1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  41 // over and over again and introducing subtle problems through small typos and
  42 // cutting and pasting mistakes. The macros below introduces a number
  43 // sequnce into the following two classes and the methods that access it.
  44 
  45 #define define_num_seq(name)                                                  \
  46 private:                                                                      \
  47   NumberSeq _all_##name##_times_ms;                                           \
  48 public:                                                                       \
  49   void record_##name##_time_ms(double ms) {                                   \
  50     _all_##name##_times_ms.add(ms);                                           \
  51   }                                                                           \
  52   NumberSeq* get_##name##_seq() {                                             \
  53     return &_all_##name##_times_ms;                                           \
  54   }
  55 
  56 class MainBodySummary;
  57 
  58 class PauseSummary: public CHeapObj {
  59   define_num_seq(total)
  60     define_num_seq(other)
  61 
  62 public:
  63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  64 };
  65 
  66 class MainBodySummary: public CHeapObj {
  67   define_num_seq(satb_drain) // optional
  68   define_num_seq(parallel) // parallel only
  69     define_num_seq(ext_root_scan)
  70     define_num_seq(mark_stack_scan)
  71     define_num_seq(update_rs)
  72     define_num_seq(scan_rs)
  73     define_num_seq(obj_copy)
  74     define_num_seq(termination) // parallel only
  75     define_num_seq(parallel_other) // parallel only
  76   define_num_seq(mark_closure)
  77   define_num_seq(clear_ct)  // parallel only
  78 };
  79 
  80 class Summary: public PauseSummary,
  81                public MainBodySummary {
  82 public:
  83   virtual MainBodySummary*    main_body_summary()    { return this; }
  84 };
  85 
  86 class G1CollectorPolicy: public CollectorPolicy {
  87 protected:
  88   // The number of pauses during the execution.
  89   long _n_pauses;
  90 
  91   // either equal to the number of parallel threads, if ParallelGCThreads
  92   // has been set, or 1 otherwise
  93   int _parallel_gc_threads;
  94 
  95   enum SomePrivateConstants {
  96     NumPrevPausesForHeuristics = 10
  97   };
  98 
  99   G1MMUTracker* _mmu_tracker;
 100 
 101   void initialize_flags();
 102 
 103   void initialize_all() {
 104     initialize_flags();
 105     initialize_size_info();
 106     initialize_perm_generation(PermGen::MarkSweepCompact);
 107   }
 108 
 109   virtual size_t default_init_heap_size() {
 110     // Pick some reasonable default.
 111     return 8*M;
 112   }
 113 
 114   double _cur_collection_start_sec;
 115   size_t _cur_collection_pause_used_at_start_bytes;
 116   size_t _cur_collection_pause_used_regions_at_start;
 117   size_t _prev_collection_pause_used_at_end_bytes;
 118   double _cur_collection_par_time_ms;
 119   double _cur_satb_drain_time_ms;
 120   double _cur_clear_ct_time_ms;
 121   bool   _satb_drain_time_set;
 122 
 123 #ifndef PRODUCT
 124   // Card Table Count Cache stats
 125   double _min_clear_cc_time_ms;         // min
 126   double _max_clear_cc_time_ms;         // max
 127   double _cur_clear_cc_time_ms;         // clearing time during current pause
 128   double _cum_clear_cc_time_ms;         // cummulative clearing time
 129   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 130 #endif
 131 
 132   // Statistics for recent GC pauses.  See below for how indexed.
 133   TruncatedSeq* _recent_rs_scan_times_ms;
 134 
 135   // These exclude marking times.
 136   TruncatedSeq* _recent_pause_times_ms;
 137   TruncatedSeq* _recent_gc_times_ms;
 138 
 139   TruncatedSeq* _recent_CS_bytes_used_before;
 140   TruncatedSeq* _recent_CS_bytes_surviving;
 141 
 142   TruncatedSeq* _recent_rs_sizes;
 143 
 144   TruncatedSeq* _concurrent_mark_remark_times_ms;
 145   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 146 
 147   Summary*           _summary;
 148 
 149   NumberSeq* _all_pause_times_ms;
 150   NumberSeq* _all_full_gc_times_ms;
 151   double _stop_world_start;
 152   NumberSeq* _all_stop_world_times_ms;
 153   NumberSeq* _all_yield_times_ms;
 154 
 155   size_t     _region_num_young;
 156   size_t     _region_num_tenured;
 157   size_t     _prev_region_num_young;
 158   size_t     _prev_region_num_tenured;
 159 
 160   NumberSeq* _all_mod_union_times_ms;
 161 
 162   int        _aux_num;
 163   NumberSeq* _all_aux_times_ms;
 164   double*    _cur_aux_start_times_ms;
 165   double*    _cur_aux_times_ms;
 166   bool*      _cur_aux_times_set;
 167 
 168   double* _par_last_gc_worker_start_times_ms;
 169   double* _par_last_ext_root_scan_times_ms;
 170   double* _par_last_mark_stack_scan_times_ms;
 171   double* _par_last_update_rs_times_ms;
 172   double* _par_last_update_rs_processed_buffers;
 173   double* _par_last_scan_rs_times_ms;
 174   double* _par_last_obj_copy_times_ms;
 175   double* _par_last_termination_times_ms;
 176   double* _par_last_termination_attempts;
 177   double* _par_last_gc_worker_end_times_ms;
 178   double* _par_last_gc_worker_times_ms;
 179 
 180   // indicates whether we are in full young or partially young GC mode
 181   bool _full_young_gcs;
 182 
 183   // if true, then it tries to dynamically adjust the length of the
 184   // young list
 185   bool _adaptive_young_list_length;
 186   size_t _young_list_target_length;
 187   size_t _young_list_fixed_length;
 188 
 189   // The max number of regions we can extend the eden by while the GC
 190   // locker is active. This should be >= _young_list_target_length;
