1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1MarkSweep.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  39 #include "gc_implementation/g1/vm_operations_g1.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "memory/gcLocker.inline.hpp"
  42 #include "memory/genOopClosures.inline.hpp"
  43 #include "memory/generationSpec.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.pcgc.inline.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/vmThread.hpp"
  48 
  49 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  50 
  51 // turn it on so that the contents of the young list (scan-only /
  52 // to-be-collected) are printed at "strategic" points before / during
  53 // / after the collection --- this is useful for debugging
  54 #define YOUNG_LIST_VERBOSE 0
  55 // CURRENT STATUS
  56 // This file is under construction.  Search for "FIXME".
  57 
  58 // INVARIANTS/NOTES
  59 //
  60 // All allocation activity covered by the G1CollectedHeap interface is
  61 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  62 // and allocate_new_tlab, which are the "entry" points to the
  63 // allocation code from the rest of the JVM.  (Note that this does not
  64 // apply to TLAB allocation, which is not part of this interface: it
  65 // is done by clients of this interface.)
  66 
  67 // Local to this file.
  68 
  69 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  70   SuspendibleThreadSet* _sts;
  71   G1RemSet* _g1rs;
  72   ConcurrentG1Refine* _cg1r;
  73   bool _concurrent;
  74 public:
  75   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  76                               G1RemSet* g1rs,
  77                               ConcurrentG1Refine* cg1r) :
  78     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  79   {}
  80   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  81     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  82     // This path is executed by the concurrent refine or mutator threads,
  83     // concurrently, and so we do not care if card_ptr contains references
  84     // that point into the collection set.
  85     assert(!oops_into_cset, "should be");
  86 
  87     if (_concurrent && _sts->should_yield()) {
  88       // Caller will actually yield.
  89       return false;
  90     }
  91     // Otherwise, we finished successfully; return true.
  92     return true;
  93   }
  94   void set_concurrent(bool b) { _concurrent = b; }
  95 };
  96 
  97 
  98 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  99   int _calls;
 100   G1CollectedHeap* _g1h;
 101   CardTableModRefBS* _ctbs;
 102   int _histo[256];
 103 public:
 104   ClearLoggedCardTableEntryClosure() :
 105     _calls(0)
 106   {
 107     _g1h = G1CollectedHeap::heap();
 108     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 109     for (int i = 0; i < 256; i++) _histo[i] = 0;
 110   }
 111   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 112     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 113       _calls++;
 114       unsigned char* ujb = (unsigned char*)card_ptr;
 115       int ind = (int)(*ujb);
 116       _histo[ind]++;
 117       *card_ptr = -1;
 118     }
 119     return true;
 120   }
 121   int calls() { return _calls; }
 122   void print_histo() {
 123     gclog_or_tty->print_cr("Card table value histogram:");
 124     for (int i = 0; i < 256; i++) {
 125       if (_histo[i] != 0) {
 126         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 127       }
 128     }
 129   }
 130 };
 131 
 132 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 133   int _calls;
 134   G1CollectedHeap* _g1h;
 135   CardTableModRefBS* _ctbs;
 136 public:
 137   RedirtyLoggedCardTableEntryClosure() :
 138     _calls(0)
 139   {
 140     _g1h = G1CollectedHeap::heap();
 141     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 142   }
 143   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 144     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 145       _calls++;
 146       *card_ptr = 0;
 147     }
 148     return true;
 149   }
 150   int calls() { return _calls; }
 151 };
 152 
 153 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 154 public:
 155   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 156     *card_ptr = CardTableModRefBS::dirty_card_val();
 157     return true;
 158   }
 159 };
 160 
 161 YoungList::YoungList(G1CollectedHeap* g1h)
 162   : _g1h(g1h), _head(NULL),
 163     _length(0),
 164     _last_sampled_rs_lengths(0),
 165     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 166 {
 167   guarantee( check_list_empty(false), "just making sure..." );
 168 }
 169 
 170 void YoungList::push_region(HeapRegion *hr) {
 171   assert(!hr->is_young(), "should not already be young");
 172   assert(hr->get_next_young_region() == NULL, "cause it should!");
 173 
 174   hr->set_next_young_region(_head);
 175   _head = hr;
 176 
 177   hr->set_young();
 178   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 179   ++_length;
 180 }
 181 
 182 void YoungList::add_survivor_region(HeapRegion* hr) {
 183   assert(hr->is_survivor(), "should be flagged as survivor region");
 184   assert(hr->get_next_young_region() == NULL, "cause it should!");
 185 
 186   hr->set_next_young_region(_survivor_head);
 187   if (_survivor_head == NULL) {
 188     _survivor_tail = hr;
 189   }
 190   _survivor_head = hr;
 191 
 192   ++_survivor_length;
 193 }
 194 
 195 void YoungList::empty_list(HeapRegion* list) {
 196   while (list != NULL) {
 197     HeapRegion* next = list->get_next_young_region();
 198     list->set_next_young_region(NULL);
 199     list->uninstall_surv_rate_group();
 200     list->set_not_young();
 201     list = next;
 202   }
 203 }
 204 
 205 void YoungList::empty_list() {
 206   assert(check_list_well_formed(), "young list should be well formed");
 207 
 208   empty_list(_head);
 209   _head = NULL;
 210   _length = 0;
 211 
 212   empty_list(_survivor_head);
 213   _survivor_head = NULL;
 214   _survivor_tail = NULL;
 215   _survivor_length = 0;
 216 
 217   _last_sampled_rs_lengths = 0;
 218 
 219   assert(check_list_empty(false), "just making sure...");
 220 }
 221 
 222 bool YoungList::check_list_well_formed() {
 223   bool ret = true;
 224 
 225   size_t length = 0;
 226   HeapRegion* curr = _head;
 227   HeapRegion* last = NULL;
 228   while (curr != NULL) {
 229     if (!curr->is_young()) {
 230       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 231                              "incorrectly tagged (y: %d, surv: %d)",
 232                              curr->bottom(), curr->end(),
 233                              curr->is_young(), curr->is_survivor());
 234       ret = false;
 235     }
 236     ++length;
 237     last = curr;
 238     curr = curr->get_next_young_region();
 239   }
 240   ret = ret && (length == _length);
 241 
 242   if (!ret) {
 243     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 244     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 245                            length, _length);
 246   }
 247 
 248   return ret;
 249 }
 250 
 251 bool YoungList::check_list_empty(bool check_sample) {
 252   bool ret = true;
 253 
 254   if (_length != 0) {
 255     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 256                   _length);
 257     ret = false;
 258   }
 259   if (check_sample && _last_sampled_rs_lengths != 0) {
 260     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 261     ret = false;
 262   }
 263   if (_head != NULL) {
 264     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 265     ret = false;
 266   }
 267   if (!ret) {
 268     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 269   }
 270 
 271   return ret;
 272 }
 273 
 274 void
 275 YoungList::rs_length_sampling_init() {
 276   _sampled_rs_lengths = 0;
 277   _curr               = _head;
 278 }
 279 
 280 bool
 281 YoungList::rs_length_sampling_more() {
 282   return _curr != NULL;
 283 }
 284 
 285 void
 286 YoungList::rs_length_sampling_next() {
 287   assert( _curr != NULL, "invariant" );
 288   size_t rs_length = _curr->rem_set()->occupied();
 289 
 290   _sampled_rs_lengths += rs_length;
 291 
 292   // The current region may not yet have been added to the
 293   // incremental collection set (it gets added when it is
 294   // retired as the current allocation region).
 295   if (_curr->in_collection_set()) {
 296     // Update the collection set policy information for this region
 297     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 298   }
 299 
 300   _curr = _curr->get_next_young_region();
 301   if (_curr == NULL) {
 302     _last_sampled_rs_lengths = _sampled_rs_lengths;
 303     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 304   }
 305 }
 306 
 307 void
 308 YoungList::reset_auxilary_lists() {
 309   guarantee( is_empty(), "young list should be empty" );
 310   assert(check_list_well_formed(), "young list should be well formed");
 311 
 312   // Add survivor regions to SurvRateGroup.
 313   _g1h->g1_policy()->note_start_adding_survivor_regions();
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 315 
 316   for (HeapRegion* curr = _survivor_head;
 317        curr != NULL;
 318        curr = curr->get_next_young_region()) {
 319     _g1h->g1_policy()->set_region_survivors(curr);
 320 
 321     // The region is a non-empty survivor so let's add it to
 322     // the incremental collection set for the next evacuation
 323     // pause.
 324     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 325   }
 326   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 327 
 328   _head   = _survivor_head;
 329   _length = _survivor_length;
 330   if (_survivor_head != NULL) {
 331     assert(_survivor_tail != NULL, "cause it shouldn't be");
 332     assert(_survivor_length > 0, "invariant");
 333     _survivor_tail->set_next_young_region(NULL);
 334   }
 335 
 336   // Don't clear the survivor list handles until the start of
 337   // the next evacuation pause - we need it in order to re-tag
 338   // the survivor regions from this evacuation pause as 'young'
 339   // at the start of the next.
 340 
 341   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 342 
 343   assert(check_list_well_formed(), "young list should be well formed");
 344 }
 345 
 346 void YoungList::print() {
 347   HeapRegion* lists[] = {_head,   _survivor_head};
 348   const char* names[] = {"YOUNG", "SURVIVOR"};
 349 
 350   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 351     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 352     HeapRegion *curr = lists[list];
 353     if (curr == NULL)
 354       gclog_or_tty->print_cr("  empty");
 355     while (curr != NULL) {
 356       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 357                              "age: %4d, y: %d, surv: %d",
 358                              curr->bottom(), curr->end(),
 359                              curr->top(),
 360                              curr->prev_top_at_mark_start(),
 361                              curr->next_top_at_mark_start(),
 362                              curr->top_at_conc_mark_count(),
 363                              curr->age_in_surv_rate_group_cond(),
 364                              curr->is_young(),
 365                              curr->is_survivor());
 366       curr = curr->get_next_young_region();
 367     }
 368   }
 369 
 370   gclog_or_tty->print_cr("");
 371 }
 372 
 373 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 374 {
 375   // Claim the right to put the region on the dirty cards region list
 376   // by installing a self pointer.
 377   HeapRegion* next = hr->get_next_dirty_cards_region();
 378   if (next == NULL) {
 379     HeapRegion* res = (HeapRegion*)
 380       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 381                           NULL);
 382     if (res == NULL) {
 383       HeapRegion* head;
 384       do {
 385         // Put the region to the dirty cards region list.
 386         head = _dirty_cards_region_list;
 387         next = (HeapRegion*)
 388           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 389         if (next == head) {
 390           assert(hr->get_next_dirty_cards_region() == hr,
 391                  "hr->get_next_dirty_cards_region() != hr");
 392           if (next == NULL) {
 393             // The last region in the list points to itself.
 394             hr->set_next_dirty_cards_region(hr);
 395           } else {
 396             hr->set_next_dirty_cards_region(next);
 397           }
 398         }
 399       } while (next != head);
 400     }
 401   }
 402 }
 403 
 404 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 405 {
 406   HeapRegion* head;
 407   HeapRegion* hr;
 408   do {
 409     head = _dirty_cards_region_list;
 410     if (head == NULL) {
 411       return NULL;
 412     }
 413     HeapRegion* new_head = head->get_next_dirty_cards_region();
 414     if (head == new_head) {
 415       // The last region.
 416       new_head = NULL;
 417     }
 418     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 419                                           head);
 420   } while (hr != head);
 421   assert(hr != NULL, "invariant");
 422   hr->set_next_dirty_cards_region(NULL);
 423   return hr;
 424 }
 425 
 426 void G1CollectedHeap::stop_conc_gc_threads() {
 427   _cg1r->stop();
 428   _cmThread->stop();
 429 }
 430 
 431 #ifdef ASSERT
 432 // A region is added to the collection set as it is retired
 433 // so an address p can point to a region which will be in the
 434 // collection set but has not yet been retired.  This method
 435 // therefore is only accurate during a GC pause after all
 436 // regions have been retired.  It is used for debugging
 437 // to check if an nmethod has references to objects that can
 438 // be move during a partial collection.  Though it can be
 439 // inaccurate, it is sufficient for G1 because the conservative
 440 // implementation of is_scavengable() for G1 will indicate that
 441 // all nmethods must be scanned during a partial collection.
 442 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 443   HeapRegion* hr = heap_region_containing(p);
 444   return hr != NULL && hr->in_collection_set();
 445 }
 446 #endif
 447 
 448 // Returns true if the reference points to an object that
 449 // can move in an incremental collecction.
 450 bool G1CollectedHeap::is_scavengable(const void* p) {
 451   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 452   G1CollectorPolicy* g1p = g1h->g1_policy();
 453   HeapRegion* hr = heap_region_containing(p);
 454   if (hr == NULL) {
 455      // perm gen (or null)
 456      return false;
 457   } else {
 458     return !hr->isHumongous();
 459   }
 460 }
 461 
 462 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 463   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 464   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 465 
 466   // Count the dirty cards at the start.
 467   CountNonCleanMemRegionClosure count1(this);
 468   ct_bs->mod_card_iterate(&count1);
 469   int orig_count = count1.n();
 470 
 471   // First clear the logged cards.
 472   ClearLoggedCardTableEntryClosure clear;
 473   dcqs.set_closure(&clear);
 474   dcqs.apply_closure_to_all_completed_buffers();
 475   dcqs.iterate_closure_all_threads(false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 489   dcqs.apply_closure_to_all_completed_buffers();
 490   dcqs.iterate_closure_all_threads(false);
 491   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 492                          clear.calls(), orig_count);
 493   guarantee(redirty.calls() == clear.calls(),
 494             "Or else mechanism is broken.");
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 
 504   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 505 }
 506 
 507 // Private class members.
 508 
 509 G1CollectedHeap* G1CollectedHeap::_g1h;
 510 
 511 // Private methods.
 512 
 513 HeapRegion*
 514 G1CollectedHeap::new_region_try_secondary_free_list() {
 515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 517     if (!_secondary_free_list.is_empty()) {
 518       if (G1ConcRegionFreeingVerbose) {
 519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 520                                "secondary_free_list has "SIZE_FORMAT" entries",
 521                                _secondary_free_list.length());
 522       }
 523       // It looks as if there are free regions available on the
 524       // secondary_free_list. Let's move them to the free_list and try
 525       // again to allocate from it.
 526       append_secondary_free_list();
 527 
 528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 529              "empty we should have moved at least one entry to the free_list");
 530       HeapRegion* res = _free_list.remove_head();
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "allocated "HR_FORMAT" from secondary_free_list",
 534                                HR_FORMAT_PARAMS(res));
 535       }
 536       return res;
 537     }
 538 
 539     // Wait here until we get notifed either when (a) there are no
 540     // more free regions coming or (b) some regions have been moved on
 541     // the secondary_free_list.
 542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 543   }
 544 
 545   if (G1ConcRegionFreeingVerbose) {
 546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 547                            "could not allocate from secondary_free_list");
 548   }
 549   return NULL;
 550 }
 551 
 552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 553   assert(!isHumongous(word_size) ||
 554                                   word_size <= (size_t) HeapRegion::GrainWords,
 555          "the only time we use this to allocate a humongous region is "
 556          "when we are allocating a single humongous region");
 557 
 558   HeapRegion* res;
 559   if (G1StressConcRegionFreeing) {
 560     if (!_secondary_free_list.is_empty()) {
 561       if (G1ConcRegionFreeingVerbose) {
 562         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                                "forced to look at the secondary_free_list");
 564       }
 565       res = new_region_try_secondary_free_list();
 566       if (res != NULL) {
 567         return res;
 568       }
 569     }
 570   }
 571   res = _free_list.remove_head_or_null();
 572   if (res == NULL) {
 573     if (G1ConcRegionFreeingVerbose) {
 574       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 575                              "res == NULL, trying the secondary_free_list");
 576     }
 577     res = new_region_try_secondary_free_list();
 578   }
 579   if (res == NULL && do_expand) {
 580     if (expand(word_size * HeapWordSize)) {
 581       // Even though the heap was expanded, it might not have reached
 582       // the desired size. So, we cannot assume that the allocation
 583       // will succeed.
 584       res = _free_list.remove_head_or_null();
 585     }
 586   }
 587   return res;
 588 }
 589 
 590 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
 591                                                           size_t word_size) {
 592   assert(isHumongous(word_size), "word_size should be humongous");
 593   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 594 
 595   size_t first = G1_NULL_HRS_INDEX;
 596   if (num_regions == 1) {
 597     // Only one region to allocate, no need to go through the slower
 598     // path. The caller will attempt the expasion if this fails, so
 599     // let's not try to expand here too.
 600     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 601     if (hr != NULL) {
 602       first = hr->hrs_index();
 603     } else {
 604       first = G1_NULL_HRS_INDEX;
 605     }
 606   } else {
 607     // We can't allocate humongous regions while cleanupComplete() is
 608     // running, since some of the regions we find to be empty might not
 609     // yet be added to the free list and it is not straightforward to
 610     // know which list they are on so that we can remove them. Note
 611     // that we only need to do this if we need to allocate more than
 612     // one region to satisfy the current humongous allocation
 613     // request. If we are only allocating one region we use the common
 614     // region allocation code (see above).
 615     wait_while_free_regions_coming();
 616     append_secondary_free_list_if_not_empty_with_lock();
 617 
 618     if (free_regions() >= num_regions) {
 619       first = _hrs.find_contiguous(num_regions);
 620       if (first != G1_NULL_HRS_INDEX) {
 621         for (size_t i = first; i < first + num_regions; ++i) {
 622           HeapRegion* hr = region_at(i);
 623           assert(hr->is_empty(), "sanity");
 624           assert(is_on_master_free_list(hr), "sanity");
 625           hr->set_pending_removal(true);
 626         }
 627         _free_list.remove_all_pending(num_regions);
 628       }
 629     }
 630   }
 631   return first;
 632 }
 633 
 634 HeapWord*
 635 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
 636                                                            size_t num_regions,
 637                                                            size_t word_size) {
 638   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 639   assert(isHumongous(word_size), "word_size should be humongous");
 640   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 641 
 642   // Index of last region in the series + 1.
 643   size_t last = first + num_regions;
 644 
 645   // We need to initialize the region(s) we just discovered. This is
 646   // a bit tricky given that it can happen concurrently with
 647   // refinement threads refining cards on these regions and
 648   // potentially wanting to refine the BOT as they are scanning
 649   // those cards (this can happen shortly after a cleanup; see CR
 650   // 6991377). So we have to set up the region(s) carefully and in
 651   // a specific order.
 652 
 653   // The word size sum of all the regions we will allocate.
 654   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 655   assert(word_size <= word_size_sum, "sanity");
 656 
 657   // This will be the "starts humongous" region.
 658   HeapRegion* first_hr = region_at(first);
 659   // The header of the new object will be placed at the bottom of
 660   // the first region.
 661   HeapWord* new_obj = first_hr->bottom();
 662   // This will be the new end of the first region in the series that
 663   // should also match the end of the last region in the seriers.
 664   HeapWord* new_end = new_obj + word_size_sum;
 665   // This will be the new top of the first region that will reflect
 666   // this allocation.
 667   HeapWord* new_top = new_obj + word_size;
 668 
 669   // First, we need to zero the header of the space that we will be
 670   // allocating. When we update top further down, some refinement
 671   // threads might try to scan the region. By zeroing the header we
 672   // ensure that any thread that will try to scan the region will
 673   // come across the zero klass word and bail out.
 674   //
 675   // NOTE: It would not have been correct to have used
 676   // CollectedHeap::fill_with_object() and make the space look like
 677   // an int array. The thread that is doing the allocation will
 678   // later update the object header to a potentially different array
 679   // type and, for a very short period of time, the klass and length
 680   // fields will be inconsistent. This could cause a refinement
 681   // thread to calculate the object size incorrectly.
 682   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 683 
 684   // We will set up the first region as "starts humongous". This
 685   // will also update the BOT covering all the regions to reflect
 686   // that there is a single object that starts at the bottom of the
 687   // first region.
 688   first_hr->set_startsHumongous(new_top, new_end);
 689 
 690   // Then, if there are any, we will set up the "continues
 691   // humongous" regions.
 692   HeapRegion* hr = NULL;
 693   for (size_t i = first + 1; i < last; ++i) {
 694     hr = region_at(i);
 695     hr->set_continuesHumongous(first_hr);
 696   }
 697   // If we have "continues humongous" regions (hr != NULL), then the
 698   // end of the last one should match new_end.
 699   assert(hr == NULL || hr->end() == new_end, "sanity");
 700 
 701   // Up to this point no concurrent thread would have been able to
 702   // do any scanning on any region in this series. All the top
 703   // fields still point to bottom, so the intersection between
 704   // [bottom,top] and [card_start,card_end] will be empty. Before we
 705   // update the top fields, we'll do a storestore to make sure that
 706   // no thread sees the update to top before the zeroing of the
 707   // object header and the BOT initialization.
 708   OrderAccess::storestore();
 709 
 710   // Now that the BOT and the object header have been initialized,
 711   // we can update top of the "starts humongous" region.
 712   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 713          "new_top should be in this region");
 714   first_hr->set_top(new_top);
 715   if (_hr_printer.is_active()) {
 716     HeapWord* bottom = first_hr->bottom();
 717     HeapWord* end = first_hr->orig_end();
 718     if ((first + 1) == last) {
 719       // the series has a single humongous region
 720       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 721     } else {
 722       // the series has more than one humongous regions
 723       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 724     }
 725   }
 726 
 727   // Now, we will update the top fields of the "continues humongous"
 728   // regions. The reason we need to do this is that, otherwise,
 729   // these regions would look empty and this will confuse parts of
 730   // G1. For example, the code that looks for a consecutive number
 731   // of empty regions will consider them empty and try to
 732   // re-allocate them. We can extend is_empty() to also include
 733   // !continuesHumongous(), but it is easier to just update the top
 734   // fields here. The way we set top for all regions (i.e., top ==
 735   // end for all regions but the last one, top == new_top for the
 736   // last one) is actually used when we will free up the humongous
 737   // region in free_humongous_region().
