::elapsedTime();
4890   bool non_young = true;
4891 
4892   HeapRegion* cur = cs_head;
4893   int age_bound = -1;
4894   size_t rs_lengths = 0;
4895 
4896   while (cur != NULL) {
4897     assert(!is_on_master_free_list(cur), "sanity");
4898 
4899     if (non_young) {
4900       if (cur->is_young()) {
4901         double end_sec = os::elapsedTime();
4902         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4903         non_young_time_ms += elapsed_ms;
4904 
4905         start_sec = os::elapsedTime();
4906         non_young = false;
4907       }
4908     } else {
4909       double end_sec = os::elapsedTime();
4910       double elapsed_ms = (end_sec - start_sec) * 1000.0;
4911       young_time_ms += elapsed_ms;
4912 
4913       start_sec = os::elapsedTime();
4914       non_young = true;
4915     }
4916 
4917     rs_lengths += cur->rem_set()->occupied();
4918 
4919     HeapRegion* next = cur->next_in_collection_set();
4920     assert(cur->in_collection_set(), "bad CS");
4921     cur->set_next_in_collection_set(NULL);
4922     cur->set_in_collection_set(false);
4923 
4924     if (cur->is_young()) {
4925       int index = cur->young_index_in_cset();
4926       guarantee( index != -1, "invariant" );
4927       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
4928       size_t words_survived = _surviving_young_words[index];
4929       cur->record_surv_words_in_group(words_survived);
4930 
4931       // At this point the we have 'popped' cur from the collection set
4932       // (linked via next_in_collection_set()) but it is still in the
4933       // young list (linked via next_young_region()). Clear the
4934       // _next_young_region field.
4935       cur->set_next_young_region(NULL);
4936     } else {
4937       int index = cur->young_index_in_cset();
4938       guarantee( index == -1, "invariant" );
4939     }
4940 
4941     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4942             (!cur->is_young() && cur->young_index_in_cset() == -1),
4943             "invariant" );
4944 
4945     if (!cur->evacuation_failed()) {
4946       // And the region is empty.
4947       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
4948       free_region(cur, &pre_used, &local_free_list, false /* par */);
4949     } else {
4950       cur->uninstall_surv_rate_group();
4951       if (cur->is_young())
4952         cur->set_young_index_in_cset(-1);
4953       cur->set_not_young();
4954       cur->set_evacuation_failed(false);
4955     }
4956     cur = next;
4957   }
4958 
4959   policy->record_max_rs_lengths(rs_lengths);
4960   policy->cset_regions_freed();
4961 
4962   double end_sec = os::elapsedTime();
4963   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4964   if (non_young)
4965     non_young_time_ms += elapsed_ms;
4966   else
4967     young_time_ms += elapsed_ms;
4968 
4969   update_sets_after_freeing_regions(pre_used, &local_free_list,
4970                                     NULL /* humongous_proxy_set */,
4971                                     false /* par */);
4972   policy->record_young_free_cset_time_ms(young_time_ms);
4973   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
4974 }
4975 
4976 // This routine is similar to the above but does not record
4977 // any policy statistics or update free lists; we are abandoning
4978 // the current incremental collection set in preparation of a
4979 // full collection. After the full GC we will start to build up
4980 // the incremental collection set again.
4981 // This is only called when we're doing a full collection
4982 // and is immediately followed by the tearing down of the young list.
4983 
4984 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
4985   HeapRegion* cur = cs_head;
4986 
4987   while (cur != NULL) {
4988     HeapRegion* next = cur->next_in_collection_set();
4989     assert(cur->in_collection_set(), "bad CS");
4990     cur->set_next_in_collection_set(NULL);
4991     cur->set_in_collection_set(false);
4992     cur->set_young_index_in_cset(-1);
4993     cur = next;
4994   }
4995 }
4996 
4997 void G1CollectedHeap::set_free_regions_coming() {
4998   if (G1ConcRegionFreeingVerbose) {
4999     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5000                            "setting free regions coming");
5001   }
5002 
5003   assert(!free_regions_coming(), "pre-condition");
5004   _free_regions_coming = true;
5005 }
5006 
5007 void G1CollectedHeap::reset_free_regions_coming() {
5008   {
5009     assert(free_regions_coming(), "pre-condition");
5010     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5011     _free_regions_coming = false;
5012     SecondaryFreeList_lock->notify_all();
5013   }
5014 
5015   if (G1ConcRegionFreeingVerbose) {
5016     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5017                            "reset free regions coming");
5018   }
5019 }
5020 
5021 void G1CollectedHeap::wait_while_free_regions_coming() {
5022   // Most of the time we won't have to wait, so let's do a quick test
5023   // first before we take the lock.