 191   size_t _young_list_max_length;
 192 
 193   size_t _young_cset_length;
 194   bool   _last_young_gc_full;
 195 
 196   unsigned              _full_young_pause_num;
 197   unsigned              _partial_young_pause_num;
 198 
 199   bool                  _during_marking;
 200   bool                  _in_marking_window;
 201   bool                  _in_marking_window_im;
 202 
 203   SurvRateGroup*        _short_lived_surv_rate_group;
 204   SurvRateGroup*        _survivor_surv_rate_group;
 205   // add here any more surv rate groups
 206 
 207   double                _gc_overhead_perc;
 208 
 209   double _reserve_factor;
 210   double _reserve_regions;
 211 
 212   bool during_marking() {
 213     return _during_marking;
 214   }
 215 
 216   // <NEW PREDICTION>
 217 
 218 private:
 219   enum PredictionConstants {
 220     TruncatedSeqLength = 10
 221   };
 222 
 223   TruncatedSeq* _alloc_rate_ms_seq;
 224   double        _prev_collection_pause_end_ms;
 225 
 226   TruncatedSeq* _pending_card_diff_seq;
 227   TruncatedSeq* _rs_length_diff_seq;
 228   TruncatedSeq* _cost_per_card_ms_seq;
 229   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
 230   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
 231   TruncatedSeq* _cost_per_entry_ms_seq;
 232   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
 233   TruncatedSeq* _cost_per_byte_ms_seq;
 234   TruncatedSeq* _constant_other_time_ms_seq;
 235   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 236   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 237 
 238   TruncatedSeq* _pending_cards_seq;
 239   TruncatedSeq* _scanned_cards_seq;
 240   TruncatedSeq* _rs_lengths_seq;
 241 
 242   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 243 
 244   TruncatedSeq* _young_gc_eff_seq;
 245 
 246   TruncatedSeq* _max_conc_overhead_seq;
 247 
 248   size_t _recorded_young_regions;
 249   size_t _recorded_non_young_regions;
 250   size_t _recorded_region_num;
 251 
 252   size_t _free_regions_at_end_of_collection;
 253 
 254   size_t _recorded_rs_lengths;
 255   size_t _max_rs_lengths;
 256 
 257   size_t _recorded_marked_bytes;
 258   size_t _recorded_young_bytes;
 259 
 260   size_t _predicted_pending_cards;
 261   size_t _predicted_cards_scanned;
 262   size_t _predicted_rs_lengths;
 263   size_t _predicted_bytes_to_copy;
 264 
 265   double _predicted_survival_ratio;
 266   double _predicted_rs_update_time_ms;
 267   double _predicted_rs_scan_time_ms;
 268   double _predicted_object_copy_time_ms;
 269   double _predicted_constant_other_time_ms;
 270   double _predicted_young_other_time_ms;
 271   double _predicted_non_young_other_time_ms;
 272   double _predicted_pause_time_ms;
 273 
 274   double _vtime_diff_ms;
 275 
 276   double _recorded_young_free_cset_time_ms;
 277   double _recorded_non_young_free_cset_time_ms;
 278 
 279   double _sigma;
 280   double _expensive_region_limit_ms;
 281 
 282   size_t _rs_lengths_prediction;
 283 
 284   size_t _known_garbage_bytes;
 285   double _known_garbage_ratio;
 286 
 287   double sigma() {
 288     return _sigma;
 289   }
 290 
 291   // A function that prevents us putting too much stock in small sample
 292   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 293   // of samples.  5 or more samples yields one; fewer scales linearly from
 294   // 2.0 at 1 sample to 1.0 at 5.
 295   double confidence_factor(int samples) {
 296     if (samples > 4) return 1.0;
 297     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 298   }
 299 
 300   double get_new_neg_prediction(TruncatedSeq* seq) {
 301     return seq->davg() - sigma() * seq->dsd();
 302   }
 303 
 304 #ifndef PRODUCT
 305   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 306 #endif // PRODUCT
 307 
 308   void adjust_concurrent_refinement(double update_rs_time,
 309                                     double update_rs_processed_buffers,
 310                                     double goal_ms);
 311 
 312 protected:
 313   double _pause_time_target_ms;
 314   double _recorded_young_cset_choice_time_ms;
 315   double _recorded_non_young_cset_choice_time_ms;
 316   bool   _within_target;
 317   size_t _pending_cards;
 318   size_t _max_pending_cards;
 319 
 320 public:
 321 
 322   void set_region_short_lived(HeapRegion* hr) {
 323     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 324   }
 325 
 326   void set_region_survivors(HeapRegion* hr) {
 327     hr->install_surv_rate_group(_survivor_surv_rate_group);
 328   }
 329 
 330 #ifndef PRODUCT
 331   bool verify_young_ages();
 332 #endif // PRODUCT
 333 
 334   double get_new_prediction(TruncatedSeq* seq) {
 335     return MAX2(seq->davg() + sigma() * seq->dsd(),
 336                 seq->davg() * confidence_factor(seq->num()));
 337   }
 338 
 339   size_t young_cset_length() {
 340     return _young_cset_length;
 341   }
 342 
 343   void record_max_rs_lengths(size_t rs_lengths) {
 344     _max_rs_lengths = rs_lengths;
 345   }
 346 
 347   size_t predict_pending_card_diff() {
 348     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 349     if (prediction < 0.00001)
 350       return 0;
 351     else
 352       return (size_t) prediction;
 353   }
 354 
 355   size_t predict_pending_cards() {
 356     size_t max_pending_card_num = _g1->max_pending_card_num();
 357     size_t diff = predict_pending_card_diff();
 358     size_t prediction;
 359     if (diff > max_pending_card_num)
 360       prediction = max_pending_card_num;
 361     else
 362       prediction = max_pending_card_num - diff;
 363 
 364     return prediction;
 365   }
 366 
 367   size_t predict_rs_length_diff() {
 368     return (size_t) get_new_prediction(_rs_length_diff_seq);
 369   }
 370 
 371   double predict_alloc_rate_ms() {
