1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/isGCActiveMark.hpp"
  40 #include "gc_interface/collectedHeap.inline.hpp"
  41 #include "memory/cardTableRS.hpp"
  42 #include "memory/collectorPolicy.hpp"
  43 #include "memory/gcLocker.inline.hpp"
  44 #include "memory/genCollectedHeap.hpp"
  45 #include "memory/genMarkSweep.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/iterator.hpp"
  48 #include "memory/referencePolicy.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "runtime/globals_extension.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/vmThread.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "services/runtimeService.hpp"
  58 
  59 // statics
  60 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  61 bool          CMSCollector::_full_gc_requested          = false;
  62 
  63 //////////////////////////////////////////////////////////////////
  64 // In support of CMS/VM thread synchronization
  65 //////////////////////////////////////////////////////////////////
  66 // We split use of the CGC_lock into 2 "levels".
  67 // The low-level locking is of the usual CGC_lock monitor. We introduce
  68 // a higher level "token" (hereafter "CMS token") built on top of the
  69 // low level monitor (hereafter "CGC lock").
  70 // The token-passing protocol gives priority to the VM thread. The
  71 // CMS-lock doesn't provide any fairness guarantees, but clients
  72 // should ensure that it is only held for very short, bounded
  73 // durations.
  74 //
  75 // When either of the CMS thread or the VM thread is involved in
  76 // collection operations during which it does not want the other
  77 // thread to interfere, it obtains the CMS token.
  78 //
  79 // If either thread tries to get the token while the other has
  80 // it, that thread waits. However, if the VM thread and CMS thread
  81 // both want the token, then the VM thread gets priority while the
  82 // CMS thread waits. This ensures, for instance, that the "concurrent"
  83 // phases of the CMS thread's work do not block out the VM thread
  84 // for long periods of time as the CMS thread continues to hog
  85 // the token. (See bug 4616232).
  86 //
  87 // The baton-passing functions are, however, controlled by the
  88 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  89 // and here the low-level CMS lock, not the high level token,
  90 // ensures mutual exclusion.
  91 //
  92 // Two important conditions that we have to satisfy:
  93 // 1. if a thread does a low-level wait on the CMS lock, then it
  94 //    relinquishes the CMS token if it were holding that token
  95 //    when it acquired the low-level CMS lock.
  96 // 2. any low-level notifications on the low-level lock
  97 //    should only be sent when a thread has relinquished the token.
  98 //
  99 // In the absence of either property, we'd have potential deadlock.
 100 //
 101 // We protect each of the CMS (concurrent and sequential) phases
 102 // with the CMS _token_, not the CMS _lock_.
 103 //
 104 // The only code protected by CMS lock is the token acquisition code
 105 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 106 // baton-passing code.
 107 //
 108 // Unfortunately, i couldn't come up with a good abstraction to factor and
 109 // hide the naked CGC_lock manipulation in the baton-passing code
 110 // further below. That's something we should try to do. Also, the proof
 111 // of correctness of this 2-level locking scheme is far from obvious,
 112 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 113 // that there may be a theoretical possibility of delay/starvation in the
 114 // low-level lock/wait/notify scheme used for the baton-passing because of
 115 // potential intereference with the priority scheme embodied in the
 116 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 117 // invocation further below and marked with "XXX 20011219YSR".
 118 // Indeed, as we note elsewhere, this may become yet more slippery
 119 // in the presence of multiple CMS and/or multiple VM threads. XXX
 120 
 121 class CMSTokenSync: public StackObj {
 122  private:
 123   bool _is_cms_thread;
 124  public:
 125   CMSTokenSync(bool is_cms_thread):
 126     _is_cms_thread(is_cms_thread) {
 127     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 128            "Incorrect argument to constructor");
 129     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 130   }
 131 
 132   ~CMSTokenSync() {
 133     assert(_is_cms_thread ?
 134              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 135              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 136           "Incorrect state");
 137     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 138   }
 139 };
 140 
 141 // Convenience class that does a CMSTokenSync, and then acquires
 142 // upto three locks.
 143 class CMSTokenSyncWithLocks: public CMSTokenSync {
 144  private:
 145   // Note: locks are acquired in textual declaration order
 146   // and released in the opposite order
 147   MutexLockerEx _locker1, _locker2, _locker3;
 148  public:
 149   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 150                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 151     CMSTokenSync(is_cms_thread),
 152     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 153     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 154     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 155   { }
 156 };
 157 
 158 
 159 // Wrapper class to temporarily disable icms during a foreground cms collection.
 160 class ICMSDisabler: public StackObj {
 161  public:
 162   // The ctor disables icms and wakes up the thread so it notices the change;
 163   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 164   // CMSIncrementalMode.
 165   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 166   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 167 };
 168 
 169 //////////////////////////////////////////////////////////////////
 170 //  Concurrent Mark-Sweep Generation /////////////////////////////
 171 //////////////////////////////////////////////////////////////////
 172 
 173 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 174 
 175 // This struct contains per-thread things necessary to support parallel
 176 // young-gen collection.
 177 class CMSParGCThreadState: public CHeapObj {
 178  public:
 179   CFLS_LAB lab;
 180   PromotionInfo promo;
 181 
 182   // Constructor.
 183   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 184     promo.setSpace(cfls);
 185   }
 186 };
 187 
 188 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 189      ReservedSpace rs, size_t initial_byte_size, int level,
 190      CardTableRS* ct, bool use_adaptive_freelists,
 191      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 192   CardGeneration(rs, initial_byte_size, level, ct),
 193   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 194   _debug_collection_type(Concurrent_collection_type)
 195 {
 196   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 197   HeapWord* end    = (HeapWord*) _virtual_space.high();
 198 
 199   _direct_allocated_words = 0;
 200   NOT_PRODUCT(
 201     _numObjectsPromoted = 0;
 202     _numWordsPromoted = 0;
 203     _numObjectsAllocated = 0;
 204     _numWordsAllocated = 0;
 205   )
 206 
 207   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 208                                            use_adaptive_freelists,
 209                                            dictionaryChoice);
 210   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 211   if (_cmsSpace == NULL) {
 212     vm_exit_during_initialization(
 213       "CompactibleFreeListSpace allocation failure");
 214   }
 215   _cmsSpace->_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedOops ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229   if (CollectedHeap::use_parallel_gc_threads()) {
 230     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 231     _par_gc_thread_states =
 232       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
 233     if (_par_gc_thread_states == NULL) {
 234       vm_exit_during_initialization("Could not allocate par gc structs");
 235     }
 236     for (uint i = 0; i < ParallelGCThreads; i++) {
 237       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 238       if (_par_gc_thread_states[i] == NULL) {
 239         vm_exit_during_initialization("Could not allocate par gc structs");
 240       }
 241     }
 242   } else {
 243     _par_gc_thread_states = NULL;
 244   }
 245   _incremental_collection_failed = false;
 246   // The "dilatation_factor" is the expansion that can occur on
 247   // account of the fact that the minimum object size in the CMS
 248   // generation may be larger than that in, say, a contiguous young
 249   //  generation.
 250   // Ideally, in the calculation below, we'd compute the dilatation
 251   // factor as: MinChunkSize/(promoting_gen's min object size)
 252   // Since we do not have such a general query interface for the
 253   // promoting generation, we'll instead just use the mimimum
 254   // object size (which today is a header's worth of space);
 255   // note that all arithmetic is in units of HeapWords.
 256   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 257   assert(_dilatation_factor >= 1.0, "from previous assert");
 258 }
 259 
 260 
 261 // The field "_initiating_occupancy" represents the occupancy percentage
 262 // at which we trigger a new collection cycle.  Unless explicitly specified
 263 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
 264 // is calculated by:
 265 //
 266 //   Let "f" be MinHeapFreeRatio in
 267 //
 268 //    _intiating_occupancy = 100-f +
 269 //                           f * (CMSTrigger[Perm]Ratio/100)
 270 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
 271 //
 272 // That is, if we assume the heap is at its desired maximum occupancy at the
 273 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
 274 // space be allocated before initiating a new collection cycle.
 275 //
 276 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
 277   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
 278   if (io >= 0) {
 279     _initiating_occupancy = (double)io / 100.0;
 280   } else {
 281     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 282                              (double)(tr * MinHeapFreeRatio) / 100.0)
 283                             / 100.0;
 284   }
 285 }
 286 
 287 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 288   assert(collector() != NULL, "no collector");
 289   collector()->ref_processor_init();
 290 }
 291 
 292 void CMSCollector::ref_processor_init() {
 293   if (_ref_processor == NULL) {
 294     // Allocate and initialize a reference processor
 295     _ref_processor =
 296       new ReferenceProcessor(_span,                               // span
 297                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 298                              (int) ParallelGCThreads,             // mt processing degree
 299                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 300                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 301                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 302                              &_is_alive_closure,                  // closure for liveness info
 303                              false);                              // next field updates do not need write barrier
 304     // Initialize the _ref_processor field of CMSGen
 305     _cmsGen->set_ref_processor(_ref_processor);
 306 
 307     // Allocate a dummy ref processor for perm gen.
 308     ReferenceProcessor* rp2 = new ReferenceProcessor();
 309     if (rp2 == NULL) {
 310       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 311     }
 312     _permGen->set_ref_processor(rp2);
 313   }
 314 }
 315 
 316 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 317   GenCollectedHeap* gch = GenCollectedHeap::heap();
 318   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 319     "Wrong type of heap");
 320   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 321     gch->gen_policy()->size_policy();
 322   assert(sp->is_gc_cms_adaptive_size_policy(),
 323     "Wrong type of size policy");
 324   return sp;
 325 }
 326 
 327 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 328   CMSGCAdaptivePolicyCounters* results =
 329     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 330   assert(
 331     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 332     "Wrong gc policy counter kind");
 333   return results;
 334 }
 335 
 336 
 337 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 338 
 339   const char* gen_name = "old";
 340 
 341   // Generation Counters - generation 1, 1 subspace
 342   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 343 
 344   _space_counters = new GSpaceCounters(gen_name, 0,
 345                                        _virtual_space.reserved_size(),
 346                                        this, _gen_counters);
 347 }
 348 
 349 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 350   _cms_gen(cms_gen)
 351 {
 352   assert(alpha <= 100, "bad value");
 353   _saved_alpha = alpha;
 354 
 355   // Initialize the alphas to the bootstrap value of 100.
 356   _gc0_alpha = _cms_alpha = 100;
 357 
 358   _cms_begin_time.update();
 359   _cms_end_time.update();
 360 
 361   _gc0_duration = 0.0;
 362   _gc0_period = 0.0;
 363   _gc0_promoted = 0;
 364 
 365   _cms_duration = 0.0;
 366   _cms_period = 0.0;
 367   _cms_allocated = 0;
 368 
 369   _cms_used_at_gc0_begin = 0;
 370   _cms_used_at_gc0_end = 0;
 371   _allow_duty_cycle_reduction = false;
 372   _valid_bits = 0;
 373   _icms_duty_cycle = CMSIncrementalDutyCycle;
 374 }
 375 
 376 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 377   // TBD: CR 6909490
 378   return 1.0;
 379 }
 380 
 381 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 382 }
 383 
 384 // If promotion failure handling is on use
 385 // the padded average size of the promotion for each
 386 // young generation collection.
 387 double CMSStats::time_until_cms_gen_full() const {
 388   size_t cms_free = _cms_gen->cmsSpace()->free();
 389   GenCollectedHeap* gch = GenCollectedHeap::heap();
 390   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 391                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 392   if (cms_free > expected_promotion) {
 393     // Start a cms collection if there isn't enough space to promote
 394     // for the next minor collection.  Use the padded average as
 395     // a safety factor.
 396     cms_free -= expected_promotion;
 397 
 398     // Adjust by the safety factor.
 399     double cms_free_dbl = (double)cms_free;
 400     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 401     // Apply a further correction factor which tries to adjust
 402     // for recent occurance of concurrent mode failures.
 403     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 404     cms_free_dbl = cms_free_dbl * cms_adjustment;
 405 
 406     if (PrintGCDetails && Verbose) {
 407       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 408         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 409         cms_free, expected_promotion);
 410       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 411         cms_free_dbl, cms_consumption_rate() + 1.0);
 412     }
 413     // Add 1 in case the consumption rate goes to zero.
 414     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 415   }
 416   return 0.0;
 417 }
 418 
 419 // Compare the duration of the cms collection to the
 420 // time remaining before the cms generation is empty.
 421 // Note that the time from the start of the cms collection
 422 // to the start of the cms sweep (less than the total
 423 // duration of the cms collection) can be used.  This
 424 // has been tried and some applications experienced
 425 // promotion failures early in execution.  This was
 426 // possibly because the averages were not accurate
 427 // enough at the beginning.
 428 double CMSStats::time_until_cms_start() const {
 429   // We add "gc0_period" to the "work" calculation
 430   // below because this query is done (mostly) at the
 431   // end of a scavenge, so we need to conservatively
 432   // account for that much possible delay
 433   // in the query so as to avoid concurrent mode failures
 434   // due to starting the collection just a wee bit too
 435   // late.
 436   double work = cms_duration() + gc0_period();
 437   double deadline = time_until_cms_gen_full();
 438   // If a concurrent mode failure occurred recently, we want to be
 439   // more conservative and halve our expected time_until_cms_gen_full()
 440   if (work > deadline) {
 441     if (Verbose && PrintGCDetails) {
 442       gclog_or_tty->print(
 443         " CMSCollector: collect because of anticipated promotion "
 444         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 445         gc0_period(), time_until_cms_gen_full());
 446     }
 447     return 0.0;
 448   }
 449   return work - deadline;
 450 }
 451 
 452 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 453 // amount of change to prevent wild oscillation.
 454 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 455                                               unsigned int new_duty_cycle) {
 456   assert(old_duty_cycle <= 100, "bad input value");
 457   assert(new_duty_cycle <= 100, "bad input value");
 458 
 459   // Note:  use subtraction with caution since it may underflow (values are
 460   // unsigned).  Addition is safe since we're in the range 0-100.
 461   unsigned int damped_duty_cycle = new_duty_cycle;
 462   if (new_duty_cycle < old_duty_cycle) {
 463     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 464     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 465       damped_duty_cycle = old_duty_cycle - largest_delta;
 466     }
 467   } else if (new_duty_cycle > old_duty_cycle) {
 468     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 469     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 470       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 471     }
 472   }
 473   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 474 
 475   if (CMSTraceIncrementalPacing) {
 476     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 477                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 478   }
 479   return damped_duty_cycle;
 480 }
 481 
 482 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 483   assert(CMSIncrementalPacing && valid(),
 484          "should be handled in icms_update_duty_cycle()");
 485 
 486   double cms_time_so_far = cms_timer().seconds();
 487   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 488   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 489 
 490   // Avoid division by 0.
 491   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 492   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 493 
 494   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 495   if (new_duty_cycle > _icms_duty_cycle) {
 496     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 497     if (new_duty_cycle > 2) {
 498       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 499                                                 new_duty_cycle);
 500     }
 501   } else if (_allow_duty_cycle_reduction) {
 502     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 503     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 504     // Respect the minimum duty cycle.
 505     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 506     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 507   }
 508 
 509   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 510     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 511   }
 512 
 513   _allow_duty_cycle_reduction = false;
 514   return _icms_duty_cycle;
 515 }
 516 
 517 #ifndef PRODUCT
 518 void CMSStats::print_on(outputStream *st) const {
 519   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 520   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 521                gc0_duration(), gc0_period(), gc0_promoted());
 522   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 523             cms_duration(), cms_duration_per_mb(),
 524             cms_period(), cms_allocated());
 525   st->print(",cms_since_beg=%g,cms_since_end=%g",
 526             cms_time_since_begin(), cms_time_since_end());
 527   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 528             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 529   if (CMSIncrementalMode) {
 530     st->print(",dc=%d", icms_duty_cycle());
 531   }
 532 
 533   if (valid()) {
 534     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 535               promotion_rate(), cms_allocation_rate());
 536     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 537               cms_consumption_rate(), time_until_cms_gen_full());
 538   }
 539   st->print(" ");
 540 }
 541 #endif // #ifndef PRODUCT
 542 
 543 CMSCollector::CollectorState CMSCollector::_collectorState =
 544                              CMSCollector::Idling;
 545 bool CMSCollector::_foregroundGCIsActive = false;
 546 bool CMSCollector::_foregroundGCShouldWait = false;
 547 
 548 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 549                            ConcurrentMarkSweepGeneration* permGen,
 550                            CardTableRS*                   ct,
 551                            ConcurrentMarkSweepPolicy*     cp):
 552   _cmsGen(cmsGen),
 553   _permGen(permGen),
 554   _ct(ct),
 555   _ref_processor(NULL),    // will be set later
 556   _conc_workers(NULL),     // may be set later
 557   _abort_preclean(false),
 558   _start_sampling(false),
 559   _between_prologue_and_epilogue(false),
 560   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 561   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen and perm gen
 567   _span(cmsGen->reserved()._union(permGen->reserved())),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_array(NULL),     // may be set in ctor body
 574   _eden_chunk_capacity(0),     // -- ditto --
 575   _eden_chunk_index(0),        // -- ditto --
 576   _survivor_plab_array(NULL),  // -- ditto --
 577   _survivor_chunk_array(NULL), // -- ditto --
 578   _survivor_chunk_capacity(0), // -- ditto --
 579   _survivor_chunk_index(0),    // -- ditto --
 580   _ser_pmc_preclean_ovflw(0),
 581   _ser_kac_preclean_ovflw(0),
 582   _ser_pmc_remark_ovflw(0),
 583   _par_pmc_remark_ovflw(0),
 584   _ser_kac_ovflw(0),
 585   _par_kac_ovflw(0),
 586 #ifndef PRODUCT
 587   _num_par_pushes(0),
 588 #endif
 589   _collection_count_start(0),
 590   _verifying(false),
 591   _icms_start_limit(NULL),
 592   _icms_stop_limit(NULL),
 593   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 594   _completed_initialization(false),
 595   _collector_policy(cp),
 596   _should_unload_classes(false),
 597   _concurrent_cycles_since_last_unload(0),
 598   _roots_scanning_options(0),
 599   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 600   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
 601 {
 602   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 603     ExplicitGCInvokesConcurrent = true;
 604   }
 605   // Now expand the span and allocate the collection support structures
 606   // (MUT, marking bit map etc.) to cover both generations subject to
 607   // collection.
 608 
 609   // First check that _permGen is adjacent to _cmsGen and above it.
 610   assert(   _cmsGen->reserved().word_size()  > 0
 611          && _permGen->reserved().word_size() > 0,
 612          "generations should not be of zero size");
 613   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
 614          "_cmsGen and _permGen should not overlap");
 615   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
 616          "_cmsGen->end() different from _permGen->start()");
 617 
 618   // For use by dirty card to oop closures.
 619   _cmsGen->cmsSpace()->set_collector(this);
 620   _permGen->cmsSpace()->set_collector(this);
 621 
 622   // Allocate MUT and marking bit map
 623   {
 624     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 625     if (!_markBitMap.allocate(_span)) {
 626       warning("Failed to allocate CMS Bit Map");
 627       return;
 628     }
 629     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 630   }
 631   {
 632     _modUnionTable.allocate(_span);
 633     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 634   }
 635 
 636   if (!_markStack.allocate(MarkStackSize)) {
 637     warning("Failed to allocate CMS Marking Stack");
 638     return;
 639   }
 640   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
 641     warning("Failed to allocate CMS Revisit Stack");
 642     return;
 643   }
 644 
 645   // Support for multi-threaded concurrent phases
 646   if (CMSConcurrentMTEnabled) {
 647     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 648       // just for now
 649       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 650     }
 651     if (ConcGCThreads > 1) {
 652       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 653                                  ConcGCThreads, true);
 654       if (_conc_workers == NULL) {
 655         warning("GC/CMS: _conc_workers allocation failure: "
 656               "forcing -CMSConcurrentMTEnabled");
 657         CMSConcurrentMTEnabled = false;
 658       } else {
 659         _conc_workers->initialize_workers();
 660       }
 661     } else {
 662       CMSConcurrentMTEnabled = false;
 663     }
 664   }
 665   if (!CMSConcurrentMTEnabled) {
 666     ConcGCThreads = 0;
 667   } else {
 668     // Turn off CMSCleanOnEnter optimization temporarily for
 669     // the MT case where it's not fixed yet; see 6178663.
 670     CMSCleanOnEnter = false;
 671   }
 672   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 673          "Inconsistency");
 674 
 675   // Parallel task queues; these are shared for the
 676   // concurrent and stop-world phases of CMS, but
 677   // are not shared with parallel scavenge (ParNew).
 678   {
 679     uint i;
 680     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 681 
 682     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 683          || ParallelRefProcEnabled)
 684         && num_queues > 0) {
 685       _task_queues = new OopTaskQueueSet(num_queues);
 686       if (_task_queues == NULL) {
 687         warning("task_queues allocation failure.");
 688         return;
 689       }
 690       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
 691       if (_hash_seed == NULL) {
 692         warning("_hash_seed array allocation failure");
 693         return;
 694       }
 695 
 696       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 697       for (i = 0; i < num_queues; i++) {
 698         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 699         if (q == NULL) {
 700           warning("work_queue allocation failure.");
 701           return;
 702         }
 703         _task_queues->register_queue(i, q);
 704       }
 705       for (i = 0; i < num_queues; i++) {
 706         _task_queues->queue(i)->initialize();
 707         _hash_seed[i] = 17;  // copied from ParNew
 708       }
 709     }
 710   }
 711 
 712   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 713   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
 714 
 715   // Clip CMSBootstrapOccupancy between 0 and 100.
 716   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 717                          /(double)100;
 718 
 719   _full_gcs_since_conc_gc = 0;
 720 
 721   // Now tell CMS generations the identity of their collector
 722   ConcurrentMarkSweepGeneration::set_collector(this);
 723 
 724   // Create & start a CMS thread for this CMS collector
 725   _cmsThread = ConcurrentMarkSweepThread::start(this);
 726   assert(cmsThread() != NULL, "CMS Thread should have been created");
 727   assert(cmsThread()->collector() == this,
 728          "CMS Thread should refer to this gen");
 729   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 730 
 731   // Support for parallelizing young gen rescan
 732   GenCollectedHeap* gch = GenCollectedHeap::heap();
 733   _young_gen = gch->prev_gen(_cmsGen);
 734   if (gch->supports_inline_contig_alloc()) {
 735     _top_addr = gch->top_addr();
 736     _end_addr = gch->end_addr();
 737     assert(_young_gen != NULL, "no _young_gen");
 738     _eden_chunk_index = 0;
 739     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 740     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
 741     if (_eden_chunk_array == NULL) {
 742       _eden_chunk_capacity = 0;
 743       warning("GC/CMS: _eden_chunk_array allocation failure");
 744     }
 745   }
 746   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 747 
 748   // Support for parallelizing survivor space rescan
 749   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 750     const size_t max_plab_samples =
 751       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 752 
 753     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
 754     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
 755     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
 756     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 757         || _cursor == NULL) {
 758       warning("Failed to allocate survivor plab/chunk array");
 759       if (_survivor_plab_array  != NULL) {
 760         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 761         _survivor_plab_array = NULL;
 762       }
 763       if (_survivor_chunk_array != NULL) {
 764         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 765         _survivor_chunk_array = NULL;
 766       }
 767       if (_cursor != NULL) {
 768         FREE_C_HEAP_ARRAY(size_t, _cursor);
 769         _cursor = NULL;
 770       }
 771     } else {
 772       _survivor_chunk_capacity = 2*max_plab_samples;
 773       for (uint i = 0; i < ParallelGCThreads; i++) {
 774         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
 775         if (vec == NULL) {
 776           warning("Failed to allocate survivor plab array");
 777           for (int j = i; j > 0; j--) {
 778             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
 779           }
 780           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 781           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 782           _survivor_plab_array = NULL;
 783           _survivor_chunk_array = NULL;
 784           _survivor_chunk_capacity = 0;
 785           break;
 786         } else {
 787           ChunkArray* cur =
 788             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 789                                                         max_plab_samples);
 790           assert(cur->end() == 0, "Should be 0");
 791           assert(cur->array() == vec, "Should be vec");
 792           assert(cur->capacity() == max_plab_samples, "Error");
 793         }
 794       }
 795     }
 796   }
 797   assert(   (   _survivor_plab_array  != NULL
 798              && _survivor_chunk_array != NULL)
 799          || (   _survivor_chunk_capacity == 0
 800              && _survivor_chunk_index == 0),
 801          "Error");
 802 
 803   // Choose what strong roots should be scanned depending on verification options
 804   // and perm gen collection mode.
 805   if (!CMSClassUnloadingEnabled) {
 806     // If class unloading is disabled we want to include all classes into the root set.
 807     add_root_scanning_option(SharedHeap::SO_AllClasses);
 808   } else {
 809     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 810   }
 811 
 812   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 813   _gc_counters = new CollectorCounters("CMS", 1);
 814   _completed_initialization = true;
 815   _inter_sweep_timer.start();  // start of time
 816 #ifdef SPARC
 817   // Issue a stern warning, but allow use for experimentation and debugging.
 818   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
 819     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
 820     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
 821             " on sun4v; please understand that you are using at your own risk!");
 822   }
 823 #endif
 824 }
 825 
 826 const char* ConcurrentMarkSweepGeneration::name() const {
 827   return "concurrent mark-sweep generation";
 828 }
 829 void ConcurrentMarkSweepGeneration::update_counters() {
 830   if (UsePerfData) {
 831     _space_counters->update_all();
 832     _gen_counters->update_all();
 833   }
 834 }
 835 
 836 // this is an optimized version of update_counters(). it takes the
 837 // used value as a parameter rather than computing it.
 838 //
 839 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 840   if (UsePerfData) {
 841     _space_counters->update_used(used);
 842     _space_counters->update_capacity();
 843     _gen_counters->update_all();
 844   }
 845 }
 846 
 847 void ConcurrentMarkSweepGeneration::print() const {
 848   Generation::print();
 849   cmsSpace()->print();
 850 }
 851 
 852 #ifndef PRODUCT
 853 void ConcurrentMarkSweepGeneration::print_statistics() {
 854   cmsSpace()->printFLCensus(0);
 855 }
 856 #endif
 857 
 858 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 859   GenCollectedHeap* gch = GenCollectedHeap::heap();
 860   if (PrintGCDetails) {
 861     if (Verbose) {
 862       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 863         level(), short_name(), s, used(), capacity());
 864     } else {
 865       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 866         level(), short_name(), s, used() / K, capacity() / K);
 867     }
 868   }
 869   if (Verbose) {
 870     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 871               gch->used(), gch->capacity());
 872   } else {
 873     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 874               gch->used() / K, gch->capacity() / K);
 875   }
 876 }
 877 
 878 size_t
 879 ConcurrentMarkSweepGeneration::contiguous_available() const {
 880   // dld proposes an improvement in precision here. If the committed
 881   // part of the space ends in a free block we should add that to
 882   // uncommitted size in the calculation below. Will make this
 883   // change later, staying with the approximation below for the
 884   // time being. -- ysr.
 885   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 886 }
 887 
 888 size_t
 889 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 890   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 891 }
 892 
 893 size_t ConcurrentMarkSweepGeneration::max_available() const {
 894   return free() + _virtual_space.uncommitted_size();
 895 }
 896 
 897 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 898   size_t available = max_available();
 899   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 900   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 901   if (Verbose && PrintGCDetails) {
 902     gclog_or_tty->print_cr(
 903       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 904       "max_promo("SIZE_FORMAT")",
 905       res? "":" not", available, res? ">=":"<",
 906       av_promo, max_promotion_in_bytes);
 907   }
 908   return res;
 909 }
 910 
 911 // At a promotion failure dump information on block layout in heap
 912 // (cms old generation).
 913 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 914   if (CMSDumpAtPromotionFailure) {
 915     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 916   }
 917 }
 918 
 919 CompactibleSpace*
 920 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 921   return _cmsSpace;
 922 }
 923 
 924 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 925   // Clear the promotion information.  These pointers can be adjusted
 926   // along with all the other pointers into the heap but
 927   // compaction is expected to be a rare event with
 928   // a heap using cms so don't do it without seeing the need.
 929   if (CollectedHeap::use_parallel_gc_threads()) {
 930     for (uint i = 0; i < ParallelGCThreads; i++) {
 931       _par_gc_thread_states[i]->promo.reset();
 932     }
 933   }
 934 }
 935 
 936 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 937   blk->do_space(_cmsSpace);
 938 }
 939 
 940 void ConcurrentMarkSweepGeneration::compute_new_size() {
 941   assert_locked_or_safepoint(Heap_lock);
 942 
 943   // If incremental collection failed, we just want to expand
 944   // to the limit.
 945   if (incremental_collection_failed()) {
 946     clear_incremental_collection_failed();
 947     grow_to_reserved();
 948     return;
 949   }
 950 
 951   size_t expand_bytes = 0;
 952   double free_percentage = ((double) free()) / capacity();
 953   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 954   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 955 
 956   // compute expansion delta needed for reaching desired free percentage
 957   if (free_percentage < desired_free_percentage) {
 958     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 959     assert(desired_capacity >= capacity(), "invalid expansion size");
 960     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 961   }
 962   if (expand_bytes > 0) {
 963     if (PrintGCDetails && Verbose) {
 964       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 965       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 966       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 967       gclog_or_tty->print_cr("  Desired free fraction %f",
 968         desired_free_percentage);
 969       gclog_or_tty->print_cr("  Maximum free fraction %f",
 970         maximum_free_percentage);
 971       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 972       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 973         desired_capacity/1000);
 974       int prev_level = level() - 1;
 975       if (prev_level >= 0) {
 976         size_t prev_size = 0;
 977         GenCollectedHeap* gch = GenCollectedHeap::heap();
 978         Generation* prev_gen = gch->_gens[prev_level];
 979         prev_size = prev_gen->capacity();
 980           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 981                                  prev_size/1000);
 982       }
 983       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 984         unsafe_max_alloc_nogc()/1000);
 985       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 986         contiguous_available()/1000);
 987       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 988         expand_bytes);
 989     }
 990     // safe if expansion fails
 991     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 992     if (PrintGCDetails && Verbose) {
 993       gclog_or_tty->print_cr("  Expanded free fraction %f",
 994         ((double) free()) / capacity());
 995     }
 996   }
 997 }
 998 
 999 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1000   return cmsSpace()->freelistLock();
1001 }
1002 
1003 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1004                                                   bool   tlab) {
1005   CMSSynchronousYieldRequest yr;
1006   MutexLockerEx x(freelistLock(),
1007                   Mutex::_no_safepoint_check_flag);
1008   return have_lock_and_allocate(size, tlab);
1009 }
1010 
1011 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1012                                                   bool   tlab /* ignored */) {
1013   assert_lock_strong(freelistLock());
1014   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1015   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1016   // Allocate the object live (grey) if the background collector has
1017   // started marking. This is necessary because the marker may
1018   // have passed this address and consequently this object will
1019   // not otherwise be greyed and would be incorrectly swept up.
1020   // Note that if this object contains references, the writing
1021   // of those references will dirty the card containing this object
1022   // allowing the object to be blackened (and its references scanned)
1023   // either during a preclean phase or at the final checkpoint.
1024   if (res != NULL) {
1025     // We may block here with an uninitialized object with
1026     // its mark-bit or P-bits not yet set. Such objects need
1027     // to be safely navigable by block_start().
1028     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1029     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1030     collector()->direct_allocated(res, adjustedSize);
1031     _direct_allocated_words += adjustedSize;
1032     // allocation counters
1033     NOT_PRODUCT(
1034       _numObjectsAllocated++;
1035       _numWordsAllocated += (int)adjustedSize;
1036     )
1037   }
1038   return res;
1039 }
1040 
1041 // In the case of direct allocation by mutators in a generation that
1042 // is being concurrently collected, the object must be allocated
1043 // live (grey) if the background collector has started marking.
1044 // This is necessary because the marker may
1045 // have passed this address and consequently this object will
1046 // not otherwise be greyed and would be incorrectly swept up.
1047 // Note that if this object contains references, the writing
1048 // of those references will dirty the card containing this object
1049 // allowing the object to be blackened (and its references scanned)
1050 // either during a preclean phase or at the final checkpoint.
1051 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1052   assert(_markBitMap.covers(start, size), "Out of bounds");
1053   if (_collectorState >= Marking) {
1054     MutexLockerEx y(_markBitMap.lock(),
1055                     Mutex::_no_safepoint_check_flag);
1056     // [see comments preceding SweepClosure::do_blk() below for details]
1057     // 1. need to mark the object as live so it isn't collected
1058     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1059     // 3. need to mark the end of the object so marking, precleaning or sweeping
1060     //    can skip over uninitialized or unparsable objects. An allocated
1061     //    object is considered uninitialized for our purposes as long as
1062     //    its klass word is NULL. (Unparsable objects are those which are
1063     //    initialized in the sense just described, but whose sizes can still
1064     //    not be correctly determined. Note that the class of unparsable objects
1065     //    can only occur in the perm gen. All old gen objects are parsable
1066     //    as soon as they are initialized.)
1067     _markBitMap.mark(start);          // object is live
1068     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1069     _markBitMap.mark(start + size - 1);
1070                                       // mark end of object
1071   }
1072   // check that oop looks uninitialized
1073   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1074 }
1075 
1076 void CMSCollector::promoted(bool par, HeapWord* start,
1077                             bool is_obj_array, size_t obj_size) {
1078   assert(_markBitMap.covers(start), "Out of bounds");
1079   // See comment in direct_allocated() about when objects should
1080   // be allocated live.
1081   if (_collectorState >= Marking) {
1082     // we already hold the marking bit map lock, taken in
1083     // the prologue
1084     if (par) {
1085       _markBitMap.par_mark(start);
1086     } else {
1087       _markBitMap.mark(start);
1088     }
1089     // We don't need to mark the object as uninitialized (as
1090     // in direct_allocated above) because this is being done with the
1091     // world stopped and the object will be initialized by the
1092     // time the marking, precleaning or sweeping get to look at it.
1093     // But see the code for copying objects into the CMS generation,
1094     // where we need to ensure that concurrent readers of the
1095     // block offset table are able to safely navigate a block that
1096     // is in flux from being free to being allocated (and in
1097     // transition while being copied into) and subsequently
1098     // becoming a bona-fide object when the copy/promotion is complete.
1099     assert(SafepointSynchronize::is_at_safepoint(),
1100            "expect promotion only at safepoints");
1101 
1102     if (_collectorState < Sweeping) {
1103       // Mark the appropriate cards in the modUnionTable, so that
1104       // this object gets scanned before the sweep. If this is
1105       // not done, CMS generation references in the object might
1106       // not get marked.
1107       // For the case of arrays, which are otherwise precisely
1108       // marked, we need to dirty the entire array, not just its head.
1109       if (is_obj_array) {
1110         // The [par_]mark_range() method expects mr.end() below to
1111         // be aligned to the granularity of a bit's representation
1112         // in the heap. In the case of the MUT below, that's a
1113         // card size.
1114         MemRegion mr(start,
1115                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1116                         CardTableModRefBS::card_size /* bytes */));
1117         if (par) {
1118           _modUnionTable.par_mark_range(mr);
1119         } else {
1120           _modUnionTable.mark_range(mr);
1121         }
1122       } else {  // not an obj array; we can just mark the head
1123         if (par) {
1124           _modUnionTable.par_mark(start);
1125         } else {
1126           _modUnionTable.mark(start);
1127         }
1128       }
1129     }
1130   }
1131 }
1132 
1133 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1134 {
1135   size_t delta = pointer_delta(addr, space->bottom());
1136   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1137 }
1138 
1139 void CMSCollector::icms_update_allocation_limits()
1140 {
1141   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1142   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1143 
1144   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1145   if (CMSTraceIncrementalPacing) {
1146     stats().print();
1147   }
1148 
1149   assert(duty_cycle <= 100, "invalid duty cycle");
1150   if (duty_cycle != 0) {
1151     // The duty_cycle is a percentage between 0 and 100; convert to words and
1152     // then compute the offset from the endpoints of the space.
1153     size_t free_words = eden->free() / HeapWordSize;
1154     double free_words_dbl = (double)free_words;
1155     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1156     size_t offset_words = (free_words - duty_cycle_words) / 2;
1157 
1158     _icms_start_limit = eden->top() + offset_words;
1159     _icms_stop_limit = eden->end() - offset_words;
1160 
1161     // The limits may be adjusted (shifted to the right) by
1162     // CMSIncrementalOffset, to allow the application more mutator time after a
1163     // young gen gc (when all mutators were stopped) and before CMS starts and
1164     // takes away one or more cpus.
1165     if (CMSIncrementalOffset != 0) {
1166       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1167       size_t adjustment = (size_t)adjustment_dbl;
1168       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1169       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1170         _icms_start_limit += adjustment;
1171         _icms_stop_limit = tmp_stop;
1172       }
1173     }
1174   }
1175   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1176     _icms_start_limit = _icms_stop_limit = eden->end();
1177   }
1178 
1179   // Install the new start limit.
1180   eden->set_soft_end(_icms_start_limit);
1181 
1182   if (CMSTraceIncrementalMode) {
1183     gclog_or_tty->print(" icms alloc limits:  "
1184                            PTR_FORMAT "," PTR_FORMAT
1185                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1186                            _icms_start_limit, _icms_stop_limit,
1187                            percent_of_space(eden, _icms_start_limit),
1188                            percent_of_space(eden, _icms_stop_limit));
1189     if (Verbose) {
1190       gclog_or_tty->print("eden:  ");
1191       eden->print_on(gclog_or_tty);
1192     }
1193   }
1194 }
1195 
1196 // Any changes here should try to maintain the invariant
1197 // that if this method is called with _icms_start_limit
1198 // and _icms_stop_limit both NULL, then it should return NULL
1199 // and not notify the icms thread.
1200 HeapWord*
1201 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1202                                        size_t word_size)
1203 {
1204   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1205   // nop.
1206   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1207     if (top <= _icms_start_limit) {
1208       if (CMSTraceIncrementalMode) {
1209         space->print_on(gclog_or_tty);
1210         gclog_or_tty->stamp();
1211         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1212                                ", new limit=" PTR_FORMAT
1213                                " (" SIZE_FORMAT "%%)",
1214                                top, _icms_stop_limit,
1215                                percent_of_space(space, _icms_stop_limit));
1216       }
1217       ConcurrentMarkSweepThread::start_icms();
1218       assert(top < _icms_stop_limit, "Tautology");
1219       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1220         return _icms_stop_limit;
1221       }
1222 
1223       // The allocation will cross both the _start and _stop limits, so do the
1224       // stop notification also and return end().
1225       if (CMSTraceIncrementalMode) {
1226         space->print_on(gclog_or_tty);
1227         gclog_or_tty->stamp();
1228         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1229                                ", new limit=" PTR_FORMAT
1230                                " (" SIZE_FORMAT "%%)",
1231                                top, space->end(),
1232                                percent_of_space(space, space->end()));
1233       }
1234       ConcurrentMarkSweepThread::stop_icms();
1235       return space->end();
1236     }
1237 
1238     if (top <= _icms_stop_limit) {
1239       if (CMSTraceIncrementalMode) {
1240         space->print_on(gclog_or_tty);
1241         gclog_or_tty->stamp();
1242         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1243                                ", new limit=" PTR_FORMAT
1244                                " (" SIZE_FORMAT "%%)",
1245                                top, space->end(),
1246                                percent_of_space(space, space->end()));
1247       }
1248       ConcurrentMarkSweepThread::stop_icms();
1249       return space->end();
1250     }
1251 
1252     if (CMSTraceIncrementalMode) {
1253       space->print_on(gclog_or_tty);
1254       gclog_or_tty->stamp();
1255       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1256                              ", new limit=" PTR_FORMAT,
1257                              top, NULL);
1258     }
1259   }
1260 
1261   return NULL;
1262 }
1263 
1264 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1265   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1266   // allocate, copy and if necessary update promoinfo --
1267   // delegate to underlying space.
1268   assert_lock_strong(freelistLock());
1269 
1270 #ifndef PRODUCT
1271   if (Universe::heap()->promotion_should_fail()) {
1272     return NULL;
1273   }
1274 #endif  // #ifndef PRODUCT
1275 
1276   oop res = _cmsSpace->promote(obj, obj_size);
1277   if (res == NULL) {
1278     // expand and retry
1279     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1280     expand(s*HeapWordSize, MinHeapDeltaBytes,
1281       CMSExpansionCause::_satisfy_promotion);
1282     // Since there's currently no next generation, we don't try to promote
1283     // into a more senior generation.
1284     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1285                                "is made to pass on a possibly failing "
1286                                "promotion to next generation");
1287     res = _cmsSpace->promote(obj, obj_size);
1288   }
1289   if (res != NULL) {
1290     // See comment in allocate() about when objects should
1291     // be allocated live.