 738   hr = NULL;
 739   for (size_t i = first + 1; i < last; ++i) {
 740     hr = region_at(i);
 741     if ((i + 1) == last) {
 742       // last continues humongous region
 743       assert(hr->bottom() < new_top && new_top <= hr->end(),
 744              "new_top should fall on this region");
 745       hr->set_top(new_top);
 746       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 747     } else {
 748       // not last one
 749       assert(new_top > hr->end(), "new_top should be above this region");
 750       hr->set_top(hr->end());
 751       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 752     }
 753   }
 754   // If we have continues humongous regions (hr != NULL), then the
 755   // end of the last one should match new_end and its top should
 756   // match new_top.
 757   assert(hr == NULL ||
 758          (hr->end() == new_end && hr->top() == new_top), "sanity");
 759 
 760   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 761   _summary_bytes_used += first_hr->used();
 762   _humongous_set.add(first_hr);
 763 
 764   return new_obj;
 765 }
 766 
 767 // If could fit into free regions w/o expansion, try.
 768 // Otherwise, if can expand, do so.
 769 // Otherwise, if using ex regions might help, try with ex given back.
 770 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 771   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 772 
 773   verify_region_sets_optional();
 774 
 775   size_t num_regions =
 776          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 777   size_t x_size = expansion_regions();
 778   size_t fs = _hrs.free_suffix();
 779   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
 780   if (first == G1_NULL_HRS_INDEX) {
 781     // The only thing we can do now is attempt expansion.
 782     if (fs + x_size >= num_regions) {
 783       // If the number of regions we're trying to allocate for this
 784       // object is at most the number of regions in the free suffix,
 785       // then the call to humongous_obj_allocate_find_first() above
 786       // should have succeeded and we wouldn't be here.
 787       //
 788       // We should only be trying to expand when the free suffix is
 789       // not sufficient for the object _and_ we have some expansion
 790       // room available.
 791       assert(num_regions > fs, "earlier allocation should have succeeded");
 792 
 793       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 794         // Even though the heap was expanded, it might not have
 795         // reached the desired size. So, we cannot assume that the
 796         // allocation will succeed.
 797         first = humongous_obj_allocate_find_first(num_regions, word_size);
 798       }
 799     }
 800   }
 801 
 802   HeapWord* result = NULL;
 803   if (first != G1_NULL_HRS_INDEX) {
 804     result =
 805       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 806     assert(result != NULL, "it should always return a valid result");
 807   }
 808 
 809   verify_region_sets_optional();
 810 
 811   return result;
 812 }
 813 
 814 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 815   assert_heap_not_locked_and_not_at_safepoint();
 816   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 817 
 818   unsigned int dummy_gc_count_before;
 819   return attempt_allocation(word_size, &dummy_gc_count_before);
 820 }
 821 
 822 HeapWord*
 823 G1CollectedHeap::mem_allocate(size_t word_size,
 824                               bool*  gc_overhead_limit_was_exceeded) {
 825   assert_heap_not_locked_and_not_at_safepoint();
 826 
 827   // Loop until the allocation is satisified, or unsatisfied after GC.
 828   for (int try_count = 1; /* we'll return */; try_count += 1) {
 829     unsigned int gc_count_before;
 830 
 831     HeapWord* result = NULL;
 832     if (!isHumongous(word_size)) {
 833       result = attempt_allocation(word_size, &gc_count_before);
 834     } else {
 835       result = attempt_allocation_humongous(word_size, &gc_count_before);
 836     }
 837     if (result != NULL) {
 838       return result;
 839     }
 840 
 841     // Create the garbage collection operation...
 842     VM_G1CollectForAllocation op(gc_count_before, word_size);
 843     // ...and get the VM thread to execute it.
 844     VMThread::execute(&op);
 845 
 846     if (op.prologue_succeeded() && op.pause_succeeded()) {
 847       // If the operation was successful we'll return the result even
 848       // if it is NULL. If the allocation attempt failed immediately
 849       // after a Full GC, it's unlikely we'll be able to allocate now.
 850       HeapWord* result = op.result();
 851       if (result != NULL && !isHumongous(word_size)) {
 852         // Allocations that take place on VM operations do not do any
 853         // card dirtying and we have to do it here. We only have to do
 854         // this for non-humongous allocations, though.
 855         dirty_young_block(result, word_size);
 856       }
 857       return result;
 858     } else {
 859       assert(op.result() == NULL,
 860              "the result should be NULL if the VM op did not succeed");
 861     }
 862 
 863     // Give a warning if we seem to be looping forever.
 864     if ((QueuedAllocationWarningCount > 0) &&
 865         (try_count % QueuedAllocationWarningCount == 0)) {
 866       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 867     }
 868   }
 869 
 870   ShouldNotReachHere();
 871   return NULL;
 872 }
 873 
 874 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 875                                            unsigned int *gc_count_before_ret) {
 876   // Make sure you read the note in attempt_allocation_humongous().
 877 
 878   assert_heap_not_locked_and_not_at_safepoint();
 879   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 880          "be called for humongous allocation requests");
 881 
 882   // We should only get here after the first-level allocation attempt
 883   // (attempt_allocation()) failed to allocate.
 884 
 885   // We will loop until a) we manage to successfully perform the
 886   // allocation or b) we successfully schedule a collection which
 887   // fails to perform the allocation. b) is the only case when we'll
 888   // return NULL.
 889   HeapWord* result = NULL;
 890   for (int try_count = 1; /* we'll return */; try_count += 1) {
 891     bool should_try_gc;
 892     unsigned int gc_count_before;
 893 
 894     {
 895       MutexLockerEx x(Heap_lock);
 896 
 897       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 898                                                       false /* bot_updates */);
 899       if (result != NULL) {
 900         return result;
 901       }
 902 
 903       // If we reach here, attempt_allocation_locked() above failed to
 904       // allocate a new region. So the mutator alloc region should be NULL.
 905       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 906 
 907       if (GC_locker::is_active_and_needs_gc()) {
 908         if (g1_policy()->can_expand_young_list()) {
 909           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 910                                                       false /* bot_updates */);
 911           if (result != NULL) {
 912             return result;
 913           }
 914         }
 915         should_try_gc = false;
 916       } else {
 917         // Read the GC count while still holding the Heap_lock.
 918         gc_count_before = SharedHeap::heap()->total_collections();
 919         should_try_gc = true;
 920       }
 921     }
 922 
 923     if (should_try_gc) {
 924       bool succeeded;
 925       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 926       if (result != NULL) {
 927         assert(succeeded, "only way to get back a non-NULL result");
 928         return result;
 929       }
 930 
 931       if (succeeded) {
 932         // If we get here we successfully scheduled a collection which
 933         // failed to allocate. No point in trying to allocate
 934         // further. We'll just return NULL.
 935         MutexLockerEx x(Heap_lock);
 936         *gc_count_before_ret = SharedHeap::heap()->total_collections();
 937         return NULL;
 938       }
 939     } else {
 940       GC_locker::stall_until_clear();
 941     }
 942 
 943     // We can reach here if we were unsuccessul in scheduling a
 944     // collection (because another thread beat us to it) or if we were
 945     // stalled due to the GC locker. In either can we should retry the
 946     // allocation attempt in case another thread successfully
 947     // performed a collection and reclaimed enough space. We do the
 948     // first attempt (without holding the Heap_lock) here and the
 949     // follow-on attempt will be at the start of the next loop
 950     // iteration (after taking the Heap_lock).
 951     result = _mutator_alloc_region.attempt_allocation(word_size,
 952                                                       false /* bot_updates */);
 953     if (result != NULL ){
 954       return result;
 955     }
 956 
 957     // Give a warning if we seem to be looping forever.
 958     if ((QueuedAllocationWarningCount > 0) &&
 959         (try_count % QueuedAllocationWarningCount == 0)) {
 960       warning("G1CollectedHeap::attempt_allocation_slow() "
 961               "retries %d times", try_count);
 962     }
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 970                                           unsigned int * gc_count_before_ret) {
 971   // The structure of this method has a lot of similarities to
 972   // attempt_allocation_slow(). The reason these two were not merged
 973   // into a single one is that such a method would require several "if
 974   // allocation is not humongous do this, otherwise do that"
 975   // conditional paths which would obscure its flow. In fact, an early
 976   // version of this code did use a unified method which was harder to
 977   // follow and, as a result, it had subtle bugs that were hard to
 978   // track down. So keeping these two methods separate allows each to
 979   // be more readable. It will be good to keep these two in sync as
 980   // much as possible.
 981 
 982   assert_heap_not_locked_and_not_at_safepoint();
 983   assert(isHumongous(word_size), "attempt_allocation_humongous() "
 984          "should only be called for humongous allocations");
 985 
 986   // We will loop until a) we manage to successfully perform the
 987   // allocation or b) we successfully schedule a collection which
 988   // fails to perform the allocation. b) is the only case when we'll
 989   // return NULL.
 990   HeapWord* result = NULL;
 991   for (int try_count = 1; /* we'll return */; try_count += 1) {
 992     bool should_try_gc;
 993     unsigned int gc_count_before;
 994 
 995     {
 996       MutexLockerEx x(Heap_lock);
 997 
 998       // Given that humongous objects are not allocated in young
 999       // regions, we'll first try to do the allocation without doing a
1000       // collection hoping that there's enough space in the heap.
1001       result = humongous_obj_allocate(word_size);
1002       if (result != NULL) {
1003         return result;
1004       }
1005 
1006       if (GC_locker::is_active_and_needs_gc()) {
1007         should_try_gc = false;
1008       } else {
1009         // Read the GC count while still holding the Heap_lock.
1010         gc_count_before = SharedHeap::heap()->total_collections();
1011         should_try_gc = true;
1012       }
1013     }
1014 
1015     if (should_try_gc) {
1016       // If we failed to allocate the humongous object, we should try to
1017       // do a collection pause (if we're allowed) in case it reclaims
1018       // enough space for the allocation to succeed after the pause.
1019 
1020       bool succeeded;
1021       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1022       if (result != NULL) {
1023         assert(succeeded, "only way to get back a non-NULL result");
1024         return result;
1025       }
1026 
1027       if (succeeded) {
1028         // If we get here we successfully scheduled a collection which
1029         // failed to allocate. No point in trying to allocate
1030         // further. We'll just return NULL.
1031         MutexLockerEx x(Heap_lock);
1032         *gc_count_before_ret = SharedHeap::heap()->total_collections();
1033         return NULL;
1034       }
1035     } else {
1036       GC_locker::stall_until_clear();
1037     }
1038 
1039     // We can reach here if we were unsuccessul in scheduling a
1040     // collection (because another thread beat us to it) or if we were
1041     // stalled due to the GC locker. In either can we should retry the
1042     // allocation attempt in case another thread successfully
1043     // performed a collection and reclaimed enough space.  Give a
1044     // warning if we seem to be looping forever.
1045 
1046     if ((QueuedAllocationWarningCount > 0) &&
1047         (try_count % QueuedAllocationWarningCount == 0)) {
1048       warning("G1CollectedHeap::attempt_allocation_humongous() "
1049               "retries %d times", try_count);
1050     }
1051   }
1052 
1053   ShouldNotReachHere();
1054   return NULL;
1055 }
1056 
1057 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1058                                        bool expect_null_mutator_alloc_region) {
1059   assert_at_safepoint(true /* should_be_vm_thread */);
1060   assert(_mutator_alloc_region.get() == NULL ||
1061                                              !expect_null_mutator_alloc_region,
1062          "the current alloc region was unexpectedly found to be non-NULL");
1063 
1064   if (!isHumongous(word_size)) {
1065     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1066                                                       false /* bot_updates */);
1067   } else {
1068     return humongous_obj_allocate(word_size);
1069   }
1070 
1071   ShouldNotReachHere();
1072 }
1073 
1074 class PostMCRemSetClearClosure: public HeapRegionClosure {
1075   ModRefBarrierSet* _mr_bs;
1076 public:
1077   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1078   bool doHeapRegion(HeapRegion* r) {
1079     r->reset_gc_time_stamp();
1080     if (r->continuesHumongous())
1081       return false;
1082     HeapRegionRemSet* hrrs = r->rem_set();
1083     if (hrrs != NULL) hrrs->clear();
1084     // You might think here that we could clear just the cards
1085     // corresponding to the used region.  But no: if we leave a dirty card
1086     // in a region we might allocate into, then it would prevent that card
1087     // from being enqueued, and cause it to be missed.
1088     // Re: the performance cost: we shouldn't be doing full GC anyway!
1089     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1090     return false;
1091   }
1092 };
1093 
1094 
1095 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1096   ModRefBarrierSet* _mr_bs;
1097 public:
1098   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1099   bool doHeapRegion(HeapRegion* r) {
1100     if (r->continuesHumongous()) return false;
1101     if (r->used_region().word_size() != 0) {
1102       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1103     }
1104     return false;
1105   }
1106 };
1107 
1108 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1109   G1CollectedHeap*   _g1h;
1110   UpdateRSOopClosure _cl;
1111   int                _worker_i;
1112 public:
1113   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1114     _cl(g1->g1_rem_set(), worker_i),
1115     _worker_i(worker_i),
1116     _g1h(g1)
1117   { }
1118 
1119   bool doHeapRegion(HeapRegion* r) {
1120     if (!r->continuesHumongous()) {
1121       _cl.set_from(r);
1122       r->oop_iterate(&_cl);
1123     }
1124     return false;
1125   }
1126 };
1127 
1128 class ParRebuildRSTask: public AbstractGangTask {
1129   G1CollectedHeap* _g1;
1130 public:
1131   ParRebuildRSTask(G1CollectedHeap* g1)
1132     : AbstractGangTask("ParRebuildRSTask"),
1133       _g1(g1)
1134   { }
1135 
1136   void work(int i) {
1137     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
1138     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1139                                          HeapRegion::RebuildRSClaimValue);
1140   }
1141 };
1142 
1143 class PostCompactionPrinterClosure: public HeapRegionClosure {
1144 private:
1145   G1HRPrinter* _hr_printer;
1146 public:
1147   bool doHeapRegion(HeapRegion* hr) {
1148     assert(!hr->is_young(), "not expecting to find young regions");
1149     // We only generate output for non-empty regions.
1150     if (!hr->is_empty()) {
1151       if (!hr->isHumongous()) {
1152         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1153       } else if (hr->startsHumongous()) {
1154         if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
1155           // single humongous region
1156           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1157         } else {
1158           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1159         }
1160       } else {
1161         assert(hr->continuesHumongous(), "only way to get here");
1162         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1163       }
1164     }
1165     return false;
1166   }
1167 
1168   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1169     : _hr_printer(hr_printer) { }
1170 };
1171 
1172 bool G1CollectedHeap::do_collection(bool explicit_gc,
1173                                     bool clear_all_soft_refs,
1174                                     size_t word_size) {
1175   assert_at_safepoint(true /* should_be_vm_thread */);
1176 
1177   if (GC_locker::check_active_before_gc()) {
1178     return false;
1179   }
1180 
1181   SvcGCMarker sgcm(SvcGCMarker::FULL);
1182   ResourceMark rm;
1183 
1184   if (PrintHeapAtGC) {
1185     Universe::print_heap_before_gc();
1186   }
1187 
1188   verify_region_sets_optional();
1189 
1190   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1191                            collector_policy()->should_clear_all_soft_refs();
1192 
1193   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1194 
1195   {
1196     IsGCActiveMark x;
1197 
1198     // Timing
1199     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1200     assert(!system_gc || explicit_gc, "invariant");
1201     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
1202     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1203     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1204                 PrintGC, true, gclog_or_tty);
1205 
1206     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1207     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1208 
1209     double start = os::elapsedTime();
1210     g1_policy()->record_full_collection_start();
1211 
1212     wait_while_free_regions_coming();
1213     append_secondary_free_list_if_not_empty_with_lock();
1214 
1215     gc_prologue(true);
1216     increment_total_collections(true /* full gc */);
1217 
1218     size_t g1h_prev_used = used();
1219     assert(used() == recalculate_used(), "Should be equal");
1220 
1221     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1222       HandleMark hm;  // Discard invalid handles created during verification
1223       gclog_or_tty->print(" VerifyBeforeGC:");
1224       prepare_for_verify();
1225       Universe::verify(/* allow dirty */ true,
1226                        /* silent      */ false,
1227                        /* option      */ VerifyOption_G1UsePrevMarking);
1228 
1229     }
1230 
1231     COMPILER2_PRESENT(DerivedPointerTable::clear());
1232 
1233     // We want to discover references, but not process them yet.
1234     // This mode is disabled in
1235     // instanceRefKlass::process_discovered_references if the
1236     // generation does some collection work, or
1237     // instanceRefKlass::enqueue_discovered_references if the
1238     // generation returns without doing any work.
1239     ref_processor()->disable_discovery();
1240     ref_processor()->abandon_partial_discovery();
1241     ref_processor()->verify_no_references_recorded();
1242 
1243     // Abandon current iterations of concurrent marking and concurrent
1244     // refinement, if any are in progress.
1245     concurrent_mark()->abort();
1246 
1247     // Make sure we'll choose a new allocation region afterwards.
1248     release_mutator_alloc_region();
1249     abandon_gc_alloc_regions();
1250     g1_rem_set()->cleanupHRRS();
1251     tear_down_region_lists();
1252 
1253     // We should call this after we retire any currently active alloc
1254     // regions so that all the ALLOC / RETIRE events are generated
1255     // before the start GC event.
1256     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1257 
1258     // We may have added regions to the current incremental collection
1259     // set between the last GC or pause and now. We need to clear the
1260     // incremental collection set and then start rebuilding it afresh
1261     // after this full GC.
1262     abandon_collection_set(g1_policy()->inc_cset_head());
1263     g1_policy()->clear_incremental_cset();
1264     g1_policy()->stop_incremental_cset_building();
1265 
1266     if (g1_policy()->in_young_gc_mode()) {
1267       empty_young_list();
1268       g1_policy()->set_full_young_gcs(true);
1269     }
1270 
1271     // See the comment in G1CollectedHeap::ref_processing_init() about
1272     // how reference processing currently works in G1.
1273 
1274     // Temporarily make reference _discovery_ single threaded (non-MT).
1275     ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
1276 
1277     // Temporarily make refs discovery atomic
1278     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
1279 
1280     // Temporarily clear _is_alive_non_header
1281     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
1282 
1283     ref_processor()->enable_discovery();
1284     ref_processor()->setup_policy(do_clear_all_soft_refs);
1285     // Do collection work
1286     {
1287       HandleMark hm;  // Discard invalid handles created during gc
1288       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1289     }
1290     assert(free_regions() == 0, "we should not have added any free regions");
1291     rebuild_region_lists();
1292 
1293     _summary_bytes_used = recalculate_used();
1294 
1295     ref_processor()->enqueue_discovered_references();
1296 
1297     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1298 
1299     MemoryService::track_memory_usage();
1300 
1301     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1302       HandleMark hm;  // Discard invalid handles created during verification
1303       gclog_or_tty->print(" VerifyAfterGC:");
1304       prepare_for_verify();
1305       Universe::verify(/* allow dirty */ false,
1306                        /* silent      */ false,
1307                        /* option      */ VerifyOption_G1UsePrevMarking);
1308 
1309     }
1310     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1311 
1312     reset_gc_time_stamp();
1313     // Since everything potentially moved, we will clear all remembered
1314     // sets, and clear all cards.  Later we will rebuild remebered
1315     // sets. We will also reset the GC time stamps of the regions.
1316     PostMCRemSetClearClosure rs_clear(mr_bs());
1317     heap_region_iterate(&rs_clear);
1318 
1319     // Resize the heap if necessary.
1320     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1321 
1322     if (_hr_printer.is_active()) {
1323       // We should do this after we potentially resize the heap so
1324       // that all the COMMIT / UNCOMMIT events are generated before
1325       // the end GC event.
1326 
1327       PostCompactionPrinterClosure cl(hr_printer());
1328       heap_region_iterate(&cl);
1329 
1330       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1331     }
1332 
1333     if (_cg1r->use_cache()) {
1334       _cg1r->clear_and_record_card_counts();
1335       _cg1r->clear_hot_cache();
1336     }
1337 
1338     // Rebuild remembered sets of all regions.
1339 
1340     if (G1CollectedHeap::use_parallel_gc_threads()) {
1341       ParRebuildRSTask rebuild_rs_task(this);
1342       assert(check_heap_region_claim_values(
1343              HeapRegion::InitialClaimValue), "sanity check");
1344       set_par_threads(workers()->total_workers());
1345       workers()->run_task(&rebuild_rs_task);
1346       set_par_threads(0);
1347       assert(check_heap_region_claim_values(
1348              HeapRegion::RebuildRSClaimValue), "sanity check");
1349       reset_heap_region_claim_values();
1350     } else {
1351       RebuildRSOutOfRegionClosure rebuild_rs(this);
1352       heap_region_iterate(&rebuild_rs);
1353     }
1354 
1355     if (PrintGC) {
1356       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1357     }
1358 
1359     if (true) { // FIXME
1360       // Ask the permanent generation to adjust size for full collections
1361       perm()->compute_new_size();
1362     }
1363 
1364     // Start a new incremental collection set for the next pause
1365     assert(g1_policy()->collection_set() == NULL, "must be");
1366     g1_policy()->start_incremental_cset_building();
1367 
1368     // Clear the _cset_fast_test bitmap in anticipation of adding
1369     // regions to the incremental collection set for the next
1370     // evacuation pause.