5024   if (!free_regions_coming()) {
5025     return;
5026   }
5027 
5028   if (G1ConcRegionFreeingVerbose) {
5029     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5030                            "waiting for free regions");
5031   }
5032 
5033   {
5034     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5035     while (free_regions_coming()) {
5036       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5037     }
5038   }
5039 
5040   if (G1ConcRegionFreeingVerbose) {
5041     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5042                            "done waiting for free regions");
5043   }
5044 }
5045 
5046 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5047   assert(heap_lock_held_for_gc(),
5048               "the heap lock should already be held by or for this thread");
5049   _young_list->push_region(hr);
5050   g1_policy()->set_region_short_lived(hr);
5051 }
5052 
5053 class NoYoungRegionsClosure: public HeapRegionClosure {
5054 private:
5055   bool _success;
5056 public:
5057   NoYoungRegionsClosure() : _success(true) { }
5058   bool doHeapRegion(HeapRegion* r) {
5059     if (r->is_young()) {
5060       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5061                              r->bottom(), r->end());
5062       _success = false;
5063     }
5064     return false;
5065   }
5066   bool success() { return _success; }
5067 };
5068 
5069 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5070   bool ret = _young_list->check_list_empty(check_sample);
5071 
5072   if (check_heap) {
5073     NoYoungRegionsClosure closure;
5074     heap_region_iterate(&closure);
5075     ret = ret && closure.success();
5076   }
5077 
5078   return ret;
5079 }
5080 
5081 void G1CollectedHeap::empty_young_list() {
5082   assert(heap_lock_held_for_gc(),
5083               "the heap lock should already be held by or for this thread");
5084 
5085   _young_list->empty_list();
5086 }
5087 
5088 // Done at the start of full GC.
5089 void G1CollectedHeap::tear_down_region_lists() {
5090   _free_list.remove_all();
5091 }
5092 
5093 class RegionResetter: public HeapRegionClosure {
5094   G1CollectedHeap* _g1h;
5095   FreeRegionList _local_free_list;
5096 
5097 public:
5098   RegionResetter() : _g1h(G1CollectedHeap::heap()),
5099                      _local_free_list("Local Free List for RegionResetter") { }
5100 
5101   bool doHeapRegion(HeapRegion* r) {
5102     if (r->continuesHumongous()) return false;
5103     if (r->top() > r->bottom()) {
5104       if (r->top() < r->end()) {
5105         Copy::fill_to_words(r->top(),
5106                           pointer_delta(r->end(), r->top()));
5107       }
5108     } else {
5109       assert(r->is_empty(), "tautology");
5110       _local_free_list.add_as_tail(r);
5111     }
5112     return false;
5113   }
5114 
5115   void update_free_lists() {
5116     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
5117                                             false /* par */);
5118   }
5119 };
5120 
5121 // Done at the end of full GC.
5122 void G1CollectedHeap::rebuild_region_lists() {
5123   // This needs to go at the end of the full GC.
5124   RegionResetter rs;
5125   heap_region_iterate(&rs);
5126   rs.update_free_lists();
5127 }
5128 
5129 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5130   _refine_cte_cl->set_concurrent(concurrent);
5131 }
5132 
5133 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5134   HeapRegion* hr = heap_region_containing(p);
5135   if (hr == NULL) {
5136     return is_in_permanent(p);
5137   } else {
5138     return hr->is_in(p);
5139   }
5140 }
5141 
5142 // Methods for the mutator alloc region
5143 
5144 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5145                                                       bool force) {
5146   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5147   assert(!force || g1_policy()->can_expand_young_list(),
5148          "if force is true we should be able to expand the young list");
5149   bool young_list_full = g1_policy()->is_young_list_full();
5150   if (force || !young_list_full) {
5151     HeapRegion* new_alloc_region = new_region(word_size,
5152                                               false /* do_expand */);
5153     if (new_alloc_region != NULL) {
5154       g1_policy()->update_region_num(true /* next_is_young */);
5155       set_region_short_lived_locked(new_alloc_region);
5156       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
5157       g1mm()->update_eden_counters();
5158       return new_alloc_region;
5159     }
5160   }
5161   return NULL;
5162 }
5163 
5164 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5165                                                   size_t allocated_bytes) {
5166   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5167   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
5168 
5169   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5170   _summary_bytes_used += allocated_bytes;
5171   _hr_printer.retire(alloc_region);
5172 }
5173 
5174 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
5175                                                     bool force) {
5176   return _g1h->new_mutator_alloc_region(word_size, force);
5177 }
5178 
5179 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
5180                                        size_t allocated_bytes) {
5181   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
5182 }
5183 
5184 // Methods for the GC alloc regions
5185 
5186 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5187                                                  size_t count,
5188                                                  GCAllocPurpose ap) {
5189   assert(FreeList_lock->owned_by_self(), "pre-condition");
5190 
5191   if (count < g1_policy()->max_regions(ap)) {
5192     HeapRegion* new_alloc_region = new_region(word_size,
5193                                               true /* do_expand */);
5194     if (new_alloc_region != NULL) {
5195       // We really only need to do this for old regions given that we
5196       // should never scan survivors. But it doesn't hurt to do it
5197       // for survivors too.
5198       new_alloc_region->set_saved_mark();
5199       if (ap == GCAllocForSurvived) {
5200         new_alloc_region->set_survivor();
5201         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
5202       } else {
5203         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
5204       }
5205       return new_alloc_region;
5206     } else {
5207       g1_policy()->note_alloc_region_limit_reached(ap);
5208     }
5209   }
5210   return NULL;
5211 }
5212 
5213 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5214                                              size_t allocated_bytes,
5215                                              GCAllocPurpose ap) {
5216   alloc_region->note_end_of_copying();
5217   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5218   if (ap == GCAllocForSurvived) {
5219     young_list()->add_survivor_region(alloc_region);
5220   }
5221   _hr_printer.retire(alloc_region);
5222 }
5223 
5224 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
5225                                                        bool force) {
5226   assert(!force, "not supported for GC alloc regions");
5227   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
5228 }
5229 
5230 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
5231                                           size_t allocated_bytes) {
5232   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
5233                                GCAllocForSurvived);
5234 }
5235 
5236 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
5237                                                   bool force) {
5238   assert(!force, "not supported for GC alloc regions");
5239   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
5240 }
5241 
5242 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
5243                                      size_t allocated_bytes) {
5244   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
5245                                GCAllocForTenured);
5246 }
5247 // Heap region set verification
5248 
5249 class VerifyRegionListsClosure : public HeapRegionClosure {
5250 private:
5251   HumongousRegionSet* _humongous_set;
5252   FreeRegionList*     _free_list;
5253   size_t              _region_count;
5254 
5255 public:
5256   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
5257                            FreeRegionList* free_list) :
5258     _humongous_set(humongous_set), _free_list(free_list),
5259     _region_count(0) { }
5260 
5261   size_t region_count()      { return _region_count;      }
5262 
5263   bool doHeapRegion(HeapRegion* hr) {
5264     _region_count += 1;
5265 
5266     if (hr->continuesHumongous()) {
5267       return false;
5268     }
5269 
5270     if (hr->is_young()) {
5271       // TODO
5272     } else if (hr->startsHumongous()) {
5273       _humongous_set->verify_next_region(hr);
5274     } else if (hr->is_empty()) {
5275       _free_list->verify_next_region(hr);
5276     }
5277     return false;
5278   }
5279 };
5280 
5281 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
5282                                              HeapWord* bottom) {
5283   HeapWord* end = bottom + HeapRegion::GrainWords;
5284   MemRegion mr(bottom, end);
5285   assert(_g1_reserved.contains(mr), "invariant");
5286   // This might return NULL if the allocation fails
5287   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
5288 }
5289 
5290 void G1CollectedHeap::verify_region_sets() {
5291   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5292 
5293   // First, check the explicit lists.
5294   _free_list.verify();
5295   {
5296     // Given that a concurrent operation might be adding regions to
5297     // the secondary free list we have to take the lock before
5298     // verifying it.
5299     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5300     _secondary_free_list.verify();
5301   }
5302   _humongous_set.verify();
5303 
5304   // If a concurrent region freeing operation is in progress it will
5305   // be difficult to correctly attributed any free regions we come
5306   // across to the correct free list given that they might belong to
5307   // one of several (free_list, secondary_free_list, any local lists,
5308   // etc.). So, if that's the case we will skip the rest of the
5309   // verification operation. Alternatively, waiting for the concurrent
5310   // operation to complete will have a non-trivial effect on the GC's
5311   // operation (no concurrent operation will last longer than the
5312   // interval between two calls to verification) and it might hide
5313   // any issues that we would like to catch during testing.
5314   if (free_regions_coming()) {
5315     return;
5316   }
5317 
5318   // Make sure we append the secondary_free_list on the free_list so
5319   // that all free regions we will come across can be safely
5320   // attributed to the free_list.
5321   append_secondary_free_list_if_not_empty_with_lock();
5322 
5323   // Finally, make sure that the region accounting in the lists is
5324   // consistent with what we see in the heap.
5325   _humongous_set.verify_start();
5326   _free_list.verify_start();
5327 
5328   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
5329   heap_region_iterate(&cl);
5330 
5331   _humongous_set.verify_end();
5332   _free_list.verify_end();
5333 }