 372     return get_new_prediction(_alloc_rate_ms_seq);
 373   }
 374 
 375   double predict_cost_per_card_ms() {
 376     return get_new_prediction(_cost_per_card_ms_seq);
 377   }
 378 
 379   double predict_rs_update_time_ms(size_t pending_cards) {
 380     return (double) pending_cards * predict_cost_per_card_ms();
 381   }
 382 
 383   double predict_fully_young_cards_per_entry_ratio() {
 384     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
 385   }
 386 
 387   double predict_partially_young_cards_per_entry_ratio() {
 388     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
 389       return predict_fully_young_cards_per_entry_ratio();
 390     else
 391       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
 392   }
 393 
 394   size_t predict_young_card_num(size_t rs_length) {
 395     return (size_t) ((double) rs_length *
 396                      predict_fully_young_cards_per_entry_ratio());
 397   }
 398 
 399   size_t predict_non_young_card_num(size_t rs_length) {
 400     return (size_t) ((double) rs_length *
 401                      predict_partially_young_cards_per_entry_ratio());
 402   }
 403 
 404   double predict_rs_scan_time_ms(size_t card_num) {
 405     if (full_young_gcs())
 406       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 407     else
 408       return predict_partially_young_rs_scan_time_ms(card_num);
 409   }
 410 
 411   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
 412     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
 413       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 414     else
 415       return (double) card_num *
 416         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
 417   }
 418 
 419   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 420     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
 421       return 1.1 * (double) bytes_to_copy *
 422         get_new_prediction(_cost_per_byte_ms_seq);
 423     else
 424       return (double) bytes_to_copy *
 425         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 426   }
 427 
 428   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 429     if (_in_marking_window && !_in_marking_window_im)
 430       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 431     else
 432       return (double) bytes_to_copy *
 433         get_new_prediction(_cost_per_byte_ms_seq);
 434   }
 435 
 436   double predict_constant_other_time_ms() {
 437     return get_new_prediction(_constant_other_time_ms_seq);
 438   }
 439 
 440   double predict_young_other_time_ms(size_t young_num) {
 441     return
 442       (double) young_num *
 443       get_new_prediction(_young_other_cost_per_region_ms_seq);
 444   }
 445 
 446   double predict_non_young_other_time_ms(size_t non_young_num) {
 447     return
 448       (double) non_young_num *
 449       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 450   }
 451 
 452   void check_if_region_is_too_expensive(double predicted_time_ms);
 453 
 454   double predict_young_collection_elapsed_time_ms(size_t adjustment);
 455   double predict_base_elapsed_time_ms(size_t pending_cards);
 456   double predict_base_elapsed_time_ms(size_t pending_cards,
 457                                       size_t scanned_cards);
 458   size_t predict_bytes_to_copy(HeapRegion* hr);
 459   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 460 
 461   void start_recording_regions();
 462   void record_cset_region_info(HeapRegion* hr, bool young);
 463   void record_non_young_cset_region(HeapRegion* hr);
 464 
 465   void set_recorded_young_regions(size_t n_regions);
 466   void set_recorded_young_bytes(size_t bytes);
 467   void set_recorded_rs_lengths(size_t rs_lengths);
 468   void set_predicted_bytes_to_copy(size_t bytes);
 469 
 470   void end_recording_regions();
 471 
 472   void record_vtime_diff_ms(double vtime_diff_ms) {
 473     _vtime_diff_ms = vtime_diff_ms;
 474   }
 475 
 476   void record_young_free_cset_time_ms(double time_ms) {
 477     _recorded_young_free_cset_time_ms = time_ms;
 478   }
 479 
 480   void record_non_young_free_cset_time_ms(double time_ms) {
 481     _recorded_non_young_free_cset_time_ms = time_ms;
 482   }
 483 
 484   double predict_young_gc_eff() {
 485     return get_new_neg_prediction(_young_gc_eff_seq);
 486   }
 487 
 488   double predict_survivor_regions_evac_time();
 489 
 490   // </NEW PREDICTION>
 491 
 492 public:
 493   void cset_regions_freed() {
 494     bool propagate = _last_young_gc_full && !_in_marking_window;
 495     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 496     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 497     // also call it on any more surv rate groups
 498   }
 499 
 500   void set_known_garbage_bytes(size_t known_garbage_bytes) {
 501     _known_garbage_bytes = known_garbage_bytes;
 502     size_t heap_bytes = _g1->capacity();
 503     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 504   }
 505 
 506   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
 507     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
 508 
 509     _known_garbage_bytes -= known_garbage_bytes;
 510     size_t heap_bytes = _g1->capacity();
 511     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 512   }
 513 
 514   G1MMUTracker* mmu_tracker() {
 515     return _mmu_tracker;
 516   }
 517 
 518   double max_pause_time_ms() {
 519     return _mmu_tracker->max_gc_time() * 1000.0;
 520   }
 521 
 522   double predict_remark_time_ms() {
 523     return get_new_prediction(_concurrent_mark_remark_times_ms);
 524   }
 525 
 526   double predict_cleanup_time_ms() {
 527     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 528   }
 529 
 530   // Returns an estimate of the survival rate of the region at yg-age
 531   // "yg_age".
 532   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 533     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 534     if (seq->num() == 0)
 535       gclog_or_tty->print("BARF! age is %d", age);
 536     guarantee( seq->num() > 0, "invariant" );
 537     double pred = get_new_prediction(seq);
 538     if (pred > 1.0)
 539       pred = 1.0;
 540     return pred;
 541   }
 542 
 543   double predict_yg_surv_rate(int age) {
 544     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 545   }
 546 
 547   double accum_yg_surv_rate_pred(int age) {
 548     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 549   }
 550 
 551 protected:
 552   void print_stats(int level, const char* str, double value);
 553   void print_stats(int level, const char* str, int value);
 554 
 555   void print_par_stats(int level, const char* str, double* data);
 556   void print_par_sizes(int level, const char* str, double* data);
 557 
 558   void check_other_times(int level,
 559                          NumberSeq* other_times_ms,
 560                          NumberSeq* calc_other_times_ms) const;
 561 
 562   void print_summary (PauseSummary* stats) const;
 563 
 564   void print_summary (int level, const char* str, NumberSeq* seq) const;
 565   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 566 
 567   double avg_value (double* data);
 568   double max_value (double* data);
 569   double sum_of_values (double* data);
 570   double max_sum (double* data1, double* data2);
 571 
 572   int _last_satb_drain_processed_buffers;
 573   int _last_update_rs_processed_buffers;
 574   double _last_pause_time_ms;
 575 
 576   size_t _bytes_in_collection_set_before_gc;
 577   size_t _bytes_copied_during_gc;
 578 
 579   // Used to count used bytes in CS.
 580   friend class CountCSClosure;
 581 
 582   // Statistics kept per GC stoppage, pause or full.
 583   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 584 
 585   // We track markings.
 586   int _num_markings;
 587   double _mark_thread_startup_sec;       // Time at startup of marking thread
 588 
 589   // Add a new GC of the given duration and end time to the record.
 590   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 591 
 592   // The head of the list (via "next_in_collection_set()") representing the
 593   // current collection set. Set from the incrementally built collection
 594   // set at the start of the pause.
 595   HeapRegion* _collection_set;
 596 
 597   // The number of regions in the collection set. Set from the incrementally
 598   // built collection set at the start of an evacuation pause.
 599   size_t _collection_set_size;
 600 
 601   // The number of bytes in the collection set before the pause. Set from
 602   // the incrementally built collection set at the start of an evacuation
 603   // pause.
 604   size_t _collection_set_bytes_used_before;
 605 
 606   // The associated information that is maintained while the incremental
 607   // collection set is being built with young regions. Used to populate
 608   // the recorded info for the evacuation pause.
 609 
 610   enum CSetBuildType {
 611     Active,             // We are actively building the collection set
 612     Inactive            // We are not actively building the collection set
 613   };
 614 
 615   CSetBuildType _inc_cset_build_state;
 616 
 617   // The head of the incrementally built collection set.
 618   HeapRegion* _inc_cset_head;
 619 
 620   // The tail of the incrementally built collection set.
 621   HeapRegion* _inc_cset_tail;
 622 
 623   // The number of regions in the incrementally built collection set.
 624   // Used to set _collection_set_size at the start of an evacuation
 625   // pause.
 626   size_t _inc_cset_size;
 627 
 628   // Used as the index in the surving young words structure
 629   // which tracks the amount of space, for each young region,
 630   // that survives the pause.
 631   size_t _inc_cset_young_index;
 632 
 633   // The number of bytes in the incrementally built collection set.
 634   // Used to set _collection_set_bytes_used_before at the start of
 635   // an evacuation pause.
 636   size_t _inc_cset_bytes_used_before;
 637 
 638   // Used to record the highest end of heap region in collection set
 639   HeapWord* _inc_cset_max_finger;
 640 
 641   // The number of recorded used bytes in the young regions
 642   // of the collection set. This is the sum of the used() bytes
 643   // of retired young regions in the collection set.
 644   size_t _inc_cset_recorded_young_bytes;
 645 
 646   // The RSet lengths recorded for regions in the collection set
 647   // (updated by the periodic sampling of the regions in the
 648   // young list/collection set).
 649   size_t _inc_cset_recorded_rs_lengths;
 650 
 651   // The predicted elapsed time it will take to collect the regions
 652   // in the collection set (updated by the periodic sampling of the
 653   // regions in the young list/collection set).
 654   double _inc_cset_predicted_elapsed_time_ms;
 655 
 656   // The predicted bytes to copy for the regions in the collection
 657   // set (updated by the periodic sampling of the regions in the
 658   // young list/collection set).
 659   size_t _inc_cset_predicted_bytes_to_copy;
 660 
 661   // Info about marking.
 662   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
 663 
 664   // The number of collection pauses at the end of the last mark.
 665   size_t _n_pauses_at_mark_end;
 666 
 667   // Stash a pointer to the g1 heap.
 668   G1CollectedHeap* _g1;
 669 
 670   // The average time in ms per collection pause, averaged over recent pauses.
 671   double recent_avg_time_for_pauses_ms();
 672 
 673   // The average time in ms for RS scanning, per pause, averaged
 674   // over recent pauses. (Note the RS scanning time for a pause
 675   // is itself an average of the RS scanning time for each worker
 676   // thread.)
 677   double recent_avg_time_for_rs_scan_ms();
 678 
 679   // The number of "recent" GCs recorded in the number sequences
 680   int number_of_recent_gcs();
 681 
 682   // The average survival ratio, computed by the total number of bytes
 683   // suriviving / total number of bytes before collection over the last
 684   // several recent pauses.