1371     clear_cset_fast_test();
1372 
1373     init_mutator_alloc_region();
1374 
1375     double end = os::elapsedTime();
1376     g1_policy()->record_full_collection_end();
1377 
1378 #ifdef TRACESPINNING
1379     ParallelTaskTerminator::print_termination_counts();
1380 #endif
1381 
1382     gc_epilogue(true);
1383 
1384     // Discard all rset updates
1385     JavaThread::dirty_card_queue_set().abandon_logs();
1386     assert(!G1DeferredRSUpdate
1387            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1388   }
1389 
1390   if (g1_policy()->in_young_gc_mode()) {
1391     _young_list->reset_sampled_info();
1392     // At this point there should be no regions in the
1393     // entire heap tagged as young.
1394     assert( check_young_list_empty(true /* check_heap */),
1395             "young list should be empty at this point");
1396   }
1397 
1398   // Update the number of full collections that have been completed.
1399   increment_full_collections_completed(false /* concurrent */);
1400 
1401   _hrs.verify_optional();
1402   verify_region_sets_optional();
1403 
1404   if (PrintHeapAtGC) {
1405     Universe::print_heap_after_gc();
1406   }
1407   g1mm()->update_counters();
1408 
1409   return true;
1410 }
1411 
1412 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1413   // do_collection() will return whether it succeeded in performing
1414   // the GC. Currently, there is no facility on the
1415   // do_full_collection() API to notify the caller than the collection
1416   // did not succeed (e.g., because it was locked out by the GC
1417   // locker). So, right now, we'll ignore the return value.
1418   bool dummy = do_collection(true,                /* explicit_gc */
1419                              clear_all_soft_refs,
1420                              0                    /* word_size */);
1421 }
1422 
1423 // This code is mostly copied from TenuredGeneration.
1424 void
1425 G1CollectedHeap::
1426 resize_if_necessary_after_full_collection(size_t word_size) {
1427   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1428 
1429   // Include the current allocation, if any, and bytes that will be
1430   // pre-allocated to support collections, as "used".
1431   const size_t used_after_gc = used();
1432   const size_t capacity_after_gc = capacity();
1433   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1434 
1435   // This is enforced in arguments.cpp.
1436   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1437          "otherwise the code below doesn't make sense");
1438 
1439   // We don't have floating point command-line arguments
1440   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1441   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1442   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1443   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1444 
1445   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1446   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1447 
1448   // We have to be careful here as these two calculations can overflow
1449   // 32-bit size_t's.
1450   double used_after_gc_d = (double) used_after_gc;
1451   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1452   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1453 
1454   // Let's make sure that they are both under the max heap size, which
1455   // by default will make them fit into a size_t.
1456   double desired_capacity_upper_bound = (double) max_heap_size;
1457   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1458                                     desired_capacity_upper_bound);
1459   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1460                                     desired_capacity_upper_bound);
1461 
1462   // We can now safely turn them into size_t's.
1463   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1464   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1465 
1466   // This assert only makes sense here, before we adjust them
1467   // with respect to the min and max heap size.
1468   assert(minimum_desired_capacity <= maximum_desired_capacity,
1469          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1470                  "maximum_desired_capacity = "SIZE_FORMAT,
1471                  minimum_desired_capacity, maximum_desired_capacity));
1472 
1473   // Should not be greater than the heap max size. No need to adjust
1474   // it with respect to the heap min size as it's a lower bound (i.e.,
1475   // we'll try to make the capacity larger than it, not smaller).
1476   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1477   // Should not be less than the heap min size. No need to adjust it
1478   // with respect to the heap max size as it's an upper bound (i.e.,
1479   // we'll try to make the capacity smaller than it, not greater).
1480   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1481 
1482   if (PrintGC && Verbose) {
1483     const double free_percentage =
1484       (double) free_after_gc / (double) capacity_after_gc;
1485     gclog_or_tty->print_cr("Computing new size after full GC ");
1486     gclog_or_tty->print_cr("  "
1487                            "  minimum_free_percentage: %6.2f",
1488                            minimum_free_percentage);
1489     gclog_or_tty->print_cr("  "
1490                            "  maximum_free_percentage: %6.2f",
1491                            maximum_free_percentage);
1492     gclog_or_tty->print_cr("  "
1493                            "  capacity: %6.1fK"
1494                            "  minimum_desired_capacity: %6.1fK"
1495                            "  maximum_desired_capacity: %6.1fK",
1496                            (double) capacity_after_gc / (double) K,
1497                            (double) minimum_desired_capacity / (double) K,
1498                            (double) maximum_desired_capacity / (double) K);
1499     gclog_or_tty->print_cr("  "
1500                            "  free_after_gc: %6.1fK"
1501                            "  used_after_gc: %6.1fK",
1502                            (double) free_after_gc / (double) K,
1503                            (double) used_after_gc / (double) K);
1504     gclog_or_tty->print_cr("  "
1505                            "   free_percentage: %6.2f",
1506                            free_percentage);
1507   }
1508   if (capacity_after_gc < minimum_desired_capacity) {
1509     // Don't expand unless it's significant
1510     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1511     if (expand(expand_bytes)) {
1512       if (PrintGC && Verbose) {
1513         gclog_or_tty->print_cr("  "
1514                                "  expanding:"
1515                                "  max_heap_size: %6.1fK"
1516                                "  minimum_desired_capacity: %6.1fK"
1517                                "  expand_bytes: %6.1fK",
1518                                (double) max_heap_size / (double) K,
1519                                (double) minimum_desired_capacity / (double) K,
1520                                (double) expand_bytes / (double) K);
1521       }
1522     }
1523 
1524     // No expansion, now see if we want to shrink
1525   } else if (capacity_after_gc > maximum_desired_capacity) {
1526     // Capacity too large, compute shrinking size
1527     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1528     shrink(shrink_bytes);
1529     if (PrintGC && Verbose) {
1530       gclog_or_tty->print_cr("  "
1531                              "  shrinking:"
1532                              "  min_heap_size: %6.1fK"
1533                              "  maximum_desired_capacity: %6.1fK"
1534                              "  shrink_bytes: %6.1fK",
1535                              (double) min_heap_size / (double) K,
1536                              (double) maximum_desired_capacity / (double) K,
1537                              (double) shrink_bytes / (double) K);
1538     }
1539   }
1540 }
1541 
1542 
1543 HeapWord*
1544 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1545                                            bool* succeeded) {
1546   assert_at_safepoint(true /* should_be_vm_thread */);
1547 
1548   *succeeded = true;
1549   // Let's attempt the allocation first.
1550   HeapWord* result =
1551     attempt_allocation_at_safepoint(word_size,
1552                                  false /* expect_null_mutator_alloc_region */);
1553   if (result != NULL) {
1554     assert(*succeeded, "sanity");
1555     return result;
1556   }
1557 
1558   // In a G1 heap, we're supposed to keep allocation from failing by
1559   // incremental pauses.  Therefore, at least for now, we'll favor
1560   // expansion over collection.  (This might change in the future if we can
1561   // do something smarter than full collection to satisfy a failed alloc.)
1562   result = expand_and_allocate(word_size);
1563   if (result != NULL) {
1564     assert(*succeeded, "sanity");
1565     return result;
1566   }
1567 
1568   // Expansion didn't work, we'll try to do a Full GC.
1569   bool gc_succeeded = do_collection(false, /* explicit_gc */
1570                                     false, /* clear_all_soft_refs */
1571                                     word_size);
1572   if (!gc_succeeded) {
1573     *succeeded = false;
1574     return NULL;
1575   }
1576 
1577   // Retry the allocation
1578   result = attempt_allocation_at_safepoint(word_size,
1579                                   true /* expect_null_mutator_alloc_region */);
1580   if (result != NULL) {
1581     assert(*succeeded, "sanity");
1582     return result;
1583   }
1584 
1585   // Then, try a Full GC that will collect all soft references.
1586   gc_succeeded = do_collection(false, /* explicit_gc */
1587                                true,  /* clear_all_soft_refs */
1588                                word_size);
1589   if (!gc_succeeded) {
1590     *succeeded = false;
1591     return NULL;
1592   }
1593 
1594   // Retry the allocation once more
1595   result = attempt_allocation_at_safepoint(word_size,
1596                                   true /* expect_null_mutator_alloc_region */);
1597   if (result != NULL) {
1598     assert(*succeeded, "sanity");
1599     return result;
1600   }
1601 
1602   assert(!collector_policy()->should_clear_all_soft_refs(),
1603          "Flag should have been handled and cleared prior to this point");
1604 
1605   // What else?  We might try synchronous finalization later.  If the total
1606   // space available is large enough for the allocation, then a more
1607   // complete compaction phase than we've tried so far might be
1608   // appropriate.
1609   assert(*succeeded, "sanity");
1610   return NULL;
1611 }
1612 
1613 // Attempting to expand the heap sufficiently
1614 // to support an allocation of the given "word_size".  If
1615 // successful, perform the allocation and return the address of the
1616 // allocated block, or else "NULL".
1617 
1618 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1619   assert_at_safepoint(true /* should_be_vm_thread */);
1620 
1621   verify_region_sets_optional();
1622 
1623   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1624   if (expand(expand_bytes)) {
1625     _hrs.verify_optional();
1626     verify_region_sets_optional();
1627     return attempt_allocation_at_safepoint(word_size,
1628                                  false /* expect_null_mutator_alloc_region */);
1629   }
1630   return NULL;
1631 }
1632 
1633 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1634                                              HeapWord* new_end) {
1635   assert(old_end != new_end, "don't call this otherwise");
1636   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1637 
1638   // Update the committed mem region.
1639   _g1_committed.set_end(new_end);
1640   // Tell the card table about the update.
1641   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1642   // Tell the BOT about the update.
1643   _bot_shared->resize(_g1_committed.word_size());
1644 }
1645 
1646 bool G1CollectedHeap::expand(size_t expand_bytes) {
1647   size_t old_mem_size = _g1_storage.committed_size();
1648   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1649   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1650                                        HeapRegion::GrainBytes);
1651 
1652   if (Verbose && PrintGC) {
1653     gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
1654                            old_mem_size/K, aligned_expand_bytes/K);
1655   }
1656 
1657   // First commit the memory.
1658   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1659   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1660   if (successful) {
1661     // Then propagate this update to the necessary data structures.
1662     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1663     update_committed_space(old_end, new_end);
1664 
1665     FreeRegionList expansion_list("Local Expansion List");
1666     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1667     assert(mr.start() == old_end, "post-condition");
1668     // mr might be a smaller region than what was requested if
1669     // expand_by() was unable to allocate the HeapRegion instances
1670     assert(mr.end() <= new_end, "post-condition");
1671 
1672     size_t actual_expand_bytes = mr.byte_size();
1673     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1674     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1675            "post-condition");
1676     if (actual_expand_bytes < aligned_expand_bytes) {
1677       // We could not expand _hrs to the desired size. In this case we
1678       // need to shrink the committed space accordingly.
1679       assert(mr.end() < new_end, "invariant");
1680 
1681       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1682       // First uncommit the memory.
1683       _g1_storage.shrink_by(diff_bytes);
1684       // Then propagate this update to the necessary data structures.
1685       update_committed_space(new_end, mr.end());
1686     }
1687     _free_list.add_as_tail(&expansion_list);
1688 
1689     if (_hr_printer.is_active()) {
1690       HeapWord* curr = mr.start();
1691       while (curr < mr.end()) {
1692         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1693         _hr_printer.commit(curr, curr_end);
1694         curr = curr_end;
1695       }
1696       assert(curr == mr.end(), "post-condition");
1697     }
1698   } else {
1699     // The expansion of the virtual storage space was unsuccessful.
1700     // Let's see if it was because we ran out of swap.
1701     if (G1ExitOnExpansionFailure &&
1702         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1703       // We had head room...
1704       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1705     }
1706   }
1707 
1708   if (Verbose && PrintGC) {
1709     size_t new_mem_size = _g1_storage.committed_size();
1710     gclog_or_tty->print_cr("...%s, expanded to %ldK",
1711                            (successful ? "Successful" : "Failed"),
1712                            new_mem_size/K);
1713   }
1714   return successful;
1715 }
1716 
1717 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1718   size_t old_mem_size = _g1_storage.committed_size();
1719   size_t aligned_shrink_bytes =
1720     ReservedSpace::page_align_size_down(shrink_bytes);
1721   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1722                                          HeapRegion::GrainBytes);
1723   size_t num_regions_deleted = 0;
1724   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1725   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1726   assert(mr.end() == old_end, "post-condition");
1727   if (mr.byte_size() > 0) {
1728     if (_hr_printer.is_active()) {
1729       HeapWord* curr = mr.end();
1730       while (curr > mr.start()) {
1731         HeapWord* curr_end = curr;
1732         curr -= HeapRegion::GrainWords;
1733         _hr_printer.uncommit(curr, curr_end);
1734       }
1735       assert(curr == mr.start(), "post-condition");
1736     }
1737 
1738     _g1_storage.shrink_by(mr.byte_size());
1739     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1740     assert(mr.start() == new_end, "post-condition");
1741 
1742     _expansion_regions += num_regions_deleted;
1743     update_committed_space(old_end, new_end);
1744     HeapRegionRemSet::shrink_heap(n_regions());
1745 
1746     if (Verbose && PrintGC) {
1747       size_t new_mem_size = _g1_storage.committed_size();
1748       gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1749                              old_mem_size/K, aligned_shrink_bytes/K,
1750                              new_mem_size/K);
1751     }
1752   }
1753 }
1754 
1755 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1756   verify_region_sets_optional();
1757 
1758   // We should only reach here at the end of a Full GC which means we
1759   // should not not be holding to any GC alloc regions. The method
1760   // below will make sure of that and do any remaining clean up.
1761   abandon_gc_alloc_regions();
1762 
1763   // Instead of tearing down / rebuilding the free lists here, we
1764   // could instead use the remove_all_pending() method on free_list to
1765   // remove only the ones that we need to remove.
1766   tear_down_region_lists();  // We will rebuild them in a moment.
1767   shrink_helper(shrink_bytes);
1768   rebuild_region_lists();
1769 
1770   _hrs.verify_optional();
1771   verify_region_sets_optional();
1772 }
1773 
1774 // Public methods.
1775 
1776 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1777 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1778 #endif // _MSC_VER
1779 
1780 
1781 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1782   SharedHeap(policy_),
1783   _g1_policy(policy_),
1784   _dirty_card_queue_set(false),
1785   _into_cset_dirty_card_queue_set(false),
1786   _is_alive_closure(this),
1787   _ref_processor(NULL),
1788   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1789   _bot_shared(NULL),
1790   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1791   _evac_failure_scan_stack(NULL) ,
1792   _mark_in_progress(false),
1793   _cg1r(NULL), _summary_bytes_used(0),
1794   _refine_cte_cl(NULL),
1795   _full_collection(false),
1796   _free_list("Master Free List"),
1797   _secondary_free_list("Secondary Free List"),
1798   _humongous_set("Master Humongous Set"),
1799   _free_regions_coming(false),
1800   _young_list(new YoungList(this)),
1801   _gc_time_stamp(0),
1802   _retained_old_gc_alloc_region(NULL),
1803   _surviving_young_words(NULL),
1804   _full_collections_completed(0),
1805   _in_cset_fast_test(NULL),
1806   _in_cset_fast_test_base(NULL),
1807   _dirty_cards_region_list(NULL) {
1808   _g1h = this; // To catch bugs.
1809   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1810     vm_exit_during_initialization("Failed necessary allocation.");
1811   }
1812 
1813   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1814 
1815   int n_queues = MAX2((int)ParallelGCThreads, 1);
1816   _task_queues = new RefToScanQueueSet(n_queues);
1817 
1818   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1819   assert(n_rem_sets > 0, "Invariant.");
1820 
1821   HeapRegionRemSetIterator** iter_arr =
1822     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1823   for (int i = 0; i < n_queues; i++) {
1824     iter_arr[i] = new HeapRegionRemSetIterator();
1825   }
1826   _rem_set_iterator = iter_arr;
1827 
1828   for (int i = 0; i < n_queues; i++) {
1829     RefToScanQueue* q = new RefToScanQueue();
1830     q->initialize();
1831     _task_queues->register_queue(i, q);
1832   }
1833 
1834   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1835 }
1836 
1837 jint G1CollectedHeap::initialize() {
1838   CollectedHeap::pre_initialize();
1839   os::enable_vtime();
1840 
1841   // Necessary to satisfy locking discipline assertions.
1842 
1843   MutexLocker x(Heap_lock);
1844 
1845   // We have to initialize the printer before committing the heap, as
1846   // it will be used then.
1847   _hr_printer.set_active(G1PrintHeapRegions);
1848 
1849   // While there are no constraints in the GC code that HeapWordSize
1850   // be any particular value, there are multiple other areas in the
1851   // system which believe this to be true (e.g. oop->object_size in some
1852   // cases incorrectly returns the size in wordSize units rather than
1853   // HeapWordSize).
1854   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1855 
1856   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1857   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1858 
1859   // Ensure that the sizes are properly aligned.
1860   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1861   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1862 
1863   _cg1r = new ConcurrentG1Refine();
1864 
1865   // Reserve the maximum.
1866   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1867   // Includes the perm-gen.
1868 
1869   // When compressed oops are enabled, the preferred heap base
1870   // is calculated by subtracting the requested size from the
1871   // 32Gb boundary and using the result as the base address for
1872   // heap reservation. If the requested size is not aligned to
1873   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1874   // into the ReservedHeapSpace constructor) then the actual
1875   // base of the reserved heap may end up differing from the
1876   // address that was requested (i.e. the preferred heap base).
1877   // If this happens then we could end up using a non-optimal
1878   // compressed oops mode.
1879 
1880   // Since max_byte_size is aligned to the size of a heap region (checked
1881   // above), we also need to align the perm gen size as it might not be.
1882   const size_t total_reserved = max_byte_size +
1883                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1884   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1885 
1886   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1887 
1888   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1889                             UseLargePages, addr);
1890 
1891   if (UseCompressedOops) {
1892     if (addr != NULL && !heap_rs.is_reserved()) {
1893       // Failed to reserve at specified address - the requested memory
1894       // region is taken already, for example, by 'java' launcher.
1895       // Try again to reserver heap higher.
1896       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1897 
1898       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1899                                  UseLargePages, addr);
1900 
1901       if (addr != NULL && !heap_rs0.is_reserved()) {
1902         // Failed to reserve at specified address again - give up.
1903         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1904         assert(addr == NULL, "");
1905 
1906         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1907                                    UseLargePages, addr);
1908         heap_rs = heap_rs1;
1909       } else {
1910         heap_rs = heap_rs0;
1911       }
1912     }
1913   }
1914 
1915   if (!heap_rs.is_reserved()) {
1916     vm_exit_during_initialization("Could not reserve enough space for object heap");
1917     return JNI_ENOMEM;
1918   }
1919 
1920   // It is important to do this in a way such that concurrent readers can't
1921   // temporarily think somethings in the heap.  (I've actually seen this
1922   // happen in asserts: DLD.)
1923   _reserved.set_word_size(0);
1924   _reserved.set_start((HeapWord*)heap_rs.base());
1925   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1926 
1927   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1928 
1929   // Create the gen rem set (and barrier set) for the entire reserved region.
1930   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1931   set_barrier_set(rem_set()->bs());
1932   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1933     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1934   } else {
1935     vm_exit_during_initialization("G1 requires a mod ref bs.");
1936     return JNI_ENOMEM;
1937   }
1938 
1939   // Also create a G1 rem set.
1940   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1941     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1942   } else {
1943     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1944     return JNI_ENOMEM;
1945   }
1946 
1947   // Carve out the G1 part of the heap.
1948 
1949   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1950   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1951                            g1_rs.size()/HeapWordSize);
1952   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1953 
1954   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1955 
1956   _g1_storage.initialize(g1_rs, 0);
1957   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1958   _hrs.initialize((HeapWord*) _g1_reserved.start(),
1959                   (HeapWord*) _g1_reserved.end(),
1960                   _expansion_regions);
1961 
1962   // 6843694 - ensure that the maximum region index can fit
1963   // in the remembered set structures.
1964   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1965   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1966 
1967   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1968   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1969   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
1970             "too many cards per region");
1971 
1972   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
1973 
1974   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1975                                              heap_word_size(init_byte_size));
1976 
1977   _g1h = this;
1978 
1979    _in_cset_fast_test_length = max_regions();
1980    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
1981 
1982    // We're biasing _in_cset_fast_test to avoid subtracting the
1983    // beginning of the heap every time we want to index; basically
1984    // it's the same with what we do with the card table.
1985    _in_cset_fast_test = _in_cset_fast_test_base -
1986                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
1987 
1988    // Clear the _cset_fast_test bitmap in anticipation of adding
1989    // regions to the incremental collection set for the first
1990    // evacuation pause.
1991    clear_cset_fast_test();
1992 
1993   // Create the ConcurrentMark data structure and thread.
1994   // (Must do this late, so that "max_regions" is defined.)
1995   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
1996   _cmThread = _cm->cmThread();
1997 
1998   // Initialize the from_card cache structure of HeapRegionRemSet.
1999   HeapRegionRemSet::init_heap(max_regions());
2000 
2001   // Now expand into the initial heap size.
2002   if (!expand(init_byte_size)) {
2003     vm_exit_during_initialization("Failed to allocate initial heap.");
2004     return JNI_ENOMEM;
2005   }
2006 
2007   // Perform any initialization actions delegated to the policy.
2008   g1_policy()->init();
2009 
2010   g1_policy()->note_start_of_mark_thread();
2011 
2012   _refine_cte_cl =
2013     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2014                                     g1_rem_set(),
2015                                     concurrent_g1_refine());
2016   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2017 
2018   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2019                                                SATB_Q_FL_lock,
2020                                                G1SATBProcessCompletedThreshold,
2021                                                Shared_SATB_Q_lock);
2022 
2023   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2024                                                 DirtyCardQ_FL_lock,
2025                                                 concurrent_g1_refine()->yellow_zone(),
2026                                                 concurrent_g1_refine()->red_zone(),
2027                                                 Shared_DirtyCardQ_lock);
2028 
2029   if (G1DeferredRSUpdate) {
2030     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2031                                       DirtyCardQ_FL_lock,
2032                                       -1, // never trigger processing
2033                                       -1, // no limit on length
2034                                       Shared_DirtyCardQ_lock,
2035                                       &JavaThread::dirty_card_queue_set());
2036   }
2037 
2038   // Initialize the card queue set used to hold cards containing
2039   // references into the collection set.