1292     assert(obj->is_oop(), "Will dereference klass pointer below");
1293     collector()->promoted(false,           // Not parallel
1294                           (HeapWord*)res, obj->is_objArray(), obj_size);
1295     // promotion counters
1296     NOT_PRODUCT(
1297       _numObjectsPromoted++;
1298       _numWordsPromoted +=
1299         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1300     )
1301   }
1302   return res;
1303 }
1304 
1305 
1306 HeapWord*
1307 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1308                                              HeapWord* top,
1309                                              size_t word_sz)
1310 {
1311   return collector()->allocation_limit_reached(space, top, word_sz);
1312 }
1313 
1314 // IMPORTANT: Notes on object size recognition in CMS.
1315 // ---------------------------------------------------
1316 // A block of storage in the CMS generation is always in
1317 // one of three states. A free block (FREE), an allocated
1318 // object (OBJECT) whose size() method reports the correct size,
1319 // and an intermediate state (TRANSIENT) in which its size cannot
1320 // be accurately determined.
1321 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1322 // -----------------------------------------------------
1323 // FREE:      klass_word & 1 == 1; mark_word holds block size
1324 //
1325 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1326 //            obj->size() computes correct size
1327 //            [Perm Gen objects needs to be "parsable" before they can be navigated]
1328 //
1329 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1330 //
1331 // STATE IDENTIFICATION: (64 bit+COOPS)
1332 // ------------------------------------
1333 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1334 //
1335 // OBJECT:    klass_word installed; klass_word != 0;
1336 //            obj->size() computes correct size
1337 //            [Perm Gen comment above continues to hold]
1338 //
1339 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1340 //
1341 //
1342 // STATE TRANSITION DIAGRAM
1343 //
1344 //        mut / parnew                     mut  /  parnew
1345 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1346 //  ^                                                                   |
1347 //  |------------------------ DEAD <------------------------------------|
1348 //         sweep                            mut
1349 //
1350 // While a block is in TRANSIENT state its size cannot be determined
1351 // so readers will either need to come back later or stall until
1352 // the size can be determined. Note that for the case of direct
1353 // allocation, P-bits, when available, may be used to determine the
1354 // size of an object that may not yet have been initialized.
1355 
1356 // Things to support parallel young-gen collection.
1357 oop
1358 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1359                                            oop old, markOop m,
1360                                            size_t word_sz) {
1361 #ifndef PRODUCT
1362   if (Universe::heap()->promotion_should_fail()) {
1363     return NULL;
1364   }
1365 #endif  // #ifndef PRODUCT
1366 
1367   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1368   PromotionInfo* promoInfo = &ps->promo;
1369   // if we are tracking promotions, then first ensure space for
1370   // promotion (including spooling space for saving header if necessary).
1371   // then allocate and copy, then track promoted info if needed.
1372   // When tracking (see PromotionInfo::track()), the mark word may
1373   // be displaced and in this case restoration of the mark word
1374   // occurs in the (oop_since_save_marks_)iterate phase.
1375   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1376     // Out of space for allocating spooling buffers;
1377     // try expanding and allocating spooling buffers.
1378     if (!expand_and_ensure_spooling_space(promoInfo)) {
1379       return NULL;
1380     }
1381   }
1382   assert(promoInfo->has_spooling_space(), "Control point invariant");
1383   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1384   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1385   if (obj_ptr == NULL) {
1386      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1387      if (obj_ptr == NULL) {
1388        return NULL;
1389      }
1390   }
1391   oop obj = oop(obj_ptr);
1392   OrderAccess::storestore();
1393   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1394   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1395   // IMPORTANT: See note on object initialization for CMS above.
1396   // Otherwise, copy the object.  Here we must be careful to insert the
1397   // klass pointer last, since this marks the block as an allocated object.
1398   // Except with compressed oops it's the mark word.
1399   HeapWord* old_ptr = (HeapWord*)old;
1400   // Restore the mark word copied above.
1401   obj->set_mark(m);
1402   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1403   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1404   OrderAccess::storestore();
1405 
1406   if (UseCompressedOops) {
1407     // Copy gap missed by (aligned) header size calculation below
1408     obj->set_klass_gap(old->klass_gap());
1409   }
1410   if (word_sz > (size_t)oopDesc::header_size()) {
1411     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1412                                  obj_ptr + oopDesc::header_size(),
1413                                  word_sz - oopDesc::header_size());
1414   }
1415 
1416   // Now we can track the promoted object, if necessary.  We take care
1417   // to delay the transition from uninitialized to full object
1418   // (i.e., insertion of klass pointer) until after, so that it
1419   // atomically becomes a promoted object.
1420   if (promoInfo->tracking()) {
1421     promoInfo->track((PromotedObject*)obj, old->klass());
1422   }
1423   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1424   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1425   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1426 
1427   // Finally, install the klass pointer (this should be volatile).
1428   OrderAccess::storestore();
1429   obj->set_klass(old->klass());
1430   // We should now be able to calculate the right size for this object
1431   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1432 
1433   collector()->promoted(true,          // parallel
1434                         obj_ptr, old->is_objArray(), word_sz);
1435 
1436   NOT_PRODUCT(
1437     Atomic::inc_ptr(&_numObjectsPromoted);
1438     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1439   )
1440 
1441   return obj;
1442 }
1443 
1444 void
1445 ConcurrentMarkSweepGeneration::
1446 par_promote_alloc_undo(int thread_num,
1447                        HeapWord* obj, size_t word_sz) {
1448   // CMS does not support promotion undo.
1449   ShouldNotReachHere();
1450 }
1451 
1452 void
1453 ConcurrentMarkSweepGeneration::
1454 par_promote_alloc_done(int thread_num) {
1455   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1456   ps->lab.retire(thread_num);
1457 }
1458 
1459 void
1460 ConcurrentMarkSweepGeneration::
1461 par_oop_since_save_marks_iterate_done(int thread_num) {
1462   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1463   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1464   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1465 }
1466 
1467 // XXXPERM
1468 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1469                                                    size_t size,
1470                                                    bool   tlab)
1471 {
1472   // We allow a STW collection only if a full
1473   // collection was requested.
1474   return full || should_allocate(size, tlab); // FIX ME !!!
1475   // This and promotion failure handling are connected at the
1476   // hip and should be fixed by untying them.
1477 }
1478 
1479 bool CMSCollector::shouldConcurrentCollect() {
1480   if (_full_gc_requested) {
1481     if (Verbose && PrintGCDetails) {
1482       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1483                              " gc request (or gc_locker)");
1484     }
1485     return true;
1486   }
1487 
1488   // For debugging purposes, change the type of collection.
1489   // If the rotation is not on the concurrent collection
1490   // type, don't start a concurrent collection.
1491   NOT_PRODUCT(
1492     if (RotateCMSCollectionTypes &&
1493         (_cmsGen->debug_collection_type() !=
1494           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1495       assert(_cmsGen->debug_collection_type() !=
1496         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1497         "Bad cms collection type");
1498       return false;
1499     }
1500   )
1501 
1502   FreelistLocker x(this);
1503   // ------------------------------------------------------------------
1504   // Print out lots of information which affects the initiation of
1505   // a collection.
1506   if (PrintCMSInitiationStatistics && stats().valid()) {
1507     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1508     gclog_or_tty->stamp();
1509     gclog_or_tty->print_cr("");
1510     stats().print_on(gclog_or_tty);
1511     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1512       stats().time_until_cms_gen_full());
1513     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1514     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1515                            _cmsGen->contiguous_available());
1516     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1517     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1518     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1519     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1520     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
1521   }
1522   // ------------------------------------------------------------------
1523 
1524   // If the estimated time to complete a cms collection (cms_duration())
1525   // is less than the estimated time remaining until the cms generation
1526   // is full, start a collection.
1527   if (!UseCMSInitiatingOccupancyOnly) {
1528     if (stats().valid()) {
1529       if (stats().time_until_cms_start() == 0.0) {
1530         return true;
1531       }
1532     } else {
1533       // We want to conservatively collect somewhat early in order
1534       // to try and "bootstrap" our CMS/promotion statistics;
1535       // this branch will not fire after the first successful CMS
1536       // collection because the stats should then be valid.
1537       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1538         if (Verbose && PrintGCDetails) {
1539           gclog_or_tty->print_cr(
1540             " CMSCollector: collect for bootstrapping statistics:"
1541             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1542             _bootstrap_occupancy);
1543         }
1544         return true;
1545       }
1546     }
1547   }
1548 
1549   // Otherwise, we start a collection cycle if either the perm gen or
1550   // old gen want a collection cycle started. Each may use
1551   // an appropriate criterion for making this decision.
1552   // XXX We need to make sure that the gen expansion
1553   // criterion dovetails well with this. XXX NEED TO FIX THIS
1554   if (_cmsGen->should_concurrent_collect()) {
1555     if (Verbose && PrintGCDetails) {
1556       gclog_or_tty->print_cr("CMS old gen initiated");
1557     }
1558     return true;
1559   }
1560 
1561   // We start a collection if we believe an incremental collection may fail;
1562   // this is not likely to be productive in practice because it's probably too
1563   // late anyway.
1564   GenCollectedHeap* gch = GenCollectedHeap::heap();
1565   assert(gch->collector_policy()->is_two_generation_policy(),
1566          "You may want to check the correctness of the following");
1567   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1568     if (Verbose && PrintGCDetails) {
1569       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1570     }
1571     return true;
1572   }
1573 
1574   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
1575     bool res = update_should_unload_classes();
1576     if (res) {
1577       if (Verbose && PrintGCDetails) {
1578         gclog_or_tty->print_cr("CMS perm gen initiated");
1579       }
1580       return true;
1581     }
1582   }
1583   return false;
1584 }
1585 
1586 // Clear _expansion_cause fields of constituent generations
1587 void CMSCollector::clear_expansion_cause() {
1588   _cmsGen->clear_expansion_cause();
1589   _permGen->clear_expansion_cause();
1590 }
1591 
1592 // We should be conservative in starting a collection cycle.  To
1593 // start too eagerly runs the risk of collecting too often in the
1594 // extreme.  To collect too rarely falls back on full collections,
1595 // which works, even if not optimum in terms of concurrent work.
1596 // As a work around for too eagerly collecting, use the flag
1597 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1598 // giving the user an easily understandable way of controlling the
1599 // collections.
1600 // We want to start a new collection cycle if any of the following
1601 // conditions hold:
1602 // . our current occupancy exceeds the configured initiating occupancy
1603 //   for this generation, or
1604 // . we recently needed to expand this space and have not, since that
1605 //   expansion, done a collection of this generation, or
1606 // . the underlying space believes that it may be a good idea to initiate
1607 //   a concurrent collection (this may be based on criteria such as the
1608 //   following: the space uses linear allocation and linear allocation is
1609 //   going to fail, or there is believed to be excessive fragmentation in
1610 //   the generation, etc... or ...
1611 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1612 //   the case of the old generation, not the perm generation; see CR 6543076):
1613 //   we may be approaching a point at which allocation requests may fail because
1614 //   we will be out of sufficient free space given allocation rate estimates.]
1615 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1616 
1617   assert_lock_strong(freelistLock());
1618   if (occupancy() > initiating_occupancy()) {
1619     if (PrintGCDetails && Verbose) {
1620       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1621         short_name(), occupancy(), initiating_occupancy());
1622     }
1623     return true;
1624   }
1625   if (UseCMSInitiatingOccupancyOnly) {
1626     return false;
1627   }
1628   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1629     if (PrintGCDetails && Verbose) {
1630       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1631         short_name());
1632     }
1633     return true;
1634   }
1635   if (_cmsSpace->should_concurrent_collect()) {
1636     if (PrintGCDetails && Verbose) {
1637       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1638         short_name());
1639     }
1640     return true;
1641   }
1642   return false;
1643 }
1644 
1645 void ConcurrentMarkSweepGeneration::collect(bool   full,
1646                                             bool   clear_all_soft_refs,
1647                                             size_t size,
1648                                             bool   tlab)
1649 {
1650   collector()->collect(full, clear_all_soft_refs, size, tlab);
1651 }
1652 
1653 void CMSCollector::collect(bool   full,
1654                            bool   clear_all_soft_refs,
1655                            size_t size,
1656                            bool   tlab)
1657 {
1658   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1659     // For debugging purposes skip the collection if the state
1660     // is not currently idle
1661     if (TraceCMSState) {
1662       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1663         Thread::current(), full, _collectorState);
1664     }
1665     return;
1666   }
1667 
1668   // The following "if" branch is present for defensive reasons.
1669   // In the current uses of this interface, it can be replaced with:
1670   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1671   // But I am not placing that assert here to allow future
1672   // generality in invoking this interface.
1673   if (GC_locker::is_active()) {
1674     // A consistency test for GC_locker
1675     assert(GC_locker::needs_gc(), "Should have been set already");
1676     // Skip this foreground collection, instead
1677     // expanding the heap if necessary.
1678     // Need the free list locks for the call to free() in compute_new_size()
1679     compute_new_size();
1680     return;
1681   }
1682   acquire_control_and_collect(full, clear_all_soft_refs);
1683   _full_gcs_since_conc_gc++;
1684 
1685 }
1686 
1687 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
1688   GenCollectedHeap* gch = GenCollectedHeap::heap();
1689   unsigned int gc_count = gch->total_full_collections();
1690   if (gc_count == full_gc_count) {
1691     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1692     _full_gc_requested = true;
1693     CGC_lock->notify();   // nudge CMS thread
1694   } else {
1695     assert(gc_count > full_gc_count, "Error: causal loop");
1696   }
1697 }
1698 
1699 
1700 // The foreground and background collectors need to coordinate in order
1701 // to make sure that they do not mutually interfere with CMS collections.
1702 // When a background collection is active,
1703 // the foreground collector may need to take over (preempt) and
1704 // synchronously complete an ongoing collection. Depending on the
1705 // frequency of the background collections and the heap usage
1706 // of the application, this preemption can be seldom or frequent.
1707 // There are only certain
1708 // points in the background collection that the "collection-baton"
1709 // can be passed to the foreground collector.
1710 //
1711 // The foreground collector will wait for the baton before
1712 // starting any part of the collection.  The foreground collector
1713 // will only wait at one location.
1714 //
1715 // The background collector will yield the baton before starting a new
1716 // phase of the collection (e.g., before initial marking, marking from roots,
1717 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1718 // of the loop which switches the phases. The background collector does some
1719 // of the phases (initial mark, final re-mark) with the world stopped.
1720 // Because of locking involved in stopping the world,
1721 // the foreground collector should not block waiting for the background
1722 // collector when it is doing a stop-the-world phase.  The background
1723 // collector will yield the baton at an additional point just before
1724 // it enters a stop-the-world phase.  Once the world is stopped, the
1725 // background collector checks the phase of the collection.  If the
1726 // phase has not changed, it proceeds with the collection.  If the
1727 // phase has changed, it skips that phase of the collection.  See
1728 // the comments on the use of the Heap_lock in collect_in_background().
1729 //
1730 // Variable used in baton passing.
1731 //   _foregroundGCIsActive - Set to true by the foreground collector when
1732 //      it wants the baton.  The foreground clears it when it has finished
1733 //      the collection.
1734 //   _foregroundGCShouldWait - Set to true by the background collector
1735 //        when it is running.  The foreground collector waits while
1736 //      _foregroundGCShouldWait is true.
1737 //  CGC_lock - monitor used to protect access to the above variables
1738 //      and to notify the foreground and background collectors.
1739 //  _collectorState - current state of the CMS collection.
1740 //
1741 // The foreground collector
1742 //   acquires the CGC_lock
1743 //   sets _foregroundGCIsActive
1744 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1745 //     various locks acquired in preparation for the collection
1746 //     are released so as not to block the background collector
1747 //     that is in the midst of a collection
1748 //   proceeds with the collection
1749 //   clears _foregroundGCIsActive
1750 //   returns
1751 //
1752 // The background collector in a loop iterating on the phases of the
1753 //      collection
1754 //   acquires the CGC_lock
1755 //   sets _foregroundGCShouldWait
1756 //   if _foregroundGCIsActive is set
1757 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1758 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1759 //     and exits the loop.
1760 //   otherwise
1761 //     proceed with that phase of the collection
1762 //     if the phase is a stop-the-world phase,
1763 //       yield the baton once more just before enqueueing
1764 //       the stop-world CMS operation (executed by the VM thread).
1765 //   returns after all phases of the collection are done
1766 //
1767 
1768 void CMSCollector::acquire_control_and_collect(bool full,
1769         bool clear_all_soft_refs) {
1770   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1771   assert(!Thread::current()->is_ConcurrentGC_thread(),
1772          "shouldn't try to acquire control from self!");
1773 
1774   // Start the protocol for acquiring control of the
1775   // collection from the background collector (aka CMS thread).
1776   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1777          "VM thread should have CMS token");
1778   // Remember the possibly interrupted state of an ongoing
1779   // concurrent collection
1780   CollectorState first_state = _collectorState;
1781 
1782   // Signal to a possibly ongoing concurrent collection that
1783   // we want to do a foreground collection.
1784   _foregroundGCIsActive = true;
1785 
1786   // Disable incremental mode during a foreground collection.
1787   ICMSDisabler icms_disabler;
1788 
1789   // release locks and wait for a notify from the background collector
1790   // releasing the locks in only necessary for phases which
1791   // do yields to improve the granularity of the collection.
1792   assert_lock_strong(bitMapLock());
1793   // We need to lock the Free list lock for the space that we are
1794   // currently collecting.
1795   assert(haveFreelistLocks(), "Must be holding free list locks");
1796   bitMapLock()->unlock();
1797   releaseFreelistLocks();
1798   {
1799     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1800     if (_foregroundGCShouldWait) {
1801       // We are going to be waiting for action for the CMS thread;
1802       // it had better not be gone (for instance at shutdown)!
1803       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1804              "CMS thread must be running");
1805       // Wait here until the background collector gives us the go-ahead
1806       ConcurrentMarkSweepThread::clear_CMS_flag(
1807         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1808       // Get a possibly blocked CMS thread going:
1809       //   Note that we set _foregroundGCIsActive true above,
1810       //   without protection of the CGC_lock.
1811       CGC_lock->notify();
1812       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1813              "Possible deadlock");
1814       while (_foregroundGCShouldWait) {
1815         // wait for notification
1816         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1817         // Possibility of delay/starvation here, since CMS token does
1818         // not know to give priority to VM thread? Actually, i think
1819         // there wouldn't be any delay/starvation, but the proof of
1820         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1821       }
1822       ConcurrentMarkSweepThread::set_CMS_flag(
1823         ConcurrentMarkSweepThread::CMS_vm_has_token);
1824     }
1825   }
1826   // The CMS_token is already held.  Get back the other locks.
1827   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1828          "VM thread should have CMS token");
1829   getFreelistLocks();
1830   bitMapLock()->lock_without_safepoint_check();
1831   if (TraceCMSState) {
1832     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1833       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1834     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1835   }
1836 
1837   // Check if we need to do a compaction, or if not, whether
1838   // we need to start the mark-sweep from scratch.
1839   bool should_compact    = false;
1840   bool should_start_over = false;
1841   decide_foreground_collection_type(clear_all_soft_refs,
1842     &should_compact, &should_start_over);
1843 
1844 NOT_PRODUCT(
1845   if (RotateCMSCollectionTypes) {
1846     if (_cmsGen->debug_collection_type() ==
1847         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1848       should_compact = true;
1849     } else if (_cmsGen->debug_collection_type() ==
1850                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1851       should_compact = false;
1852     }
1853   }
1854 )
1855 
1856   if (PrintGCDetails && first_state > Idling) {
1857     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1858     if (GCCause::is_user_requested_gc(cause) ||
1859         GCCause::is_serviceability_requested_gc(cause)) {
1860       gclog_or_tty->print(" (concurrent mode interrupted)");
1861     } else {
1862       gclog_or_tty->print(" (concurrent mode failure)");
1863     }
1864   }
1865 
1866   if (should_compact) {
1867     // If the collection is being acquired from the background
1868     // collector, there may be references on the discovered
1869     // references lists that have NULL referents (being those
1870     // that were concurrently cleared by a mutator) or
1871     // that are no longer active (having been enqueued concurrently
1872     // by the mutator).
1873     // Scrub the list of those references because Mark-Sweep-Compact
1874     // code assumes referents are not NULL and that all discovered
1875     // Reference objects are active.
1876     ref_processor()->clean_up_discovered_references();
1877 
1878     do_compaction_work(clear_all_soft_refs);
1879 
1880     // Has the GC time limit been exceeded?
1881     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1882     size_t max_eden_size = young_gen->max_capacity() -
1883                            young_gen->to()->capacity() -
1884                            young_gen->from()->capacity();
1885     GenCollectedHeap* gch = GenCollectedHeap::heap();
1886     GCCause::Cause gc_cause = gch->gc_cause();
1887     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1888                                            young_gen->eden()->used(),
1889                                            _cmsGen->max_capacity(),
1890                                            max_eden_size,
1891                                            full,
1892                                            gc_cause,
1893                                            gch->collector_policy());
1894   } else {
1895     do_mark_sweep_work(clear_all_soft_refs, first_state,
1896       should_start_over);
1897   }
1898   // Reset the expansion cause, now that we just completed
1899   // a collection cycle.
1900   clear_expansion_cause();
1901   _foregroundGCIsActive = false;
1902   return;
1903 }
1904 
1905 // Resize the perm generation and the tenured generation
1906 // after obtaining the free list locks for the
1907 // two generations.
1908 void CMSCollector::compute_new_size() {
1909   assert_locked_or_safepoint(Heap_lock);
1910   FreelistLocker z(this);
1911   _permGen->compute_new_size();
1912   _cmsGen->compute_new_size();
1913 }
1914 
1915 // A work method used by foreground collection to determine
1916 // what type of collection (compacting or not, continuing or fresh)
1917 // it should do.
1918 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1919 // and CMSCompactWhenClearAllSoftRefs the default in the future
1920 // and do away with the flags after a suitable period.
1921 void CMSCollector::decide_foreground_collection_type(
1922   bool clear_all_soft_refs, bool* should_compact,
1923   bool* should_start_over) {
1924   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1925   // flag is set, and we have either requested a System.gc() or
1926   // the number of full gc's since the last concurrent cycle
1927   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1928   // or if an incremental collection has failed
1929   GenCollectedHeap* gch = GenCollectedHeap::heap();
1930   assert(gch->collector_policy()->is_two_generation_policy(),
1931          "You may want to check the correctness of the following");
1932   // Inform cms gen if this was due to partial collection failing.
1933   // The CMS gen may use this fact to determine its expansion policy.
1934   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1935     assert(!_cmsGen->incremental_collection_failed(),
1936            "Should have been noticed, reacted to and cleared");
1937     _cmsGen->set_incremental_collection_failed();
1938   }
1939   *should_compact =
1940     UseCMSCompactAtFullCollection &&
1941     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1942      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1943      gch->incremental_collection_will_fail(true /* consult_young */));
1944   *should_start_over = false;
1945   if (clear_all_soft_refs && !*should_compact) {
1946     // We are about to do a last ditch collection attempt
1947     // so it would normally make sense to do a compaction
1948     // to reclaim as much space as possible.
1949     if (CMSCompactWhenClearAllSoftRefs) {
1950       // Default: The rationale is that in this case either
1951       // we are past the final marking phase, in which case
1952       // we'd have to start over, or so little has been done
1953       // that there's little point in saving that work. Compaction
1954       // appears to be the sensible choice in either case.
1955       *should_compact = true;
1956     } else {
1957       // We have been asked to clear all soft refs, but not to
1958       // compact. Make sure that we aren't past the final checkpoint
1959       // phase, for that is where we process soft refs. If we are already
1960       // past that phase, we'll need to redo the refs discovery phase and
1961       // if necessary clear soft refs that weren't previously
1962       // cleared. We do so by remembering the phase in which
1963       // we came in, and if we are past the refs processing
1964       // phase, we'll choose to just redo the mark-sweep
1965       // collection from scratch.
1966       if (_collectorState > FinalMarking) {
1967         // We are past the refs processing phase;
1968         // start over and do a fresh synchronous CMS cycle
1969         _collectorState = Resetting; // skip to reset to start new cycle
1970         reset(false /* == !asynch */);
1971         *should_start_over = true;
1972       } // else we can continue a possibly ongoing current cycle
1973     }
1974   }
1975 }
1976 
1977 // A work method used by the foreground collector to do
1978 // a mark-sweep-compact.
1979 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1980   GenCollectedHeap* gch = GenCollectedHeap::heap();
1981   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
1982   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1983     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1984       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1985   }
1986 
1987   // Sample collection interval time and reset for collection pause.
1988   if (UseAdaptiveSizePolicy) {
1989     size_policy()->msc_collection_begin();
1990   }
1991 
1992   // Temporarily widen the span of the weak reference processing to
1993   // the entire heap.
1994   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1995   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1996   // Temporarily, clear the "is_alive_non_header" field of the
1997   // reference processor.
1998   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1999   // Temporarily make reference _processing_ single threaded (non-MT).
2000   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2001   // Temporarily make refs discovery atomic
2002   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2003   // Temporarily make reference _discovery_ single threaded (non-MT)
2004   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2005 
2006   ref_processor()->set_enqueuing_is_done(false);
2007   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2008   ref_processor()->setup_policy(clear_all_soft_refs);
2009   // If an asynchronous collection finishes, the _modUnionTable is
2010   // all clear.  If we are assuming the collection from an asynchronous
2011   // collection, clear the _modUnionTable.
2012   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2013     "_modUnionTable should be clear if the baton was not passed");
2014   _modUnionTable.clear_all();
2015 
2016   // We must adjust the allocation statistics being maintained
2017   // in the free list space. We do so by reading and clearing
2018   // the sweep timer and updating the block flux rate estimates below.
2019   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2020   if (_inter_sweep_timer.is_active()) {
2021     _inter_sweep_timer.stop();
2022     // Note that we do not use this sample to update the _inter_sweep_estimate.
2023     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2024                                             _inter_sweep_estimate.padded_average(),
2025                                             _intra_sweep_estimate.padded_average());
2026   }
2027 
2028   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2029     ref_processor(), clear_all_soft_refs);
2030   #ifdef ASSERT
2031     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2032     size_t free_size = cms_space->free();
2033     assert(free_size ==
2034            pointer_delta(cms_space->end(), cms_space->compaction_top())
2035            * HeapWordSize,
2036       "All the free space should be compacted into one chunk at top");
2037     assert(cms_space->dictionary()->total_chunk_size(
2038                                       debug_only(cms_space->freelistLock())) == 0 ||
2039            cms_space->totalSizeInIndexedFreeLists() == 0,
2040       "All the free space should be in a single chunk");
2041     size_t num = cms_space->totalCount();
2042     assert((free_size == 0 && num == 0) ||
2043            (free_size > 0  && (num == 1 || num == 2)),
2044          "There should be at most 2 free chunks after compaction");
2045   #endif // ASSERT
2046   _collectorState = Resetting;
2047   assert(_restart_addr == NULL,
2048          "Should have been NULL'd before baton was passed");
2049   reset(false /* == !asynch */);
2050   _cmsGen->reset_after_compaction();
2051   _concurrent_cycles_since_last_unload = 0;
2052 
2053   if (verifying() && !should_unload_classes()) {
2054     perm_gen_verify_bit_map()->clear_all();
2055   }
2056 
2057   // Clear any data recorded in the PLAB chunk arrays.
2058   if (_survivor_plab_array != NULL) {
2059     reset_survivor_plab_arrays();
2060   }
2061 
2062   // Adjust the per-size allocation stats for the next epoch.
2063   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2064   // Restart the "inter sweep timer" for the next epoch.
2065   _inter_sweep_timer.reset();
2066   _inter_sweep_timer.start();
2067 
2068   // Sample collection pause time and reset for collection interval.
2069   if (UseAdaptiveSizePolicy) {
2070     size_policy()->msc_collection_end(gch->gc_cause());
2071   }
2072 
2073   // For a mark-sweep-compact, compute_new_size() will be called
2074   // in the heap's do_collection() method.
2075 }
2076 
2077 // A work method used by the foreground collector to do
2078 // a mark-sweep, after taking over from a possibly on-going
2079 // concurrent mark-sweep collection.
2080 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2081   CollectorState first_state, bool should_start_over) {
2082   if (PrintGC && Verbose) {
2083     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2084       "collector with count %d",
2085       _full_gcs_since_conc_gc);
2086   }
2087   switch (_collectorState) {
2088     case Idling:
2089       if (first_state == Idling || should_start_over) {
2090         // The background GC was not active, or should
2091         // restarted from scratch;  start the cycle.
2092         _collectorState = InitialMarking;
2093       }
2094       // If first_state was not Idling, then a background GC
2095       // was in progress and has now finished.  No need to do it
2096       // again.  Leave the state as Idling.
2097       break;
2098     case Precleaning:
2099       // In the foreground case don't do the precleaning since
2100       // it is not done concurrently and there is extra work
2101       // required.
2102       _collectorState = FinalMarking;
2103   }
2104   if (PrintGCDetails &&
2105       (_collectorState > Idling ||
2106        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
2107     gclog_or_tty->print(" (concurrent mode failure)");
2108   }
2109   collect_in_foreground(clear_all_soft_refs);
2110 
2111   // For a mark-sweep, compute_new_size() will be called
2112   // in the heap's do_collection() method.
2113 }
2114 
2115 
2116 void CMSCollector::getFreelistLocks() const {
2117   // Get locks for all free lists in all generations that this
2118   // collector is responsible for
2119   _cmsGen->freelistLock()->lock_without_safepoint_check();
2120   _permGen->freelistLock()->lock_without_safepoint_check();
2121 }
2122 
2123 void CMSCollector::releaseFreelistLocks() const {
2124   // Release locks for all free lists in all generations that this
2125   // collector is responsible for
2126   _cmsGen->freelistLock()->unlock();
2127   _permGen->freelistLock()->unlock();
2128 }
2129 
2130 bool CMSCollector::haveFreelistLocks() const {
2131   // Check locks for all free lists in all generations that this
2132   // collector is responsible for
2133   assert_lock_strong(_cmsGen->freelistLock());
2134   assert_lock_strong(_permGen->freelistLock());
2135   PRODUCT_ONLY(ShouldNotReachHere());
2136   return true;
2137 }
2138 
2139 // A utility class that is used by the CMS collector to
2140 // temporarily "release" the foreground collector from its
2141 // usual obligation to wait for the background collector to
2142 // complete an ongoing phase before proceeding.
2143 class ReleaseForegroundGC: public StackObj {
2144  private:
2145   CMSCollector* _c;
2146  public:
2147   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2148     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2149     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2150     // allow a potentially blocked foreground collector to proceed
2151     _c->_foregroundGCShouldWait = false;
2152     if (_c->_foregroundGCIsActive) {
2153       CGC_lock->notify();
2154     }
2155     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2156            "Possible deadlock");
2157   }
2158 
2159   ~ReleaseForegroundGC() {
2160     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2161     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2162     _c->_foregroundGCShouldWait = true;
2163   }
2164 };
2165 
2166 // There are separate collect_in_background and collect_in_foreground because of
2167 // the different locking requirements of the background collector and the
2168 // foreground collector.  There was originally an attempt to share
2169 // one "collect" method between the background collector and the foreground
2170 // collector but the if-then-else required made it cleaner to have
2171 // separate methods.
2172 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
2173   assert(Thread::current()->is_ConcurrentGC_thread(),
2174     "A CMS asynchronous collection is only allowed on a CMS thread.");
2175 
2176   GenCollectedHeap* gch = GenCollectedHeap::heap();
2177   {
2178     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2179     MutexLockerEx hl(Heap_lock, safepoint_check);
2180     FreelistLocker fll(this);
2181     MutexLockerEx x(CGC_lock, safepoint_check);
2182     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2183       // The foreground collector is active or we're
2184       // not using asynchronous collections.  Skip this
2185       // background collection.
2186       assert(!_foregroundGCShouldWait, "Should be clear");
2187       return;
2188     } else {
2189       assert(_collectorState == Idling, "Should be idling before start.");
2190       _collectorState = InitialMarking;
2191       // Reset the expansion cause, now that we are about to begin
2192       // a new cycle.
2193       clear_expansion_cause();
2194     }
2195     // Decide if we want to enable class unloading as part of the
2196     // ensuing concurrent GC cycle.
2197     update_should_unload_classes();
2198     _full_gc_requested = false;           // acks all outstanding full gc requests
2199     // Signal that we are about to start a collection
2200     gch->increment_total_full_collections();  // ... starting a collection cycle
2201     _collection_count_start = gch->total_full_collections();
2202   }
2203 
2204   // Used for PrintGC
2205   size_t prev_used;
2206   if (PrintGC && Verbose) {
2207     prev_used = _cmsGen->used(); // XXXPERM
2208   }
2209 
2210   // The change of the collection state is normally done at this level;
2211   // the exceptions are phases that are executed while the world is
2212   // stopped.  For those phases the change of state is done while the
2213   // world is stopped.  For baton passing purposes this allows the
2214   // background collector to finish the phase and change state atomically.
2215   // The foreground collector cannot wait on a phase that is done
2216   // while the world is stopped because the foreground collector already
2217   // has the world stopped and would deadlock.
2218   while (_collectorState != Idling) {
2219     if (TraceCMSState) {
2220       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2221         Thread::current(), _collectorState);
2222     }
2223     // The foreground collector
2224     //   holds the Heap_lock throughout its collection.
2225     //   holds the CMS token (but not the lock)
2226     //     except while it is waiting for the background collector to yield.
2227     //
2228     // The foreground collector should be blocked (not for long)
2229     //   if the background collector is about to start a phase
2230     //   executed with world stopped.  If the background
2231     //   collector has already started such a phase, the
2232     //   foreground collector is blocked waiting for the
2233     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2234     //   are executed in the VM thread.
2235     //
2236     // The locking order is
2237     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2238     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2239     //   CMS token  (claimed in
2240     //                stop_world_and_do() -->
2241     //                  safepoint_synchronize() -->
2242     //                    CMSThread::synchronize())
2243 
2244     {
2245       // Check if the FG collector wants us to yield.
2246       CMSTokenSync x(true); // is cms thread
2247       if (waitForForegroundGC()) {
2248         // We yielded to a foreground GC, nothing more to be
2249         // done this round.
2250         assert(_foregroundGCShouldWait == false, "We set it to false in "
2251                "waitForForegroundGC()");
2252         if (TraceCMSState) {
2253           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2254             " exiting collection CMS state %d",
2255             Thread::current(), _collectorState);
2256         }
2257         return;
2258       } else {
2259         // The background collector can run but check to see if the
2260         // foreground collector has done a collection while the
2261         // background collector was waiting to get the CGC_lock
2262         // above.  If yes, break so that _foregroundGCShouldWait
2263         // is cleared before returning.
2264         if (_collectorState == Idling) {
2265           break;
2266         }
2267       }
2268     }
2269 
2270     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2271       "should be waiting");
2272 
2273     switch (_collectorState) {
2274       case InitialMarking:
2275         {
2276           ReleaseForegroundGC x(this);
2277           stats().record_cms_begin();
2278 
2279           VM_CMS_Initial_Mark initial_mark_op(this);
2280           VMThread::execute(&initial_mark_op);
2281         }
2282         // The collector state may be any legal state at this point
2283         // since the background collector may have yielded to the
2284         // foreground collector.
2285         break;
2286       case Marking:
2287         // initial marking in checkpointRootsInitialWork has been completed
2288         if (markFromRoots(true)) { // we were successful
2289           assert(_collectorState == Precleaning, "Collector state should "
2290             "have changed");
2291         } else {
2292           assert(_foregroundGCIsActive, "Internal state inconsistency");
2293         }
2294         break;
2295       case Precleaning:
2296         if (UseAdaptiveSizePolicy) {
2297           size_policy()->concurrent_precleaning_begin();
2298         }
2299         // marking from roots in markFromRoots has been completed
2300         preclean();
2301         if (UseAdaptiveSizePolicy) {
2302           size_policy()->concurrent_precleaning_end();
2303         }
2304         assert(_collectorState == AbortablePreclean ||
2305                _collectorState == FinalMarking,
2306                "Collector state should have changed");
2307         break;
2308       case AbortablePreclean:
2309         if (UseAdaptiveSizePolicy) {
2310         size_policy()->concurrent_phases_resume();
2311         }
2312         abortable_preclean();
2313         if (UseAdaptiveSizePolicy) {
2314           size_policy()->concurrent_precleaning_end();
2315         }
2316         assert(_collectorState == FinalMarking, "Collector state should "
2317           "have changed");
2318         break;
2319       case FinalMarking:
2320         {
2321           ReleaseForegroundGC x(this);
2322 
2323           VM_CMS_Final_Remark final_remark_op(this);
2324           VMThread::execute(&final_remark_op);
2325         }
2326         assert(_foregroundGCShouldWait, "block post-condition");
2327         break;
2328       case Sweeping:
2329         if (UseAdaptiveSizePolicy) {
2330           size_policy()->concurrent_sweeping_begin();
2331         }
2332         // final marking in checkpointRootsFinal has been completed
2333         sweep(true);
2334         assert(_collectorState == Resizing, "Collector state change "
2335           "to Resizing must be done under the free_list_lock");
2336         _full_gcs_since_conc_gc = 0;
2337 
2338         // Stop the timers for adaptive size policy for the concurrent phases
2339         if (UseAdaptiveSizePolicy) {
2340           size_policy()->concurrent_sweeping_end();
2341           size_policy()->concurrent_phases_end(gch->gc_cause(),
2342                                              gch->prev_gen(_cmsGen)->capacity(),
2343                                              _cmsGen->free());
2344         }
2345 
2346       case Resizing: {
2347         // Sweeping has been completed...
2348         // At this point the background collection has completed.
2349         // Don't move the call to compute_new_size() down
2350         // into code that might be executed if the background
2351         // collection was preempted.
2352         {
2353           ReleaseForegroundGC x(this);   // unblock FG collection
2354           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2355           CMSTokenSync        z(true);   // not strictly needed.
2356           if (_collectorState == Resizing) {
2357             compute_new_size();
2358             _collectorState = Resetting;
2359           } else {
2360             assert(_collectorState == Idling, "The state should only change"
2361                    " because the foreground collector has finished the collection");
2362           }
2363         }
2364         break;
2365       }
2366       case Resetting:
2367         // CMS heap resizing has been completed
2368         reset(true);
2369         assert(_collectorState == Idling, "Collector state should "
2370           "have changed");
2371         stats().record_cms_end();
2372         // Don't move the concurrent_phases_end() and compute_new_size()
2373         // calls to here because a preempted background collection
2374         // has it's state set to "Resetting".
2375         break;
2376       case Idling:
2377       default:
2378         ShouldNotReachHere();
2379         break;
2380     }
2381     if (TraceCMSState) {
2382       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2383         Thread::current(), _collectorState);
2384     }
2385     assert(_foregroundGCShouldWait, "block post-condition");
2386   }
2387 
2388   // Should this be in gc_epilogue?
2389   collector_policy()->counters()->update_counters();
2390 
2391   {
2392     // Clear _foregroundGCShouldWait and, in the event that the
2393     // foreground collector is waiting, notify it, before
2394     // returning.
2395     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2396     _foregroundGCShouldWait = false;
2397     if (_foregroundGCIsActive) {
2398       CGC_lock->notify();
2399     }
2400     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2401            "Possible deadlock");
2402   }
2403   if (TraceCMSState) {
2404     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2405       " exiting collection CMS state %d",
2406       Thread::current(), _collectorState);
2407   }
2408   if (PrintGC && Verbose) {
2409     _cmsGen->print_heap_change(prev_used);
2410   }
2411 }
2412 
2413 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
2414   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2415          "Foreground collector should be waiting, not executing");
2416   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2417     "may only be done by the VM Thread with the world stopped");
2418   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2419          "VM thread should have CMS token");
2420 
2421   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2422     true, gclog_or_tty);)
2423   if (UseAdaptiveSizePolicy) {
2424     size_policy()->ms_collection_begin();
2425   }
2426   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2427 
2428   HandleMark hm;  // Discard invalid handles created during verification
2429 
2430   if (VerifyBeforeGC &&
2431       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2432     Universe::verify(true);
2433   }
2434 
2435   // Snapshot the soft reference policy to be used in this collection cycle.