 685   double recent_avg_survival_fraction();
 686   // The survival fraction of the most recent pause; if there have been no
 687   // pauses, returns 1.0.
 688   double last_survival_fraction();
 689 
 690   // Returns a "conservative" estimate of the recent survival rate, i.e.,
 691   // one that may be higher than "recent_avg_survival_fraction".
 692   // This is conservative in several ways:
 693   //   If there have been few pauses, it will assume a potential high
 694   //     variance, and err on the side of caution.
 695   //   It puts a lower bound (currently 0.1) on the value it will return.
 696   //   To try to detect phase changes, if the most recent pause ("latest") has a
 697   //     higher-than average ("avg") survival rate, it returns that rate.
 698   // "work" version is a utility function; young is restricted to young regions.
 699   double conservative_avg_survival_fraction_work(double avg,
 700                                                  double latest);
 701 
 702   // The arguments are the two sequences that keep track of the number of bytes
 703   //   surviving and the total number of bytes before collection, resp.,
 704   //   over the last evereal recent pauses
 705   // Returns the survival rate for the category in the most recent pause.
 706   // If there have been no pauses, returns 1.0.
 707   double last_survival_fraction_work(TruncatedSeq* surviving,
 708                                      TruncatedSeq* before);
 709 
 710   // The arguments are the two sequences that keep track of the number of bytes
 711   //   surviving and the total number of bytes before collection, resp.,
 712   //   over the last several recent pauses
 713   // Returns the average survival ration over the last several recent pauses
 714   // If there have been no pauses, return 1.0
 715   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
 716                                            TruncatedSeq* before);
 717 
 718   double conservative_avg_survival_fraction() {
 719     double avg = recent_avg_survival_fraction();
 720     double latest = last_survival_fraction();
 721     return conservative_avg_survival_fraction_work(avg, latest);
 722   }
 723 
 724   // The ratio of gc time to elapsed time, computed over recent pauses.
 725   double _recent_avg_pause_time_ratio;
 726 
 727   double recent_avg_pause_time_ratio() {
 728     return _recent_avg_pause_time_ratio;
 729   }
 730 
 731   // Number of pauses between concurrent marking.
 732   size_t _pauses_btwn_concurrent_mark;
 733 
 734   size_t _n_marks_since_last_pause;
 735 
 736   // At the end of a pause we check the heap occupancy and we decide
 737   // whether we will start a marking cycle during the next pause. If
 738   // we decide that we want to do that, we will set this parameter to
 739   // true. So, this parameter will stay true between the end of a
 740   // pause and the beginning of a subsequent pause (not necessarily
 741   // the next one, see the comments on the next field) when we decide
 742   // that we will indeed start a marking cycle and do the initial-mark
 743   // work.
 744   volatile bool _initiate_conc_mark_if_possible;
 745 
 746   // If initiate_conc_mark_if_possible() is set at the beginning of a
 747   // pause, it is a suggestion that the pause should start a marking
 748   // cycle by doing the initial-mark work. However, it is possible
 749   // that the concurrent marking thread is still finishing up the
 750   // previous marking cycle (e.g., clearing the next marking
 751   // bitmap). If that is the case we cannot start a new cycle and
 752   // we'll have to wait for the concurrent marking thread to finish
 753   // what it is doing. In this case we will postpone the marking cycle
 754   // initiation decision for the next pause. When we eventually decide
 755   // to start a cycle, we will set _during_initial_mark_pause which
 756   // will stay true until the end of the initial-mark pause and it's
 757   // the condition that indicates that a pause is doing the
 758   // initial-mark work.
 759   volatile bool _during_initial_mark_pause;
 760 
 761   bool _should_revert_to_full_young_gcs;
 762   bool _last_full_young_gc;
 763 
 764   // This set of variables tracks the collector efficiency, in order to
 765   // determine whether we should initiate a new marking.
 766   double _cur_mark_stop_world_time_ms;
 767   double _mark_remark_start_sec;
 768   double _mark_cleanup_start_sec;
 769   double _mark_closure_time_ms;
 770 
 771   // Update the young list target length either by setting it to the
 772   // desired fixed value or by calculating it using G1's pause
 773   // prediction model. If no rs_lengths parameter is passed, predict
 774   // the RS lengths using the prediction model, otherwise use the
 775   // given rs_lengths as the prediction.
 776   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 777 
 778   // Calculate and return the minimum desired young list target
 779   // length. This is the minimum desired young list length according
 780   // to the user's inputs.
 781   size_t calculate_young_list_desired_min_length(size_t base_min_length);
 782 
 783   // Calculate and return the maximum desired young list target
 784   // length. This is the maximum desired young list length according
 785   // to the user's inputs.
 786   size_t calculate_young_list_desired_max_length();
 787 
 788   // Calculate and return the maximum young list target length that
 789   // can fit into the pause time goal. The parameters are: rs_lengths
 790   // represent the prediction of how large the young RSet lengths will
 791   // be, base_min_length is the alreay existing number of regions in
 792   // the young list, min_length and max_length are the desired min and
 793   // max young list length according to the user's inputs.
 794   size_t calculate_young_list_target_length(size_t rs_lengths,
 795                                             size_t base_min_length,
 796                                             size_t desired_min_length,
 797                                             size_t desired_max_length);
 798 
 799   // Check whether a given young length (young_length) fits into the
 800   // given target pause time and whether the prediction for the amount
 801   // of objects to be copied for the given length will fit into the
 802   // given free space (expressed by base_free_regions).  It is used by
 803   // calculate_young_list_target_length().
 804   bool predict_will_fit(size_t young_length, double base_time_ms,
 805                         size_t base_free_regions, double target_pause_time_ms);
 806 
 807 public:
 808 
 809   G1CollectorPolicy();
 810 
 811   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 812 
 813   virtual CollectorPolicy::Name kind() {
 814     return CollectorPolicy::G1CollectorPolicyKind;
 815   }
 816 
 817   // Check the current value of the young list RSet lengths and
 818   // compare it against the last prediction. If the current value is
 819   // higher, recalculate the young list target length prediction.
 820   void revise_young_list_target_length_if_necessary();
 821 
 822   size_t bytes_in_collection_set() {
 823     return _bytes_in_collection_set_before_gc;
 824   }
 825 
 826   unsigned calc_gc_alloc_time_stamp() {
 827     return _all_pause_times_ms->num() + 1;
 828   }
 829 
 830   // Recalculate the reserve region number. This should be called
 831   // after the heap is resized.
 832   void calculate_reserve(size_t all_regions);
 833 
 834 protected:
 835 
 836   // Count the number of bytes used in the CS.
 837   void count_CS_bytes_used();
 838 
 839   // Together these do the base cleanup-recording work.  Subclasses might
 840   // want to put something between them.
 841   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 842                                                 size_t max_live_bytes);
 843   void record_concurrent_mark_cleanup_end_work2();
 844 
 845 public:
 846 
 847   virtual void init();
 848 
 849   // Create jstat counters for the policy.
 850   virtual void initialize_gc_policy_counters();
 851 
 852   virtual HeapWord* mem_allocate_work(size_t size,
 853                                       bool is_tlab,
 854                                       bool* gc_overhead_limit_was_exceeded);
 855 
 856   // This method controls how a collector handles one or more
 857   // of its generations being fully allocated.
 858   virtual HeapWord* satisfy_failed_allocation(size_t size,
 859                                               bool is_tlab);
 860 
 861   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 862 
 863   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 864 
 865   // The number of collection pauses so far.
 866   long n_pauses() const { return _n_pauses; }
 867 
 868   // Update the heuristic info to record a collection pause of the given
 869   // start time, where the given number of bytes were used at the start.
 870   // This may involve changing the desired size of a collection set.
 871 
 872   virtual void record_stop_world_start();
 873 
 874   virtual void record_collection_pause_start(double start_time_sec,
 875                                              size_t start_used);
 876 
 877   // Must currently be called while the world is stopped.
 878   void record_concurrent_mark_init_end(double
 879                                            mark_init_elapsed_time_ms);
 880 
 881   void record_mark_closure_time(double mark_closure_time_ms);
 882 
 883   virtual void record_concurrent_mark_remark_start();
 884   virtual void record_concurrent_mark_remark_end();
 885 
 886   virtual void record_concurrent_mark_cleanup_start();
 887   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
 888                                                   size_t max_live_bytes);
 889   virtual void record_concurrent_mark_cleanup_completed();
 890 
 891   virtual void record_concurrent_pause();
 892   virtual void record_concurrent_pause_end();
 893 
 894   virtual void record_collection_pause_end();
 895   void print_heap_transition();
 896 
 897   // Record the fact that a full collection occurred.
 898   virtual void record_full_collection_start();
 899   virtual void record_full_collection_end();
 900 
 901   void record_gc_worker_start_time(int worker_i, double ms) {
 902     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 903   }
 904 
 905   void record_ext_root_scan_time(int worker_i, double ms) {
 906     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 907   }
 908 
 909   void record_mark_stack_scan_time(int worker_i, double ms) {
 910     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
 911   }
 912 
 913   void record_satb_drain_time(double ms) {
 914     _cur_satb_drain_time_ms = ms;
 915     _satb_drain_time_set    = true;
 916   }
 917 
 918   void record_satb_drain_processed_buffers (int processed_buffers) {
 919     _last_satb_drain_processed_buffers = processed_buffers;
 920   }
 921 
 922   void record_mod_union_time(double ms) {
 923     _all_mod_union_times_ms->add(ms);
 924   }
 925 
 926   void record_update_rs_time(int thread, double ms) {
 927     _par_last_update_rs_times_ms[thread] = ms;
 928   }
 929 
 930   void record_update_rs_processed_buffers (int thread,
 931                                            double processed_buffers) {
 932     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 933   }
 934 
 935   void record_scan_rs_time(int thread, double ms) {
 936     _par_last_scan_rs_times_ms[thread] = ms;
 937   }
 938 
 939   void reset_obj_copy_time(int thread) {
 940     _par_last_obj_copy_times_ms[thread] = 0.0;
 941   }
 942 
 943   void reset_obj_copy_time() {
 944     reset_obj_copy_time(0);
 945   }
 946 
 947   void record_obj_copy_time(int thread, double ms) {
 948     _par_last_obj_copy_times_ms[thread] += ms;
 949   }
 950 
 951   void record_termination(int thread, double ms, size_t attempts) {
 952     _par_last_termination_times_ms[thread] = ms;
 953     _par_last_termination_attempts[thread] = (double) attempts;
 954   }
 955 
 956   void record_gc_worker_end_time(int worker_i, double ms) {
 957     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 958   }
 959 
 960   void record_pause_time_ms(double ms) {
 961     _last_pause_time_ms = ms;
 962   }
 963 
 964   void record_clear_ct_time(double ms) {
 965     _cur_clear_ct_time_ms = ms;
 966   }
 967 
 968   void record_par_time(double ms) {
 969     _cur_collection_par_time_ms = ms;
 970   }
 971 
 972   void record_aux_start_time(int i) {
 973     guarantee(i < _aux_num, "should be within range");
 974     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 975   }
 976 
 977   void record_aux_end_time(int i) {
 978     guarantee(i < _aux_num, "should be within range");
 979     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 980     _cur_aux_times_set[i] = true;
 981     _cur_aux_times_ms[i] += ms;
 982   }
 983 
 984 #ifndef PRODUCT
 985   void record_cc_clear_time(double ms) {
 986     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 987       _min_clear_cc_time_ms = ms;
 988     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 989       _max_clear_cc_time_ms = ms;
 990     _cur_clear_cc_time_ms = ms;
 991     _cum_clear_cc_time_ms += ms;
 992     _num_cc_clears++;
 993   }
 994 #endif
 995 
 996   // Record how much space we copied during a GC. This is typically
 997   // called when a GC alloc region is being retired.