2040   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2041                                              DirtyCardQ_FL_lock,
2042                                              -1, // never trigger processing
2043                                              -1, // no limit on length
2044                                              Shared_DirtyCardQ_lock,
2045                                              &JavaThread::dirty_card_queue_set());
2046 
2047   // In case we're keeping closure specialization stats, initialize those
2048   // counts and that mechanism.
2049   SpecializationStats::clear();
2050 
2051   // Do later initialization work for concurrent refinement.
2052   _cg1r->init();
2053 
2054   // Here we allocate the dummy full region that is required by the
2055   // G1AllocRegion class. If we don't pass an address in the reserved
2056   // space here, lots of asserts fire.
2057 
2058   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2059                                              _g1_reserved.start());
2060   // We'll re-use the same region whether the alloc region will
2061   // require BOT updates or not and, if it doesn't, then a non-young
2062   // region will complain that it cannot support allocations without
2063   // BOT updates. So we'll tag the dummy region as young to avoid that.
2064   dummy_region->set_young();
2065   // Make sure it's full.
2066   dummy_region->set_top(dummy_region->end());
2067   G1AllocRegion::setup(this, dummy_region);
2068 
2069   init_mutator_alloc_region();
2070 
2071   // Do create of the monitoring and management support so that
2072   // values in the heap have been properly initialized.
2073   _g1mm = new G1MonitoringSupport(this, &_g1_storage);
2074 
2075   return JNI_OK;
2076 }
2077 
2078 void G1CollectedHeap::ref_processing_init() {
2079   // Reference processing in G1 currently works as follows:
2080   //
2081   // * There is only one reference processor instance that
2082   //   'spans' the entire heap. It is created by the code
2083   //   below.
2084   // * Reference discovery is not enabled during an incremental
2085   //   pause (see 6484982).
2086   // * Discoverered refs are not enqueued nor are they processed
2087   //   during an incremental pause (see 6484982).
2088   // * Reference discovery is enabled at initial marking.
2089   // * Reference discovery is disabled and the discovered
2090   //   references processed etc during remarking.
2091   // * Reference discovery is MT (see below).
2092   // * Reference discovery requires a barrier (see below).
2093   // * Reference processing is currently not MT (see 6608385).
2094   // * A full GC enables (non-MT) reference discovery and
2095   //   processes any discovered references.
2096 
2097   SharedHeap::ref_processing_init();
2098   MemRegion mr = reserved_region();
2099   _ref_processor =
2100     new ReferenceProcessor(mr,    // span
2101                            ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
2102                            (int) ParallelGCThreads,   // degree of mt processing
2103                            ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
2104                            (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
2105                            false,                     // Reference discovery is not atomic
2106                            &_is_alive_closure,        // is alive closure for efficiency
2107                            true);                     // Setting next fields of discovered
2108                                                       // lists requires a barrier.
2109 }
2110 
2111 size_t G1CollectedHeap::capacity() const {
2112   return _g1_committed.byte_size();
2113 }
2114 
2115 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2116                                                  DirtyCardQueue* into_cset_dcq,
2117                                                  bool concurrent,
2118                                                  int worker_i) {
2119   // Clean cards in the hot card cache
2120   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2121 
2122   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2123   int n_completed_buffers = 0;
2124   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2125     n_completed_buffers++;
2126   }
2127   g1_policy()->record_update_rs_processed_buffers(worker_i,
2128                                                   (double) n_completed_buffers);
2129   dcqs.clear_n_completed_buffers();
2130   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2131 }
2132 
2133 
2134 // Computes the sum of the storage used by the various regions.
2135 
2136 size_t G1CollectedHeap::used() const {
2137   assert(Heap_lock->owner() != NULL,
2138          "Should be owned on this thread's behalf.");
2139   size_t result = _summary_bytes_used;
2140   // Read only once in case it is set to NULL concurrently
2141   HeapRegion* hr = _mutator_alloc_region.get();
2142   if (hr != NULL)
2143     result += hr->used();
2144   return result;
2145 }
2146 
2147 size_t G1CollectedHeap::used_unlocked() const {
2148   size_t result = _summary_bytes_used;
2149   return result;
2150 }
2151 
2152 class SumUsedClosure: public HeapRegionClosure {
2153   size_t _used;
2154 public:
2155   SumUsedClosure() : _used(0) {}
2156   bool doHeapRegion(HeapRegion* r) {
2157     if (!r->continuesHumongous()) {
2158       _used += r->used();
2159     }
2160     return false;
2161   }
2162   size_t result() { return _used; }
2163 };
2164 
2165 size_t G1CollectedHeap::recalculate_used() const {
2166   SumUsedClosure blk;
2167   heap_region_iterate(&blk);
2168   return blk.result();
2169 }
2170 
2171 size_t G1CollectedHeap::unsafe_max_alloc() {
2172   if (free_regions() > 0) return HeapRegion::GrainBytes;
2173   // otherwise, is there space in the current allocation region?
2174 
2175   // We need to store the current allocation region in a local variable
2176   // here. The problem is that this method doesn't take any locks and
2177   // there may be other threads which overwrite the current allocation
2178   // region field. attempt_allocation(), for example, sets it to NULL
2179   // and this can happen *after* the NULL check here but before the call
2180   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2181   // to be a problem in the optimized build, since the two loads of the
2182   // current allocation region field are optimized away.
2183   HeapRegion* hr = _mutator_alloc_region.get();
2184   if (hr == NULL) {
2185     return 0;
2186   }
2187   return hr->free();
2188 }
2189 
2190 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2191   return
2192     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
2193      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
2194 }
2195 
2196 #ifndef PRODUCT
2197 void G1CollectedHeap::allocate_dummy_regions() {
2198   // Let's fill up most of the region
2199   size_t word_size = HeapRegion::GrainWords - 1024;
2200   // And as a result the region we'll allocate will be humongous.
2201   guarantee(isHumongous(word_size), "sanity");
2202 
2203   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2204     // Let's use the existing mechanism for the allocation
2205     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2206     if (dummy_obj != NULL) {
2207       MemRegion mr(dummy_obj, word_size);
2208       CollectedHeap::fill_with_object(mr);
2209     } else {
2210       // If we can't allocate once, we probably cannot allocate
2211       // again. Let's get out of the loop.
2212       break;
2213     }
2214   }
2215 }
2216 #endif // !PRODUCT
2217 
2218 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2219   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2220 
2221   // We assume that if concurrent == true, then the caller is a
2222   // concurrent thread that was joined the Suspendible Thread
2223   // Set. If there's ever a cheap way to check this, we should add an
2224   // assert here.
2225 
2226   // We have already incremented _total_full_collections at the start
2227   // of the GC, so total_full_collections() represents how many full
2228   // collections have been started.
2229   unsigned int full_collections_started = total_full_collections();
2230 
2231   // Given that this method is called at the end of a Full GC or of a
2232   // concurrent cycle, and those can be nested (i.e., a Full GC can
2233   // interrupt a concurrent cycle), the number of full collections
2234   // completed should be either one (in the case where there was no
2235   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2236   // behind the number of full collections started.
2237 
2238   // This is the case for the inner caller, i.e. a Full GC.
2239   assert(concurrent ||
2240          (full_collections_started == _full_collections_completed + 1) ||
2241          (full_collections_started == _full_collections_completed + 2),
2242          err_msg("for inner caller (Full GC): full_collections_started = %u "
2243                  "is inconsistent with _full_collections_completed = %u",
2244                  full_collections_started, _full_collections_completed));
2245 
2246   // This is the case for the outer caller, i.e. the concurrent cycle.
2247   assert(!concurrent ||
2248          (full_collections_started == _full_collections_completed + 1),
2249          err_msg("for outer caller (concurrent cycle): "
2250                  "full_collections_started = %u "
2251                  "is inconsistent with _full_collections_completed = %u",
2252                  full_collections_started, _full_collections_completed));
2253 
2254   _full_collections_completed += 1;
2255 
2256   // We need to clear the "in_progress" flag in the CM thread before
2257   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2258   // is set) so that if a waiter requests another System.gc() it doesn't
2259   // incorrectly see that a marking cyle is still in progress.
2260   if (concurrent) {
2261     _cmThread->clear_in_progress();
2262   }
2263 
2264   // This notify_all() will ensure that a thread that called
2265   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2266   // and it's waiting for a full GC to finish will be woken up. It is
2267   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2268   FullGCCount_lock->notify_all();
2269 }
2270 
2271 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2272   assert_at_safepoint(true /* should_be_vm_thread */);
2273   GCCauseSetter gcs(this, cause);
2274   switch (cause) {
2275     case GCCause::_heap_inspection:
2276     case GCCause::_heap_dump: {
2277       HandleMark hm;
2278       do_full_collection(false);         // don't clear all soft refs
2279       break;
2280     }
2281     default: // XXX FIX ME
2282       ShouldNotReachHere(); // Unexpected use of this function
2283   }
2284 }
2285 
2286 void G1CollectedHeap::collect(GCCause::Cause cause) {
2287   // The caller doesn't have the Heap_lock
2288   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2289 
2290   unsigned int gc_count_before;
2291   unsigned int full_gc_count_before;
2292   {
2293     MutexLocker ml(Heap_lock);
2294 
2295     // Read the GC count while holding the Heap_lock
2296     gc_count_before = SharedHeap::heap()->total_collections();
2297     full_gc_count_before = SharedHeap::heap()->total_full_collections();
2298   }
2299 
2300   if (should_do_concurrent_full_gc(cause)) {
2301     // Schedule an initial-mark evacuation pause that will start a
2302     // concurrent cycle. We're setting word_size to 0 which means that
2303     // we are not requesting a post-GC allocation.
2304     VM_G1IncCollectionPause op(gc_count_before,
2305                                0,     /* word_size */
2306                                true,  /* should_initiate_conc_mark */
2307                                g1_policy()->max_pause_time_ms(),
2308                                cause);
2309     VMThread::execute(&op);
2310   } else {
2311     if (cause == GCCause::_gc_locker
2312         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2313 
2314       // Schedule a standard evacuation pause. We're setting word_size
2315       // to 0 which means that we are not requesting a post-GC allocation.
2316       VM_G1IncCollectionPause op(gc_count_before,
2317                                  0,     /* word_size */
2318                                  false, /* should_initiate_conc_mark */
2319                                  g1_policy()->max_pause_time_ms(),
2320                                  cause);
2321       VMThread::execute(&op);
2322     } else {
2323       // Schedule a Full GC.
2324       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2325       VMThread::execute(&op);
2326     }
2327   }
2328 }
2329 
2330 bool G1CollectedHeap::is_in(const void* p) const {
2331   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
2332   if (hr != NULL) {
2333     return hr->is_in(p);
2334   } else {
2335     return _perm_gen->as_gen()->is_in(p);
2336   }
2337 }
2338 
2339 // Iteration functions.
2340 
2341 // Iterates an OopClosure over all ref-containing fields of objects
2342 // within a HeapRegion.
2343 
2344 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2345   MemRegion _mr;
2346   OopClosure* _cl;
2347 public:
2348   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2349     : _mr(mr), _cl(cl) {}
2350   bool doHeapRegion(HeapRegion* r) {
2351     if (! r->continuesHumongous()) {
2352       r->oop_iterate(_cl);
2353     }
2354     return false;
2355   }
2356 };
2357 
2358 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2359   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2360   heap_region_iterate(&blk);
2361   if (do_perm) {
2362     perm_gen()->oop_iterate(cl);
2363   }
2364 }
2365 
2366 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2367   IterateOopClosureRegionClosure blk(mr, cl);
2368   heap_region_iterate(&blk);
2369   if (do_perm) {
2370     perm_gen()->oop_iterate(cl);
2371   }
2372 }
2373 
2374 // Iterates an ObjectClosure over all objects within a HeapRegion.
2375 
2376 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2377   ObjectClosure* _cl;
2378 public:
2379   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2380   bool doHeapRegion(HeapRegion* r) {
2381     if (! r->continuesHumongous()) {
2382       r->object_iterate(_cl);
2383     }
2384     return false;
2385   }
2386 };
2387 
2388 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2389   IterateObjectClosureRegionClosure blk(cl);
2390   heap_region_iterate(&blk);
2391   if (do_perm) {
2392     perm_gen()->object_iterate(cl);
2393   }
2394 }
2395 
2396 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2397   // FIXME: is this right?
2398   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2399 }
2400 
2401 // Calls a SpaceClosure on a HeapRegion.
2402 
2403 class SpaceClosureRegionClosure: public HeapRegionClosure {
2404   SpaceClosure* _cl;
2405 public:
2406   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2407   bool doHeapRegion(HeapRegion* r) {
2408     _cl->do_space(r);
2409     return false;
2410   }
2411 };
2412 
2413 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2414   SpaceClosureRegionClosure blk(cl);
2415   heap_region_iterate(&blk);
2416 }
2417 
2418 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2419   _hrs.iterate(cl);
2420 }
2421 
2422 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2423                                                HeapRegionClosure* cl) const {
2424   _hrs.iterate_from(r, cl);
2425 }
2426 
2427 void
2428 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2429                                                  int worker,
2430                                                  jint claim_value) {
2431   const size_t regions = n_regions();
2432   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2433   // try to spread out the starting points of the workers
2434   const size_t start_index = regions / worker_num * (size_t) worker;
2435 
2436   // each worker will actually look at all regions
2437   for (size_t count = 0; count < regions; ++count) {
2438     const size_t index = (start_index + count) % regions;
2439     assert(0 <= index && index < regions, "sanity");
2440     HeapRegion* r = region_at(index);
2441     // we'll ignore "continues humongous" regions (we'll process them
2442     // when we come across their corresponding "start humongous"
2443     // region) and regions already claimed
2444     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2445       continue;
2446     }
2447     // OK, try to claim it
2448     if (r->claimHeapRegion(claim_value)) {
2449       // success!
2450       assert(!r->continuesHumongous(), "sanity");
2451       if (r->startsHumongous()) {
2452         // If the region is "starts humongous" we'll iterate over its
2453         // "continues humongous" first; in fact we'll do them
2454         // first. The order is important. In on case, calling the
2455         // closure on the "starts humongous" region might de-allocate
2456         // and clear all its "continues humongous" regions and, as a
2457         // result, we might end up processing them twice. So, we'll do
2458         // them first (notice: most closures will ignore them anyway) and
2459         // then we'll do the "starts humongous" region.
2460         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
2461           HeapRegion* chr = region_at(ch_index);
2462 
2463           // if the region has already been claimed or it's not
2464           // "continues humongous" we're done
2465           if (chr->claim_value() == claim_value ||
2466               !chr->continuesHumongous()) {
2467             break;
2468           }
2469 
2470           // Noone should have claimed it directly. We can given
2471           // that we claimed its "starts humongous" region.
2472           assert(chr->claim_value() != claim_value, "sanity");
2473           assert(chr->humongous_start_region() == r, "sanity");
2474 
2475           if (chr->claimHeapRegion(claim_value)) {
2476             // we should always be able to claim it; noone else should
2477             // be trying to claim this region
2478 
2479             bool res2 = cl->doHeapRegion(chr);
2480             assert(!res2, "Should not abort");
2481 
2482             // Right now, this holds (i.e., no closure that actually
2483             // does something with "continues humongous" regions
2484             // clears them). We might have to weaken it in the future,
2485             // but let's leave these two asserts here for extra safety.
2486             assert(chr->continuesHumongous(), "should still be the case");
2487             assert(chr->humongous_start_region() == r, "sanity");
2488           } else {
2489             guarantee(false, "we should not reach here");
2490           }
2491         }
2492       }
2493 
2494       assert(!r->continuesHumongous(), "sanity");
2495       bool res = cl->doHeapRegion(r);
2496       assert(!res, "Should not abort");
2497     }
2498   }
2499 }
2500 
2501 class ResetClaimValuesClosure: public HeapRegionClosure {
2502 public:
2503   bool doHeapRegion(HeapRegion* r) {
2504     r->set_claim_value(HeapRegion::InitialClaimValue);
2505     return false;
2506   }
2507 };
2508 
2509 void
2510 G1CollectedHeap::reset_heap_region_claim_values() {
2511   ResetClaimValuesClosure blk;
2512   heap_region_iterate(&blk);
2513 }
2514 
2515 #ifdef ASSERT
2516 // This checks whether all regions in the heap have the correct claim
2517 // value. I also piggy-backed on this a check to ensure that the
2518 // humongous_start_region() information on "continues humongous"
2519 // regions is correct.
2520 
2521 class CheckClaimValuesClosure : public HeapRegionClosure {
2522 private:
2523   jint _claim_value;
2524   size_t _failures;
2525   HeapRegion* _sh_region;
2526 public:
2527   CheckClaimValuesClosure(jint claim_value) :
2528     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2529   bool doHeapRegion(HeapRegion* r) {
2530     if (r->claim_value() != _claim_value) {
2531       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2532                              "claim value = %d, should be %d",
2533                              r->bottom(), r->end(), r->claim_value(),
2534                              _claim_value);
2535       ++_failures;
2536     }
2537     if (!r->isHumongous()) {
2538       _sh_region = NULL;
2539     } else if (r->startsHumongous()) {
2540       _sh_region = r;
2541     } else if (r->continuesHumongous()) {
2542       if (r->humongous_start_region() != _sh_region) {
2543         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2544                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2545                                r->bottom(), r->end(),
2546                                r->humongous_start_region(),
2547                                _sh_region);
2548         ++_failures;
2549       }
2550     }
2551     return false;
2552   }
2553   size_t failures() {
2554     return _failures;
2555   }
2556 };
2557 
2558 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2559   CheckClaimValuesClosure cl(claim_value);
2560   heap_region_iterate(&cl);
2561   return cl.failures() == 0;
2562 }
2563 #endif // ASSERT
2564 
2565 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2566   HeapRegion* r = g1_policy()->collection_set();
2567   while (r != NULL) {
2568     HeapRegion* next = r->next_in_collection_set();
2569     if (cl->doHeapRegion(r)) {
2570       cl->incomplete();
2571       return;
2572     }
2573     r = next;
2574   }
2575 }
2576 
2577 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2578                                                   HeapRegionClosure *cl) {
2579   if (r == NULL) {
2580     // The CSet is empty so there's nothing to do.
2581     return;
2582   }
2583 
2584   assert(r->in_collection_set(),
2585          "Start region must be a member of the collection set.");
2586   HeapRegion* cur = r;
2587   while (cur != NULL) {
2588     HeapRegion* next = cur->next_in_collection_set();
2589     if (cl->doHeapRegion(cur) && false) {
2590       cl->incomplete();
2591       return;
2592     }
2593     cur = next;
2594   }
2595   cur = g1_policy()->collection_set();
2596   while (cur != r) {
2597     HeapRegion* next = cur->next_in_collection_set();
2598     if (cl->doHeapRegion(cur) && false) {
2599       cl->incomplete();
2600       return;
2601     }
2602     cur = next;
2603   }
2604 }
2605 
2606 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2607   return n_regions() > 0 ? region_at(0) : NULL;
2608 }
2609 
2610 
2611 Space* G1CollectedHeap::space_containing(const void* addr) const {
2612   Space* res = heap_region_containing(addr);
2613   if (res == NULL)
2614     res = perm_gen()->space_containing(addr);
2615   return res;
2616 }
2617 
2618 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2619   Space* sp = space_containing(addr);
2620   if (sp != NULL) {
2621     return sp->block_start(addr);
2622   }
2623   return NULL;
2624 }
2625 
2626 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2627   Space* sp = space_containing(addr);
2628   assert(sp != NULL, "block_size of address outside of heap");
2629   return sp->block_size(addr);
2630 }
2631 
2632 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2633   Space* sp = space_containing(addr);
2634   return sp->block_is_obj(addr);
2635 }
2636 
2637 bool G1CollectedHeap::supports_tlab_allocation() const {
2638   return true;
2639 }
2640 
2641 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2642   return HeapRegion::GrainBytes;
2643 }
2644 
2645 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2646   // Return the remaining space in the cur alloc region, but not less than
2647   // the min TLAB size.
2648 
2649   // Also, this value can be at most the humongous object threshold,
2650   // since we can't allow tlabs to grow big enough to accomodate
2651   // humongous objects.
2652 
2653   HeapRegion* hr = _mutator_alloc_region.get();
2654   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2655   if (hr == NULL) {
2656     return max_tlab_size;
2657   } else {
2658     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2659   }
2660 }
2661 
2662 size_t G1CollectedHeap::max_capacity() const {
2663   return _g1_reserved.byte_size();
2664 }
2665 
2666 jlong G1CollectedHeap::millis_since_last_gc() {
2667   // assert(false, "NYI");
2668   return 0;
2669 }
2670 
2671 void G1CollectedHeap::prepare_for_verify() {
2672   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2673     ensure_parsability(false);
2674   }
2675   g1_rem_set()->prepare_for_verify();
2676 }
2677 
2678 class VerifyLivenessOopClosure: public OopClosure {
2679   G1CollectedHeap* _g1h;
2680   VerifyOption _vo;
2681 public:
2682   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2683     _g1h(g1h), _vo(vo)
2684   { }
2685   void do_oop(narrowOop *p) { do_oop_work(p); }
2686   void do_oop(      oop *p) { do_oop_work(p); }
2687 
2688   template <class T> void do_oop_work(T *p) {
2689     oop obj = oopDesc::load_decode_heap_oop(p);
2690     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2691               "Dead object referenced by a not dead object");
2692   }
2693 };
2694 
2695 class VerifyObjsInRegionClosure: public ObjectClosure {
2696 private:
2697   G1CollectedHeap* _g1h;
2698   size_t _live_bytes;
2699   HeapRegion *_hr;
2700   VerifyOption _vo;
2701 public:
2702   // _vo == UsePrevMarking -> use "prev" marking information,
2703   // _vo == UseNextMarking -> use "next" marking information,
2704   // _vo == UseMarkWord    -> use mark word from object header.
2705   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2706     : _live_bytes(0), _hr(hr), _vo(vo) {
2707     _g1h = G1CollectedHeap::heap();
2708   }
2709   void do_object(oop o) {
2710     VerifyLivenessOopClosure isLive(_g1h, _vo);
2711     assert(o != NULL, "Huh?");
2712     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2713       // If the object is alive according to the mark word,
2714       // then verify that the marking information agrees.
2715       // Note we can't verify the contra-positive of the
2716       // above: if the object is dead (according to the mark
2717       // word), it may not be marked, or may have been marked
2718       // but has since became dead, or may have been allocated
2719       // since the last marking.
2720       if (_vo == VerifyOption_G1UseMarkWord) {
2721         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2722       }
2723 
2724       o->oop_iterate(&isLive);
2725       if (!_hr->obj_allocated_since_prev_marking(o)) {
2726         size_t obj_size = o->size();    // Make sure we don't overflow
2727         _live_bytes += (obj_size * HeapWordSize);
2728       }
2729     }
2730   }
2731   size_t live_bytes() { return _live_bytes; }
2732 };
2733 
2734 class PrintObjsInRegionClosure : public ObjectClosure {
2735   HeapRegion *_hr;
2736   G1CollectedHeap *_g1;
2737 public:
2738   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2739     _g1 = G1CollectedHeap::heap();
2740   };
2741 
2742   void do_object(oop o) {
2743     if (o != NULL) {
2744       HeapWord *start = (HeapWord *) o;
2745       size_t word_sz = o->size();
2746       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2747                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2748                           (void*) o, word_sz,
2749                           _g1->isMarkedPrev(o),
2750                           _g1->isMarkedNext(o),
2751                           _hr->obj_allocated_since_prev_marking(o));
2752       HeapWord *end = start + word_sz;
2753       HeapWord *cur;
2754       int *val;
2755       for (cur = start; cur < end; cur++) {
2756         val = (int *) cur;
2757         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2758       }
2759     }
2760   }
2761 };
2762 
2763 class VerifyRegionClosure: public HeapRegionClosure {
2764 private:
2765   bool         _allow_dirty;
2766   bool         _par;
2767   VerifyOption _vo;
2768   bool         _failures;
2769 public:
2770   // _vo == UsePrevMarking -> use "prev" marking information,
2771   // _vo == UseNextMarking -> use "next" marking information,
2772   // _vo == UseMarkWord    -> use mark word from object header.
2773   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2774     : _allow_dirty(allow_dirty),
2775       _par(par),
2776       _vo(vo),
2777       _failures(false) {}
2778 
2779   bool failures() {
2780     return _failures;
2781   }
2782 
2783   bool doHeapRegion(HeapRegion* r) {
2784     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2785               "Should be unclaimed at verify points.");
2786     if (!r->continuesHumongous()) {
2787       bool failures = false;
2788       r->verify(_allow_dirty, _vo, &failures);
2789       if (failures) {
2790         _failures = true;
2791       } else {
2792         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2793         r->object_iterate(&not_dead_yet_cl);
2794         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2795           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2796                                  "max_live_bytes "SIZE_FORMAT" "
2797                                  "< calculated "SIZE_FORMAT,
2798                                  r->bottom(), r->end(),
2799                                  r->max_live_bytes(),
2800                                  not_dead_yet_cl.live_bytes());
2801           _failures = true;
2802         }
2803       }
2804     }
2805     return false; // stop the region iteration if we hit a failure
2806   }
2807 };
2808 
2809 class VerifyRootsClosure: public OopsInGenClosure {
2810 private:
2811   G1CollectedHeap* _g1h;
2812   VerifyOption     _vo;
2813   bool             _failures;
2814 public:
2815   // _vo == UsePrevMarking -> use "prev" marking information,
2816   // _vo == UseNextMarking -> use "next" marking information,
2817   // _vo == UseMarkWord    -> use mark word from object header.
2818   VerifyRootsClosure(VerifyOption vo) :
2819     _g1h(G1CollectedHeap::heap()),
2820     _vo(vo),
2821     _failures(false) { }
2822 
2823   bool failures() { return _failures; }
2824 
2825   template <class T> void do_oop_nv(T* p) {
2826     T heap_oop = oopDesc::load_heap_oop(p);
2827     if (!oopDesc::is_null(heap_oop)) {
2828       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2829       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2830         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2831                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2832         if (_vo == VerifyOption_G1UseMarkWord) {
2833           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2834         }
2835         obj->print_on(gclog_or_tty);
2836         _failures = true;
2837       }
2838     }
2839   }
2840 
2841   void do_oop(oop* p)       { do_oop_nv(p); }
2842   void do_oop(narrowOop* p) { do_oop_nv(p); }
2843 };
2844 
2845 // This is the task used for parallel heap verification.
2846 
2847 class G1ParVerifyTask: public AbstractGangTask {
2848 private:
2849   G1CollectedHeap* _g1h;
2850   bool             _allow_dirty;
2851   VerifyOption     _vo;
2852   bool             _failures;
2853 
2854 public:
2855   // _vo == UsePrevMarking -> use "prev" marking information,
2856   // _vo == UseNextMarking -> use "next" marking information,
2857   // _vo == UseMarkWord    -> use mark word from object header.
2858   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
2859     AbstractGangTask("Parallel verify task"),
2860     _g1h(g1h),
2861     _allow_dirty(allow_dirty),
2862     _vo(vo),
2863     _failures(false) { }
2864 
2865   bool failures() {
2866     return _failures;
2867   }
2868 
2869   void work(int worker_i) {
2870     HandleMark hm;
2871     VerifyRegionClosure blk(_allow_dirty, true, _vo);
2872     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2873                                           HeapRegion::ParVerifyClaimValue);
2874     if (blk.failures()) {
2875       _failures = true;
2876     }
2877   }
2878 };
2879 
2880 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2881   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
2882 }
2883 
2884 void G1CollectedHeap::verify(bool allow_dirty,
2885                              bool silent,
2886                              VerifyOption vo) {
2887   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2888     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
2889     VerifyRootsClosure rootsCl(vo);
2890     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2891 
2892     // We apply the relevant closures to all the oops in the
2893     // system dictionary, the string table and the code cache.
2894     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
2895 
2896     process_strong_roots(true,      // activate StrongRootsScope
2897                          true,      // we set "collecting perm gen" to true,
2898                                     // so we don't reset the dirty cards in the perm gen.
2899                          SharedHeap::ScanningOption(so),  // roots scanning options
2900                          &rootsCl,
2901                          &blobsCl,
2902                          &rootsCl);
2903 
2904     // If we're verifying after the marking phase of a Full GC then we can't
2905     // treat the perm gen as roots into the G1 heap. Some of the objects in
2906     // the perm gen may be dead and hence not marked. If one of these dead
2907     // objects is considered to be a root then we may end up with a false
2908     // "Root location <x> points to dead ob <y>" failure.
2909     if (vo != VerifyOption_G1UseMarkWord) {
2910       // Since we used "collecting_perm_gen" == true above, we will not have
2911       // checked the refs from perm into the G1-collected heap. We check those
2912       // references explicitly below. Whether the relevant cards are dirty
2913       // is checked further below in the rem set verification.
2914       if (!silent) { gclog_or_tty->print("Permgen roots "); }
2915       perm_gen()->oop_iterate(&rootsCl);
2916     }
2917     bool failures = rootsCl.failures();
2918 
2919     if (vo != VerifyOption_G1UseMarkWord) {
2920       // If we're verifying during a full GC then the region sets
2921       // will have been torn down at the start of the GC. Therefore
2922       // verifying the region sets will fail. So we only verify
2923       // the region sets when not in a full GC.
2924       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
2925       verify_region_sets();
2926     }
2927 
2928     if (!silent) { gclog_or_tty->print("HeapRegions "); }
2929     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
2930       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2931              "sanity check");
2932 
2933       G1ParVerifyTask task(this, allow_dirty, vo);
2934       int n_workers = workers()->total_workers();
2935       set_par_threads(n_workers);
2936       workers()->run_task(&task);
2937       set_par_threads(0);
2938       if (task.failures()) {
2939         failures = true;
2940       }
2941 
2942       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
2943              "sanity check");
2944 
2945       reset_heap_region_claim_values();
2946 
2947       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2948              "sanity check");
2949     } else {
2950       VerifyRegionClosure blk(allow_dirty, false, vo);
2951       heap_region_iterate(&blk);
2952       if (blk.failures()) {
2953         failures = true;
2954       }
2955     }
2956     if (!silent) gclog_or_tty->print("RemSet ");
2957     rem_set()->verify();
2958 
2959     if (failures) {
2960       gclog_or_tty->print_cr("Heap:");
2961       print_on(gclog_or_tty, true /* extended */);
2962       gclog_or_tty->print_cr("");
2963 #ifndef PRODUCT
2964       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2965         concurrent_mark()->print_reachable("at-verification-failure",
2966                                            vo, false /* all */);
2967       }
2968 #endif
2969       gclog_or_tty->flush();
2970     }
2971     guarantee(!failures, "there should not have been any failures");
2972   } else {
2973     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2974   }
2975 }
2976 
2977 class PrintRegionClosure: public HeapRegionClosure {
2978   outputStream* _st;
2979 public:
2980   PrintRegionClosure(outputStream* st) : _st(st) {}
2981   bool doHeapRegion(HeapRegion* r) {
2982     r->print_on(_st);
2983     return false;
2984   }
2985 };
2986 
2987 void G1CollectedHeap::print() const { print_on(tty); }
2988 
2989 void G1CollectedHeap::print_on(outputStream* st) const {
2990   print_on(st, PrintHeapAtGCExtended);
2991 }
2992 
2993 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
2994   st->print(" %-20s", "garbage-first heap");
2995   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2996             capacity()/K, used_unlocked()/K);
2997   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
2998             _g1_storage.low_boundary(),
2999             _g1_storage.high(),
3000             _g1_storage.high_boundary());
3001   st->cr();
3002   st->print("  region size " SIZE_FORMAT "K, ",
3003             HeapRegion::GrainBytes/K);
3004   size_t young_regions = _young_list->length();
3005   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
3006             young_regions, young_regions * HeapRegion::GrainBytes / K);
3007   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
3008   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
3009             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
3010   st->cr();
3011   perm()->as_gen()->print_on(st);
3012   if (extended) {
3013     st->cr();
3014     print_on_extended(st);
3015   }
3016 }
3017 
3018 void G1CollectedHeap::print_on_extended(outputStream* st) const {
3019   PrintRegionClosure blk(st);
3020   heap_region_iterate(&blk);
3021 }
3022 
3023 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3024   if (G1CollectedHeap::use_parallel_gc_threads()) {
3025     workers()->print_worker_threads_on(st);
3026   }
3027   _cmThread->print_on(st);
3028   st->cr();
3029   _cm->print_worker_threads_on(st);
3030   _cg1r->print_worker_threads_on(st);
3031   st->cr();
3032 }
3033 
3034 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3035   if (G1CollectedHeap::use_parallel_gc_threads()) {
3036     workers()->threads_do(tc);
3037   }
3038   tc->do_thread(_cmThread);
3039   _cg1r->threads_do(tc);
3040 }
3041 
3042 void G1CollectedHeap::print_tracing_info() const {
3043   // We'll overload this to mean "trace GC pause statistics."
3044   if (TraceGen0Time || TraceGen1Time) {
3045     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3046     // to that.
3047     g1_policy()->print_tracing_info();
3048   }
3049   if (G1SummarizeRSetStats) {
3050     g1_rem_set()->print_summary_info();
3051   }
3052   if (G1SummarizeConcMark) {
3053     concurrent_mark()->print_summary_info();
3054   }
3055   g1_policy()->print_yg_surv_rate_info();
3056   SpecializationStats::print();
3057 }
3058 
3059 #ifndef PRODUCT
3060 // Helpful for debugging RSet issues.
3061 
3062 class PrintRSetsClosure : public HeapRegionClosure {
3063 private:
3064   const char* _msg;
3065   size_t _occupied_sum;
3066 
3067 public:
3068   bool doHeapRegion(HeapRegion* r) {
3069     HeapRegionRemSet* hrrs = r->rem_set();
3070     size_t occupied = hrrs->occupied();
3071     _occupied_sum += occupied;
3072 
3073     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3074                            HR_FORMAT_PARAMS(r));
3075     if (occupied == 0) {
3076       gclog_or_tty->print_cr("  RSet is empty");
3077     } else {
3078       hrrs->print();
3079     }
3080     gclog_or_tty->print_cr("----------");
3081     return false;
3082   }
3083 
3084   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3085     gclog_or_tty->cr();
3086     gclog_or_tty->print_cr("========================================");
3087     gclog_or_tty->print_cr(msg);
3088     gclog_or_tty->cr();
3089   }
3090 
3091   ~PrintRSetsClosure() {
3092     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3093     gclog_or_tty->print_cr("========================================");
3094     gclog_or_tty->cr();
3095   }
3096 };
3097 
3098 void G1CollectedHeap::print_cset_rsets() {
3099   PrintRSetsClosure cl("Printing CSet RSets");
3100   collection_set_iterate(&cl);
3101 }
3102 
3103 void G1CollectedHeap::print_all_rsets() {
3104   PrintRSetsClosure cl("Printing All RSets");;
3105   heap_region_iterate(&cl);
3106 }
3107 #endif // PRODUCT
3108 
3109 G1CollectedHeap* G1CollectedHeap::heap() {
3110   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3111          "not a garbage-first heap");
3112   return _g1h;
3113 }
3114 
3115 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3116   // always_do_update_barrier = false;
3117   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3118   // Call allocation profiler
3119   AllocationProfiler::iterate_since_last_gc();
3120   // Fill TLAB's and such
3121   ensure_parsability(true);
3122 }
3123 
3124 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3125   // FIXME: what is this about?
3126   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3127   // is set.
3128   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3129                         "derived pointer present"));
3130   // always_do_update_barrier = true;
3131 }
3132 
3133 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3134                                                unsigned int gc_count_before,
3135                                                bool* succeeded) {
3136   assert_heap_not_locked_and_not_at_safepoint();
3137   g1_policy()->record_stop_world_start();
3138   VM_G1IncCollectionPause op(gc_count_before,
3139                              word_size,
3140                              false, /* should_initiate_conc_mark */
3141                              g1_policy()->max_pause_time_ms(),
3142                              GCCause::_g1_inc_collection_pause);
3143   VMThread::execute(&op);
3144 
3145   HeapWord* result = op.result();
3146   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3147   assert(result == NULL || ret_succeeded,
3148          "the result should be NULL if the VM did not succeed");
3149   *succeeded = ret_succeeded;
3150 
3151   assert_heap_not_locked();
3152   return result;
3153 }
3154 
3155 void
3156 G1CollectedHeap::doConcurrentMark() {
3157   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3158   if (!_cmThread->in_progress()) {
3159     _cmThread->set_started();
3160     CGC_lock->notify();
3161   }
3162 }
3163 
3164 void G1CollectedHeap::do_sync_mark() {
3165   _cm->checkpointRootsInitial();
3166   _cm->markFromRoots();
3167   _cm->checkpointRootsFinal(false);
3168 }
3169 
3170 // <NEW PREDICTION>
3171 
3172 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
3173                                                        bool young) {
3174   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
3175 }
3176 
3177 void G1CollectedHeap::check_if_region_is_too_expensive(double
3178                                                            predicted_time_ms) {
3179   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
3180 }
3181 
3182 size_t G1CollectedHeap::pending_card_num() {
3183   size_t extra_cards = 0;
3184   JavaThread *curr = Threads::first();
3185   while (curr != NULL) {
3186     DirtyCardQueue& dcq = curr->dirty_card_queue();
3187     extra_cards += dcq.size();
3188     curr = curr->next();
3189   }
3190   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3191   size_t buffer_size = dcqs.buffer_size();
3192   size_t buffer_num = dcqs.completed_buffers_num();
3193   return buffer_size * buffer_num + extra_cards;
3194 }
3195 
3196 size_t G1CollectedHeap::max_pending_card_num() {
3197   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3198   size_t buffer_size = dcqs.buffer_size();
3199   size_t buffer_num  = dcqs.completed_buffers_num();
3200   int thread_num  = Threads::number_of_threads();
3201   return (buffer_num + thread_num) * buffer_size;
3202 }
3203 
3204 size_t G1CollectedHeap::cards_scanned() {
3205   return g1_rem_set()->cardsScanned();
3206 }
3207 
3208 void
3209 G1CollectedHeap::setup_surviving_young_words() {
3210   guarantee( _surviving_young_words == NULL, "pre-condition" );
3211   size_t array_length = g1_policy()->young_cset_length();
3212   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
3213   if (_surviving_young_words == NULL) {
3214     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3215                           "Not enough space for young surv words summary.");
3216   }
3217   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3218 #ifdef ASSERT
3219   for (size_t i = 0;  i < array_length; ++i) {
3220     assert( _surviving_young_words[i] == 0, "memset above" );
3221   }
3222 #endif // !ASSERT
3223 }
3224 
3225 void
3226 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3227   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3228   size_t array_length = g1_policy()->young_cset_length();
3229   for (size_t i = 0; i < array_length; ++i)
3230     _surviving_young_words[i] += surv_young_words[i];
3231 }
3232 
3233 void
3234 G1CollectedHeap::cleanup_surviving_young_words() {
3235   guarantee( _surviving_young_words != NULL, "pre-condition" );
3236   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3237   _surviving_young_words = NULL;
3238 }
3239 
3240 // </NEW PREDICTION>
3241 
3242 #ifdef ASSERT
3243 class VerifyCSetClosure: public HeapRegionClosure {
3244 public:
3245   bool doHeapRegion(HeapRegion* hr) {
3246     // Here we check that the CSet region's RSet is ready for parallel
3247     // iteration. The fields that we'll verify are only manipulated
3248     // when the region is part of a CSet and is collected. Afterwards,
3249     // we reset these fields when we clear the region's RSet (when the
3250     // region is freed) so they are ready when the region is
3251     // re-allocated. The only exception to this is if there's an
3252     // evacuation failure and instead of freeing the region we leave
3253     // it in the heap. In that case, we reset these fields during
3254     // evacuation failure handling.
3255     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3256 
3257     // Here's a good place to add any other checks we'd like to
3258     // perform on CSet regions.
3259     return false;
3260   }
3261 };
3262 #endif // ASSERT
3263 
3264 #if TASKQUEUE_STATS
3265 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3266   st->print_raw_cr("GC Task Stats");
3267   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3268   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3269 }
3270 
3271 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3272   print_taskqueue_stats_hdr(st);
3273 
3274   TaskQueueStats totals;
3275   const int n = workers() != NULL ? workers()->total_workers() : 1;
3276   for (int i = 0; i < n; ++i) {
3277     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3278     totals += task_queue(i)->stats;
3279   }
3280   st->print_raw("tot "); totals.print(st); st->cr();
3281 
3282   DEBUG_ONLY(totals.verify());
3283 }
3284 
3285 void G1CollectedHeap::reset_taskqueue_stats() {
3286   const int n = workers() != NULL ? workers()->total_workers() : 1;
3287   for (int i = 0; i < n; ++i) {
3288     task_queue(i)->stats.reset();
3289   }
3290 }
3291 #endif // TASKQUEUE_STATS
3292 
3293 bool
3294 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3295   assert_at_safepoint(true /* should_be_vm_thread */);
3296   guarantee(!is_gc_active(), "collection is not reentrant");
3297 
3298   if (GC_locker::check_active_before_gc()) {
3299     return false;
3300   }
3301 
3302   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3303   ResourceMark rm;
3304 
3305   if (PrintHeapAtGC) {
3306     Universe::print_heap_before_gc();
3307   }
3308 
3309   verify_region_sets_optional();
3310   verify_dirty_young_regions();
3311 
3312   {
3313     // This call will decide whether this pause is an initial-mark
3314     // pause. If it is, during_initial_mark_pause() will return true
3315     // for the duration of this pause.
3316     g1_policy()->decide_on_conc_mark_initiation();
3317 
3318     char verbose_str[128];
3319     sprintf(verbose_str, "GC pause ");
3320     if (g1_policy()->in_young_gc_mode()) {
3321       if (g1_policy()->full_young_gcs())
3322         strcat(verbose_str, "(young)");
3323       else
3324         strcat(verbose_str, "(partial)");
3325     }
3326     if (g1_policy()->during_initial_mark_pause()) {
3327       strcat(verbose_str, " (initial-mark)");
3328       // We are about to start a marking cycle, so we increment the
3329       // full collection counter.
3330       increment_total_full_collections();
3331     }
3332 
3333     // if PrintGCDetails is on, we'll print long statistics information
3334     // in the collector policy code, so let's not print this as the output
3335     // is messy if we do.
3336     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
3337     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3338     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3339 
3340     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3341     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3342 
3343     // If the secondary_free_list is not empty, append it to the
3344     // free_list. No need to wait for the cleanup operation to finish;
3345     // the region allocation code will check the secondary_free_list
3346     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3347     // set, skip this step so that the region allocation code has to
3348     // get entries from the secondary_free_list.
3349     if (!G1StressConcRegionFreeing) {
3350       append_secondary_free_list_if_not_empty_with_lock();
3351     }
3352 
3353     if (g1_policy()->in_young_gc_mode()) {
3354       assert(check_young_list_well_formed(),
3355              "young list should be well formed");
3356     }
3357 
3358     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3359       IsGCActiveMark x;
3360 
3361       gc_prologue(false);
3362       increment_total_collections(false /* full gc */);
3363       increment_gc_time_stamp();
3364 
3365       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3366         HandleMark hm;  // Discard invalid handles created during verification
3367         gclog_or_tty->print(" VerifyBeforeGC:");
3368         prepare_for_verify();
3369         Universe::verify(/* allow dirty */ false,
3370                          /* silent      */ false,
3371                          /* option      */ VerifyOption_G1UsePrevMarking);
3372 
3373       }
3374 
3375       COMPILER2_PRESENT(DerivedPointerTable::clear());
3376 
3377       // Please see comment in G1CollectedHeap::ref_processing_init()
3378       // to see how reference processing currently works in G1.
3379       //
3380       // We want to turn off ref discovery, if necessary, and turn it back on
3381       // on again later if we do. XXX Dubious: why is discovery disabled?
3382       bool was_enabled = ref_processor()->discovery_enabled();
3383       if (was_enabled) ref_processor()->disable_discovery();
3384 
3385       // Forget the current alloc region (we might even choose it to be part
3386       // of the collection set!).
3387       release_mutator_alloc_region();
3388 
3389       // We should call this after we retire the mutator alloc
3390       // region(s) so that all the ALLOC / RETIRE events are generated
3391       // before the start GC event.
3392       _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3393 
3394       // The elapsed time induced by the start time below deliberately elides
3395       // the possible verification above.
3396       double start_time_sec = os::elapsedTime();
3397       size_t start_used_bytes = used();
3398 
3399 #if YOUNG_LIST_VERBOSE
3400       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3401       _young_list->print();
3402       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3403 #endif // YOUNG_LIST_VERBOSE
3404 
3405       g1_policy()->record_collection_pause_start(start_time_sec,
3406                                                  start_used_bytes);
3407 
3408 #if YOUNG_LIST_VERBOSE
3409       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3410       _young_list->print();
3411 #endif // YOUNG_LIST_VERBOSE
3412 
3413       if (g1_policy()->during_initial_mark_pause()) {
3414         concurrent_mark()->checkpointRootsInitialPre();
3415       }
3416       perm_gen()->save_marks();
3417 
3418       // We must do this before any possible evacuation that should propagate
3419       // marks.
3420       if (mark_in_progress()) {
3421         double start_time_sec = os::elapsedTime();
3422 
3423         _cm->drainAllSATBBuffers();
3424         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
3425         g1_policy()->record_satb_drain_time(finish_mark_ms);
3426       }
3427       // Record the number of elements currently on the mark stack, so we
3428       // only iterate over these.  (Since evacuation may add to the mark
3429       // stack, doing more exposes race conditions.)  If no mark is in
3430       // progress, this will be zero.
3431       _cm->set_oops_do_bound();
3432 
3433       if (mark_in_progress()) {
3434         concurrent_mark()->newCSet();
3435       }
3436 
3437 #if YOUNG_LIST_VERBOSE
3438       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3439       _young_list->print();
3440       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3441 #endif // YOUNG_LIST_VERBOSE
3442 
3443       g1_policy()->choose_collection_set(target_pause_time_ms);
3444 
3445       if (_hr_printer.is_active()) {
3446         HeapRegion* hr = g1_policy()->collection_set();
3447         while (hr != NULL) {
3448           G1HRPrinter::RegionType type;
3449           if (!hr->is_young()) {
3450             type = G1HRPrinter::Old;
3451           } else if (hr->is_survivor()) {
3452             type = G1HRPrinter::Survivor;
3453           } else {
3454             type = G1HRPrinter::Eden;
3455           }
3456           _hr_printer.cset(hr);
3457           hr = hr->next_in_collection_set();
3458         }
3459       }
3460 
3461       // We have chosen the complete collection set. If marking is
3462       // active then, we clear the region fields of any of the
3463       // concurrent marking tasks whose region fields point into
3464       // the collection set as these values will become stale. This
3465       // will cause the owning marking threads to claim a new region
3466       // when marking restarts.
3467       if (mark_in_progress()) {
3468         concurrent_mark()->reset_active_task_region_fields_in_cset();
3469       }
3470 
3471 #ifdef ASSERT
3472       VerifyCSetClosure cl;
3473       collection_set_iterate(&cl);
3474 #endif // ASSERT
3475 
3476       setup_surviving_young_words();
3477 
3478       // Initialize the GC alloc regions.
3479       init_gc_alloc_regions();
3480 
3481       // Actually do the work...
3482       evacuate_collection_set();
3483 
3484       free_collection_set(g1_policy()->collection_set());
3485       g1_policy()->clear_collection_set();
3486 
3487       cleanup_surviving_young_words();
3488 
3489       // Start a new incremental collection set for the next pause.
3490       g1_policy()->start_incremental_cset_building();
3491 
3492       // Clear the _cset_fast_test bitmap in anticipation of adding
3493       // regions to the incremental collection set for the next
3494       // evacuation pause.
3495       clear_cset_fast_test();
3496 
3497       if (g1_policy()->in_young_gc_mode()) {
3498         _young_list->reset_sampled_info();
3499 
3500         // Don't check the whole heap at this point as the
3501         // GC alloc regions from this pause have been tagged
3502         // as survivors and moved on to the survivor list.
3503         // Survivor regions will fail the !is_young() check.
3504         assert(check_young_list_empty(false /* check_heap */),
3505                "young list should be empty");
3506 
3507 #if YOUNG_LIST_VERBOSE
3508         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3509         _young_list->print();
3510 #endif // YOUNG_LIST_VERBOSE
3511 
3512         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3513                                           _young_list->first_survivor_region(),
3514                                           _young_list->last_survivor_region());
3515 
3516         _young_list->reset_auxilary_lists();
3517       }
3518 
3519       if (evacuation_failed()) {
3520         _summary_bytes_used = recalculate_used();
3521       } else {
3522         // The "used" of the the collection set have already been subtracted
3523         // when they were freed.  Add in the bytes evacuated.
3524         _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3525       }
3526 
3527       if (g1_policy()->in_young_gc_mode() &&
3528           g1_policy()->during_initial_mark_pause()) {
3529         concurrent_mark()->checkpointRootsInitialPost();
3530         set_marking_started();
3531         // CAUTION: after the doConcurrentMark() call below,
3532         // the concurrent marking thread(s) could be running
3533         // concurrently with us. Make sure that anything after
3534         // this point does not assume that we are the only GC thread
3535         // running. Note: of course, the actual marking work will
3536         // not start until the safepoint itself is released in
3537         // ConcurrentGCThread::safepoint_desynchronize().
3538         doConcurrentMark();
3539       }
3540 
3541       allocate_dummy_regions();
3542 
3543 #if YOUNG_LIST_VERBOSE
3544       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3545       _young_list->print();
3546       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3547 #endif // YOUNG_LIST_VERBOSE
3548 
3549       init_mutator_alloc_region();
3550 
3551       double end_time_sec = os::elapsedTime();
3552       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3553       g1_policy()->record_pause_time_ms(pause_time_ms);
3554       g1_policy()->record_collection_pause_end();
3555 
3556       MemoryService::track_memory_usage();
3557 
3558       // In prepare_for_verify() below we'll need to scan the deferred
3559       // update buffers to bring the RSets up-to-date if
3560       // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3561       // the update buffers we'll probably need to scan cards on the
3562       // regions we just allocated to (i.e., the GC alloc
3563       // regions). However, during the last GC we called
3564       // set_saved_mark() on all the GC alloc regions, so card
3565       // scanning might skip the [saved_mark_word()...top()] area of
3566       // those regions (i.e., the area we allocated objects into
3567       // during the last GC). But it shouldn't. Given that
3568       // saved_mark_word() is conditional on whether the GC time stamp
3569       // on the region is current or not, by incrementing the GC time
3570       // stamp here we invalidate all the GC time stamps on all the
3571       // regions and saved_mark_word() will simply return top() for
3572       // all the regions. This is a nicer way of ensuring this rather
3573       // than iterating over the regions and fixing them. In fact, the
3574       // GC time stamp increment here also ensures that
3575       // saved_mark_word() will return top() between pauses, i.e.,
3576       // during concurrent refinement. So we don't need the
3577       // is_gc_active() check to decided which top to use when
3578       // scanning cards (see CR 7039627).
3579       increment_gc_time_stamp();
3580 
3581       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3582         HandleMark hm;  // Discard invalid handles created during verification
3583         gclog_or_tty->print(" VerifyAfterGC:");
3584         prepare_for_verify();
3585         Universe::verify(/* allow dirty */ true,
3586                          /* silent      */ false,
3587                          /* option      */ VerifyOption_G1UsePrevMarking);
3588       }
3589 
3590       if (was_enabled) ref_processor()->enable_discovery();
3591 
3592       {
3593         size_t expand_bytes = g1_policy()->expansion_amount();
3594         if (expand_bytes > 0) {
3595           size_t bytes_before = capacity();
3596           if (!expand(expand_bytes)) {
3597             // We failed to expand the heap so let's verify that
3598             // committed/uncommitted amount match the backing store
3599             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3600             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3601           }
3602         }
3603       }
3604 
3605       // We should do this after we potentially expand the heap so
3606       // that all the COMMIT events are generated before the end GC
3607       // event, and after we retire the GC alloc regions so that all
3608       // RETIRE events are generated before the end GC event.
3609       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3610 
3611       // We have to do this after we decide whether to expand the heap or not.
3612       g1_policy()->print_heap_transition();
3613 
3614       if (mark_in_progress()) {
3615         concurrent_mark()->update_g1_committed();
3616       }
3617 
3618 #ifdef TRACESPINNING
3619       ParallelTaskTerminator::print_termination_counts();
3620 #endif
3621 
3622       gc_epilogue(false);
3623     }
3624 
3625     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3626       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3627       print_tracing_info();
3628       vm_exit(-1);
3629     }
3630   }
3631 
3632   _hrs.verify_optional();
3633   verify_region_sets_optional();
3634 
3635   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3636   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3637 
3638   if (PrintHeapAtGC) {
3639     Universe::print_heap_after_gc();
3640   }
3641   g1mm()->update_counters();
3642 
3643   if (G1SummarizeRSetStats &&
3644       (G1SummarizeRSetStatsPeriod > 0) &&
3645       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3646     g1_rem_set()->print_summary_info();
3647   }
3648 
3649   return true;
3650 }
3651 
3652 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3653 {
3654   size_t gclab_word_size;
3655   switch (purpose) {
3656     case GCAllocForSurvived:
3657       gclab_word_size = YoungPLABSize;
3658       break;
3659     case GCAllocForTenured:
3660       gclab_word_size = OldPLABSize;
3661       break;
3662     default:
3663       assert(false, "unknown GCAllocPurpose");
3664       gclab_word_size = OldPLABSize;
3665       break;
3666   }
3667   return gclab_word_size;
3668 }
3669 
3670 void G1CollectedHeap::init_mutator_alloc_region() {
3671   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3672   _mutator_alloc_region.init();
3673 }
3674 
3675 void G1CollectedHeap::release_mutator_alloc_region() {
3676   _mutator_alloc_region.release();
3677   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3678 }
3679 
3680 void G1CollectedHeap::init_gc_alloc_regions() {
3681   assert_at_safepoint(true /* should_be_vm_thread */);
3682 
3683   _survivor_gc_alloc_region.init();
3684   _old_gc_alloc_region.init();
3685   HeapRegion* retained_region = _retained_old_gc_alloc_region;
3686   _retained_old_gc_alloc_region = NULL;
3687 
3688   // We will discard the current GC alloc region if:
3689   // a) it's in the collection set (it can happen!),
3690   // b) it's already full (no point in using it),
3691   // c) it's empty (this means that it was emptied during
3692   // a cleanup and it should be on the free list now), or
3693   // d) it's humongous (this means that it was emptied
3694   // during a cleanup and was added to the free list, but
3695   // has been subseqently used to allocate a humongous
3696   // object that may be less than the region size).
3697   if (retained_region != NULL &&
3698       !retained_region->in_collection_set() &&
3699       !(retained_region->top() == retained_region->end()) &&
3700       !retained_region->is_empty() &&
3701       !retained_region->isHumongous()) {
3702     retained_region->set_saved_mark();
3703     _old_gc_alloc_region.set(retained_region);
3704     _hr_printer.reuse(retained_region);
3705   }
3706 }
3707 
3708 void G1CollectedHeap::release_gc_alloc_regions() {
3709   _survivor_gc_alloc_region.release();
3710   // If we have an old GC alloc region to release, we'll save it in
3711   // _retained_old_gc_alloc_region. If we don't
3712   // _retained_old_gc_alloc_region will become NULL. This is what we
3713   // want either way so no reason to check explicitly for either
3714   // condition.
3715   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3716 }
3717 
3718 void G1CollectedHeap::abandon_gc_alloc_regions() {
3719   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
3720   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
3721   _retained_old_gc_alloc_region = NULL;
3722 }
3723 
3724 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
3725   _drain_in_progress = false;
3726   set_evac_failure_closure(cl);
3727   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3728 }
3729 
3730 void G1CollectedHeap::finalize_for_evac_failure() {
3731   assert(_evac_failure_scan_stack != NULL &&
3732          _evac_failure_scan_stack->length() == 0,
3733          "Postcondition");
3734   assert(!_drain_in_progress, "Postcondition");
3735   delete _evac_failure_scan_stack;
3736   _evac_failure_scan_stack = NULL;
3737 }
3738 
3739 // *** Sequential G1 Evacuation
3740 
3741 class G1IsAliveClosure: public BoolObjectClosure {
3742   G1CollectedHeap* _g1;
3743 public:
3744   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3745   void do_object(oop p) { assert(false, "Do not call."); }
3746   bool do_object_b(oop p) {
3747     // It is reachable if it is outside the collection set, or is inside
3748     // and forwarded.
3749 
3750 #ifdef G1_DEBUG
3751     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
3752                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
3753                            !_g1->obj_in_cs(p) || p->is_forwarded());
3754 #endif // G1_DEBUG
3755 
3756     return !_g1->obj_in_cs(p) || p->is_forwarded();
3757   }
3758 };
3759 
3760 class G1KeepAliveClosure: public OopClosure {
3761   G1CollectedHeap* _g1;
3762 public:
3763   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3764   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3765   void do_oop(      oop* p) {
3766     oop obj = *p;
3767 #ifdef G1_DEBUG
3768     if (PrintGC && Verbose) {
3769       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
3770                              p, (void*) obj, (void*) *p);
3771     }
3772 #endif // G1_DEBUG
3773 
3774     if (_g1->obj_in_cs(obj)) {
3775       assert( obj->is_forwarded(), "invariant" );
3776       *p = obj->forwardee();
3777 #ifdef G1_DEBUG
3778       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
3779                              (void*) obj, (void*) *p);
3780 #endif // G1_DEBUG
3781     }
3782   }
3783 };
3784 
3785 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3786 private:
3787   G1CollectedHeap* _g1;
3788   DirtyCardQueue *_dcq;
3789   CardTableModRefBS* _ct_bs;
3790 
3791 public:
3792   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3793     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3794 
3795   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3796   virtual void do_oop(      oop* p) { do_oop_work(p); }
3797   template <class T> void do_oop_work(T* p) {
3798     assert(_from->is_in_reserved(p), "paranoia");
3799     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
3800         !_from->is_survivor()) {
3801       size_t card_index = _ct_bs->index_for(p);
3802       if (_ct_bs->mark_card_deferred(card_index)) {
3803         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3804       }
3805     }
3806   }
3807 };
3808 
3809 class RemoveSelfPointerClosure: public ObjectClosure {
3810 private:
3811   G1CollectedHeap* _g1;
3812   ConcurrentMark* _cm;
3813   HeapRegion* _hr;
3814   size_t _prev_marked_bytes;
3815   size_t _next_marked_bytes;
3816   OopsInHeapRegionClosure *_cl;
3817 public:
3818   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
3819                            OopsInHeapRegionClosure* cl) :
3820     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3821     _next_marked_bytes(0), _cl(cl) {}
3822 
3823   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3824   size_t next_marked_bytes() { return _next_marked_bytes; }
3825 
3826   // <original comment>
3827   // The original idea here was to coalesce evacuated and dead objects.
3828   // However that caused complications with the block offset table (BOT).
3829   // In particular if there were two TLABs, one of them partially refined.
3830   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
3831   // The BOT entries of the unrefined part of TLAB_2 point to the start
3832   // of TLAB_2. If the last object of the TLAB_1 and the first object
3833   // of TLAB_2 are coalesced, then the cards of the unrefined part
3834   // would point into middle of the filler object.
3835   // The current approach is to not coalesce and leave the BOT contents intact.
3836   // </original comment>
3837   //
3838   // We now reset the BOT when we start the object iteration over the
3839   // region and refine its entries for every object we come across. So
3840   // the above comment is not really relevant and we should be able
3841   // to coalesce dead objects if we want to.
3842   void do_object(oop obj) {
3843     HeapWord* obj_addr = (HeapWord*) obj;
3844     assert(_hr->is_in(obj_addr), "sanity");
3845     size_t obj_size = obj->size();
3846     _hr->update_bot_for_object(obj_addr, obj_size);
3847     if (obj->is_forwarded() && obj->forwardee() == obj) {
3848       // The object failed to move.
3849       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
3850       _cm->markPrev(obj);
3851       assert(_cm->isPrevMarked(obj), "Should be marked!");
3852       _prev_marked_bytes += (obj_size * HeapWordSize);
3853       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
3854         _cm->markAndGrayObjectIfNecessary(obj);
3855       }
3856       obj->set_mark(markOopDesc::prototype());
3857       // While we were processing RSet buffers during the
3858       // collection, we actually didn't scan any cards on the
3859       // collection set, since we didn't want to update remebered
3860       // sets with entries that point into the collection set, given
3861       // that live objects fromthe collection set are about to move
3862       // and such entries will be stale very soon. This change also
3863       // dealt with a reliability issue which involved scanning a
3864       // card in the collection set and coming across an array that
3865       // was being chunked and looking malformed. The problem is
3866       // that, if evacuation fails, we might have remembered set
3867       // entries missing given that we skipped cards on the
3868       // collection set. So, we'll recreate such entries now.
3869       obj->oop_iterate(_cl);
3870       assert(_cm->isPrevMarked(obj), "Should be marked!");
3871     } else {
3872       // The object has been either evacuated or is dead. Fill it with a
3873       // dummy object.
3874       MemRegion mr((HeapWord*)obj, obj_size);
3875       CollectedHeap::fill_with_object(mr);
3876       _cm->clearRangeBothMaps(mr);
3877     }
3878   }
3879 };
3880 
3881 void G1CollectedHeap::remove_self_forwarding_pointers() {
3882   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3883   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
3884   UpdateRSetDeferred deferred_update(_g1h, &dcq);
3885   OopsInHeapRegionClosure *cl;
3886   if (G1DeferredRSUpdate) {
3887     cl = &deferred_update;
3888   } else {
3889     cl = &immediate_update;
3890   }
3891   HeapRegion* cur = g1_policy()->collection_set();
3892   while (cur != NULL) {
3893     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3894     assert(!cur->isHumongous(), "sanity");
3895 
3896     if (cur->evacuation_failed()) {
3897       assert(cur->in_collection_set(), "bad CS");
3898       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
3899 
3900       // In the common case we make sure that this is done when the
3901       // region is freed so that it is "ready-to-go" when it's
3902       // re-allocated. However, when evacuation failure happens, a
3903       // region will remain in the heap and might ultimately be added
3904       // to a CSet in the future. So we have to be careful here and
3905       // make sure the region's RSet is ready for parallel iteration
3906       // whenever this might be required in the future.
3907       cur->rem_set()->reset_for_par_iteration();
3908       cur->reset_bot();
3909       cl->set_region(cur);
3910       cur->object_iterate(&rspc);
3911 
3912       // A number of manipulations to make the TAMS be the current top,
3913       // and the marked bytes be the ones observed in the iteration.
3914       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
3915         // The comments below are the postconditions achieved by the
3916         // calls.  Note especially the last such condition, which says that
3917         // the count of marked bytes has been properly restored.
3918         cur->note_start_of_marking(false);
3919         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3920         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
3921         // _next_marked_bytes == prev_marked_bytes.
3922         cur->note_end_of_marking();
3923         // _prev_top_at_mark_start == top(),
3924         // _prev_marked_bytes == prev_marked_bytes
3925       }
3926       // If there is no mark in progress, we modified the _next variables
3927       // above needlessly, but harmlessly.
3928       if (_g1h->mark_in_progress()) {
3929         cur->note_start_of_marking(false);
3930         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3931         // _next_marked_bytes == next_marked_bytes.
3932       }
3933 
3934       // Now make sure the region has the right index in the sorted array.
3935       g1_policy()->note_change_in_marked_bytes(cur);
3936     }
3937     cur = cur->next_in_collection_set();
3938   }
3939   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3940 
3941   // Now restore saved marks, if any.
3942   if (_objs_with_preserved_marks != NULL) {
3943     assert(_preserved_marks_of_objs != NULL, "Both or none.");
3944     guarantee(_objs_with_preserved_marks->length() ==
3945               _preserved_marks_of_objs->length(), "Both or none.");
3946     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
3947       oop obj   = _objs_with_preserved_marks->at(i);
3948       markOop m = _preserved_marks_of_objs->at(i);
3949       obj->set_mark(m);
3950     }
3951     // Delete the preserved marks growable arrays (allocated on the C heap).
3952     delete _objs_with_preserved_marks;
3953     delete _preserved_marks_of_objs;
3954     _objs_with_preserved_marks = NULL;
3955     _preserved_marks_of_objs = NULL;
3956   }
3957 }
3958 
3959 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
3960   _evac_failure_scan_stack->push(obj);
3961 }
3962 
3963 void G1CollectedHeap::drain_evac_failure_scan_stack() {
3964   assert(_evac_failure_scan_stack != NULL, "precondition");
3965 
3966   while (_evac_failure_scan_stack->length() > 0) {
3967      oop obj = _evac_failure_scan_stack->pop();
3968      _evac_failure_closure->set_region(heap_region_containing(obj));
3969      obj->oop_iterate_backwards(_evac_failure_closure);
3970   }
3971 }
3972 
3973 oop
3974 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
3975                                                oop old) {
3976   assert(obj_in_cs(old),
3977          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
3978                  (HeapWord*) old));
3979   markOop m = old->mark();
3980   oop forward_ptr = old->forward_to_atomic(old);
3981   if (forward_ptr == NULL) {
3982     // Forward-to-self succeeded.
3983     if (_evac_failure_closure != cl) {
3984       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
3985       assert(!_drain_in_progress,
3986              "Should only be true while someone holds the lock.");
3987       // Set the global evac-failure closure to the current thread's.
3988       assert(_evac_failure_closure == NULL, "Or locking has failed.");
3989       set_evac_failure_closure(cl);
3990       // Now do the common part.
3991       handle_evacuation_failure_common(old, m);
3992       // Reset to NULL.
3993       set_evac_failure_closure(NULL);
3994     } else {
3995       // The lock is already held, and this is recursive.
3996       assert(_drain_in_progress, "This should only be the recursive case.");
3997       handle_evacuation_failure_common(old, m);
3998     }
3999     return old;
4000   } else {
4001     // Forward-to-self failed. Either someone else managed to allocate
4002     // space for this object (old != forward_ptr) or they beat us in
4003     // self-forwarding it (old == forward_ptr).
4004     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4005            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4006                    "should not be in the CSet",
4007                    (HeapWord*) old, (HeapWord*) forward_ptr));
4008     return forward_ptr;
4009   }
4010 }
4011 
4012 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4013   set_evacuation_failed(true);
4014 
4015   preserve_mark_if_necessary(old, m);
4016 
4017   HeapRegion* r = heap_region_containing(old);
4018   if (!r->evacuation_failed()) {
4019     r->set_evacuation_failed(true);
4020     _hr_printer.evac_failure(r);
4021   }
4022 
4023   push_on_evac_failure_scan_stack(old);
4024 
4025   if (!_drain_in_progress) {
4026     // prevent recursion in copy_to_survivor_space()
4027     _drain_in_progress = true;
4028     drain_evac_failure_scan_stack();
4029     _drain_in_progress = false;
4030   }
4031 }
4032 
4033 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4034   assert(evacuation_failed(), "Oversaving!");
4035   // We want to call the "for_promotion_failure" version only in the
4036   // case of a promotion failure.
4037   if (m->must_be_preserved_for_promotion_failure(obj)) {
4038     if (_objs_with_preserved_marks == NULL) {
4039       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4040       _objs_with_preserved_marks =
4041         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4042       _preserved_marks_of_objs =
4043         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4044     }
4045     _objs_with_preserved_marks->push(obj);
4046     _preserved_marks_of_objs->push(m);
4047   }
4048 }
4049 
4050 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4051                                                   size_t word_size) {
4052   if (purpose == GCAllocForSurvived) {
4053     HeapWord* result = survivor_attempt_allocation(word_size);
4054     if (result != NULL) {
4055       return result;
4056     } else {
4057       // Let's try to allocate in the old gen in case we can fit the
4058       // object there.
4059       return old_attempt_allocation(word_size);
4060     }
4061   } else {
4062     assert(purpose ==  GCAllocForTenured, "sanity");
4063     HeapWord* result = old_attempt_allocation(word_size);
4064     if (result != NULL) {
4065       return result;
4066     } else {
4067       // Let's try to allocate in the survivors in case we can fit the
4068       // object there.
4069       return survivor_attempt_allocation(word_size);
4070     }
4071   }
4072 
4073   ShouldNotReachHere();
4074   // Trying to keep some compilers happy.
4075   return NULL;
4076 }
4077 
4078 #ifndef PRODUCT
4079 bool GCLabBitMapClosure::do_bit(size_t offset) {
4080   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
4081   guarantee(_cm->isMarked(oop(addr)), "it should be!");
4082   return true;
4083 }
4084 #endif // PRODUCT
4085 
4086 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
4087   : _g1h(g1h),
4088     _refs(g1h->task_queue(queue_num)),
4089     _dcq(&g1h->dirty_card_queue_set()),
4090     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4091     _g1_rem(g1h->g1_rem_set()),
4092     _hash_seed(17), _queue_num(queue_num),
4093     _term_attempts(0),
4094     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4095     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4096     _age_table(false),
4097     _strong_roots_time(0), _term_time(0),
4098     _alloc_buffer_waste(0), _undo_waste(0)
4099 {
4100   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4101   // we "sacrifice" entry 0 to keep track of surviving bytes for
4102   // non-young regions (where the age is -1)
4103   // We also add a few elements at the beginning and at the end in
4104   // an attempt to eliminate cache contention
4105   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
4106   size_t array_length = PADDING_ELEM_NUM +
4107                         real_length +
4108                         PADDING_ELEM_NUM;
4109   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4110   if (_surviving_young_words_base == NULL)
4111     vm_exit_out_of_memory(array_length * sizeof(size_t),
4112                           "Not enough space for young surv histo.");
4113   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4114   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
4115 
4116   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4117   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4118 
4119   _start = os::elapsedTime();
4120 }
4121 
4122 void
4123 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4124 {
4125   st->print_raw_cr("GC Termination Stats");
4126   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4127                    " ------waste (KiB)------");
4128   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4129                    "  total   alloc    undo");
4130   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4131                    " ------- ------- -------");
4132 }
4133 
4134 void
4135 G1ParScanThreadState::print_termination_stats(int i,
4136                                               outputStream* const st) const
4137 {
4138   const double elapsed_ms = elapsed_time() * 1000.0;
4139   const double s_roots_ms = strong_roots_time() * 1000.0;
4140   const double term_ms    = term_time() * 1000.0;
4141   st->print_cr("%3d %9.2f %9.2f %6.2f "
4142                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4143                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4144                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4145                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4146                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4147                alloc_buffer_waste() * HeapWordSize / K,
4148                undo_waste() * HeapWordSize / K);
4149 }
4150 
4151 #ifdef ASSERT
4152 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4153   assert(ref != NULL, "invariant");
4154   assert(UseCompressedOops, "sanity");
4155   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4156   oop p = oopDesc::load_decode_heap_oop(ref);
4157   assert(_g1h->is_in_g1_reserved(p),
4158          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4159   return true;
4160 }
4161 
4162 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4163   assert(ref != NULL, "invariant");
4164   if (has_partial_array_mask(ref)) {
4165     // Must be in the collection set--it's already been copied.
4166     oop p = clear_partial_array_mask(ref);
4167     assert(_g1h->obj_in_cs(p),
4168            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4169   } else {
4170     oop p = oopDesc::load_decode_heap_oop(ref);
4171     assert(_g1h->is_in_g1_reserved(p),
4172            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4173   }
4174   return true;
4175 }
4176 
4177 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4178   if (ref.is_narrow()) {
4179     return verify_ref((narrowOop*) ref);
4180   } else {
4181     return verify_ref((oop*) ref);
4182   }
4183 }
4184 #endif // ASSERT
4185 
4186 void G1ParScanThreadState::trim_queue() {
4187   StarTask ref;
4188   do {
4189     // Drain the overflow stack first, so other threads can steal.
4190     while (refs()->pop_overflow(ref)) {
4191       deal_with_reference(ref);
4192     }
4193     while (refs()->pop_local(ref)) {
4194       deal_with_reference(ref);
4195     }
4196   } while (!refs()->is_empty());
4197 }
4198 
4199 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4200   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4201   _par_scan_state(par_scan_state) { }
4202 
4203 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4204   // This is called _after_ do_oop_work has been called, hence after
4205   // the object has been relocated to its new location and *p points
4206   // to its new location.
4207 
4208   T heap_oop = oopDesc::load_heap_oop(p);
4209   if (!oopDesc::is_null(heap_oop)) {
4210     oop obj = oopDesc::decode_heap_oop(heap_oop);
4211     HeapWord* addr = (HeapWord*)obj;
4212     if (_g1->is_in_g1_reserved(addr)) {
4213       _cm->grayRoot(oop(addr));
4214     }
4215   }
4216 }
4217 
4218 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
4219   size_t    word_sz = old->size();
4220   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4221   // +1 to make the -1 indexes valid...
4222   int       young_index = from_region->young_index_in_cset()+1;
4223   assert( (from_region->is_young() && young_index > 0) ||
4224           (!from_region->is_young() && young_index == 0), "invariant" );
4225   G1CollectorPolicy* g1p = _g1->g1_policy();
4226   markOop m = old->mark();
4227   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4228                                            : m->age();
4229   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4230                                                              word_sz);
4231   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4232   oop       obj     = oop(obj_ptr);
4233 
4234   if (obj_ptr == NULL) {
4235     // This will either forward-to-self, or detect that someone else has
4236     // installed a forwarding pointer.
4237     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4238     return _g1->handle_evacuation_failure_par(cl, old);
4239   }
4240 
4241   // We're going to allocate linearly, so might as well prefetch ahead.
4242   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4243 
4244   oop forward_ptr = old->forward_to_atomic(obj);
4245   if (forward_ptr == NULL) {
4246     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4247     if (g1p->track_object_age(alloc_purpose)) {
4248       // We could simply do obj->incr_age(). However, this causes a
4249       // performance issue. obj->incr_age() will first check whether
4250       // the object has a displaced mark by checking its mark word;
4251       // getting the mark word from the new location of the object
4252       // stalls. So, given that we already have the mark word and we
4253       // are about to install it anyway, it's better to increase the
4254       // age on the mark word, when the object does not have a
4255       // displaced mark word. We're not expecting many objects to have
4256       // a displaced marked word, so that case is not optimized
4257       // further (it could be...) and we simply call obj->incr_age().
4258 
4259       if (m->has_displaced_mark_helper()) {
4260         // in this case, we have to install the mark word first,
4261         // otherwise obj looks to be forwarded (the old mark word,
4262         // which contains the forward pointer, was copied)
4263         obj->set_mark(m);
4264         obj->incr_age();
4265       } else {
4266         m = m->incr_age();
4267         obj->set_mark(m);
4268       }
4269       _par_scan_state->age_table()->add(obj, word_sz);
4270     } else {
4271       obj->set_mark(m);
4272     }
4273 
4274     // preserve "next" mark bit
4275     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
4276       if (!use_local_bitmaps ||
4277           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4278         // if we couldn't mark it on the local bitmap (this happens when
4279         // the object was not allocated in the GCLab), we have to bite
4280         // the bullet and do the standard parallel mark
4281         _cm->markAndGrayObjectIfNecessary(obj);
4282       }
4283 #if 1
4284       if (_g1->isMarkedNext(old)) {
4285         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4286       }
4287 #endif
4288     }
4289 
4290     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4291     surv_young_words[young_index] += word_sz;
4292 
4293     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4294       arrayOop(old)->set_length(0);
4295       oop* old_p = set_partial_array_mask(old);
4296       _par_scan_state->push_on_queue(old_p);
4297     } else {
4298       // No point in using the slower heap_region_containing() method,
4299       // given that we know obj is in the heap.
4300       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4301       obj->oop_iterate_backwards(_scanner);
4302     }
4303   } else {
4304     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4305     obj = forward_ptr;
4306   }
4307   return obj;
4308 }
4309 
4310 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4311 template <class T>
4312 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4313 ::do_oop_work(T* p) {
4314   oop obj = oopDesc::load_decode_heap_oop(p);
4315   assert(barrier != G1BarrierRS || obj != NULL,
4316          "Precondition: G1BarrierRS implies obj is nonNull");
4317 
4318   // here the null check is implicit in the cset_fast_test() test
4319   if (_g1->in_cset_fast_test(obj)) {
4320     if (obj->is_forwarded()) {
4321       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4322     } else {
4323       oop copy_oop = copy_to_survivor_space(obj);
4324       oopDesc::encode_store_heap_oop(p, copy_oop);
4325     }
4326     // When scanning the RS, we only care about objs in CS.
4327     if (barrier == G1BarrierRS) {
4328       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4329     }
4330   }
4331 
4332   if (barrier == G1BarrierEvac && obj != NULL) {
4333     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4334   }
4335 
4336   if (do_gen_barrier && obj != NULL) {
4337     par_do_barrier(p);
4338   }
4339 }
4340 
4341 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4342 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4343 
4344 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4345   assert(has_partial_array_mask(p), "invariant");
4346   oop old = clear_partial_array_mask(p);
4347   assert(old->is_objArray(), "must be obj array");
4348   assert(old->is_forwarded(), "must be forwarded");
4349   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4350 
4351   objArrayOop obj = objArrayOop(old->forwardee());
4352   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4353   // Process ParGCArrayScanChunk elements now
4354   // and push the remainder back onto queue
4355   int start     = arrayOop(old)->length();
4356   int end       = obj->length();
4357   int remainder = end - start;
4358   assert(start <= end, "just checking");
4359   if (remainder > 2 * ParGCArrayScanChunk) {
4360     // Test above combines last partial chunk with a full chunk
4361     end = start + ParGCArrayScanChunk;
4362     arrayOop(old)->set_length(end);
4363     // Push remainder.
4364     oop* old_p = set_partial_array_mask(old);
4365     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4366     _par_scan_state->push_on_queue(old_p);
4367   } else {
4368     // Restore length so that the heap remains parsable in
4369     // case of evacuation failure.
4370     arrayOop(old)->set_length(end);
4371   }
4372   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4373   // process our set of indices (include header in first chunk)
4374   obj->oop_iterate_range(&_scanner, start, end);
4375 }
4376 
4377 class G1ParEvacuateFollowersClosure : public VoidClosure {
4378 protected:
4379   G1CollectedHeap*              _g1h;
4380   G1ParScanThreadState*         _par_scan_state;
4381   RefToScanQueueSet*            _queues;
4382   ParallelTaskTerminator*       _terminator;
4383 
4384   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4385   RefToScanQueueSet*      queues()         { return _queues; }
4386   ParallelTaskTerminator* terminator()     { return _terminator; }
4387 
4388 public:
4389   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4390                                 G1ParScanThreadState* par_scan_state,
4391                                 RefToScanQueueSet* queues,
4392                                 ParallelTaskTerminator* terminator)
4393     : _g1h(g1h), _par_scan_state(par_scan_state),
4394       _queues(queues), _terminator(terminator) {}
4395 
4396   void do_void();
4397 
4398 private:
4399   inline bool offer_termination();
4400 };
4401 
4402 bool G1ParEvacuateFollowersClosure::offer_termination() {
4403   G1ParScanThreadState* const pss = par_scan_state();
4404   pss->start_term_time();
4405   const bool res = terminator()->offer_termination();
4406   pss->end_term_time();
4407   return res;
4408 }
4409 
4410 void G1ParEvacuateFollowersClosure::do_void() {
4411   StarTask stolen_task;
4412   G1ParScanThreadState* const pss = par_scan_state();
4413   pss->trim_queue();
4414 
4415   do {
4416     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4417       assert(pss->verify_task(stolen_task), "sanity");
4418       if (stolen_task.is_narrow()) {
4419         pss->deal_with_reference((narrowOop*) stolen_task);
4420       } else {
4421         pss->deal_with_reference((oop*) stolen_task);
4422       }
4423 
4424       // We've just processed a reference and we might have made
4425       // available new entries on the queues. So we have to make sure
4426       // we drain the queues as necessary.
4427       pss->trim_queue();
4428     }
4429   } while (!offer_termination());
4430 
4431   pss->retire_alloc_buffers();
4432 }
4433 
4434 class G1ParTask : public AbstractGangTask {
4435 protected:
4436   G1CollectedHeap*       _g1h;
4437   RefToScanQueueSet      *_queues;
4438   ParallelTaskTerminator _terminator;
4439   int _n_workers;
4440 
4441   Mutex _stats_lock;
4442   Mutex* stats_lock() { return &_stats_lock; }
4443 
4444   size_t getNCards() {
4445     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4446       / G1BlockOffsetSharedArray::N_bytes;
4447   }
4448 
4449 public:
4450   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4451     : AbstractGangTask("G1 collection"),
4452       _g1h(g1h),
4453       _queues(task_queues),
4454       _terminator(workers, _queues),
4455       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
4456       _n_workers(workers)
4457   {}
4458 
4459   RefToScanQueueSet* queues() { return _queues; }
4460 
4461   RefToScanQueue *work_queue(int i) {
4462     return queues()->queue(i);
4463   }
4464 
4465   void work(int i) {
4466     if (i >= _n_workers) return;  // no work needed this round
4467 
4468     double start_time_ms = os::elapsedTime() * 1000.0;
4469     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4470 
4471     ResourceMark rm;
4472     HandleMark   hm;
4473 
4474     G1ParScanThreadState            pss(_g1h, i);
4475     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
4476     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
4477     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4478 
4479     pss.set_evac_closure(&scan_evac_cl);
4480     pss.set_evac_failure_closure(&evac_failure_cl);
4481     pss.set_partial_scan_closure(&partial_scan_cl);
4482 
4483     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
4484     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
4485     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4486     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4487 
4488     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
4489     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
4490     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
4491 
4492     OopsInHeapRegionClosure        *scan_root_cl;
4493     OopsInHeapRegionClosure        *scan_perm_cl;
4494 
4495     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4496       scan_root_cl = &scan_mark_root_cl;
4497       scan_perm_cl = &scan_mark_perm_cl;
4498     } else {
4499       scan_root_cl = &only_scan_root_cl;
4500       scan_perm_cl = &only_scan_perm_cl;
4501     }
4502 
4503     pss.start_strong_roots();
4504     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4505                                   SharedHeap::SO_AllClasses,
4506                                   scan_root_cl,
4507                                   &push_heap_rs_cl,
4508                                   scan_perm_cl,
4509                                   i);
4510     pss.end_strong_roots();
4511 
4512     {
4513       double start = os::elapsedTime();
4514       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4515       evac.do_void();
4516       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4517       double term_ms = pss.term_time()*1000.0;
4518       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4519       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4520     }
4521     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4522     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4523 
4524     // Clean up any par-expanded rem sets.
4525     HeapRegionRemSet::par_cleanup();
4526 
4527     if (ParallelGCVerbose) {
4528       MutexLocker x(stats_lock());
4529       pss.print_termination_stats(i);
4530     }
4531 
4532     assert(pss.refs()->is_empty(), "should be empty");
4533     double end_time_ms = os::elapsedTime() * 1000.0;
4534     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4535   }
4536 };
4537 
4538 // *** Common G1 Evacuation Stuff
4539 
4540 // This method is run in a GC worker.
4541 
4542 void
4543 G1CollectedHeap::
4544 g1_process_strong_roots(bool collecting_perm_gen,
4545                         SharedHeap::ScanningOption so,
4546                         OopClosure* scan_non_heap_roots,
4547                         OopsInHeapRegionClosure* scan_rs,
4548                         OopsInGenClosure* scan_perm,
4549                         int worker_i) {
4550   // First scan the strong roots, including the perm gen.
4551   double ext_roots_start = os::elapsedTime();
4552   double closure_app_time_sec = 0.0;
4553 
4554   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4555   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4556   buf_scan_perm.set_generation(perm_gen());
4557 
4558   // Walk the code cache w/o buffering, because StarTask cannot handle
4559   // unaligned oop locations.
4560   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4561 
4562   process_strong_roots(false, // no scoping; this is parallel code
4563                        collecting_perm_gen, so,
4564                        &buf_scan_non_heap_roots,
4565                        &eager_scan_code_roots,
4566                        &buf_scan_perm);
4567 
4568   // Now the ref_processor roots.
4569   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4570     // We need to treat the discovered reference lists as roots and
4571     // keep entries (which are added by the marking threads) on them
4572     // live until they can be processed at the end of marking.
4573     ref_processor()->weak_oops_do(&buf_scan_non_heap_roots);
4574     ref_processor()->oops_do(&buf_scan_non_heap_roots);
4575   }
4576 
4577   // Finish up any enqueued closure apps (attributed as object copy time).
4578   buf_scan_non_heap_roots.done();
4579   buf_scan_perm.done();
4580 
4581   double ext_roots_end = os::elapsedTime();
4582 
4583   g1_policy()->reset_obj_copy_time(worker_i);
4584   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4585                                 buf_scan_non_heap_roots.closure_app_seconds();
4586   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4587 
4588   double ext_root_time_ms =
4589     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4590 
4591   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4592 
4593   // Scan strong roots in mark stack.
4594   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4595     concurrent_mark()->oops_do(scan_non_heap_roots);
4596   }
4597   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4598   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4599 
4600   // Now scan the complement of the collection set.
4601   if (scan_rs != NULL) {
4602     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4603   }
4604 
4605   _process_strong_tasks->all_tasks_completed();
4606 }
4607 
4608 void
4609 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4610                                        OopClosure* non_root_closure) {
4611   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4612   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4613 }
4614 
4615 void G1CollectedHeap::evacuate_collection_set() {
4616   set_evacuation_failed(false);
4617 
4618   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4619   concurrent_g1_refine()->set_use_cache(false);
4620   concurrent_g1_refine()->clear_hot_cache_claimed_index();
4621 
4622   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4623   set_par_threads(n_workers);
4624   G1ParTask g1_par_task(this, n_workers, _task_queues);
4625 
4626   init_for_evac_failure(NULL);
4627 
4628   rem_set()->prepare_for_younger_refs_iterate(true);
4629 
4630   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4631   double start_par = os::elapsedTime();
4632   if (G1CollectedHeap::use_parallel_gc_threads()) {
4633     // The individual threads will set their evac-failure closures.
4634     StrongRootsScope srs(this);
4635     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4636     workers()->run_task(&g1_par_task);
4637   } else {
4638     StrongRootsScope srs(this);
4639     g1_par_task.work(0);
4640   }
4641 
4642   double par_time = (os::elapsedTime() - start_par) * 1000.0;
4643   g1_policy()->record_par_time(par_time);
4644   set_par_threads(0);
4645 
4646   // Weak root processing.
4647   // Note: when JSR 292 is enabled and code blobs can contain
4648   // non-perm oops then we will need to process the code blobs
4649   // here too.
4650   {
4651     G1IsAliveClosure is_alive(this);
4652     G1KeepAliveClosure keep_alive(this);
4653     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4654   }
4655   release_gc_alloc_regions();
4656   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4657 
4658   concurrent_g1_refine()->clear_hot_cache();
4659   concurrent_g1_refine()->set_use_cache(true);
4660 
4661   finalize_for_evac_failure();
4662 
4663   // Must do this before removing self-forwarding pointers, which clears
4664   // the per-region evac-failure flags.
4665   concurrent_mark()->complete_marking_in_collection_set();
4666 
4667   if (evacuation_failed()) {
4668     remove_self_forwarding_pointers();
4669     if (PrintGCDetails) {
4670       gclog_or_tty->print(" (to-space overflow)");
4671     } else if (PrintGC) {
4672       gclog_or_tty->print("--");
4673     }
4674   }
4675 
4676   if (G1DeferredRSUpdate) {
4677     RedirtyLoggedCardTableEntryFastClosure redirty;
4678     dirty_card_queue_set().set_closure(&redirty);
4679     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4680 
4681     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4682     dcq.merge_bufferlists(&dirty_card_queue_set());
4683     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4684   }
4685   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4686 }
4687 
4688 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4689                                      size_t* pre_used,
4690                                      FreeRegionList* free_list,
4691                                      HumongousRegionSet* humongous_proxy_set,
4692                                      HRRSCleanupTask* hrrs_cleanup_task,
4693                                      bool par) {
4694   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
4695     if (hr->isHumongous()) {
4696       assert(hr->startsHumongous(), "we should only see starts humongous");
4697       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
4698     } else {
4699       free_region(hr, pre_used, free_list, par);
4700     }
4701   } else {
4702     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
4703   }
4704 }
4705 
4706 void G1CollectedHeap::free_region(HeapRegion* hr,
4707                                   size_t* pre_used,
4708                                   FreeRegionList* free_list,
4709                                   bool par) {
4710   assert(!hr->isHumongous(), "this is only for non-humongous regions");
4711   assert(!hr->is_empty(), "the region should not be empty");
4712   assert(free_list != NULL, "pre-condition");
4713 
4714   *pre_used += hr->used();
4715   hr->hr_clear(par, true /* clear_space */);
4716   free_list->add_as_head(hr);
4717 }
4718 
4719 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4720                                      size_t* pre_used,
4721                                      FreeRegionList* free_list,
4722                                      HumongousRegionSet* humongous_proxy_set,
4723                                      bool par) {
4724   assert(hr->startsHumongous(), "this is only for starts humongous regions");
4725   assert(free_list != NULL, "pre-condition");
4726   assert(humongous_proxy_set != NULL, "pre-condition");
4727 
4728   size_t hr_used = hr->used();
4729   size_t hr_capacity = hr->capacity();
4730   size_t hr_pre_used = 0;
4731   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
4732   hr->set_notHumongous();
4733   free_region(hr, &hr_pre_used, free_list, par);
4734 
4735   size_t i = hr->hrs_index() + 1;
4736   size_t num = 1;
4737   while (i < n_regions()) {
4738     HeapRegion* curr_hr = region_at(i);
4739     if (!curr_hr->continuesHumongous()) {
4740       break;
4741     }
4742     curr_hr->set_notHumongous();
4743     free_region(curr_hr, &hr_pre_used, free_list, par);
4744     num += 1;
4745     i += 1;
4746   }
4747   assert(hr_pre_used == hr_used,
4748          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
4749                  "should be the same", hr_pre_used, hr_used));
4750   *pre_used += hr_pre_used;
4751 }
4752 
4753 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
4754                                        FreeRegionList* free_list,
4755                                        HumongousRegionSet* humongous_proxy_set,
4756                                        bool par) {
4757   if (pre_used > 0) {
4758     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
4759     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4760     assert(_summary_bytes_used >= pre_used,
4761            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
4762                    "should be >= pre_used: "SIZE_FORMAT,
4763                    _summary_bytes_used, pre_used));
4764     _summary_bytes_used -= pre_used;
4765   }
4766   if (free_list != NULL && !free_list->is_empty()) {
4767     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4768     _free_list.add_as_head(free_list);
4769   }
4770   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
4771     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4772     _humongous_set.update_from_proxy(humongous_proxy_set);
4773   }
4774 }
4775 
4776 class G1ParCleanupCTTask : public AbstractGangTask {
4777   CardTableModRefBS* _ct_bs;
4778   G1CollectedHeap* _g1h;
4779   HeapRegion* volatile _su_head;
4780 public:
4781   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4782                      G1CollectedHeap* g1h) :
4783     AbstractGangTask("G1 Par Cleanup CT Task"),
4784     _ct_bs(ct_bs), _g1h(g1h) { }
4785 
4786   void work(int i) {
4787     HeapRegion* r;
4788     while (r = _g1h->pop_dirty_cards_region()) {
4789       clear_cards(r);
4790     }
4791   }
4792 
4793   void clear_cards(HeapRegion* r) {
4794     // Cards of the survivors should have already been dirtied.
4795     if (!r->is_survivor()) {
4796       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4797     }
4798   }
4799 };
4800 
4801 #ifndef PRODUCT
4802 class G1VerifyCardTableCleanup: public HeapRegionClosure {
4803   G1CollectedHeap* _g1h;
4804   CardTableModRefBS* _ct_bs;
4805 public:
4806   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
4807     : _g1h(g1h), _ct_bs(ct_bs) { }
4808   virtual bool doHeapRegion(HeapRegion* r) {
4809     if (r->is_survivor()) {
4810       _g1h->verify_dirty_region(r);
4811     } else {
4812       _g1h->verify_not_dirty_region(r);
4813     }
4814     return false;
4815   }
4816 };
4817 
4818 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
4819   // All of the region should be clean.
4820   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
4821   MemRegion mr(hr->bottom(), hr->end());
4822   ct_bs->verify_not_dirty_region(mr);
4823 }
4824 
4825 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
4826   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
4827   // dirty allocated blocks as they allocate them. The thread that
4828   // retires each region and replaces it with a new one will do a
4829   // maximal allocation to fill in [pre_dummy_top(),end()] but will
4830   // not dirty that area (one less thing to have to do while holding
4831   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
4832   // is dirty.
4833   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4834   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
4835   ct_bs->verify_dirty_region(mr);
4836 }
4837 
4838 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
4839   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4840   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
4841     verify_dirty_region(hr);
4842   }
4843 }
4844 
4845 void G1CollectedHeap::verify_dirty_young_regions() {
4846   verify_dirty_young_list(_young_list->first_region());
4847   verify_dirty_young_list(_young_list->first_survivor_region());
4848 }
4849 #endif
4850 
4851 void G1CollectedHeap::cleanUpCardTable() {
4852   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
4853   double start = os::elapsedTime();
4854 
4855   // Iterate over the dirty cards region list.
4856   G1ParCleanupCTTask cleanup_task(ct_bs, this);
4857 
4858   if (ParallelGCThreads > 0) {
4859     set_par_threads(workers()->total_workers());
4860     workers()->run_task(&cleanup_task);
4861     set_par_threads(0);
4862   } else {
4863     while (_dirty_cards_region_list) {
4864       HeapRegion* r = _dirty_cards_region_list;
4865       cleanup_task.clear_cards(r);
4866       _dirty_cards_region_list = r->get_next_dirty_cards_region();
4867       if (_dirty_cards_region_list == r) {
4868         // The last region.
4869         _dirty_cards_region_list = NULL;
4870       }
4871       r->set_next_dirty_cards_region(NULL);
4872     }
4873   }
4874 
4875   double elapsed = os::elapsedTime() - start;
4876   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4877 #ifndef PRODUCT
4878   if (G1VerifyCTCleanup || VerifyAfterGC) {
4879     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
4880     heap_region_iterate(&cleanup_verifier);
4881   }
4882 #endif
4883 }
4884 
4885 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4886   size_t pre_used = 0;
4887   FreeRegionList local_free_list("Local List for CSet Freeing");
4888 
4889   double young_time_ms     = 0.0;
4890   double non_young_time_ms = 0.0;
4891 
4892   // Since the collection set is a superset of the the young list,
4893   // all we need to do to clear the young list is clear its
4894   // head and length, and unlink any young regions in the code below
4895   _young_list->clear();
4896 
4897   G1CollectorPolicy* policy = g1_policy();
4898 
4899   double start_sec = os::elapsedTime();
4900   bool non_young = true;
4901 
4902   HeapRegion* cur = cs_head;
4903   int age_bound = -1;
4904   size_t rs_lengths = 0;
4905 
4906   while (cur != NULL) {
4907     assert(!is_on_master_free_list(cur), "sanity");
4908 
4909     if (non_young) {
4910       if (cur->is_young()) {
4911         double end_sec = os::elapsedTime();
4912         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4913         non_young_time_ms += elapsed_ms;
4914 
4915         start_sec = os::elapsedTime();
4916         non_young = false;
4917       }
4918     } else {
4919       double end_sec = os::elapsedTime();
4920       double elapsed_ms = (end_sec - start_sec) * 1000.0;
4921       young_time_ms += elapsed_ms;
4922 
4923       start_sec = os::elapsedTime();
4924       non_young = true;
4925     }
4926 
4927     rs_lengths += cur->rem_set()->occupied();
4928 
4929     HeapRegion* next = cur->next_in_collection_set();
4930     assert(cur->in_collection_set(), "bad CS");
4931     cur->set_next_in_collection_set(NULL);
4932     cur->set_in_collection_set(false);
4933 
4934     if (cur->is_young()) {
4935       int index = cur->young_index_in_cset();
4936       guarantee( index != -1, "invariant" );
4937       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
4938       size_t words_survived = _surviving_young_words[index];
4939       cur->record_surv_words_in_group(words_survived);
4940 
4941       // At this point the we have 'popped' cur from the collection set
4942       // (linked via next_in_collection_set()) but it is still in the
4943       // young list (linked via next_young_region()). Clear the
4944       // _next_young_region field.
4945       cur->set_next_young_region(NULL);
4946     } else {
4947       int index = cur->young_index_in_cset();
4948       guarantee( index == -1, "invariant" );
4949     }
4950 
4951     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4952             (!cur->is_young() && cur->young_index_in_cset() == -1),
4953             "invariant" );
4954 
4955     if (!cur->evacuation_failed()) {
4956       // And the region is empty.
4957       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
4958       free_region(cur, &pre_used, &local_free_list, false /* par */);
4959     } else {
4960       cur->uninstall_surv_rate_group();
4961       if (cur->is_young())
4962         cur->set_young_index_in_cset(-1);
4963       cur->set_not_young();
4964       cur->set_evacuation_failed(false);
4965     }
4966     cur = next;
4967   }
4968 
4969   policy->record_max_rs_lengths(rs_lengths);
4970   policy->cset_regions_freed();
4971 
4972   double end_sec = os::elapsedTime();
4973   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4974   if (non_young)
4975     non_young_time_ms += elapsed_ms;
4976   else
4977     young_time_ms += elapsed_ms;
4978 
4979   update_sets_after_freeing_regions(pre_used, &local_free_list,
4980                                     NULL /* humongous_proxy_set */,
4981                                     false /* par */);
4982   policy->record_young_free_cset_time_ms(young_time_ms);
4983   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
4984 }
4985 
4986 // This routine is similar to the above but does not record
4987 // any policy statistics or update free lists; we are abandoning
4988 // the current incremental collection set in preparation of a
4989 // full collection. After the full GC we will start to build up
4990 // the incremental collection set again.
4991 // This is only called when we're doing a full collection
4992 // and is immediately followed by the tearing down of the young list.
4993 
4994 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
4995   HeapRegion* cur = cs_head;
4996 
4997   while (cur != NULL) {
4998     HeapRegion* next = cur->next_in_collection_set();
4999     assert(cur->in_collection_set(), "bad CS");
5000     cur->set_next_in_collection_set(NULL);
5001     cur->set_in_collection_set(false);
5002     cur->set_young_index_in_cset(-1);
5003     cur = next;
5004   }
5005 }
5006 
5007 void G1CollectedHeap::set_free_regions_coming() {
5008   if (G1ConcRegionFreeingVerbose) {
5009     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5010                            "setting free regions coming");
5011   }
5012 
5013   assert(!free_regions_coming(), "pre-condition");
5014   _free_regions_coming = true;
5015 }
5016 
5017 void G1CollectedHeap::reset_free_regions_coming() {
5018   {
5019     assert(free_regions_coming(), "pre-condition");
5020     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5021     _free_regions_coming = false;
5022     SecondaryFreeList_lock->notify_all();
5023   }
5024 
5025   if (G1ConcRegionFreeingVerbose) {
5026     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5027                            "reset free regions coming");
5028   }
5029 }
5030 
5031 void G1CollectedHeap::wait_while_free_regions_coming() {
5032   // Most of the time we won't have to wait, so let's do a quick test
5033   // first before we take the lock.
5034   if (!free_regions_coming()) {
5035     return;
5036   }
5037 
5038   if (G1ConcRegionFreeingVerbose) {
5039     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5040                            "waiting for free regions");
5041   }
5042 
5043   {
5044     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5045     while (free_regions_coming()) {
5046       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5047     }
5048   }
5049 
5050   if (G1ConcRegionFreeingVerbose) {
5051     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5052                            "done waiting for free regions");
5053   }
5054 }
5055 
5056 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5057   assert(heap_lock_held_for_gc(),
5058               "the heap lock should already be held by or for this thread");
5059   _young_list->push_region(hr);
5060   g1_policy()->set_region_short_lived(hr);
5061 }
5062 
5063 class NoYoungRegionsClosure: public HeapRegionClosure {
5064 private:
5065   bool _success;
5066 public:
5067   NoYoungRegionsClosure() : _success(true) { }
5068   bool doHeapRegion(HeapRegion* r) {
5069     if (r->is_young()) {
5070       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5071                              r->bottom(), r->end());
5072       _success = false;
5073     }
5074     return false;
5075   }
5076   bool success() { return _success; }
5077 };
5078 
5079 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5080   bool ret = _young_list->check_list_empty(check_sample);
5081 
5082   if (check_heap) {
5083     NoYoungRegionsClosure closure;
5084     heap_region_iterate(&closure);
5085     ret = ret && closure.success();
5086   }
5087 
5088   return ret;
5089 }
5090 
5091 void G1CollectedHeap::empty_young_list() {
5092   assert(heap_lock_held_for_gc(),
5093               "the heap lock should already be held by or for this thread");
5094   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
5095 
5096   _young_list->empty_list();
5097 }
5098 
5099 // Done at the start of full GC.
5100 void G1CollectedHeap::tear_down_region_lists() {
5101   _free_list.remove_all();
5102 }
5103 
5104 class RegionResetter: public HeapRegionClosure {
5105   G1CollectedHeap* _g1h;
5106   FreeRegionList _local_free_list;
5107 
5108 public:
5109   RegionResetter() : _g1h(G1CollectedHeap::heap()),
5110                      _local_free_list("Local Free List for RegionResetter") { }
5111 
5112   bool doHeapRegion(HeapRegion* r) {
5113     if (r->continuesHumongous()) return false;
5114     if (r->top() > r->bottom()) {
5115       if (r->top() < r->end()) {
5116         Copy::fill_to_words(r->top(),
5117                           pointer_delta(r->end(), r->top()));
5118       }
5119     } else {
5120       assert(r->is_empty(), "tautology");
5121       _local_free_list.add_as_tail(r);
5122     }
5123     return false;
5124   }
5125 
5126   void update_free_lists() {
5127     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
5128                                             false /* par */);
5129   }
5130 };
5131 
5132 // Done at the end of full GC.
5133 void G1CollectedHeap::rebuild_region_lists() {
5134   // This needs to go at the end of the full GC.
5135   RegionResetter rs;
5136   heap_region_iterate(&rs);
5137   rs.update_free_lists();
5138 }
5139 
5140 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5141   _refine_cte_cl->set_concurrent(concurrent);
5142 }
5143 
5144 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5145   HeapRegion* hr = heap_region_containing(p);
5146   if (hr == NULL) {
5147     return is_in_permanent(p);
5148   } else {
5149     return hr->is_in(p);
5150   }
5151 }
5152 
5153 // Methods for the mutator alloc region
5154 
5155 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5156                                                       bool force) {
5157   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5158   assert(!force || g1_policy()->can_expand_young_list(),
5159          "if force is true we should be able to expand the young list");
5160   bool young_list_full = g1_policy()->is_young_list_full();
5161   if (force || !young_list_full) {
5162     HeapRegion* new_alloc_region = new_region(word_size,
5163                                               false /* do_expand */);
5164     if (new_alloc_region != NULL) {
5165       g1_policy()->update_region_num(true /* next_is_young */);
5166       set_region_short_lived_locked(new_alloc_region);
5167       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
5168       g1mm()->update_eden_counters();
5169       return new_alloc_region;
5170     }
5171   }
5172   return NULL;
5173 }
5174 
5175 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5176                                                   size_t allocated_bytes) {
5177   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5178   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
5179 
5180   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5181   _summary_bytes_used += allocated_bytes;
5182   _hr_printer.retire(alloc_region);
5183 }
5184 
5185 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
5186                                                     bool force) {
5187   return _g1h->new_mutator_alloc_region(word_size, force);
5188 }
5189 
5190 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
5191                                        size_t allocated_bytes) {
5192   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
5193 }
5194 
5195 // Methods for the GC alloc regions
5196 
5197 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5198                                                  size_t count,
5199                                                  GCAllocPurpose ap) {
5200   assert(FreeList_lock->owned_by_self(), "pre-condition");
5201 
5202   if (count < g1_policy()->max_regions(ap)) {
5203     HeapRegion* new_alloc_region = new_region(word_size,
5204                                               true /* do_expand */);
5205     if (new_alloc_region != NULL) {
5206       // We really only need to do this for old regions given that we
5207       // should never scan survivors. But it doesn't hurt to do it
5208       // for survivors too.
5209       new_alloc_region->set_saved_mark();
5210       if (ap == GCAllocForSurvived) {
5211         new_alloc_region->set_survivor();
5212         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
5213       } else {
5214         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
5215       }
5216       return new_alloc_region;
5217     } else {
5218       g1_policy()->note_alloc_region_limit_reached(ap);
5219     }
5220   }
5221   return NULL;
5222 }
5223 
5224 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5225                                              size_t allocated_bytes,
5226                                              GCAllocPurpose ap) {
5227   alloc_region->note_end_of_copying();
5228   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5229   if (ap == GCAllocForSurvived) {
5230     young_list()->add_survivor_region(alloc_region);
5231   }
5232   _hr_printer.retire(alloc_region);
5233 }
5234 
5235 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
5236                                                        bool force) {
5237   assert(!force, "not supported for GC alloc regions");
5238   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
5239 }
5240 
5241 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
5242                                           size_t allocated_bytes) {
5243   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
5244                                GCAllocForSurvived);
5245 }
5246 
5247 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
5248                                                   bool force) {
5249   assert(!force, "not supported for GC alloc regions");
5250   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
5251 }
5252 
5253 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
5254                                      size_t allocated_bytes) {
5255   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
5256                                GCAllocForTenured);
5257 }
5258 // Heap region set verification
5259 
5260 class VerifyRegionListsClosure : public HeapRegionClosure {
5261 private:
5262   HumongousRegionSet* _humongous_set;
5263   FreeRegionList*     _free_list;
5264   size_t              _region_count;
5265 
5266 public:
5267   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
5268                            FreeRegionList* free_list) :
5269     _humongous_set(humongous_set), _free_list(free_list),
5270     _region_count(0) { }
5271 
5272   size_t region_count()      { return _region_count;      }
5273 
5274   bool doHeapRegion(HeapRegion* hr) {
5275     _region_count += 1;
5276 
5277     if (hr->continuesHumongous()) {
5278       return false;
5279     }
5280 
5281     if (hr->is_young()) {
5282       // TODO
5283     } else if (hr->startsHumongous()) {
5284       _humongous_set->verify_next_region(hr);
5285     } else if (hr->is_empty()) {
5286       _free_list->verify_next_region(hr);
5287     }
5288     return false;
5289   }
5290 };
5291 
5292 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
5293                                              HeapWord* bottom) {
5294   HeapWord* end = bottom + HeapRegion::GrainWords;
5295   MemRegion mr(bottom, end);
5296   assert(_g1_reserved.contains(mr), "invariant");
5297   // This might return NULL if the allocation fails
5298   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
5299 }
5300 
5301 void G1CollectedHeap::verify_region_sets() {
5302   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5303 
5304   // First, check the explicit lists.
5305   _free_list.verify();
5306   {
5307     // Given that a concurrent operation might be adding regions to
5308     // the secondary free list we have to take the lock before
5309     // verifying it.
5310     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5311     _secondary_free_list.verify();
5312   }
5313   _humongous_set.verify();
5314 
5315   // If a concurrent region freeing operation is in progress it will
5316   // be difficult to correctly attributed any free regions we come
5317   // across to the correct free list given that they might belong to
5318   // one of several (free_list, secondary_free_list, any local lists,
5319   // etc.). So, if that's the case we will skip the rest of the
5320   // verification operation. Alternatively, waiting for the concurrent
5321   // operation to complete will have a non-trivial effect on the GC's
5322   // operation (no concurrent operation will last longer than the
5323   // interval between two calls to verification) and it might hide
5324   // any issues that we would like to catch during testing.
5325   if (free_regions_coming()) {
5326     return;
5327   }
5328 
5329   // Make sure we append the secondary_free_list on the free_list so
5330   // that all free regions we will come across can be safely
5331   // attributed to the free_list.
5332   append_secondary_free_list_if_not_empty_with_lock();
5333 
5334   // Finally, make sure that the region accounting in the lists is
5335   // consistent with what we see in the heap.
5336   _humongous_set.verify_start();
5337   _free_list.verify_start();
5338 
5339   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
5340   heap_region_iterate(&cl);
5341 
5342   _humongous_set.verify_end();
5343   _free_list.verify_end();
5344 }