2436   ref_processor()->setup_policy(clear_all_soft_refs);
2437 
2438   bool init_mark_was_synchronous = false; // until proven otherwise
2439   while (_collectorState != Idling) {
2440     if (TraceCMSState) {
2441       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2442         Thread::current(), _collectorState);
2443     }
2444     switch (_collectorState) {
2445       case InitialMarking:
2446         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2447         checkpointRootsInitial(false);
2448         assert(_collectorState == Marking, "Collector state should have changed"
2449           " within checkpointRootsInitial()");
2450         break;
2451       case Marking:
2452         // initial marking in checkpointRootsInitialWork has been completed
2453         if (VerifyDuringGC &&
2454             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2455           gclog_or_tty->print("Verify before initial mark: ");
2456           Universe::verify(true);
2457         }
2458         {
2459           bool res = markFromRoots(false);
2460           assert(res && _collectorState == FinalMarking, "Collector state should "
2461             "have changed");
2462           break;
2463         }
2464       case FinalMarking:
2465         if (VerifyDuringGC &&
2466             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2467           gclog_or_tty->print("Verify before re-mark: ");
2468           Universe::verify(true);
2469         }
2470         checkpointRootsFinal(false, clear_all_soft_refs,
2471                              init_mark_was_synchronous);
2472         assert(_collectorState == Sweeping, "Collector state should not "
2473           "have changed within checkpointRootsFinal()");
2474         break;
2475       case Sweeping:
2476         // final marking in checkpointRootsFinal has been completed
2477         if (VerifyDuringGC &&
2478             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2479           gclog_or_tty->print("Verify before sweep: ");
2480           Universe::verify(true);
2481         }
2482         sweep(false);
2483         assert(_collectorState == Resizing, "Incorrect state");
2484         break;
2485       case Resizing: {
2486         // Sweeping has been completed; the actual resize in this case
2487         // is done separately; nothing to be done in this state.
2488         _collectorState = Resetting;
2489         break;
2490       }
2491       case Resetting:
2492         // The heap has been resized.
2493         if (VerifyDuringGC &&
2494             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2495           gclog_or_tty->print("Verify before reset: ");
2496           Universe::verify(true);
2497         }
2498         reset(false);
2499         assert(_collectorState == Idling, "Collector state should "
2500           "have changed");
2501         break;
2502       case Precleaning:
2503       case AbortablePreclean:
2504         // Elide the preclean phase
2505         _collectorState = FinalMarking;
2506         break;
2507       default:
2508         ShouldNotReachHere();
2509     }
2510     if (TraceCMSState) {
2511       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2512         Thread::current(), _collectorState);
2513     }
2514   }
2515 
2516   if (UseAdaptiveSizePolicy) {
2517     GenCollectedHeap* gch = GenCollectedHeap::heap();
2518     size_policy()->ms_collection_end(gch->gc_cause());
2519   }
2520 
2521   if (VerifyAfterGC &&
2522       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2523     Universe::verify(true);
2524   }
2525   if (TraceCMSState) {
2526     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2527       " exiting collection CMS state %d",
2528       Thread::current(), _collectorState);
2529   }
2530 }
2531 
2532 bool CMSCollector::waitForForegroundGC() {
2533   bool res = false;
2534   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2535          "CMS thread should have CMS token");
2536   // Block the foreground collector until the
2537   // background collectors decides whether to
2538   // yield.
2539   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2540   _foregroundGCShouldWait = true;
2541   if (_foregroundGCIsActive) {
2542     // The background collector yields to the
2543     // foreground collector and returns a value
2544     // indicating that it has yielded.  The foreground
2545     // collector can proceed.
2546     res = true;
2547     _foregroundGCShouldWait = false;
2548     ConcurrentMarkSweepThread::clear_CMS_flag(
2549       ConcurrentMarkSweepThread::CMS_cms_has_token);
2550     ConcurrentMarkSweepThread::set_CMS_flag(
2551       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2552     // Get a possibly blocked foreground thread going
2553     CGC_lock->notify();
2554     if (TraceCMSState) {
2555       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2556         Thread::current(), _collectorState);
2557     }
2558     while (_foregroundGCIsActive) {
2559       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2560     }
2561     ConcurrentMarkSweepThread::set_CMS_flag(
2562       ConcurrentMarkSweepThread::CMS_cms_has_token);
2563     ConcurrentMarkSweepThread::clear_CMS_flag(
2564       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2565   }
2566   if (TraceCMSState) {
2567     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2568       Thread::current(), _collectorState);
2569   }
2570   return res;
2571 }
2572 
2573 // Because of the need to lock the free lists and other structures in
2574 // the collector, common to all the generations that the collector is
2575 // collecting, we need the gc_prologues of individual CMS generations
2576 // delegate to their collector. It may have been simpler had the
2577 // current infrastructure allowed one to call a prologue on a
2578 // collector. In the absence of that we have the generation's
2579 // prologue delegate to the collector, which delegates back
2580 // some "local" work to a worker method in the individual generations
2581 // that it's responsible for collecting, while itself doing any
2582 // work common to all generations it's responsible for. A similar
2583 // comment applies to the  gc_epilogue()'s.
2584 // The role of the varaible _between_prologue_and_epilogue is to
2585 // enforce the invocation protocol.
2586 void CMSCollector::gc_prologue(bool full) {
2587   // Call gc_prologue_work() for each CMSGen and PermGen that
2588   // we are responsible for.
2589 
2590   // The following locking discipline assumes that we are only called
2591   // when the world is stopped.
2592   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2593 
2594   // The CMSCollector prologue must call the gc_prologues for the
2595   // "generations" (including PermGen if any) that it's responsible
2596   // for.
2597 
2598   assert(   Thread::current()->is_VM_thread()
2599          || (   CMSScavengeBeforeRemark
2600              && Thread::current()->is_ConcurrentGC_thread()),
2601          "Incorrect thread type for prologue execution");
2602 
2603   if (_between_prologue_and_epilogue) {
2604     // We have already been invoked; this is a gc_prologue delegation
2605     // from yet another CMS generation that we are responsible for, just
2606     // ignore it since all relevant work has already been done.
2607     return;
2608   }
2609 
2610   // set a bit saying prologue has been called; cleared in epilogue
2611   _between_prologue_and_epilogue = true;
2612   // Claim locks for common data structures, then call gc_prologue_work()
2613   // for each CMSGen and PermGen that we are responsible for.
2614 
2615   getFreelistLocks();   // gets free list locks on constituent spaces
2616   bitMapLock()->lock_without_safepoint_check();
2617 
2618   // Should call gc_prologue_work() for all cms gens we are responsible for
2619   bool registerClosure =    _collectorState >= Marking
2620                          && _collectorState < Sweeping;
2621   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2622                                                &_modUnionClosurePar
2623                                                : &_modUnionClosure;
2624   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2625   _permGen->gc_prologue_work(full, registerClosure, muc);
2626 
2627   if (!full) {
2628     stats().record_gc0_begin();
2629   }
2630 }
2631 
2632 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2633   // Delegate to CMScollector which knows how to coordinate between
2634   // this and any other CMS generations that it is responsible for
2635   // collecting.
2636   collector()->gc_prologue(full);
2637 }
2638 
2639 // This is a "private" interface for use by this generation's CMSCollector.
2640 // Not to be called directly by any other entity (for instance,
2641 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2642 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2643   bool registerClosure, ModUnionClosure* modUnionClosure) {
2644   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2645   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2646     "Should be NULL");
2647   if (registerClosure) {
2648     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2649   }
2650   cmsSpace()->gc_prologue();
2651   // Clear stat counters
2652   NOT_PRODUCT(
2653     assert(_numObjectsPromoted == 0, "check");
2654     assert(_numWordsPromoted   == 0, "check");
2655     if (Verbose && PrintGC) {
2656       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2657                           SIZE_FORMAT" bytes concurrently",
2658       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2659     }
2660     _numObjectsAllocated = 0;
2661     _numWordsAllocated   = 0;
2662   )
2663 }
2664 
2665 void CMSCollector::gc_epilogue(bool full) {
2666   // The following locking discipline assumes that we are only called
2667   // when the world is stopped.
2668   assert(SafepointSynchronize::is_at_safepoint(),
2669          "world is stopped assumption");
2670 
2671   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2672   // if linear allocation blocks need to be appropriately marked to allow the
2673   // the blocks to be parsable. We also check here whether we need to nudge the
2674   // CMS collector thread to start a new cycle (if it's not already active).
2675   assert(   Thread::current()->is_VM_thread()
2676          || (   CMSScavengeBeforeRemark
2677              && Thread::current()->is_ConcurrentGC_thread()),
2678          "Incorrect thread type for epilogue execution");
2679 
2680   if (!_between_prologue_and_epilogue) {
2681     // We have already been invoked; this is a gc_epilogue delegation
2682     // from yet another CMS generation that we are responsible for, just
2683     // ignore it since all relevant work has already been done.
2684     return;
2685   }
2686   assert(haveFreelistLocks(), "must have freelist locks");
2687   assert_lock_strong(bitMapLock());
2688 
2689   _cmsGen->gc_epilogue_work(full);
2690   _permGen->gc_epilogue_work(full);
2691 
2692   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2693     // in case sampling was not already enabled, enable it
2694     _start_sampling = true;
2695   }
2696   // reset _eden_chunk_array so sampling starts afresh
2697   _eden_chunk_index = 0;
2698 
2699   size_t cms_used   = _cmsGen->cmsSpace()->used();
2700   size_t perm_used  = _permGen->cmsSpace()->used();
2701 
2702   // update performance counters - this uses a special version of
2703   // update_counters() that allows the utilization to be passed as a
2704   // parameter, avoiding multiple calls to used().
2705   //
2706   _cmsGen->update_counters(cms_used);
2707   _permGen->update_counters(perm_used);
2708 
2709   if (CMSIncrementalMode) {
2710     icms_update_allocation_limits();
2711   }
2712 
2713   bitMapLock()->unlock();
2714   releaseFreelistLocks();
2715 
2716   if (!CleanChunkPoolAsync) {
2717     Chunk::clean_chunk_pool();
2718   }
2719 
2720   _between_prologue_and_epilogue = false;  // ready for next cycle
2721 }
2722 
2723 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2724   collector()->gc_epilogue(full);
2725 
2726   // Also reset promotion tracking in par gc thread states.
2727   if (CollectedHeap::use_parallel_gc_threads()) {
2728     for (uint i = 0; i < ParallelGCThreads; i++) {
2729       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2730     }
2731   }
2732 }
2733 
2734 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2735   assert(!incremental_collection_failed(), "Should have been cleared");
2736   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2737   cmsSpace()->gc_epilogue();
2738     // Print stat counters
2739   NOT_PRODUCT(
2740     assert(_numObjectsAllocated == 0, "check");
2741     assert(_numWordsAllocated == 0, "check");
2742     if (Verbose && PrintGC) {
2743       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2744                           SIZE_FORMAT" bytes",
2745                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2746     }
2747     _numObjectsPromoted = 0;
2748     _numWordsPromoted   = 0;
2749   )
2750 
2751   if (PrintGC && Verbose) {
2752     // Call down the chain in contiguous_available needs the freelistLock
2753     // so print this out before releasing the freeListLock.
2754     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2755                         contiguous_available());
2756   }
2757 }
2758 
2759 #ifndef PRODUCT
2760 bool CMSCollector::have_cms_token() {
2761   Thread* thr = Thread::current();
2762   if (thr->is_VM_thread()) {
2763     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2764   } else if (thr->is_ConcurrentGC_thread()) {
2765     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2766   } else if (thr->is_GC_task_thread()) {
2767     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2768            ParGCRareEvent_lock->owned_by_self();
2769   }
2770   return false;
2771 }
2772 #endif
2773 
2774 // Check reachability of the given heap address in CMS generation,
2775 // treating all other generations as roots.
2776 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2777   // We could "guarantee" below, rather than assert, but i'll
2778   // leave these as "asserts" so that an adventurous debugger
2779   // could try this in the product build provided some subset of
2780   // the conditions were met, provided they were intersted in the
2781   // results and knew that the computation below wouldn't interfere
2782   // with other concurrent computations mutating the structures
2783   // being read or written.
2784   assert(SafepointSynchronize::is_at_safepoint(),
2785          "Else mutations in object graph will make answer suspect");
2786   assert(have_cms_token(), "Should hold cms token");
2787   assert(haveFreelistLocks(), "must hold free list locks");
2788   assert_lock_strong(bitMapLock());
2789 
2790   // Clear the marking bit map array before starting, but, just
2791   // for kicks, first report if the given address is already marked
2792   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2793                 _markBitMap.isMarked(addr) ? "" : " not");
2794 
2795   if (verify_after_remark()) {
2796     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2797     bool result = verification_mark_bm()->isMarked(addr);
2798     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2799                            result ? "IS" : "is NOT");
2800     return result;
2801   } else {
2802     gclog_or_tty->print_cr("Could not compute result");
2803     return false;
2804   }
2805 }
2806 
2807 ////////////////////////////////////////////////////////
2808 // CMS Verification Support
2809 ////////////////////////////////////////////////////////
2810 // Following the remark phase, the following invariant
2811 // should hold -- each object in the CMS heap which is
2812 // marked in markBitMap() should be marked in the verification_mark_bm().
2813 
2814 class VerifyMarkedClosure: public BitMapClosure {
2815   CMSBitMap* _marks;
2816   bool       _failed;
2817 
2818  public:
2819   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2820 
2821   bool do_bit(size_t offset) {
2822     HeapWord* addr = _marks->offsetToHeapWord(offset);
2823     if (!_marks->isMarked(addr)) {
2824       oop(addr)->print_on(gclog_or_tty);
2825       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2826       _failed = true;
2827     }
2828     return true;
2829   }
2830 
2831   bool failed() { return _failed; }
2832 };
2833 
2834 bool CMSCollector::verify_after_remark() {
2835   gclog_or_tty->print(" [Verifying CMS Marking... ");
2836   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2837   static bool init = false;
2838 
2839   assert(SafepointSynchronize::is_at_safepoint(),
2840          "Else mutations in object graph will make answer suspect");
2841   assert(have_cms_token(),
2842          "Else there may be mutual interference in use of "
2843          " verification data structures");
2844   assert(_collectorState > Marking && _collectorState <= Sweeping,
2845          "Else marking info checked here may be obsolete");
2846   assert(haveFreelistLocks(), "must hold free list locks");
2847   assert_lock_strong(bitMapLock());
2848 
2849 
2850   // Allocate marking bit map if not already allocated
2851   if (!init) { // first time
2852     if (!verification_mark_bm()->allocate(_span)) {
2853       return false;
2854     }
2855     init = true;
2856   }
2857 
2858   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2859 
2860   // Turn off refs discovery -- so we will be tracing through refs.
2861   // This is as intended, because by this time
2862   // GC must already have cleared any refs that need to be cleared,
2863   // and traced those that need to be marked; moreover,
2864   // the marking done here is not going to intefere in any
2865   // way with the marking information used by GC.
2866   NoRefDiscovery no_discovery(ref_processor());
2867 
2868   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2869 
2870   // Clear any marks from a previous round
2871   verification_mark_bm()->clear_all();
2872   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2873   verify_work_stacks_empty();
2874 
2875   GenCollectedHeap* gch = GenCollectedHeap::heap();
2876   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2877   // Update the saved marks which may affect the root scans.
2878   gch->save_marks();
2879 
2880   if (CMSRemarkVerifyVariant == 1) {
2881     // In this first variant of verification, we complete
2882     // all marking, then check if the new marks-verctor is
2883     // a subset of the CMS marks-vector.
2884     verify_after_remark_work_1();
2885   } else if (CMSRemarkVerifyVariant == 2) {
2886     // In this second variant of verification, we flag an error
2887     // (i.e. an object reachable in the new marks-vector not reachable
2888     // in the CMS marks-vector) immediately, also indicating the
2889     // identify of an object (A) that references the unmarked object (B) --
2890     // presumably, a mutation to A failed to be picked up by preclean/remark?
2891     verify_after_remark_work_2();
2892   } else {
2893     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2894             CMSRemarkVerifyVariant);
2895   }
2896   gclog_or_tty->print(" done] ");
2897   return true;
2898 }
2899 
2900 void CMSCollector::verify_after_remark_work_1() {
2901   ResourceMark rm;
2902   HandleMark  hm;
2903   GenCollectedHeap* gch = GenCollectedHeap::heap();
2904 
2905   // Mark from roots one level into CMS
2906   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2907   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2908 
2909   gch->gen_process_strong_roots(_cmsGen->level(),
2910                                 true,   // younger gens are roots
2911                                 true,   // activate StrongRootsScope
2912                                 true,   // collecting perm gen
2913                                 SharedHeap::ScanningOption(roots_scanning_options()),
2914                                 &notOlder,
2915                                 true,   // walk code active on stacks
2916                                 NULL);
2917 
2918   // Now mark from the roots
2919   assert(_revisitStack.isEmpty(), "Should be empty");
2920   MarkFromRootsClosure markFromRootsClosure(this, _span,
2921     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
2922     false /* don't yield */, true /* verifying */);
2923   assert(_restart_addr == NULL, "Expected pre-condition");
2924   verification_mark_bm()->iterate(&markFromRootsClosure);
2925   while (_restart_addr != NULL) {
2926     // Deal with stack overflow: by restarting at the indicated
2927     // address.
2928     HeapWord* ra = _restart_addr;
2929     markFromRootsClosure.reset(ra);
2930     _restart_addr = NULL;
2931     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2932   }
2933   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2934   verify_work_stacks_empty();
2935   // Should reset the revisit stack above, since no class tree
2936   // surgery is forthcoming.
2937   _revisitStack.reset(); // throwing away all contents
2938 
2939   // Marking completed -- now verify that each bit marked in
2940   // verification_mark_bm() is also marked in markBitMap(); flag all
2941   // errors by printing corresponding objects.
2942   VerifyMarkedClosure vcl(markBitMap());
2943   verification_mark_bm()->iterate(&vcl);
2944   if (vcl.failed()) {
2945     gclog_or_tty->print("Verification failed");
2946     Universe::heap()->print_on(gclog_or_tty);
2947     fatal("CMS: failed marking verification after remark");
2948   }
2949 }
2950 
2951 void CMSCollector::verify_after_remark_work_2() {
2952   ResourceMark rm;
2953   HandleMark  hm;
2954   GenCollectedHeap* gch = GenCollectedHeap::heap();
2955 
2956   // Mark from roots one level into CMS
2957   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2958                                      markBitMap());
2959   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2960   gch->gen_process_strong_roots(_cmsGen->level(),
2961                                 true,   // younger gens are roots
2962                                 true,   // activate StrongRootsScope
2963                                 true,   // collecting perm gen
2964                                 SharedHeap::ScanningOption(roots_scanning_options()),
2965                                 &notOlder,
2966                                 true,   // walk code active on stacks
2967                                 NULL);
2968 
2969   // Now mark from the roots
2970   assert(_revisitStack.isEmpty(), "Should be empty");
2971   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2972     verification_mark_bm(), markBitMap(), verification_mark_stack());
2973   assert(_restart_addr == NULL, "Expected pre-condition");
2974   verification_mark_bm()->iterate(&markFromRootsClosure);
2975   while (_restart_addr != NULL) {
2976     // Deal with stack overflow: by restarting at the indicated
2977     // address.
2978     HeapWord* ra = _restart_addr;
2979     markFromRootsClosure.reset(ra);
2980     _restart_addr = NULL;
2981     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2982   }
2983   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2984   verify_work_stacks_empty();
2985   // Should reset the revisit stack above, since no class tree
2986   // surgery is forthcoming.
2987   _revisitStack.reset(); // throwing away all contents
2988 
2989   // Marking completed -- now verify that each bit marked in
2990   // verification_mark_bm() is also marked in markBitMap(); flag all
2991   // errors by printing corresponding objects.
2992   VerifyMarkedClosure vcl(markBitMap());
2993   verification_mark_bm()->iterate(&vcl);
2994   assert(!vcl.failed(), "Else verification above should not have succeeded");
2995 }
2996 
2997 void ConcurrentMarkSweepGeneration::save_marks() {
2998   // delegate to CMS space
2999   cmsSpace()->save_marks();
3000   for (uint i = 0; i < ParallelGCThreads; i++) {
3001     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3002   }
3003 }
3004 
3005 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3006   return cmsSpace()->no_allocs_since_save_marks();
3007 }
3008 
3009 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3010                                                                 \
3011 void ConcurrentMarkSweepGeneration::                            \
3012 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3013   cl->set_generation(this);                                     \
3014   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3015   cl->reset_generation();                                       \
3016   save_marks();                                                 \
3017 }
3018 
3019 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3020 
3021 void
3022 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3023 {
3024   // Not currently implemented; need to do the following. -- ysr.
3025   // dld -- I think that is used for some sort of allocation profiler.  So it
3026   // really means the objects allocated by the mutator since the last
3027   // GC.  We could potentially implement this cheaply by recording only
3028   // the direct allocations in a side data structure.
3029   //
3030   // I think we probably ought not to be required to support these
3031   // iterations at any arbitrary point; I think there ought to be some
3032   // call to enable/disable allocation profiling in a generation/space,
3033   // and the iterator ought to return the objects allocated in the
3034   // gen/space since the enable call, or the last iterator call (which
3035   // will probably be at a GC.)  That way, for gens like CM&S that would
3036   // require some extra data structure to support this, we only pay the
3037   // cost when it's in use...
3038   cmsSpace()->object_iterate_since_last_GC(blk);
3039 }
3040 
3041 void
3042 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3043   cl->set_generation(this);
3044   younger_refs_in_space_iterate(_cmsSpace, cl);
3045   cl->reset_generation();
3046 }
3047 
3048 void
3049 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
3050   if (freelistLock()->owned_by_self()) {
3051     Generation::oop_iterate(mr, cl);
3052   } else {
3053     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3054     Generation::oop_iterate(mr, cl);
3055   }
3056 }
3057 
3058 void
3059 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
3060   if (freelistLock()->owned_by_self()) {
3061     Generation::oop_iterate(cl);
3062   } else {
3063     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3064     Generation::oop_iterate(cl);
3065   }
3066 }
3067 
3068 void
3069 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3070   if (freelistLock()->owned_by_self()) {
3071     Generation::object_iterate(cl);
3072   } else {
3073     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3074     Generation::object_iterate(cl);
3075   }
3076 }
3077 
3078 void
3079 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3080   if (freelistLock()->owned_by_self()) {
3081     Generation::safe_object_iterate(cl);
3082   } else {
3083     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3084     Generation::safe_object_iterate(cl);
3085   }
3086 }
3087 
3088 void
3089 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
3090 }
3091 
3092 void
3093 ConcurrentMarkSweepGeneration::post_compact() {
3094 }
3095 
3096 void
3097 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3098   // Fix the linear allocation blocks to look like free blocks.
3099 
3100   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3101   // are not called when the heap is verified during universe initialization and
3102   // at vm shutdown.
3103   if (freelistLock()->owned_by_self()) {
3104     cmsSpace()->prepare_for_verify();
3105   } else {
3106     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3107     cmsSpace()->prepare_for_verify();
3108   }
3109 }
3110 
3111 void
3112 ConcurrentMarkSweepGeneration::verify() {
3113   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3114   // are not called when the heap is verified during universe initialization and
3115   // at vm shutdown.
3116   if (freelistLock()->owned_by_self()) {
3117     cmsSpace()->verify();
3118   } else {
3119     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3120     cmsSpace()->verify();
3121   }
3122 }
3123 
3124 void CMSCollector::verify() {
3125   _cmsGen->verify();
3126   _permGen->verify();
3127 }
3128 
3129 #ifndef PRODUCT
3130 bool CMSCollector::overflow_list_is_empty() const {
3131   assert(_num_par_pushes >= 0, "Inconsistency");
3132   if (_overflow_list == NULL) {
3133     assert(_num_par_pushes == 0, "Inconsistency");
3134   }
3135   return _overflow_list == NULL;
3136 }
3137 
3138 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3139 // merely consolidate assertion checks that appear to occur together frequently.
3140 void CMSCollector::verify_work_stacks_empty() const {
3141   assert(_markStack.isEmpty(), "Marking stack should be empty");
3142   assert(overflow_list_is_empty(), "Overflow list should be empty");
3143 }
3144 
3145 void CMSCollector::verify_overflow_empty() const {
3146   assert(overflow_list_is_empty(), "Overflow list should be empty");
3147   assert(no_preserved_marks(), "No preserved marks");
3148 }
3149 #endif // PRODUCT
3150 
3151 // Decide if we want to enable class unloading as part of the
3152 // ensuing concurrent GC cycle. We will collect the perm gen and
3153 // unload classes if it's the case that:
3154 // (1) an explicit gc request has been made and the flag
3155 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3156 // (2) (a) class unloading is enabled at the command line, and
3157 //     (b) (i)   perm gen threshold has been crossed, or
3158 //         (ii)  old gen is getting really full, or
3159 //         (iii) the previous N CMS collections did not collect the
3160 //               perm gen
3161 // NOTE: Provided there is no change in the state of the heap between
3162 // calls to this method, it should have idempotent results. Moreover,
3163 // its results should be monotonically increasing (i.e. going from 0 to 1,
3164 // but not 1 to 0) between successive calls between which the heap was
3165 // not collected. For the implementation below, it must thus rely on
3166 // the property that concurrent_cycles_since_last_unload()
3167 // will not decrease unless a collection cycle happened and that
3168 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
3169 // themselves also monotonic in that sense. See check_monotonicity()
3170 // below.
3171 bool CMSCollector::update_should_unload_classes() {
3172   _should_unload_classes = false;
3173   // Condition 1 above
3174   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3175     _should_unload_classes = true;
3176   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3177     // Disjuncts 2.b.(i,ii,iii) above
3178     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3179                               CMSClassUnloadingMaxInterval)
3180                            || _permGen->should_concurrent_collect()
3181                            || _cmsGen->is_too_full();
3182   }
3183   return _should_unload_classes;
3184 }
3185 
3186 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3187   bool res = should_concurrent_collect();
3188   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3189   return res;
3190 }
3191 
3192 void CMSCollector::setup_cms_unloading_and_verification_state() {
3193   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3194                              || VerifyBeforeExit;
3195   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3196 
3197   if (should_unload_classes()) {   // Should unload classes this cycle
3198     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3199     set_verifying(should_verify);    // Set verification state for this cycle
3200     return;                            // Nothing else needs to be done at this time
3201   }
3202 
3203   // Not unloading classes this cycle
3204   assert(!should_unload_classes(), "Inconsitency!");
3205   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3206     // We were not verifying, or we _were_ unloading classes in the last cycle,
3207     // AND some verification options are enabled this cycle; in this case,
3208     // we must make sure that the deadness map is allocated if not already so,
3209     // and cleared (if already allocated previously --
3210     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
3211     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
3212       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
3213         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
3214                 "permanent generation verification disabled");
3215         return;  // Note that we leave verification disabled, so we'll retry this
3216                  // allocation next cycle. We _could_ remember this failure
3217                  // and skip further attempts and permanently disable verification
3218                  // attempts if that is considered more desirable.
3219       }
3220       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
3221               "_perm_gen_ver_bit_map inconsistency?");
3222     } else {
3223       perm_gen_verify_bit_map()->clear_all();
3224     }
3225     // Include symbols, strings and code cache elements to prevent their resurrection.
3226     add_root_scanning_option(rso);
3227     set_verifying(true);
3228   } else if (verifying() && !should_verify) {
3229     // We were verifying, but some verification flags got disabled.
3230     set_verifying(false);
3231     // Exclude symbols, strings and code cache elements from root scanning to
3232     // reduce IM and RM pauses.
3233     remove_root_scanning_option(rso);
3234   }
3235 }
3236 
3237 
3238 #ifndef PRODUCT
3239 HeapWord* CMSCollector::block_start(const void* p) const {
3240   const HeapWord* addr = (HeapWord*)p;
3241   if (_span.contains(p)) {
3242     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3243       return _cmsGen->cmsSpace()->block_start(p);
3244     } else {
3245       assert(_permGen->cmsSpace()->is_in_reserved(addr),
3246              "Inconsistent _span?");
3247       return _permGen->cmsSpace()->block_start(p);
3248     }
3249   }
3250   return NULL;
3251 }
3252 #endif
3253 
3254 HeapWord*
3255 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3256                                                    bool   tlab,
3257                                                    bool   parallel) {
3258   CMSSynchronousYieldRequest yr;
3259   assert(!tlab, "Can't deal with TLAB allocation");
3260   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3261   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3262     CMSExpansionCause::_satisfy_allocation);
3263   if (GCExpandToAllocateDelayMillis > 0) {
3264     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3265   }
3266   return have_lock_and_allocate(word_size, tlab);
3267 }
3268 
3269 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3270 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3271 // to CardGeneration and share it...
3272 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3273   return CardGeneration::expand(bytes, expand_bytes);
3274 }
3275 
3276 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3277   CMSExpansionCause::Cause cause)
3278 {
3279 
3280   bool success = expand(bytes, expand_bytes);
3281 
3282   // remember why we expanded; this information is used
3283   // by shouldConcurrentCollect() when making decisions on whether to start
3284   // a new CMS cycle.
3285   if (success) {
3286     set_expansion_cause(cause);
3287     if (PrintGCDetails && Verbose) {
3288       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3289         CMSExpansionCause::to_string(cause));
3290     }
3291   }
3292 }
3293 
3294 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3295   HeapWord* res = NULL;
3296   MutexLocker x(ParGCRareEvent_lock);
3297   while (true) {
3298     // Expansion by some other thread might make alloc OK now:
3299     res = ps->lab.alloc(word_sz);
3300     if (res != NULL) return res;
3301     // If there's not enough expansion space available, give up.
3302     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3303       return NULL;
3304     }
3305     // Otherwise, we try expansion.
3306     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3307       CMSExpansionCause::_allocate_par_lab);
3308     // Now go around the loop and try alloc again;
3309     // A competing par_promote might beat us to the expansion space,
3310     // so we may go around the loop again if promotion fails agaion.
3311     if (GCExpandToAllocateDelayMillis > 0) {
3312       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3313     }
3314   }
3315 }
3316 
3317 
3318 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3319   PromotionInfo* promo) {
3320   MutexLocker x(ParGCRareEvent_lock);
3321   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3322   while (true) {
3323     // Expansion by some other thread might make alloc OK now:
3324     if (promo->ensure_spooling_space()) {
3325       assert(promo->has_spooling_space(),
3326              "Post-condition of successful ensure_spooling_space()");
3327       return true;
3328     }
3329     // If there's not enough expansion space available, give up.
3330     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3331       return false;
3332     }
3333     // Otherwise, we try expansion.
3334     expand(refill_size_bytes, MinHeapDeltaBytes,
3335       CMSExpansionCause::_allocate_par_spooling_space);
3336     // Now go around the loop and try alloc again;
3337     // A competing allocation might beat us to the expansion space,
3338     // so we may go around the loop again if allocation fails again.
3339     if (GCExpandToAllocateDelayMillis > 0) {
3340       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3341     }
3342   }
3343 }
3344 
3345 
3346 
3347 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3348   assert_locked_or_safepoint(Heap_lock);
3349   size_t size = ReservedSpace::page_align_size_down(bytes);
3350   if (size > 0) {
3351     shrink_by(size);
3352   }
3353 }
3354 
3355 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3356   assert_locked_or_safepoint(Heap_lock);
3357   bool result = _virtual_space.expand_by(bytes);
3358   if (result) {
3359     HeapWord* old_end = _cmsSpace->end();
3360     size_t new_word_size =
3361       heap_word_size(_virtual_space.committed_size());
3362     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3363     _bts->resize(new_word_size);  // resize the block offset shared array
3364     Universe::heap()->barrier_set()->resize_covered_region(mr);
3365     // Hmmmm... why doesn't CFLS::set_end verify locking?
3366     // This is quite ugly; FIX ME XXX
3367     _cmsSpace->assert_locked(freelistLock());
3368     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3369 
3370     // update the space and generation capacity counters
3371     if (UsePerfData) {
3372       _space_counters->update_capacity();
3373       _gen_counters->update_all();
3374     }
3375 
3376     if (Verbose && PrintGC) {
3377       size_t new_mem_size = _virtual_space.committed_size();
3378       size_t old_mem_size = new_mem_size - bytes;
3379       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
3380                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3381     }
3382   }
3383   return result;
3384 }
3385 
3386 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3387   assert_locked_or_safepoint(Heap_lock);
3388   bool success = true;
3389   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3390   if (remaining_bytes > 0) {
3391     success = grow_by(remaining_bytes);
3392     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3393   }
3394   return success;
3395 }
3396 
3397 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3398   assert_locked_or_safepoint(Heap_lock);
3399   assert_lock_strong(freelistLock());
3400   // XXX Fix when compaction is implemented.
3401   warning("Shrinking of CMS not yet implemented");
3402   return;
3403 }
3404 
3405 
3406 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3407 // phases.
3408 class CMSPhaseAccounting: public StackObj {
3409  public:
3410   CMSPhaseAccounting(CMSCollector *collector,
3411                      const char *phase,
3412                      bool print_cr = true);
3413   ~CMSPhaseAccounting();
3414 
3415  private:
3416   CMSCollector *_collector;
3417   const char *_phase;
3418   elapsedTimer _wallclock;
3419   bool _print_cr;
3420 
3421  public:
3422   // Not MT-safe; so do not pass around these StackObj's
3423   // where they may be accessed by other threads.
3424   jlong wallclock_millis() {
3425     assert(_wallclock.is_active(), "Wall clock should not stop");
3426     _wallclock.stop();  // to record time
3427     jlong ret = _wallclock.milliseconds();
3428     _wallclock.start(); // restart
3429     return ret;
3430   }
3431 };
3432 
3433 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3434                                        const char *phase,
3435                                        bool print_cr) :
3436   _collector(collector), _phase(phase), _print_cr(print_cr) {
3437 
3438   if (PrintCMSStatistics != 0) {
3439     _collector->resetYields();
3440   }
3441   if (PrintGCDetails && PrintGCTimeStamps) {
3442     gclog_or_tty->date_stamp(PrintGCDateStamps);
3443     gclog_or_tty->stamp();
3444     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
3445       _collector->cmsGen()->short_name(), _phase);
3446   }
3447   _collector->resetTimer();
3448   _wallclock.start();
3449   _collector->startTimer();
3450 }
3451 
3452 CMSPhaseAccounting::~CMSPhaseAccounting() {
3453   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3454   _collector->stopTimer();
3455   _wallclock.stop();
3456   if (PrintGCDetails) {
3457     gclog_or_tty->date_stamp(PrintGCDateStamps);
3458     if (PrintGCTimeStamps) {
3459       gclog_or_tty->stamp();
3460       gclog_or_tty->print(": ");
3461     }
3462     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3463                  _collector->cmsGen()->short_name(),
3464                  _phase, _collector->timerValue(), _wallclock.seconds());
3465     if (_print_cr) {
3466       gclog_or_tty->print_cr("");
3467     }
3468     if (PrintCMSStatistics != 0) {
3469       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3470                     _collector->yields());
3471     }
3472   }
3473 }
3474 
3475 // CMS work
3476 
3477 // Checkpoint the roots into this generation from outside
3478 // this generation. [Note this initial checkpoint need only
3479 // be approximate -- we'll do a catch up phase subsequently.]
3480 void CMSCollector::checkpointRootsInitial(bool asynch) {
3481   assert(_collectorState == InitialMarking, "Wrong collector state");
3482   check_correct_thread_executing();
3483   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3484 
3485   ReferenceProcessor* rp = ref_processor();
3486   SpecializationStats::clear();
3487   assert(_restart_addr == NULL, "Control point invariant");
3488   if (asynch) {
3489     // acquire locks for subsequent manipulations
3490     MutexLockerEx x(bitMapLock(),
3491                     Mutex::_no_safepoint_check_flag);
3492     checkpointRootsInitialWork(asynch);
3493     // enable ("weak") refs discovery
3494     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3495     _collectorState = Marking;
3496   } else {
3497     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3498     // which recognizes if we are a CMS generation, and doesn't try to turn on
3499     // discovery; verify that they aren't meddling.
3500     assert(!rp->discovery_is_atomic(),
3501            "incorrect setting of discovery predicate");
3502     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3503            "ref discovery for this generation kind");
3504     // already have locks
3505     checkpointRootsInitialWork(asynch);
3506     // now enable ("weak") refs discovery
3507     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3508     _collectorState = Marking;
3509   }
3510   SpecializationStats::print();
3511 }
3512 
3513 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3514   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3515   assert(_collectorState == InitialMarking, "just checking");
3516 
3517   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3518   // precede our marking with a collection of all
3519   // younger generations to keep floating garbage to a minimum.
3520   // XXX: we won't do this for now -- it's an optimization to be done later.
3521 
3522   // already have locks
3523   assert_lock_strong(bitMapLock());
3524   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3525 
3526   // Setup the verification and class unloading state for this
3527   // CMS collection cycle.
3528   setup_cms_unloading_and_verification_state();
3529 
3530   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
3531     PrintGCDetails && Verbose, true, gclog_or_tty);)
3532   if (UseAdaptiveSizePolicy) {
3533     size_policy()->checkpoint_roots_initial_begin();
3534   }
3535 
3536   // Reset all the PLAB chunk arrays if necessary.
3537   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3538     reset_survivor_plab_arrays();
3539   }
3540 
3541   ResourceMark rm;
3542   HandleMark  hm;
3543 
3544   FalseClosure falseClosure;
3545   // In the case of a synchronous collection, we will elide the
3546   // remark step, so it's important to catch all the nmethod oops
3547   // in this step.
3548   // The final 'true' flag to gen_process_strong_roots will ensure this.
3549   // If 'async' is true, we can relax the nmethod tracing.
3550   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3551   GenCollectedHeap* gch = GenCollectedHeap::heap();
3552 
3553   verify_work_stacks_empty();
3554   verify_overflow_empty();
3555 
3556   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3557   // Update the saved marks which may affect the root scans.
3558   gch->save_marks();
3559 
3560   // weak reference processing has not started yet.
3561   ref_processor()->set_enqueuing_is_done(false);
3562 
3563   {
3564     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
3565     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3566     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3567     gch->gen_process_strong_roots(_cmsGen->level(),
3568                                   true,   // younger gens are roots
3569                                   true,   // activate StrongRootsScope
3570                                   true,   // collecting perm gen
3571                                   SharedHeap::ScanningOption(roots_scanning_options()),
3572                                   &notOlder,
3573                                   true,   // walk all of code cache if (so & SO_CodeCache)
3574                                   NULL);
3575   }
3576 
3577   // Clear mod-union table; it will be dirtied in the prologue of
3578   // CMS generation per each younger generation collection.
3579 
3580   assert(_modUnionTable.isAllClear(),
3581        "Was cleared in most recent final checkpoint phase"
3582        " or no bits are set in the gc_prologue before the start of the next "
3583        "subsequent marking phase.");
3584 
3585   // Save the end of the used_region of the constituent generations
3586   // to be used to limit the extent of sweep in each generation.
3587   save_sweep_limits();
3588   if (UseAdaptiveSizePolicy) {
3589     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3590   }
3591   verify_overflow_empty();
3592 }
3593 
3594 bool CMSCollector::markFromRoots(bool asynch) {
3595   // we might be tempted to assert that:
3596   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3597   //        "inconsistent argument?");
3598   // However that wouldn't be right, because it's possible that
3599   // a safepoint is indeed in progress as a younger generation
3600   // stop-the-world GC happens even as we mark in this generation.
3601   assert(_collectorState == Marking, "inconsistent state?");
3602   check_correct_thread_executing();
3603   verify_overflow_empty();
3604 
3605   bool res;
3606   if (asynch) {
3607 
3608     // Start the timers for adaptive size policy for the concurrent phases
3609     // Do it here so that the foreground MS can use the concurrent
3610     // timer since a foreground MS might has the sweep done concurrently
3611     // or STW.
3612     if (UseAdaptiveSizePolicy) {
3613       size_policy()->concurrent_marking_begin();
3614     }
3615 
3616     // Weak ref discovery note: We may be discovering weak
3617     // refs in this generation concurrent (but interleaved) with
3618     // weak ref discovery by a younger generation collector.
3619 
3620     CMSTokenSyncWithLocks ts(true, bitMapLock());
3621     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3622     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3623     res = markFromRootsWork(asynch);
3624     if (res) {
3625       _collectorState = Precleaning;
3626     } else { // We failed and a foreground collection wants to take over
3627       assert(_foregroundGCIsActive, "internal state inconsistency");
3628       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3629       if (PrintGCDetails) {
3630         gclog_or_tty->print_cr("bailing out to foreground collection");
3631       }
3632     }
3633     if (UseAdaptiveSizePolicy) {
3634       size_policy()->concurrent_marking_end();
3635     }
3636   } else {
3637     assert(SafepointSynchronize::is_at_safepoint(),
3638            "inconsistent with asynch == false");
3639     if (UseAdaptiveSizePolicy) {
3640       size_policy()->ms_collection_marking_begin();
3641     }
3642     // already have locks
3643     res = markFromRootsWork(asynch);
3644     _collectorState = FinalMarking;
3645     if (UseAdaptiveSizePolicy) {
3646       GenCollectedHeap* gch = GenCollectedHeap::heap();
3647       size_policy()->ms_collection_marking_end(gch->gc_cause());
3648     }
3649   }
3650   verify_overflow_empty();
3651   return res;
3652 }
3653 
3654 bool CMSCollector::markFromRootsWork(bool asynch) {
3655   // iterate over marked bits in bit map, doing a full scan and mark
3656   // from these roots using the following algorithm:
3657   // . if oop is to the right of the current scan pointer,
3658   //   mark corresponding bit (we'll process it later)
3659   // . else (oop is to left of current scan pointer)
3660   //   push oop on marking stack
3661   // . drain the marking stack
3662 
3663   // Note that when we do a marking step we need to hold the
3664   // bit map lock -- recall that direct allocation (by mutators)
3665   // and promotion (by younger generation collectors) is also
3666   // marking the bit map. [the so-called allocate live policy.]
3667   // Because the implementation of bit map marking is not
3668   // robust wrt simultaneous marking of bits in the same word,
3669   // we need to make sure that there is no such interference
3670   // between concurrent such updates.
3671 
3672   // already have locks
3673   assert_lock_strong(bitMapLock());
3674 
3675   // Clear the revisit stack, just in case there are any
3676   // obsolete contents from a short-circuited previous CMS cycle.
3677   _revisitStack.reset();
3678   verify_work_stacks_empty();
3679   verify_overflow_empty();
3680   assert(_revisitStack.isEmpty(), "tabula rasa");
3681   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
3682   bool result = false;
3683   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3684     result = do_marking_mt(asynch);
3685   } else {
3686     result = do_marking_st(asynch);
3687   }
3688   return result;
3689 }
3690 
3691 // Forward decl
3692 class CMSConcMarkingTask;
3693 
3694 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3695   CMSCollector*       _collector;
3696   CMSConcMarkingTask* _task;
3697  public:
3698   virtual void yield();
3699 
3700   // "n_threads" is the number of threads to be terminated.
3701   // "queue_set" is a set of work queues of other threads.
3702   // "collector" is the CMS collector associated with this task terminator.
3703   // "yield" indicates whether we need the gang as a whole to yield.
3704   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3705     ParallelTaskTerminator(n_threads, queue_set),
3706     _collector(collector) { }
3707 
3708   void set_task(CMSConcMarkingTask* task) {
3709     _task = task;
3710   }
3711 };
3712 
3713 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3714   CMSConcMarkingTask* _task;
3715  public:
3716   bool should_exit_termination();
3717   void set_task(CMSConcMarkingTask* task) {
3718     _task = task;
3719   }
3720 };
3721 
3722 // MT Concurrent Marking Task
3723 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3724   CMSCollector* _collector;
3725   int           _n_workers;                  // requested/desired # workers
3726   bool          _asynch;
3727   bool          _result;
3728   CompactibleFreeListSpace*  _cms_space;
3729   CompactibleFreeListSpace* _perm_space;
3730   char          _pad_front[64];   // padding to ...
3731   HeapWord*     _global_finger;   // ... avoid sharing cache line
3732   char          _pad_back[64];
3733   HeapWord*     _restart_addr;
3734 
3735   //  Exposed here for yielding support
3736   Mutex* const _bit_map_lock;
3737 
3738   // The per thread work queues, available here for stealing
3739   OopTaskQueueSet*  _task_queues;
3740 
3741   // Termination (and yielding) support
3742   CMSConcMarkingTerminator _term;
3743   CMSConcMarkingTerminatorTerminator _term_term;
3744 
3745  public:
3746   CMSConcMarkingTask(CMSCollector* collector,
3747                  CompactibleFreeListSpace* cms_space,
3748                  CompactibleFreeListSpace* perm_space,
3749                  bool asynch,
3750                  YieldingFlexibleWorkGang* workers,
3751                  OopTaskQueueSet* task_queues):
3752     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3753     _collector(collector),
3754     _cms_space(cms_space),
3755     _perm_space(perm_space),
3756     _asynch(asynch), _n_workers(0), _result(true),
3757     _task_queues(task_queues),
3758     _term(_n_workers, task_queues, _collector),
3759     _bit_map_lock(collector->bitMapLock())
3760   {
3761     _requested_size = _n_workers;
3762     _term.set_task(this);
3763     _term_term.set_task(this);
3764     assert(_cms_space->bottom() < _perm_space->bottom(),
3765            "Finger incorrectly initialized below");
3766     _restart_addr = _global_finger = _cms_space->bottom();
3767   }
3768 
3769 
3770   OopTaskQueueSet* task_queues()  { return _task_queues; }
3771 
3772   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3773 
3774   HeapWord** global_finger_addr() { return &_global_finger; }
3775 
3776   CMSConcMarkingTerminator* terminator() { return &_term; }
3777 
3778   virtual void set_for_termination(int active_workers) {
3779     terminator()->reset_for_reuse(active_workers);
3780   }
3781 
3782   void work(uint worker_id);
3783   bool should_yield() {
3784     return    ConcurrentMarkSweepThread::should_yield()
3785            && !_collector->foregroundGCIsActive()
3786            && _asynch;
3787   }
3788 
3789   virtual void coordinator_yield();  // stuff done by coordinator
3790   bool result() { return _result; }
3791 
3792   void reset(HeapWord* ra) {
3793     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3794     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
3795     assert(ra             <  _perm_space->end(), "ra too large");
3796     _restart_addr = _global_finger = ra;
3797     _term.reset_for_reuse();
3798   }
3799 
3800   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3801                                            OopTaskQueue* work_q);
3802 
3803  private:
3804   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3805   void do_work_steal(int i);
3806   void bump_global_finger(HeapWord* f);
3807 };
3808 
3809 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3810   assert(_task != NULL, "Error");
3811   return _task->yielding();
3812   // Note that we do not need the disjunct || _task->should_yield() above
3813   // because we want terminating threads to yield only if the task
3814   // is already in the midst of yielding, which happens only after at least one
3815   // thread has yielded.
3816 }
3817 
3818 void CMSConcMarkingTerminator::yield() {
3819   if (_task->should_yield()) {
3820     _task->yield();
3821   } else {
3822     ParallelTaskTerminator::yield();
3823   }
3824 }
3825 
3826 ////////////////////////////////////////////////////////////////
3827 // Concurrent Marking Algorithm Sketch
3828 ////////////////////////////////////////////////////////////////
3829 // Until all tasks exhausted (both spaces):
3830 // -- claim next available chunk
3831 // -- bump global finger via CAS
3832 // -- find first object that starts in this chunk
3833 //    and start scanning bitmap from that position
3834 // -- scan marked objects for oops
3835 // -- CAS-mark target, and if successful:
3836 //    . if target oop is above global finger (volatile read)
3837 //      nothing to do
3838 //    . if target oop is in chunk and above local finger
3839 //        then nothing to do
3840 //    . else push on work-queue
3841 // -- Deal with possible overflow issues:
3842 //    . local work-queue overflow causes stuff to be pushed on
3843 //      global (common) overflow queue
3844 //    . always first empty local work queue
3845 //    . then get a batch of oops from global work queue if any
3846 //    . then do work stealing
3847 // -- When all tasks claimed (both spaces)
3848 //    and local work queue empty,
3849 //    then in a loop do:
3850 //    . check global overflow stack; steal a batch of oops and trace
3851 //    . try to steal from other threads oif GOS is empty
3852 //    . if neither is available, offer termination
3853 // -- Terminate and return result
3854 //
3855 void CMSConcMarkingTask::work(uint worker_id) {
3856   elapsedTimer _timer;
3857   ResourceMark rm;
3858   HandleMark hm;
3859 
3860   DEBUG_ONLY(_collector->verify_overflow_empty();)
3861 
3862   // Before we begin work, our work queue should be empty
3863   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3864   // Scan the bitmap covering _cms_space, tracing through grey objects.
3865   _timer.start();
3866   do_scan_and_mark(worker_id, _cms_space);
3867   _timer.stop();
3868   if (PrintCMSStatistics != 0) {
3869     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3870       worker_id, _timer.seconds());
3871       // XXX: need xxx/xxx type of notation, two timers
3872   }
3873 
3874   // ... do the same for the _perm_space
3875   _timer.reset();
3876   _timer.start();
3877   do_scan_and_mark(worker_id, _perm_space);
3878   _timer.stop();
3879   if (PrintCMSStatistics != 0) {
3880     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
3881       worker_id, _timer.seconds());
3882       // XXX: need xxx/xxx type of notation, two timers
3883   }
3884 
3885   // ... do work stealing
3886   _timer.reset();
3887   _timer.start();
3888   do_work_steal(worker_id);
3889   _timer.stop();
3890   if (PrintCMSStatistics != 0) {
3891     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3892       worker_id, _timer.seconds());
3893       // XXX: need xxx/xxx type of notation, two timers
3894   }
3895   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3896   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3897   // Note that under the current task protocol, the
3898   // following assertion is true even of the spaces
3899   // expanded since the completion of the concurrent
3900   // marking. XXX This will likely change under a strict
3901   // ABORT semantics.
3902   assert(_global_finger >  _cms_space->end() &&
3903          _global_finger >= _perm_space->end(),
3904          "All tasks have been completed");
3905   DEBUG_ONLY(_collector->verify_overflow_empty();)
3906 }
3907 
3908 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3909   HeapWord* read = _global_finger;
3910   HeapWord* cur  = read;
3911   while (f > read) {
3912     cur = read;
3913     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3914     if (cur == read) {
3915       // our cas succeeded
3916       assert(_global_finger >= f, "protocol consistency");
3917       break;
3918     }
3919   }
3920 }
3921 
3922 // This is really inefficient, and should be redone by
3923 // using (not yet available) block-read and -write interfaces to the
3924 // stack and the work_queue. XXX FIX ME !!!
3925 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3926                                                       OopTaskQueue* work_q) {
3927   // Fast lock-free check
3928   if (ovflw_stk->length() == 0) {
3929     return false;
3930   }
3931   assert(work_q->size() == 0, "Shouldn't steal");
3932   MutexLockerEx ml(ovflw_stk->par_lock(),
3933                    Mutex::_no_safepoint_check_flag);
3934   // Grab up to 1/4 the size of the work queue
3935   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3936                     (size_t)ParGCDesiredObjsFromOverflowList);
3937   num = MIN2(num, ovflw_stk->length());
3938   for (int i = (int) num; i > 0; i--) {
3939     oop cur = ovflw_stk->pop();
3940     assert(cur != NULL, "Counted wrong?");
3941     work_q->push(cur);
3942   }
3943   return num > 0;
3944 }
3945 
3946 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3947   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3948   int n_tasks = pst->n_tasks();
3949   // We allow that there may be no tasks to do here because
3950   // we are restarting after a stack overflow.
3951   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3952   uint nth_task = 0;
3953 
3954   HeapWord* aligned_start = sp->bottom();
3955   if (sp->used_region().contains(_restart_addr)) {
3956     // Align down to a card boundary for the start of 0th task
3957     // for this space.
3958     aligned_start =
3959       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3960                                  CardTableModRefBS::card_size);
3961   }
3962 
3963   size_t chunk_size = sp->marking_task_size();
3964   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3965     // Having claimed the nth task in this space,
3966     // compute the chunk that it corresponds to:
3967     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3968                                aligned_start + (nth_task+1)*chunk_size);
3969     // Try and bump the global finger via a CAS;
3970     // note that we need to do the global finger bump
3971     // _before_ taking the intersection below, because
3972     // the task corresponding to that region will be
3973     // deemed done even if the used_region() expands
3974     // because of allocation -- as it almost certainly will
3975     // during start-up while the threads yield in the
3976     // closure below.
3977     HeapWord* finger = span.end();
3978     bump_global_finger(finger);   // atomically
3979     // There are null tasks here corresponding to chunks
3980     // beyond the "top" address of the space.
3981     span = span.intersection(sp->used_region());
3982     if (!span.is_empty()) {  // Non-null task
3983       HeapWord* prev_obj;
3984       assert(!span.contains(_restart_addr) || nth_task == 0,
3985              "Inconsistency");
3986       if (nth_task == 0) {
3987         // For the 0th task, we'll not need to compute a block_start.
3988         if (span.contains(_restart_addr)) {
3989           // In the case of a restart because of stack overflow,
3990           // we might additionally skip a chunk prefix.
3991           prev_obj = _restart_addr;
3992         } else {
3993           prev_obj = span.start();
3994         }
3995       } else {
3996         // We want to skip the first object because
3997         // the protocol is to scan any object in its entirety
3998         // that _starts_ in this span; a fortiori, any
3999         // object starting in an earlier span is scanned
4000         // as part of an earlier claimed task.
4001         // Below we use the "careful" version of block_start
4002         // so we do not try to navigate uninitialized objects.
4003         prev_obj = sp->block_start_careful(span.start());
4004         // Below we use a variant of block_size that uses the
4005         // Printezis bits to avoid waiting for allocated
4006         // objects to become initialized/parsable.
4007         while (prev_obj < span.start()) {
4008           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4009           if (sz > 0) {
4010             prev_obj += sz;
4011           } else {
4012             // In this case we may end up doing a bit of redundant
4013             // scanning, but that appears unavoidable, short of
4014             // locking the free list locks; see bug 6324141.
4015             break;
4016           }
4017         }
4018       }
4019       if (prev_obj < span.end()) {
4020         MemRegion my_span = MemRegion(prev_obj, span.end());
4021         // Do the marking work within a non-empty span --
4022         // the last argument to the constructor indicates whether the
4023         // iteration should be incremental with periodic yields.
4024         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4025                                     &_collector->_markBitMap,
4026                                     work_queue(i),
4027                                     &_collector->_markStack,
4028                                     &_collector->_revisitStack,
4029                                     _asynch);
4030         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4031       } // else nothing to do for this task
4032     }   // else nothing to do for this task
4033   }
4034   // We'd be tempted to assert here that since there are no
4035   // more tasks left to claim in this space, the global_finger
4036   // must exceed space->top() and a fortiori space->end(). However,
4037   // that would not quite be correct because the bumping of
4038   // global_finger occurs strictly after the claiming of a task,
4039   // so by the time we reach here the global finger may not yet
4040   // have been bumped up by the thread that claimed the last
4041   // task.
4042   pst->all_tasks_completed();
4043 }
4044 
4045 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
4046  private:
4047   CMSConcMarkingTask* _task;
4048   MemRegion     _span;
4049   CMSBitMap*    _bit_map;
4050   CMSMarkStack* _overflow_stack;
4051   OopTaskQueue* _work_queue;
4052  protected:
4053   DO_OOP_WORK_DEFN
4054  public:
4055   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4056                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
4057                          CMSMarkStack* revisit_stack):
4058     Par_KlassRememberingOopClosure(collector, collector->ref_processor(), revisit_stack),
4059     _task(task),
4060     _span(collector->_span),
4061     _work_queue(work_queue),
4062     _bit_map(bit_map),
4063     _overflow_stack(overflow_stack)
4064   { }
4065   virtual void do_oop(oop* p);
4066   virtual void do_oop(narrowOop* p);
4067   void trim_queue(size_t max);
4068   void handle_stack_overflow(HeapWord* lost);
4069   void do_yield_check() {
4070     if (_task->should_yield()) {
4071       _task->yield();
4072     }
4073   }
4074 };
4075 
4076 // Grey object scanning during work stealing phase --
4077 // the salient assumption here is that any references
4078 // that are in these stolen objects being scanned must
4079 // already have been initialized (else they would not have
4080 // been published), so we do not need to check for
4081 // uninitialized objects before pushing here.
4082 void Par_ConcMarkingClosure::do_oop(oop obj) {
4083   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4084   HeapWord* addr = (HeapWord*)obj;
4085   // Check if oop points into the CMS generation
4086   // and is not marked
4087   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4088     // a white object ...
4089     // If we manage to "claim" the object, by being the
4090     // first thread to mark it, then we push it on our
4091     // marking stack
4092     if (_bit_map->par_mark(addr)) {     // ... now grey
4093       // push on work queue (grey set)
4094       bool simulate_overflow = false;
4095       NOT_PRODUCT(
4096         if (CMSMarkStackOverflowALot &&
4097             _collector->simulate_overflow()) {
4098           // simulate a stack overflow
4099           simulate_overflow = true;
4100         }
4101       )
4102       if (simulate_overflow ||
4103           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4104         // stack overflow
4105         if (PrintCMSStatistics != 0) {
4106           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4107                                  SIZE_FORMAT, _overflow_stack->capacity());
4108         }
4109         // We cannot assert that the overflow stack is full because
4110         // it may have been emptied since.
4111         assert(simulate_overflow ||
4112                _work_queue->size() == _work_queue->max_elems(),
4113               "Else push should have succeeded");
4114         handle_stack_overflow(addr);
4115       }
4116     } // Else, some other thread got there first
4117     do_yield_check();
4118   }
4119 }
4120 
4121 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4122 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4123 
4124 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4125   while (_work_queue->size() > max) {
4126     oop new_oop;
4127     if (_work_queue->pop_local(new_oop)) {
4128       assert(new_oop->is_oop(), "Should be an oop");
4129       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4130       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4131       assert(new_oop->is_parsable(), "Should be parsable");
4132       new_oop->oop_iterate(this);  // do_oop() above
4133       do_yield_check();
4134     }
4135   }
4136 }
4137 
4138 // Upon stack overflow, we discard (part of) the stack,
4139 // remembering the least address amongst those discarded
4140 // in CMSCollector's _restart_address.
4141 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4142   // We need to do this under a mutex to prevent other
4143   // workers from interfering with the work done below.
4144   MutexLockerEx ml(_overflow_stack->par_lock(),
4145                    Mutex::_no_safepoint_check_flag);
4146   // Remember the least grey address discarded
4147   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4148   _collector->lower_restart_addr(ra);
4149   _overflow_stack->reset();  // discard stack contents
4150   _overflow_stack->expand(); // expand the stack if possible
4151 }
4152 
4153 
4154 void CMSConcMarkingTask::do_work_steal(int i) {
4155   OopTaskQueue* work_q = work_queue(i);
4156   oop obj_to_scan;
4157   CMSBitMap* bm = &(_collector->_markBitMap);
4158   CMSMarkStack* ovflw = &(_collector->_markStack);
4159   CMSMarkStack* revisit = &(_collector->_revisitStack);
4160   int* seed = _collector->hash_seed(i);
4161   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit);
4162   while (true) {
4163     cl.trim_queue(0);
4164     assert(work_q->size() == 0, "Should have been emptied above");
4165     if (get_work_from_overflow_stack(ovflw, work_q)) {
4166       // Can't assert below because the work obtained from the
4167       // overflow stack may already have been stolen from us.
4168       // assert(work_q->size() > 0, "Work from overflow stack");
4169       continue;
4170     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4171       assert(obj_to_scan->is_oop(), "Should be an oop");
4172       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4173       obj_to_scan->oop_iterate(&cl);
4174     } else if (terminator()->offer_termination(&_term_term)) {
4175       assert(work_q->size() == 0, "Impossible!");
4176       break;
4177     } else if (yielding() || should_yield()) {
4178       yield();
4179     }
4180   }
4181 }
4182 
4183 // This is run by the CMS (coordinator) thread.
4184 void CMSConcMarkingTask::coordinator_yield() {
4185   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4186          "CMS thread should hold CMS token");
4187   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4188   // First give up the locks, then yield, then re-lock
4189   // We should probably use a constructor/destructor idiom to
4190   // do this unlock/lock or modify the MutexUnlocker class to
4191   // serve our purpose. XXX
4192   assert_lock_strong(_bit_map_lock);
4193   _bit_map_lock->unlock();
4194   ConcurrentMarkSweepThread::desynchronize(true);
4195   ConcurrentMarkSweepThread::acknowledge_yield_request();
4196   _collector->stopTimer();
4197   if (PrintCMSStatistics != 0) {
4198     _collector->incrementYields();
4199   }
4200   _collector->icms_wait();
4201 
4202   // It is possible for whichever thread initiated the yield request
4203   // not to get a chance to wake up and take the bitmap lock between
4204   // this thread releasing it and reacquiring it. So, while the
4205   // should_yield() flag is on, let's sleep for a bit to give the
4206   // other thread a chance to wake up. The limit imposed on the number
4207   // of iterations is defensive, to avoid any unforseen circumstances
4208   // putting us into an infinite loop. Since it's always been this
4209   // (coordinator_yield()) method that was observed to cause the
4210   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4211   // which is by default non-zero. For the other seven methods that
4212   // also perform the yield operation, as are using a different
4213   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4214   // can enable the sleeping for those methods too, if necessary.
4215   // See 6442774.
4216   //
4217   // We really need to reconsider the synchronization between the GC
4218   // thread and the yield-requesting threads in the future and we
4219   // should really use wait/notify, which is the recommended
4220   // way of doing this type of interaction. Additionally, we should
4221   // consolidate the eight methods that do the yield operation and they
4222   // are almost identical into one for better maintenability and
4223   // readability. See 6445193.
4224   //
4225   // Tony 2006.06.29
4226   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4227                    ConcurrentMarkSweepThread::should_yield() &&
4228                    !CMSCollector::foregroundGCIsActive(); ++i) {
4229     os::sleep(Thread::current(), 1, false);
4230     ConcurrentMarkSweepThread::acknowledge_yield_request();
4231   }
4232 
4233   ConcurrentMarkSweepThread::synchronize(true);
4234   _bit_map_lock->lock_without_safepoint_check();
4235   _collector->startTimer();
4236 }
4237 
4238 bool CMSCollector::do_marking_mt(bool asynch) {
4239   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4240   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4241                                        conc_workers()->total_workers(),
4242                                        conc_workers()->active_workers(),
4243                                        Threads::number_of_non_daemon_threads());
4244   conc_workers()->set_active_workers(num_workers);
4245 
4246   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4247   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
4248 
4249   CMSConcMarkingTask tsk(this,
4250                          cms_space,
4251                          perm_space,
4252                          asynch,
4253                          conc_workers(),
4254                          task_queues());
4255 
4256   // Since the actual number of workers we get may be different
4257   // from the number we requested above, do we need to do anything different
4258   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4259   // class?? XXX
4260   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4261   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
4262 
4263   // Refs discovery is already non-atomic.
4264   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4265   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4266   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
4267   conc_workers()->start_task(&tsk);
4268   while (tsk.yielded()) {
4269     tsk.coordinator_yield();
4270     conc_workers()->continue_task(&tsk);
4271   }
4272   // If the task was aborted, _restart_addr will be non-NULL
4273   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4274   while (_restart_addr != NULL) {
4275     // XXX For now we do not make use of ABORTED state and have not
4276     // yet implemented the right abort semantics (even in the original
4277     // single-threaded CMS case). That needs some more investigation
4278     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4279     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4280     // If _restart_addr is non-NULL, a marking stack overflow
4281     // occurred; we need to do a fresh marking iteration from the
4282     // indicated restart address.
4283     if (_foregroundGCIsActive && asynch) {
4284       // We may be running into repeated stack overflows, having
4285       // reached the limit of the stack size, while making very
4286       // slow forward progress. It may be best to bail out and
4287       // let the foreground collector do its job.
4288       // Clear _restart_addr, so that foreground GC
4289       // works from scratch. This avoids the headache of
4290       // a "rescan" which would otherwise be needed because
4291       // of the dirty mod union table & card table.
4292       _restart_addr = NULL;
4293       return false;
4294     }
4295     // Adjust the task to restart from _restart_addr
4296     tsk.reset(_restart_addr);
4297     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4298                   _restart_addr);
4299     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
4300                   _restart_addr);
4301     _restart_addr = NULL;
4302     // Get the workers going again
4303     conc_workers()->start_task(&tsk);
4304     while (tsk.yielded()) {
4305       tsk.coordinator_yield();
4306       conc_workers()->continue_task(&tsk);
4307     }
4308   }
4309   assert(tsk.completed(), "Inconsistency");
4310   assert(tsk.result() == true, "Inconsistency");
4311   return true;
4312 }
4313 
4314 bool CMSCollector::do_marking_st(bool asynch) {
4315   ResourceMark rm;
4316   HandleMark   hm;
4317 
4318   // Temporarily make refs discovery single threaded (non-MT)
4319   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4320   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4321     &_markStack, &_revisitStack, CMSYield && asynch);
4322   // the last argument to iterate indicates whether the iteration
4323   // should be incremental with periodic yields.
4324   _markBitMap.iterate(&markFromRootsClosure);
4325   // If _restart_addr is non-NULL, a marking stack overflow
4326   // occurred; we need to do a fresh iteration from the
4327   // indicated restart address.
4328   while (_restart_addr != NULL) {
4329     if (_foregroundGCIsActive && asynch) {
4330       // We may be running into repeated stack overflows, having
4331       // reached the limit of the stack size, while making very
4332       // slow forward progress. It may be best to bail out and
4333       // let the foreground collector do its job.
4334       // Clear _restart_addr, so that foreground GC
4335       // works from scratch. This avoids the headache of
4336       // a "rescan" which would otherwise be needed because
4337       // of the dirty mod union table & card table.
4338       _restart_addr = NULL;
4339       return false;  // indicating failure to complete marking
4340     }
4341     // Deal with stack overflow:
4342     // we restart marking from _restart_addr
4343     HeapWord* ra = _restart_addr;
4344     markFromRootsClosure.reset(ra);
4345     _restart_addr = NULL;
4346     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4347   }
4348   return true;
4349 }
4350 
4351 void CMSCollector::preclean() {
4352   check_correct_thread_executing();
4353   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4354   verify_work_stacks_empty();
4355   verify_overflow_empty();
4356   _abort_preclean = false;
4357   if (CMSPrecleaningEnabled) {
4358     _eden_chunk_index = 0;
4359     size_t used = get_eden_used();
4360     size_t capacity = get_eden_capacity();
4361     // Don't start sampling unless we will get sufficiently
4362     // many samples.
4363     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4364                 * CMSScheduleRemarkEdenPenetration)) {
4365       _start_sampling = true;
4366     } else {
4367       _start_sampling = false;
4368     }
4369     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4370     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4371     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4372   }
4373   CMSTokenSync x(true); // is cms thread
4374   if (CMSPrecleaningEnabled) {
4375     sample_eden();
4376     _collectorState = AbortablePreclean;
4377   } else {
4378     _collectorState = FinalMarking;
4379   }
4380   verify_work_stacks_empty();
4381   verify_overflow_empty();
4382 }
4383 
4384 // Try and schedule the remark such that young gen
4385 // occupancy is CMSScheduleRemarkEdenPenetration %.
4386 void CMSCollector::abortable_preclean() {
4387   check_correct_thread_executing();
4388   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4389   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4390 
4391   // If Eden's current occupancy is below this threshold,
4392   // immediately schedule the remark; else preclean
4393   // past the next scavenge in an effort to
4394   // schedule the pause as described avove. By choosing
4395   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4396   // we will never do an actual abortable preclean cycle.
4397   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4398     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4399     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4400     // We need more smarts in the abortable preclean
4401     // loop below to deal with cases where allocation
4402     // in young gen is very very slow, and our precleaning
4403     // is running a losing race against a horde of
4404     // mutators intent on flooding us with CMS updates
4405     // (dirty cards).
4406     // One, admittedly dumb, strategy is to give up
4407     // after a certain number of abortable precleaning loops
4408     // or after a certain maximum time. We want to make
4409     // this smarter in the next iteration.
4410     // XXX FIX ME!!! YSR
4411     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4412     while (!(should_abort_preclean() ||
4413              ConcurrentMarkSweepThread::should_terminate())) {
4414       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4415       cumworkdone += workdone;
4416       loops++;
4417       // Voluntarily terminate abortable preclean phase if we have
4418       // been at it for too long.
4419       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4420           loops >= CMSMaxAbortablePrecleanLoops) {
4421         if (PrintGCDetails) {
4422           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4423         }
4424         break;
4425       }
4426       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4427         if (PrintGCDetails) {
4428           gclog_or_tty->print(" CMS: abort preclean due to time ");
4429         }
4430         break;
4431       }
4432       // If we are doing little work each iteration, we should
4433       // take a short break.
4434       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4435         // Sleep for some time, waiting for work to accumulate
4436         stopTimer();
4437         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4438         startTimer();
4439         waited++;
4440       }
4441     }
4442     if (PrintCMSStatistics > 0) {
4443       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4444                           loops, waited, cumworkdone);
4445     }
4446   }
4447   CMSTokenSync x(true); // is cms thread
4448   if (_collectorState != Idling) {
4449     assert(_collectorState == AbortablePreclean,
4450            "Spontaneous state transition?");
4451     _collectorState = FinalMarking;
4452   } // Else, a foreground collection completed this CMS cycle.
4453   return;
4454 }
4455 
4456 // Respond to an Eden sampling opportunity
4457 void CMSCollector::sample_eden() {
4458   // Make sure a young gc cannot sneak in between our
4459   // reading and recording of a sample.
4460   assert(Thread::current()->is_ConcurrentGC_thread(),
4461          "Only the cms thread may collect Eden samples");
4462   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4463          "Should collect samples while holding CMS token");
4464   if (!_start_sampling) {
4465     return;
4466   }
4467   if (_eden_chunk_array) {
4468     if (_eden_chunk_index < _eden_chunk_capacity) {
4469       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4470       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4471              "Unexpected state of Eden");
4472       // We'd like to check that what we just sampled is an oop-start address;
4473       // however, we cannot do that here since the object may not yet have been
4474       // initialized. So we'll instead do the check when we _use_ this sample
4475       // later.
4476       if (_eden_chunk_index == 0 ||
4477           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4478                          _eden_chunk_array[_eden_chunk_index-1])
4479            >= CMSSamplingGrain)) {
4480         _eden_chunk_index++;  // commit sample
4481       }
4482     }
4483   }
4484   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4485     size_t used = get_eden_used();
4486     size_t capacity = get_eden_capacity();
4487     assert(used <= capacity, "Unexpected state of Eden");
4488     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4489       _abort_preclean = true;
4490     }
4491   }
4492 }
4493 
4494 
4495 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4496   assert(_collectorState == Precleaning ||
4497          _collectorState == AbortablePreclean, "incorrect state");
4498   ResourceMark rm;
4499   HandleMark   hm;
4500 
4501   // Precleaning is currently not MT but the reference processor
4502   // may be set for MT.  Disable it temporarily here.
4503   ReferenceProcessor* rp = ref_processor();
4504   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4505 
4506   // Do one pass of scrubbing the discovered reference lists
4507   // to remove any reference objects with strongly-reachable
4508   // referents.
4509   if (clean_refs) {
4510     CMSPrecleanRefsYieldClosure yield_cl(this);
4511     assert(rp->span().equals(_span), "Spans should be equal");
4512     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4513                                    &_markStack, &_revisitStack,
4514                                    true /* preclean */);
4515     CMSDrainMarkingStackClosure complete_trace(this,
4516                                    _span, &_markBitMap, &_markStack,
4517                                    &keep_alive, true /* preclean */);
4518 
4519     // We don't want this step to interfere with a young
4520     // collection because we don't want to take CPU
4521     // or memory bandwidth away from the young GC threads
4522     // (which may be as many as there are CPUs).
4523     // Note that we don't need to protect ourselves from
4524     // interference with mutators because they can't
4525     // manipulate the discovered reference lists nor affect
4526     // the computed reachability of the referents, the
4527     // only properties manipulated by the precleaning
4528     // of these reference lists.
4529     stopTimer();
4530     CMSTokenSyncWithLocks x(true /* is cms thread */,
4531                             bitMapLock());
4532     startTimer();
4533     sample_eden();
4534 
4535     // The following will yield to allow foreground
4536     // collection to proceed promptly. XXX YSR:
4537     // The code in this method may need further
4538     // tweaking for better performance and some restructuring
4539     // for cleaner interfaces.
4540     rp->preclean_discovered_references(
4541           rp->is_alive_non_header(), &keep_alive, &complete_trace,
4542           &yield_cl, should_unload_classes());
4543   }
4544 
4545   if (clean_survivor) {  // preclean the active survivor space(s)
4546     assert(_young_gen->kind() == Generation::DefNew ||
4547            _young_gen->kind() == Generation::ParNew ||
4548            _young_gen->kind() == Generation::ASParNew,
4549          "incorrect type for cast");
4550     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4551     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4552                              &_markBitMap, &_modUnionTable,
4553                              &_markStack, &_revisitStack,
4554                              true /* precleaning phase */);
4555     stopTimer();
4556     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4557                              bitMapLock());
4558     startTimer();
4559     unsigned int before_count =
4560       GenCollectedHeap::heap()->total_collections();
4561     SurvivorSpacePrecleanClosure
4562       sss_cl(this, _span, &_markBitMap, &_markStack,
4563              &pam_cl, before_count, CMSYield);
4564     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4565     dng->from()->object_iterate_careful(&sss_cl);
4566     dng->to()->object_iterate_careful(&sss_cl);
4567   }
4568   MarkRefsIntoAndScanClosure
4569     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4570              &_markStack, &_revisitStack, this, CMSYield,
4571              true /* precleaning phase */);
4572   // CAUTION: The following closure has persistent state that may need to
4573   // be reset upon a decrease in the sequence of addresses it
4574   // processes.
4575   ScanMarkedObjectsAgainCarefullyClosure
4576     smoac_cl(this, _span,
4577       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
4578 
4579   // Preclean dirty cards in ModUnionTable and CardTable using
4580   // appropriate convergence criterion;
4581   // repeat CMSPrecleanIter times unless we find that
4582   // we are losing.
4583   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4584   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4585          "Bad convergence multiplier");
4586   assert(CMSPrecleanThreshold >= 100,
4587          "Unreasonably low CMSPrecleanThreshold");
4588 
4589   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4590   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4591        numIter < CMSPrecleanIter;
4592        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4593     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4594     if (CMSPermGenPrecleaningEnabled) {
4595       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
4596     }
4597     if (Verbose && PrintGCDetails) {
4598       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4599     }
4600     // Either there are very few dirty cards, so re-mark
4601     // pause will be small anyway, or our pre-cleaning isn't
4602     // that much faster than the rate at which cards are being
4603     // dirtied, so we might as well stop and re-mark since
4604     // precleaning won't improve our re-mark time by much.
4605     if (curNumCards <= CMSPrecleanThreshold ||
4606         (numIter > 0 &&
4607          (curNumCards * CMSPrecleanDenominator >
4608          lastNumCards * CMSPrecleanNumerator))) {
4609       numIter++;
4610       cumNumCards += curNumCards;
4611       break;
4612     }
4613   }
4614   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4615   if (CMSPermGenPrecleaningEnabled) {
4616     curNumCards += preclean_card_table(_permGen, &smoac_cl);
4617   }
4618   cumNumCards += curNumCards;
4619   if (PrintGCDetails && PrintCMSStatistics != 0) {
4620     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4621                   curNumCards, cumNumCards, numIter);
4622   }
4623   return cumNumCards;   // as a measure of useful work done
4624 }
4625 
4626 // PRECLEANING NOTES:
4627 // Precleaning involves:
4628 // . reading the bits of the modUnionTable and clearing the set bits.
4629 // . For the cards corresponding to the set bits, we scan the
4630 //   objects on those cards. This means we need the free_list_lock
4631 //   so that we can safely iterate over the CMS space when scanning
4632 //   for oops.
4633 // . When we scan the objects, we'll be both reading and setting
4634 //   marks in the marking bit map, so we'll need the marking bit map.
4635 // . For protecting _collector_state transitions, we take the CGC_lock.
4636 //   Note that any races in the reading of of card table entries by the
4637 //   CMS thread on the one hand and the clearing of those entries by the
4638 //   VM thread or the setting of those entries by the mutator threads on the
4639 //   other are quite benign. However, for efficiency it makes sense to keep
4640 //   the VM thread from racing with the CMS thread while the latter is
4641 //   dirty card info to the modUnionTable. We therefore also use the
4642 //   CGC_lock to protect the reading of the card table and the mod union
4643 //   table by the CM thread.
4644 // . We run concurrently with mutator updates, so scanning
4645 //   needs to be done carefully  -- we should not try to scan
4646 //   potentially uninitialized objects.
4647 //
4648 // Locking strategy: While holding the CGC_lock, we scan over and
4649 // reset a maximal dirty range of the mod union / card tables, then lock
4650 // the free_list_lock and bitmap lock to do a full marking, then
4651 // release these locks; and repeat the cycle. This allows for a
4652 // certain amount of fairness in the sharing of these locks between
4653 // the CMS collector on the one hand, and the VM thread and the
4654 // mutators on the other.
4655 
4656 // NOTE: preclean_mod_union_table() and preclean_card_table()
4657 // further below are largely identical; if you need to modify
4658 // one of these methods, please check the other method too.
4659 
4660 size_t CMSCollector::preclean_mod_union_table(
4661   ConcurrentMarkSweepGeneration* gen,
4662   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4663   verify_work_stacks_empty();
4664   verify_overflow_empty();
4665 
4666   // Turn off checking for this method but turn it back on
4667   // selectively.  There are yield points in this method
4668   // but it is difficult to turn the checking off just around
4669   // the yield points.  It is simpler to selectively turn
4670   // it on.
4671   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4672 
4673   // strategy: starting with the first card, accumulate contiguous
4674   // ranges of dirty cards; clear these cards, then scan the region
4675   // covered by these cards.
4676 
4677   // Since all of the MUT is committed ahead, we can just use
4678   // that, in case the generations expand while we are precleaning.
4679   // It might also be fine to just use the committed part of the
4680   // generation, but we might potentially miss cards when the
4681   // generation is rapidly expanding while we are in the midst
4682   // of precleaning.
4683   HeapWord* startAddr = gen->reserved().start();
4684   HeapWord* endAddr   = gen->reserved().end();
4685 
4686   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4687 
4688   size_t numDirtyCards, cumNumDirtyCards;
4689   HeapWord *nextAddr, *lastAddr;
4690   for (cumNumDirtyCards = numDirtyCards = 0,
4691        nextAddr = lastAddr = startAddr;
4692        nextAddr < endAddr;
4693        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4694 
4695     ResourceMark rm;
4696     HandleMark   hm;
4697 
4698     MemRegion dirtyRegion;
4699     {
4700       stopTimer();
4701       // Potential yield point
4702       CMSTokenSync ts(true);
4703       startTimer();
4704       sample_eden();
4705       // Get dirty region starting at nextOffset (inclusive),
4706       // simultaneously clearing it.
4707       dirtyRegion =
4708         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4709       assert(dirtyRegion.start() >= nextAddr,
4710              "returned region inconsistent?");
4711     }
4712     // Remember where the next search should begin.
4713     // The returned region (if non-empty) is a right open interval,
4714     // so lastOffset is obtained from the right end of that
4715     // interval.
4716     lastAddr = dirtyRegion.end();
4717     // Should do something more transparent and less hacky XXX
4718     numDirtyCards =
4719       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4720 
4721     // We'll scan the cards in the dirty region (with periodic
4722     // yields for foreground GC as needed).
4723     if (!dirtyRegion.is_empty()) {
4724       assert(numDirtyCards > 0, "consistency check");
4725       HeapWord* stop_point = NULL;
4726       stopTimer();
4727       // Potential yield point
4728       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4729                                bitMapLock());
4730       startTimer();
4731       {
4732         verify_work_stacks_empty();
4733         verify_overflow_empty();
4734         sample_eden();
4735         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4736         stop_point =
4737           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4738       }
4739       if (stop_point != NULL) {
4740         // The careful iteration stopped early either because it found an
4741         // uninitialized object, or because we were in the midst of an
4742         // "abortable preclean", which should now be aborted. Redirty
4743         // the bits corresponding to the partially-scanned or unscanned
4744         // cards. We'll either restart at the next block boundary or
4745         // abort the preclean.
4746         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
4747                (_collectorState == AbortablePreclean && should_abort_preclean()),
4748                "Unparsable objects should only be in perm gen.");
4749         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4750         if (should_abort_preclean()) {
4751           break; // out of preclean loop
4752         } else {
4753           // Compute the next address at which preclean should pick up;
4754           // might need bitMapLock in order to read P-bits.
4755           lastAddr = next_card_start_after_block(stop_point);
4756         }
4757       }
4758     } else {
4759       assert(lastAddr == endAddr, "consistency check");
4760       assert(numDirtyCards == 0, "consistency check");
4761       break;
4762     }
4763   }
4764   verify_work_stacks_empty();
4765   verify_overflow_empty();
4766   return cumNumDirtyCards;
4767 }
4768 
4769 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4770 // below are largely identical; if you need to modify
4771 // one of these methods, please check the other method too.
4772 
4773 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4774   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4775   // strategy: it's similar to precleamModUnionTable above, in that
4776   // we accumulate contiguous ranges of dirty cards, mark these cards
4777   // precleaned, then scan the region covered by these cards.
4778   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4779   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4780 
4781   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4782 
4783   size_t numDirtyCards, cumNumDirtyCards;
4784   HeapWord *lastAddr, *nextAddr;
4785 
4786   for (cumNumDirtyCards = numDirtyCards = 0,
4787        nextAddr = lastAddr = startAddr;
4788        nextAddr < endAddr;
4789        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4790 
4791     ResourceMark rm;
4792     HandleMark   hm;
4793 
4794     MemRegion dirtyRegion;
4795     {
4796       // See comments in "Precleaning notes" above on why we
4797       // do this locking. XXX Could the locking overheads be
4798       // too high when dirty cards are sparse? [I don't think so.]
4799       stopTimer();
4800       CMSTokenSync x(true); // is cms thread
4801       startTimer();
4802       sample_eden();
4803       // Get and clear dirty region from card table
4804       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4805                                     MemRegion(nextAddr, endAddr),
4806                                     true,
4807                                     CardTableModRefBS::precleaned_card_val());
4808 
4809       assert(dirtyRegion.start() >= nextAddr,
4810              "returned region inconsistent?");
4811     }
4812     lastAddr = dirtyRegion.end();
4813     numDirtyCards =
4814       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4815 
4816     if (!dirtyRegion.is_empty()) {
4817       stopTimer();
4818       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4819       startTimer();
4820       sample_eden();
4821       verify_work_stacks_empty();
4822       verify_overflow_empty();
4823       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4824       HeapWord* stop_point =
4825         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4826       if (stop_point != NULL) {
4827         // The careful iteration stopped early because it found an
4828         // uninitialized object.  Redirty the bits corresponding to the
4829         // partially-scanned or unscanned cards, and start again at the
4830         // next block boundary.
4831         assert(CMSPermGenPrecleaningEnabled ||
4832                (_collectorState == AbortablePreclean && should_abort_preclean()),
4833                "Unparsable objects should only be in perm gen.");
4834         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4835         if (should_abort_preclean()) {
4836           break; // out of preclean loop
4837         } else {
4838           // Compute the next address at which preclean should pick up.
4839           lastAddr = next_card_start_after_block(stop_point);
4840         }
4841       }
4842     } else {
4843       break;
4844     }
4845   }
4846   verify_work_stacks_empty();
4847   verify_overflow_empty();
4848   return cumNumDirtyCards;
4849 }
4850 
4851 void CMSCollector::checkpointRootsFinal(bool asynch,
4852   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4853   assert(_collectorState == FinalMarking, "incorrect state transition?");
4854   check_correct_thread_executing();
4855   // world is stopped at this checkpoint
4856   assert(SafepointSynchronize::is_at_safepoint(),
4857          "world should be stopped");
4858   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4859 
4860   verify_work_stacks_empty();
4861   verify_overflow_empty();
4862 
4863   SpecializationStats::clear();
4864   if (PrintGCDetails) {
4865     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4866                         _young_gen->used() / K,
4867                         _young_gen->capacity() / K);
4868   }
4869   if (asynch) {
4870     if (CMSScavengeBeforeRemark) {
4871       GenCollectedHeap* gch = GenCollectedHeap::heap();
4872       // Temporarily set flag to false, GCH->do_collection will
4873       // expect it to be false and set to true
4874       FlagSetting fl(gch->_is_gc_active, false);
4875       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
4876         PrintGCDetails && Verbose, true, gclog_or_tty);)
4877       int level = _cmsGen->level() - 1;
4878       if (level >= 0) {
4879         gch->do_collection(true,        // full (i.e. force, see below)
4880                            false,       // !clear_all_soft_refs
4881                            0,           // size
4882                            false,       // is_tlab
4883                            level        // max_level
4884                           );
4885       }
4886     }
4887     FreelistLocker x(this);
4888     MutexLockerEx y(bitMapLock(),
4889                     Mutex::_no_safepoint_check_flag);
4890     assert(!init_mark_was_synchronous, "but that's impossible!");
4891     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4892   } else {
4893     // already have all the locks
4894     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4895                              init_mark_was_synchronous);
4896   }
4897   verify_work_stacks_empty();
4898   verify_overflow_empty();
4899   SpecializationStats::print();
4900 }
4901 
4902 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4903   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4904 
4905   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
4906 
4907   assert(haveFreelistLocks(), "must have free list locks");
4908   assert_lock_strong(bitMapLock());
4909 
4910   if (UseAdaptiveSizePolicy) {
4911     size_policy()->checkpoint_roots_final_begin();
4912   }
4913 
4914   ResourceMark rm;
4915   HandleMark   hm;
4916 
4917   GenCollectedHeap* gch = GenCollectedHeap::heap();
4918 
4919   if (should_unload_classes()) {
4920     CodeCache::gc_prologue();
4921   }
4922   assert(haveFreelistLocks(), "must have free list locks");
4923   assert_lock_strong(bitMapLock());
4924 
4925   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
4926   if (!init_mark_was_synchronous) {
4927     // We might assume that we need not fill TLAB's when
4928     // CMSScavengeBeforeRemark is set, because we may have just done
4929     // a scavenge which would have filled all TLAB's -- and besides
4930     // Eden would be empty. This however may not always be the case --
4931     // for instance although we asked for a scavenge, it may not have
4932     // happened because of a JNI critical section. We probably need
4933     // a policy for deciding whether we can in that case wait until
4934     // the critical section releases and then do the remark following
4935     // the scavenge, and skip it here. In the absence of that policy,
4936     // or of an indication of whether the scavenge did indeed occur,
4937     // we cannot rely on TLAB's having been filled and must do
4938     // so here just in case a scavenge did not happen.
4939     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4940     // Update the saved marks which may affect the root scans.
4941     gch->save_marks();
4942 
4943     {
4944       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4945 
4946       // Note on the role of the mod union table:
4947       // Since the marker in "markFromRoots" marks concurrently with
4948       // mutators, it is possible for some reachable objects not to have been
4949       // scanned. For instance, an only reference to an object A was
4950       // placed in object B after the marker scanned B. Unless B is rescanned,
4951       // A would be collected. Such updates to references in marked objects
4952       // are detected via the mod union table which is the set of all cards
4953       // dirtied since the first checkpoint in this GC cycle and prior to
4954       // the most recent young generation GC, minus those cleaned up by the
4955       // concurrent precleaning.
4956       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4957         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
4958         do_remark_parallel();
4959       } else {
4960         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4961                     gclog_or_tty);
4962         do_remark_non_parallel();
4963       }
4964     }
4965   } else {
4966     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4967     // The initial mark was stop-world, so there's no rescanning to
4968     // do; go straight on to the next step below.
4969   }
4970   verify_work_stacks_empty();
4971   verify_overflow_empty();
4972 
4973   {
4974     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
4975     refProcessingWork(asynch, clear_all_soft_refs);
4976   }
4977   verify_work_stacks_empty();
4978   verify_overflow_empty();
4979 
4980   if (should_unload_classes()) {
4981     CodeCache::gc_epilogue();
4982   }
4983   JvmtiExport::gc_epilogue();
4984 
4985   // If we encountered any (marking stack / work queue) overflow
4986   // events during the current CMS cycle, take appropriate
4987   // remedial measures, where possible, so as to try and avoid
4988   // recurrence of that condition.
4989   assert(_markStack.isEmpty(), "No grey objects");
4990   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4991                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4992   if (ser_ovflw > 0) {
4993     if (PrintCMSStatistics != 0) {
4994       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4995         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4996         ", kac_preclean="SIZE_FORMAT")",
4997         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4998         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4999     }
5000     _markStack.expand();
5001     _ser_pmc_remark_ovflw = 0;
5002     _ser_pmc_preclean_ovflw = 0;
5003     _ser_kac_preclean_ovflw = 0;
5004     _ser_kac_ovflw = 0;
5005   }
5006   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5007     if (PrintCMSStatistics != 0) {
5008       gclog_or_tty->print_cr("Work queue overflow (benign) "
5009         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5010         _par_pmc_remark_ovflw, _par_kac_ovflw);
5011     }
5012     _par_pmc_remark_ovflw = 0;
5013     _par_kac_ovflw = 0;
5014   }
5015   if (PrintCMSStatistics != 0) {
5016      if (_markStack._hit_limit > 0) {
5017        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5018                               _markStack._hit_limit);
5019      }
5020      if (_markStack._failed_double > 0) {
5021        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5022                               " current capacity "SIZE_FORMAT,
5023                               _markStack._failed_double,
5024                               _markStack.capacity());
5025      }
5026   }
5027   _markStack._hit_limit = 0;
5028   _markStack._failed_double = 0;
5029 
5030   // Check that all the klasses have been checked
5031   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
5032 
5033   if ((VerifyAfterGC || VerifyDuringGC) &&
5034       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5035     verify_after_remark();
5036   }
5037 
5038   // Change under the freelistLocks.
5039   _collectorState = Sweeping;
5040   // Call isAllClear() under bitMapLock
5041   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
5042     " final marking");
5043   if (UseAdaptiveSizePolicy) {
5044     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5045   }
5046 }
5047 
5048 // Parallel remark task
5049 class CMSParRemarkTask: public AbstractGangTask {
5050   CMSCollector* _collector;
5051   int           _n_workers;
5052   CompactibleFreeListSpace* _cms_space;
5053   CompactibleFreeListSpace* _perm_space;
5054 
5055   // The per-thread work queues, available here for stealing.
5056   OopTaskQueueSet*       _task_queues;
5057   ParallelTaskTerminator _term;
5058 
5059  public:
5060   // A value of 0 passed to n_workers will cause the number of
5061   // workers to be taken from the active workers in the work gang.
5062   CMSParRemarkTask(CMSCollector* collector,
5063                    CompactibleFreeListSpace* cms_space,
5064                    CompactibleFreeListSpace* perm_space,
5065                    int n_workers, FlexibleWorkGang* workers,
5066                    OopTaskQueueSet* task_queues):
5067     AbstractGangTask("Rescan roots and grey objects in parallel"),
5068     _collector(collector),
5069     _cms_space(cms_space), _perm_space(perm_space),
5070     _n_workers(n_workers),
5071     _task_queues(task_queues),
5072     _term(n_workers, task_queues) { }
5073 
5074   OopTaskQueueSet* task_queues() { return _task_queues; }
5075 
5076   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5077 
5078   ParallelTaskTerminator* terminator() { return &_term; }
5079   int n_workers() { return _n_workers; }
5080 
5081   void work(uint worker_id);
5082 
5083  private:
5084   // Work method in support of parallel rescan ... of young gen spaces
5085   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5086                              ContiguousSpace* space,
5087                              HeapWord** chunk_array, size_t chunk_top);
5088 
5089   // ... of  dirty cards in old space
5090   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5091                                   Par_MarkRefsIntoAndScanClosure* cl);
5092 
5093   // ... work stealing for the above
5094   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5095 };
5096 
5097 // work_queue(i) is passed to the closure
5098 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5099 // also is passed to do_dirty_card_rescan_tasks() and to
5100 // do_work_steal() to select the i-th task_queue.
5101 
5102 void CMSParRemarkTask::work(uint worker_id) {
5103   elapsedTimer _timer;
5104   ResourceMark rm;
5105   HandleMark   hm;
5106 
5107   // ---------- rescan from roots --------------
5108   _timer.start();
5109   GenCollectedHeap* gch = GenCollectedHeap::heap();
5110   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5111     _collector->_span, _collector->ref_processor(),
5112     &(_collector->_markBitMap),
5113     work_queue(worker_id), &(_collector->_revisitStack));
5114 
5115   // Rescan young gen roots first since these are likely
5116   // coarsely partitioned and may, on that account, constitute
5117   // the critical path; thus, it's best to start off that
5118   // work first.
5119   // ---------- young gen roots --------------
5120   {
5121     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5122     EdenSpace* eden_space = dng->eden();
5123     ContiguousSpace* from_space = dng->from();
5124     ContiguousSpace* to_space   = dng->to();
5125 
5126     HeapWord** eca = _collector->_eden_chunk_array;
5127     size_t     ect = _collector->_eden_chunk_index;
5128     HeapWord** sca = _collector->_survivor_chunk_array;
5129     size_t     sct = _collector->_survivor_chunk_index;
5130 
5131     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5132     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5133 
5134     do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
5135     do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
5136     do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
5137 
5138     _timer.stop();
5139     if (PrintCMSStatistics != 0) {
5140       gclog_or_tty->print_cr(
5141         "Finished young gen rescan work in %dth thread: %3.3f sec",
5142         worker_id, _timer.seconds());
5143     }
5144   }
5145 
5146   // ---------- remaining roots --------------
5147   _timer.reset();
5148   _timer.start();
5149   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5150                                 false,     // yg was scanned above
5151                                 false,     // this is parallel code
5152                                 true,      // collecting perm gen
5153                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5154                                 &par_mrias_cl,
5155                                 true,   // walk all of code cache if (so & SO_CodeCache)
5156                                 NULL);
5157   assert(_collector->should_unload_classes()
5158          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5159          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5160   _timer.stop();
5161   if (PrintCMSStatistics != 0) {
5162     gclog_or_tty->print_cr(
5163       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5164       worker_id, _timer.seconds());
5165   }
5166 
5167   // ---------- rescan dirty cards ------------
5168   _timer.reset();
5169   _timer.start();
5170 
5171   // Do the rescan tasks for each of the two spaces
5172   // (cms_space and perm_space) in turn.
5173   // "worker_id" is passed to select the task_queue for "worker_id"
5174   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5175   do_dirty_card_rescan_tasks(_perm_space, worker_id, &par_mrias_cl);
5176   _timer.stop();
5177   if (PrintCMSStatistics != 0) {
5178     gclog_or_tty->print_cr(
5179       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5180       worker_id, _timer.seconds());
5181   }
5182 
5183   // ---------- steal work from other threads ...
5184   // ---------- ... and drain overflow list.
5185   _timer.reset();
5186   _timer.start();
5187   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5188   _timer.stop();
5189   if (PrintCMSStatistics != 0) {
5190     gclog_or_tty->print_cr(
5191       "Finished work stealing in %dth thread: %3.3f sec",
5192       worker_id, _timer.seconds());
5193   }
5194 }
5195 
5196 // Note that parameter "i" is not used.
5197 void
5198 CMSParRemarkTask::do_young_space_rescan(int i,
5199   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5200   HeapWord** chunk_array, size_t chunk_top) {
5201   // Until all tasks completed:
5202   // . claim an unclaimed task
5203   // . compute region boundaries corresponding to task claimed
5204   //   using chunk_array
5205   // . par_oop_iterate(cl) over that region
5206 
5207   ResourceMark rm;
5208   HandleMark   hm;
5209 
5210   SequentialSubTasksDone* pst = space->par_seq_tasks();
5211   assert(pst->valid(), "Uninitialized use?");
5212 
5213   uint nth_task = 0;
5214   uint n_tasks  = pst->n_tasks();
5215 
5216   HeapWord *start, *end;
5217   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5218     // We claimed task # nth_task; compute its boundaries.
5219     if (chunk_top == 0) {  // no samples were taken
5220       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5221       start = space->bottom();
5222       end   = space->top();
5223     } else if (nth_task == 0) {
5224       start = space->bottom();
5225       end   = chunk_array[nth_task];
5226     } else if (nth_task < (uint)chunk_top) {
5227       assert(nth_task >= 1, "Control point invariant");
5228       start = chunk_array[nth_task - 1];
5229       end   = chunk_array[nth_task];
5230     } else {
5231       assert(nth_task == (uint)chunk_top, "Control point invariant");
5232       start = chunk_array[chunk_top - 1];
5233       end   = space->top();
5234     }
5235     MemRegion mr(start, end);
5236     // Verify that mr is in space
5237     assert(mr.is_empty() || space->used_region().contains(mr),
5238            "Should be in space");
5239     // Verify that "start" is an object boundary
5240     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5241            "Should be an oop");
5242     space->par_oop_iterate(mr, cl);
5243   }
5244   pst->all_tasks_completed();
5245 }
5246 
5247 void
5248 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5249   CompactibleFreeListSpace* sp, int i,
5250   Par_MarkRefsIntoAndScanClosure* cl) {
5251   // Until all tasks completed:
5252   // . claim an unclaimed task
5253   // . compute region boundaries corresponding to task claimed
5254   // . transfer dirty bits ct->mut for that region
5255   // . apply rescanclosure to dirty mut bits for that region
5256 
5257   ResourceMark rm;
5258   HandleMark   hm;
5259 
5260   OopTaskQueue* work_q = work_queue(i);
5261   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5262   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5263   // CAUTION: This closure has state that persists across calls to
5264   // the work method dirty_range_iterate_clear() in that it has
5265   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5266   // use of that state in the imbedded UpwardsObjectClosure instance
5267   // assumes that the cards are always iterated (even if in parallel
5268   // by several threads) in monotonically increasing order per each
5269   // thread. This is true of the implementation below which picks
5270   // card ranges (chunks) in monotonically increasing order globally
5271   // and, a-fortiori, in monotonically increasing order per thread
5272   // (the latter order being a subsequence of the former).
5273   // If the work code below is ever reorganized into a more chaotic
5274   // work-partitioning form than the current "sequential tasks"
5275   // paradigm, the use of that persistent state will have to be
5276   // revisited and modified appropriately. See also related
5277   // bug 4756801 work on which should examine this code to make
5278   // sure that the changes there do not run counter to the
5279   // assumptions made here and necessary for correctness and
5280   // efficiency. Note also that this code might yield inefficient
5281   // behaviour in the case of very large objects that span one or
5282   // more work chunks. Such objects would potentially be scanned
5283   // several times redundantly. Work on 4756801 should try and
5284   // address that performance anomaly if at all possible. XXX
5285   MemRegion  full_span  = _collector->_span;
5286   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5287   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
5288   MarkFromDirtyCardsClosure
5289     greyRescanClosure(_collector, full_span, // entire span of interest
5290                       sp, bm, work_q, rs, cl);
5291 
5292   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5293   assert(pst->valid(), "Uninitialized use?");
5294   uint nth_task = 0;
5295   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5296   MemRegion span = sp->used_region();
5297   HeapWord* start_addr = span.start();
5298   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5299                                            alignment);
5300   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5301   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5302          start_addr, "Check alignment");
5303   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5304          chunk_size, "Check alignment");
5305 
5306   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5307     // Having claimed the nth_task, compute corresponding mem-region,
5308     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5309     // The alignment restriction ensures that we do not need any
5310     // synchronization with other gang-workers while setting or
5311     // clearing bits in thus chunk of the MUT.
5312     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5313                                     start_addr + (nth_task+1)*chunk_size);
5314     // The last chunk's end might be way beyond end of the
5315     // used region. In that case pull back appropriately.
5316     if (this_span.end() > end_addr) {
5317       this_span.set_end(end_addr);
5318       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5319     }
5320     // Iterate over the dirty cards covering this chunk, marking them
5321     // precleaned, and setting the corresponding bits in the mod union
5322     // table. Since we have been careful to partition at Card and MUT-word
5323     // boundaries no synchronization is needed between parallel threads.
5324     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5325                                                  &modUnionClosure);
5326 
5327     // Having transferred these marks into the modUnionTable,
5328     // rescan the marked objects on the dirty cards in the modUnionTable.
5329     // Even if this is at a synchronous collection, the initial marking
5330     // may have been done during an asynchronous collection so there
5331     // may be dirty bits in the mod-union table.
5332     _collector->_modUnionTable.dirty_range_iterate_clear(
5333                   this_span, &greyRescanClosure);
5334     _collector->_modUnionTable.verifyNoOneBitsInRange(
5335                                  this_span.start(),
5336                                  this_span.end());
5337   }
5338   pst->all_tasks_completed();  // declare that i am done
5339 }
5340 
5341 // . see if we can share work_queues with ParNew? XXX
5342 void
5343 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5344                                 int* seed) {
5345   OopTaskQueue* work_q = work_queue(i);
5346   NOT_PRODUCT(int num_steals = 0;)
5347   oop obj_to_scan;
5348   CMSBitMap* bm = &(_collector->_markBitMap);
5349 
5350   while (true) {
5351     // Completely finish any left over work from (an) earlier round(s)
5352     cl->trim_queue(0);
5353     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5354                                          (size_t)ParGCDesiredObjsFromOverflowList);
5355     // Now check if there's any work in the overflow list
5356     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5357     // only affects the number of attempts made to get work from the
5358     // overflow list and does not affect the number of workers.  Just
5359     // pass ParallelGCThreads so this behavior is unchanged.
5360     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5361                                                 work_q,
5362                                                 ParallelGCThreads)) {
5363       // found something in global overflow list;
5364       // not yet ready to go stealing work from others.
5365       // We'd like to assert(work_q->size() != 0, ...)
5366       // because we just took work from the overflow list,
5367       // but of course we can't since all of that could have
5368       // been already stolen from us.
5369       // "He giveth and He taketh away."
5370       continue;
5371     }
5372     // Verify that we have no work before we resort to stealing
5373     assert(work_q->size() == 0, "Have work, shouldn't steal");
5374     // Try to steal from other queues that have work
5375     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5376       NOT_PRODUCT(num_steals++;)
5377       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5378       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5379       // Do scanning work
5380       obj_to_scan->oop_iterate(cl);
5381       // Loop around, finish this work, and try to steal some more
5382     } else if (terminator()->offer_termination()) {
5383         break;  // nirvana from the infinite cycle
5384     }
5385   }
5386   NOT_PRODUCT(
5387     if (PrintCMSStatistics != 0) {
5388       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5389     }
5390   )
5391   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5392          "Else our work is not yet done");
5393 }
5394 
5395 // Return a thread-local PLAB recording array, as appropriate.
5396 void* CMSCollector::get_data_recorder(int thr_num) {
5397   if (_survivor_plab_array != NULL &&
5398       (CMSPLABRecordAlways ||
5399        (_collectorState > Marking && _collectorState < FinalMarking))) {
5400     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5401     ChunkArray* ca = &_survivor_plab_array[thr_num];
5402     ca->reset();   // clear it so that fresh data is recorded
5403     return (void*) ca;
5404   } else {
5405     return NULL;
5406   }
5407 }
5408 
5409 // Reset all the thread-local PLAB recording arrays
5410 void CMSCollector::reset_survivor_plab_arrays() {
5411   for (uint i = 0; i < ParallelGCThreads; i++) {
5412     _survivor_plab_array[i].reset();
5413   }
5414 }
5415 
5416 // Merge the per-thread plab arrays into the global survivor chunk
5417 // array which will provide the partitioning of the survivor space
5418 // for CMS rescan.
5419 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5420                                               int no_of_gc_threads) {
5421   assert(_survivor_plab_array  != NULL, "Error");
5422   assert(_survivor_chunk_array != NULL, "Error");
5423   assert(_collectorState == FinalMarking, "Error");
5424   for (int j = 0; j < no_of_gc_threads; j++) {
5425     _cursor[j] = 0;
5426   }
5427   HeapWord* top = surv->top();
5428   size_t i;
5429   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5430     HeapWord* min_val = top;          // Higher than any PLAB address
5431     uint      min_tid = 0;            // position of min_val this round
5432     for (int j = 0; j < no_of_gc_threads; j++) {
5433       ChunkArray* cur_sca = &_survivor_plab_array[j];
5434       if (_cursor[j] == cur_sca->end()) {
5435         continue;
5436       }
5437       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5438       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5439       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5440       if (cur_val < min_val) {
5441         min_tid = j;
5442         min_val = cur_val;
5443       } else {
5444         assert(cur_val < top, "All recorded addresses should be less");
5445       }
5446     }
5447     // At this point min_val and min_tid are respectively
5448     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5449     // and the thread (j) that witnesses that address.
5450     // We record this address in the _survivor_chunk_array[i]
5451     // and increment _cursor[min_tid] prior to the next round i.
5452     if (min_val == top) {
5453       break;
5454     }
5455     _survivor_chunk_array[i] = min_val;
5456     _cursor[min_tid]++;
5457   }
5458   // We are all done; record the size of the _survivor_chunk_array
5459   _survivor_chunk_index = i; // exclusive: [0, i)
5460   if (PrintCMSStatistics > 0) {
5461     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5462   }
5463   // Verify that we used up all the recorded entries
5464   #ifdef ASSERT
5465     size_t total = 0;
5466     for (int j = 0; j < no_of_gc_threads; j++) {
5467       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5468       total += _cursor[j];
5469     }
5470     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5471     // Check that the merged array is in sorted order
5472     if (total > 0) {
5473       for (size_t i = 0; i < total - 1; i++) {
5474         if (PrintCMSStatistics > 0) {
5475           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5476                               i, _survivor_chunk_array[i]);
5477         }
5478         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5479                "Not sorted");
5480       }
5481     }
5482   #endif // ASSERT
5483 }
5484 
5485 // Set up the space's par_seq_tasks structure for work claiming
5486 // for parallel rescan of young gen.
5487 // See ParRescanTask where this is currently used.
5488 void
5489 CMSCollector::
5490 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5491   assert(n_threads > 0, "Unexpected n_threads argument");
5492   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5493 
5494   // Eden space
5495   {
5496     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5497     assert(!pst->valid(), "Clobbering existing data?");
5498     // Each valid entry in [0, _eden_chunk_index) represents a task.
5499     size_t n_tasks = _eden_chunk_index + 1;
5500     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5501     // Sets the condition for completion of the subtask (how many threads
5502     // need to finish in order to be done).
5503     pst->set_n_threads(n_threads);
5504     pst->set_n_tasks((int)n_tasks);
5505   }
5506 
5507   // Merge the survivor plab arrays into _survivor_chunk_array
5508   if (_survivor_plab_array != NULL) {
5509     merge_survivor_plab_arrays(dng->from(), n_threads);
5510   } else {
5511     assert(_survivor_chunk_index == 0, "Error");
5512   }
5513 
5514   // To space
5515   {
5516     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5517     assert(!pst->valid(), "Clobbering existing data?");
5518     // Sets the condition for completion of the subtask (how many threads
5519     // need to finish in order to be done).
5520     pst->set_n_threads(n_threads);
5521     pst->set_n_tasks(1);
5522     assert(pst->valid(), "Error");
5523   }
5524 
5525   // From space
5526   {
5527     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5528     assert(!pst->valid(), "Clobbering existing data?");
5529     size_t n_tasks = _survivor_chunk_index + 1;
5530     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5531     // Sets the condition for completion of the subtask (how many threads
5532     // need to finish in order to be done).
5533     pst->set_n_threads(n_threads);
5534     pst->set_n_tasks((int)n_tasks);
5535     assert(pst->valid(), "Error");
5536   }
5537 }
5538 
5539 // Parallel version of remark
5540 void CMSCollector::do_remark_parallel() {
5541   GenCollectedHeap* gch = GenCollectedHeap::heap();
5542   FlexibleWorkGang* workers = gch->workers();
5543   assert(workers != NULL, "Need parallel worker threads.");
5544   // Choose to use the number of GC workers most recently set
5545   // into "active_workers".  If active_workers is not set, set it
5546   // to ParallelGCThreads.
5547   int n_workers = workers->active_workers();
5548   if (n_workers == 0) {
5549     assert(n_workers > 0, "Should have been set during scavenge");
5550     n_workers = ParallelGCThreads;
5551     workers->set_active_workers(n_workers);
5552   }
5553   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5554   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
5555 
5556   CMSParRemarkTask tsk(this,
5557     cms_space, perm_space,
5558     n_workers, workers, task_queues());
5559 
5560   // Set up for parallel process_strong_roots work.
5561   gch->set_par_threads(n_workers);
5562   // We won't be iterating over the cards in the card table updating
5563   // the younger_gen cards, so we shouldn't call the following else
5564   // the verification code as well as subsequent younger_refs_iterate
5565   // code would get confused. XXX
5566   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5567 
5568   // The young gen rescan work will not be done as part of
5569   // process_strong_roots (which currently doesn't knw how to
5570   // parallelize such a scan), but rather will be broken up into
5571   // a set of parallel tasks (via the sampling that the [abortable]
5572   // preclean phase did of EdenSpace, plus the [two] tasks of
5573   // scanning the [two] survivor spaces. Further fine-grain
5574   // parallelization of the scanning of the survivor spaces
5575   // themselves, and of precleaning of the younger gen itself
5576   // is deferred to the future.
5577   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5578 
5579   // The dirty card rescan work is broken up into a "sequence"
5580   // of parallel tasks (per constituent space) that are dynamically
5581   // claimed by the parallel threads.
5582   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5583   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
5584 
5585   // It turns out that even when we're using 1 thread, doing the work in a
5586   // separate thread causes wide variance in run times.  We can't help this
5587   // in the multi-threaded case, but we special-case n=1 here to get
5588   // repeatable measurements of the 1-thread overhead of the parallel code.
5589   if (n_workers > 1) {
5590     // Make refs discovery MT-safe, if it isn't already: it may not
5591     // necessarily be so, since it's possible that we are doing
5592     // ST marking.
5593     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5594     GenCollectedHeap::StrongRootsScope srs(gch);
5595     workers->run_task(&tsk);
5596   } else {
5597     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5598     GenCollectedHeap::StrongRootsScope srs(gch);
5599     tsk.work(0);
5600   }
5601   gch->set_par_threads(0);  // 0 ==> non-parallel.
5602   // restore, single-threaded for now, any preserved marks
5603   // as a result of work_q overflow
5604   restore_preserved_marks_if_any();
5605 }
5606 
5607 // Non-parallel version of remark
5608 void CMSCollector::do_remark_non_parallel() {
5609   ResourceMark rm;
5610   HandleMark   hm;
5611   GenCollectedHeap* gch = GenCollectedHeap::heap();
5612   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5613 
5614   MarkRefsIntoAndScanClosure
5615     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
5616              &_markStack, &_revisitStack, this,
5617              false /* should_yield */, false /* not precleaning */);
5618   MarkFromDirtyCardsClosure
5619     markFromDirtyCardsClosure(this, _span,
5620                               NULL,  // space is set further below
5621                               &_markBitMap, &_markStack, &_revisitStack,
5622                               &mrias_cl);
5623   {
5624     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
5625     // Iterate over the dirty cards, setting the corresponding bits in the
5626     // mod union table.
5627     {
5628       ModUnionClosure modUnionClosure(&_modUnionTable);
5629       _ct->ct_bs()->dirty_card_iterate(
5630                       _cmsGen->used_region(),
5631                       &modUnionClosure);
5632       _ct->ct_bs()->dirty_card_iterate(
5633                       _permGen->used_region(),
5634                       &modUnionClosure);
5635     }
5636     // Having transferred these marks into the modUnionTable, we just need
5637     // to rescan the marked objects on the dirty cards in the modUnionTable.
5638     // The initial marking may have been done during an asynchronous
5639     // collection so there may be dirty bits in the mod-union table.
5640     const int alignment =
5641       CardTableModRefBS::card_size * BitsPerWord;
5642     {
5643       // ... First handle dirty cards in CMS gen
5644       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5645       MemRegion ur = _cmsGen->used_region();
5646       HeapWord* lb = ur.start();
5647       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5648       MemRegion cms_span(lb, ub);
5649       _modUnionTable.dirty_range_iterate_clear(cms_span,
5650                                                &markFromDirtyCardsClosure);
5651       verify_work_stacks_empty();
5652       if (PrintCMSStatistics != 0) {
5653         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5654           markFromDirtyCardsClosure.num_dirty_cards());
5655       }
5656     }
5657     {
5658       // .. and then repeat for dirty cards in perm gen
5659       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
5660       MemRegion ur = _permGen->used_region();
5661       HeapWord* lb = ur.start();
5662       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5663       MemRegion perm_span(lb, ub);
5664       _modUnionTable.dirty_range_iterate_clear(perm_span,
5665                                                &markFromDirtyCardsClosure);
5666       verify_work_stacks_empty();
5667       if (PrintCMSStatistics != 0) {
5668         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
5669           markFromDirtyCardsClosure.num_dirty_cards());
5670       }
5671     }
5672   }
5673   if (VerifyDuringGC &&
5674       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5675     HandleMark hm;  // Discard invalid handles created during verification
5676     Universe::verify(true);
5677   }
5678   {
5679     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
5680 
5681     verify_work_stacks_empty();
5682 
5683     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5684     GenCollectedHeap::StrongRootsScope srs(gch);
5685     gch->gen_process_strong_roots(_cmsGen->level(),
5686                                   true,  // younger gens as roots
5687                                   false, // use the local StrongRootsScope
5688                                   true,  // collecting perm gen
5689                                   SharedHeap::ScanningOption(roots_scanning_options()),
5690                                   &mrias_cl,
5691                                   true,   // walk code active on stacks
5692                                   NULL);
5693     assert(should_unload_classes()
5694            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5695            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5696   }
5697   verify_work_stacks_empty();
5698   // Restore evacuated mark words, if any, used for overflow list links
5699   if (!CMSOverflowEarlyRestoration) {
5700     restore_preserved_marks_if_any();
5701   }
5702   verify_overflow_empty();
5703 }
5704 
5705 ////////////////////////////////////////////////////////
5706 // Parallel Reference Processing Task Proxy Class
5707 ////////////////////////////////////////////////////////
5708 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5709   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5710   CMSCollector*          _collector;
5711   CMSBitMap*             _mark_bit_map;
5712   const MemRegion        _span;
5713   ProcessTask&           _task;
5714 
5715 public:
5716   CMSRefProcTaskProxy(ProcessTask&     task,
5717                       CMSCollector*    collector,
5718                       const MemRegion& span,
5719                       CMSBitMap*       mark_bit_map,
5720                       AbstractWorkGang* workers,
5721                       OopTaskQueueSet* task_queues):
5722     // XXX Should superclass AGTWOQ also know about AWG since it knows
5723     // about the task_queues used by the AWG? Then it could initialize
5724     // the terminator() object. See 6984287. The set_for_termination()
5725     // below is a temporary band-aid for the regression in 6984287.
5726     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5727       task_queues),
5728     _task(task),
5729     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5730   {
5731     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5732            "Inconsistency in _span");
5733     set_for_termination(workers->active_workers());
5734   }
5735 
5736   OopTaskQueueSet* task_queues() { return queues(); }
5737 
5738   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5739 
5740   void do_work_steal(int i,
5741                      CMSParDrainMarkingStackClosure* drain,
5742                      CMSParKeepAliveClosure* keep_alive,
5743                      int* seed);
5744 
5745   virtual void work(uint worker_id);
5746 };
5747 
5748 void CMSRefProcTaskProxy::work(uint worker_id) {
5749   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5750   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5751                                         _mark_bit_map,
5752                                         &_collector->_revisitStack,
5753                                         work_queue(worker_id));
5754   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5755                                                  _mark_bit_map,
5756                                                  &_collector->_revisitStack,
5757                                                  work_queue(worker_id));
5758   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5759   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5760   if (_task.marks_oops_alive()) {
5761     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5762                   _collector->hash_seed(worker_id));
5763   }
5764   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5765   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5766 }
5767 
5768 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5769   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5770   EnqueueTask& _task;
5771 
5772 public:
5773   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5774     : AbstractGangTask("Enqueue reference objects in parallel"),
5775       _task(task)
5776   { }
5777 
5778   virtual void work(uint worker_id)
5779   {
5780     _task.work(worker_id);
5781   }
5782 };
5783 
5784 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5785   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
5786   OopTaskQueue* work_queue):
5787    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
5788    _span(span),
5789    _bit_map(bit_map),
5790    _work_queue(work_queue),
5791    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
5792    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5793                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5794 { }
5795 
5796 // . see if we can share work_queues with ParNew? XXX
5797 void CMSRefProcTaskProxy::do_work_steal(int i,
5798   CMSParDrainMarkingStackClosure* drain,
5799   CMSParKeepAliveClosure* keep_alive,
5800   int* seed) {
5801   OopTaskQueue* work_q = work_queue(i);
5802   NOT_PRODUCT(int num_steals = 0;)
5803   oop obj_to_scan;
5804 
5805   while (true) {
5806     // Completely finish any left over work from (an) earlier round(s)
5807     drain->trim_queue(0);
5808     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5809                                          (size_t)ParGCDesiredObjsFromOverflowList);
5810     // Now check if there's any work in the overflow list
5811     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5812     // only affects the number of attempts made to get work from the
5813     // overflow list and does not affect the number of workers.  Just
5814     // pass ParallelGCThreads so this behavior is unchanged.
5815     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5816                                                 work_q,
5817                                                 ParallelGCThreads)) {
5818       // Found something in global overflow list;
5819       // not yet ready to go stealing work from others.
5820       // We'd like to assert(work_q->size() != 0, ...)
5821       // because we just took work from the overflow list,
5822       // but of course we can't, since all of that might have
5823       // been already stolen from us.
5824       continue;
5825     }
5826     // Verify that we have no work before we resort to stealing
5827     assert(work_q->size() == 0, "Have work, shouldn't steal");
5828     // Try to steal from other queues that have work
5829     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5830       NOT_PRODUCT(num_steals++;)
5831       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5832       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5833       // Do scanning work
5834       obj_to_scan->oop_iterate(keep_alive);
5835       // Loop around, finish this work, and try to steal some more
5836     } else if (terminator()->offer_termination()) {
5837       break;  // nirvana from the infinite cycle
5838     }
5839   }
5840   NOT_PRODUCT(
5841     if (PrintCMSStatistics != 0) {
5842       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5843     }
5844   )
5845 }
5846 
5847 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5848 {
5849   GenCollectedHeap* gch = GenCollectedHeap::heap();
5850   FlexibleWorkGang* workers = gch->workers();
5851   assert(workers != NULL, "Need parallel worker threads.");
5852   CMSRefProcTaskProxy rp_task(task, &_collector,
5853                               _collector.ref_processor()->span(),
5854                               _collector.markBitMap(),
5855                               workers, _collector.task_queues());
5856   workers->run_task(&rp_task);
5857 }
5858 
5859 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5860 {
5861 
5862   GenCollectedHeap* gch = GenCollectedHeap::heap();
5863   FlexibleWorkGang* workers = gch->workers();
5864   assert(workers != NULL, "Need parallel worker threads.");
5865   CMSRefEnqueueTaskProxy enq_task(task);
5866   workers->run_task(&enq_task);
5867 }
5868 
5869 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5870 
5871   ResourceMark rm;
5872   HandleMark   hm;
5873 
5874   ReferenceProcessor* rp = ref_processor();
5875   assert(rp->span().equals(_span), "Spans should be equal");
5876   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5877   // Process weak references.
5878   rp->setup_policy(clear_all_soft_refs);
5879   verify_work_stacks_empty();
5880 
5881   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5882                                           &_markStack, &_revisitStack,
5883                                           false /* !preclean */);
5884   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5885                                 _span, &_markBitMap, &_markStack,
5886                                 &cmsKeepAliveClosure, false /* !preclean */);
5887   {
5888     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
5889     if (rp->processing_is_mt()) {
5890       // Set the degree of MT here.  If the discovery is done MT, there
5891       // may have been a different number of threads doing the discovery
5892       // and a different number of discovered lists may have Ref objects.
5893       // That is OK as long as the Reference lists are balanced (see
5894       // balance_all_queues() and balance_queues()).
5895       GenCollectedHeap* gch = GenCollectedHeap::heap();
5896       int active_workers = ParallelGCThreads;
5897       FlexibleWorkGang* workers = gch->workers();
5898       if (workers != NULL) {
5899         active_workers = workers->active_workers();
5900         // The expectation is that active_workers will have already
5901         // been set to a reasonable value.  If it has not been set,
5902         // investigate.
5903         assert(active_workers > 0, "Should have been set during scavenge");
5904       }
5905       rp->set_active_mt_degree(active_workers);
5906       CMSRefProcTaskExecutor task_executor(*this);
5907       rp->process_discovered_references(&_is_alive_closure,
5908                                         &cmsKeepAliveClosure,
5909                                         &cmsDrainMarkingStackClosure,
5910                                         &task_executor);
5911     } else {
5912       rp->process_discovered_references(&_is_alive_closure,
5913                                         &cmsKeepAliveClosure,
5914                                         &cmsDrainMarkingStackClosure,
5915                                         NULL);
5916     }
5917     verify_work_stacks_empty();
5918   }
5919 
5920   if (should_unload_classes()) {
5921     {
5922       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
5923 
5924       // Follow SystemDictionary roots and unload classes
5925       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5926 
5927       // Follow CodeCache roots and unload any methods marked for unloading
5928       CodeCache::do_unloading(&_is_alive_closure,
5929                               &cmsKeepAliveClosure,
5930                               purged_class);
5931 
5932       cmsDrainMarkingStackClosure.do_void();
5933       verify_work_stacks_empty();
5934 
5935       // Update subklass/sibling/implementor links in KlassKlass descendants
5936       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
5937       oop k;
5938       while ((k = _revisitStack.pop()) != NULL) {
5939         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
5940                        &_is_alive_closure,
5941                        &cmsKeepAliveClosure);
5942       }
5943       assert(!ClassUnloading ||
5944              (_markStack.isEmpty() && overflow_list_is_empty()),
5945              "Should not have found new reachable objects");
5946       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
5947       cmsDrainMarkingStackClosure.do_void();
5948       verify_work_stacks_empty();
5949     }
5950 
5951     {
5952       TraceTime t("scrub symbol table", PrintGCDetails, false, gclog_or_tty);
5953       // Clean up unreferenced symbols in symbol table.
5954       SymbolTable::unlink();
5955     }
5956   }
5957 
5958   if (should_unload_classes() || !JavaObjectsInPerm) {
5959     TraceTime t("scrub string table", PrintGCDetails, false, gclog_or_tty);
5960     // Now clean up stale oops in StringTable
5961     StringTable::unlink(&_is_alive_closure);
5962   }
5963 
5964   verify_work_stacks_empty();
5965   // Restore any preserved marks as a result of mark stack or
5966   // work queue overflow
5967   restore_preserved_marks_if_any();  // done single-threaded for now
5968 
5969   rp->set_enqueuing_is_done(true);
5970   if (rp->processing_is_mt()) {
5971     rp->balance_all_queues();
5972     CMSRefProcTaskExecutor task_executor(*this);
5973     rp->enqueue_discovered_references(&task_executor);
5974   } else {
5975     rp->enqueue_discovered_references(NULL);
5976   }
5977   rp->verify_no_references_recorded();
5978   assert(!rp->discovery_enabled(), "should have been disabled");
5979 }
5980 
5981 #ifndef PRODUCT
5982 void CMSCollector::check_correct_thread_executing() {
5983   Thread* t = Thread::current();
5984   // Only the VM thread or the CMS thread should be here.
5985   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5986          "Unexpected thread type");
5987   // If this is the vm thread, the foreground process
5988   // should not be waiting.  Note that _foregroundGCIsActive is
5989   // true while the foreground collector is waiting.
5990   if (_foregroundGCShouldWait) {
5991     // We cannot be the VM thread
5992     assert(t->is_ConcurrentGC_thread(),
5993            "Should be CMS thread");
5994   } else {
5995     // We can be the CMS thread only if we are in a stop-world
5996     // phase of CMS collection.
5997     if (t->is_ConcurrentGC_thread()) {
5998       assert(_collectorState == InitialMarking ||
5999              _collectorState == FinalMarking,
6000              "Should be a stop-world phase");
6001       // The CMS thread should be holding the CMS_token.
6002       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6003              "Potential interference with concurrently "
6004              "executing VM thread");
6005     }
6006   }
6007 }
6008 #endif
6009 
6010 void CMSCollector::sweep(bool asynch) {
6011   assert(_collectorState == Sweeping, "just checking");
6012   check_correct_thread_executing();
6013   verify_work_stacks_empty();
6014   verify_overflow_empty();
6015   increment_sweep_count();
6016   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6017 
6018   _inter_sweep_timer.stop();
6019   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6020   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6021 
6022   // PermGen verification support: If perm gen sweeping is disabled in
6023   // this cycle, we preserve the perm gen object "deadness" information
6024   // in the perm_gen_verify_bit_map. In order to do that we traverse
6025   // all blocks in perm gen and mark all dead objects.
6026   if (verifying() && !should_unload_classes()) {
6027     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
6028            "Should have already been allocated");
6029     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
6030                                markBitMap(), perm_gen_verify_bit_map());
6031     if (asynch) {
6032       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6033                                bitMapLock());
6034       _permGen->cmsSpace()->blk_iterate(&mdo);
6035     } else {
6036       // In the case of synchronous sweep, we already have
6037       // the requisite locks/tokens.
6038       _permGen->cmsSpace()->blk_iterate(&mdo);
6039     }
6040   }
6041 
6042   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6043   _intra_sweep_timer.reset();
6044   _intra_sweep_timer.start();
6045   if (asynch) {
6046     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6047     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6048     // First sweep the old gen then the perm gen
6049     {
6050       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6051                                bitMapLock());
6052       sweepWork(_cmsGen, asynch);
6053     }
6054 
6055     // Now repeat for perm gen
6056     if (should_unload_classes()) {
6057       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6058                              bitMapLock());
6059       sweepWork(_permGen, asynch);
6060     }
6061 
6062     // Update Universe::_heap_*_at_gc figures.
6063     // We need all the free list locks to make the abstract state
6064     // transition from Sweeping to Resetting. See detailed note
6065     // further below.
6066     {
6067       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6068                                _permGen->freelistLock());
6069       // Update heap occupancy information which is used as
6070       // input to soft ref clearing policy at the next gc.
6071       Universe::update_heap_info_at_gc();
6072       _collectorState = Resizing;
6073     }
6074   } else {
6075     // already have needed locks
6076     sweepWork(_cmsGen,  asynch);
6077 
6078     if (should_unload_classes()) {
6079       sweepWork(_permGen, asynch);
6080     }
6081     // Update heap occupancy information which is used as
6082     // input to soft ref clearing policy at the next gc.
6083     Universe::update_heap_info_at_gc();
6084     _collectorState = Resizing;
6085   }
6086   verify_work_stacks_empty();
6087   verify_overflow_empty();
6088 
6089   _intra_sweep_timer.stop();
6090   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6091 
6092   _inter_sweep_timer.reset();
6093   _inter_sweep_timer.start();
6094 
6095   // We need to use a monotonically non-deccreasing time in ms
6096   // or we will see time-warp warnings and os::javaTimeMillis()
6097   // does not guarantee monotonicity.
6098   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6099   update_time_of_last_gc(now);
6100 
6101   // NOTE on abstract state transitions:
6102   // Mutators allocate-live and/or mark the mod-union table dirty
6103   // based on the state of the collection.  The former is done in
6104   // the interval [Marking, Sweeping] and the latter in the interval
6105   // [Marking, Sweeping).  Thus the transitions into the Marking state
6106   // and out of the Sweeping state must be synchronously visible
6107   // globally to the mutators.
6108   // The transition into the Marking state happens with the world
6109   // stopped so the mutators will globally see it.  Sweeping is
6110   // done asynchronously by the background collector so the transition
6111   // from the Sweeping state to the Resizing state must be done
6112   // under the freelistLock (as is the check for whether to
6113   // allocate-live and whether to dirty the mod-union table).
6114   assert(_collectorState == Resizing, "Change of collector state to"
6115     " Resizing must be done under the freelistLocks (plural)");
6116 
6117   // Now that sweeping has been completed, we clear
6118   // the incremental_collection_failed flag,
6119   // thus inviting a younger gen collection to promote into
6120   // this generation. If such a promotion may still fail,
6121   // the flag will be set again when a young collection is
6122   // attempted.
6123   GenCollectedHeap* gch = GenCollectedHeap::heap();
6124   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6125   gch->update_full_collections_completed(_collection_count_start);
6126 }
6127 
6128 // FIX ME!!! Looks like this belongs in CFLSpace, with
6129 // CMSGen merely delegating to it.
6130 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6131   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6132   HeapWord*  minAddr        = _cmsSpace->bottom();
6133   HeapWord*  largestAddr    =
6134     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6135   if (largestAddr == NULL) {
6136     // The dictionary appears to be empty.  In this case
6137     // try to coalesce at the end of the heap.
6138     largestAddr = _cmsSpace->end();
6139   }
6140   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6141   size_t nearLargestOffset =
6142     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6143   if (PrintFLSStatistics != 0) {
6144     gclog_or_tty->print_cr(
6145       "CMS: Large Block: " PTR_FORMAT ";"
6146       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6147       largestAddr,
6148       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6149   }
6150   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6151 }
6152 
6153 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6154   return addr >= _cmsSpace->nearLargestChunk();
6155 }
6156 
6157 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6158   return _cmsSpace->find_chunk_at_end();
6159 }
6160 
6161 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6162                                                     bool full) {
6163   // The next lower level has been collected.  Gather any statistics
6164   // that are of interest at this point.
6165   if (!full && (current_level + 1) == level()) {
6166     // Gather statistics on the young generation collection.
6167     collector()->stats().record_gc0_end(used());
6168   }
6169 }
6170 
6171 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6172   GenCollectedHeap* gch = GenCollectedHeap::heap();
6173   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6174     "Wrong type of heap");
6175   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6176     gch->gen_policy()->size_policy();
6177   assert(sp->is_gc_cms_adaptive_size_policy(),
6178     "Wrong type of size policy");
6179   return sp;
6180 }
6181 
6182 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6183   if (PrintGCDetails && Verbose) {
6184     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6185   }
6186   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6187   _debug_collection_type =
6188     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6189   if (PrintGCDetails && Verbose) {
6190     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6191   }
6192 }
6193 
6194 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6195   bool asynch) {
6196   // We iterate over the space(s) underlying this generation,
6197   // checking the mark bit map to see if the bits corresponding
6198   // to specific blocks are marked or not. Blocks that are
6199   // marked are live and are not swept up. All remaining blocks
6200   // are swept up, with coalescing on-the-fly as we sweep up
6201   // contiguous free and/or garbage blocks:
6202   // We need to ensure that the sweeper synchronizes with allocators
6203   // and stop-the-world collectors. In particular, the following
6204   // locks are used:
6205   // . CMS token: if this is held, a stop the world collection cannot occur
6206   // . freelistLock: if this is held no allocation can occur from this
6207   //                 generation by another thread
6208   // . bitMapLock: if this is held, no other thread can access or update
6209   //
6210 
6211   // Note that we need to hold the freelistLock if we use
6212   // block iterate below; else the iterator might go awry if
6213   // a mutator (or promotion) causes block contents to change
6214   // (for instance if the allocator divvies up a block).
6215   // If we hold the free list lock, for all practical purposes
6216   // young generation GC's can't occur (they'll usually need to
6217   // promote), so we might as well prevent all young generation
6218   // GC's while we do a sweeping step. For the same reason, we might
6219   // as well take the bit map lock for the entire duration
6220 
6221   // check that we hold the requisite locks
6222   assert(have_cms_token(), "Should hold cms token");
6223   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6224          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6225         "Should possess CMS token to sweep");
6226   assert_lock_strong(gen->freelistLock());
6227   assert_lock_strong(bitMapLock());
6228 
6229   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6230   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6231   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6232                                       _inter_sweep_estimate.padded_average(),
6233                                       _intra_sweep_estimate.padded_average());
6234   gen->setNearLargestChunk();
6235 
6236   {
6237     SweepClosure sweepClosure(this, gen, &_markBitMap,
6238                             CMSYield && asynch);
6239     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6240     // We need to free-up/coalesce garbage/blocks from a
6241     // co-terminal free run. This is done in the SweepClosure
6242     // destructor; so, do not remove this scope, else the
6243     // end-of-sweep-census below will be off by a little bit.
6244   }
6245   gen->cmsSpace()->sweep_completed();
6246   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6247   if (should_unload_classes()) {                // unloaded classes this cycle,
6248     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6249   } else {                                      // did not unload classes,
6250     _concurrent_cycles_since_last_unload++;     // ... increment count
6251   }
6252 }
6253 
6254 // Reset CMS data structures (for now just the marking bit map)
6255 // preparatory for the next cycle.
6256 void CMSCollector::reset(bool asynch) {
6257   GenCollectedHeap* gch = GenCollectedHeap::heap();
6258   CMSAdaptiveSizePolicy* sp = size_policy();
6259   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6260   if (asynch) {
6261     CMSTokenSyncWithLocks ts(true, bitMapLock());
6262 
6263     // If the state is not "Resetting", the foreground  thread
6264     // has done a collection and the resetting.
6265     if (_collectorState != Resetting) {
6266       assert(_collectorState == Idling, "The state should only change"
6267         " because the foreground collector has finished the collection");
6268       return;
6269     }
6270 
6271     // Clear the mark bitmap (no grey objects to start with)
6272     // for the next cycle.
6273     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6274     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6275 
6276     HeapWord* curAddr = _markBitMap.startWord();
6277     while (curAddr < _markBitMap.endWord()) {
6278       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6279       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6280       _markBitMap.clear_large_range(chunk);
6281       if (ConcurrentMarkSweepThread::should_yield() &&
6282           !foregroundGCIsActive() &&
6283           CMSYield) {
6284         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6285                "CMS thread should hold CMS token");
6286         assert_lock_strong(bitMapLock());
6287         bitMapLock()->unlock();
6288         ConcurrentMarkSweepThread::desynchronize(true);
6289         ConcurrentMarkSweepThread::acknowledge_yield_request();
6290         stopTimer();
6291         if (PrintCMSStatistics != 0) {
6292           incrementYields();
6293         }
6294         icms_wait();
6295 
6296         // See the comment in coordinator_yield()
6297         for (unsigned i = 0; i < CMSYieldSleepCount &&
6298                          ConcurrentMarkSweepThread::should_yield() &&
6299                          !CMSCollector::foregroundGCIsActive(); ++i) {
6300           os::sleep(Thread::current(), 1, false);
6301           ConcurrentMarkSweepThread::acknowledge_yield_request();
6302         }
6303 
6304         ConcurrentMarkSweepThread::synchronize(true);
6305         bitMapLock()->lock_without_safepoint_check();
6306         startTimer();
6307       }
6308       curAddr = chunk.end();
6309     }
6310     // A successful mostly concurrent collection has been done.
6311     // Because only the full (i.e., concurrent mode failure) collections
6312     // are being measured for gc overhead limits, clean the "near" flag
6313     // and count.
6314     sp->reset_gc_overhead_limit_count();
6315     _collectorState = Idling;
6316   } else {
6317     // already have the lock
6318     assert(_collectorState == Resetting, "just checking");
6319     assert_lock_strong(bitMapLock());
6320     _markBitMap.clear_all();
6321     _collectorState = Idling;
6322   }
6323 
6324   // Stop incremental mode after a cycle completes, so that any future cycles
6325   // are triggered by allocation.
6326   stop_icms();
6327 
6328   NOT_PRODUCT(
6329     if (RotateCMSCollectionTypes) {
6330       _cmsGen->rotate_debug_collection_type();
6331     }
6332   )
6333 }
6334 
6335 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6336   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6337   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6338   TraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
6339   TraceCollectorStats tcs(counters());
6340 
6341   switch (op) {
6342     case CMS_op_checkpointRootsInitial: {
6343       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6344       checkpointRootsInitial(true);       // asynch
6345       if (PrintGC) {
6346         _cmsGen->printOccupancy("initial-mark");
6347       }
6348       break;
6349     }
6350     case CMS_op_checkpointRootsFinal: {
6351       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6352       checkpointRootsFinal(true,    // asynch
6353                            false,   // !clear_all_soft_refs
6354                            false);  // !init_mark_was_synchronous
6355       if (PrintGC) {
6356         _cmsGen->printOccupancy("remark");
6357       }
6358       break;
6359     }
6360     default:
6361       fatal("No such CMS_op");
6362   }
6363 }
6364 
6365 #ifndef PRODUCT
6366 size_t const CMSCollector::skip_header_HeapWords() {
6367   return FreeChunk::header_size();
6368 }
6369 
6370 // Try and collect here conditions that should hold when
6371 // CMS thread is exiting. The idea is that the foreground GC
6372 // thread should not be blocked if it wants to terminate
6373 // the CMS thread and yet continue to run the VM for a while
6374 // after that.
6375 void CMSCollector::verify_ok_to_terminate() const {
6376   assert(Thread::current()->is_ConcurrentGC_thread(),
6377          "should be called by CMS thread");
6378   assert(!_foregroundGCShouldWait, "should be false");
6379   // We could check here that all the various low-level locks
6380   // are not held by the CMS thread, but that is overkill; see
6381   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6382   // is checked.
6383 }
6384 #endif
6385 
6386 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6387    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6388           "missing Printezis mark?");
6389   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6390   size_t size = pointer_delta(nextOneAddr + 1, addr);
6391   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6392          "alignment problem");
6393   assert(size >= 3, "Necessary for Printezis marks to work");
6394   return size;
6395 }
6396 
6397 // A variant of the above (block_size_using_printezis_bits()) except
6398 // that we return 0 if the P-bits are not yet set.
6399 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6400   if (_markBitMap.isMarked(addr + 1)) {
6401     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6402     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6403     size_t size = pointer_delta(nextOneAddr + 1, addr);
6404     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6405            "alignment problem");
6406     assert(size >= 3, "Necessary for Printezis marks to work");
6407     return size;
6408   }
6409   return 0;
6410 }
6411 
6412 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6413   size_t sz = 0;
6414   oop p = (oop)addr;
6415   if (p->klass_or_null() != NULL && p->is_parsable()) {
6416     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6417   } else {
6418     sz = block_size_using_printezis_bits(addr);
6419   }
6420   assert(sz > 0, "size must be nonzero");
6421   HeapWord* next_block = addr + sz;
6422   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6423                                              CardTableModRefBS::card_size);
6424   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6425          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6426          "must be different cards");
6427   return next_card;
6428 }
6429 
6430 
6431 // CMS Bit Map Wrapper /////////////////////////////////////////
6432 
6433 // Construct a CMS bit map infrastructure, but don't create the
6434 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6435 // further below.
6436 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6437   _bm(),
6438   _shifter(shifter),
6439   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6440 {
6441   _bmStartWord = 0;
6442   _bmWordSize  = 0;
6443 }
6444 
6445 bool CMSBitMap::allocate(MemRegion mr) {
6446   _bmStartWord = mr.start();
6447   _bmWordSize  = mr.word_size();
6448   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6449                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6450   if (!brs.is_reserved()) {
6451     warning("CMS bit map allocation failure");
6452     return false;
6453   }
6454   // For now we'll just commit all of the bit map up fromt.
6455   // Later on we'll try to be more parsimonious with swap.
6456   if (!_virtual_space.initialize(brs, brs.size())) {
6457     warning("CMS bit map backing store failure");
6458     return false;
6459   }
6460   assert(_virtual_space.committed_size() == brs.size(),
6461          "didn't reserve backing store for all of CMS bit map?");
6462   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6463   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6464          _bmWordSize, "inconsistency in bit map sizing");
6465   _bm.set_size(_bmWordSize >> _shifter);
6466 
6467   // bm.clear(); // can we rely on getting zero'd memory? verify below
6468   assert(isAllClear(),
6469          "Expected zero'd memory from ReservedSpace constructor");
6470   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6471          "consistency check");
6472   return true;
6473 }
6474 
6475 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6476   HeapWord *next_addr, *end_addr, *last_addr;
6477   assert_locked();
6478   assert(covers(mr), "out-of-range error");
6479   // XXX assert that start and end are appropriately aligned
6480   for (next_addr = mr.start(), end_addr = mr.end();
6481        next_addr < end_addr; next_addr = last_addr) {
6482     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6483     last_addr = dirty_region.end();
6484     if (!dirty_region.is_empty()) {
6485       cl->do_MemRegion(dirty_region);
6486     } else {
6487       assert(last_addr == end_addr, "program logic");
6488       return;
6489     }
6490   }
6491 }
6492 
6493 #ifndef PRODUCT
6494 void CMSBitMap::assert_locked() const {
6495   CMSLockVerifier::assert_locked(lock());
6496 }
6497 
6498 bool CMSBitMap::covers(MemRegion mr) const {
6499   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6500   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6501          "size inconsistency");
6502   return (mr.start() >= _bmStartWord) &&
6503          (mr.end()   <= endWord());
6504 }
6505 
6506 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6507     return (start >= _bmStartWord && (start + size) <= endWord());
6508 }
6509 
6510 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6511   // verify that there are no 1 bits in the interval [left, right)
6512   FalseBitMapClosure falseBitMapClosure;
6513   iterate(&falseBitMapClosure, left, right);
6514 }
6515 
6516 void CMSBitMap::region_invariant(MemRegion mr)
6517 {
6518   assert_locked();
6519   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6520   assert(!mr.is_empty(), "unexpected empty region");
6521   assert(covers(mr), "mr should be covered by bit map");
6522   // convert address range into offset range
6523   size_t start_ofs = heapWordToOffset(mr.start());
6524   // Make sure that end() is appropriately aligned
6525   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6526                         (1 << (_shifter+LogHeapWordSize))),
6527          "Misaligned mr.end()");
6528   size_t end_ofs   = heapWordToOffset(mr.end());
6529   assert(end_ofs > start_ofs, "Should mark at least one bit");
6530 }
6531 
6532 #endif
6533 
6534 bool CMSMarkStack::allocate(size_t size) {
6535   // allocate a stack of the requisite depth
6536   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6537                    size * sizeof(oop)));
6538   if (!rs.is_reserved()) {
6539     warning("CMSMarkStack allocation failure");
6540     return false;
6541   }
6542   if (!_virtual_space.initialize(rs, rs.size())) {
6543     warning("CMSMarkStack backing store failure");
6544     return false;
6545   }
6546   assert(_virtual_space.committed_size() == rs.size(),
6547          "didn't reserve backing store for all of CMS stack?");
6548   _base = (oop*)(_virtual_space.low());
6549   _index = 0;
6550   _capacity = size;
6551   NOT_PRODUCT(_max_depth = 0);
6552   return true;
6553 }
6554 
6555 // XXX FIX ME !!! In the MT case we come in here holding a
6556 // leaf lock. For printing we need to take a further lock
6557 // which has lower rank. We need to recallibrate the two
6558 // lock-ranks involved in order to be able to rpint the
6559 // messages below. (Or defer the printing to the caller.
6560 // For now we take the expedient path of just disabling the
6561 // messages for the problematic case.)
6562 void CMSMarkStack::expand() {
6563   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6564   if (_capacity == MarkStackSizeMax) {
6565     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6566       // We print a warning message only once per CMS cycle.
6567       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6568     }
6569     return;
6570   }
6571   // Double capacity if possible
6572   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6573   // Do not give up existing stack until we have managed to
6574   // get the double capacity that we desired.
6575   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6576                    new_capacity * sizeof(oop)));
6577   if (rs.is_reserved()) {
6578     // Release the backing store associated with old stack
6579     _virtual_space.release();
6580     // Reinitialize virtual space for new stack
6581     if (!_virtual_space.initialize(rs, rs.size())) {
6582       fatal("Not enough swap for expanded marking stack");
6583     }
6584     _base = (oop*)(_virtual_space.low());
6585     _index = 0;
6586     _capacity = new_capacity;
6587   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6588     // Failed to double capacity, continue;
6589     // we print a detail message only once per CMS cycle.
6590     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6591             SIZE_FORMAT"K",
6592             _capacity / K, new_capacity / K);
6593   }
6594 }
6595 
6596 
6597 // Closures
6598 // XXX: there seems to be a lot of code  duplication here;
6599 // should refactor and consolidate common code.
6600 
6601 // This closure is used to mark refs into the CMS generation in
6602 // the CMS bit map. Called at the first checkpoint. This closure
6603 // assumes that we do not need to re-mark dirty cards; if the CMS
6604 // generation on which this is used is not an oldest (modulo perm gen)
6605 // generation then this will lose younger_gen cards!
6606 
6607 MarkRefsIntoClosure::MarkRefsIntoClosure(
6608   MemRegion span, CMSBitMap* bitMap):
6609     _span(span),
6610     _bitMap(bitMap)
6611 {
6612     assert(_ref_processor == NULL, "deliberately left NULL");
6613     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6614 }
6615 
6616 void MarkRefsIntoClosure::do_oop(oop obj) {
6617   // if p points into _span, then mark corresponding bit in _markBitMap
6618   assert(obj->is_oop(), "expected an oop");
6619   HeapWord* addr = (HeapWord*)obj;
6620   if (_span.contains(addr)) {
6621     // this should be made more efficient
6622     _bitMap->mark(addr);
6623   }
6624 }
6625 
6626 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6627 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6628 
6629 // A variant of the above, used for CMS marking verification.
6630 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6631   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6632     _span(span),
6633     _verification_bm(verification_bm),
6634     _cms_bm(cms_bm)
6635 {
6636     assert(_ref_processor == NULL, "deliberately left NULL");
6637     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6638 }
6639 
6640 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6641   // if p points into _span, then mark corresponding bit in _markBitMap
6642   assert(obj->is_oop(), "expected an oop");
6643   HeapWord* addr = (HeapWord*)obj;
6644   if (_span.contains(addr)) {
6645     _verification_bm->mark(addr);
6646     if (!_cms_bm->isMarked(addr)) {
6647       oop(addr)->print();
6648       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6649       fatal("... aborting");
6650     }
6651   }
6652 }
6653 
6654 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6655 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6656 
6657 //////////////////////////////////////////////////
6658 // MarkRefsIntoAndScanClosure
6659 //////////////////////////////////////////////////
6660 
6661 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6662                                                        ReferenceProcessor* rp,
6663                                                        CMSBitMap* bit_map,
6664                                                        CMSBitMap* mod_union_table,
6665                                                        CMSMarkStack*  mark_stack,
6666                                                        CMSMarkStack*  revisit_stack,
6667                                                        CMSCollector* collector,
6668                                                        bool should_yield,
6669                                                        bool concurrent_precleaning):
6670   _collector(collector),
6671   _span(span),
6672   _bit_map(bit_map),
6673   _mark_stack(mark_stack),
6674   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6675                       mark_stack, revisit_stack, concurrent_precleaning),
6676   _yield(should_yield),
6677   _concurrent_precleaning(concurrent_precleaning),
6678   _freelistLock(NULL)
6679 {
6680   _ref_processor = rp;
6681   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6682 }
6683 
6684 // This closure is used to mark refs into the CMS generation at the
6685 // second (final) checkpoint, and to scan and transitively follow
6686 // the unmarked oops. It is also used during the concurrent precleaning
6687 // phase while scanning objects on dirty cards in the CMS generation.
6688 // The marks are made in the marking bit map and the marking stack is
6689 // used for keeping the (newly) grey objects during the scan.
6690 // The parallel version (Par_...) appears further below.
6691 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6692   if (obj != NULL) {
6693     assert(obj->is_oop(), "expected an oop");
6694     HeapWord* addr = (HeapWord*)obj;
6695     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6696     assert(_collector->overflow_list_is_empty(),
6697            "overflow list should be empty");
6698     if (_span.contains(addr) &&
6699         !_bit_map->isMarked(addr)) {
6700       // mark bit map (object is now grey)
6701       _bit_map->mark(addr);
6702       // push on marking stack (stack should be empty), and drain the
6703       // stack by applying this closure to the oops in the oops popped
6704       // from the stack (i.e. blacken the grey objects)
6705       bool res = _mark_stack->push(obj);
6706       assert(res, "Should have space to push on empty stack");
6707       do {
6708         oop new_oop = _mark_stack->pop();
6709         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6710         assert(new_oop->is_parsable(), "Found unparsable oop");
6711         assert(_bit_map->isMarked((HeapWord*)new_oop),
6712                "only grey objects on this stack");
6713         // iterate over the oops in this oop, marking and pushing
6714         // the ones in CMS heap (i.e. in _span).
6715         new_oop->oop_iterate(&_pushAndMarkClosure);
6716         // check if it's time to yield
6717         do_yield_check();
6718       } while (!_mark_stack->isEmpty() ||
6719                (!_concurrent_precleaning && take_from_overflow_list()));
6720         // if marking stack is empty, and we are not doing this
6721         // during precleaning, then check the overflow list
6722     }
6723     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6724     assert(_collector->overflow_list_is_empty(),
6725            "overflow list was drained above");
6726     // We could restore evacuated mark words, if any, used for
6727     // overflow list links here because the overflow list is
6728     // provably empty here. That would reduce the maximum
6729     // size requirements for preserved_{oop,mark}_stack.
6730     // But we'll just postpone it until we are all done
6731     // so we can just stream through.
6732     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6733       _collector->restore_preserved_marks_if_any();
6734       assert(_collector->no_preserved_marks(), "No preserved marks");
6735     }
6736     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6737            "All preserved marks should have been restored above");
6738   }
6739 }
6740 
6741 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6742 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6743 
6744 void MarkRefsIntoAndScanClosure::do_yield_work() {
6745   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6746          "CMS thread should hold CMS token");
6747   assert_lock_strong(_freelistLock);
6748   assert_lock_strong(_bit_map->lock());
6749   // relinquish the free_list_lock and bitMaplock()
6750   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6751   _bit_map->lock()->unlock();
6752   _freelistLock->unlock();
6753   ConcurrentMarkSweepThread::desynchronize(true);
6754   ConcurrentMarkSweepThread::acknowledge_yield_request();
6755   _collector->stopTimer();
6756   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6757   if (PrintCMSStatistics != 0) {
6758     _collector->incrementYields();
6759   }
6760   _collector->icms_wait();
6761 
6762   // See the comment in coordinator_yield()
6763   for (unsigned i = 0;
6764        i < CMSYieldSleepCount &&
6765        ConcurrentMarkSweepThread::should_yield() &&
6766        !CMSCollector::foregroundGCIsActive();
6767        ++i) {
6768     os::sleep(Thread::current(), 1, false);
6769     ConcurrentMarkSweepThread::acknowledge_yield_request();
6770   }
6771 
6772   ConcurrentMarkSweepThread::synchronize(true);
6773   _freelistLock->lock_without_safepoint_check();
6774   _bit_map->lock()->lock_without_safepoint_check();
6775   _collector->startTimer();
6776 }
6777 
6778 ///////////////////////////////////////////////////////////
6779 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6780 //                                 MarkRefsIntoAndScanClosure
6781 ///////////////////////////////////////////////////////////
6782 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6783   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6784   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
6785   _span(span),
6786   _bit_map(bit_map),
6787   _work_queue(work_queue),
6788   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6789                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6790   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
6791                           revisit_stack)
6792 {
6793   _ref_processor = rp;
6794   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6795 }
6796 
6797 // This closure is used to mark refs into the CMS generation at the
6798 // second (final) checkpoint, and to scan and transitively follow
6799 // the unmarked oops. The marks are made in the marking bit map and
6800 // the work_queue is used for keeping the (newly) grey objects during
6801 // the scan phase whence they are also available for stealing by parallel
6802 // threads. Since the marking bit map is shared, updates are
6803 // synchronized (via CAS).
6804 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6805   if (obj != NULL) {
6806     // Ignore mark word because this could be an already marked oop
6807     // that may be chained at the end of the overflow list.
6808     assert(obj->is_oop(true), "expected an oop");
6809     HeapWord* addr = (HeapWord*)obj;
6810     if (_span.contains(addr) &&
6811         !_bit_map->isMarked(addr)) {
6812       // mark bit map (object will become grey):
6813       // It is possible for several threads to be
6814       // trying to "claim" this object concurrently;
6815       // the unique thread that succeeds in marking the
6816       // object first will do the subsequent push on
6817       // to the work queue (or overflow list).
6818       if (_bit_map->par_mark(addr)) {
6819         // push on work_queue (which may not be empty), and trim the
6820         // queue to an appropriate length by applying this closure to
6821         // the oops in the oops popped from the stack (i.e. blacken the
6822         // grey objects)
6823         bool res = _work_queue->push(obj);
6824         assert(res, "Low water mark should be less than capacity?");
6825         trim_queue(_low_water_mark);
6826       } // Else, another thread claimed the object
6827     }
6828   }
6829 }
6830 
6831 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6832 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6833 
6834 // This closure is used to rescan the marked objects on the dirty cards
6835 // in the mod union table and the card table proper.
6836 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6837   oop p, MemRegion mr) {
6838 
6839   size_t size = 0;
6840   HeapWord* addr = (HeapWord*)p;
6841   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6842   assert(_span.contains(addr), "we are scanning the CMS generation");
6843   // check if it's time to yield
6844   if (do_yield_check()) {
6845     // We yielded for some foreground stop-world work,
6846     // and we have been asked to abort this ongoing preclean cycle.
6847     return 0;
6848   }
6849   if (_bitMap->isMarked(addr)) {
6850     // it's marked; is it potentially uninitialized?
6851     if (p->klass_or_null() != NULL) {
6852       // If is_conc_safe is false, the object may be undergoing
6853       // change by the VM outside a safepoint.  Don't try to
6854       // scan it, but rather leave it for the remark phase.
6855       if (CMSPermGenPrecleaningEnabled &&
6856           (!p->is_conc_safe() || !p->is_parsable())) {
6857         // Signal precleaning to redirty the card since
6858         // the klass pointer is already installed.
6859         assert(size == 0, "Initial value");
6860       } else {
6861         assert(p->is_parsable(), "must be parsable.");
6862         // an initialized object; ignore mark word in verification below
6863         // since we are running concurrent with mutators
6864         assert(p->is_oop(true), "should be an oop");
6865         if (p->is_objArray()) {
6866           // objArrays are precisely marked; restrict scanning
6867           // to dirty cards only.
6868           size = CompactibleFreeListSpace::adjustObjectSize(
6869                    p->oop_iterate(_scanningClosure, mr));
6870         } else {
6871           // A non-array may have been imprecisely marked; we need
6872           // to scan object in its entirety.
6873           size = CompactibleFreeListSpace::adjustObjectSize(
6874                    p->oop_iterate(_scanningClosure));
6875         }
6876         #ifdef DEBUG
6877           size_t direct_size =
6878             CompactibleFreeListSpace::adjustObjectSize(p->size());
6879           assert(size == direct_size, "Inconsistency in size");
6880           assert(size >= 3, "Necessary for Printezis marks to work");
6881           if (!_bitMap->isMarked(addr+1)) {
6882             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6883           } else {
6884             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6885             assert(_bitMap->isMarked(addr+size-1),
6886                    "inconsistent Printezis mark");
6887           }
6888         #endif // DEBUG
6889       }
6890     } else {
6891       // an unitialized object
6892       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6893       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6894       size = pointer_delta(nextOneAddr + 1, addr);
6895       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6896              "alignment problem");
6897       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6898       // will dirty the card when the klass pointer is installed in the
6899       // object (signalling the completion of initialization).
6900     }
6901   } else {
6902     // Either a not yet marked object or an uninitialized object
6903     if (p->klass_or_null() == NULL || !p->is_parsable()) {
6904       // An uninitialized object, skip to the next card, since
6905       // we may not be able to read its P-bits yet.
6906       assert(size == 0, "Initial value");
6907     } else {
6908       // An object not (yet) reached by marking: we merely need to
6909       // compute its size so as to go look at the next block.
6910       assert(p->is_oop(true), "should be an oop");
6911       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6912     }
6913   }
6914   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6915   return size;
6916 }
6917 
6918 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6919   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6920          "CMS thread should hold CMS token");
6921   assert_lock_strong(_freelistLock);
6922   assert_lock_strong(_bitMap->lock());
6923   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6924   // relinquish the free_list_lock and bitMaplock()
6925   _bitMap->lock()->unlock();
6926   _freelistLock->unlock();
6927   ConcurrentMarkSweepThread::desynchronize(true);
6928   ConcurrentMarkSweepThread::acknowledge_yield_request();
6929   _collector->stopTimer();
6930   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6931   if (PrintCMSStatistics != 0) {
6932     _collector->incrementYields();
6933   }
6934   _collector->icms_wait();
6935 
6936   // See the comment in coordinator_yield()
6937   for (unsigned i = 0; i < CMSYieldSleepCount &&
6938                    ConcurrentMarkSweepThread::should_yield() &&
6939                    !CMSCollector::foregroundGCIsActive(); ++i) {
6940     os::sleep(Thread::current(), 1, false);
6941     ConcurrentMarkSweepThread::acknowledge_yield_request();
6942   }
6943 
6944   ConcurrentMarkSweepThread::synchronize(true);
6945   _freelistLock->lock_without_safepoint_check();
6946   _bitMap->lock()->lock_without_safepoint_check();
6947   _collector->startTimer();
6948 }
6949 
6950 
6951 //////////////////////////////////////////////////////////////////
6952 // SurvivorSpacePrecleanClosure
6953 //////////////////////////////////////////////////////////////////
6954 // This (single-threaded) closure is used to preclean the oops in
6955 // the survivor spaces.
6956 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6957 
6958   HeapWord* addr = (HeapWord*)p;
6959   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6960   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6961   assert(p->klass_or_null() != NULL, "object should be initializd");
6962   assert(p->is_parsable(), "must be parsable.");
6963   // an initialized object; ignore mark word in verification below
6964   // since we are running concurrent with mutators
6965   assert(p->is_oop(true), "should be an oop");
6966   // Note that we do not yield while we iterate over
6967   // the interior oops of p, pushing the relevant ones
6968   // on our marking stack.
6969   size_t size = p->oop_iterate(_scanning_closure);
6970   do_yield_check();
6971   // Observe that below, we do not abandon the preclean
6972   // phase as soon as we should; rather we empty the
6973   // marking stack before returning. This is to satisfy
6974   // some existing assertions. In general, it may be a
6975   // good idea to abort immediately and complete the marking
6976   // from the grey objects at a later time.
6977   while (!_mark_stack->isEmpty()) {
6978     oop new_oop = _mark_stack->pop();
6979     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6980     assert(new_oop->is_parsable(), "Found unparsable oop");
6981     assert(_bit_map->isMarked((HeapWord*)new_oop),
6982            "only grey objects on this stack");
6983     // iterate over the oops in this oop, marking and pushing
6984     // the ones in CMS heap (i.e. in _span).
6985     new_oop->oop_iterate(_scanning_closure);
6986     // check if it's time to yield
6987     do_yield_check();
6988   }
6989   unsigned int after_count =
6990     GenCollectedHeap::heap()->total_collections();
6991   bool abort = (_before_count != after_count) ||
6992                _collector->should_abort_preclean();
6993   return abort ? 0 : size;
6994 }
6995 
6996 void SurvivorSpacePrecleanClosure::do_yield_work() {
6997   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6998          "CMS thread should hold CMS token");
6999   assert_lock_strong(_bit_map->lock());
7000   DEBUG_ONLY(RememberKlassesChecker smx(false);)
7001   // Relinquish the bit map lock
7002   _bit_map->lock()->unlock();
7003   ConcurrentMarkSweepThread::desynchronize(true);
7004   ConcurrentMarkSweepThread::acknowledge_yield_request();
7005   _collector->stopTimer();
7006   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7007   if (PrintCMSStatistics != 0) {
7008     _collector->incrementYields();
7009   }
7010   _collector->icms_wait();
7011 
7012   // See the comment in coordinator_yield()
7013   for (unsigned i = 0; i < CMSYieldSleepCount &&
7014                        ConcurrentMarkSweepThread::should_yield() &&
7015                        !CMSCollector::foregroundGCIsActive(); ++i) {
7016     os::sleep(Thread::current(), 1, false);
7017     ConcurrentMarkSweepThread::acknowledge_yield_request();
7018   }
7019 
7020   ConcurrentMarkSweepThread::synchronize(true);
7021   _bit_map->lock()->lock_without_safepoint_check();
7022   _collector->startTimer();
7023 }
7024 
7025 // This closure is used to rescan the marked objects on the dirty cards
7026 // in the mod union table and the card table proper. In the parallel
7027 // case, although the bitMap is shared, we do a single read so the
7028 // isMarked() query is "safe".
7029 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7030   // Ignore mark word because we are running concurrent with mutators
7031   assert(p->is_oop_or_null(true), "expected an oop or null");
7032   HeapWord* addr = (HeapWord*)p;
7033   assert(_span.contains(addr), "we are scanning the CMS generation");
7034   bool is_obj_array = false;
7035   #ifdef DEBUG
7036     if (!_parallel) {
7037       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7038       assert(_collector->overflow_list_is_empty(),
7039              "overflow list should be empty");
7040 
7041     }
7042   #endif // DEBUG
7043   if (_bit_map->isMarked(addr)) {
7044     // Obj arrays are precisely marked, non-arrays are not;
7045     // so we scan objArrays precisely and non-arrays in their
7046     // entirety.
7047     if (p->is_objArray()) {
7048       is_obj_array = true;
7049       if (_parallel) {
7050         p->oop_iterate(_par_scan_closure, mr);
7051       } else {
7052         p->oop_iterate(_scan_closure, mr);
7053       }
7054     } else {
7055       if (_parallel) {
7056         p->oop_iterate(_par_scan_closure);
7057       } else {
7058         p->oop_iterate(_scan_closure);
7059       }
7060     }
7061   }
7062   #ifdef DEBUG
7063     if (!_parallel) {
7064       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7065       assert(_collector->overflow_list_is_empty(),
7066              "overflow list should be empty");
7067 
7068     }
7069   #endif // DEBUG
7070   return is_obj_array;
7071 }
7072 
7073 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7074                         MemRegion span,
7075                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7076                         CMSMarkStack*  revisitStack,
7077                         bool should_yield, bool verifying):
7078   _collector(collector),
7079   _span(span),
7080   _bitMap(bitMap),
7081   _mut(&collector->_modUnionTable),
7082   _markStack(markStack),
7083   _revisitStack(revisitStack),
7084   _yield(should_yield),
7085   _skipBits(0)
7086 {
7087   assert(_markStack->isEmpty(), "stack should be empty");
7088   _finger = _bitMap->startWord();
7089   _threshold = _finger;
7090   assert(_collector->_restart_addr == NULL, "Sanity check");
7091   assert(_span.contains(_finger), "Out of bounds _finger?");
7092   DEBUG_ONLY(_verifying = verifying;)
7093 }
7094 
7095 void MarkFromRootsClosure::reset(HeapWord* addr) {
7096   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7097   assert(_span.contains(addr), "Out of bounds _finger?");
7098   _finger = addr;
7099   _threshold = (HeapWord*)round_to(
7100                  (intptr_t)_finger, CardTableModRefBS::card_size);
7101 }
7102 
7103 // Should revisit to see if this should be restructured for
7104 // greater efficiency.
7105 bool MarkFromRootsClosure::do_bit(size_t offset) {
7106   if (_skipBits > 0) {
7107     _skipBits--;
7108     return true;
7109   }
7110   // convert offset into a HeapWord*
7111   HeapWord* addr = _bitMap->startWord() + offset;
7112   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7113          "address out of range");
7114   assert(_bitMap->isMarked(addr), "tautology");
7115   if (_bitMap->isMarked(addr+1)) {
7116     // this is an allocated but not yet initialized object
7117     assert(_skipBits == 0, "tautology");
7118     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7119     oop p = oop(addr);
7120     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7121       DEBUG_ONLY(if (!_verifying) {)
7122         // We re-dirty the cards on which this object lies and increase
7123         // the _threshold so that we'll come back to scan this object
7124         // during the preclean or remark phase. (CMSCleanOnEnter)
7125         if (CMSCleanOnEnter) {
7126           size_t sz = _collector->block_size_using_printezis_bits(addr);
7127           HeapWord* end_card_addr   = (HeapWord*)round_to(
7128                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7129           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7130           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7131           // Bump _threshold to end_card_addr; note that
7132           // _threshold cannot possibly exceed end_card_addr, anyhow.
7133           // This prevents future clearing of the card as the scan proceeds
7134           // to the right.
7135           assert(_threshold <= end_card_addr,
7136                  "Because we are just scanning into this object");
7137           if (_threshold < end_card_addr) {
7138             _threshold = end_card_addr;
7139           }
7140           if (p->klass_or_null() != NULL) {
7141             // Redirty the range of cards...
7142             _mut->mark_range(redirty_range);
7143           } // ...else the setting of klass will dirty the card anyway.
7144         }
7145       DEBUG_ONLY(})
7146       return true;
7147     }
7148   }
7149   scanOopsInOop(addr);
7150   return true;
7151 }
7152 
7153 // We take a break if we've been at this for a while,
7154 // so as to avoid monopolizing the locks involved.
7155 void MarkFromRootsClosure::do_yield_work() {
7156   // First give up the locks, then yield, then re-lock
7157   // We should probably use a constructor/destructor idiom to
7158   // do this unlock/lock or modify the MutexUnlocker class to
7159   // serve our purpose. XXX
7160   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7161          "CMS thread should hold CMS token");
7162   assert_lock_strong(_bitMap->lock());
7163   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7164   _bitMap->lock()->unlock();
7165   ConcurrentMarkSweepThread::desynchronize(true);
7166   ConcurrentMarkSweepThread::acknowledge_yield_request();
7167   _collector->stopTimer();
7168   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7169   if (PrintCMSStatistics != 0) {
7170     _collector->incrementYields();
7171   }
7172   _collector->icms_wait();
7173 
7174   // See the comment in coordinator_yield()
7175   for (unsigned i = 0; i < CMSYieldSleepCount &&
7176                        ConcurrentMarkSweepThread::should_yield() &&
7177                        !CMSCollector::foregroundGCIsActive(); ++i) {
7178     os::sleep(Thread::current(), 1, false);
7179     ConcurrentMarkSweepThread::acknowledge_yield_request();
7180   }
7181 
7182   ConcurrentMarkSweepThread::synchronize(true);
7183   _bitMap->lock()->lock_without_safepoint_check();
7184   _collector->startTimer();
7185 }
7186 
7187 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7188   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7189   assert(_markStack->isEmpty(),
7190          "should drain stack to limit stack usage");
7191   // convert ptr to an oop preparatory to scanning
7192   oop obj = oop(ptr);
7193   // Ignore mark word in verification below, since we
7194   // may be running concurrent with mutators.
7195   assert(obj->is_oop(true), "should be an oop");
7196   assert(_finger <= ptr, "_finger runneth ahead");
7197   // advance the finger to right end of this object
7198   _finger = ptr + obj->size();
7199   assert(_finger > ptr, "we just incremented it above");
7200   // On large heaps, it may take us some time to get through
7201   // the marking phase (especially if running iCMS). During
7202   // this time it's possible that a lot of mutations have
7203   // accumulated in the card table and the mod union table --
7204   // these mutation records are redundant until we have
7205   // actually traced into the corresponding card.
7206   // Here, we check whether advancing the finger would make
7207   // us cross into a new card, and if so clear corresponding
7208   // cards in the MUT (preclean them in the card-table in the
7209   // future).
7210 
7211   DEBUG_ONLY(if (!_verifying) {)
7212     // The clean-on-enter optimization is disabled by default,
7213     // until we fix 6178663.
7214     if (CMSCleanOnEnter && (_finger > _threshold)) {
7215       // [_threshold, _finger) represents the interval
7216       // of cards to be cleared  in MUT (or precleaned in card table).
7217       // The set of cards to be cleared is all those that overlap
7218       // with the interval [_threshold, _finger); note that
7219       // _threshold is always kept card-aligned but _finger isn't
7220       // always card-aligned.
7221       HeapWord* old_threshold = _threshold;
7222       assert(old_threshold == (HeapWord*)round_to(
7223               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7224              "_threshold should always be card-aligned");
7225       _threshold = (HeapWord*)round_to(
7226                      (intptr_t)_finger, CardTableModRefBS::card_size);
7227       MemRegion mr(old_threshold, _threshold);
7228       assert(!mr.is_empty(), "Control point invariant");
7229       assert(_span.contains(mr), "Should clear within span");
7230       // XXX When _finger crosses from old gen into perm gen
7231       // we may be doing unnecessary cleaning; do better in the
7232       // future by detecting that condition and clearing fewer
7233       // MUT/CT entries.
7234       _mut->clear_range(mr);
7235     }
7236   DEBUG_ONLY(})
7237   // Note: the finger doesn't advance while we drain
7238   // the stack below.
7239   PushOrMarkClosure pushOrMarkClosure(_collector,
7240                                       _span, _bitMap, _markStack,
7241                                       _revisitStack,
7242                                       _finger, this);
7243   bool res = _markStack->push(obj);
7244   assert(res, "Empty non-zero size stack should have space for single push");
7245   while (!_markStack->isEmpty()) {
7246     oop new_oop = _markStack->pop();
7247     // Skip verifying header mark word below because we are
7248     // running concurrent with mutators.
7249     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7250     // now scan this oop's oops
7251     new_oop->oop_iterate(&pushOrMarkClosure);
7252     do_yield_check();
7253   }
7254   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7255 }
7256 
7257 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7258                        CMSCollector* collector, MemRegion span,
7259                        CMSBitMap* bit_map,
7260                        OopTaskQueue* work_queue,
7261                        CMSMarkStack*  overflow_stack,
7262                        CMSMarkStack*  revisit_stack,
7263                        bool should_yield):
7264   _collector(collector),
7265   _whole_span(collector->_span),
7266   _span(span),
7267   _bit_map(bit_map),
7268   _mut(&collector->_modUnionTable),
7269   _work_queue(work_queue),
7270   _overflow_stack(overflow_stack),
7271   _revisit_stack(revisit_stack),
7272   _yield(should_yield),
7273   _skip_bits(0),
7274   _task(task)
7275 {
7276   assert(_work_queue->size() == 0, "work_queue should be empty");
7277   _finger = span.start();
7278   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7279   assert(_span.contains(_finger), "Out of bounds _finger?");
7280 }
7281 
7282 // Should revisit to see if this should be restructured for
7283 // greater efficiency.
7284 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7285   if (_skip_bits > 0) {
7286     _skip_bits--;
7287     return true;
7288   }
7289   // convert offset into a HeapWord*
7290   HeapWord* addr = _bit_map->startWord() + offset;
7291   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7292          "address out of range");
7293   assert(_bit_map->isMarked(addr), "tautology");
7294   if (_bit_map->isMarked(addr+1)) {
7295     // this is an allocated object that might not yet be initialized
7296     assert(_skip_bits == 0, "tautology");
7297     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7298     oop p = oop(addr);
7299     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7300       // in the case of Clean-on-Enter optimization, redirty card
7301       // and avoid clearing card by increasing  the threshold.
7302       return true;
7303     }
7304   }
7305   scan_oops_in_oop(addr);
7306   return true;
7307 }
7308 
7309 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7310   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7311   // Should we assert that our work queue is empty or
7312   // below some drain limit?
7313   assert(_work_queue->size() == 0,
7314          "should drain stack to limit stack usage");
7315   // convert ptr to an oop preparatory to scanning
7316   oop obj = oop(ptr);
7317   // Ignore mark word in verification below, since we
7318   // may be running concurrent with mutators.
7319   assert(obj->is_oop(true), "should be an oop");
7320   assert(_finger <= ptr, "_finger runneth ahead");
7321   // advance the finger to right end of this object
7322   _finger = ptr + obj->size();
7323   assert(_finger > ptr, "we just incremented it above");
7324   // On large heaps, it may take us some time to get through
7325   // the marking phase (especially if running iCMS). During
7326   // this time it's possible that a lot of mutations have
7327   // accumulated in the card table and the mod union table --
7328   // these mutation records are redundant until we have
7329   // actually traced into the corresponding card.
7330   // Here, we check whether advancing the finger would make
7331   // us cross into a new card, and if so clear corresponding
7332   // cards in the MUT (preclean them in the card-table in the
7333   // future).
7334 
7335   // The clean-on-enter optimization is disabled by default,
7336   // until we fix 6178663.
7337   if (CMSCleanOnEnter && (_finger > _threshold)) {
7338     // [_threshold, _finger) represents the interval
7339     // of cards to be cleared  in MUT (or precleaned in card table).
7340     // The set of cards to be cleared is all those that overlap
7341     // with the interval [_threshold, _finger); note that
7342     // _threshold is always kept card-aligned but _finger isn't
7343     // always card-aligned.
7344     HeapWord* old_threshold = _threshold;
7345     assert(old_threshold == (HeapWord*)round_to(
7346             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7347            "_threshold should always be card-aligned");
7348     _threshold = (HeapWord*)round_to(
7349                    (intptr_t)_finger, CardTableModRefBS::card_size);
7350     MemRegion mr(old_threshold, _threshold);
7351     assert(!mr.is_empty(), "Control point invariant");
7352     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7353     // XXX When _finger crosses from old gen into perm gen
7354     // we may be doing unnecessary cleaning; do better in the
7355     // future by detecting that condition and clearing fewer
7356     // MUT/CT entries.
7357     _mut->clear_range(mr);
7358   }
7359 
7360   // Note: the local finger doesn't advance while we drain
7361   // the stack below, but the global finger sure can and will.
7362   HeapWord** gfa = _task->global_finger_addr();
7363   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7364                                       _span, _bit_map,
7365                                       _work_queue,
7366                                       _overflow_stack,
7367                                       _revisit_stack,
7368                                       _finger,
7369                                       gfa, this);
7370   bool res = _work_queue->push(obj);   // overflow could occur here
7371   assert(res, "Will hold once we use workqueues");
7372   while (true) {
7373     oop new_oop;
7374     if (!_work_queue->pop_local(new_oop)) {
7375       // We emptied our work_queue; check if there's stuff that can
7376       // be gotten from the overflow stack.
7377       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7378             _overflow_stack, _work_queue)) {
7379         do_yield_check();
7380         continue;
7381       } else {  // done
7382         break;
7383       }
7384     }
7385     // Skip verifying header mark word below because we are
7386     // running concurrent with mutators.
7387     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7388     // now scan this oop's oops
7389     new_oop->oop_iterate(&pushOrMarkClosure);
7390     do_yield_check();
7391   }
7392   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7393 }
7394 
7395 // Yield in response to a request from VM Thread or
7396 // from mutators.
7397 void Par_MarkFromRootsClosure::do_yield_work() {
7398   assert(_task != NULL, "sanity");
7399   _task->yield();
7400 }
7401 
7402 // A variant of the above used for verifying CMS marking work.
7403 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7404                         MemRegion span,
7405                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7406                         CMSMarkStack*  mark_stack):
7407   _collector(collector),
7408   _span(span),
7409   _verification_bm(verification_bm),
7410   _cms_bm(cms_bm),
7411   _mark_stack(mark_stack),
7412   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7413                       mark_stack)
7414 {
7415   assert(_mark_stack->isEmpty(), "stack should be empty");
7416   _finger = _verification_bm->startWord();
7417   assert(_collector->_restart_addr == NULL, "Sanity check");
7418   assert(_span.contains(_finger), "Out of bounds _finger?");
7419 }
7420 
7421 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7422   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7423   assert(_span.contains(addr), "Out of bounds _finger?");
7424   _finger = addr;
7425 }
7426 
7427 // Should revisit to see if this should be restructured for
7428 // greater efficiency.
7429 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7430   // convert offset into a HeapWord*
7431   HeapWord* addr = _verification_bm->startWord() + offset;
7432   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7433          "address out of range");
7434   assert(_verification_bm->isMarked(addr), "tautology");
7435   assert(_cms_bm->isMarked(addr), "tautology");
7436 
7437   assert(_mark_stack->isEmpty(),
7438          "should drain stack to limit stack usage");
7439   // convert addr to an oop preparatory to scanning
7440   oop obj = oop(addr);
7441   assert(obj->is_oop(), "should be an oop");
7442   assert(_finger <= addr, "_finger runneth ahead");
7443   // advance the finger to right end of this object
7444   _finger = addr + obj->size();
7445   assert(_finger > addr, "we just incremented it above");
7446   // Note: the finger doesn't advance while we drain
7447   // the stack below.
7448   bool res = _mark_stack->push(obj);
7449   assert(res, "Empty non-zero size stack should have space for single push");
7450   while (!_mark_stack->isEmpty()) {
7451     oop new_oop = _mark_stack->pop();
7452     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7453     // now scan this oop's oops
7454     new_oop->oop_iterate(&_pam_verify_closure);
7455   }
7456   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7457   return true;
7458 }
7459 
7460 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7461   CMSCollector* collector, MemRegion span,
7462   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7463   CMSMarkStack*  mark_stack):
7464   OopClosure(collector->ref_processor()),
7465   _collector(collector),
7466   _span(span),
7467   _verification_bm(verification_bm),
7468   _cms_bm(cms_bm),
7469   _mark_stack(mark_stack)
7470 { }
7471 
7472 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7473 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7474 
7475 // Upon stack overflow, we discard (part of) the stack,
7476 // remembering the least address amongst those discarded
7477 // in CMSCollector's _restart_address.
7478 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7479   // Remember the least grey address discarded
7480   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7481   _collector->lower_restart_addr(ra);
7482   _mark_stack->reset();  // discard stack contents
7483   _mark_stack->expand(); // expand the stack if possible
7484 }
7485 
7486 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7487   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7488   HeapWord* addr = (HeapWord*)obj;
7489   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7490     // Oop lies in _span and isn't yet grey or black
7491     _verification_bm->mark(addr);            // now grey
7492     if (!_cms_bm->isMarked(addr)) {
7493       oop(addr)->print();
7494       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7495                              addr);
7496       fatal("... aborting");
7497     }
7498 
7499     if (!_mark_stack->push(obj)) { // stack overflow
7500       if (PrintCMSStatistics != 0) {
7501         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7502                                SIZE_FORMAT, _mark_stack->capacity());
7503       }
7504       assert(_mark_stack->isFull(), "Else push should have succeeded");
7505       handle_stack_overflow(addr);
7506     }
7507     // anything including and to the right of _finger
7508     // will be scanned as we iterate over the remainder of the
7509     // bit map
7510   }
7511 }
7512 
7513 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7514                      MemRegion span,
7515                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7516                      CMSMarkStack*  revisitStack,
7517                      HeapWord* finger, MarkFromRootsClosure* parent) :
7518   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
7519   _span(span),
7520   _bitMap(bitMap),
7521   _markStack(markStack),
7522   _finger(finger),
7523   _parent(parent)
7524 { }
7525 
7526 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7527                      MemRegion span,
7528                      CMSBitMap* bit_map,
7529                      OopTaskQueue* work_queue,
7530                      CMSMarkStack*  overflow_stack,
7531                      CMSMarkStack*  revisit_stack,
7532                      HeapWord* finger,
7533                      HeapWord** global_finger_addr,
7534                      Par_MarkFromRootsClosure* parent) :
7535   Par_KlassRememberingOopClosure(collector,
7536                             collector->ref_processor(),
7537                             revisit_stack),
7538   _whole_span(collector->_span),
7539   _span(span),
7540   _bit_map(bit_map),
7541   _work_queue(work_queue),
7542   _overflow_stack(overflow_stack),
7543   _finger(finger),
7544   _global_finger_addr(global_finger_addr),
7545   _parent(parent)
7546 { }
7547 
7548 // Assumes thread-safe access by callers, who are
7549 // responsible for mutual exclusion.
7550 void CMSCollector::lower_restart_addr(HeapWord* low) {
7551   assert(_span.contains(low), "Out of bounds addr");
7552   if (_restart_addr == NULL) {
7553     _restart_addr = low;
7554   } else {
7555     _restart_addr = MIN2(_restart_addr, low);
7556   }
7557 }
7558 
7559 // Upon stack overflow, we discard (part of) the stack,
7560 // remembering the least address amongst those discarded
7561 // in CMSCollector's _restart_address.
7562 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7563   // Remember the least grey address discarded
7564   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7565   _collector->lower_restart_addr(ra);
7566   _markStack->reset();  // discard stack contents
7567   _markStack->expand(); // expand the stack if possible
7568 }
7569 
7570 // Upon stack overflow, we discard (part of) the stack,
7571 // remembering the least address amongst those discarded
7572 // in CMSCollector's _restart_address.
7573 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7574   // We need to do this under a mutex to prevent other
7575   // workers from interfering with the work done below.
7576   MutexLockerEx ml(_overflow_stack->par_lock(),
7577                    Mutex::_no_safepoint_check_flag);
7578   // Remember the least grey address discarded
7579   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7580   _collector->lower_restart_addr(ra);
7581   _overflow_stack->reset();  // discard stack contents
7582   _overflow_stack->expand(); // expand the stack if possible
7583 }
7584 
7585 void PushOrMarkClosure::do_oop(oop obj) {
7586   // Ignore mark word because we are running concurrent with mutators.
7587   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7588   HeapWord* addr = (HeapWord*)obj;
7589   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7590     // Oop lies in _span and isn't yet grey or black
7591     _bitMap->mark(addr);            // now grey
7592     if (addr < _finger) {
7593       // the bit map iteration has already either passed, or
7594       // sampled, this bit in the bit map; we'll need to
7595       // use the marking stack to scan this oop's oops.
7596       bool simulate_overflow = false;
7597       NOT_PRODUCT(
7598         if (CMSMarkStackOverflowALot &&
7599             _collector->simulate_overflow()) {
7600           // simulate a stack overflow
7601           simulate_overflow = true;
7602         }
7603       )
7604       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7605         if (PrintCMSStatistics != 0) {
7606           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7607                                  SIZE_FORMAT, _markStack->capacity());
7608         }
7609         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7610         handle_stack_overflow(addr);
7611       }
7612     }
7613     // anything including and to the right of _finger
7614     // will be scanned as we iterate over the remainder of the
7615     // bit map
7616     do_yield_check();
7617   }
7618 }
7619 
7620 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7621 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7622 
7623 void Par_PushOrMarkClosure::do_oop(oop obj) {
7624   // Ignore mark word because we are running concurrent with mutators.
7625   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7626   HeapWord* addr = (HeapWord*)obj;
7627   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7628     // Oop lies in _span and isn't yet grey or black
7629     // We read the global_finger (volatile read) strictly after marking oop
7630     bool res = _bit_map->par_mark(addr);    // now grey
7631     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7632     // Should we push this marked oop on our stack?
7633     // -- if someone else marked it, nothing to do
7634     // -- if target oop is above global finger nothing to do
7635     // -- if target oop is in chunk and above local finger
7636     //      then nothing to do
7637     // -- else push on work queue
7638     if (   !res       // someone else marked it, they will deal with it
7639         || (addr >= *gfa)  // will be scanned in a later task
7640         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7641       return;
7642     }
7643     // the bit map iteration has already either passed, or
7644     // sampled, this bit in the bit map; we'll need to
7645     // use the marking stack to scan this oop's oops.
7646     bool simulate_overflow = false;
7647     NOT_PRODUCT(
7648       if (CMSMarkStackOverflowALot &&
7649           _collector->simulate_overflow()) {
7650         // simulate a stack overflow
7651         simulate_overflow = true;
7652       }
7653     )
7654     if (simulate_overflow ||
7655         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7656       // stack overflow
7657       if (PrintCMSStatistics != 0) {
7658         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7659                                SIZE_FORMAT, _overflow_stack->capacity());
7660       }
7661       // We cannot assert that the overflow stack is full because
7662       // it may have been emptied since.
7663       assert(simulate_overflow ||
7664              _work_queue->size() == _work_queue->max_elems(),
7665             "Else push should have succeeded");
7666       handle_stack_overflow(addr);
7667     }
7668     do_yield_check();
7669   }
7670 }
7671 
7672 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7673 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7674 
7675 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
7676                                              ReferenceProcessor* rp,
7677                                              CMSMarkStack* revisit_stack) :
7678   OopClosure(rp),
7679   _collector(collector),
7680   _revisit_stack(revisit_stack),
7681   _should_remember_klasses(collector->should_unload_classes()) {}
7682 
7683 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7684                                        MemRegion span,
7685                                        ReferenceProcessor* rp,
7686                                        CMSBitMap* bit_map,
7687                                        CMSBitMap* mod_union_table,
7688                                        CMSMarkStack*  mark_stack,
7689                                        CMSMarkStack*  revisit_stack,
7690                                        bool           concurrent_precleaning):
7691   KlassRememberingOopClosure(collector, rp, revisit_stack),
7692   _span(span),
7693   _bit_map(bit_map),
7694   _mod_union_table(mod_union_table),
7695   _mark_stack(mark_stack),
7696   _concurrent_precleaning(concurrent_precleaning)
7697 {
7698   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7699 }
7700 
7701 // Grey object rescan during pre-cleaning and second checkpoint phases --
7702 // the non-parallel version (the parallel version appears further below.)
7703 void PushAndMarkClosure::do_oop(oop obj) {
7704   // Ignore mark word verification. If during concurrent precleaning,
7705   // the object monitor may be locked. If during the checkpoint
7706   // phases, the object may already have been reached by a  different
7707   // path and may be at the end of the global overflow list (so
7708   // the mark word may be NULL).
7709   assert(obj->is_oop_or_null(true /* ignore mark word */),
7710          "expected an oop or NULL");
7711   HeapWord* addr = (HeapWord*)obj;
7712   // Check if oop points into the CMS generation
7713   // and is not marked
7714   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7715     // a white object ...
7716     _bit_map->mark(addr);         // ... now grey
7717     // push on the marking stack (grey set)
7718     bool simulate_overflow = false;
7719     NOT_PRODUCT(
7720       if (CMSMarkStackOverflowALot &&
7721           _collector->simulate_overflow()) {
7722         // simulate a stack overflow
7723         simulate_overflow = true;
7724       }
7725     )
7726     if (simulate_overflow || !_mark_stack->push(obj)) {
7727       if (_concurrent_precleaning) {
7728          // During precleaning we can just dirty the appropriate card(s)
7729          // in the mod union table, thus ensuring that the object remains
7730          // in the grey set  and continue. In the case of object arrays
7731          // we need to dirty all of the cards that the object spans,
7732          // since the rescan of object arrays will be limited to the
7733          // dirty cards.
7734          // Note that no one can be intefering with us in this action
7735          // of dirtying the mod union table, so no locking or atomics
7736          // are required.
7737          if (obj->is_objArray()) {
7738            size_t sz = obj->size();
7739            HeapWord* end_card_addr = (HeapWord*)round_to(
7740                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7741            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7742            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7743            _mod_union_table->mark_range(redirty_range);
7744          } else {
7745            _mod_union_table->mark(addr);
7746          }
7747          _collector->_ser_pmc_preclean_ovflw++;
7748       } else {
7749          // During the remark phase, we need to remember this oop
7750          // in the overflow list.
7751          _collector->push_on_overflow_list(obj);
7752          _collector->_ser_pmc_remark_ovflw++;
7753       }
7754     }
7755   }
7756 }
7757 
7758 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7759                                                MemRegion span,
7760                                                ReferenceProcessor* rp,
7761                                                CMSBitMap* bit_map,
7762                                                OopTaskQueue* work_queue,
7763                                                CMSMarkStack* revisit_stack):
7764   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
7765   _span(span),
7766   _bit_map(bit_map),
7767   _work_queue(work_queue)
7768 {
7769   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7770 }
7771 
7772 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7773 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7774 
7775 // Grey object rescan during second checkpoint phase --
7776 // the parallel version.
7777 void Par_PushAndMarkClosure::do_oop(oop obj) {
7778   // In the assert below, we ignore the mark word because
7779   // this oop may point to an already visited object that is
7780   // on the overflow stack (in which case the mark word has
7781   // been hijacked for chaining into the overflow stack --
7782   // if this is the last object in the overflow stack then
7783   // its mark word will be NULL). Because this object may
7784   // have been subsequently popped off the global overflow
7785   // stack, and the mark word possibly restored to the prototypical
7786   // value, by the time we get to examined this failing assert in
7787   // the debugger, is_oop_or_null(false) may subsequently start
7788   // to hold.
7789   assert(obj->is_oop_or_null(true),
7790          "expected an oop or NULL");
7791   HeapWord* addr = (HeapWord*)obj;
7792   // Check if oop points into the CMS generation
7793   // and is not marked
7794   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7795     // a white object ...
7796     // If we manage to "claim" the object, by being the
7797     // first thread to mark it, then we push it on our
7798     // marking stack
7799     if (_bit_map->par_mark(addr)) {     // ... now grey
7800       // push on work queue (grey set)
7801       bool simulate_overflow = false;
7802       NOT_PRODUCT(
7803         if (CMSMarkStackOverflowALot &&
7804             _collector->par_simulate_overflow()) {
7805           // simulate a stack overflow
7806           simulate_overflow = true;
7807         }
7808       )
7809       if (simulate_overflow || !_work_queue->push(obj)) {
7810         _collector->par_push_on_overflow_list(obj);
7811         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7812       }
7813     } // Else, some other thread got there first
7814   }
7815 }
7816 
7817 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7818 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7819 
7820 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
7821   // TBD
7822 }
7823 
7824 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
7825   // TBD
7826 }
7827 
7828 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7829   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7830   Mutex* bml = _collector->bitMapLock();
7831   assert_lock_strong(bml);
7832   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7833          "CMS thread should hold CMS token");
7834 
7835   bml->unlock();
7836   ConcurrentMarkSweepThread::desynchronize(true);
7837 
7838   ConcurrentMarkSweepThread::acknowledge_yield_request();
7839 
7840   _collector->stopTimer();
7841   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7842   if (PrintCMSStatistics != 0) {
7843     _collector->incrementYields();
7844   }
7845   _collector->icms_wait();
7846 
7847   // See the comment in coordinator_yield()
7848   for (unsigned i = 0; i < CMSYieldSleepCount &&
7849                        ConcurrentMarkSweepThread::should_yield() &&
7850                        !CMSCollector::foregroundGCIsActive(); ++i) {
7851     os::sleep(Thread::current(), 1, false);
7852     ConcurrentMarkSweepThread::acknowledge_yield_request();
7853   }
7854 
7855   ConcurrentMarkSweepThread::synchronize(true);
7856   bml->lock();
7857 
7858   _collector->startTimer();
7859 }
7860 
7861 bool CMSPrecleanRefsYieldClosure::should_return() {
7862   if (ConcurrentMarkSweepThread::should_yield()) {
7863     do_yield_work();
7864   }
7865   return _collector->foregroundGCIsActive();
7866 }
7867 
7868 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7869   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7870          "mr should be aligned to start at a card boundary");
7871   // We'd like to assert:
7872   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7873   //        "mr should be a range of cards");
7874   // However, that would be too strong in one case -- the last
7875   // partition ends at _unallocated_block which, in general, can be
7876   // an arbitrary boundary, not necessarily card aligned.
7877   if (PrintCMSStatistics != 0) {
7878     _num_dirty_cards +=
7879          mr.word_size()/CardTableModRefBS::card_size_in_words;
7880   }
7881   _space->object_iterate_mem(mr, &_scan_cl);
7882 }
7883 
7884 SweepClosure::SweepClosure(CMSCollector* collector,
7885                            ConcurrentMarkSweepGeneration* g,
7886                            CMSBitMap* bitMap, bool should_yield) :
7887   _collector(collector),
7888   _g(g),
7889   _sp(g->cmsSpace()),
7890   _limit(_sp->sweep_limit()),
7891   _freelistLock(_sp->freelistLock()),
7892   _bitMap(bitMap),
7893   _yield(should_yield),
7894   _inFreeRange(false),           // No free range at beginning of sweep
7895   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7896   _lastFreeRangeCoalesced(false),
7897   _freeFinger(g->used_region().start())
7898 {
7899   NOT_PRODUCT(
7900     _numObjectsFreed = 0;
7901     _numWordsFreed   = 0;
7902     _numObjectsLive = 0;
7903     _numWordsLive = 0;
7904     _numObjectsAlreadyFree = 0;
7905     _numWordsAlreadyFree = 0;
7906     _last_fc = NULL;
7907 
7908     _sp->initializeIndexedFreeListArrayReturnedBytes();
7909     _sp->dictionary()->initialize_dict_returned_bytes();
7910   )
7911   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7912          "sweep _limit out of bounds");
7913   if (CMSTraceSweeper) {
7914     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7915                         _limit);
7916   }
7917 }
7918 
7919 void SweepClosure::print_on(outputStream* st) const {
7920   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7921                 _sp->bottom(), _sp->end());
7922   tty->print_cr("_limit = " PTR_FORMAT, _limit);
7923   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
7924   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
7925   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7926                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7927 }
7928 
7929 #ifndef PRODUCT
7930 // Assertion checking only:  no useful work in product mode --
7931 // however, if any of the flags below become product flags,
7932 // you may need to review this code to see if it needs to be
7933 // enabled in product mode.
7934 SweepClosure::~SweepClosure() {
7935   assert_lock_strong(_freelistLock);
7936   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7937          "sweep _limit out of bounds");
7938   if (inFreeRange()) {
7939     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7940     print();
7941     ShouldNotReachHere();
7942   }
7943   if (Verbose && PrintGC) {
7944     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7945                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7946     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7947                            SIZE_FORMAT" bytes  "
7948       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7949       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7950       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7951     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7952                         * sizeof(HeapWord);
7953     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7954 
7955     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7956       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7957       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7958       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7959       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7960       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7961         indexListReturnedBytes);
7962       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7963         dict_returned_bytes);
7964     }
7965   }
7966   if (CMSTraceSweeper) {
7967     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7968                            _limit);
7969   }
7970 }
7971 #endif  // PRODUCT
7972 
7973 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7974     bool freeRangeInFreeLists) {
7975   if (CMSTraceSweeper) {
7976     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
7977                freeFinger, freeRangeInFreeLists);
7978   }
7979   assert(!inFreeRange(), "Trampling existing free range");
7980   set_inFreeRange(true);
7981   set_lastFreeRangeCoalesced(false);
7982 
7983   set_freeFinger(freeFinger);
7984   set_freeRangeInFreeLists(freeRangeInFreeLists);
7985   if (CMSTestInFreeList) {
7986     if (freeRangeInFreeLists) {
7987       FreeChunk* fc = (FreeChunk*) freeFinger;
7988       assert(fc->is_free(), "A chunk on the free list should be free.");
7989       assert(fc->size() > 0, "Free range should have a size");
7990       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7991     }
7992   }
7993 }
7994 
7995 // Note that the sweeper runs concurrently with mutators. Thus,
7996 // it is possible for direct allocation in this generation to happen
7997 // in the middle of the sweep. Note that the sweeper also coalesces
7998 // contiguous free blocks. Thus, unless the sweeper and the allocator
7999 // synchronize appropriately freshly allocated blocks may get swept up.
8000 // This is accomplished by the sweeper locking the free lists while
8001 // it is sweeping. Thus blocks that are determined to be free are
8002 // indeed free. There is however one additional complication:
8003 // blocks that have been allocated since the final checkpoint and
8004 // mark, will not have been marked and so would be treated as
8005 // unreachable and swept up. To prevent this, the allocator marks
8006 // the bit map when allocating during the sweep phase. This leads,
8007 // however, to a further complication -- objects may have been allocated
8008 // but not yet initialized -- in the sense that the header isn't yet
8009 // installed. The sweeper can not then determine the size of the block
8010 // in order to skip over it. To deal with this case, we use a technique
8011 // (due to Printezis) to encode such uninitialized block sizes in the
8012 // bit map. Since the bit map uses a bit per every HeapWord, but the
8013 // CMS generation has a minimum object size of 3 HeapWords, it follows
8014 // that "normal marks" won't be adjacent in the bit map (there will
8015 // always be at least two 0 bits between successive 1 bits). We make use
8016 // of these "unused" bits to represent uninitialized blocks -- the bit
8017 // corresponding to the start of the uninitialized object and the next
8018 // bit are both set. Finally, a 1 bit marks the end of the object that
8019 // started with the two consecutive 1 bits to indicate its potentially
8020 // uninitialized state.
8021 
8022 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8023   FreeChunk* fc = (FreeChunk*)addr;
8024   size_t res;
8025 
8026   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8027   // than "addr == _limit" because although _limit was a block boundary when
8028   // we started the sweep, it may no longer be one because heap expansion
8029   // may have caused us to coalesce the block ending at the address _limit
8030   // with a newly expanded chunk (this happens when _limit was set to the
8031   // previous _end of the space), so we may have stepped past _limit:
8032   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8033   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8034     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8035            "sweep _limit out of bounds");
8036     assert(addr < _sp->end(), "addr out of bounds");
8037     // Flush any free range we might be holding as a single
8038     // coalesced chunk to the appropriate free list.
8039     if (inFreeRange()) {
8040       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8041              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8042       flush_cur_free_chunk(freeFinger(),
8043                            pointer_delta(addr, freeFinger()));
8044       if (CMSTraceSweeper) {
8045         gclog_or_tty->print("Sweep: last chunk: ");
8046         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8047                    "[coalesced:"SIZE_FORMAT"]\n",
8048                    freeFinger(), pointer_delta(addr, freeFinger()),
8049                    lastFreeRangeCoalesced());
8050       }
8051     }
8052 
8053     // help the iterator loop finish
8054     return pointer_delta(_sp->end(), addr);
8055   }
8056 
8057   assert(addr < _limit, "sweep invariant");
8058   // check if we should yield
8059   do_yield_check(addr);
8060   if (fc->is_free()) {
8061     // Chunk that is already free
8062     res = fc->size();
8063     do_already_free_chunk(fc);
8064     debug_only(_sp->verifyFreeLists());
8065     // If we flush the chunk at hand in lookahead_and_flush()
8066     // and it's coalesced with a preceding chunk, then the
8067     // process of "mangling" the payload of the coalesced block
8068     // will cause erasure of the size information from the
8069     // (erstwhile) header of all the coalesced blocks but the
8070     // first, so the first disjunct in the assert will not hold
8071     // in that specific case (in which case the second disjunct
8072     // will hold).
8073     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8074            "Otherwise the size info doesn't change at this step");
8075     NOT_PRODUCT(
8076       _numObjectsAlreadyFree++;
8077       _numWordsAlreadyFree += res;
8078     )
8079     NOT_PRODUCT(_last_fc = fc;)
8080   } else if (!_bitMap->isMarked(addr)) {
8081     // Chunk is fresh garbage
8082     res = do_garbage_chunk(fc);
8083     debug_only(_sp->verifyFreeLists());
8084     NOT_PRODUCT(
8085       _numObjectsFreed++;
8086       _numWordsFreed += res;
8087     )
8088   } else {
8089     // Chunk that is alive.
8090     res = do_live_chunk(fc);
8091     debug_only(_sp->verifyFreeLists());
8092     NOT_PRODUCT(
8093         _numObjectsLive++;
8094         _numWordsLive += res;
8095     )
8096   }
8097   return res;
8098 }
8099 
8100 // For the smart allocation, record following
8101 //  split deaths - a free chunk is removed from its free list because
8102 //      it is being split into two or more chunks.
8103 //  split birth - a free chunk is being added to its free list because
8104 //      a larger free chunk has been split and resulted in this free chunk.
8105 //  coal death - a free chunk is being removed from its free list because
8106 //      it is being coalesced into a large free chunk.
8107 //  coal birth - a free chunk is being added to its free list because
8108 //      it was created when two or more free chunks where coalesced into
8109 //      this free chunk.
8110 //
8111 // These statistics are used to determine the desired number of free
8112 // chunks of a given size.  The desired number is chosen to be relative
8113 // to the end of a CMS sweep.  The desired number at the end of a sweep
8114 // is the
8115 //      count-at-end-of-previous-sweep (an amount that was enough)
8116 //              - count-at-beginning-of-current-sweep  (the excess)
8117 //              + split-births  (gains in this size during interval)
8118 //              - split-deaths  (demands on this size during interval)
8119 // where the interval is from the end of one sweep to the end of the
8120 // next.
8121 //
8122 // When sweeping the sweeper maintains an accumulated chunk which is
8123 // the chunk that is made up of chunks that have been coalesced.  That
8124 // will be termed the left-hand chunk.  A new chunk of garbage that
8125 // is being considered for coalescing will be referred to as the
8126 // right-hand chunk.
8127 //
8128 // When making a decision on whether to coalesce a right-hand chunk with
8129 // the current left-hand chunk, the current count vs. the desired count
8130 // of the left-hand chunk is considered.  Also if the right-hand chunk
8131 // is near the large chunk at the end of the heap (see
8132 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8133 // left-hand chunk is coalesced.
8134 //
8135 // When making a decision about whether to split a chunk, the desired count
8136 // vs. the current count of the candidate to be split is also considered.
8137 // If the candidate is underpopulated (currently fewer chunks than desired)
8138 // a chunk of an overpopulated (currently more chunks than desired) size may
8139 // be chosen.  The "hint" associated with a free list, if non-null, points
8140 // to a free list which may be overpopulated.
8141 //
8142 
8143 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8144   const size_t size = fc->size();
8145   // Chunks that cannot be coalesced are not in the
8146   // free lists.
8147   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8148     assert(_sp->verify_chunk_in_free_list(fc),
8149       "free chunk should be in free lists");
8150   }
8151   // a chunk that is already free, should not have been
8152   // marked in the bit map
8153   HeapWord* const addr = (HeapWord*) fc;
8154   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8155   // Verify that the bit map has no bits marked between
8156   // addr and purported end of this block.
8157   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8158 
8159   // Some chunks cannot be coalesced under any circumstances.
8160   // See the definition of cantCoalesce().
8161   if (!fc->cantCoalesce()) {
8162     // This chunk can potentially be coalesced.
8163     if (_sp->adaptive_freelists()) {
8164       // All the work is done in
8165       do_post_free_or_garbage_chunk(fc, size);
8166     } else {  // Not adaptive free lists
8167       // this is a free chunk that can potentially be coalesced by the sweeper;
8168       if (!inFreeRange()) {
8169         // if the next chunk is a free block that can't be coalesced
8170         // it doesn't make sense to remove this chunk from the free lists
8171         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8172         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8173         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8174             nextChunk->is_free()               &&     // ... which is free...
8175             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8176           // nothing to do
8177         } else {
8178           // Potentially the start of a new free range:
8179           // Don't eagerly remove it from the free lists.
8180           // No need to remove it if it will just be put
8181           // back again.  (Also from a pragmatic point of view
8182           // if it is a free block in a region that is beyond
8183           // any allocated blocks, an assertion will fail)
8184           // Remember the start of a free run.
8185           initialize_free_range(addr, true);
8186           // end - can coalesce with next chunk
8187         }
8188       } else {
8189         // the midst of a free range, we are coalescing
8190         print_free_block_coalesced(fc);
8191         if (CMSTraceSweeper) {
8192           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8193         }
8194         // remove it from the free lists
8195         _sp->removeFreeChunkFromFreeLists(fc);
8196         set_lastFreeRangeCoalesced(true);
8197         // If the chunk is being coalesced and the current free range is
8198         // in the free lists, remove the current free range so that it
8199         // will be returned to the free lists in its entirety - all
8200         // the coalesced pieces included.
8201         if (freeRangeInFreeLists()) {
8202           FreeChunk* ffc = (FreeChunk*) freeFinger();
8203           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8204             "Size of free range is inconsistent with chunk size.");
8205           if (CMSTestInFreeList) {
8206             assert(_sp->verify_chunk_in_free_list(ffc),
8207               "free range is not in free lists");
8208           }
8209           _sp->removeFreeChunkFromFreeLists(ffc);
8210           set_freeRangeInFreeLists(false);
8211         }
8212       }
8213     }
8214     // Note that if the chunk is not coalescable (the else arm
8215     // below), we unconditionally flush, without needing to do
8216     // a "lookahead," as we do below.
8217     if (inFreeRange()) lookahead_and_flush(fc, size);
8218   } else {
8219     // Code path common to both original and adaptive free lists.
8220 
8221     // cant coalesce with previous block; this should be treated
8222     // as the end of a free run if any
8223     if (inFreeRange()) {
8224       // we kicked some butt; time to pick up the garbage
8225       assert(freeFinger() < addr, "freeFinger points too high");
8226       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8227     }
8228     // else, nothing to do, just continue
8229   }
8230 }
8231 
8232 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8233   // This is a chunk of garbage.  It is not in any free list.
8234   // Add it to a free list or let it possibly be coalesced into
8235   // a larger chunk.
8236   HeapWord* const addr = (HeapWord*) fc;
8237   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8238 
8239   if (_sp->adaptive_freelists()) {
8240     // Verify that the bit map has no bits marked between
8241     // addr and purported end of just dead object.
8242     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8243 
8244     do_post_free_or_garbage_chunk(fc, size);
8245   } else {
8246     if (!inFreeRange()) {
8247       // start of a new free range
8248       assert(size > 0, "A free range should have a size");
8249       initialize_free_range(addr, false);
8250     } else {
8251       // this will be swept up when we hit the end of the
8252       // free range
8253       if (CMSTraceSweeper) {
8254         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8255       }
8256       // If the chunk is being coalesced and the current free range is
8257       // in the free lists, remove the current free range so that it
8258       // will be returned to the free lists in its entirety - all
8259       // the coalesced pieces included.
8260       if (freeRangeInFreeLists()) {
8261         FreeChunk* ffc = (FreeChunk*)freeFinger();
8262         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8263           "Size of free range is inconsistent with chunk size.");
8264         if (CMSTestInFreeList) {
8265           assert(_sp->verify_chunk_in_free_list(ffc),
8266             "free range is not in free lists");
8267         }
8268         _sp->removeFreeChunkFromFreeLists(ffc);
8269         set_freeRangeInFreeLists(false);
8270       }
8271       set_lastFreeRangeCoalesced(true);
8272     }
8273     // this will be swept up when we hit the end of the free range
8274 
8275     // Verify that the bit map has no bits marked between
8276     // addr and purported end of just dead object.
8277     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8278   }
8279   assert(_limit >= addr + size,
8280          "A freshly garbage chunk can't possibly straddle over _limit");
8281   if (inFreeRange()) lookahead_and_flush(fc, size);
8282   return size;
8283 }
8284 
8285 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8286   HeapWord* addr = (HeapWord*) fc;
8287   // The sweeper has just found a live object. Return any accumulated
8288   // left hand chunk to the free lists.
8289   if (inFreeRange()) {
8290     assert(freeFinger() < addr, "freeFinger points too high");
8291     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8292   }
8293 
8294   // This object is live: we'd normally expect this to be
8295   // an oop, and like to assert the following:
8296   // assert(oop(addr)->is_oop(), "live block should be an oop");
8297   // However, as we commented above, this may be an object whose
8298   // header hasn't yet been initialized.
8299   size_t size;
8300   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8301   if (_bitMap->isMarked(addr + 1)) {
8302     // Determine the size from the bit map, rather than trying to
8303     // compute it from the object header.
8304     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8305     size = pointer_delta(nextOneAddr + 1, addr);
8306     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8307            "alignment problem");
8308 
8309 #ifdef DEBUG
8310       if (oop(addr)->klass_or_null() != NULL &&
8311           (   !_collector->should_unload_classes()
8312            || (oop(addr)->is_parsable()) &&
8313                oop(addr)->is_conc_safe())) {
8314         // Ignore mark word because we are running concurrent with mutators
8315         assert(oop(addr)->is_oop(true), "live block should be an oop");
8316         // is_conc_safe is checked before performing this assertion
8317         // because an object that is not is_conc_safe may yet have
8318         // the return from size() correct.
8319         assert(size ==
8320                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8321                "P-mark and computed size do not agree");
8322       }
8323 #endif
8324 
8325   } else {
8326     // This should be an initialized object that's alive.
8327     assert(oop(addr)->klass_or_null() != NULL &&
8328            (!_collector->should_unload_classes()
8329             || oop(addr)->is_parsable()),
8330            "Should be an initialized object");
8331     // Note that there are objects used during class redefinition,
8332     // e.g. merge_cp in VM_RedefineClasses::merge_cp_and_rewrite(),
8333     // which are discarded with their is_conc_safe state still
8334     // false.  These object may be floating garbage so may be
8335     // seen here.  If they are floating garbage their size
8336     // should be attainable from their klass.  Do not that
8337     // is_conc_safe() is true for oop(addr).
8338     // Ignore mark word because we are running concurrent with mutators
8339     assert(oop(addr)->is_oop(true), "live block should be an oop");
8340     // Verify that the bit map has no bits marked between
8341     // addr and purported end of this block.
8342     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8343     assert(size >= 3, "Necessary for Printezis marks to work");
8344     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8345     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8346   }
8347   return size;
8348 }
8349 
8350 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8351                                                  size_t chunkSize) {
8352   // do_post_free_or_garbage_chunk() should only be called in the case
8353   // of the adaptive free list allocator.
8354   const bool fcInFreeLists = fc->is_free();
8355   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8356   assert((HeapWord*)fc <= _limit, "sweep invariant");
8357   if (CMSTestInFreeList && fcInFreeLists) {
8358     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8359   }
8360 
8361   if (CMSTraceSweeper) {
8362     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8363   }
8364 
8365   HeapWord* const fc_addr = (HeapWord*) fc;
8366 
8367   bool coalesce;
8368   const size_t left  = pointer_delta(fc_addr, freeFinger());
8369   const size_t right = chunkSize;
8370   switch (FLSCoalescePolicy) {
8371     // numeric value forms a coalition aggressiveness metric
8372     case 0:  { // never coalesce
8373       coalesce = false;
8374       break;
8375     }
8376     case 1: { // coalesce if left & right chunks on overpopulated lists
8377       coalesce = _sp->coalOverPopulated(left) &&
8378                  _sp->coalOverPopulated(right);
8379       break;
8380     }
8381     case 2: { // coalesce if left chunk on overpopulated list (default)
8382       coalesce = _sp->coalOverPopulated(left);
8383       break;
8384     }
8385     case 3: { // coalesce if left OR right chunk on overpopulated list
8386       coalesce = _sp->coalOverPopulated(left) ||
8387                  _sp->coalOverPopulated(right);
8388       break;
8389     }
8390     case 4: { // always coalesce
8391       coalesce = true;
8392       break;
8393     }
8394     default:
8395      ShouldNotReachHere();
8396   }
8397 
8398   // Should the current free range be coalesced?
8399   // If the chunk is in a free range and either we decided to coalesce above
8400   // or the chunk is near the large block at the end of the heap
8401   // (isNearLargestChunk() returns true), then coalesce this chunk.
8402   const bool doCoalesce = inFreeRange()
8403                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8404   if (doCoalesce) {
8405     // Coalesce the current free range on the left with the new
8406     // chunk on the right.  If either is on a free list,
8407     // it must be removed from the list and stashed in the closure.
8408     if (freeRangeInFreeLists()) {
8409       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8410       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8411         "Size of free range is inconsistent with chunk size.");
8412       if (CMSTestInFreeList) {
8413         assert(_sp->verify_chunk_in_free_list(ffc),
8414           "Chunk is not in free lists");
8415       }
8416       _sp->coalDeath(ffc->size());
8417       _sp->removeFreeChunkFromFreeLists(ffc);
8418       set_freeRangeInFreeLists(false);
8419     }
8420     if (fcInFreeLists) {
8421       _sp->coalDeath(chunkSize);
8422       assert(fc->size() == chunkSize,
8423         "The chunk has the wrong size or is not in the free lists");
8424       _sp->removeFreeChunkFromFreeLists(fc);
8425     }
8426     set_lastFreeRangeCoalesced(true);
8427     print_free_block_coalesced(fc);
8428   } else {  // not in a free range and/or should not coalesce
8429     // Return the current free range and start a new one.
8430     if (inFreeRange()) {
8431       // In a free range but cannot coalesce with the right hand chunk.
8432       // Put the current free range into the free lists.
8433       flush_cur_free_chunk(freeFinger(),
8434                            pointer_delta(fc_addr, freeFinger()));
8435     }
8436     // Set up for new free range.  Pass along whether the right hand
8437     // chunk is in the free lists.
8438     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8439   }
8440 }
8441 
8442 // Lookahead flush:
8443 // If we are tracking a free range, and this is the last chunk that
8444 // we'll look at because its end crosses past _limit, we'll preemptively
8445 // flush it along with any free range we may be holding on to. Note that
8446 // this can be the case only for an already free or freshly garbage
8447 // chunk. If this block is an object, it can never straddle
8448 // over _limit. The "straddling" occurs when _limit is set at
8449 // the previous end of the space when this cycle started, and
8450 // a subsequent heap expansion caused the previously co-terminal
8451 // free block to be coalesced with the newly expanded portion,
8452 // thus rendering _limit a non-block-boundary making it dangerous
8453 // for the sweeper to step over and examine.
8454 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8455   assert(inFreeRange(), "Should only be called if currently in a free range.");
8456   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8457   assert(_sp->used_region().contains(eob - 1),
8458          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8459                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8460                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8461   if (eob >= _limit) {
8462     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8463     if (CMSTraceSweeper) {
8464       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8465                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8466                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8467                              _limit, fc, eob, _sp->bottom(), _sp->end());
8468     }
8469     // Return the storage we are tracking back into the free lists.
8470     if (CMSTraceSweeper) {
8471       gclog_or_tty->print_cr("Flushing ... ");
8472     }
8473     assert(freeFinger() < eob, "Error");
8474     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8475   }
8476 }
8477 
8478 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8479   assert(inFreeRange(), "Should only be called if currently in a free range.");
8480   assert(size > 0,
8481     "A zero sized chunk cannot be added to the free lists.");
8482   if (!freeRangeInFreeLists()) {
8483     if (CMSTestInFreeList) {
8484       FreeChunk* fc = (FreeChunk*) chunk;
8485       fc->set_size(size);
8486       assert(!_sp->verify_chunk_in_free_list(fc),
8487         "chunk should not be in free lists yet");
8488     }
8489     if (CMSTraceSweeper) {
8490       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8491                     chunk, size);
8492     }
8493     // A new free range is going to be starting.  The current
8494     // free range has not been added to the free lists yet or
8495     // was removed so add it back.
8496     // If the current free range was coalesced, then the death
8497     // of the free range was recorded.  Record a birth now.
8498     if (lastFreeRangeCoalesced()) {
8499       _sp->coalBirth(size);
8500     }
8501     _sp->addChunkAndRepairOffsetTable(chunk, size,
8502             lastFreeRangeCoalesced());
8503   } else if (CMSTraceSweeper) {
8504     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8505   }
8506   set_inFreeRange(false);
8507   set_freeRangeInFreeLists(false);
8508 }
8509 
8510 // We take a break if we've been at this for a while,
8511 // so as to avoid monopolizing the locks involved.
8512 void SweepClosure::do_yield_work(HeapWord* addr) {
8513   // Return current free chunk being used for coalescing (if any)
8514   // to the appropriate freelist.  After yielding, the next
8515   // free block encountered will start a coalescing range of
8516   // free blocks.  If the next free block is adjacent to the
8517   // chunk just flushed, they will need to wait for the next
8518   // sweep to be coalesced.
8519   if (inFreeRange()) {
8520     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8521   }
8522 
8523   // First give up the locks, then yield, then re-lock.
8524   // We should probably use a constructor/destructor idiom to
8525   // do this unlock/lock or modify the MutexUnlocker class to
8526   // serve our purpose. XXX
8527   assert_lock_strong(_bitMap->lock());
8528   assert_lock_strong(_freelistLock);
8529   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8530          "CMS thread should hold CMS token");
8531   _bitMap->lock()->unlock();
8532   _freelistLock->unlock();
8533   ConcurrentMarkSweepThread::desynchronize(true);
8534   ConcurrentMarkSweepThread::acknowledge_yield_request();
8535   _collector->stopTimer();
8536   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8537   if (PrintCMSStatistics != 0) {
8538     _collector->incrementYields();
8539   }
8540   _collector->icms_wait();
8541 
8542   // See the comment in coordinator_yield()
8543   for (unsigned i = 0; i < CMSYieldSleepCount &&
8544                        ConcurrentMarkSweepThread::should_yield() &&
8545                        !CMSCollector::foregroundGCIsActive(); ++i) {
8546     os::sleep(Thread::current(), 1, false);
8547     ConcurrentMarkSweepThread::acknowledge_yield_request();
8548   }
8549 
8550   ConcurrentMarkSweepThread::synchronize(true);
8551   _freelistLock->lock();
8552   _bitMap->lock()->lock_without_safepoint_check();
8553   _collector->startTimer();
8554 }
8555 
8556 #ifndef PRODUCT
8557 // This is actually very useful in a product build if it can
8558 // be called from the debugger.  Compile it into the product
8559 // as needed.
8560 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8561   return debug_cms_space->verify_chunk_in_free_list(fc);
8562 }
8563 #endif
8564 
8565 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8566   if (CMSTraceSweeper) {
8567     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8568                            fc, fc->size());
8569   }
8570 }
8571 
8572 // CMSIsAliveClosure
8573 bool CMSIsAliveClosure::do_object_b(oop obj) {
8574   HeapWord* addr = (HeapWord*)obj;
8575   return addr != NULL &&
8576          (!_span.contains(addr) || _bit_map->isMarked(addr));
8577 }
8578 
8579 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8580                       MemRegion span,
8581                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8582                       CMSMarkStack* revisit_stack, bool cpc):
8583   KlassRememberingOopClosure(collector, NULL, revisit_stack),
8584   _span(span),
8585   _bit_map(bit_map),
8586   _mark_stack(mark_stack),
8587   _concurrent_precleaning(cpc) {
8588   assert(!_span.is_empty(), "Empty span could spell trouble");
8589 }
8590 
8591 
8592 // CMSKeepAliveClosure: the serial version
8593 void CMSKeepAliveClosure::do_oop(oop obj) {
8594   HeapWord* addr = (HeapWord*)obj;
8595   if (_span.contains(addr) &&
8596       !_bit_map->isMarked(addr)) {
8597     _bit_map->mark(addr);
8598     bool simulate_overflow = false;
8599     NOT_PRODUCT(
8600       if (CMSMarkStackOverflowALot &&
8601           _collector->simulate_overflow()) {
8602         // simulate a stack overflow
8603         simulate_overflow = true;
8604       }
8605     )
8606     if (simulate_overflow || !_mark_stack->push(obj)) {
8607       if (_concurrent_precleaning) {
8608         // We dirty the overflown object and let the remark
8609         // phase deal with it.
8610         assert(_collector->overflow_list_is_empty(), "Error");
8611         // In the case of object arrays, we need to dirty all of
8612         // the cards that the object spans. No locking or atomics
8613         // are needed since no one else can be mutating the mod union
8614         // table.
8615         if (obj->is_objArray()) {
8616           size_t sz = obj->size();
8617           HeapWord* end_card_addr =
8618             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8619           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8620           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8621           _collector->_modUnionTable.mark_range(redirty_range);
8622         } else {
8623           _collector->_modUnionTable.mark(addr);
8624         }
8625         _collector->_ser_kac_preclean_ovflw++;
8626       } else {
8627         _collector->push_on_overflow_list(obj);
8628         _collector->_ser_kac_ovflw++;
8629       }
8630     }
8631   }
8632 }
8633 
8634 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8635 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8636 
8637 // CMSParKeepAliveClosure: a parallel version of the above.
8638 // The work queues are private to each closure (thread),
8639 // but (may be) available for stealing by other threads.
8640 void CMSParKeepAliveClosure::do_oop(oop obj) {
8641   HeapWord* addr = (HeapWord*)obj;
8642   if (_span.contains(addr) &&
8643       !_bit_map->isMarked(addr)) {
8644     // In general, during recursive tracing, several threads
8645     // may be concurrently getting here; the first one to
8646     // "tag" it, claims it.
8647     if (_bit_map->par_mark(addr)) {
8648       bool res = _work_queue->push(obj);
8649       assert(res, "Low water mark should be much less than capacity");
8650       // Do a recursive trim in the hope that this will keep
8651       // stack usage lower, but leave some oops for potential stealers
8652       trim_queue(_low_water_mark);
8653     } // Else, another thread got there first
8654   }
8655 }
8656 
8657 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8658 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8659 
8660 void CMSParKeepAliveClosure::trim_queue(uint max) {
8661   while (_work_queue->size() > max) {
8662     oop new_oop;
8663     if (_work_queue->pop_local(new_oop)) {
8664       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8665       assert(_bit_map->isMarked((HeapWord*)new_oop),
8666              "no white objects on this stack!");
8667       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8668       // iterate over the oops in this oop, marking and pushing
8669       // the ones in CMS heap (i.e. in _span).
8670       new_oop->oop_iterate(&_mark_and_push);
8671     }
8672   }
8673 }
8674 
8675 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8676                                 CMSCollector* collector,
8677                                 MemRegion span, CMSBitMap* bit_map,
8678                                 CMSMarkStack* revisit_stack,
8679                                 OopTaskQueue* work_queue):
8680   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
8681   _span(span),
8682   _bit_map(bit_map),
8683   _work_queue(work_queue) { }
8684 
8685 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8686   HeapWord* addr = (HeapWord*)obj;
8687   if (_span.contains(addr) &&
8688       !_bit_map->isMarked(addr)) {
8689     if (_bit_map->par_mark(addr)) {
8690       bool simulate_overflow = false;
8691       NOT_PRODUCT(
8692         if (CMSMarkStackOverflowALot &&
8693             _collector->par_simulate_overflow()) {
8694           // simulate a stack overflow
8695           simulate_overflow = true;
8696         }
8697       )
8698       if (simulate_overflow || !_work_queue->push(obj)) {
8699         _collector->par_push_on_overflow_list(obj);
8700         _collector->_par_kac_ovflw++;
8701       }
8702     } // Else another thread got there already
8703   }
8704 }
8705 
8706 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8707 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8708 
8709 //////////////////////////////////////////////////////////////////
8710 //  CMSExpansionCause                /////////////////////////////
8711 //////////////////////////////////////////////////////////////////
8712 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8713   switch (cause) {
8714     case _no_expansion:
8715       return "No expansion";
8716     case _satisfy_free_ratio:
8717       return "Free ratio";
8718     case _satisfy_promotion:
8719       return "Satisfy promotion";
8720     case _satisfy_allocation:
8721       return "allocation";
8722     case _allocate_par_lab:
8723       return "Par LAB";
8724     case _allocate_par_spooling_space:
8725       return "Par Spooling Space";
8726     case _adaptive_size_policy:
8727       return "Ergonomics";
8728     default:
8729       return "unknown";
8730   }
8731 }
8732 
8733 void CMSDrainMarkingStackClosure::do_void() {
8734   // the max number to take from overflow list at a time
8735   const size_t num = _mark_stack->capacity()/4;
8736   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8737          "Overflow list should be NULL during concurrent phases");
8738   while (!_mark_stack->isEmpty() ||
8739          // if stack is empty, check the overflow list
8740          _collector->take_from_overflow_list(num, _mark_stack)) {
8741     oop obj = _mark_stack->pop();
8742     HeapWord* addr = (HeapWord*)obj;
8743     assert(_span.contains(addr), "Should be within span");
8744     assert(_bit_map->isMarked(addr), "Should be marked");
8745     assert(obj->is_oop(), "Should be an oop");
8746     obj->oop_iterate(_keep_alive);
8747   }
8748 }
8749 
8750 void CMSParDrainMarkingStackClosure::do_void() {
8751   // drain queue
8752   trim_queue(0);
8753 }
8754 
8755 // Trim our work_queue so its length is below max at return
8756 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8757   while (_work_queue->size() > max) {
8758     oop new_oop;
8759     if (_work_queue->pop_local(new_oop)) {
8760       assert(new_oop->is_oop(), "Expected an oop");
8761       assert(_bit_map->isMarked((HeapWord*)new_oop),
8762              "no white objects on this stack!");
8763       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8764       // iterate over the oops in this oop, marking and pushing
8765       // the ones in CMS heap (i.e. in _span).
8766       new_oop->oop_iterate(&_mark_and_push);
8767     }
8768   }
8769 }
8770 
8771 ////////////////////////////////////////////////////////////////////
8772 // Support for Marking Stack Overflow list handling and related code
8773 ////////////////////////////////////////////////////////////////////
8774 // Much of the following code is similar in shape and spirit to the
8775 // code used in ParNewGC. We should try and share that code
8776 // as much as possible in the future.
8777 
8778 #ifndef PRODUCT
8779 // Debugging support for CMSStackOverflowALot
8780 
8781 // It's OK to call this multi-threaded;  the worst thing
8782 // that can happen is that we'll get a bunch of closely
8783 // spaced simulated oveflows, but that's OK, in fact
8784 // probably good as it would exercise the overflow code
8785 // under contention.
8786 bool CMSCollector::simulate_overflow() {
8787   if (_overflow_counter-- <= 0) { // just being defensive
8788     _overflow_counter = CMSMarkStackOverflowInterval;
8789     return true;
8790   } else {
8791     return false;
8792   }
8793 }
8794 
8795 bool CMSCollector::par_simulate_overflow() {
8796   return simulate_overflow();
8797 }
8798 #endif
8799 
8800 // Single-threaded
8801 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8802   assert(stack->isEmpty(), "Expected precondition");
8803   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8804   size_t i = num;
8805   oop  cur = _overflow_list;
8806   const markOop proto = markOopDesc::prototype();
8807   NOT_PRODUCT(ssize_t n = 0;)
8808   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8809     next = oop(cur->mark());
8810     cur->set_mark(proto);   // until proven otherwise
8811     assert(cur->is_oop(), "Should be an oop");
8812     bool res = stack->push(cur);
8813     assert(res, "Bit off more than can chew?");
8814     NOT_PRODUCT(n++;)
8815   }
8816   _overflow_list = cur;
8817 #ifndef PRODUCT
8818   assert(_num_par_pushes >= n, "Too many pops?");
8819   _num_par_pushes -=n;
8820 #endif
8821   return !stack->isEmpty();
8822 }
8823 
8824 #define BUSY  (oop(0x1aff1aff))
8825 // (MT-safe) Get a prefix of at most "num" from the list.
8826 // The overflow list is chained through the mark word of
8827 // each object in the list. We fetch the entire list,
8828 // break off a prefix of the right size and return the
8829 // remainder. If other threads try to take objects from
8830 // the overflow list at that time, they will wait for
8831 // some time to see if data becomes available. If (and
8832 // only if) another thread places one or more object(s)
8833 // on the global list before we have returned the suffix
8834 // to the global list, we will walk down our local list
8835 // to find its end and append the global list to
8836 // our suffix before returning it. This suffix walk can
8837 // prove to be expensive (quadratic in the amount of traffic)
8838 // when there are many objects in the overflow list and
8839 // there is much producer-consumer contention on the list.
8840 // *NOTE*: The overflow list manipulation code here and
8841 // in ParNewGeneration:: are very similar in shape,
8842 // except that in the ParNew case we use the old (from/eden)
8843 // copy of the object to thread the list via its klass word.
8844 // Because of the common code, if you make any changes in
8845 // the code below, please check the ParNew version to see if
8846 // similar changes might be needed.
8847 // CR 6797058 has been filed to consolidate the common code.
8848 bool CMSCollector::par_take_from_overflow_list(size_t num,
8849                                                OopTaskQueue* work_q,
8850                                                int no_of_gc_threads) {
8851   assert(work_q->size() == 0, "First empty local work queue");
8852   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8853   if (_overflow_list == NULL) {
8854     return false;
8855   }
8856   // Grab the entire list; we'll put back a suffix
8857   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8858   Thread* tid = Thread::current();
8859   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8860   // set to ParallelGCThreads.
8861   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8862   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8863   // If the list is busy, we spin for a short while,
8864   // sleeping between attempts to get the list.
8865   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8866     os::sleep(tid, sleep_time_millis, false);
8867     if (_overflow_list == NULL) {
8868       // Nothing left to take
8869       return false;
8870     } else if (_overflow_list != BUSY) {
8871       // Try and grab the prefix
8872       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8873     }
8874   }
8875   // If the list was found to be empty, or we spun long
8876   // enough, we give up and return empty-handed. If we leave
8877   // the list in the BUSY state below, it must be the case that
8878   // some other thread holds the overflow list and will set it
8879   // to a non-BUSY state in the future.
8880   if (prefix == NULL || prefix == BUSY) {
8881      // Nothing to take or waited long enough
8882      if (prefix == NULL) {
8883        // Write back the NULL in case we overwrote it with BUSY above
8884        // and it is still the same value.
8885        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8886      }
8887      return false;
8888   }
8889   assert(prefix != NULL && prefix != BUSY, "Error");
8890   size_t i = num;
8891   oop cur = prefix;
8892   // Walk down the first "num" objects, unless we reach the end.
8893   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8894   if (cur->mark() == NULL) {
8895     // We have "num" or fewer elements in the list, so there
8896     // is nothing to return to the global list.
8897     // Write back the NULL in lieu of the BUSY we wrote
8898     // above, if it is still the same value.
8899     if (_overflow_list == BUSY) {
8900       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8901     }
8902   } else {
8903     // Chop off the suffix and rerturn it to the global list.
8904     assert(cur->mark() != BUSY, "Error");
8905     oop suffix_head = cur->mark(); // suffix will be put back on global list
8906     cur->set_mark(NULL);           // break off suffix
8907     // It's possible that the list is still in the empty(busy) state
8908     // we left it in a short while ago; in that case we may be
8909     // able to place back the suffix without incurring the cost
8910     // of a walk down the list.
8911     oop observed_overflow_list = _overflow_list;
8912     oop cur_overflow_list = observed_overflow_list;
8913     bool attached = false;
8914     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8915       observed_overflow_list =
8916         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8917       if (cur_overflow_list == observed_overflow_list) {
8918         attached = true;
8919         break;
8920       } else cur_overflow_list = observed_overflow_list;
8921     }
8922     if (!attached) {
8923       // Too bad, someone else sneaked in (at least) an element; we'll need
8924       // to do a splice. Find tail of suffix so we can prepend suffix to global
8925       // list.
8926       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8927       oop suffix_tail = cur;
8928       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8929              "Tautology");
8930       observed_overflow_list = _overflow_list;
8931       do {
8932         cur_overflow_list = observed_overflow_list;
8933         if (cur_overflow_list != BUSY) {
8934           // Do the splice ...
8935           suffix_tail->set_mark(markOop(cur_overflow_list));
8936         } else { // cur_overflow_list == BUSY
8937           suffix_tail->set_mark(NULL);
8938         }
8939         // ... and try to place spliced list back on overflow_list ...
8940         observed_overflow_list =
8941           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8942       } while (cur_overflow_list != observed_overflow_list);
8943       // ... until we have succeeded in doing so.
8944     }
8945   }
8946 
8947   // Push the prefix elements on work_q
8948   assert(prefix != NULL, "control point invariant");
8949   const markOop proto = markOopDesc::prototype();
8950   oop next;
8951   NOT_PRODUCT(ssize_t n = 0;)
8952   for (cur = prefix; cur != NULL; cur = next) {
8953     next = oop(cur->mark());
8954     cur->set_mark(proto);   // until proven otherwise
8955     assert(cur->is_oop(), "Should be an oop");
8956     bool res = work_q->push(cur);
8957     assert(res, "Bit off more than we can chew?");
8958     NOT_PRODUCT(n++;)
8959   }
8960 #ifndef PRODUCT
8961   assert(_num_par_pushes >= n, "Too many pops?");
8962   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8963 #endif
8964   return true;
8965 }
8966 
8967 // Single-threaded
8968 void CMSCollector::push_on_overflow_list(oop p) {
8969   NOT_PRODUCT(_num_par_pushes++;)
8970   assert(p->is_oop(), "Not an oop");
8971   preserve_mark_if_necessary(p);
8972   p->set_mark((markOop)_overflow_list);
8973   _overflow_list = p;
8974 }
8975 
8976 // Multi-threaded; use CAS to prepend to overflow list
8977 void CMSCollector::par_push_on_overflow_list(oop p) {
8978   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8979   assert(p->is_oop(), "Not an oop");
8980   par_preserve_mark_if_necessary(p);
8981   oop observed_overflow_list = _overflow_list;
8982   oop cur_overflow_list;
8983   do {
8984     cur_overflow_list = observed_overflow_list;
8985     if (cur_overflow_list != BUSY) {
8986       p->set_mark(markOop(cur_overflow_list));
8987     } else {
8988       p->set_mark(NULL);
8989     }
8990     observed_overflow_list =
8991       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8992   } while (cur_overflow_list != observed_overflow_list);
8993 }
8994 #undef BUSY
8995 
8996 // Single threaded
8997 // General Note on GrowableArray: pushes may silently fail
8998 // because we are (temporarily) out of C-heap for expanding
8999 // the stack. The problem is quite ubiquitous and affects
9000 // a lot of code in the JVM. The prudent thing for GrowableArray
9001 // to do (for now) is to exit with an error. However, that may
9002 // be too draconian in some cases because the caller may be
9003 // able to recover without much harm. For such cases, we
9004 // should probably introduce a "soft_push" method which returns
9005 // an indication of success or failure with the assumption that
9006 // the caller may be able to recover from a failure; code in
9007 // the VM can then be changed, incrementally, to deal with such
9008 // failures where possible, thus, incrementally hardening the VM
9009 // in such low resource situations.
9010 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9011   _preserved_oop_stack.push(p);
9012   _preserved_mark_stack.push(m);
9013   assert(m == p->mark(), "Mark word changed");
9014   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9015          "bijection");
9016 }
9017 
9018 // Single threaded
9019 void CMSCollector::preserve_mark_if_necessary(oop p) {
9020   markOop m = p->mark();
9021   if (m->must_be_preserved(p)) {
9022     preserve_mark_work(p, m);
9023   }
9024 }
9025 
9026 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9027   markOop m = p->mark();
9028   if (m->must_be_preserved(p)) {
9029     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9030     // Even though we read the mark word without holding
9031     // the lock, we are assured that it will not change
9032     // because we "own" this oop, so no other thread can
9033     // be trying to push it on the overflow list; see
9034     // the assertion in preserve_mark_work() that checks
9035     // that m == p->mark().
9036     preserve_mark_work(p, m);
9037   }
9038 }
9039 
9040 // We should be able to do this multi-threaded,
9041 // a chunk of stack being a task (this is
9042 // correct because each oop only ever appears
9043 // once in the overflow list. However, it's
9044 // not very easy to completely overlap this with
9045 // other operations, so will generally not be done
9046 // until all work's been completed. Because we
9047 // expect the preserved oop stack (set) to be small,
9048 // it's probably fine to do this single-threaded.
9049 // We can explore cleverer concurrent/overlapped/parallel
9050 // processing of preserved marks if we feel the
9051 // need for this in the future. Stack overflow should
9052 // be so rare in practice and, when it happens, its
9053 // effect on performance so great that this will
9054 // likely just be in the noise anyway.
9055 void CMSCollector::restore_preserved_marks_if_any() {
9056   assert(SafepointSynchronize::is_at_safepoint(),
9057          "world should be stopped");
9058   assert(Thread::current()->is_ConcurrentGC_thread() ||
9059          Thread::current()->is_VM_thread(),
9060          "should be single-threaded");
9061   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9062          "bijection");
9063 
9064   while (!_preserved_oop_stack.is_empty()) {
9065     oop p = _preserved_oop_stack.pop();
9066     assert(p->is_oop(), "Should be an oop");
9067     assert(_span.contains(p), "oop should be in _span");
9068     assert(p->mark() == markOopDesc::prototype(),
9069            "Set when taken from overflow list");
9070     markOop m = _preserved_mark_stack.pop();
9071     p->set_mark(m);
9072   }
9073   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9074          "stacks were cleared above");
9075 }
9076 
9077 #ifndef PRODUCT
9078 bool CMSCollector::no_preserved_marks() const {
9079   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9080 }
9081 #endif
9082 
9083 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9084 {
9085   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9086   CMSAdaptiveSizePolicy* size_policy =
9087     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9088   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9089     "Wrong type for size policy");
9090   return size_policy;
9091 }
9092 
9093 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9094                                            size_t desired_promo_size) {
9095   if (cur_promo_size < desired_promo_size) {
9096     size_t expand_bytes = desired_promo_size - cur_promo_size;
9097     if (PrintAdaptiveSizePolicy && Verbose) {
9098       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9099         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9100         expand_bytes);
9101     }
9102     expand(expand_bytes,
9103            MinHeapDeltaBytes,
9104            CMSExpansionCause::_adaptive_size_policy);
9105   } else if (desired_promo_size < cur_promo_size) {
9106     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9107     if (PrintAdaptiveSizePolicy && Verbose) {
9108       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9109         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9110         shrink_bytes);
9111     }
9112     shrink(shrink_bytes);
9113   }
9114 }
9115 
9116 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9117   GenCollectedHeap* gch = GenCollectedHeap::heap();
9118   CMSGCAdaptivePolicyCounters* counters =
9119     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9120   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9121     "Wrong kind of counters");
9122   return counters;
9123 }
9124 
9125 
9126 void ASConcurrentMarkSweepGeneration::update_counters() {
9127   if (UsePerfData) {
9128     _space_counters->update_all();
9129     _gen_counters->update_all();
9130     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9131     GenCollectedHeap* gch = GenCollectedHeap::heap();
9132     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9133     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9134       "Wrong gc statistics type");
9135     counters->update_counters(gc_stats_l);
9136   }
9137 }
9138 
9139 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9140   if (UsePerfData) {
9141     _space_counters->update_used(used);
9142     _space_counters->update_capacity();
9143     _gen_counters->update_all();
9144 
9145     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9146     GenCollectedHeap* gch = GenCollectedHeap::heap();
9147     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9148     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9149       "Wrong gc statistics type");
9150     counters->update_counters(gc_stats_l);
9151   }
9152 }
9153 
9154 // The desired expansion delta is computed so that:
9155 // . desired free percentage or greater is used
9156 void ASConcurrentMarkSweepGeneration::compute_new_size() {
9157   assert_locked_or_safepoint(Heap_lock);
9158 
9159   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9160 
9161   // If incremental collection failed, we just want to expand
9162   // to the limit.
9163   if (incremental_collection_failed()) {
9164     clear_incremental_collection_failed();
9165     grow_to_reserved();
9166     return;
9167   }
9168 
9169   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
9170 
9171   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
9172     "Wrong type of heap");
9173   int prev_level = level() - 1;
9174   assert(prev_level >= 0, "The cms generation is the lowest generation");
9175   Generation* prev_gen = gch->get_gen(prev_level);
9176   assert(prev_gen->kind() == Generation::ASParNew,
9177     "Wrong type of young generation");
9178   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
9179   size_t cur_eden = younger_gen->eden()->capacity();
9180   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
9181   size_t cur_promo = free();
9182   size_policy->compute_tenured_generation_free_space(cur_promo,
9183                                                        max_available(),
9184                                                        cur_eden);
9185   resize(cur_promo, size_policy->promo_size());
9186 
9187   // Record the new size of the space in the cms generation
9188   // that is available for promotions.  This is temporary.
9189   // It should be the desired promo size.
9190   size_policy->avg_cms_promo()->sample(free());
9191   size_policy->avg_old_live()->sample(used());
9192 
9193   if (UsePerfData) {
9194     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9195     counters->update_cms_capacity_counter(capacity());
9196   }
9197 }
9198 
9199 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9200   assert_locked_or_safepoint(Heap_lock);
9201   assert_lock_strong(freelistLock());
9202   HeapWord* old_end = _cmsSpace->end();
9203   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9204   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9205   FreeChunk* chunk_at_end = find_chunk_at_end();
9206   if (chunk_at_end == NULL) {
9207     // No room to shrink
9208     if (PrintGCDetails && Verbose) {
9209       gclog_or_tty->print_cr("No room to shrink: old_end  "
9210         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9211         " chunk_at_end  " PTR_FORMAT,
9212         old_end, unallocated_start, chunk_at_end);
9213     }
9214     return;
9215   } else {
9216 
9217     // Find the chunk at the end of the space and determine
9218     // how much it can be shrunk.
9219     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9220     size_t aligned_shrinkable_size_in_bytes =
9221       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9222     assert(unallocated_start <= chunk_at_end->end(),
9223       "Inconsistent chunk at end of space");
9224     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9225     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9226 
9227     // Shrink the underlying space
9228     _virtual_space.shrink_by(bytes);
9229     if (PrintGCDetails && Verbose) {
9230       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9231         " desired_bytes " SIZE_FORMAT
9232         " shrinkable_size_in_bytes " SIZE_FORMAT
9233         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9234         "  bytes  " SIZE_FORMAT,
9235         desired_bytes, shrinkable_size_in_bytes,
9236         aligned_shrinkable_size_in_bytes, bytes);
9237       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9238         "  unallocated_start  " SIZE_FORMAT,
9239         old_end, unallocated_start);
9240     }
9241 
9242     // If the space did shrink (shrinking is not guaranteed),
9243     // shrink the chunk at the end by the appropriate amount.
9244     if (((HeapWord*)_virtual_space.high()) < old_end) {
9245       size_t new_word_size =
9246         heap_word_size(_virtual_space.committed_size());
9247 
9248       // Have to remove the chunk from the dictionary because it is changing
9249       // size and might be someplace elsewhere in the dictionary.
9250 
9251       // Get the chunk at end, shrink it, and put it
9252       // back.
9253       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9254       size_t word_size_change = word_size_before - new_word_size;
9255       size_t chunk_at_end_old_size = chunk_at_end->size();
9256       assert(chunk_at_end_old_size >= word_size_change,
9257         "Shrink is too large");
9258       chunk_at_end->set_size(chunk_at_end_old_size -
9259                           word_size_change);
9260       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9261         word_size_change);
9262 
9263       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9264 
9265       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9266       _bts->resize(new_word_size);  // resize the block offset shared array
9267       Universe::heap()->barrier_set()->resize_covered_region(mr);
9268       _cmsSpace->assert_locked();
9269       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9270 
9271       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9272 
9273       // update the space and generation capacity counters
9274       if (UsePerfData) {
9275         _space_counters->update_capacity();
9276         _gen_counters->update_all();
9277       }
9278 
9279       if (Verbose && PrintGCDetails) {
9280         size_t new_mem_size = _virtual_space.committed_size();
9281         size_t old_mem_size = new_mem_size + bytes;
9282         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
9283                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9284       }
9285     }
9286 
9287     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9288       "Inconsistency at end of space");
9289     assert(chunk_at_end->end() == _cmsSpace->end(),
9290       "Shrinking is inconsistent");
9291     return;
9292   }
9293 }
9294 
9295 // Transfer some number of overflown objects to usual marking
9296 // stack. Return true if some objects were transferred.
9297 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9298   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9299                     (size_t)ParGCDesiredObjsFromOverflowList);
9300 
9301   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9302   assert(_collector->overflow_list_is_empty() || res,
9303          "If list is not empty, we should have taken something");
9304   assert(!res || !_mark_stack->isEmpty(),
9305          "If we took something, it should now be on our stack");
9306   return res;
9307 }
9308 
9309 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9310   size_t res = _sp->block_size_no_stall(addr, _collector);
9311   if (_sp->block_is_obj(addr)) {
9312     if (_live_bit_map->isMarked(addr)) {
9313       // It can't have been dead in a previous cycle
9314       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9315     } else {
9316       _dead_bit_map->mark(addr);      // mark the dead object
9317     }
9318   }
9319   // Could be 0, if the block size could not be computed without stalling.
9320   return res;
9321 }
9322 
9323 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9324 
9325   switch (phase) {
9326     case CMSCollector::InitialMarking:
9327       initialize(true  /* fullGC */ ,
9328                  cause /* cause of the GC */,
9329                  true  /* recordGCBeginTime */,
9330                  true  /* recordPreGCUsage */,
9331                  false /* recordPeakUsage */,
9332                  false /* recordPostGCusage */,
9333                  true  /* recordAccumulatedGCTime */,
9334                  false /* recordGCEndTime */,
9335                  false /* countCollection */  );
9336       break;
9337 
9338     case CMSCollector::FinalMarking:
9339       initialize(true  /* fullGC */ ,
9340                  cause /* cause of the GC */,
9341                  false /* recordGCBeginTime */,
9342                  false /* recordPreGCUsage */,
9343                  false /* recordPeakUsage */,
9344                  false /* recordPostGCusage */,
9345                  true  /* recordAccumulatedGCTime */,
9346                  false /* recordGCEndTime */,
9347                  false /* countCollection */  );
9348       break;
9349 
9350     case CMSCollector::Sweeping:
9351       initialize(true  /* fullGC */ ,
9352                  cause /* cause of the GC */,
9353                  false /* recordGCBeginTime */,
9354                  false /* recordPreGCUsage */,
9355                  true  /* recordPeakUsage */,
9356                  true  /* recordPostGCusage */,
9357                  false /* recordAccumulatedGCTime */,
9358                  true  /* recordGCEndTime */,
9359                  true  /* countCollection */  );
9360       break;
9361 
9362     default:
9363       ShouldNotReachHere();
9364   }
9365 }
9366