 998   void record_bytes_copied_during_gc(size_t bytes) {
 999     _bytes_copied_during_gc += bytes;
1000   }
1001 
1002   // The amount of space we copied during a GC.
1003   size_t bytes_copied_during_gc() {
1004     return _bytes_copied_during_gc;
1005   }
1006 
1007   // Choose a new collection set.  Marks the chosen regions as being
1008   // "in_collection_set", and links them together.  The head and number of
1009   // the collection set are available via access methods.
1010   virtual void choose_collection_set(double target_pause_time_ms) = 0;
1011 
1012   // The head of the list (via "next_in_collection_set()") representing the
1013   // current collection set.
1014   HeapRegion* collection_set() { return _collection_set; }
1015 
1016   void clear_collection_set() { _collection_set = NULL; }
1017 
1018   // The number of elements in the current collection set.
1019   size_t collection_set_size() { return _collection_set_size; }
1020 
1021   // Add "hr" to the CS.
1022   void add_to_collection_set(HeapRegion* hr);
1023 
1024   // Incremental CSet Support
1025 
1026   // The head of the incrementally built collection set.
1027   HeapRegion* inc_cset_head() { return _inc_cset_head; }
1028 
1029   // The tail of the incrementally built collection set.
1030   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
1031 
1032   // The number of elements in the incrementally built collection set.
1033   size_t inc_cset_size() { return _inc_cset_size; }
1034 
1035   // Initialize incremental collection set info.
1036   void start_incremental_cset_building();
1037 
1038   void clear_incremental_cset() {
1039     _inc_cset_head = NULL;
1040     _inc_cset_tail = NULL;
1041   }
1042 
1043   // Stop adding regions to the incremental collection set
1044   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
1045 
1046   // Add/remove information about hr to the aggregated information
1047   // for the incrementally built collection set.
1048   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
1049   void remove_from_incremental_cset_info(HeapRegion* hr);
1050 
1051   // Update information about hr in the aggregated information for
1052   // the incrementally built collection set.
1053   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
1054 
1055 private:
1056   // Update the incremental cset information when adding a region
1057   // (should not be called directly).
1058   void add_region_to_incremental_cset_common(HeapRegion* hr);
1059 
1060 public:
1061   // Add hr to the LHS of the incremental collection set.
1062   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
1063 
1064   // Add hr to the RHS of the incremental collection set.
1065   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
1066 
1067 #ifndef PRODUCT
1068   void print_collection_set(HeapRegion* list_head, outputStream* st);
1069 #endif // !PRODUCT
1070 
1071   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
1072   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
1073   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
1074 
1075   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
1076   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
1077   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
1078 
1079   // This sets the initiate_conc_mark_if_possible() flag to start a
1080   // new cycle, as long as we are not already in one. It's best if it
1081   // is called during a safepoint when the test whether a cycle is in
1082   // progress or not is stable.
1083   bool force_initial_mark_if_outside_cycle();
1084 
1085   // This is called at the very beginning of an evacuation pause (it
1086   // has to be the first thing that the pause does). If
1087   // initiate_conc_mark_if_possible() is true, and the concurrent
1088   // marking thread has completed its work during the previous cycle,
1089   // it will set during_initial_mark_pause() to so that the pause does
1090   // the initial-mark work and start a marking cycle.
1091   void decide_on_conc_mark_initiation();
1092 
1093   // If an expansion would be appropriate, because recent GC overhead had
1094   // exceeded the desired limit, return an amount to expand by.
1095   virtual size_t expansion_amount();
1096 
1097   // note start of mark thread
1098   void note_start_of_mark_thread();
1099 
1100   // The marked bytes of the "r" has changed; reclassify it's desirability
1101   // for marking.  Also asserts that "r" is eligible for a CS.
1102   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
1103 
1104 #ifndef PRODUCT
1105   // Check any appropriate marked bytes info, asserting false if
1106   // something's wrong, else returning "true".
1107   virtual bool assertMarkedBytesDataOK() = 0;
1108 #endif
1109 
1110   // Print tracing information.
1111   void print_tracing_info() const;
1112 
1113   // Print stats on young survival ratio
1114   void print_yg_surv_rate_info() const;
1115 
1116   void finished_recalculating_age_indexes(bool is_survivors) {
1117     if (is_survivors) {
1118       _survivor_surv_rate_group->finished_recalculating_age_indexes();
1119     } else {
1120       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1121     }
1122     // do that for any other surv rate groups
1123   }
1124 
1125   bool is_young_list_full() {
1126     size_t young_list_length = _g1->young_list()->length();
1127     size_t young_list_target_length = _young_list_target_length;
1128     return young_list_length >= young_list_target_length;
1129   }
1130 
1131   bool can_expand_young_list() {
1132     size_t young_list_length = _g1->young_list()->length();
1133     size_t young_list_max_length = _young_list_max_length;
1134     return young_list_length < young_list_max_length;
1135   }
1136 
1137   void update_region_num(bool young);
1138 
1139   bool full_young_gcs() {
1140     return _full_young_gcs;
1141   }
1142   void set_full_young_gcs(bool full_young_gcs) {
1143     _full_young_gcs = full_young_gcs;
1144   }
1145 
1146   bool adaptive_young_list_length() {
1147     return _adaptive_young_list_length;
1148   }
1149   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1150     _adaptive_young_list_length = adaptive_young_list_length;
1151   }
1152 
1153   inline double get_gc_eff_factor() {
1154     double ratio = _known_garbage_ratio;
1155 
1156     double square = ratio * ratio;
1157     // square = square * square;
1158     double ret = square * 9.0 + 1.0;
1159 #if 0
1160     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1161 #endif // 0
1162     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1163     return ret;
1164   }
1165 
1166   //
1167   // Survivor regions policy.
1168   //
1169 protected:
1170 
1171   // Current tenuring threshold, set to 0 if the collector reaches the
1172   // maximum amount of suvivors regions.
1173   int _tenuring_threshold;
1174 
1175   // The limit on the number of regions allocated for survivors.
1176   size_t _max_survivor_regions;
1177 
1178   // For reporting purposes.
1179   size_t _eden_bytes_before_gc;
1180   size_t _survivor_bytes_before_gc;
1181   size_t _capacity_before_gc;
1182 
1183   // The amount of survor regions after a collection.
1184   size_t _recorded_survivor_regions;
1185   // List of survivor regions.
1186   HeapRegion* _recorded_survivor_head;
1187   HeapRegion* _recorded_survivor_tail;
1188 
1189   ageTable _survivors_age_table;
1190 
1191 public:
1192 
1193   inline GCAllocPurpose
1194     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1195       if (age < _tenuring_threshold && src_region->is_young()) {
1196         return GCAllocForSurvived;
1197       } else {
1198         return GCAllocForTenured;
1199       }
1200   }
1201 
1202   inline bool track_object_age(GCAllocPurpose purpose) {
1203     return purpose == GCAllocForSurvived;
1204   }
1205 
1206   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
1207 
1208   size_t max_regions(int purpose);
1209 
1210   // The limit on regions for a particular purpose is reached.
1211   void note_alloc_region_limit_reached(int purpose) {
1212     if (purpose == GCAllocForSurvived) {
1213       _tenuring_threshold = 0;
1214     }
1215   }
1216 
1217   void note_start_adding_survivor_regions() {
1218     _survivor_surv_rate_group->start_adding_regions();
1219   }
1220 
1221   void note_stop_adding_survivor_regions() {
1222     _survivor_surv_rate_group->stop_adding_regions();
1223   }
1224 
1225   void record_survivor_regions(size_t      regions,
1226                                HeapRegion* head,
1227                                HeapRegion* tail) {
1228     _recorded_survivor_regions = regions;
1229     _recorded_survivor_head    = head;
1230     _recorded_survivor_tail    = tail;
1231   }
1232 
1233   size_t recorded_survivor_regions() {
1234     return _recorded_survivor_regions;
1235   }
1236 
1237   void record_thread_age_table(ageTable* age_table)
1238   {
1239     _survivors_age_table.merge_par(age_table);
1240   }
1241 
1242   void update_max_gc_locker_expansion();
1243 
1244   // Calculates survivor space parameters.
1245   void update_survivors_policy();
1246 
1247 };
1248 
1249 // This encapsulates a particular strategy for a g1 Collector.
1250 //
1251 //      Start a concurrent mark when our heap size is n bytes
1252 //            greater then our heap size was at the last concurrent
1253 //            mark.  Where n is a function of the CMSTriggerRatio
1254 //            and the MinHeapFreeRatio.
1255 //
1256 //      Start a g1 collection pause when we have allocated the
1257 //            average number of bytes currently being freed in
1258 //            a collection, but only if it is at least one region
1259 //            full
1260 //
1261 //      Resize Heap based on desired
1262 //      allocation space, where desired allocation space is
1263 //      a function of survival rate and desired future to size.
1264 //
1265 //      Choose collection set by first picking all older regions
1266 //      which have a survival rate which beats our projected young
1267 //      survival rate.  Then fill out the number of needed regions
1268 //      with young regions.
1269 
1270 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
1271   CollectionSetChooser* _collectionSetChooser;
1272   // If the estimated is less then desirable, resize if possible.
1273   void expand_if_possible(size_t numRegions);
1274 
1275   virtual void choose_collection_set(double target_pause_time_ms);
1276   virtual void record_collection_pause_start(double start_time_sec,
1277                                              size_t start_used);
1278   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
1279                                                   size_t max_live_bytes);
1280   virtual void record_full_collection_end();
1281 
1282 public:
1283   G1CollectorPolicy_BestRegionsFirst() {
1284     _collectionSetChooser = new CollectionSetChooser();
1285   }
1286   void record_collection_pause_end();
1287   // This is not needed any more, after the CSet choosing code was
1288   // changed to use the pause prediction work. But let's leave the
1289   // hook in just in case.
1290   void note_change_in_marked_bytes(HeapRegion* r) { }
1291 #ifndef PRODUCT
1292   bool assertMarkedBytesDataOK();
1293 #endif
1294 };
1295 
1296 // This should move to some place more general...
1297 
1298 // If we have "n" measurements, and we've kept track of their "sum" and the
1299 // "sum_of_squares" of the measurements, this returns the variance of the
1300 // sequence.
1301 inline double variance(int n, double sum_of_squares, double sum) {
1302   double n_d = (double)n;
1303   double avg = sum/n_d;
1304   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1305 }
1306 
1307 // Local Variables: ***
1308 // c-indentation-style: gnu ***
1309 // End: ***
1310 
1311 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP