1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1RemSet.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.hpp"
  34 #include "gc_implementation/g1/heapRegionSets.hpp"
  35 #include "gc_implementation/shared/hSpaceCounters.hpp"
  36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
  37 #include "memory/barrierSet.hpp"
  38 #include "memory/memRegion.hpp"
  39 #include "memory/sharedHeap.hpp"
  40 
  41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  42 // It uses the "Garbage First" heap organization and algorithm, which
  43 // may combine concurrent marking with parallel, incremental compaction of
  44 // heap subsets that will yield large amounts of garbage.
  45 
  46 class HeapRegion;
  47 class HRRSCleanupTask;
  48 class PermanentGenerationSpec;
  49 class GenerationSpec;
  50 class OopsInHeapRegionClosure;
  51 class G1ScanHeapEvacClosure;
  52 class ObjectClosure;
  53 class SpaceClosure;
  54 class CompactibleSpaceClosure;
  55 class Space;
  56 class G1CollectorPolicy;
  57 class GenRemSet;
  58 class G1RemSet;
  59 class HeapRegionRemSetIterator;
  60 class ConcurrentMark;
  61 class ConcurrentMarkThread;
  62 class ConcurrentG1Refine;
  63 class GenerationCounters;
  64 
  65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
  66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
  67 
  68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  70 
  71 enum GCAllocPurpose {
  72   GCAllocForTenured,
  73   GCAllocForSurvived,
  74   GCAllocPurposeCount
  75 };
  76 
  77 class YoungList : public CHeapObj {
  78 private:
  79   G1CollectedHeap* _g1h;
  80 
  81   HeapRegion* _head;
  82 
  83   HeapRegion* _survivor_head;
  84   HeapRegion* _survivor_tail;
  85 
  86   HeapRegion* _curr;
  87 
  88   size_t      _length;
  89   size_t      _survivor_length;
  90 
  91   size_t      _last_sampled_rs_lengths;
  92   size_t      _sampled_rs_lengths;
  93 
  94   void         empty_list(HeapRegion* list);
  95 
  96 public:
  97   YoungList(G1CollectedHeap* g1h);
  98 
  99   void         push_region(HeapRegion* hr);
 100   void         add_survivor_region(HeapRegion* hr);
 101 
 102   void         empty_list();
 103   bool         is_empty() { return _length == 0; }
 104   size_t       length() { return _length; }
 105   size_t       survivor_length() { return _survivor_length; }
 106 
 107   // Currently we do not keep track of the used byte sum for the
 108   // young list and the survivors and it'd be quite a lot of work to
 109   // do so. When we'll eventually replace the young list with
 110   // instances of HeapRegionLinkedList we'll get that for free. So,
 111   // we'll report the more accurate information then.
 112   size_t       eden_used_bytes() {
 113     assert(length() >= survivor_length(), "invariant");
 114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
 115   }
 116   size_t       survivor_used_bytes() {
 117     return survivor_length() * HeapRegion::GrainBytes;
 118   }
 119 
 120   void rs_length_sampling_init();
 121   bool rs_length_sampling_more();
 122   void rs_length_sampling_next();
 123 
 124   void reset_sampled_info() {
 125     _last_sampled_rs_lengths =   0;
 126   }
 127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 128 
 129   // for development purposes
 130   void reset_auxilary_lists();
 131   void clear() { _head = NULL; _length = 0; }
 132 
 133   void clear_survivors() {
 134     _survivor_head    = NULL;
 135     _survivor_tail    = NULL;
 136     _survivor_length  = 0;
 137   }
 138 
 139   HeapRegion* first_region() { return _head; }
 140   HeapRegion* first_survivor_region() { return _survivor_head; }
 141   HeapRegion* last_survivor_region() { return _survivor_tail; }
 142 
 143   // debugging
 144   bool          check_list_well_formed();
 145   bool          check_list_empty(bool check_sample = true);
 146   void          print();
 147 };
 148 
 149 class MutatorAllocRegion : public G1AllocRegion {
 150 protected:
 151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 153 public:
 154   MutatorAllocRegion()
 155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 156 };
 157 
 158 // The G1 STW is alive closure.
 159 // An instance is embedded into the G1CH and used as the
 160 // (optional) _is_alive_non_header closure in the STW
 161 // reference processor. It is also extensively used during
 162 // refence processing during STW evacuation pauses.
 163 class G1STWIsAliveClosure: public BoolObjectClosure {
 164   G1CollectedHeap* _g1;
 165 public:
 166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 167   void do_object(oop p) { assert(false, "Do not call."); }
 168   bool do_object_b(oop p);
 169 };
 170 
 171 class SurvivorGCAllocRegion : public G1AllocRegion {
 172 protected:
 173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 175 public:
 176   SurvivorGCAllocRegion()
 177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 178 };
 179 
 180 class OldGCAllocRegion : public G1AllocRegion {
 181 protected:
 182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 184 public:
 185   OldGCAllocRegion()
 186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 187 };
 188 
 189 class RefineCardTableEntryClosure;
 190 
 191 class G1CollectedHeap : public SharedHeap {
 192   friend class VM_G1CollectForAllocation;
 193   friend class VM_GenCollectForPermanentAllocation;
 194   friend class VM_G1CollectFull;
 195   friend class VM_G1IncCollectionPause;
 196   friend class VMStructs;
 197   friend class MutatorAllocRegion;
 198   friend class SurvivorGCAllocRegion;
 199   friend class OldGCAllocRegion;
 200 
 201   // Closures used in implementation.
 202   friend class G1ParCopyHelper;
 203   friend class G1IsAliveClosure;
 204   friend class G1EvacuateFollowersClosure;
 205   friend class G1ParScanThreadState;
 206   friend class G1ParScanClosureSuper;
 207   friend class G1ParEvacuateFollowersClosure;
 208   friend class G1ParTask;
 209   friend class G1FreeGarbageRegionClosure;
 210   friend class RefineCardTableEntryClosure;
 211   friend class G1PrepareCompactClosure;
 212   friend class RegionSorter;
 213   friend class RegionResetter;
 214   friend class CountRCClosure;
 215   friend class EvacPopObjClosure;
 216   friend class G1ParCleanupCTTask;
 217 
 218   // Other related classes.
 219   friend class G1MarkSweep;
 220 
 221 private:
 222   // The one and only G1CollectedHeap, so static functions can find it.
 223   static G1CollectedHeap* _g1h;
 224 
 225   static size_t _humongous_object_threshold_in_words;
 226 
 227   // Storage for the G1 heap (excludes the permanent generation).
 228   VirtualSpace _g1_storage;
 229   MemRegion    _g1_reserved;
 230 
 231   // The part of _g1_storage that is currently committed.
 232   MemRegion _g1_committed;
 233 
 234   // The master free list. It will satisfy all new region allocations.
 235   MasterFreeRegionList      _free_list;
 236 
 237   // The secondary free list which contains regions that have been
 238   // freed up during the cleanup process. This will be appended to the
 239   // master free list when appropriate.
 240   SecondaryFreeRegionList   _secondary_free_list;
 241 
 242   // It keeps track of the humongous regions.
 243   MasterHumongousRegionSet  _humongous_set;
 244 
 245   // The number of regions we could create by expansion.
 246   size_t _expansion_regions;
 247 
 248   // The block offset table for the G1 heap.
 249   G1BlockOffsetSharedArray* _bot_shared;
 250 
 251   // Move all of the regions off the free lists, then rebuild those free
 252   // lists, before and after full GC.
 253   void tear_down_region_lists();
 254   void rebuild_region_lists();
 255 
 256   // The sequence of all heap regions in the heap.
 257   HeapRegionSeq _hrs;
 258 
 259   // Alloc region used to satisfy mutator allocation requests.
 260   MutatorAllocRegion _mutator_alloc_region;
 261 
 262   // Alloc region used to satisfy allocation requests by the GC for
 263   // survivor objects.
 264   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 265 
 266   // Alloc region used to satisfy allocation requests by the GC for
 267   // old objects.
 268   OldGCAllocRegion _old_gc_alloc_region;
 269 
 270   // The last old region we allocated to during the last GC.
 271   // Typically, it is not full so we should re-use it during the next GC.
 272   HeapRegion* _retained_old_gc_alloc_region;
 273 
 274   // It resets the mutator alloc region before new allocations can take place.
 275   void init_mutator_alloc_region();
 276 
 277   // It releases the mutator alloc region.
 278   void release_mutator_alloc_region();
 279 
 280   // It initializes the GC alloc regions at the start of a GC.
 281   void init_gc_alloc_regions();
 282 
 283   // It releases the GC alloc regions at the end of a GC.
 284   void release_gc_alloc_regions();
 285 
 286   // It does any cleanup that needs to be done on the GC alloc regions
 287   // before a Full GC.
 288   void abandon_gc_alloc_regions();
 289 
 290   // Helper for monitoring and management support.
 291   G1MonitoringSupport* _g1mm;
 292 
 293   // Determines PLAB size for a particular allocation purpose.
 294   static size_t desired_plab_sz(GCAllocPurpose purpose);
 295 
 296   // Outside of GC pauses, the number of bytes used in all regions other
 297   // than the current allocation region.
 298   size_t _summary_bytes_used;
 299 
 300   // This is used for a quick test on whether a reference points into
 301   // the collection set or not. Basically, we have an array, with one
 302   // byte per region, and that byte denotes whether the corresponding
 303   // region is in the collection set or not. The entry corresponding
 304   // the bottom of the heap, i.e., region 0, is pointed to by
 305   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 306   // biased so that it actually points to address 0 of the address
 307   // space, to make the test as fast as possible (we can simply shift
 308   // the address to address into it, instead of having to subtract the
 309   // bottom of the heap from the address before shifting it; basically
 310   // it works in the same way the card table works).
 311   bool* _in_cset_fast_test;
 312 
 313   // The allocated array used for the fast test on whether a reference
 314   // points into the collection set or not. This field is also used to
 315   // free the array.
 316   bool* _in_cset_fast_test_base;
 317 
 318   // The length of the _in_cset_fast_test_base array.
 319   size_t _in_cset_fast_test_length;
 320 
 321   volatile unsigned _gc_time_stamp;
 322 
 323   size_t* _surviving_young_words;
 324 
 325   G1HRPrinter _hr_printer;
 326 
 327   void setup_surviving_young_words();
 328   void update_surviving_young_words(size_t* surv_young_words);
 329   void cleanup_surviving_young_words();
 330 
 331   // It decides whether an explicit GC should start a concurrent cycle
 332   // instead of doing a STW GC. Currently, a concurrent cycle is
 333   // explicitly started if:
 334   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 335   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 336   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 337 
 338   // Keeps track of how many "full collections" (i.e., Full GCs or
 339   // concurrent cycles) we have completed. The number of them we have
 340   // started is maintained in _total_full_collections in CollectedHeap.
 341   volatile unsigned int _full_collections_completed;
 342 
 343   // This is a non-product method that is helpful for testing. It is
 344   // called at the end of a GC and artificially expands the heap by
 345   // allocating a number of dead regions. This way we can induce very
 346   // frequent marking cycles and stress the cleanup / concurrent
 347   // cleanup code more (as all the regions that will be allocated by
 348   // this method will be found dead by the marking cycle).
 349   void allocate_dummy_regions() PRODUCT_RETURN;
 350 
 351   // These are macros so that, if the assert fires, we get the correct
 352   // line number, file, etc.
 353 
 354 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 355   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 356           (_extra_message_),                                                  \
 357           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 358           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 359           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 360 
 361 #define assert_heap_locked()                                                  \
 362   do {                                                                        \
 363     assert(Heap_lock->owned_by_self(),                                        \
 364            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 365   } while (0)
 366 
 367 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 368   do {                                                                        \
 369     assert(Heap_lock->owned_by_self() ||                                      \
 370            (SafepointSynchronize::is_at_safepoint() &&                        \
 371              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 372            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 373                                         "should be at a safepoint"));         \
 374   } while (0)
 375 
 376 #define assert_heap_locked_and_not_at_safepoint()                             \
 377   do {                                                                        \
 378     assert(Heap_lock->owned_by_self() &&                                      \
 379                                     !SafepointSynchronize::is_at_safepoint(), \
 380           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 381                                        "should not be at a safepoint"));      \
 382   } while (0)
 383 
 384 #define assert_heap_not_locked()                                              \
 385   do {                                                                        \
 386     assert(!Heap_lock->owned_by_self(),                                       \
 387         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 388   } while (0)
 389 
 390 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 391   do {                                                                        \
 392     assert(!Heap_lock->owned_by_self() &&                                     \
 393                                     !SafepointSynchronize::is_at_safepoint(), \
 394       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 395                                    "should not be at a safepoint"));          \
 396   } while (0)
 397 
 398 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 399   do {                                                                        \
 400     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 401               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 402            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 403   } while (0)
 404 
 405 #define assert_not_at_safepoint()                                             \
 406   do {                                                                        \
 407     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 408            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 409   } while (0)
 410 
 411 protected:
 412 
 413   // The young region list.
 414   YoungList*  _young_list;
 415 
 416   // The current policy object for the collector.
 417   G1CollectorPolicy* _g1_policy;
 418 
 419   // This is the second level of trying to allocate a new region. If
 420   // new_region() didn't find a region on the free_list, this call will
 421   // check whether there's anything available on the
 422   // secondary_free_list and/or wait for more regions to appear on
 423   // that list, if _free_regions_coming is set.
 424   HeapRegion* new_region_try_secondary_free_list();
 425 
 426   // Try to allocate a single non-humongous HeapRegion sufficient for
 427   // an allocation of the given word_size. If do_expand is true,
 428   // attempt to expand the heap if necessary to satisfy the allocation
 429   // request.
 430   HeapRegion* new_region(size_t word_size, bool do_expand);
 431 
 432   // Attempt to satisfy a humongous allocation request of the given
 433   // size by finding a contiguous set of free regions of num_regions
 434   // length and remove them from the master free list. Return the
 435   // index of the first region or G1_NULL_HRS_INDEX if the search
 436   // was unsuccessful.
 437   size_t humongous_obj_allocate_find_first(size_t num_regions,
 438                                            size_t word_size);
 439 
 440   // Initialize a contiguous set of free regions of length num_regions
 441   // and starting at index first so that they appear as a single
 442   // humongous region.
 443   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
 444                                                       size_t num_regions,
 445                                                       size_t word_size);
 446 
 447   // Attempt to allocate a humongous object of the given size. Return
 448   // NULL if unsuccessful.
 449   HeapWord* humongous_obj_allocate(size_t word_size);
 450 
 451   // The following two methods, allocate_new_tlab() and
 452   // mem_allocate(), are the two main entry points from the runtime
 453   // into the G1's allocation routines. They have the following
 454   // assumptions:
 455   //
 456   // * They should both be called outside safepoints.
 457   //
 458   // * They should both be called without holding the Heap_lock.
 459   //
 460   // * All allocation requests for new TLABs should go to
 461   //   allocate_new_tlab().
 462   //
 463   // * All non-TLAB allocation requests should go to mem_allocate().
 464   //
 465   // * If either call cannot satisfy the allocation request using the
 466   //   current allocating region, they will try to get a new one. If
 467   //   this fails, they will attempt to do an evacuation pause and
 468   //   retry the allocation.
 469   //
 470   // * If all allocation attempts fail, even after trying to schedule
 471   //   an evacuation pause, allocate_new_tlab() will return NULL,
 472   //   whereas mem_allocate() will attempt a heap expansion and/or
 473   //   schedule a Full GC.
 474   //
 475   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 476   //   should never be called with word_size being humongous. All
 477   //   humongous allocation requests should go to mem_allocate() which
 478   //   will satisfy them with a special path.
 479 
 480   virtual HeapWord* allocate_new_tlab(size_t word_size);
 481 
 482   virtual HeapWord* mem_allocate(size_t word_size,
 483                                  bool*  gc_overhead_limit_was_exceeded);
 484 
 485   // The following three methods take a gc_count_before_ret
 486   // parameter which is used to return the GC count if the method
 487   // returns NULL. Given that we are required to read the GC count
 488   // while holding the Heap_lock, and these paths will take the
 489   // Heap_lock at some point, it's easier to get them to read the GC
 490   // count while holding the Heap_lock before they return NULL instead
 491   // of the caller (namely: mem_allocate()) having to also take the
 492   // Heap_lock just to read the GC count.
 493 
 494   // First-level mutator allocation attempt: try to allocate out of
 495   // the mutator alloc region without taking the Heap_lock. This
 496   // should only be used for non-humongous allocations.
 497   inline HeapWord* attempt_allocation(size_t word_size,
 498                                       unsigned int* gc_count_before_ret);
 499 
 500   // Second-level mutator allocation attempt: take the Heap_lock and
 501   // retry the allocation attempt, potentially scheduling a GC
 502   // pause. This should only be used for non-humongous allocations.
 503   HeapWord* attempt_allocation_slow(size_t word_size,
 504                                     unsigned int* gc_count_before_ret);
 505 
 506   // Takes the Heap_lock and attempts a humongous allocation. It can
 507   // potentially schedule a GC pause.
 508   HeapWord* attempt_allocation_humongous(size_t word_size,
 509                                          unsigned int* gc_count_before_ret);
 510 
 511   // Allocation attempt that should be called during safepoints (e.g.,
 512   // at the end of a successful GC). expect_null_mutator_alloc_region
 513   // specifies whether the mutator alloc region is expected to be NULL
 514   // or not.
 515   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 516                                        bool expect_null_mutator_alloc_region);
 517 
 518   // It dirties the cards that cover the block so that so that the post
 519   // write barrier never queues anything when updating objects on this
 520   // block. It is assumed (and in fact we assert) that the block
 521   // belongs to a young region.
 522   inline void dirty_young_block(HeapWord* start, size_t word_size);
 523 
 524   // Allocate blocks during garbage collection. Will ensure an
 525   // allocation region, either by picking one or expanding the
 526   // heap, and then allocate a block of the given size. The block
 527   // may not be a humongous - it must fit into a single heap region.
 528   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 529 
 530   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 531                                     HeapRegion*    alloc_region,
 532                                     bool           par,
 533                                     size_t         word_size);
 534 
 535   // Ensure that no further allocations can happen in "r", bearing in mind
 536   // that parallel threads might be attempting allocations.
 537   void par_allocate_remaining_space(HeapRegion* r);
 538 
 539   // Allocation attempt during GC for a survivor object / PLAB.
 540   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 541 
 542   // Allocation attempt during GC for an old object / PLAB.
 543   inline HeapWord* old_attempt_allocation(size_t word_size);
 544 
 545   // These methods are the "callbacks" from the G1AllocRegion class.
 546 
 547   // For mutator alloc regions.
 548   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 549   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 550                                    size_t allocated_bytes);
 551 
 552   // For GC alloc regions.
 553   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
 554                                   GCAllocPurpose ap);
 555   void retire_gc_alloc_region(HeapRegion* alloc_region,
 556                               size_t allocated_bytes, GCAllocPurpose ap);
 557 
 558   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 559   //   inspection request and should collect the entire heap
 560   // - if clear_all_soft_refs is true, all soft references should be
 561   //   cleared during the GC
 562   // - if explicit_gc is false, word_size describes the allocation that
 563   //   the GC should attempt (at least) to satisfy
 564   // - it returns false if it is unable to do the collection due to the
 565   //   GC locker being active, true otherwise
 566   bool do_collection(bool explicit_gc,
 567                      bool clear_all_soft_refs,
 568                      size_t word_size);
 569 
 570   // Callback from VM_G1CollectFull operation.
 571   // Perform a full collection.
 572   void do_full_collection(bool clear_all_soft_refs);
 573 
 574   // Resize the heap if necessary after a full collection.  If this is
 575   // after a collect-for allocation, "word_size" is the allocation size,
 576   // and will be considered part of the used portion of the heap.
 577   void resize_if_necessary_after_full_collection(size_t word_size);
 578 
 579   // Callback from VM_G1CollectForAllocation operation.
 580   // This function does everything necessary/possible to satisfy a
 581   // failed allocation request (including collection, expansion, etc.)
 582   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 583 
 584   // Attempting to expand the heap sufficiently
 585   // to support an allocation of the given "word_size".  If
 586   // successful, perform the allocation and return the address of the
 587   // allocated block, or else "NULL".
 588   HeapWord* expand_and_allocate(size_t word_size);
 589 
 590   // Process any reference objects discovered during
 591   // an incremental evacuation pause.
 592   void process_discovered_references();
 593 
 594   // Enqueue any remaining discovered references
 595   // after processing.
 596   void enqueue_discovered_references();
 597 
 598 public:
 599 
 600   G1MonitoringSupport* g1mm() {
 601     assert(_g1mm != NULL, "should have been initialized");
 602     return _g1mm;
 603   }
 604 
 605   // Expand the garbage-first heap by at least the given size (in bytes!).
 606   // Returns true if the heap was expanded by the requested amount;
 607   // false otherwise.
 608   // (Rounds up to a HeapRegion boundary.)
 609   bool expand(size_t expand_bytes);
 610 
 611   // Do anything common to GC's.
 612   virtual void gc_prologue(bool full);
 613   virtual void gc_epilogue(bool full);
 614 
 615   // We register a region with the fast "in collection set" test. We
 616   // simply set to true the array slot corresponding to this region.
 617   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 618     assert(_in_cset_fast_test_base != NULL, "sanity");
 619     assert(r->in_collection_set(), "invariant");
 620     size_t index = r->hrs_index();
 621     assert(index < _in_cset_fast_test_length, "invariant");
 622     assert(!_in_cset_fast_test_base[index], "invariant");
 623     _in_cset_fast_test_base[index] = true;
 624   }
 625 
 626   // This is a fast test on whether a reference points into the
 627   // collection set or not. It does not assume that the reference
 628   // points into the heap; if it doesn't, it will return false.
 629   bool in_cset_fast_test(oop obj) {
 630     assert(_in_cset_fast_test != NULL, "sanity");
 631     if (_g1_committed.contains((HeapWord*) obj)) {
 632       // no need to subtract the bottom of the heap from obj,
 633       // _in_cset_fast_test is biased
 634       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
 635       bool ret = _in_cset_fast_test[index];
 636       // let's make sure the result is consistent with what the slower
 637       // test returns
 638       assert( ret || !obj_in_cs(obj), "sanity");
 639       assert(!ret ||  obj_in_cs(obj), "sanity");
 640       return ret;
 641     } else {
 642       return false;
 643     }
 644   }
 645 
 646   void clear_cset_fast_test() {
 647     assert(_in_cset_fast_test_base != NULL, "sanity");
 648     memset(_in_cset_fast_test_base, false,
 649         _in_cset_fast_test_length * sizeof(bool));
 650   }
 651 
 652   // This is called at the end of either a concurrent cycle or a Full
 653   // GC to update the number of full collections completed. Those two
 654   // can happen in a nested fashion, i.e., we start a concurrent
 655   // cycle, a Full GC happens half-way through it which ends first,
 656   // and then the cycle notices that a Full GC happened and ends
 657   // too. The concurrent parameter is a boolean to help us do a bit
 658   // tighter consistency checking in the method. If concurrent is
 659   // false, the caller is the inner caller in the nesting (i.e., the
 660   // Full GC). If concurrent is true, the caller is the outer caller
 661   // in this nesting (i.e., the concurrent cycle). Further nesting is
 662   // not currently supported. The end of the this call also notifies
 663   // the FullGCCount_lock in case a Java thread is waiting for a full
 664   // GC to happen (e.g., it called System.gc() with
 665   // +ExplicitGCInvokesConcurrent).
 666   void increment_full_collections_completed(bool concurrent);
 667 
 668   unsigned int full_collections_completed() {
 669     return _full_collections_completed;
 670   }
 671 
 672   G1HRPrinter* hr_printer() { return &_hr_printer; }
 673 
 674 protected:
 675 
 676   // Shrink the garbage-first heap by at most the given size (in bytes!).
 677   // (Rounds down to a HeapRegion boundary.)
 678   virtual void shrink(size_t expand_bytes);
 679   void shrink_helper(size_t expand_bytes);
 680 
 681   #if TASKQUEUE_STATS
 682   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 683   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 684   void reset_taskqueue_stats();
 685   #endif // TASKQUEUE_STATS
 686 
 687   // Schedule the VM operation that will do an evacuation pause to
 688   // satisfy an allocation request of word_size. *succeeded will
 689   // return whether the VM operation was successful (it did do an
 690   // evacuation pause) or not (another thread beat us to it or the GC
 691   // locker was active). Given that we should not be holding the
 692   // Heap_lock when we enter this method, we will pass the
 693   // gc_count_before (i.e., total_collections()) as a parameter since
 694   // it has to be read while holding the Heap_lock. Currently, both
 695   // methods that call do_collection_pause() release the Heap_lock
 696   // before the call, so it's easy to read gc_count_before just before.
 697   HeapWord* do_collection_pause(size_t       word_size,
 698                                 unsigned int gc_count_before,
 699                                 bool*        succeeded);
 700 
 701   // The guts of the incremental collection pause, executed by the vm
 702   // thread. It returns false if it is unable to do the collection due
 703   // to the GC locker being active, true otherwise
 704   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 705 
 706   // Actually do the work of evacuating the collection set.
 707   void evacuate_collection_set();
 708 
 709   // The g1 remembered set of the heap.
 710   G1RemSet* _g1_rem_set;
 711   // And it's mod ref barrier set, used to track updates for the above.
 712   ModRefBarrierSet* _mr_bs;
 713 
 714   // A set of cards that cover the objects for which the Rsets should be updated
 715   // concurrently after the collection.
 716   DirtyCardQueueSet _dirty_card_queue_set;
 717 
 718   // The Heap Region Rem Set Iterator.
 719   HeapRegionRemSetIterator** _rem_set_iterator;
 720 
 721   // The closure used to refine a single card.
 722   RefineCardTableEntryClosure* _refine_cte_cl;
 723 
 724   // A function to check the consistency of dirty card logs.
 725   void check_ct_logs_at_safepoint();
 726 
 727   // A DirtyCardQueueSet that is used to hold cards that contain
 728   // references into the current collection set. This is used to
 729   // update the remembered sets of the regions in the collection
 730   // set in the event of an evacuation failure.
 731   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 732 
 733   // After a collection pause, make the regions in the CS into free
 734   // regions.
 735   void free_collection_set(HeapRegion* cs_head);
 736 
 737   // Abandon the current collection set without recording policy
 738   // statistics or updating free lists.
 739   void abandon_collection_set(HeapRegion* cs_head);
 740 
 741   // Applies "scan_non_heap_roots" to roots outside the heap,
 742   // "scan_rs" to roots inside the heap (having done "set_region" to
 743   // indicate the region in which the root resides), and does "scan_perm"
 744   // (setting the generation to the perm generation.)  If "scan_rs" is
 745   // NULL, then this step is skipped.  The "worker_i"
 746   // param is for use with parallel roots processing, and should be
 747   // the "i" of the calling parallel worker thread's work(i) function.
 748   // In the sequential case this param will be ignored.
 749   void g1_process_strong_roots(bool collecting_perm_gen,
 750                                SharedHeap::ScanningOption so,
 751                                OopClosure* scan_non_heap_roots,
 752                                OopsInHeapRegionClosure* scan_rs,
 753                                OopsInGenClosure* scan_perm,
 754                                int worker_i);
 755 
 756   // Apply "blk" to all the weak roots of the system.  These include
 757   // JNI weak roots, the code cache, system dictionary, symbol table,
 758   // string table, and referents of reachable weak refs.
 759   void g1_process_weak_roots(OopClosure* root_closure,
 760                              OopClosure* non_root_closure);
 761 
 762   // Frees a non-humongous region by initializing its contents and
 763   // adding it to the free list that's passed as a parameter (this is
 764   // usually a local list which will be appended to the master free
 765   // list later). The used bytes of freed regions are accumulated in
 766   // pre_used. If par is true, the region's RSet will not be freed
 767   // up. The assumption is that this will be done later.
 768   void free_region(HeapRegion* hr,
 769                    size_t* pre_used,
 770                    FreeRegionList* free_list,
 771                    bool par);
 772 
 773   // Frees a humongous region by collapsing it into individual regions
 774   // and calling free_region() for each of them. The freed regions
 775   // will be added to the free list that's passed as a parameter (this
 776   // is usually a local list which will be appended to the master free
 777   // list later). The used bytes of freed regions are accumulated in
 778   // pre_used. If par is true, the region's RSet will not be freed
 779   // up. The assumption is that this will be done later.
 780   void free_humongous_region(HeapRegion* hr,
 781                              size_t* pre_used,
 782                              FreeRegionList* free_list,
 783                              HumongousRegionSet* humongous_proxy_set,
 784                              bool par);
 785 
 786   // Notifies all the necessary spaces that the committed space has
 787   // been updated (either expanded or shrunk). It should be called
 788   // after _g1_storage is updated.
 789   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 790 
 791   // The concurrent marker (and the thread it runs in.)
 792   ConcurrentMark* _cm;
 793   ConcurrentMarkThread* _cmThread;
 794   bool _mark_in_progress;
 795 
 796   // The concurrent refiner.
 797   ConcurrentG1Refine* _cg1r;
 798 
 799   // The parallel task queues
 800   RefToScanQueueSet *_task_queues;
 801 
 802   // True iff a evacuation has failed in the current collection.
 803   bool _evacuation_failed;
 804 
 805   // Set the attribute indicating whether evacuation has failed in the
 806   // current collection.
 807   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 808 
 809   // Failed evacuations cause some logical from-space objects to have
 810   // forwarding pointers to themselves.  Reset them.
 811   void remove_self_forwarding_pointers();
 812 
 813   // When one is non-null, so is the other.  Together, they each pair is
 814   // an object with a preserved mark, and its mark value.
 815   GrowableArray<oop>*     _objs_with_preserved_marks;
 816   GrowableArray<markOop>* _preserved_marks_of_objs;
 817 
 818   // Preserve the mark of "obj", if necessary, in preparation for its mark
 819   // word being overwritten with a self-forwarding-pointer.
 820   void preserve_mark_if_necessary(oop obj, markOop m);
 821 
 822   // The stack of evac-failure objects left to be scanned.
 823   GrowableArray<oop>*    _evac_failure_scan_stack;
 824   // The closure to apply to evac-failure objects.
 825 
 826   OopsInHeapRegionClosure* _evac_failure_closure;
 827   // Set the field above.
 828   void
 829   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 830     _evac_failure_closure = evac_failure_closure;
 831   }
 832 
 833   // Push "obj" on the scan stack.
 834   void push_on_evac_failure_scan_stack(oop obj);
 835   // Process scan stack entries until the stack is empty.
 836   void drain_evac_failure_scan_stack();
 837   // True iff an invocation of "drain_scan_stack" is in progress; to
 838   // prevent unnecessary recursion.
 839   bool _drain_in_progress;
 840 
 841   // Do any necessary initialization for evacuation-failure handling.
 842   // "cl" is the closure that will be used to process evac-failure
 843   // objects.
 844   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 845   // Do any necessary cleanup for evacuation-failure handling data
 846   // structures.
 847   void finalize_for_evac_failure();
 848 
 849   // An attempt to evacuate "obj" has failed; take necessary steps.
 850   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj,
 851                                     bool should_mark_root);
 852   void handle_evacuation_failure_common(oop obj, markOop m);
 853 
 854   // ("Weak") Reference processing support.
 855   //
 856   // G1 has 2 instances of the referece processor class. One
 857   // (_ref_processor_cm) handles reference object discovery
 858   // and subsequent processing during concurrent marking cycles.
 859   //
 860   // The other (_ref_processor_stw) handles reference object
 861   // discovery and processing during full GCs and incremental
 862   // evacuation pauses.
 863   //
 864   // During an incremental pause, reference discovery will be
 865   // temporarily disabled for _ref_processor_cm and will be
 866   // enabled for _ref_processor_stw. At the end of the evacuation
 867   // pause references discovered by _ref_processor_stw will be
 868   // processed and discovery will be disabled. The previous
 869   // setting for reference object discovery for _ref_processor_cm
 870   // will be re-instated.
 871   //
 872   // At the start of marking:
 873   //  * Discovery by the CM ref processor is verified to be inactive
 874   //    and it's discovered lists are empty.
 875   //  * Discovery by the CM ref processor is then enabled.
 876   //
 877   // At the end of marking:
 878   //  * Any references on the CM ref processor's discovered
 879   //    lists are processed (possibly MT).
 880   //
 881   // At the start of full GC we:
 882   //  * Disable discovery by the CM ref processor and
 883   //    empty CM ref processor's discovered lists
 884   //    (without processing any entries).
 885   //  * Verify that the STW ref processor is inactive and it's
 886   //    discovered lists are empty.
 887   //  * Temporarily set STW ref processor discovery as single threaded.
 888   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 889   //    field.
 890   //  * Finally enable discovery by the STW ref processor.
 891   //
 892   // The STW ref processor is used to record any discovered
 893   // references during the full GC.
 894   //
 895   // At the end of a full GC we:
 896   //  * Enqueue any reference objects discovered by the STW ref processor
 897   //    that have non-live referents. This has the side-effect of
 898   //    making the STW ref processor inactive by disabling discovery.
 899   //  * Verify that the CM ref processor is still inactive
 900   //    and no references have been placed on it's discovered
 901   //    lists (also checked as a precondition during initial marking).
 902 
 903   // The (stw) reference processor...
 904   ReferenceProcessor* _ref_processor_stw;
 905 
 906   // During reference object discovery, the _is_alive_non_header
 907   // closure (if non-null) is applied to the referent object to
 908   // determine whether the referent is live. If so then the
 909   // reference object does not need to be 'discovered' and can
 910   // be treated as a regular oop. This has the benefit of reducing
 911   // the number of 'discovered' reference objects that need to
 912   // be processed.
 913   //
 914   // Instance of the is_alive closure for embedding into the
 915   // STW reference processor as the _is_alive_non_header field.
 916   // Supplying a value for the _is_alive_non_header field is
 917   // optional but doing so prevents unnecessary additions to
 918   // the discovered lists during reference discovery.
 919   G1STWIsAliveClosure _is_alive_closure_stw;
 920 
 921   // The (concurrent marking) reference processor...
 922   ReferenceProcessor* _ref_processor_cm;
 923 
 924   // Instance of the concurrent mark is_alive closure for embedding
 925   // into the Concurrent Marking reference processor as the
 926   // _is_alive_non_header field. Supplying a value for the
 927   // _is_alive_non_header field is optional but doing so prevents
 928   // unnecessary additions to the discovered lists during reference
 929   // discovery.
 930   G1CMIsAliveClosure _is_alive_closure_cm;
 931 
 932   enum G1H_process_strong_roots_tasks {
 933     G1H_PS_mark_stack_oops_do,
 934     G1H_PS_refProcessor_oops_do,
 935     // Leave this one last.
 936     G1H_PS_NumElements
 937   };
 938 
 939   SubTasksDone* _process_strong_tasks;
 940 
 941   volatile bool _free_regions_coming;
 942 
 943 public:
 944 
 945   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 946 
 947   void set_refine_cte_cl_concurrency(bool concurrent);
 948 
 949   RefToScanQueue *task_queue(int i) const;
 950 
 951   // A set of cards where updates happened during the GC
 952   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 953 
 954   // A DirtyCardQueueSet that is used to hold cards that contain
 955   // references into the current collection set. This is used to
 956   // update the remembered sets of the regions in the collection
 957   // set in the event of an evacuation failure.
 958   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
 959         { return _into_cset_dirty_card_queue_set; }
 960 
 961   // Create a G1CollectedHeap with the specified policy.
 962   // Must call the initialize method afterwards.
 963   // May not return if something goes wrong.
 964   G1CollectedHeap(G1CollectorPolicy* policy);
 965 
 966   // Initialize the G1CollectedHeap to have the initial and
 967   // maximum sizes, permanent generation, and remembered and barrier sets
 968   // specified by the policy object.
 969   jint initialize();
 970 
 971   // Initialize weak reference processing.
 972   virtual void ref_processing_init();
 973 
 974   void set_par_threads(int t) {
 975     SharedHeap::set_par_threads(t);
 976     _process_strong_tasks->set_n_threads(t);
 977   }
 978 
 979   virtual CollectedHeap::Name kind() const {
 980     return CollectedHeap::G1CollectedHeap;
 981   }
 982 
 983   // The current policy object for the collector.
 984   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 985 
 986   // Adaptive size policy.  No such thing for g1.
 987   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 988 
 989   // The rem set and barrier set.
 990   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 991   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
 992 
 993   // The rem set iterator.
 994   HeapRegionRemSetIterator* rem_set_iterator(int i) {
 995     return _rem_set_iterator[i];
 996   }
 997 
 998   HeapRegionRemSetIterator* rem_set_iterator() {
 999     return _rem_set_iterator[0];
1000   }
1001 
1002   unsigned get_gc_time_stamp() {
1003     return _gc_time_stamp;
1004   }
1005 
1006   void reset_gc_time_stamp() {
1007     _gc_time_stamp = 0;
1008     OrderAccess::fence();
1009   }
1010 
1011   void increment_gc_time_stamp() {
1012     ++_gc_time_stamp;
1013     OrderAccess::fence();
1014   }
1015 
1016   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1017                                   DirtyCardQueue* into_cset_dcq,
1018                                   bool concurrent, int worker_i);
1019 
1020   // The shared block offset table array.
1021   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1022 
1023   // Reference Processing accessors
1024 
1025   // The STW reference processor....
1026   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1027 
1028   // The Concurent Marking reference processor...
1029   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1030 
1031   virtual size_t capacity() const;
1032   virtual size_t used() const;
1033   // This should be called when we're not holding the heap lock. The
1034   // result might be a bit inaccurate.
1035   size_t used_unlocked() const;
1036   size_t recalculate_used() const;
1037 
1038   // These virtual functions do the actual allocation.
1039   // Some heaps may offer a contiguous region for shared non-blocking
1040   // allocation, via inlined code (by exporting the address of the top and
1041   // end fields defining the extent of the contiguous allocation region.)
1042   // But G1CollectedHeap doesn't yet support this.
1043 
1044   // Return an estimate of the maximum allocation that could be performed
1045   // without triggering any collection or expansion activity.  In a
1046   // generational collector, for example, this is probably the largest
1047   // allocation that could be supported (without expansion) in the youngest
1048   // generation.  It is "unsafe" because no locks are taken; the result
1049   // should be treated as an approximation, not a guarantee, for use in
1050   // heuristic resizing decisions.
1051   virtual size_t unsafe_max_alloc();
1052 
1053   virtual bool is_maximal_no_gc() const {
1054     return _g1_storage.uncommitted_size() == 0;
1055   }
1056 
1057   // The total number of regions in the heap.
1058   size_t n_regions() { return _hrs.length(); }
1059 
1060   // The max number of regions in the heap.
1061   size_t max_regions() { return _hrs.max_length(); }
1062 
1063   // The number of regions that are completely free.
1064   size_t free_regions() { return _free_list.length(); }
1065 
1066   // The number of regions that are not completely free.
1067   size_t used_regions() { return n_regions() - free_regions(); }
1068 
1069   // The number of regions available for "regular" expansion.
1070   size_t expansion_regions() { return _expansion_regions; }
1071 
1072   // Factory method for HeapRegion instances. It will return NULL if
1073   // the allocation fails.
1074   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
1075 
1076   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1077   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1078   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1079   void verify_dirty_young_regions() PRODUCT_RETURN;
1080 
1081   // verify_region_sets() performs verification over the region
1082   // lists. It will be compiled in the product code to be used when
1083   // necessary (i.e., during heap verification).
1084   void verify_region_sets();
1085 
1086   // verify_region_sets_optional() is planted in the code for
1087   // list verification in non-product builds (and it can be enabled in
1088   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
1089 #if HEAP_REGION_SET_FORCE_VERIFY
1090   void verify_region_sets_optional() {
1091     verify_region_sets();
1092   }
1093 #else // HEAP_REGION_SET_FORCE_VERIFY
1094   void verify_region_sets_optional() { }
1095 #endif // HEAP_REGION_SET_FORCE_VERIFY
1096 
1097 #ifdef ASSERT
1098   bool is_on_master_free_list(HeapRegion* hr) {
1099     return hr->containing_set() == &_free_list;
1100   }
1101 
1102   bool is_in_humongous_set(HeapRegion* hr) {
1103     return hr->containing_set() == &_humongous_set;
1104   }
1105 #endif // ASSERT
1106 
1107   // Wrapper for the region list operations that can be called from
1108   // methods outside this class.
1109 
1110   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1111     _secondary_free_list.add_as_tail(list);
1112   }
1113 
1114   void append_secondary_free_list() {
1115     _free_list.add_as_head(&_secondary_free_list);
1116   }
1117 
1118   void append_secondary_free_list_if_not_empty_with_lock() {
1119     // If the secondary free list looks empty there's no reason to
1120     // take the lock and then try to append it.
1121     if (!_secondary_free_list.is_empty()) {
1122       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1123       append_secondary_free_list();
1124     }
1125   }
1126 
1127   void set_free_regions_coming();
1128   void reset_free_regions_coming();
1129   bool free_regions_coming() { return _free_regions_coming; }
1130   void wait_while_free_regions_coming();
1131 
1132   // Perform a collection of the heap; intended for use in implementing
1133   // "System.gc".  This probably implies as full a collection as the
1134   // "CollectedHeap" supports.
1135   virtual void collect(GCCause::Cause cause);
1136 
1137   // The same as above but assume that the caller holds the Heap_lock.
1138   void collect_locked(GCCause::Cause cause);
1139 
1140   // This interface assumes that it's being called by the
1141   // vm thread. It collects the heap assuming that the
1142   // heap lock is already held and that we are executing in
1143   // the context of the vm thread.
1144   virtual void collect_as_vm_thread(GCCause::Cause cause);
1145 
1146   // True iff a evacuation has failed in the most-recent collection.
1147   bool evacuation_failed() { return _evacuation_failed; }
1148 
1149   // It will free a region if it has allocated objects in it that are
1150   // all dead. It calls either free_region() or
1151   // free_humongous_region() depending on the type of the region that
1152   // is passed to it.
1153   void free_region_if_empty(HeapRegion* hr,
1154                             size_t* pre_used,
1155                             FreeRegionList* free_list,
1156                             HumongousRegionSet* humongous_proxy_set,
1157                             HRRSCleanupTask* hrrs_cleanup_task,
1158                             bool par);
1159 
1160   // It appends the free list to the master free list and updates the
1161   // master humongous list according to the contents of the proxy
1162   // list. It also adjusts the total used bytes according to pre_used
1163   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1164   void update_sets_after_freeing_regions(size_t pre_used,
1165                                        FreeRegionList* free_list,
1166                                        HumongousRegionSet* humongous_proxy_set,
1167                                        bool par);
1168 
1169   // Returns "TRUE" iff "p" points into the allocated area of the heap.
1170   virtual bool is_in(const void* p) const;
1171 
1172   // Return "TRUE" iff the given object address is within the collection
1173   // set.
1174   inline bool obj_in_cs(oop obj);
1175 
1176   // Return "TRUE" iff the given object address is in the reserved
1177   // region of g1 (excluding the permanent generation).
1178   bool is_in_g1_reserved(const void* p) const {
1179     return _g1_reserved.contains(p);
1180   }
1181 
1182   // Returns a MemRegion that corresponds to the space that has been
1183   // reserved for the heap
1184   MemRegion g1_reserved() {
1185     return _g1_reserved;
1186   }
1187 
1188   // Returns a MemRegion that corresponds to the space that has been
1189   // committed in the heap
1190   MemRegion g1_committed() {
1191     return _g1_committed;
1192   }
1193 
1194   virtual bool is_in_closed_subset(const void* p) const;
1195 
1196   // This resets the card table to all zeros.  It is used after
1197   // a collection pause which used the card table to claim cards.
1198   void cleanUpCardTable();
1199 
1200   // Iteration functions.
1201 
1202   // Iterate over all the ref-containing fields of all objects, calling
1203   // "cl.do_oop" on each.
1204   virtual void oop_iterate(OopClosure* cl) {
1205     oop_iterate(cl, true);
1206   }
1207   void oop_iterate(OopClosure* cl, bool do_perm);
1208 
1209   // Same as above, restricted to a memory region.
1210   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
1211     oop_iterate(mr, cl, true);
1212   }
1213   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1214 
1215   // Iterate over all objects, calling "cl.do_object" on each.
1216   virtual void object_iterate(ObjectClosure* cl) {
1217     object_iterate(cl, true);
1218   }
1219   virtual void safe_object_iterate(ObjectClosure* cl) {
1220     object_iterate(cl, true);
1221   }
1222   void object_iterate(ObjectClosure* cl, bool do_perm);
1223 
1224   // Iterate over all objects allocated since the last collection, calling
1225   // "cl.do_object" on each.  The heap must have been initialized properly
1226   // to support this function, or else this call will fail.
1227   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1228 
1229   // Iterate over all spaces in use in the heap, in ascending address order.
1230   virtual void space_iterate(SpaceClosure* cl);
1231 
1232   // Iterate over heap regions, in address order, terminating the
1233   // iteration early if the "doHeapRegion" method returns "true".
1234   void heap_region_iterate(HeapRegionClosure* blk) const;
1235 
1236   // Iterate over heap regions starting with r (or the first region if "r"
1237   // is NULL), in address order, terminating early if the "doHeapRegion"
1238   // method returns "true".
1239   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
1240 
1241   // Return the region with the given index. It assumes the index is valid.
1242   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
1243 
1244   // Divide the heap region sequence into "chunks" of some size (the number
1245   // of regions divided by the number of parallel threads times some
1246   // overpartition factor, currently 4).  Assumes that this will be called
1247   // in parallel by ParallelGCThreads worker threads with discinct worker
1248   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1249   // calls will use the same "claim_value", and that that claim value is
1250   // different from the claim_value of any heap region before the start of
1251   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1252   // attempting to claim the first region in each chunk, and, if
1253   // successful, applying the closure to each region in the chunk (and
1254   // setting the claim value of the second and subsequent regions of the
1255   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1256   // i.e., that a closure never attempt to abort a traversal.
1257   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1258                                        int worker,
1259                                        jint claim_value);
1260 
1261   // It resets all the region claim values to the default.
1262   void reset_heap_region_claim_values();
1263 
1264 #ifdef ASSERT
1265   bool check_heap_region_claim_values(jint claim_value);
1266 #endif // ASSERT
1267 
1268   // Iterate over the regions (if any) in the current collection set.
1269   void collection_set_iterate(HeapRegionClosure* blk);
1270 
1271   // As above but starting from region r
1272   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1273 
1274   // Returns the first (lowest address) compactible space in the heap.
1275   virtual CompactibleSpace* first_compactible_space();
1276 
1277   // A CollectedHeap will contain some number of spaces.  This finds the
1278   // space containing a given address, or else returns NULL.
1279   virtual Space* space_containing(const void* addr) const;
1280 
1281   // A G1CollectedHeap will contain some number of heap regions.  This
1282   // finds the region containing a given address, or else returns NULL.
1283   template <class T>
1284   inline HeapRegion* heap_region_containing(const T addr) const;
1285 
1286   // Like the above, but requires "addr" to be in the heap (to avoid a
1287   // null-check), and unlike the above, may return an continuing humongous
1288   // region.
1289   template <class T>
1290   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1291 
1292   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1293   // each address in the (reserved) heap is a member of exactly
1294   // one block.  The defining characteristic of a block is that it is
1295   // possible to find its size, and thus to progress forward to the next
1296   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1297   // represent Java objects, or they might be free blocks in a
1298   // free-list-based heap (or subheap), as long as the two kinds are
1299   // distinguishable and the size of each is determinable.
1300 
1301   // Returns the address of the start of the "block" that contains the
1302   // address "addr".  We say "blocks" instead of "object" since some heaps
1303   // may not pack objects densely; a chunk may either be an object or a
1304   // non-object.
1305   virtual HeapWord* block_start(const void* addr) const;
1306 
1307   // Requires "addr" to be the start of a chunk, and returns its size.
1308   // "addr + size" is required to be the start of a new chunk, or the end
1309   // of the active area of the heap.
1310   virtual size_t block_size(const HeapWord* addr) const;
1311 
1312   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1313   // the block is an object.
1314   virtual bool block_is_obj(const HeapWord* addr) const;
1315 
1316   // Does this heap support heap inspection? (+PrintClassHistogram)
1317   virtual bool supports_heap_inspection() const { return true; }
1318 
1319   // Section on thread-local allocation buffers (TLABs)
1320   // See CollectedHeap for semantics.
1321 
1322   virtual bool supports_tlab_allocation() const;
1323   virtual size_t tlab_capacity(Thread* thr) const;
1324   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1325 
1326   // Can a compiler initialize a new object without store barriers?
1327   // This permission only extends from the creation of a new object
1328   // via a TLAB up to the first subsequent safepoint. If such permission
1329   // is granted for this heap type, the compiler promises to call
1330   // defer_store_barrier() below on any slow path allocation of
1331   // a new object for which such initializing store barriers will
1332   // have been elided. G1, like CMS, allows this, but should be
1333   // ready to provide a compensating write barrier as necessary
1334   // if that storage came out of a non-young region. The efficiency
1335   // of this implementation depends crucially on being able to
1336   // answer very efficiently in constant time whether a piece of
1337   // storage in the heap comes from a young region or not.
1338   // See ReduceInitialCardMarks.
1339   virtual bool can_elide_tlab_store_barriers() const {
1340     return true;
1341   }
1342 
1343   virtual bool card_mark_must_follow_store() const {
1344     return true;
1345   }
1346 
1347   bool is_in_young(const oop obj) {
1348     HeapRegion* hr = heap_region_containing(obj);
1349     return hr != NULL && hr->is_young();
1350   }
1351 
1352 #ifdef ASSERT
1353   virtual bool is_in_partial_collection(const void* p);
1354 #endif
1355 
1356   virtual bool is_scavengable(const void* addr);
1357 
1358   // We don't need barriers for initializing stores to objects
1359   // in the young gen: for the SATB pre-barrier, there is no
1360   // pre-value that needs to be remembered; for the remembered-set
1361   // update logging post-barrier, we don't maintain remembered set
1362   // information for young gen objects.
1363   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1364     return is_in_young(new_obj);
1365   }
1366 
1367   // Can a compiler elide a store barrier when it writes
1368   // a permanent oop into the heap?  Applies when the compiler
1369   // is storing x to the heap, where x->is_perm() is true.
1370   virtual bool can_elide_permanent_oop_store_barriers() const {
1371     // At least until perm gen collection is also G1-ified, at
1372     // which point this should return false.
1373     return true;
1374   }
1375 
1376   // Returns "true" iff the given word_size is "very large".
1377   static bool isHumongous(size_t word_size) {
1378     // Note this has to be strictly greater-than as the TLABs
1379     // are capped at the humongous thresold and we want to
1380     // ensure that we don't try to allocate a TLAB as
1381     // humongous and that we don't allocate a humongous
1382     // object in a TLAB.
1383     return word_size > _humongous_object_threshold_in_words;
1384   }
1385 
1386   // Update mod union table with the set of dirty cards.
1387   void updateModUnion();
1388 
1389   // Set the mod union bits corresponding to the given memRegion.  Note
1390   // that this is always a safe operation, since it doesn't clear any
1391   // bits.
1392   void markModUnionRange(MemRegion mr);
1393 
1394   // Records the fact that a marking phase is no longer in progress.
1395   void set_marking_complete() {
1396     _mark_in_progress = false;
1397   }
1398   void set_marking_started() {
1399     _mark_in_progress = true;
1400   }
1401   bool mark_in_progress() {
1402     return _mark_in_progress;
1403   }
1404 
1405   // Print the maximum heap capacity.
1406   virtual size_t max_capacity() const;
1407 
1408   virtual jlong millis_since_last_gc();
1409 
1410   // Perform any cleanup actions necessary before allowing a verification.
1411   virtual void prepare_for_verify();
1412 
1413   // Perform verification.
1414 
1415   // vo == UsePrevMarking  -> use "prev" marking information,
1416   // vo == UseNextMarking -> use "next" marking information
1417   // vo == UseMarkWord    -> use the mark word in the object header
1418   //
1419   // NOTE: Only the "prev" marking information is guaranteed to be
1420   // consistent most of the time, so most calls to this should use
1421   // vo == UsePrevMarking.
1422   // Currently, there is only one case where this is called with
1423   // vo == UseNextMarking, which is to verify the "next" marking
1424   // information at the end of remark.
1425   // Currently there is only one place where this is called with
1426   // vo == UseMarkWord, which is to verify the marking during a
1427   // full GC.
1428   void verify(bool allow_dirty, bool silent, VerifyOption vo);
1429 
1430   // Override; it uses the "prev" marking information
1431   virtual void verify(bool allow_dirty, bool silent);
1432   // Default behavior by calling print(tty);
1433   virtual void print() const;
1434   // This calls print_on(st, PrintHeapAtGCExtended).
1435   virtual void print_on(outputStream* st) const;
1436   // If extended is true, it will print out information for all
1437   // regions in the heap by calling print_on_extended(st).
1438   virtual void print_on(outputStream* st, bool extended) const;
1439   virtual void print_on_extended(outputStream* st) const;
1440 
1441   virtual void print_gc_threads_on(outputStream* st) const;
1442   virtual void gc_threads_do(ThreadClosure* tc) const;
1443 
1444   // Override
1445   void print_tracing_info() const;
1446 
1447   // The following two methods are helpful for debugging RSet issues.
1448   void print_cset_rsets() PRODUCT_RETURN;
1449   void print_all_rsets() PRODUCT_RETURN;
1450 
1451   // Convenience function to be used in situations where the heap type can be
1452   // asserted to be this type.
1453   static G1CollectedHeap* heap();
1454 
1455   void empty_young_list();
1456 
1457   void set_region_short_lived_locked(HeapRegion* hr);
1458   // add appropriate methods for any other surv rate groups
1459 
1460   YoungList* young_list() { return _young_list; }
1461 
1462   // debugging
1463   bool check_young_list_well_formed() {
1464     return _young_list->check_list_well_formed();
1465   }
1466 
1467   bool check_young_list_empty(bool check_heap,
1468                               bool check_sample = true);
1469 
1470   // *** Stuff related to concurrent marking.  It's not clear to me that so
1471   // many of these need to be public.
1472 
1473   // The functions below are helper functions that a subclass of
1474   // "CollectedHeap" can use in the implementation of its virtual
1475   // functions.
1476   // This performs a concurrent marking of the live objects in a
1477   // bitmap off to the side.
1478   void doConcurrentMark();
1479 
1480   bool isMarkedPrev(oop obj) const;
1481   bool isMarkedNext(oop obj) const;
1482 
1483   // vo == UsePrevMarking -> use "prev" marking information,
1484   // vo == UseNextMarking -> use "next" marking information,
1485   // vo == UseMarkWord    -> use mark word from object header
1486   bool is_obj_dead_cond(const oop obj,
1487                         const HeapRegion* hr,
1488                         const VerifyOption vo) const {
1489 
1490     switch (vo) {
1491       case VerifyOption_G1UsePrevMarking:
1492         return is_obj_dead(obj, hr);
1493       case VerifyOption_G1UseNextMarking:
1494         return is_obj_ill(obj, hr);
1495       default:
1496         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1497         return !obj->is_gc_marked();
1498     }
1499   }
1500 
1501   // Determine if an object is dead, given the object and also
1502   // the region to which the object belongs. An object is dead
1503   // iff a) it was not allocated since the last mark and b) it
1504   // is not marked.
1505 
1506   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1507     return
1508       !hr->obj_allocated_since_prev_marking(obj) &&
1509       !isMarkedPrev(obj);
1510   }
1511 
1512   // This is used when copying an object to survivor space.
1513   // If the object is marked live, then we mark the copy live.
1514   // If the object is allocated since the start of this mark
1515   // cycle, then we mark the copy live.
1516   // If the object has been around since the previous mark
1517   // phase, and hasn't been marked yet during this phase,
1518   // then we don't mark it, we just wait for the
1519   // current marking cycle to get to it.
1520 
1521   // This function returns true when an object has been
1522   // around since the previous marking and hasn't yet
1523   // been marked during this marking.
1524 
1525   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1526     return
1527       !hr->obj_allocated_since_next_marking(obj) &&
1528       !isMarkedNext(obj);
1529   }
1530 
1531   // Determine if an object is dead, given only the object itself.
1532   // This will find the region to which the object belongs and
1533   // then call the region version of the same function.
1534 
1535   // Added if it is in permanent gen it isn't dead.
1536   // Added if it is NULL it isn't dead.
1537 
1538   // vo == UsePrevMarking -> use "prev" marking information,
1539   // vo == UseNextMarking -> use "next" marking information,
1540   // vo == UseMarkWord    -> use mark word from object header
1541   bool is_obj_dead_cond(const oop obj,
1542                         const VerifyOption vo) const {
1543 
1544     switch (vo) {
1545       case VerifyOption_G1UsePrevMarking:
1546         return is_obj_dead(obj);
1547       case VerifyOption_G1UseNextMarking:
1548         return is_obj_ill(obj);
1549       default:
1550         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1551         return !obj->is_gc_marked();
1552     }
1553   }
1554 
1555   bool is_obj_dead(const oop obj) const {
1556     const HeapRegion* hr = heap_region_containing(obj);
1557     if (hr == NULL) {
1558       if (Universe::heap()->is_in_permanent(obj))
1559         return false;
1560       else if (obj == NULL) return false;
1561       else return true;
1562     }
1563     else return is_obj_dead(obj, hr);
1564   }
1565 
1566   bool is_obj_ill(const oop obj) const {
1567     const HeapRegion* hr = heap_region_containing(obj);
1568     if (hr == NULL) {
1569       if (Universe::heap()->is_in_permanent(obj))
1570         return false;
1571       else if (obj == NULL) return false;
1572       else return true;
1573     }
1574     else return is_obj_ill(obj, hr);
1575   }
1576 
1577   // The following is just to alert the verification code
1578   // that a full collection has occurred and that the
1579   // remembered sets are no longer up to date.
1580   bool _full_collection;
1581   void set_full_collection() { _full_collection = true;}
1582   void clear_full_collection() {_full_collection = false;}
1583   bool full_collection() {return _full_collection;}
1584 
1585   ConcurrentMark* concurrent_mark() const { return _cm; }
1586   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1587 
1588   // The dirty cards region list is used to record a subset of regions
1589   // whose cards need clearing. The list if populated during the
1590   // remembered set scanning and drained during the card table
1591   // cleanup. Although the methods are reentrant, population/draining
1592   // phases must not overlap. For synchronization purposes the last
1593   // element on the list points to itself.
1594   HeapRegion* _dirty_cards_region_list;
1595   void push_dirty_cards_region(HeapRegion* hr);
1596   HeapRegion* pop_dirty_cards_region();
1597 
1598 public:
1599   void stop_conc_gc_threads();
1600 
1601   // <NEW PREDICTION>
1602 
1603   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
1604   void check_if_region_is_too_expensive(double predicted_time_ms);
1605   size_t pending_card_num();
1606   size_t max_pending_card_num();
1607   size_t cards_scanned();
1608 
1609   // </NEW PREDICTION>
1610 
1611 protected:
1612   size_t _max_heap_capacity;
1613 };
1614 
1615 #define use_local_bitmaps         1
1616 #define verify_local_bitmaps      0
1617 #define oop_buffer_length       256
1618 
1619 #ifndef PRODUCT
1620 class GCLabBitMap;
1621 class GCLabBitMapClosure: public BitMapClosure {
1622 private:
1623   ConcurrentMark* _cm;
1624   GCLabBitMap*    _bitmap;
1625 
1626 public:
1627   GCLabBitMapClosure(ConcurrentMark* cm,
1628                      GCLabBitMap* bitmap) {
1629     _cm     = cm;
1630     _bitmap = bitmap;
1631   }
1632 
1633   virtual bool do_bit(size_t offset);
1634 };
1635 #endif // !PRODUCT
1636 
1637 class GCLabBitMap: public BitMap {
1638 private:
1639   ConcurrentMark* _cm;
1640 
1641   int       _shifter;
1642   size_t    _bitmap_word_covers_words;
1643 
1644   // beginning of the heap
1645   HeapWord* _heap_start;
1646 
1647   // this is the actual start of the GCLab
1648   HeapWord* _real_start_word;
1649 
1650   // this is the actual end of the GCLab
1651   HeapWord* _real_end_word;
1652 
1653   // this is the first word, possibly located before the actual start
1654   // of the GCLab, that corresponds to the first bit of the bitmap
1655   HeapWord* _start_word;
1656 
1657   // size of a GCLab in words
1658   size_t _gclab_word_size;
1659 
1660   static int shifter() {
1661     return MinObjAlignment - 1;
1662   }
1663 
1664   // how many heap words does a single bitmap word corresponds to?
1665   static size_t bitmap_word_covers_words() {
1666     return BitsPerWord << shifter();
1667   }
1668 
1669   size_t gclab_word_size() const {
1670     return _gclab_word_size;
1671   }
1672 
1673   // Calculates actual GCLab size in words
1674   size_t gclab_real_word_size() const {
1675     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
1676            / BitsPerWord;
1677   }
1678 
1679   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
1680     size_t bits_in_bitmap = gclab_word_size >> shifter();
1681     // We are going to ensure that the beginning of a word in this
1682     // bitmap also corresponds to the beginning of a word in the
1683     // global marking bitmap. To handle the case where a GCLab
1684     // starts from the middle of the bitmap, we need to add enough
1685     // space (i.e. up to a bitmap word) to ensure that we have
1686     // enough bits in the bitmap.
1687     return bits_in_bitmap + BitsPerWord - 1;
1688   }
1689 public:
1690   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
1691     : BitMap(bitmap_size_in_bits(gclab_word_size)),
1692       _cm(G1CollectedHeap::heap()->concurrent_mark()),
1693       _shifter(shifter()),
1694       _bitmap_word_covers_words(bitmap_word_covers_words()),
1695       _heap_start(heap_start),
1696       _gclab_word_size(gclab_word_size),
1697       _real_start_word(NULL),
1698       _real_end_word(NULL),
1699       _start_word(NULL)
1700   {
1701     guarantee( size_in_words() >= bitmap_size_in_words(),
1702                "just making sure");
1703   }
1704 
1705   inline unsigned heapWordToOffset(HeapWord* addr) {
1706     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
1707     assert(offset < size(), "offset should be within bounds");
1708     return offset;
1709   }
1710 
1711   inline HeapWord* offsetToHeapWord(size_t offset) {
1712     HeapWord* addr =  _start_word + (offset << _shifter);
1713     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
1714     return addr;
1715   }
1716 
1717   bool fields_well_formed() {
1718     bool ret1 = (_real_start_word == NULL) &&
1719                 (_real_end_word == NULL) &&
1720                 (_start_word == NULL);
1721     if (ret1)
1722       return true;
1723 
1724     bool ret2 = _real_start_word >= _start_word &&
1725       _start_word < _real_end_word &&
1726       (_real_start_word + _gclab_word_size) == _real_end_word &&
1727       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
1728                                                               > _real_end_word;
1729     return ret2;
1730   }
1731 
1732   inline bool mark(HeapWord* addr) {
1733     guarantee(use_local_bitmaps, "invariant");
1734     assert(fields_well_formed(), "invariant");
1735 
1736     if (addr >= _real_start_word && addr < _real_end_word) {
1737       assert(!isMarked(addr), "should not have already been marked");
1738 
1739       // first mark it on the bitmap
1740       at_put(heapWordToOffset(addr), true);
1741 
1742       return true;
1743     } else {
1744       return false;
1745     }
1746   }
1747 
1748   inline bool isMarked(HeapWord* addr) {
1749     guarantee(use_local_bitmaps, "invariant");
1750     assert(fields_well_formed(), "invariant");
1751 
1752     return at(heapWordToOffset(addr));
1753   }
1754 
1755   void set_buffer(HeapWord* start) {
1756     guarantee(use_local_bitmaps, "invariant");
1757     clear();
1758 
1759     assert(start != NULL, "invariant");
1760     _real_start_word = start;
1761     _real_end_word   = start + _gclab_word_size;
1762 
1763     size_t diff =
1764       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
1765     _start_word = start - diff;
1766 
1767     assert(fields_well_formed(), "invariant");
1768   }
1769 
1770 #ifndef PRODUCT
1771   void verify() {
1772     // verify that the marks have been propagated
1773     GCLabBitMapClosure cl(_cm, this);
1774     iterate(&cl);
1775   }
1776 #endif // PRODUCT
1777 
1778   void retire() {
1779     guarantee(use_local_bitmaps, "invariant");
1780     assert(fields_well_formed(), "invariant");
1781 
1782     if (_start_word != NULL) {
1783       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
1784 
1785       // this means that the bitmap was set up for the GCLab
1786       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
1787 
1788       mark_bitmap->mostly_disjoint_range_union(this,
1789                                 0, // always start from the start of the bitmap
1790                                 _start_word,
1791                                 gclab_real_word_size());
1792       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
1793 
1794 #ifndef PRODUCT
1795       if (use_local_bitmaps && verify_local_bitmaps)
1796         verify();
1797 #endif // PRODUCT
1798     } else {
1799       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
1800     }
1801   }
1802 
1803   size_t bitmap_size_in_words() const {
1804     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
1805   }
1806 
1807 };
1808 
1809 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1810 private:
1811   bool        _retired;
1812   bool        _should_mark_objects;
1813   GCLabBitMap _bitmap;
1814 
1815 public:
1816   G1ParGCAllocBuffer(size_t gclab_word_size);
1817 
1818   inline bool mark(HeapWord* addr) {
1819     guarantee(use_local_bitmaps, "invariant");
1820     assert(_should_mark_objects, "invariant");
1821     return _bitmap.mark(addr);
1822   }
1823 
1824   inline void set_buf(HeapWord* buf) {
1825     if (use_local_bitmaps && _should_mark_objects) {
1826       _bitmap.set_buffer(buf);
1827     }
1828     ParGCAllocBuffer::set_buf(buf);
1829     _retired = false;
1830   }
1831 
1832   inline void retire(bool end_of_gc, bool retain) {
1833     if (_retired)
1834       return;
1835     if (use_local_bitmaps && _should_mark_objects) {
1836       _bitmap.retire();
1837     }
1838     ParGCAllocBuffer::retire(end_of_gc, retain);
1839     _retired = true;
1840   }
1841 };
1842 
1843 class G1ParScanThreadState : public StackObj {
1844 protected:
1845   G1CollectedHeap* _g1h;
1846   RefToScanQueue*  _refs;
1847   DirtyCardQueue   _dcq;
1848   CardTableModRefBS* _ct_bs;
1849   G1RemSet* _g1_rem;
1850 
1851   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1852   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1853   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1854   ageTable            _age_table;
1855 
1856   size_t           _alloc_buffer_waste;
1857   size_t           _undo_waste;
1858 
1859   OopsInHeapRegionClosure*      _evac_failure_cl;
1860   G1ParScanHeapEvacClosure*     _evac_cl;
1861   G1ParScanPartialArrayClosure* _partial_scan_cl;
1862 
1863   int _hash_seed;
1864   int _queue_num;
1865 
1866   size_t _term_attempts;
1867 
1868   double _start;
1869   double _start_strong_roots;
1870   double _strong_roots_time;
1871   double _start_term;
1872   double _term_time;
1873 
1874   // Map from young-age-index (0 == not young, 1 is youngest) to
1875   // surviving words. base is what we get back from the malloc call
1876   size_t* _surviving_young_words_base;
1877   // this points into the array, as we use the first few entries for padding
1878   size_t* _surviving_young_words;
1879 
1880 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1881 
1882   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1883 
1884   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1885 
1886   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1887   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1888 
1889   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1890     if (!from->is_survivor()) {
1891       _g1_rem->par_write_ref(from, p, tid);
1892     }
1893   }
1894 
1895   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1896     // If the new value of the field points to the same region or
1897     // is the to-space, we don't need to include it in the Rset updates.
1898     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1899       size_t card_index = ctbs()->index_for(p);
1900       // If the card hasn't been added to the buffer, do it.
1901       if (ctbs()->mark_card_deferred(card_index)) {
1902         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1903       }
1904     }
1905   }
1906 
1907 public:
1908   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
1909 
1910   ~G1ParScanThreadState() {
1911     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
1912   }
1913 
1914   RefToScanQueue*   refs()            { return _refs;             }
1915   ageTable*         age_table()       { return &_age_table;       }
1916 
1917   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1918     return _alloc_buffers[purpose];
1919   }
1920 
1921   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1922   size_t undo_waste() const                      { return _undo_waste; }
1923 
1924 #ifdef ASSERT
1925   bool verify_ref(narrowOop* ref) const;
1926   bool verify_ref(oop* ref) const;
1927   bool verify_task(StarTask ref) const;
1928 #endif // ASSERT
1929 
1930   template <class T> void push_on_queue(T* ref) {
1931     assert(verify_ref(ref), "sanity");
1932     refs()->push(ref);
1933   }
1934 
1935   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1936     if (G1DeferredRSUpdate) {
1937       deferred_rs_update(from, p, tid);
1938     } else {
1939       immediate_rs_update(from, p, tid);
1940     }
1941   }
1942 
1943   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1944 
1945     HeapWord* obj = NULL;
1946     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1947     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1948       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1949       assert(gclab_word_size == alloc_buf->word_sz(),
1950              "dynamic resizing is not supported");
1951       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1952       alloc_buf->retire(false, false);
1953 
1954       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1955       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1956       // Otherwise.
1957       alloc_buf->set_buf(buf);
1958 
1959       obj = alloc_buf->allocate(word_sz);
1960       assert(obj != NULL, "buffer was definitely big enough...");
1961     } else {
1962       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1963     }
1964     return obj;
1965   }
1966 
1967   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1968     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1969     if (obj != NULL) return obj;
1970     return allocate_slow(purpose, word_sz);
1971   }
1972 
1973   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1974     if (alloc_buffer(purpose)->contains(obj)) {
1975       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1976              "should contain whole object");
1977       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1978     } else {
1979       CollectedHeap::fill_with_object(obj, word_sz);
1980       add_to_undo_waste(word_sz);
1981     }
1982   }
1983 
1984   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1985     _evac_failure_cl = evac_failure_cl;
1986   }
1987   OopsInHeapRegionClosure* evac_failure_closure() {
1988     return _evac_failure_cl;
1989   }
1990 
1991   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1992     _evac_cl = evac_cl;
1993   }
1994 
1995   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
1996     _partial_scan_cl = partial_scan_cl;
1997   }
1998 
1999   int* hash_seed() { return &_hash_seed; }
2000   int  queue_num() { return _queue_num; }
2001 
2002   size_t term_attempts() const  { return _term_attempts; }
2003   void note_term_attempt() { _term_attempts++; }
2004 
2005   void start_strong_roots() {
2006     _start_strong_roots = os::elapsedTime();
2007   }
2008   void end_strong_roots() {
2009     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
2010   }
2011   double strong_roots_time() const { return _strong_roots_time; }
2012 
2013   void start_term_time() {
2014     note_term_attempt();
2015     _start_term = os::elapsedTime();
2016   }
2017   void end_term_time() {
2018     _term_time += (os::elapsedTime() - _start_term);
2019   }
2020   double term_time() const { return _term_time; }
2021 
2022   double elapsed_time() const {
2023     return os::elapsedTime() - _start;
2024   }
2025 
2026   static void
2027     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
2028   void
2029     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
2030 
2031   size_t* surviving_young_words() {
2032     // We add on to hide entry 0 which accumulates surviving words for
2033     // age -1 regions (i.e. non-young ones)
2034     return _surviving_young_words;
2035   }
2036 
2037   void retire_alloc_buffers() {
2038     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2039       size_t waste = _alloc_buffers[ap]->words_remaining();
2040       add_to_alloc_buffer_waste(waste);
2041       _alloc_buffers[ap]->retire(true, false);
2042     }
2043   }
2044 
2045   template <class T> void deal_with_reference(T* ref_to_scan) {
2046     if (has_partial_array_mask(ref_to_scan)) {
2047       _partial_scan_cl->do_oop_nv(ref_to_scan);
2048     } else {
2049       // Note: we can use "raw" versions of "region_containing" because
2050       // "obj_to_scan" is definitely in the heap, and is not in a
2051       // humongous region.
2052       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
2053       _evac_cl->set_region(r);
2054       _evac_cl->do_oop_nv(ref_to_scan);
2055     }
2056   }
2057 
2058   void deal_with_reference(StarTask ref) {
2059     assert(verify_task(ref), "sanity");
2060     if (ref.is_narrow()) {
2061       deal_with_reference((narrowOop*)ref);
2062     } else {
2063       deal_with_reference((oop*)ref);
2064     }
2065   }
2066 
2067 public:
2068   void trim_queue();
2069 };
2070 
2071 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP