1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1Log.hpp"
  37 #include "gc_implementation/g1/g1MarkSweep.hpp"
  38 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  39 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  40 #include "gc_implementation/g1/heapRegion.inline.hpp"
  41 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  42 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  43 #include "gc_implementation/g1/vm_operations_g1.hpp"
  44 #include "gc_implementation/shared/isGCActiveMark.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/generationSpec.hpp"
  48 #include "memory/referenceProcessor.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/oop.pcgc.inline.hpp"
  51 #include "runtime/aprofiler.hpp"
  52 #include "runtime/vmThread.hpp"
  53 
  54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  55 
  56 // turn it on so that the contents of the young list (scan-only /
  57 // to-be-collected) are printed at "strategic" points before / during
  58 // / after the collection --- this is useful for debugging
  59 #define YOUNG_LIST_VERBOSE 0
  60 // CURRENT STATUS
  61 // This file is under construction.  Search for "FIXME".
  62 
  63 // INVARIANTS/NOTES
  64 //
  65 // All allocation activity covered by the G1CollectedHeap interface is
  66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  67 // and allocate_new_tlab, which are the "entry" points to the
  68 // allocation code from the rest of the JVM.  (Note that this does not
  69 // apply to TLAB allocation, which is not part of this interface: it
  70 // is done by clients of this interface.)
  71 
  72 // Notes on implementation of parallelism in different tasks.
  73 //
  74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  76 // It does use run_task() which sets _n_workers in the task.
  77 // G1ParTask executes g1_process_strong_roots() ->
  78 // SharedHeap::process_strong_roots() which calls eventuall to
  79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  82 //
  83 
  84 // Local to this file.
  85 
  86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  87   SuspendibleThreadSet* _sts;
  88   G1RemSet* _g1rs;
  89   ConcurrentG1Refine* _cg1r;
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  93                               G1RemSet* g1rs,
  94                               ConcurrentG1Refine* cg1r) :
  95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  96   {}
  97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  98     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && _sts->should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111   void set_concurrent(bool b) { _concurrent = b; }
 112 };
 113 
 114 
 115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 116   int _calls;
 117   G1CollectedHeap* _g1h;
 118   CardTableModRefBS* _ctbs;
 119   int _histo[256];
 120 public:
 121   ClearLoggedCardTableEntryClosure() :
 122     _calls(0)
 123   {
 124     _g1h = G1CollectedHeap::heap();
 125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 126     for (int i = 0; i < 256; i++) _histo[i] = 0;
 127   }
 128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 130       _calls++;
 131       unsigned char* ujb = (unsigned char*)card_ptr;
 132       int ind = (int)(*ujb);
 133       _histo[ind]++;
 134       *card_ptr = -1;
 135     }
 136     return true;
 137   }
 138   int calls() { return _calls; }
 139   void print_histo() {
 140     gclog_or_tty->print_cr("Card table value histogram:");
 141     for (int i = 0; i < 256; i++) {
 142       if (_histo[i] != 0) {
 143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 144       }
 145     }
 146   }
 147 };
 148 
 149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 150   int _calls;
 151   G1CollectedHeap* _g1h;
 152   CardTableModRefBS* _ctbs;
 153 public:
 154   RedirtyLoggedCardTableEntryClosure() :
 155     _calls(0)
 156   {
 157     _g1h = G1CollectedHeap::heap();
 158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 159   }
 160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 162       _calls++;
 163       *card_ptr = 0;
 164     }
 165     return true;
 166   }
 167   int calls() { return _calls; }
 168 };
 169 
 170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 171 public:
 172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 173     *card_ptr = CardTableModRefBS::dirty_card_val();
 174     return true;
 175   }
 176 };
 177 
 178 YoungList::YoungList(G1CollectedHeap* g1h) :
 179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 181   guarantee(check_list_empty(false), "just making sure...");
 182 }
 183 
 184 void YoungList::push_region(HeapRegion *hr) {
 185   assert(!hr->is_young(), "should not already be young");
 186   assert(hr->get_next_young_region() == NULL, "cause it should!");
 187 
 188   hr->set_next_young_region(_head);
 189   _head = hr;
 190 
 191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 192   ++_length;
 193 }
 194 
 195 void YoungList::add_survivor_region(HeapRegion* hr) {
 196   assert(hr->is_survivor(), "should be flagged as survivor region");
 197   assert(hr->get_next_young_region() == NULL, "cause it should!");
 198 
 199   hr->set_next_young_region(_survivor_head);
 200   if (_survivor_head == NULL) {
 201     _survivor_tail = hr;
 202   }
 203   _survivor_head = hr;
 204   ++_survivor_length;
 205 }
 206 
 207 void YoungList::empty_list(HeapRegion* list) {
 208   while (list != NULL) {
 209     HeapRegion* next = list->get_next_young_region();
 210     list->set_next_young_region(NULL);
 211     list->uninstall_surv_rate_group();
 212     list->set_not_young();
 213     list = next;
 214   }
 215 }
 216 
 217 void YoungList::empty_list() {
 218   assert(check_list_well_formed(), "young list should be well formed");
 219 
 220   empty_list(_head);
 221   _head = NULL;
 222   _length = 0;
 223 
 224   empty_list(_survivor_head);
 225   _survivor_head = NULL;
 226   _survivor_tail = NULL;
 227   _survivor_length = 0;
 228 
 229   _last_sampled_rs_lengths = 0;
 230 
 231   assert(check_list_empty(false), "just making sure...");
 232 }
 233 
 234 bool YoungList::check_list_well_formed() {
 235   bool ret = true;
 236 
 237   uint length = 0;
 238   HeapRegion* curr = _head;
 239   HeapRegion* last = NULL;
 240   while (curr != NULL) {
 241     if (!curr->is_young()) {
 242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 243                              "incorrectly tagged (y: %d, surv: %d)",
 244                              curr->bottom(), curr->end(),
 245                              curr->is_young(), curr->is_survivor());
 246       ret = false;
 247     }
 248     ++length;
 249     last = curr;
 250     curr = curr->get_next_young_region();
 251   }
 252   ret = ret && (length == _length);
 253 
 254   if (!ret) {
 255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 257                            length, _length);
 258   }
 259 
 260   return ret;
 261 }
 262 
 263 bool YoungList::check_list_empty(bool check_sample) {
 264   bool ret = true;
 265 
 266   if (_length != 0) {
 267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 268                   _length);
 269     ret = false;
 270   }
 271   if (check_sample && _last_sampled_rs_lengths != 0) {
 272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 273     ret = false;
 274   }
 275   if (_head != NULL) {
 276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 277     ret = false;
 278   }
 279   if (!ret) {
 280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 281   }
 282 
 283   return ret;
 284 }
 285 
 286 void
 287 YoungList::rs_length_sampling_init() {
 288   _sampled_rs_lengths = 0;
 289   _curr               = _head;
 290 }
 291 
 292 bool
 293 YoungList::rs_length_sampling_more() {
 294   return _curr != NULL;
 295 }
 296 
 297 void
 298 YoungList::rs_length_sampling_next() {
 299   assert( _curr != NULL, "invariant" );
 300   size_t rs_length = _curr->rem_set()->occupied();
 301 
 302   _sampled_rs_lengths += rs_length;
 303 
 304   // The current region may not yet have been added to the
 305   // incremental collection set (it gets added when it is
 306   // retired as the current allocation region).
 307   if (_curr->in_collection_set()) {
 308     // Update the collection set policy information for this region
 309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 310   }
 311 
 312   _curr = _curr->get_next_young_region();
 313   if (_curr == NULL) {
 314     _last_sampled_rs_lengths = _sampled_rs_lengths;
 315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 316   }
 317 }
 318 
 319 void
 320 YoungList::reset_auxilary_lists() {
 321   guarantee( is_empty(), "young list should be empty" );
 322   assert(check_list_well_formed(), "young list should be well formed");
 323 
 324   // Add survivor regions to SurvRateGroup.
 325   _g1h->g1_policy()->note_start_adding_survivor_regions();
 326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 327 
 328   int young_index_in_cset = 0;
 329   for (HeapRegion* curr = _survivor_head;
 330        curr != NULL;
 331        curr = curr->get_next_young_region()) {
 332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 333 
 334     // The region is a non-empty survivor so let's add it to
 335     // the incremental collection set for the next evacuation
 336     // pause.
 337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 338     young_index_in_cset += 1;
 339   }
 340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 342 
 343   _head   = _survivor_head;
 344   _length = _survivor_length;
 345   if (_survivor_head != NULL) {
 346     assert(_survivor_tail != NULL, "cause it shouldn't be");
 347     assert(_survivor_length > 0, "invariant");
 348     _survivor_tail->set_next_young_region(NULL);
 349   }
 350 
 351   // Don't clear the survivor list handles until the start of
 352   // the next evacuation pause - we need it in order to re-tag
 353   // the survivor regions from this evacuation pause as 'young'
 354   // at the start of the next.
 355 
 356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 357 
 358   assert(check_list_well_formed(), "young list should be well formed");
 359 }
 360 
 361 void YoungList::print() {
 362   HeapRegion* lists[] = {_head,   _survivor_head};
 363   const char* names[] = {"YOUNG", "SURVIVOR"};
 364 
 365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 367     HeapRegion *curr = lists[list];
 368     if (curr == NULL)
 369       gclog_or_tty->print_cr("  empty");
 370     while (curr != NULL) {
 371       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 372                              HR_FORMAT_PARAMS(curr),
 373                              curr->prev_top_at_mark_start(),
 374                              curr->next_top_at_mark_start(),
 375                              curr->age_in_surv_rate_group_cond());
 376       curr = curr->get_next_young_region();
 377     }
 378   }
 379 
 380   gclog_or_tty->print_cr("");
 381 }
 382 
 383 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 384 {
 385   // Claim the right to put the region on the dirty cards region list
 386   // by installing a self pointer.
 387   HeapRegion* next = hr->get_next_dirty_cards_region();
 388   if (next == NULL) {
 389     HeapRegion* res = (HeapRegion*)
 390       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 391                           NULL);
 392     if (res == NULL) {
 393       HeapRegion* head;
 394       do {
 395         // Put the region to the dirty cards region list.
 396         head = _dirty_cards_region_list;
 397         next = (HeapRegion*)
 398           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 399         if (next == head) {
 400           assert(hr->get_next_dirty_cards_region() == hr,
 401                  "hr->get_next_dirty_cards_region() != hr");
 402           if (next == NULL) {
 403             // The last region in the list points to itself.
 404             hr->set_next_dirty_cards_region(hr);
 405           } else {
 406             hr->set_next_dirty_cards_region(next);
 407           }
 408         }
 409       } while (next != head);
 410     }
 411   }
 412 }
 413 
 414 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 415 {
 416   HeapRegion* head;
 417   HeapRegion* hr;
 418   do {
 419     head = _dirty_cards_region_list;
 420     if (head == NULL) {
 421       return NULL;
 422     }
 423     HeapRegion* new_head = head->get_next_dirty_cards_region();
 424     if (head == new_head) {
 425       // The last region.
 426       new_head = NULL;
 427     }
 428     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 429                                           head);
 430   } while (hr != head);
 431   assert(hr != NULL, "invariant");
 432   hr->set_next_dirty_cards_region(NULL);
 433   return hr;
 434 }
 435 
 436 void G1CollectedHeap::stop_conc_gc_threads() {
 437   _cg1r->stop();
 438   _cmThread->stop();
 439 }
 440 
 441 #ifdef ASSERT
 442 // A region is added to the collection set as it is retired
 443 // so an address p can point to a region which will be in the
 444 // collection set but has not yet been retired.  This method
 445 // therefore is only accurate during a GC pause after all
 446 // regions have been retired.  It is used for debugging
 447 // to check if an nmethod has references to objects that can
 448 // be move during a partial collection.  Though it can be
 449 // inaccurate, it is sufficient for G1 because the conservative
 450 // implementation of is_scavengable() for G1 will indicate that
 451 // all nmethods must be scanned during a partial collection.
 452 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 453   HeapRegion* hr = heap_region_containing(p);
 454   return hr != NULL && hr->in_collection_set();
 455 }
 456 #endif
 457 
 458 // Returns true if the reference points to an object that
 459 // can move in an incremental collecction.
 460 bool G1CollectedHeap::is_scavengable(const void* p) {
 461   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 462   G1CollectorPolicy* g1p = g1h->g1_policy();
 463   HeapRegion* hr = heap_region_containing(p);
 464   if (hr == NULL) {
 465      // perm gen (or null)
 466      return false;
 467   } else {
 468     return !hr->isHumongous();
 469   }
 470 }
 471 
 472 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 473   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 474   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 475 
 476   // Count the dirty cards at the start.
 477   CountNonCleanMemRegionClosure count1(this);
 478   ct_bs->mod_card_iterate(&count1);
 479   int orig_count = count1.n();
 480 
 481   // First clear the logged cards.
 482   ClearLoggedCardTableEntryClosure clear;
 483   dcqs.set_closure(&clear);
 484   dcqs.apply_closure_to_all_completed_buffers();
 485   dcqs.iterate_closure_all_threads(false);
 486   clear.print_histo();
 487 
 488   // Now ensure that there's no dirty cards.
 489   CountNonCleanMemRegionClosure count2(this);
 490   ct_bs->mod_card_iterate(&count2);
 491   if (count2.n() != 0) {
 492     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 493                            count2.n(), orig_count);
 494   }
 495   guarantee(count2.n() == 0, "Card table should be clean.");
 496 
 497   RedirtyLoggedCardTableEntryClosure redirty;
 498   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 499   dcqs.apply_closure_to_all_completed_buffers();
 500   dcqs.iterate_closure_all_threads(false);
 501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 502                          clear.calls(), orig_count);
 503   guarantee(redirty.calls() == clear.calls(),
 504             "Or else mechanism is broken.");
 505 
 506   CountNonCleanMemRegionClosure count3(this);
 507   ct_bs->mod_card_iterate(&count3);
 508   if (count3.n() != orig_count) {
 509     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 510                            orig_count, count3.n());
 511     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 512   }
 513 
 514   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 515 }
 516 
 517 // Private class members.
 518 
 519 G1CollectedHeap* G1CollectedHeap::_g1h;
 520 
 521 // Private methods.
 522 
 523 HeapRegion*
 524 G1CollectedHeap::new_region_try_secondary_free_list() {
 525   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 526   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 527     if (!_secondary_free_list.is_empty()) {
 528       if (G1ConcRegionFreeingVerbose) {
 529         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 530                                "secondary_free_list has %u entries",
 531                                _secondary_free_list.length());
 532       }
 533       // It looks as if there are free regions available on the
 534       // secondary_free_list. Let's move them to the free_list and try
 535       // again to allocate from it.
 536       append_secondary_free_list();
 537 
 538       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 539              "empty we should have moved at least one entry to the free_list");
 540       HeapRegion* res = _free_list.remove_head();
 541       if (G1ConcRegionFreeingVerbose) {
 542         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 543                                "allocated "HR_FORMAT" from secondary_free_list",
 544                                HR_FORMAT_PARAMS(res));
 545       }
 546       return res;
 547     }
 548 
 549     // Wait here until we get notifed either when (a) there are no
 550     // more free regions coming or (b) some regions have been moved on
 551     // the secondary_free_list.
 552     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 553   }
 554 
 555   if (G1ConcRegionFreeingVerbose) {
 556     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 557                            "could not allocate from secondary_free_list");
 558   }
 559   return NULL;
 560 }
 561 
 562 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 563   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 564          "the only time we use this to allocate a humongous region is "
 565          "when we are allocating a single humongous region");
 566 
 567   HeapRegion* res;
 568   if (G1StressConcRegionFreeing) {
 569     if (!_secondary_free_list.is_empty()) {
 570       if (G1ConcRegionFreeingVerbose) {
 571         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 572                                "forced to look at the secondary_free_list");
 573       }
 574       res = new_region_try_secondary_free_list();
 575       if (res != NULL) {
 576         return res;
 577       }
 578     }
 579   }
 580   res = _free_list.remove_head_or_null();
 581   if (res == NULL) {
 582     if (G1ConcRegionFreeingVerbose) {
 583       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 584                              "res == NULL, trying the secondary_free_list");
 585     }
 586     res = new_region_try_secondary_free_list();
 587   }
 588   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 589     // Currently, only attempts to allocate GC alloc regions set
 590     // do_expand to true. So, we should only reach here during a
 591     // safepoint. If this assumption changes we might have to
 592     // reconsider the use of _expand_heap_after_alloc_failure.
 593     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 594 
 595     ergo_verbose1(ErgoHeapSizing,
 596                   "attempt heap expansion",
 597                   ergo_format_reason("region allocation request failed")
 598                   ergo_format_byte("allocation request"),
 599                   word_size * HeapWordSize);
 600     if (expand(word_size * HeapWordSize)) {
 601       // Given that expand() succeeded in expanding the heap, and we
 602       // always expand the heap by an amount aligned to the heap
 603       // region size, the free list should in theory not be empty. So
 604       // it would probably be OK to use remove_head(). But the extra
 605       // check for NULL is unlikely to be a performance issue here (we
 606       // just expanded the heap!) so let's just be conservative and
 607       // use remove_head_or_null().
 608       res = _free_list.remove_head_or_null();
 609     } else {
 610       _expand_heap_after_alloc_failure = false;
 611     }
 612   }
 613   return res;
 614 }
 615 
 616 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 617                                                         size_t word_size) {
 618   assert(isHumongous(word_size), "word_size should be humongous");
 619   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 620 
 621   uint first = G1_NULL_HRS_INDEX;
 622   if (num_regions == 1) {
 623     // Only one region to allocate, no need to go through the slower
 624     // path. The caller will attempt the expasion if this fails, so
 625     // let's not try to expand here too.
 626     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 627     if (hr != NULL) {
 628       first = hr->hrs_index();
 629     } else {
 630       first = G1_NULL_HRS_INDEX;
 631     }
 632   } else {
 633     // We can't allocate humongous regions while cleanupComplete() is
 634     // running, since some of the regions we find to be empty might not
 635     // yet be added to the free list and it is not straightforward to
 636     // know which list they are on so that we can remove them. Note
 637     // that we only need to do this if we need to allocate more than
 638     // one region to satisfy the current humongous allocation
 639     // request. If we are only allocating one region we use the common
 640     // region allocation code (see above).
 641     wait_while_free_regions_coming();
 642     append_secondary_free_list_if_not_empty_with_lock();
 643 
 644     if (free_regions() >= num_regions) {
 645       first = _hrs.find_contiguous(num_regions);
 646       if (first != G1_NULL_HRS_INDEX) {
 647         for (uint i = first; i < first + num_regions; ++i) {
 648           HeapRegion* hr = region_at(i);
 649           assert(hr->is_empty(), "sanity");
 650           assert(is_on_master_free_list(hr), "sanity");
 651           hr->set_pending_removal(true);
 652         }
 653         _free_list.remove_all_pending(num_regions);
 654       }
 655     }
 656   }
 657   return first;
 658 }
 659 
 660 HeapWord*
 661 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 662                                                            uint num_regions,
 663                                                            size_t word_size) {
 664   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 665   assert(isHumongous(word_size), "word_size should be humongous");
 666   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 667 
 668   // Index of last region in the series + 1.
 669   uint last = first + num_regions;
 670 
 671   // We need to initialize the region(s) we just discovered. This is
 672   // a bit tricky given that it can happen concurrently with
 673   // refinement threads refining cards on these regions and
 674   // potentially wanting to refine the BOT as they are scanning
 675   // those cards (this can happen shortly after a cleanup; see CR
 676   // 6991377). So we have to set up the region(s) carefully and in
 677   // a specific order.
 678 
 679   // The word size sum of all the regions we will allocate.
 680   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 681   assert(word_size <= word_size_sum, "sanity");
 682 
 683   // This will be the "starts humongous" region.
 684   HeapRegion* first_hr = region_at(first);
 685   // The header of the new object will be placed at the bottom of
 686   // the first region.
 687   HeapWord* new_obj = first_hr->bottom();
 688   // This will be the new end of the first region in the series that
 689   // should also match the end of the last region in the seriers.
 690   HeapWord* new_end = new_obj + word_size_sum;
 691   // This will be the new top of the first region that will reflect
 692   // this allocation.
 693   HeapWord* new_top = new_obj + word_size;
 694 
 695   // First, we need to zero the header of the space that we will be
 696   // allocating. When we update top further down, some refinement
 697   // threads might try to scan the region. By zeroing the header we
 698   // ensure that any thread that will try to scan the region will
 699   // come across the zero klass word and bail out.
 700   //
 701   // NOTE: It would not have been correct to have used
 702   // CollectedHeap::fill_with_object() and make the space look like
 703   // an int array. The thread that is doing the allocation will
 704   // later update the object header to a potentially different array
 705   // type and, for a very short period of time, the klass and length
 706   // fields will be inconsistent. This could cause a refinement
 707   // thread to calculate the object size incorrectly.
 708   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 709 
 710   // We will set up the first region as "starts humongous". This
 711   // will also update the BOT covering all the regions to reflect
 712   // that there is a single object that starts at the bottom of the
 713   // first region.
 714   first_hr->set_startsHumongous(new_top, new_end);
 715 
 716   // Then, if there are any, we will set up the "continues
 717   // humongous" regions.
 718   HeapRegion* hr = NULL;
 719   for (uint i = first + 1; i < last; ++i) {
 720     hr = region_at(i);
 721     hr->set_continuesHumongous(first_hr);
 722   }
 723   // If we have "continues humongous" regions (hr != NULL), then the
 724   // end of the last one should match new_end.
 725   assert(hr == NULL || hr->end() == new_end, "sanity");
 726 
 727   // Up to this point no concurrent thread would have been able to
 728   // do any scanning on any region in this series. All the top
 729   // fields still point to bottom, so the intersection between
 730   // [bottom,top] and [card_start,card_end] will be empty. Before we
 731   // update the top fields, we'll do a storestore to make sure that
 732   // no thread sees the update to top before the zeroing of the
 733   // object header and the BOT initialization.
 734   OrderAccess::storestore();
 735 
 736   // Now that the BOT and the object header have been initialized,
 737   // we can update top of the "starts humongous" region.
 738   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 739          "new_top should be in this region");
 740   first_hr->set_top(new_top);
 741   if (_hr_printer.is_active()) {
 742     HeapWord* bottom = first_hr->bottom();
 743     HeapWord* end = first_hr->orig_end();
 744     if ((first + 1) == last) {
 745       // the series has a single humongous region
 746       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 747     } else {
 748       // the series has more than one humongous regions
 749       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 750     }
 751   }
 752 
 753   // Now, we will update the top fields of the "continues humongous"
 754   // regions. The reason we need to do this is that, otherwise,
 755   // these regions would look empty and this will confuse parts of
 756   // G1. For example, the code that looks for a consecutive number
 757   // of empty regions will consider them empty and try to
 758   // re-allocate them. We can extend is_empty() to also include
 759   // !continuesHumongous(), but it is easier to just update the top
 760   // fields here. The way we set top for all regions (i.e., top ==
 761   // end for all regions but the last one, top == new_top for the
 762   // last one) is actually used when we will free up the humongous
 763   // region in free_humongous_region().
 764   hr = NULL;
 765   for (uint i = first + 1; i < last; ++i) {
 766     hr = region_at(i);
 767     if ((i + 1) == last) {
 768       // last continues humongous region
 769       assert(hr->bottom() < new_top && new_top <= hr->end(),
 770              "new_top should fall on this region");
 771       hr->set_top(new_top);
 772       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 773     } else {
 774       // not last one
 775       assert(new_top > hr->end(), "new_top should be above this region");
 776       hr->set_top(hr->end());
 777       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 778     }
 779   }
 780   // If we have continues humongous regions (hr != NULL), then the
 781   // end of the last one should match new_end and its top should
 782   // match new_top.
 783   assert(hr == NULL ||
 784          (hr->end() == new_end && hr->top() == new_top), "sanity");
 785 
 786   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 787   _summary_bytes_used += first_hr->used();
 788   _humongous_set.add(first_hr);
 789 
 790   return new_obj;
 791 }
 792 
 793 // If could fit into free regions w/o expansion, try.
 794 // Otherwise, if can expand, do so.
 795 // Otherwise, if using ex regions might help, try with ex given back.
 796 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 797   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 798 
 799   verify_region_sets_optional();
 800 
 801   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 802   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 803   uint x_num = expansion_regions();
 804   uint fs = _hrs.free_suffix();
 805   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 806   if (first == G1_NULL_HRS_INDEX) {
 807     // The only thing we can do now is attempt expansion.
 808     if (fs + x_num >= num_regions) {
 809       // If the number of regions we're trying to allocate for this
 810       // object is at most the number of regions in the free suffix,
 811       // then the call to humongous_obj_allocate_find_first() above
 812       // should have succeeded and we wouldn't be here.
 813       //
 814       // We should only be trying to expand when the free suffix is
 815       // not sufficient for the object _and_ we have some expansion
 816       // room available.
 817       assert(num_regions > fs, "earlier allocation should have succeeded");
 818 
 819       ergo_verbose1(ErgoHeapSizing,
 820                     "attempt heap expansion",
 821                     ergo_format_reason("humongous allocation request failed")
 822                     ergo_format_byte("allocation request"),
 823                     word_size * HeapWordSize);
 824       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 825         // Even though the heap was expanded, it might not have
 826         // reached the desired size. So, we cannot assume that the
 827         // allocation will succeed.
 828         first = humongous_obj_allocate_find_first(num_regions, word_size);
 829       }
 830     }
 831   }
 832 
 833   HeapWord* result = NULL;
 834   if (first != G1_NULL_HRS_INDEX) {
 835     result =
 836       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 837     assert(result != NULL, "it should always return a valid result");
 838 
 839     // A successful humongous object allocation changes the used space
 840     // information of the old generation so we need to recalculate the
 841     // sizes and update the jstat counters here.
 842     g1mm()->update_sizes();
 843   }
 844 
 845   verify_region_sets_optional();
 846 
 847   return result;
 848 }
 849 
 850 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 851   assert_heap_not_locked_and_not_at_safepoint();
 852   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 853 
 854   unsigned int dummy_gc_count_before;
 855   return attempt_allocation(word_size, &dummy_gc_count_before);
 856 }
 857 
 858 HeapWord*
 859 G1CollectedHeap::mem_allocate(size_t word_size,
 860                               bool*  gc_overhead_limit_was_exceeded) {
 861   assert_heap_not_locked_and_not_at_safepoint();
 862 
 863   // Loop until the allocation is satisified, or unsatisfied after GC.
 864   for (int try_count = 1; /* we'll return */; try_count += 1) {
 865     unsigned int gc_count_before;
 866 
 867     HeapWord* result = NULL;
 868     if (!isHumongous(word_size)) {
 869       result = attempt_allocation(word_size, &gc_count_before);
 870     } else {
 871       result = attempt_allocation_humongous(word_size, &gc_count_before);
 872     }
 873     if (result != NULL) {
 874       return result;
 875     }
 876 
 877     // Create the garbage collection operation...
 878     VM_G1CollectForAllocation op(gc_count_before, word_size);
 879     // ...and get the VM thread to execute it.
 880     VMThread::execute(&op);
 881 
 882     if (op.prologue_succeeded() && op.pause_succeeded()) {
 883       // If the operation was successful we'll return the result even
 884       // if it is NULL. If the allocation attempt failed immediately
 885       // after a Full GC, it's unlikely we'll be able to allocate now.
 886       HeapWord* result = op.result();
 887       if (result != NULL && !isHumongous(word_size)) {
 888         // Allocations that take place on VM operations do not do any
 889         // card dirtying and we have to do it here. We only have to do
 890         // this for non-humongous allocations, though.
 891         dirty_young_block(result, word_size);
 892       }
 893       return result;
 894     } else {
 895       assert(op.result() == NULL,
 896              "the result should be NULL if the VM op did not succeed");
 897     }
 898 
 899     // Give a warning if we seem to be looping forever.
 900     if ((QueuedAllocationWarningCount > 0) &&
 901         (try_count % QueuedAllocationWarningCount == 0)) {
 902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 911                                            unsigned int *gc_count_before_ret) {
 912   // Make sure you read the note in attempt_allocation_humongous().
 913 
 914   assert_heap_not_locked_and_not_at_safepoint();
 915   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 916          "be called for humongous allocation requests");
 917 
 918   // We should only get here after the first-level allocation attempt
 919   // (attempt_allocation()) failed to allocate.
 920 
 921   // We will loop until a) we manage to successfully perform the
 922   // allocation or b) we successfully schedule a collection which
 923   // fails to perform the allocation. b) is the only case when we'll
 924   // return NULL.
 925   HeapWord* result = NULL;
 926   for (int try_count = 1; /* we'll return */; try_count += 1) {
 927     bool should_try_gc;
 928     unsigned int gc_count_before;
 929 
 930     {
 931       MutexLockerEx x(Heap_lock);
 932 
 933       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 934                                                       false /* bot_updates */);
 935       if (result != NULL) {
 936         return result;
 937       }
 938 
 939       // If we reach here, attempt_allocation_locked() above failed to
 940       // allocate a new region. So the mutator alloc region should be NULL.
 941       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 942 
 943       if (GC_locker::is_active_and_needs_gc()) {
 944         if (g1_policy()->can_expand_young_list()) {
 945           // No need for an ergo verbose message here,
 946           // can_expand_young_list() does this when it returns true.
 947           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 948                                                       false /* bot_updates */);
 949           if (result != NULL) {
 950             return result;
 951           }
 952         }
 953         should_try_gc = false;
 954       } else {
 955         // Read the GC count while still holding the Heap_lock.
 956         gc_count_before = total_collections();
 957         should_try_gc = true;
 958       }
 959     }
 960 
 961     if (should_try_gc) {
 962       bool succeeded;
 963       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 964       if (result != NULL) {
 965         assert(succeeded, "only way to get back a non-NULL result");
 966         return result;
 967       }
 968 
 969       if (succeeded) {
 970         // If we get here we successfully scheduled a collection which
 971         // failed to allocate. No point in trying to allocate
 972         // further. We'll just return NULL.
 973         MutexLockerEx x(Heap_lock);
 974         *gc_count_before_ret = total_collections();
 975         return NULL;
 976       }
 977     } else {
 978       GC_locker::stall_until_clear();
 979     }
 980 
 981     // We can reach here if we were unsuccessul in scheduling a
 982     // collection (because another thread beat us to it) or if we were
 983     // stalled due to the GC locker. In either can we should retry the
 984     // allocation attempt in case another thread successfully
 985     // performed a collection and reclaimed enough space. We do the
 986     // first attempt (without holding the Heap_lock) here and the
 987     // follow-on attempt will be at the start of the next loop
 988     // iteration (after taking the Heap_lock).
 989     result = _mutator_alloc_region.attempt_allocation(word_size,
 990                                                       false /* bot_updates */);
 991     if (result != NULL) {
 992       return result;
 993     }
 994 
 995     // Give a warning if we seem to be looping forever.
 996     if ((QueuedAllocationWarningCount > 0) &&
 997         (try_count % QueuedAllocationWarningCount == 0)) {
 998       warning("G1CollectedHeap::attempt_allocation_slow() "
 999               "retries %d times", try_count);
1000     }
1001   }
1002 
1003   ShouldNotReachHere();
1004   return NULL;
1005 }
1006 
1007 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1008                                           unsigned int * gc_count_before_ret) {
1009   // The structure of this method has a lot of similarities to
1010   // attempt_allocation_slow(). The reason these two were not merged
1011   // into a single one is that such a method would require several "if
1012   // allocation is not humongous do this, otherwise do that"
1013   // conditional paths which would obscure its flow. In fact, an early
1014   // version of this code did use a unified method which was harder to
1015   // follow and, as a result, it had subtle bugs that were hard to
1016   // track down. So keeping these two methods separate allows each to
1017   // be more readable. It will be good to keep these two in sync as
1018   // much as possible.
1019 
1020   assert_heap_not_locked_and_not_at_safepoint();
1021   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1022          "should only be called for humongous allocations");
1023 
1024   // Humongous objects can exhaust the heap quickly, so we should check if we
1025   // need to start a marking cycle at each humongous object allocation. We do
1026   // the check before we do the actual allocation. The reason for doing it
1027   // before the allocation is that we avoid having to keep track of the newly
1028   // allocated memory while we do a GC.
1029   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1030                                            word_size)) {
1031     collect(GCCause::_g1_humongous_allocation);
1032   }
1033 
1034   // We will loop until a) we manage to successfully perform the
1035   // allocation or b) we successfully schedule a collection which
1036   // fails to perform the allocation. b) is the only case when we'll
1037   // return NULL.
1038   HeapWord* result = NULL;
1039   for (int try_count = 1; /* we'll return */; try_count += 1) {
1040     bool should_try_gc;
1041     unsigned int gc_count_before;
1042 
1043     {
1044       MutexLockerEx x(Heap_lock);
1045 
1046       // Given that humongous objects are not allocated in young
1047       // regions, we'll first try to do the allocation without doing a
1048       // collection hoping that there's enough space in the heap.
1049       result = humongous_obj_allocate(word_size);
1050       if (result != NULL) {
1051         return result;
1052       }
1053 
1054       if (GC_locker::is_active_and_needs_gc()) {
1055         should_try_gc = false;
1056       } else {
1057         // Read the GC count while still holding the Heap_lock.
1058         gc_count_before = total_collections();
1059         should_try_gc = true;
1060       }
1061     }
1062 
1063     if (should_try_gc) {
1064       // If we failed to allocate the humongous object, we should try to
1065       // do a collection pause (if we're allowed) in case it reclaims
1066       // enough space for the allocation to succeed after the pause.
1067 
1068       bool succeeded;
1069       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1070       if (result != NULL) {
1071         assert(succeeded, "only way to get back a non-NULL result");
1072         return result;
1073       }
1074 
1075       if (succeeded) {
1076         // If we get here we successfully scheduled a collection which
1077         // failed to allocate. No point in trying to allocate
1078         // further. We'll just return NULL.
1079         MutexLockerEx x(Heap_lock);
1080         *gc_count_before_ret = total_collections();
1081         return NULL;
1082       }
1083     } else {
1084       GC_locker::stall_until_clear();
1085     }
1086 
1087     // We can reach here if we were unsuccessul in scheduling a
1088     // collection (because another thread beat us to it) or if we were
1089     // stalled due to the GC locker. In either can we should retry the
1090     // allocation attempt in case another thread successfully
1091     // performed a collection and reclaimed enough space.  Give a
1092     // warning if we seem to be looping forever.
1093 
1094     if ((QueuedAllocationWarningCount > 0) &&
1095         (try_count % QueuedAllocationWarningCount == 0)) {
1096       warning("G1CollectedHeap::attempt_allocation_humongous() "
1097               "retries %d times", try_count);
1098     }
1099   }
1100 
1101   ShouldNotReachHere();
1102   return NULL;
1103 }
1104 
1105 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1106                                        bool expect_null_mutator_alloc_region) {
1107   assert_at_safepoint(true /* should_be_vm_thread */);
1108   assert(_mutator_alloc_region.get() == NULL ||
1109                                              !expect_null_mutator_alloc_region,
1110          "the current alloc region was unexpectedly found to be non-NULL");
1111 
1112   if (!isHumongous(word_size)) {
1113     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1114                                                       false /* bot_updates */);
1115   } else {
1116     HeapWord* result = humongous_obj_allocate(word_size);
1117     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1118       g1_policy()->set_initiate_conc_mark_if_possible();
1119     }
1120     return result;
1121   }
1122 
1123   ShouldNotReachHere();
1124 }
1125 
1126 class PostMCRemSetClearClosure: public HeapRegionClosure {
1127   ModRefBarrierSet* _mr_bs;
1128 public:
1129   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1130   bool doHeapRegion(HeapRegion* r) {
1131     r->reset_gc_time_stamp();
1132     if (r->continuesHumongous())
1133       return false;
1134     HeapRegionRemSet* hrrs = r->rem_set();
1135     if (hrrs != NULL) hrrs->clear();
1136     // You might think here that we could clear just the cards
1137     // corresponding to the used region.  But no: if we leave a dirty card
1138     // in a region we might allocate into, then it would prevent that card
1139     // from being enqueued, and cause it to be missed.
1140     // Re: the performance cost: we shouldn't be doing full GC anyway!
1141     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1142     return false;
1143   }
1144 };
1145 
1146 
1147 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1148   ModRefBarrierSet* _mr_bs;
1149 public:
1150   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1151   bool doHeapRegion(HeapRegion* r) {
1152     if (r->continuesHumongous()) return false;
1153     if (r->used_region().word_size() != 0) {
1154       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1155     }
1156     return false;
1157   }
1158 };
1159 
1160 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1161   G1CollectedHeap*   _g1h;
1162   UpdateRSOopClosure _cl;
1163   int                _worker_i;
1164 public:
1165   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1166     _cl(g1->g1_rem_set(), worker_i),
1167     _worker_i(worker_i),
1168     _g1h(g1)
1169   { }
1170 
1171   bool doHeapRegion(HeapRegion* r) {
1172     if (!r->continuesHumongous()) {
1173       _cl.set_from(r);
1174       r->oop_iterate(&_cl);
1175     }
1176     return false;
1177   }
1178 };
1179 
1180 class ParRebuildRSTask: public AbstractGangTask {
1181   G1CollectedHeap* _g1;
1182 public:
1183   ParRebuildRSTask(G1CollectedHeap* g1)
1184     : AbstractGangTask("ParRebuildRSTask"),
1185       _g1(g1)
1186   { }
1187 
1188   void work(uint worker_id) {
1189     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1190     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1191                                           _g1->workers()->active_workers(),
1192                                          HeapRegion::RebuildRSClaimValue);
1193   }
1194 };
1195 
1196 class PostCompactionPrinterClosure: public HeapRegionClosure {
1197 private:
1198   G1HRPrinter* _hr_printer;
1199 public:
1200   bool doHeapRegion(HeapRegion* hr) {
1201     assert(!hr->is_young(), "not expecting to find young regions");
1202     // We only generate output for non-empty regions.
1203     if (!hr->is_empty()) {
1204       if (!hr->isHumongous()) {
1205         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1206       } else if (hr->startsHumongous()) {
1207         if (hr->capacity() == HeapRegion::GrainBytes) {
1208           // single humongous region
1209           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1210         } else {
1211           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1212         }
1213       } else {
1214         assert(hr->continuesHumongous(), "only way to get here");
1215         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1216       }
1217     }
1218     return false;
1219   }
1220 
1221   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1222     : _hr_printer(hr_printer) { }
1223 };
1224 
1225 bool G1CollectedHeap::do_collection(bool explicit_gc,
1226                                     bool clear_all_soft_refs,
1227                                     size_t word_size) {
1228   assert_at_safepoint(true /* should_be_vm_thread */);
1229 
1230   if (GC_locker::check_active_before_gc()) {
1231     return false;
1232   }
1233 
1234   SvcGCMarker sgcm(SvcGCMarker::FULL);
1235   ResourceMark rm;
1236 
1237   print_heap_before_gc();
1238 
1239   HRSPhaseSetter x(HRSPhaseFullGC);
1240   verify_region_sets_optional();
1241 
1242   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1243                            collector_policy()->should_clear_all_soft_refs();
1244 
1245   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1246 
1247   {
1248     IsGCActiveMark x;
1249 
1250     // Timing
1251     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1252     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1253     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1254 
1255     char verbose_str[128];
1256     sprintf(verbose_str, "Full GC (%s)", GCCause::to_string(gc_cause()));
1257     TraceTime t(verbose_str, G1Log::fine(), true, gclog_or_tty);
1258 
1259     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1260     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1261 
1262     double start = os::elapsedTime();
1263     g1_policy()->record_full_collection_start();
1264 
1265     // Note: When we have a more flexible GC logging framework that
1266     // allows us to add optional attributes to a GC log record we
1267     // could consider timing and reporting how long we wait in the
1268     // following two methods.
1269     wait_while_free_regions_coming();
1270     // If we start the compaction before the CM threads finish
1271     // scanning the root regions we might trip them over as we'll
1272     // be moving objects / updating references. So let's wait until
1273     // they are done. By telling them to abort, they should complete
1274     // early.
1275     _cm->root_regions()->abort();
1276     _cm->root_regions()->wait_until_scan_finished();
1277     append_secondary_free_list_if_not_empty_with_lock();
1278 
1279     gc_prologue(true);
1280     increment_total_collections(true /* full gc */);
1281 
1282     size_t g1h_prev_used = used();
1283     assert(used() == recalculate_used(), "Should be equal");
1284 
1285     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1286       HandleMark hm;  // Discard invalid handles created during verification
1287       gclog_or_tty->print(" VerifyBeforeGC:");
1288       prepare_for_verify();
1289       Universe::verify(/* silent      */ false,
1290                        /* option      */ VerifyOption_G1UsePrevMarking);
1291 
1292     }
1293     pre_full_gc_dump();
1294 
1295     COMPILER2_PRESENT(DerivedPointerTable::clear());
1296 
1297     // Disable discovery and empty the discovered lists
1298     // for the CM ref processor.
1299     ref_processor_cm()->disable_discovery();
1300     ref_processor_cm()->abandon_partial_discovery();
1301     ref_processor_cm()->verify_no_references_recorded();
1302 
1303     // Abandon current iterations of concurrent marking and concurrent
1304     // refinement, if any are in progress. We have to do this before
1305     // wait_until_scan_finished() below.
1306     concurrent_mark()->abort();
1307 
1308     // Make sure we'll choose a new allocation region afterwards.
1309     release_mutator_alloc_region();
1310     abandon_gc_alloc_regions();
1311     g1_rem_set()->cleanupHRRS();
1312 
1313     // We should call this after we retire any currently active alloc
1314     // regions so that all the ALLOC / RETIRE events are generated
1315     // before the start GC event.
1316     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1317 
1318     // We may have added regions to the current incremental collection
1319     // set between the last GC or pause and now. We need to clear the
1320     // incremental collection set and then start rebuilding it afresh
1321     // after this full GC.
1322     abandon_collection_set(g1_policy()->inc_cset_head());
1323     g1_policy()->clear_incremental_cset();
1324     g1_policy()->stop_incremental_cset_building();
1325 
1326     tear_down_region_sets(false /* free_list_only */);
1327     g1_policy()->set_gcs_are_young(true);
1328 
1329     // See the comments in g1CollectedHeap.hpp and
1330     // G1CollectedHeap::ref_processing_init() about
1331     // how reference processing currently works in G1.
1332 
1333     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1334     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1335 
1336     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1337     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1338 
1339     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1340     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1341 
1342     // Do collection work
1343     {
1344       HandleMark hm;  // Discard invalid handles created during gc
1345       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1346     }
1347 
1348     assert(free_regions() == 0, "we should not have added any free regions");
1349     rebuild_region_sets(false /* free_list_only */);
1350 
1351     // Enqueue any discovered reference objects that have
1352     // not been removed from the discovered lists.
1353     ref_processor_stw()->enqueue_discovered_references();
1354 
1355     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1356 
1357     MemoryService::track_memory_usage();
1358 
1359     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1360       HandleMark hm;  // Discard invalid handles created during verification
1361       gclog_or_tty->print(" VerifyAfterGC:");
1362       prepare_for_verify();
1363       Universe::verify(/* silent      */ false,
1364                        /* option      */ VerifyOption_G1UsePrevMarking);
1365 
1366     }
1367 
1368     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1369     ref_processor_stw()->verify_no_references_recorded();
1370 
1371     // Note: since we've just done a full GC, concurrent
1372     // marking is no longer active. Therefore we need not
1373     // re-enable reference discovery for the CM ref processor.
1374     // That will be done at the start of the next marking cycle.
1375     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1376     ref_processor_cm()->verify_no_references_recorded();
1377 
1378     reset_gc_time_stamp();
1379     // Since everything potentially moved, we will clear all remembered
1380     // sets, and clear all cards.  Later we will rebuild remebered
1381     // sets. We will also reset the GC time stamps of the regions.
1382     PostMCRemSetClearClosure rs_clear(mr_bs());
1383     heap_region_iterate(&rs_clear);
1384 
1385     // Resize the heap if necessary.
1386     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1387 
1388     if (_hr_printer.is_active()) {
1389       // We should do this after we potentially resize the heap so
1390       // that all the COMMIT / UNCOMMIT events are generated before
1391       // the end GC event.
1392 
1393       PostCompactionPrinterClosure cl(hr_printer());
1394       heap_region_iterate(&cl);
1395 
1396       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1397     }
1398 
1399     if (_cg1r->use_cache()) {
1400       _cg1r->clear_and_record_card_counts();
1401       _cg1r->clear_hot_cache();
1402     }
1403 
1404     // Rebuild remembered sets of all regions.
1405     if (G1CollectedHeap::use_parallel_gc_threads()) {
1406       uint n_workers =
1407         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1408                                        workers()->active_workers(),
1409                                        Threads::number_of_non_daemon_threads());
1410       assert(UseDynamicNumberOfGCThreads ||
1411              n_workers == workers()->total_workers(),
1412              "If not dynamic should be using all the  workers");
1413       workers()->set_active_workers(n_workers);
1414       // Set parallel threads in the heap (_n_par_threads) only
1415       // before a parallel phase and always reset it to 0 after
1416       // the phase so that the number of parallel threads does
1417       // no get carried forward to a serial phase where there
1418       // may be code that is "possibly_parallel".
1419       set_par_threads(n_workers);
1420 
1421       ParRebuildRSTask rebuild_rs_task(this);
1422       assert(check_heap_region_claim_values(
1423              HeapRegion::InitialClaimValue), "sanity check");
1424       assert(UseDynamicNumberOfGCThreads ||
1425              workers()->active_workers() == workers()->total_workers(),
1426         "Unless dynamic should use total workers");
1427       // Use the most recent number of  active workers
1428       assert(workers()->active_workers() > 0,
1429         "Active workers not properly set");
1430       set_par_threads(workers()->active_workers());
1431       workers()->run_task(&rebuild_rs_task);
1432       set_par_threads(0);
1433       assert(check_heap_region_claim_values(
1434              HeapRegion::RebuildRSClaimValue), "sanity check");
1435       reset_heap_region_claim_values();
1436     } else {
1437       RebuildRSOutOfRegionClosure rebuild_rs(this);
1438       heap_region_iterate(&rebuild_rs);
1439     }
1440 
1441     if (G1Log::fine()) {
1442       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1443     }
1444 
1445     if (true) { // FIXME
1446       // Ask the permanent generation to adjust size for full collections
1447       perm()->compute_new_size();
1448     }
1449 
1450     // Start a new incremental collection set for the next pause
1451     assert(g1_policy()->collection_set() == NULL, "must be");
1452     g1_policy()->start_incremental_cset_building();
1453 
1454     // Clear the _cset_fast_test bitmap in anticipation of adding
1455     // regions to the incremental collection set for the next
1456     // evacuation pause.
1457     clear_cset_fast_test();
1458 
1459     init_mutator_alloc_region();
1460 
1461     double end = os::elapsedTime();
1462     g1_policy()->record_full_collection_end();
1463 
1464 #ifdef TRACESPINNING
1465     ParallelTaskTerminator::print_termination_counts();
1466 #endif
1467 
1468     gc_epilogue(true);
1469 
1470     // Discard all rset updates
1471     JavaThread::dirty_card_queue_set().abandon_logs();
1472     assert(!G1DeferredRSUpdate
1473            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1474   }
1475 
1476   _young_list->reset_sampled_info();
1477   // At this point there should be no regions in the
1478   // entire heap tagged as young.
1479   assert( check_young_list_empty(true /* check_heap */),
1480     "young list should be empty at this point");
1481 
1482   // Update the number of full collections that have been completed.
1483   increment_full_collections_completed(false /* concurrent */);
1484 
1485   _hrs.verify_optional();
1486   verify_region_sets_optional();
1487 
1488   print_heap_after_gc();
1489   g1mm()->update_sizes();
1490   post_full_gc_dump();
1491 
1492   return true;
1493 }
1494 
1495 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1496   // do_collection() will return whether it succeeded in performing
1497   // the GC. Currently, there is no facility on the
1498   // do_full_collection() API to notify the caller than the collection
1499   // did not succeed (e.g., because it was locked out by the GC
1500   // locker). So, right now, we'll ignore the return value.
1501   bool dummy = do_collection(true,                /* explicit_gc */
1502                              clear_all_soft_refs,
1503                              0                    /* word_size */);
1504 }
1505 
1506 // This code is mostly copied from TenuredGeneration.
1507 void
1508 G1CollectedHeap::
1509 resize_if_necessary_after_full_collection(size_t word_size) {
1510   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1511 
1512   // Include the current allocation, if any, and bytes that will be
1513   // pre-allocated to support collections, as "used".
1514   const size_t used_after_gc = used();
1515   const size_t capacity_after_gc = capacity();
1516   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1517 
1518   // This is enforced in arguments.cpp.
1519   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1520          "otherwise the code below doesn't make sense");
1521 
1522   // We don't have floating point command-line arguments
1523   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1524   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1525   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1526   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1527 
1528   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1529   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1530 
1531   // We have to be careful here as these two calculations can overflow
1532   // 32-bit size_t's.
1533   double used_after_gc_d = (double) used_after_gc;
1534   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1535   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1536 
1537   // Let's make sure that they are both under the max heap size, which
1538   // by default will make them fit into a size_t.
1539   double desired_capacity_upper_bound = (double) max_heap_size;
1540   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1541                                     desired_capacity_upper_bound);
1542   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1543                                     desired_capacity_upper_bound);
1544 
1545   // We can now safely turn them into size_t's.
1546   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1547   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1548 
1549   // This assert only makes sense here, before we adjust them
1550   // with respect to the min and max heap size.
1551   assert(minimum_desired_capacity <= maximum_desired_capacity,
1552          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1553                  "maximum_desired_capacity = "SIZE_FORMAT,
1554                  minimum_desired_capacity, maximum_desired_capacity));
1555 
1556   // Should not be greater than the heap max size. No need to adjust
1557   // it with respect to the heap min size as it's a lower bound (i.e.,
1558   // we'll try to make the capacity larger than it, not smaller).
1559   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1560   // Should not be less than the heap min size. No need to adjust it
1561   // with respect to the heap max size as it's an upper bound (i.e.,
1562   // we'll try to make the capacity smaller than it, not greater).
1563   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1564 
1565   if (capacity_after_gc < minimum_desired_capacity) {
1566     // Don't expand unless it's significant
1567     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1568     ergo_verbose4(ErgoHeapSizing,
1569                   "attempt heap expansion",
1570                   ergo_format_reason("capacity lower than "
1571                                      "min desired capacity after Full GC")
1572                   ergo_format_byte("capacity")
1573                   ergo_format_byte("occupancy")
1574                   ergo_format_byte_perc("min desired capacity"),
1575                   capacity_after_gc, used_after_gc,
1576                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1577     expand(expand_bytes);
1578 
1579     // No expansion, now see if we want to shrink
1580   } else if (capacity_after_gc > maximum_desired_capacity) {
1581     // Capacity too large, compute shrinking size
1582     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1583     ergo_verbose4(ErgoHeapSizing,
1584                   "attempt heap shrinking",
1585                   ergo_format_reason("capacity higher than "
1586                                      "max desired capacity after Full GC")
1587                   ergo_format_byte("capacity")
1588                   ergo_format_byte("occupancy")
1589                   ergo_format_byte_perc("max desired capacity"),
1590                   capacity_after_gc, used_after_gc,
1591                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1592     shrink(shrink_bytes);
1593   }
1594 }
1595 
1596 
1597 HeapWord*
1598 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1599                                            bool* succeeded) {
1600   assert_at_safepoint(true /* should_be_vm_thread */);
1601 
1602   *succeeded = true;
1603   // Let's attempt the allocation first.
1604   HeapWord* result =
1605     attempt_allocation_at_safepoint(word_size,
1606                                  false /* expect_null_mutator_alloc_region */);
1607   if (result != NULL) {
1608     assert(*succeeded, "sanity");
1609     return result;
1610   }
1611 
1612   // In a G1 heap, we're supposed to keep allocation from failing by
1613   // incremental pauses.  Therefore, at least for now, we'll favor
1614   // expansion over collection.  (This might change in the future if we can
1615   // do something smarter than full collection to satisfy a failed alloc.)
1616   result = expand_and_allocate(word_size);
1617   if (result != NULL) {
1618     assert(*succeeded, "sanity");
1619     return result;
1620   }
1621 
1622   // Expansion didn't work, we'll try to do a Full GC.
1623   bool gc_succeeded = do_collection(false, /* explicit_gc */
1624                                     false, /* clear_all_soft_refs */
1625                                     word_size);
1626   if (!gc_succeeded) {
1627     *succeeded = false;
1628     return NULL;
1629   }
1630 
1631   // Retry the allocation
1632   result = attempt_allocation_at_safepoint(word_size,
1633                                   true /* expect_null_mutator_alloc_region */);
1634   if (result != NULL) {
1635     assert(*succeeded, "sanity");
1636     return result;
1637   }
1638 
1639   // Then, try a Full GC that will collect all soft references.
1640   gc_succeeded = do_collection(false, /* explicit_gc */
1641                                true,  /* clear_all_soft_refs */
1642                                word_size);
1643   if (!gc_succeeded) {
1644     *succeeded = false;
1645     return NULL;
1646   }
1647 
1648   // Retry the allocation once more
1649   result = attempt_allocation_at_safepoint(word_size,
1650                                   true /* expect_null_mutator_alloc_region */);
1651   if (result != NULL) {
1652     assert(*succeeded, "sanity");
1653     return result;
1654   }
1655 
1656   assert(!collector_policy()->should_clear_all_soft_refs(),
1657          "Flag should have been handled and cleared prior to this point");
1658 
1659   // What else?  We might try synchronous finalization later.  If the total
1660   // space available is large enough for the allocation, then a more
1661   // complete compaction phase than we've tried so far might be
1662   // appropriate.
1663   assert(*succeeded, "sanity");
1664   return NULL;
1665 }
1666 
1667 // Attempting to expand the heap sufficiently
1668 // to support an allocation of the given "word_size".  If
1669 // successful, perform the allocation and return the address of the
1670 // allocated block, or else "NULL".
1671 
1672 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1673   assert_at_safepoint(true /* should_be_vm_thread */);
1674 
1675   verify_region_sets_optional();
1676 
1677   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1678   ergo_verbose1(ErgoHeapSizing,
1679                 "attempt heap expansion",
1680                 ergo_format_reason("allocation request failed")
1681                 ergo_format_byte("allocation request"),
1682                 word_size * HeapWordSize);
1683   if (expand(expand_bytes)) {
1684     _hrs.verify_optional();
1685     verify_region_sets_optional();
1686     return attempt_allocation_at_safepoint(word_size,
1687                                  false /* expect_null_mutator_alloc_region */);
1688   }
1689   return NULL;
1690 }
1691 
1692 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1693                                              HeapWord* new_end) {
1694   assert(old_end != new_end, "don't call this otherwise");
1695   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1696 
1697   // Update the committed mem region.
1698   _g1_committed.set_end(new_end);
1699   // Tell the card table about the update.
1700   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1701   // Tell the BOT about the update.
1702   _bot_shared->resize(_g1_committed.word_size());
1703 }
1704 
1705 bool G1CollectedHeap::expand(size_t expand_bytes) {
1706   size_t old_mem_size = _g1_storage.committed_size();
1707   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1708   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1709                                        HeapRegion::GrainBytes);
1710   ergo_verbose2(ErgoHeapSizing,
1711                 "expand the heap",
1712                 ergo_format_byte("requested expansion amount")
1713                 ergo_format_byte("attempted expansion amount"),
1714                 expand_bytes, aligned_expand_bytes);
1715 
1716   // First commit the memory.
1717   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1718   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1719   if (successful) {
1720     // Then propagate this update to the necessary data structures.
1721     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1722     update_committed_space(old_end, new_end);
1723 
1724     FreeRegionList expansion_list("Local Expansion List");
1725     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1726     assert(mr.start() == old_end, "post-condition");
1727     // mr might be a smaller region than what was requested if
1728     // expand_by() was unable to allocate the HeapRegion instances
1729     assert(mr.end() <= new_end, "post-condition");
1730 
1731     size_t actual_expand_bytes = mr.byte_size();
1732     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1733     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1734            "post-condition");
1735     if (actual_expand_bytes < aligned_expand_bytes) {
1736       // We could not expand _hrs to the desired size. In this case we
1737       // need to shrink the committed space accordingly.
1738       assert(mr.end() < new_end, "invariant");
1739 
1740       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1741       // First uncommit the memory.
1742       _g1_storage.shrink_by(diff_bytes);
1743       // Then propagate this update to the necessary data structures.
1744       update_committed_space(new_end, mr.end());
1745     }
1746     _free_list.add_as_tail(&expansion_list);
1747 
1748     if (_hr_printer.is_active()) {
1749       HeapWord* curr = mr.start();
1750       while (curr < mr.end()) {
1751         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1752         _hr_printer.commit(curr, curr_end);
1753         curr = curr_end;
1754       }
1755       assert(curr == mr.end(), "post-condition");
1756     }
1757     g1_policy()->record_new_heap_size(n_regions());
1758   } else {
1759     ergo_verbose0(ErgoHeapSizing,
1760                   "did not expand the heap",
1761                   ergo_format_reason("heap expansion operation failed"));
1762     // The expansion of the virtual storage space was unsuccessful.
1763     // Let's see if it was because we ran out of swap.
1764     if (G1ExitOnExpansionFailure &&
1765         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1766       // We had head room...
1767       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1768     }
1769   }
1770   return successful;
1771 }
1772 
1773 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1774   size_t old_mem_size = _g1_storage.committed_size();
1775   size_t aligned_shrink_bytes =
1776     ReservedSpace::page_align_size_down(shrink_bytes);
1777   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1778                                          HeapRegion::GrainBytes);
1779   uint num_regions_deleted = 0;
1780   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1781   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1782   assert(mr.end() == old_end, "post-condition");
1783 
1784   ergo_verbose3(ErgoHeapSizing,
1785                 "shrink the heap",
1786                 ergo_format_byte("requested shrinking amount")
1787                 ergo_format_byte("aligned shrinking amount")
1788                 ergo_format_byte("attempted shrinking amount"),
1789                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1790   if (mr.byte_size() > 0) {
1791     if (_hr_printer.is_active()) {
1792       HeapWord* curr = mr.end();
1793       while (curr > mr.start()) {
1794         HeapWord* curr_end = curr;
1795         curr -= HeapRegion::GrainWords;
1796         _hr_printer.uncommit(curr, curr_end);
1797       }
1798       assert(curr == mr.start(), "post-condition");
1799     }
1800 
1801     _g1_storage.shrink_by(mr.byte_size());
1802     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1803     assert(mr.start() == new_end, "post-condition");
1804 
1805     _expansion_regions += num_regions_deleted;
1806     update_committed_space(old_end, new_end);
1807     HeapRegionRemSet::shrink_heap(n_regions());
1808     g1_policy()->record_new_heap_size(n_regions());
1809   } else {
1810     ergo_verbose0(ErgoHeapSizing,
1811                   "did not shrink the heap",
1812                   ergo_format_reason("heap shrinking operation failed"));
1813   }
1814 }
1815 
1816 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1817   verify_region_sets_optional();
1818 
1819   // We should only reach here at the end of a Full GC which means we
1820   // should not not be holding to any GC alloc regions. The method
1821   // below will make sure of that and do any remaining clean up.
1822   abandon_gc_alloc_regions();
1823 
1824   // Instead of tearing down / rebuilding the free lists here, we
1825   // could instead use the remove_all_pending() method on free_list to
1826   // remove only the ones that we need to remove.
1827   tear_down_region_sets(true /* free_list_only */);
1828   shrink_helper(shrink_bytes);
1829   rebuild_region_sets(true /* free_list_only */);
1830 
1831   _hrs.verify_optional();
1832   verify_region_sets_optional();
1833 }
1834 
1835 // Public methods.
1836 
1837 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1838 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1839 #endif // _MSC_VER
1840 
1841 
1842 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1843   SharedHeap(policy_),
1844   _g1_policy(policy_),
1845   _dirty_card_queue_set(false),
1846   _into_cset_dirty_card_queue_set(false),
1847   _is_alive_closure_cm(this),
1848   _is_alive_closure_stw(this),
1849   _ref_processor_cm(NULL),
1850   _ref_processor_stw(NULL),
1851   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1852   _bot_shared(NULL),
1853   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1854   _evac_failure_scan_stack(NULL) ,
1855   _mark_in_progress(false),
1856   _cg1r(NULL), _summary_bytes_used(0),
1857   _g1mm(NULL),
1858   _refine_cte_cl(NULL),
1859   _full_collection(false),
1860   _free_list("Master Free List"),
1861   _secondary_free_list("Secondary Free List"),
1862   _old_set("Old Set"),
1863   _humongous_set("Master Humongous Set"),
1864   _free_regions_coming(false),
1865   _young_list(new YoungList(this)),
1866   _gc_time_stamp(0),
1867   _retained_old_gc_alloc_region(NULL),
1868   _expand_heap_after_alloc_failure(true),
1869   _surviving_young_words(NULL),
1870   _full_collections_completed(0),
1871   _in_cset_fast_test(NULL),
1872   _in_cset_fast_test_base(NULL),
1873   _dirty_cards_region_list(NULL),
1874   _worker_cset_start_region(NULL),
1875   _worker_cset_start_region_time_stamp(NULL) {
1876   _g1h = this; // To catch bugs.
1877   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1878     vm_exit_during_initialization("Failed necessary allocation.");
1879   }
1880 
1881   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1882 
1883   int n_queues = MAX2((int)ParallelGCThreads, 1);
1884   _task_queues = new RefToScanQueueSet(n_queues);
1885 
1886   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1887   assert(n_rem_sets > 0, "Invariant.");
1888 
1889   HeapRegionRemSetIterator** iter_arr =
1890     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1891   for (int i = 0; i < n_queues; i++) {
1892     iter_arr[i] = new HeapRegionRemSetIterator();
1893   }
1894   _rem_set_iterator = iter_arr;
1895 
1896   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
1897   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
1898 
1899   for (int i = 0; i < n_queues; i++) {
1900     RefToScanQueue* q = new RefToScanQueue();
1901     q->initialize();
1902     _task_queues->register_queue(i, q);
1903   }
1904 
1905   clear_cset_start_regions();
1906 
1907   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1908 }
1909 
1910 jint G1CollectedHeap::initialize() {
1911   CollectedHeap::pre_initialize();
1912   os::enable_vtime();
1913 
1914   G1Log::init();
1915 
1916   // Necessary to satisfy locking discipline assertions.
1917 
1918   MutexLocker x(Heap_lock);
1919 
1920   // We have to initialize the printer before committing the heap, as
1921   // it will be used then.
1922   _hr_printer.set_active(G1PrintHeapRegions);
1923 
1924   // While there are no constraints in the GC code that HeapWordSize
1925   // be any particular value, there are multiple other areas in the
1926   // system which believe this to be true (e.g. oop->object_size in some
1927   // cases incorrectly returns the size in wordSize units rather than
1928   // HeapWordSize).
1929   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1930 
1931   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1932   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1933 
1934   // Ensure that the sizes are properly aligned.
1935   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1936   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1937 
1938   _cg1r = new ConcurrentG1Refine();
1939 
1940   // Reserve the maximum.
1941   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1942   // Includes the perm-gen.
1943 
1944   // When compressed oops are enabled, the preferred heap base
1945   // is calculated by subtracting the requested size from the
1946   // 32Gb boundary and using the result as the base address for
1947   // heap reservation. If the requested size is not aligned to
1948   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1949   // into the ReservedHeapSpace constructor) then the actual
1950   // base of the reserved heap may end up differing from the
1951   // address that was requested (i.e. the preferred heap base).
1952   // If this happens then we could end up using a non-optimal
1953   // compressed oops mode.
1954 
1955   // Since max_byte_size is aligned to the size of a heap region (checked
1956   // above), we also need to align the perm gen size as it might not be.
1957   const size_t total_reserved = max_byte_size +
1958                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1959   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1960 
1961   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1962 
1963   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1964                             UseLargePages, addr);
1965 
1966   if (UseCompressedOops) {
1967     if (addr != NULL && !heap_rs.is_reserved()) {
1968       // Failed to reserve at specified address - the requested memory
1969       // region is taken already, for example, by 'java' launcher.
1970       // Try again to reserver heap higher.
1971       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1972 
1973       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1974                                  UseLargePages, addr);
1975 
1976       if (addr != NULL && !heap_rs0.is_reserved()) {
1977         // Failed to reserve at specified address again - give up.
1978         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1979         assert(addr == NULL, "");
1980 
1981         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1982                                    UseLargePages, addr);
1983         heap_rs = heap_rs1;
1984       } else {
1985         heap_rs = heap_rs0;
1986       }
1987     }
1988   }
1989 
1990   if (!heap_rs.is_reserved()) {
1991     vm_exit_during_initialization("Could not reserve enough space for object heap");
1992     return JNI_ENOMEM;
1993   }
1994 
1995   // It is important to do this in a way such that concurrent readers can't
1996   // temporarily think somethings in the heap.  (I've actually seen this
1997   // happen in asserts: DLD.)
1998   _reserved.set_word_size(0);
1999   _reserved.set_start((HeapWord*)heap_rs.base());
2000   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2001 
2002   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2003 
2004   // Create the gen rem set (and barrier set) for the entire reserved region.
2005   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2006   set_barrier_set(rem_set()->bs());
2007   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2008     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2009   } else {
2010     vm_exit_during_initialization("G1 requires a mod ref bs.");
2011     return JNI_ENOMEM;
2012   }
2013 
2014   // Also create a G1 rem set.
2015   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2016     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2017   } else {
2018     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2019     return JNI_ENOMEM;
2020   }
2021 
2022   // Carve out the G1 part of the heap.
2023 
2024   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2025   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2026                            g1_rs.size()/HeapWordSize);
2027   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2028 
2029   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2030 
2031   _g1_storage.initialize(g1_rs, 0);
2032   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2033   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2034                   (HeapWord*) _g1_reserved.end(),
2035                   _expansion_regions);
2036 
2037   // 6843694 - ensure that the maximum region index can fit
2038   // in the remembered set structures.
2039   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2040   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2041 
2042   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2043   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2044   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2045             "too many cards per region");
2046 
2047   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2048 
2049   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2050                                              heap_word_size(init_byte_size));
2051 
2052   _g1h = this;
2053 
2054    _in_cset_fast_test_length = max_regions();
2055    _in_cset_fast_test_base =
2056                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length);
2057 
2058    // We're biasing _in_cset_fast_test to avoid subtracting the
2059    // beginning of the heap every time we want to index; basically
2060    // it's the same with what we do with the card table.
2061    _in_cset_fast_test = _in_cset_fast_test_base -
2062                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2063 
2064    // Clear the _cset_fast_test bitmap in anticipation of adding
2065    // regions to the incremental collection set for the first
2066    // evacuation pause.
2067    clear_cset_fast_test();
2068 
2069   // Create the ConcurrentMark data structure and thread.
2070   // (Must do this late, so that "max_regions" is defined.)
2071   _cm       = new ConcurrentMark(heap_rs, max_regions());
2072   _cmThread = _cm->cmThread();
2073 
2074   // Initialize the from_card cache structure of HeapRegionRemSet.
2075   HeapRegionRemSet::init_heap(max_regions());
2076 
2077   // Now expand into the initial heap size.
2078   if (!expand(init_byte_size)) {
2079     vm_exit_during_initialization("Failed to allocate initial heap.");
2080     return JNI_ENOMEM;
2081   }
2082 
2083   // Perform any initialization actions delegated to the policy.
2084   g1_policy()->init();
2085 
2086   _refine_cte_cl =
2087     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2088                                     g1_rem_set(),
2089                                     concurrent_g1_refine());
2090   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2091 
2092   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2093                                                SATB_Q_FL_lock,
2094                                                G1SATBProcessCompletedThreshold,
2095                                                Shared_SATB_Q_lock);
2096 
2097   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2098                                                 DirtyCardQ_FL_lock,
2099                                                 concurrent_g1_refine()->yellow_zone(),
2100                                                 concurrent_g1_refine()->red_zone(),
2101                                                 Shared_DirtyCardQ_lock);
2102 
2103   if (G1DeferredRSUpdate) {
2104     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2105                                       DirtyCardQ_FL_lock,
2106                                       -1, // never trigger processing
2107                                       -1, // no limit on length
2108                                       Shared_DirtyCardQ_lock,
2109                                       &JavaThread::dirty_card_queue_set());
2110   }
2111 
2112   // Initialize the card queue set used to hold cards containing
2113   // references into the collection set.
2114   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2115                                              DirtyCardQ_FL_lock,
2116                                              -1, // never trigger processing
2117                                              -1, // no limit on length
2118                                              Shared_DirtyCardQ_lock,
2119                                              &JavaThread::dirty_card_queue_set());
2120 
2121   // In case we're keeping closure specialization stats, initialize those
2122   // counts and that mechanism.
2123   SpecializationStats::clear();
2124 
2125   // Do later initialization work for concurrent refinement.
2126   _cg1r->init();
2127 
2128   // Here we allocate the dummy full region that is required by the
2129   // G1AllocRegion class. If we don't pass an address in the reserved
2130   // space here, lots of asserts fire.
2131 
2132   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2133                                              _g1_reserved.start());
2134   // We'll re-use the same region whether the alloc region will
2135   // require BOT updates or not and, if it doesn't, then a non-young
2136   // region will complain that it cannot support allocations without
2137   // BOT updates. So we'll tag the dummy region as young to avoid that.
2138   dummy_region->set_young();
2139   // Make sure it's full.
2140   dummy_region->set_top(dummy_region->end());
2141   G1AllocRegion::setup(this, dummy_region);
2142 
2143   init_mutator_alloc_region();
2144 
2145   // Do create of the monitoring and management support so that
2146   // values in the heap have been properly initialized.
2147   _g1mm = new G1MonitoringSupport(this);
2148 
2149   return JNI_OK;
2150 }
2151 
2152 void G1CollectedHeap::ref_processing_init() {
2153   // Reference processing in G1 currently works as follows:
2154   //
2155   // * There are two reference processor instances. One is
2156   //   used to record and process discovered references
2157   //   during concurrent marking; the other is used to
2158   //   record and process references during STW pauses
2159   //   (both full and incremental).
2160   // * Both ref processors need to 'span' the entire heap as
2161   //   the regions in the collection set may be dotted around.
2162   //
2163   // * For the concurrent marking ref processor:
2164   //   * Reference discovery is enabled at initial marking.
2165   //   * Reference discovery is disabled and the discovered
2166   //     references processed etc during remarking.
2167   //   * Reference discovery is MT (see below).
2168   //   * Reference discovery requires a barrier (see below).
2169   //   * Reference processing may or may not be MT
2170   //     (depending on the value of ParallelRefProcEnabled
2171   //     and ParallelGCThreads).
2172   //   * A full GC disables reference discovery by the CM
2173   //     ref processor and abandons any entries on it's
2174   //     discovered lists.
2175   //
2176   // * For the STW processor:
2177   //   * Non MT discovery is enabled at the start of a full GC.
2178   //   * Processing and enqueueing during a full GC is non-MT.
2179   //   * During a full GC, references are processed after marking.
2180   //
2181   //   * Discovery (may or may not be MT) is enabled at the start
2182   //     of an incremental evacuation pause.
2183   //   * References are processed near the end of a STW evacuation pause.
2184   //   * For both types of GC:
2185   //     * Discovery is atomic - i.e. not concurrent.
2186   //     * Reference discovery will not need a barrier.
2187 
2188   SharedHeap::ref_processing_init();
2189   MemRegion mr = reserved_region();
2190 
2191   // Concurrent Mark ref processor
2192   _ref_processor_cm =
2193     new ReferenceProcessor(mr,    // span
2194                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2195                                 // mt processing
2196                            (int) ParallelGCThreads,
2197                                 // degree of mt processing
2198                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2199                                 // mt discovery
2200                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2201                                 // degree of mt discovery
2202                            false,
2203                                 // Reference discovery is not atomic
2204                            &_is_alive_closure_cm,
2205                                 // is alive closure
2206                                 // (for efficiency/performance)
2207                            true);
2208                                 // Setting next fields of discovered
2209                                 // lists requires a barrier.
2210 
2211   // STW ref processor
2212   _ref_processor_stw =
2213     new ReferenceProcessor(mr,    // span
2214                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2215                                 // mt processing
2216                            MAX2((int)ParallelGCThreads, 1),
2217                                 // degree of mt processing
2218                            (ParallelGCThreads > 1),
2219                                 // mt discovery
2220                            MAX2((int)ParallelGCThreads, 1),
2221                                 // degree of mt discovery
2222                            true,
2223                                 // Reference discovery is atomic
2224                            &_is_alive_closure_stw,
2225                                 // is alive closure
2226                                 // (for efficiency/performance)
2227                            false);
2228                                 // Setting next fields of discovered
2229                                 // lists requires a barrier.
2230 }
2231 
2232 size_t G1CollectedHeap::capacity() const {
2233   return _g1_committed.byte_size();
2234 }
2235 
2236 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2237                                                  DirtyCardQueue* into_cset_dcq,
2238                                                  bool concurrent,
2239                                                  int worker_i) {
2240   // Clean cards in the hot card cache
2241   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2242 
2243   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2244   int n_completed_buffers = 0;
2245   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2246     n_completed_buffers++;
2247   }
2248   g1_policy()->record_update_rs_processed_buffers(worker_i,
2249                                                   (double) n_completed_buffers);
2250   dcqs.clear_n_completed_buffers();
2251   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2252 }
2253 
2254 
2255 // Computes the sum of the storage used by the various regions.
2256 
2257 size_t G1CollectedHeap::used() const {
2258   assert(Heap_lock->owner() != NULL,
2259          "Should be owned on this thread's behalf.");
2260   size_t result = _summary_bytes_used;
2261   // Read only once in case it is set to NULL concurrently
2262   HeapRegion* hr = _mutator_alloc_region.get();
2263   if (hr != NULL)
2264     result += hr->used();
2265   return result;
2266 }
2267 
2268 size_t G1CollectedHeap::used_unlocked() const {
2269   size_t result = _summary_bytes_used;
2270   return result;
2271 }
2272 
2273 class SumUsedClosure: public HeapRegionClosure {
2274   size_t _used;
2275 public:
2276   SumUsedClosure() : _used(0) {}
2277   bool doHeapRegion(HeapRegion* r) {
2278     if (!r->continuesHumongous()) {
2279       _used += r->used();
2280     }
2281     return false;
2282   }
2283   size_t result() { return _used; }
2284 };
2285 
2286 size_t G1CollectedHeap::recalculate_used() const {
2287   SumUsedClosure blk;
2288   heap_region_iterate(&blk);
2289   return blk.result();
2290 }
2291 
2292 size_t G1CollectedHeap::unsafe_max_alloc() {
2293   if (free_regions() > 0) return HeapRegion::GrainBytes;
2294   // otherwise, is there space in the current allocation region?
2295 
2296   // We need to store the current allocation region in a local variable
2297   // here. The problem is that this method doesn't take any locks and
2298   // there may be other threads which overwrite the current allocation
2299   // region field. attempt_allocation(), for example, sets it to NULL
2300   // and this can happen *after* the NULL check here but before the call
2301   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2302   // to be a problem in the optimized build, since the two loads of the
2303   // current allocation region field are optimized away.
2304   HeapRegion* hr = _mutator_alloc_region.get();
2305   if (hr == NULL) {
2306     return 0;
2307   }
2308   return hr->free();
2309 }
2310 
2311 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2312   switch (cause) {
2313     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2314     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2315     case GCCause::_g1_humongous_allocation: return true;
2316     default:                                return false;
2317   }
2318 }
2319 
2320 #ifndef PRODUCT
2321 void G1CollectedHeap::allocate_dummy_regions() {
2322   // Let's fill up most of the region
2323   size_t word_size = HeapRegion::GrainWords - 1024;
2324   // And as a result the region we'll allocate will be humongous.
2325   guarantee(isHumongous(word_size), "sanity");
2326 
2327   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2328     // Let's use the existing mechanism for the allocation
2329     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2330     if (dummy_obj != NULL) {
2331       MemRegion mr(dummy_obj, word_size);
2332       CollectedHeap::fill_with_object(mr);
2333     } else {
2334       // If we can't allocate once, we probably cannot allocate
2335       // again. Let's get out of the loop.
2336       break;
2337     }
2338   }
2339 }
2340 #endif // !PRODUCT
2341 
2342 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2343   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2344 
2345   // We assume that if concurrent == true, then the caller is a
2346   // concurrent thread that was joined the Suspendible Thread
2347   // Set. If there's ever a cheap way to check this, we should add an
2348   // assert here.
2349 
2350   // We have already incremented _total_full_collections at the start
2351   // of the GC, so total_full_collections() represents how many full
2352   // collections have been started.
2353   unsigned int full_collections_started = total_full_collections();
2354 
2355   // Given that this method is called at the end of a Full GC or of a
2356   // concurrent cycle, and those can be nested (i.e., a Full GC can
2357   // interrupt a concurrent cycle), the number of full collections
2358   // completed should be either one (in the case where there was no
2359   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2360   // behind the number of full collections started.
2361 
2362   // This is the case for the inner caller, i.e. a Full GC.
2363   assert(concurrent ||
2364          (full_collections_started == _full_collections_completed + 1) ||
2365          (full_collections_started == _full_collections_completed + 2),
2366          err_msg("for inner caller (Full GC): full_collections_started = %u "
2367                  "is inconsistent with _full_collections_completed = %u",
2368                  full_collections_started, _full_collections_completed));
2369 
2370   // This is the case for the outer caller, i.e. the concurrent cycle.
2371   assert(!concurrent ||
2372          (full_collections_started == _full_collections_completed + 1),
2373          err_msg("for outer caller (concurrent cycle): "
2374                  "full_collections_started = %u "
2375                  "is inconsistent with _full_collections_completed = %u",
2376                  full_collections_started, _full_collections_completed));
2377 
2378   _full_collections_completed += 1;
2379 
2380   // We need to clear the "in_progress" flag in the CM thread before
2381   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2382   // is set) so that if a waiter requests another System.gc() it doesn't
2383   // incorrectly see that a marking cyle is still in progress.
2384   if (concurrent) {
2385     _cmThread->clear_in_progress();
2386   }
2387 
2388   // This notify_all() will ensure that a thread that called
2389   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2390   // and it's waiting for a full GC to finish will be woken up. It is
2391   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2392   FullGCCount_lock->notify_all();
2393 }
2394 
2395 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2396   assert_at_safepoint(true /* should_be_vm_thread */);
2397   GCCauseSetter gcs(this, cause);
2398   switch (cause) {
2399     case GCCause::_heap_inspection:
2400     case GCCause::_heap_dump: {
2401       HandleMark hm;
2402       do_full_collection(false);         // don't clear all soft refs
2403       break;
2404     }
2405     default: // XXX FIX ME
2406       ShouldNotReachHere(); // Unexpected use of this function
2407   }
2408 }
2409 
2410 void G1CollectedHeap::collect(GCCause::Cause cause) {
2411   assert_heap_not_locked();
2412 
2413   unsigned int gc_count_before;
2414   unsigned int full_gc_count_before;
2415   bool retry_gc;
2416 
2417   do {
2418     retry_gc = false;
2419 
2420     {
2421       MutexLocker ml(Heap_lock);
2422 
2423       // Read the GC count while holding the Heap_lock
2424       gc_count_before = total_collections();
2425       full_gc_count_before = total_full_collections();
2426     }
2427 
2428     if (should_do_concurrent_full_gc(cause)) {
2429       // Schedule an initial-mark evacuation pause that will start a
2430       // concurrent cycle. We're setting word_size to 0 which means that
2431       // we are not requesting a post-GC allocation.
2432       VM_G1IncCollectionPause op(gc_count_before,
2433                                  0,     /* word_size */
2434                                  true,  /* should_initiate_conc_mark */
2435                                  g1_policy()->max_pause_time_ms(),
2436                                  cause);
2437 
2438       VMThread::execute(&op);
2439       if (!op.pause_succeeded()) {
2440         if (full_gc_count_before == total_full_collections()) {
2441           retry_gc = op.should_retry_gc();
2442         } else {
2443           // A Full GC happened while we were trying to schedule the
2444           // initial-mark GC. No point in starting a new cycle given
2445           // that the whole heap was collected anyway.
2446         }
2447 
2448         if (retry_gc) {
2449           if (GC_locker::is_active_and_needs_gc()) {
2450             GC_locker::stall_until_clear();
2451           }
2452         }
2453       }
2454     } else {
2455       if (cause == GCCause::_gc_locker
2456           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2457 
2458         // Schedule a standard evacuation pause. We're setting word_size
2459         // to 0 which means that we are not requesting a post-GC allocation.
2460         VM_G1IncCollectionPause op(gc_count_before,
2461                                    0,     /* word_size */
2462                                    false, /* should_initiate_conc_mark */
2463                                    g1_policy()->max_pause_time_ms(),
2464                                    cause);
2465         VMThread::execute(&op);
2466       } else {
2467         // Schedule a Full GC.
2468         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2469         VMThread::execute(&op);
2470       }
2471     }
2472   } while (retry_gc);
2473 }
2474 
2475 bool G1CollectedHeap::is_in(const void* p) const {
2476   if (_g1_committed.contains(p)) {
2477     // Given that we know that p is in the committed space,
2478     // heap_region_containing_raw() should successfully
2479     // return the containing region.
2480     HeapRegion* hr = heap_region_containing_raw(p);
2481     return hr->is_in(p);
2482   } else {
2483     return _perm_gen->as_gen()->is_in(p);
2484   }
2485 }
2486 
2487 // Iteration functions.
2488 
2489 // Iterates an OopClosure over all ref-containing fields of objects
2490 // within a HeapRegion.
2491 
2492 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2493   MemRegion _mr;
2494   OopClosure* _cl;
2495 public:
2496   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2497     : _mr(mr), _cl(cl) {}
2498   bool doHeapRegion(HeapRegion* r) {
2499     if (! r->continuesHumongous()) {
2500       r->oop_iterate(_cl);
2501     }
2502     return false;
2503   }
2504 };
2505 
2506 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2507   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2508   heap_region_iterate(&blk);
2509   if (do_perm) {
2510     perm_gen()->oop_iterate(cl);
2511   }
2512 }
2513 
2514 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2515   IterateOopClosureRegionClosure blk(mr, cl);
2516   heap_region_iterate(&blk);
2517   if (do_perm) {
2518     perm_gen()->oop_iterate(cl);
2519   }
2520 }
2521 
2522 // Iterates an ObjectClosure over all objects within a HeapRegion.
2523 
2524 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2525   ObjectClosure* _cl;
2526 public:
2527   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2528   bool doHeapRegion(HeapRegion* r) {
2529     if (! r->continuesHumongous()) {
2530       r->object_iterate(_cl);
2531     }
2532     return false;
2533   }
2534 };
2535 
2536 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2537   IterateObjectClosureRegionClosure blk(cl);
2538   heap_region_iterate(&blk);
2539   if (do_perm) {
2540     perm_gen()->object_iterate(cl);
2541   }
2542 }
2543 
2544 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2545   // FIXME: is this right?
2546   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2547 }
2548 
2549 // Calls a SpaceClosure on a HeapRegion.
2550 
2551 class SpaceClosureRegionClosure: public HeapRegionClosure {
2552   SpaceClosure* _cl;
2553 public:
2554   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2555   bool doHeapRegion(HeapRegion* r) {
2556     _cl->do_space(r);
2557     return false;
2558   }
2559 };
2560 
2561 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2562   SpaceClosureRegionClosure blk(cl);
2563   heap_region_iterate(&blk);
2564 }
2565 
2566 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2567   _hrs.iterate(cl);
2568 }
2569 
2570 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2571                                                HeapRegionClosure* cl) const {
2572   _hrs.iterate_from(r, cl);
2573 }
2574 
2575 void
2576 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2577                                                  uint worker,
2578                                                  uint no_of_par_workers,
2579                                                  jint claim_value) {
2580   const uint regions = n_regions();
2581   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2582                              no_of_par_workers :
2583                              1);
2584   assert(UseDynamicNumberOfGCThreads ||
2585          no_of_par_workers == workers()->total_workers(),
2586          "Non dynamic should use fixed number of workers");
2587   // try to spread out the starting points of the workers
2588   const uint start_index = regions / max_workers * worker;
2589 
2590   // each worker will actually look at all regions
2591   for (uint count = 0; count < regions; ++count) {
2592     const uint index = (start_index + count) % regions;
2593     assert(0 <= index && index < regions, "sanity");
2594     HeapRegion* r = region_at(index);
2595     // we'll ignore "continues humongous" regions (we'll process them
2596     // when we come across their corresponding "start humongous"
2597     // region) and regions already claimed
2598     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2599       continue;
2600     }
2601     // OK, try to claim it
2602     if (r->claimHeapRegion(claim_value)) {
2603       // success!
2604       assert(!r->continuesHumongous(), "sanity");
2605       if (r->startsHumongous()) {
2606         // If the region is "starts humongous" we'll iterate over its
2607         // "continues humongous" first; in fact we'll do them
2608         // first. The order is important. In on case, calling the
2609         // closure on the "starts humongous" region might de-allocate
2610         // and clear all its "continues humongous" regions and, as a
2611         // result, we might end up processing them twice. So, we'll do
2612         // them first (notice: most closures will ignore them anyway) and
2613         // then we'll do the "starts humongous" region.
2614         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2615           HeapRegion* chr = region_at(ch_index);
2616 
2617           // if the region has already been claimed or it's not
2618           // "continues humongous" we're done
2619           if (chr->claim_value() == claim_value ||
2620               !chr->continuesHumongous()) {
2621             break;
2622           }
2623 
2624           // Noone should have claimed it directly. We can given
2625           // that we claimed its "starts humongous" region.
2626           assert(chr->claim_value() != claim_value, "sanity");
2627           assert(chr->humongous_start_region() == r, "sanity");
2628 
2629           if (chr->claimHeapRegion(claim_value)) {
2630             // we should always be able to claim it; noone else should
2631             // be trying to claim this region
2632 
2633             bool res2 = cl->doHeapRegion(chr);
2634             assert(!res2, "Should not abort");
2635 
2636             // Right now, this holds (i.e., no closure that actually
2637             // does something with "continues humongous" regions
2638             // clears them). We might have to weaken it in the future,
2639             // but let's leave these two asserts here for extra safety.
2640             assert(chr->continuesHumongous(), "should still be the case");
2641             assert(chr->humongous_start_region() == r, "sanity");
2642           } else {
2643             guarantee(false, "we should not reach here");
2644           }
2645         }
2646       }
2647 
2648       assert(!r->continuesHumongous(), "sanity");
2649       bool res = cl->doHeapRegion(r);
2650       assert(!res, "Should not abort");
2651     }
2652   }
2653 }
2654 
2655 class ResetClaimValuesClosure: public HeapRegionClosure {
2656 public:
2657   bool doHeapRegion(HeapRegion* r) {
2658     r->set_claim_value(HeapRegion::InitialClaimValue);
2659     return false;
2660   }
2661 };
2662 
2663 void G1CollectedHeap::reset_heap_region_claim_values() {
2664   ResetClaimValuesClosure blk;
2665   heap_region_iterate(&blk);
2666 }
2667 
2668 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2669   ResetClaimValuesClosure blk;
2670   collection_set_iterate(&blk);
2671 }
2672 
2673 #ifdef ASSERT
2674 // This checks whether all regions in the heap have the correct claim
2675 // value. I also piggy-backed on this a check to ensure that the
2676 // humongous_start_region() information on "continues humongous"
2677 // regions is correct.
2678 
2679 class CheckClaimValuesClosure : public HeapRegionClosure {
2680 private:
2681   jint _claim_value;
2682   uint _failures;
2683   HeapRegion* _sh_region;
2684 
2685 public:
2686   CheckClaimValuesClosure(jint claim_value) :
2687     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2688   bool doHeapRegion(HeapRegion* r) {
2689     if (r->claim_value() != _claim_value) {
2690       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2691                              "claim value = %d, should be %d",
2692                              HR_FORMAT_PARAMS(r),
2693                              r->claim_value(), _claim_value);
2694       ++_failures;
2695     }
2696     if (!r->isHumongous()) {
2697       _sh_region = NULL;
2698     } else if (r->startsHumongous()) {
2699       _sh_region = r;
2700     } else if (r->continuesHumongous()) {
2701       if (r->humongous_start_region() != _sh_region) {
2702         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2703                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2704                                HR_FORMAT_PARAMS(r),
2705                                r->humongous_start_region(),
2706                                _sh_region);
2707         ++_failures;
2708       }
2709     }
2710     return false;
2711   }
2712   uint failures() { return _failures; }
2713 };
2714 
2715 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2716   CheckClaimValuesClosure cl(claim_value);
2717   heap_region_iterate(&cl);
2718   return cl.failures() == 0;
2719 }
2720 
2721 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2722 private:
2723   jint _claim_value;
2724   uint _failures;
2725 
2726 public:
2727   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2728     _claim_value(claim_value), _failures(0) { }
2729 
2730   uint failures() { return _failures; }
2731 
2732   bool doHeapRegion(HeapRegion* hr) {
2733     assert(hr->in_collection_set(), "how?");
2734     assert(!hr->isHumongous(), "H-region in CSet");
2735     if (hr->claim_value() != _claim_value) {
2736       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2737                              "claim value = %d, should be %d",
2738                              HR_FORMAT_PARAMS(hr),
2739                              hr->claim_value(), _claim_value);
2740       _failures += 1;
2741     }
2742     return false;
2743   }
2744 };
2745 
2746 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2747   CheckClaimValuesInCSetHRClosure cl(claim_value);
2748   collection_set_iterate(&cl);
2749   return cl.failures() == 0;
2750 }
2751 #endif // ASSERT
2752 
2753 // Clear the cached CSet starting regions and (more importantly)
2754 // the time stamps. Called when we reset the GC time stamp.
2755 void G1CollectedHeap::clear_cset_start_regions() {
2756   assert(_worker_cset_start_region != NULL, "sanity");
2757   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2758 
2759   int n_queues = MAX2((int)ParallelGCThreads, 1);
2760   for (int i = 0; i < n_queues; i++) {
2761     _worker_cset_start_region[i] = NULL;
2762     _worker_cset_start_region_time_stamp[i] = 0;
2763   }
2764 }
2765 
2766 // Given the id of a worker, obtain or calculate a suitable
2767 // starting region for iterating over the current collection set.
2768 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2769   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2770 
2771   HeapRegion* result = NULL;
2772   unsigned gc_time_stamp = get_gc_time_stamp();
2773 
2774   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2775     // Cached starting region for current worker was set
2776     // during the current pause - so it's valid.
2777     // Note: the cached starting heap region may be NULL
2778     // (when the collection set is empty).
2779     result = _worker_cset_start_region[worker_i];
2780     assert(result == NULL || result->in_collection_set(), "sanity");
2781     return result;
2782   }
2783 
2784   // The cached entry was not valid so let's calculate
2785   // a suitable starting heap region for this worker.
2786 
2787   // We want the parallel threads to start their collection
2788   // set iteration at different collection set regions to
2789   // avoid contention.
2790   // If we have:
2791   //          n collection set regions
2792   //          p threads
2793   // Then thread t will start at region floor ((t * n) / p)
2794 
2795   result = g1_policy()->collection_set();
2796   if (G1CollectedHeap::use_parallel_gc_threads()) {
2797     uint cs_size = g1_policy()->cset_region_length();
2798     uint active_workers = workers()->active_workers();
2799     assert(UseDynamicNumberOfGCThreads ||
2800              active_workers == workers()->total_workers(),
2801              "Unless dynamic should use total workers");
2802 
2803     uint end_ind   = (cs_size * worker_i) / active_workers;
2804     uint start_ind = 0;
2805 
2806     if (worker_i > 0 &&
2807         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2808       // Previous workers starting region is valid
2809       // so let's iterate from there
2810       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2811       result = _worker_cset_start_region[worker_i - 1];
2812     }
2813 
2814     for (uint i = start_ind; i < end_ind; i++) {
2815       result = result->next_in_collection_set();
2816     }
2817   }
2818 
2819   // Note: the calculated starting heap region may be NULL
2820   // (when the collection set is empty).
2821   assert(result == NULL || result->in_collection_set(), "sanity");
2822   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2823          "should be updated only once per pause");
2824   _worker_cset_start_region[worker_i] = result;
2825   OrderAccess::storestore();
2826   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2827   return result;
2828 }
2829 
2830 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2831   HeapRegion* r = g1_policy()->collection_set();
2832   while (r != NULL) {
2833     HeapRegion* next = r->next_in_collection_set();
2834     if (cl->doHeapRegion(r)) {
2835       cl->incomplete();
2836       return;
2837     }
2838     r = next;
2839   }
2840 }
2841 
2842 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2843                                                   HeapRegionClosure *cl) {
2844   if (r == NULL) {
2845     // The CSet is empty so there's nothing to do.
2846     return;
2847   }
2848 
2849   assert(r->in_collection_set(),
2850          "Start region must be a member of the collection set.");
2851   HeapRegion* cur = r;
2852   while (cur != NULL) {
2853     HeapRegion* next = cur->next_in_collection_set();
2854     if (cl->doHeapRegion(cur) && false) {
2855       cl->incomplete();
2856       return;
2857     }
2858     cur = next;
2859   }
2860   cur = g1_policy()->collection_set();
2861   while (cur != r) {
2862     HeapRegion* next = cur->next_in_collection_set();
2863     if (cl->doHeapRegion(cur) && false) {
2864       cl->incomplete();
2865       return;
2866     }
2867     cur = next;
2868   }
2869 }
2870 
2871 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2872   return n_regions() > 0 ? region_at(0) : NULL;
2873 }
2874 
2875 
2876 Space* G1CollectedHeap::space_containing(const void* addr) const {
2877   Space* res = heap_region_containing(addr);
2878   if (res == NULL)
2879     res = perm_gen()->space_containing(addr);
2880   return res;
2881 }
2882 
2883 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2884   Space* sp = space_containing(addr);
2885   if (sp != NULL) {
2886     return sp->block_start(addr);
2887   }
2888   return NULL;
2889 }
2890 
2891 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2892   Space* sp = space_containing(addr);
2893   assert(sp != NULL, "block_size of address outside of heap");
2894   return sp->block_size(addr);
2895 }
2896 
2897 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2898   Space* sp = space_containing(addr);
2899   return sp->block_is_obj(addr);
2900 }
2901 
2902 bool G1CollectedHeap::supports_tlab_allocation() const {
2903   return true;
2904 }
2905 
2906 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2907   return HeapRegion::GrainBytes;
2908 }
2909 
2910 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2911   // Return the remaining space in the cur alloc region, but not less than
2912   // the min TLAB size.
2913 
2914   // Also, this value can be at most the humongous object threshold,
2915   // since we can't allow tlabs to grow big enough to accomodate
2916   // humongous objects.
2917 
2918   HeapRegion* hr = _mutator_alloc_region.get();
2919   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2920   if (hr == NULL) {
2921     return max_tlab_size;
2922   } else {
2923     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2924   }
2925 }
2926 
2927 size_t G1CollectedHeap::max_capacity() const {
2928   return _g1_reserved.byte_size();
2929 }
2930 
2931 jlong G1CollectedHeap::millis_since_last_gc() {
2932   // assert(false, "NYI");
2933   return 0;
2934 }
2935 
2936 void G1CollectedHeap::prepare_for_verify() {
2937   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2938     ensure_parsability(false);
2939   }
2940   g1_rem_set()->prepare_for_verify();
2941 }
2942 
2943 class VerifyLivenessOopClosure: public OopClosure {
2944   G1CollectedHeap* _g1h;
2945   VerifyOption _vo;
2946 public:
2947   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2948     _g1h(g1h), _vo(vo)
2949   { }
2950   void do_oop(narrowOop *p) { do_oop_work(p); }
2951   void do_oop(      oop *p) { do_oop_work(p); }
2952 
2953   template <class T> void do_oop_work(T *p) {
2954     oop obj = oopDesc::load_decode_heap_oop(p);
2955     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2956               "Dead object referenced by a not dead object");
2957   }
2958 };
2959 
2960 class VerifyObjsInRegionClosure: public ObjectClosure {
2961 private:
2962   G1CollectedHeap* _g1h;
2963   size_t _live_bytes;
2964   HeapRegion *_hr;
2965   VerifyOption _vo;
2966 public:
2967   // _vo == UsePrevMarking -> use "prev" marking information,
2968   // _vo == UseNextMarking -> use "next" marking information,
2969   // _vo == UseMarkWord    -> use mark word from object header.
2970   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2971     : _live_bytes(0), _hr(hr), _vo(vo) {
2972     _g1h = G1CollectedHeap::heap();
2973   }
2974   void do_object(oop o) {
2975     VerifyLivenessOopClosure isLive(_g1h, _vo);
2976     assert(o != NULL, "Huh?");
2977     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2978       // If the object is alive according to the mark word,
2979       // then verify that the marking information agrees.
2980       // Note we can't verify the contra-positive of the
2981       // above: if the object is dead (according to the mark
2982       // word), it may not be marked, or may have been marked
2983       // but has since became dead, or may have been allocated
2984       // since the last marking.
2985       if (_vo == VerifyOption_G1UseMarkWord) {
2986         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2987       }
2988 
2989       o->oop_iterate(&isLive);
2990       if (!_hr->obj_allocated_since_prev_marking(o)) {
2991         size_t obj_size = o->size();    // Make sure we don't overflow
2992         _live_bytes += (obj_size * HeapWordSize);
2993       }
2994     }
2995   }
2996   size_t live_bytes() { return _live_bytes; }
2997 };
2998 
2999 class PrintObjsInRegionClosure : public ObjectClosure {
3000   HeapRegion *_hr;
3001   G1CollectedHeap *_g1;
3002 public:
3003   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3004     _g1 = G1CollectedHeap::heap();
3005   };
3006 
3007   void do_object(oop o) {
3008     if (o != NULL) {
3009       HeapWord *start = (HeapWord *) o;
3010       size_t word_sz = o->size();
3011       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3012                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3013                           (void*) o, word_sz,
3014                           _g1->isMarkedPrev(o),
3015                           _g1->isMarkedNext(o),
3016                           _hr->obj_allocated_since_prev_marking(o));
3017       HeapWord *end = start + word_sz;
3018       HeapWord *cur;
3019       int *val;
3020       for (cur = start; cur < end; cur++) {
3021         val = (int *) cur;
3022         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3023       }
3024     }
3025   }
3026 };
3027 
3028 class VerifyRegionClosure: public HeapRegionClosure {
3029 private:
3030   bool         _par;
3031   VerifyOption _vo;
3032   bool         _failures;
3033 public:
3034   // _vo == UsePrevMarking -> use "prev" marking information,
3035   // _vo == UseNextMarking -> use "next" marking information,
3036   // _vo == UseMarkWord    -> use mark word from object header.
3037   VerifyRegionClosure(bool par, VerifyOption vo)
3038     : _par(par),
3039       _vo(vo),
3040       _failures(false) {}
3041 
3042   bool failures() {
3043     return _failures;
3044   }
3045 
3046   bool doHeapRegion(HeapRegion* r) {
3047     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
3048               "Should be unclaimed at verify points.");
3049     if (!r->continuesHumongous()) {
3050       bool failures = false;
3051       r->verify(_vo, &failures);
3052       if (failures) {
3053         _failures = true;
3054       } else {
3055         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3056         r->object_iterate(&not_dead_yet_cl);
3057         if (_vo != VerifyOption_G1UseNextMarking) {
3058           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3059             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3060                                    "max_live_bytes "SIZE_FORMAT" "
3061                                    "< calculated "SIZE_FORMAT,
3062                                    r->bottom(), r->end(),
3063                                    r->max_live_bytes(),
3064                                  not_dead_yet_cl.live_bytes());
3065             _failures = true;
3066           }
3067         } else {
3068           // When vo == UseNextMarking we cannot currently do a sanity
3069           // check on the live bytes as the calculation has not been
3070           // finalized yet.
3071         }
3072       }
3073     }
3074     return false; // stop the region iteration if we hit a failure
3075   }
3076 };
3077 
3078 class VerifyRootsClosure: public OopsInGenClosure {
3079 private:
3080   G1CollectedHeap* _g1h;
3081   VerifyOption     _vo;
3082   bool             _failures;
3083 public:
3084   // _vo == UsePrevMarking -> use "prev" marking information,
3085   // _vo == UseNextMarking -> use "next" marking information,
3086   // _vo == UseMarkWord    -> use mark word from object header.
3087   VerifyRootsClosure(VerifyOption vo) :
3088     _g1h(G1CollectedHeap::heap()),
3089     _vo(vo),
3090     _failures(false) { }
3091 
3092   bool failures() { return _failures; }
3093 
3094   template <class T> void do_oop_nv(T* p) {
3095     T heap_oop = oopDesc::load_heap_oop(p);
3096     if (!oopDesc::is_null(heap_oop)) {
3097       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3098       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3099         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3100                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3101         if (_vo == VerifyOption_G1UseMarkWord) {
3102           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3103         }
3104         obj->print_on(gclog_or_tty);
3105         _failures = true;
3106       }
3107     }
3108   }
3109 
3110   void do_oop(oop* p)       { do_oop_nv(p); }
3111   void do_oop(narrowOop* p) { do_oop_nv(p); }
3112 };
3113 
3114 // This is the task used for parallel heap verification.
3115 
3116 class G1ParVerifyTask: public AbstractGangTask {
3117 private:
3118   G1CollectedHeap* _g1h;
3119   VerifyOption     _vo;
3120   bool             _failures;
3121 
3122 public:
3123   // _vo == UsePrevMarking -> use "prev" marking information,
3124   // _vo == UseNextMarking -> use "next" marking information,
3125   // _vo == UseMarkWord    -> use mark word from object header.
3126   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3127     AbstractGangTask("Parallel verify task"),
3128     _g1h(g1h),
3129     _vo(vo),
3130     _failures(false) { }
3131 
3132   bool failures() {
3133     return _failures;
3134   }
3135 
3136   void work(uint worker_id) {
3137     HandleMark hm;
3138     VerifyRegionClosure blk(true, _vo);
3139     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3140                                           _g1h->workers()->active_workers(),
3141                                           HeapRegion::ParVerifyClaimValue);
3142     if (blk.failures()) {
3143       _failures = true;
3144     }
3145   }
3146 };
3147 
3148 void G1CollectedHeap::verify(bool silent) {
3149   verify(silent, VerifyOption_G1UsePrevMarking);
3150 }
3151 
3152 void G1CollectedHeap::verify(bool silent,
3153                              VerifyOption vo) {
3154   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3155     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3156     VerifyRootsClosure rootsCl(vo);
3157 
3158     assert(Thread::current()->is_VM_thread(),
3159       "Expected to be executed serially by the VM thread at this point");
3160 
3161     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3162 
3163     // We apply the relevant closures to all the oops in the
3164     // system dictionary, the string table and the code cache.
3165     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3166 
3167     process_strong_roots(true,      // activate StrongRootsScope
3168                          true,      // we set "collecting perm gen" to true,
3169                                     // so we don't reset the dirty cards in the perm gen.
3170                          ScanningOption(so),  // roots scanning options
3171                          &rootsCl,
3172                          &blobsCl,
3173                          &rootsCl);
3174 
3175     // If we're verifying after the marking phase of a Full GC then we can't
3176     // treat the perm gen as roots into the G1 heap. Some of the objects in
3177     // the perm gen may be dead and hence not marked. If one of these dead
3178     // objects is considered to be a root then we may end up with a false
3179     // "Root location <x> points to dead ob <y>" failure.
3180     if (vo != VerifyOption_G1UseMarkWord) {
3181       // Since we used "collecting_perm_gen" == true above, we will not have
3182       // checked the refs from perm into the G1-collected heap. We check those
3183       // references explicitly below. Whether the relevant cards are dirty
3184       // is checked further below in the rem set verification.
3185       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3186       perm_gen()->oop_iterate(&rootsCl);
3187     }
3188     bool failures = rootsCl.failures();
3189 
3190     if (vo != VerifyOption_G1UseMarkWord) {
3191       // If we're verifying during a full GC then the region sets
3192       // will have been torn down at the start of the GC. Therefore
3193       // verifying the region sets will fail. So we only verify
3194       // the region sets when not in a full GC.
3195       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3196       verify_region_sets();
3197     }
3198 
3199     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3200     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3201       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3202              "sanity check");
3203 
3204       G1ParVerifyTask task(this, vo);
3205       assert(UseDynamicNumberOfGCThreads ||
3206         workers()->active_workers() == workers()->total_workers(),
3207         "If not dynamic should be using all the workers");
3208       int n_workers = workers()->active_workers();
3209       set_par_threads(n_workers);
3210       workers()->run_task(&task);
3211       set_par_threads(0);
3212       if (task.failures()) {
3213         failures = true;
3214       }
3215 
3216       // Checks that the expected amount of parallel work was done.
3217       // The implication is that n_workers is > 0.
3218       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3219              "sanity check");
3220 
3221       reset_heap_region_claim_values();
3222 
3223       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3224              "sanity check");
3225     } else {
3226       VerifyRegionClosure blk(false, vo);
3227       heap_region_iterate(&blk);
3228       if (blk.failures()) {
3229         failures = true;
3230       }
3231     }
3232     if (!silent) gclog_or_tty->print("RemSet ");
3233     rem_set()->verify();
3234 
3235     if (failures) {
3236       gclog_or_tty->print_cr("Heap:");
3237       // It helps to have the per-region information in the output to
3238       // help us track down what went wrong. This is why we call
3239       // print_extended_on() instead of print_on().
3240       print_extended_on(gclog_or_tty);
3241       gclog_or_tty->print_cr("");
3242 #ifndef PRODUCT
3243       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3244         concurrent_mark()->print_reachable("at-verification-failure",
3245                                            vo, false /* all */);
3246       }
3247 #endif
3248       gclog_or_tty->flush();
3249     }
3250     guarantee(!failures, "there should not have been any failures");
3251   } else {
3252     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3253   }
3254 }
3255 
3256 class PrintRegionClosure: public HeapRegionClosure {
3257   outputStream* _st;
3258 public:
3259   PrintRegionClosure(outputStream* st) : _st(st) {}
3260   bool doHeapRegion(HeapRegion* r) {
3261     r->print_on(_st);
3262     return false;
3263   }
3264 };
3265 
3266 void G1CollectedHeap::print_on(outputStream* st) const {
3267   st->print(" %-20s", "garbage-first heap");
3268   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3269             capacity()/K, used_unlocked()/K);
3270   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3271             _g1_storage.low_boundary(),
3272             _g1_storage.high(),
3273             _g1_storage.high_boundary());
3274   st->cr();
3275   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3276   uint young_regions = _young_list->length();
3277   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3278             (size_t) young_regions * HeapRegion::GrainBytes / K);
3279   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3280   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3281             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3282   st->cr();
3283   perm()->as_gen()->print_on(st);
3284 }
3285 
3286 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3287   print_on(st);
3288 
3289   // Print the per-region information.
3290   st->cr();
3291   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3292                "HS=humongous(starts), HC=humongous(continues), "
3293                "CS=collection set, F=free, TS=gc time stamp, "
3294                "PTAMS=previous top-at-mark-start, "
3295                "NTAMS=next top-at-mark-start)");
3296   PrintRegionClosure blk(st);
3297   heap_region_iterate(&blk);
3298 }
3299 
3300 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3301   if (G1CollectedHeap::use_parallel_gc_threads()) {
3302     workers()->print_worker_threads_on(st);
3303   }
3304   _cmThread->print_on(st);
3305   st->cr();
3306   _cm->print_worker_threads_on(st);
3307   _cg1r->print_worker_threads_on(st);
3308   st->cr();
3309 }
3310 
3311 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3312   if (G1CollectedHeap::use_parallel_gc_threads()) {
3313     workers()->threads_do(tc);
3314   }
3315   tc->do_thread(_cmThread);
3316   _cg1r->threads_do(tc);
3317 }
3318 
3319 void G1CollectedHeap::print_tracing_info() const {
3320   // We'll overload this to mean "trace GC pause statistics."
3321   if (TraceGen0Time || TraceGen1Time) {
3322     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3323     // to that.
3324     g1_policy()->print_tracing_info();
3325   }
3326   if (G1SummarizeRSetStats) {
3327     g1_rem_set()->print_summary_info();
3328   }
3329   if (G1SummarizeConcMark) {
3330     concurrent_mark()->print_summary_info();
3331   }
3332   g1_policy()->print_yg_surv_rate_info();
3333   SpecializationStats::print();
3334 }
3335 
3336 #ifndef PRODUCT
3337 // Helpful for debugging RSet issues.
3338 
3339 class PrintRSetsClosure : public HeapRegionClosure {
3340 private:
3341   const char* _msg;
3342   size_t _occupied_sum;
3343 
3344 public:
3345   bool doHeapRegion(HeapRegion* r) {
3346     HeapRegionRemSet* hrrs = r->rem_set();
3347     size_t occupied = hrrs->occupied();
3348     _occupied_sum += occupied;
3349 
3350     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3351                            HR_FORMAT_PARAMS(r));
3352     if (occupied == 0) {
3353       gclog_or_tty->print_cr("  RSet is empty");
3354     } else {
3355       hrrs->print();
3356     }
3357     gclog_or_tty->print_cr("----------");
3358     return false;
3359   }
3360 
3361   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3362     gclog_or_tty->cr();
3363     gclog_or_tty->print_cr("========================================");
3364     gclog_or_tty->print_cr(msg);
3365     gclog_or_tty->cr();
3366   }
3367 
3368   ~PrintRSetsClosure() {
3369     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3370     gclog_or_tty->print_cr("========================================");
3371     gclog_or_tty->cr();
3372   }
3373 };
3374 
3375 void G1CollectedHeap::print_cset_rsets() {
3376   PrintRSetsClosure cl("Printing CSet RSets");
3377   collection_set_iterate(&cl);
3378 }
3379 
3380 void G1CollectedHeap::print_all_rsets() {
3381   PrintRSetsClosure cl("Printing All RSets");;
3382   heap_region_iterate(&cl);
3383 }
3384 #endif // PRODUCT
3385 
3386 G1CollectedHeap* G1CollectedHeap::heap() {
3387   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3388          "not a garbage-first heap");
3389   return _g1h;
3390 }
3391 
3392 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3393   // always_do_update_barrier = false;
3394   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3395   // Call allocation profiler
3396   AllocationProfiler::iterate_since_last_gc();
3397   // Fill TLAB's and such
3398   ensure_parsability(true);
3399 }
3400 
3401 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3402   // FIXME: what is this about?
3403   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3404   // is set.
3405   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3406                         "derived pointer present"));
3407   // always_do_update_barrier = true;
3408 
3409   // We have just completed a GC. Update the soft reference
3410   // policy with the new heap occupancy
3411   Universe::update_heap_info_at_gc();
3412 }
3413 
3414 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3415                                                unsigned int gc_count_before,
3416                                                bool* succeeded) {
3417   assert_heap_not_locked_and_not_at_safepoint();
3418   g1_policy()->record_stop_world_start();
3419   VM_G1IncCollectionPause op(gc_count_before,
3420                              word_size,
3421                              false, /* should_initiate_conc_mark */
3422                              g1_policy()->max_pause_time_ms(),
3423                              GCCause::_g1_inc_collection_pause);
3424   VMThread::execute(&op);
3425 
3426   HeapWord* result = op.result();
3427   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3428   assert(result == NULL || ret_succeeded,
3429          "the result should be NULL if the VM did not succeed");
3430   *succeeded = ret_succeeded;
3431 
3432   assert_heap_not_locked();
3433   return result;
3434 }
3435 
3436 void
3437 G1CollectedHeap::doConcurrentMark() {
3438   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3439   if (!_cmThread->in_progress()) {
3440     _cmThread->set_started();
3441     CGC_lock->notify();
3442   }
3443 }
3444 
3445 size_t G1CollectedHeap::pending_card_num() {
3446   size_t extra_cards = 0;
3447   JavaThread *curr = Threads::first();
3448   while (curr != NULL) {
3449     DirtyCardQueue& dcq = curr->dirty_card_queue();
3450     extra_cards += dcq.size();
3451     curr = curr->next();
3452   }
3453   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3454   size_t buffer_size = dcqs.buffer_size();
3455   size_t buffer_num = dcqs.completed_buffers_num();
3456   return buffer_size * buffer_num + extra_cards;
3457 }
3458 
3459 size_t G1CollectedHeap::max_pending_card_num() {
3460   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3461   size_t buffer_size = dcqs.buffer_size();
3462   size_t buffer_num  = dcqs.completed_buffers_num();
3463   int thread_num  = Threads::number_of_threads();
3464   return (buffer_num + thread_num) * buffer_size;
3465 }
3466 
3467 size_t G1CollectedHeap::cards_scanned() {
3468   return g1_rem_set()->cardsScanned();
3469 }
3470 
3471 void
3472 G1CollectedHeap::setup_surviving_young_words() {
3473   assert(_surviving_young_words == NULL, "pre-condition");
3474   uint array_length = g1_policy()->young_cset_region_length();
3475   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length);
3476   if (_surviving_young_words == NULL) {
3477     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3478                           "Not enough space for young surv words summary.");
3479   }
3480   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3481 #ifdef ASSERT
3482   for (uint i = 0;  i < array_length; ++i) {
3483     assert( _surviving_young_words[i] == 0, "memset above" );
3484   }
3485 #endif // !ASSERT
3486 }
3487 
3488 void
3489 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3490   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3491   uint array_length = g1_policy()->young_cset_region_length();
3492   for (uint i = 0; i < array_length; ++i) {
3493     _surviving_young_words[i] += surv_young_words[i];
3494   }
3495 }
3496 
3497 void
3498 G1CollectedHeap::cleanup_surviving_young_words() {
3499   guarantee( _surviving_young_words != NULL, "pre-condition" );
3500   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3501   _surviving_young_words = NULL;
3502 }
3503 
3504 #ifdef ASSERT
3505 class VerifyCSetClosure: public HeapRegionClosure {
3506 public:
3507   bool doHeapRegion(HeapRegion* hr) {
3508     // Here we check that the CSet region's RSet is ready for parallel
3509     // iteration. The fields that we'll verify are only manipulated
3510     // when the region is part of a CSet and is collected. Afterwards,
3511     // we reset these fields when we clear the region's RSet (when the
3512     // region is freed) so they are ready when the region is
3513     // re-allocated. The only exception to this is if there's an
3514     // evacuation failure and instead of freeing the region we leave
3515     // it in the heap. In that case, we reset these fields during
3516     // evacuation failure handling.
3517     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3518 
3519     // Here's a good place to add any other checks we'd like to
3520     // perform on CSet regions.
3521     return false;
3522   }
3523 };
3524 #endif // ASSERT
3525 
3526 #if TASKQUEUE_STATS
3527 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3528   st->print_raw_cr("GC Task Stats");
3529   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3530   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3531 }
3532 
3533 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3534   print_taskqueue_stats_hdr(st);
3535 
3536   TaskQueueStats totals;
3537   const int n = workers() != NULL ? workers()->total_workers() : 1;
3538   for (int i = 0; i < n; ++i) {
3539     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3540     totals += task_queue(i)->stats;
3541   }
3542   st->print_raw("tot "); totals.print(st); st->cr();
3543 
3544   DEBUG_ONLY(totals.verify());
3545 }
3546 
3547 void G1CollectedHeap::reset_taskqueue_stats() {
3548   const int n = workers() != NULL ? workers()->total_workers() : 1;
3549   for (int i = 0; i < n; ++i) {
3550     task_queue(i)->stats.reset();
3551   }
3552 }
3553 #endif // TASKQUEUE_STATS
3554 
3555 bool
3556 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3557   assert_at_safepoint(true /* should_be_vm_thread */);
3558   guarantee(!is_gc_active(), "collection is not reentrant");
3559 
3560   if (GC_locker::check_active_before_gc()) {
3561     return false;
3562   }
3563 
3564   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3565   ResourceMark rm;
3566 
3567   print_heap_before_gc();
3568 
3569   HRSPhaseSetter x(HRSPhaseEvacuation);
3570   verify_region_sets_optional();
3571   verify_dirty_young_regions();
3572 
3573   // This call will decide whether this pause is an initial-mark
3574   // pause. If it is, during_initial_mark_pause() will return true
3575   // for the duration of this pause.
3576   g1_policy()->decide_on_conc_mark_initiation();
3577 
3578   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3579   assert(!g1_policy()->during_initial_mark_pause() ||
3580           g1_policy()->gcs_are_young(), "sanity");
3581 
3582   // We also do not allow mixed GCs during marking.
3583   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3584 
3585   // Record whether this pause is an initial mark. When the current
3586   // thread has completed its logging output and it's safe to signal
3587   // the CM thread, the flag's value in the policy has been reset.
3588   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3589 
3590   // Inner scope for scope based logging, timers, and stats collection
3591   {
3592     if (g1_policy()->during_initial_mark_pause()) {
3593       // We are about to start a marking cycle, so we increment the
3594       // full collection counter.
3595       increment_total_full_collections();
3596     }
3597     // if the log level is "finer" is on, we'll print long statistics information
3598     // in the collector policy code, so let's not print this as the output
3599     // is messy if we do.
3600     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
3601     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3602 
3603     char verbose_str[128];
3604     sprintf(verbose_str, "GC pause (%s) (%s)%s",
3605       GCCause::to_string(gc_cause()),
3606       g1_policy()->gcs_are_young() ? "young" : "mixed",
3607       g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3608     TraceTime t(verbose_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
3609 
3610     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3611     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3612 
3613     // If the secondary_free_list is not empty, append it to the
3614     // free_list. No need to wait for the cleanup operation to finish;
3615     // the region allocation code will check the secondary_free_list
3616     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3617     // set, skip this step so that the region allocation code has to
3618     // get entries from the secondary_free_list.
3619     if (!G1StressConcRegionFreeing) {
3620       append_secondary_free_list_if_not_empty_with_lock();
3621     }
3622 
3623     assert(check_young_list_well_formed(),
3624       "young list should be well formed");
3625 
3626     // Don't dynamically change the number of GC threads this early.  A value of
3627     // 0 is used to indicate serial work.  When parallel work is done,
3628     // it will be set.
3629 
3630     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3631       IsGCActiveMark x;
3632 
3633       gc_prologue(false);
3634       increment_total_collections(false /* full gc */);
3635       increment_gc_time_stamp();
3636 
3637       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3638         HandleMark hm;  // Discard invalid handles created during verification
3639         gclog_or_tty->print(" VerifyBeforeGC:");
3640         prepare_for_verify();
3641         Universe::verify(/* silent      */ false,
3642                          /* option      */ VerifyOption_G1UsePrevMarking);
3643       }
3644 
3645       COMPILER2_PRESENT(DerivedPointerTable::clear());
3646 
3647       // Please see comment in g1CollectedHeap.hpp and
3648       // G1CollectedHeap::ref_processing_init() to see how
3649       // reference processing currently works in G1.
3650 
3651       // Enable discovery in the STW reference processor
3652       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3653                                             true /*verify_no_refs*/);
3654 
3655       {
3656         // We want to temporarily turn off discovery by the
3657         // CM ref processor, if necessary, and turn it back on
3658         // on again later if we do. Using a scoped
3659         // NoRefDiscovery object will do this.
3660         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3661 
3662         // Forget the current alloc region (we might even choose it to be part
3663         // of the collection set!).
3664         release_mutator_alloc_region();
3665 
3666         // We should call this after we retire the mutator alloc
3667         // region(s) so that all the ALLOC / RETIRE events are generated
3668         // before the start GC event.
3669         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3670 
3671         // The elapsed time induced by the start time below deliberately elides
3672         // the possible verification above.
3673         double start_time_sec = os::elapsedTime();
3674         size_t start_used_bytes = used();
3675 
3676 #if YOUNG_LIST_VERBOSE
3677         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3678         _young_list->print();
3679         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3680 #endif // YOUNG_LIST_VERBOSE
3681 
3682         g1_policy()->record_collection_pause_start(start_time_sec,
3683                                                    start_used_bytes);
3684 
3685         double scan_wait_start = os::elapsedTime();
3686         // We have to wait until the CM threads finish scanning the
3687         // root regions as it's the only way to ensure that all the
3688         // objects on them have been correctly scanned before we start
3689         // moving them during the GC.
3690         bool waited = _cm->root_regions()->wait_until_scan_finished();
3691         if (waited) {
3692           double scan_wait_end = os::elapsedTime();
3693           double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3694           g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
3695         }
3696 
3697 #if YOUNG_LIST_VERBOSE
3698         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3699         _young_list->print();
3700 #endif // YOUNG_LIST_VERBOSE
3701 
3702         if (g1_policy()->during_initial_mark_pause()) {
3703           concurrent_mark()->checkpointRootsInitialPre();
3704         }
3705         perm_gen()->save_marks();
3706 
3707 #if YOUNG_LIST_VERBOSE
3708         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3709         _young_list->print();
3710         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3711 #endif // YOUNG_LIST_VERBOSE
3712 
3713         g1_policy()->finalize_cset(target_pause_time_ms);
3714 
3715         _cm->note_start_of_gc();
3716         // We should not verify the per-thread SATB buffers given that
3717         // we have not filtered them yet (we'll do so during the
3718         // GC). We also call this after finalize_cset() to
3719         // ensure that the CSet has been finalized.
3720         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3721                                  true  /* verify_enqueued_buffers */,
3722                                  false /* verify_thread_buffers */,
3723                                  true  /* verify_fingers */);
3724 
3725         if (_hr_printer.is_active()) {
3726           HeapRegion* hr = g1_policy()->collection_set();
3727           while (hr != NULL) {
3728             G1HRPrinter::RegionType type;
3729             if (!hr->is_young()) {
3730               type = G1HRPrinter::Old;
3731             } else if (hr->is_survivor()) {
3732               type = G1HRPrinter::Survivor;
3733             } else {
3734               type = G1HRPrinter::Eden;
3735             }
3736             _hr_printer.cset(hr);
3737             hr = hr->next_in_collection_set();
3738           }
3739         }
3740 
3741 #ifdef ASSERT
3742         VerifyCSetClosure cl;
3743         collection_set_iterate(&cl);
3744 #endif // ASSERT
3745 
3746         setup_surviving_young_words();
3747 
3748         // Initialize the GC alloc regions.
3749         init_gc_alloc_regions();
3750 
3751         // Actually do the work...
3752         evacuate_collection_set();
3753 
3754         // We do this to mainly verify the per-thread SATB buffers
3755         // (which have been filtered by now) since we didn't verify
3756         // them earlier. No point in re-checking the stacks / enqueued
3757         // buffers given that the CSet has not changed since last time
3758         // we checked.
3759         _cm->verify_no_cset_oops(false /* verify_stacks */,
3760                                  false /* verify_enqueued_buffers */,
3761                                  true  /* verify_thread_buffers */,
3762                                  true  /* verify_fingers */);
3763 
3764         free_collection_set(g1_policy()->collection_set());
3765         g1_policy()->clear_collection_set();
3766 
3767         cleanup_surviving_young_words();
3768 
3769         // Start a new incremental collection set for the next pause.
3770         g1_policy()->start_incremental_cset_building();
3771 
3772         // Clear the _cset_fast_test bitmap in anticipation of adding
3773         // regions to the incremental collection set for the next
3774         // evacuation pause.
3775         clear_cset_fast_test();
3776 
3777         _young_list->reset_sampled_info();
3778 
3779         // Don't check the whole heap at this point as the
3780         // GC alloc regions from this pause have been tagged
3781         // as survivors and moved on to the survivor list.
3782         // Survivor regions will fail the !is_young() check.
3783         assert(check_young_list_empty(false /* check_heap */),
3784           "young list should be empty");
3785 
3786 #if YOUNG_LIST_VERBOSE
3787         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3788         _young_list->print();
3789 #endif // YOUNG_LIST_VERBOSE
3790 
3791         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3792                                             _young_list->first_survivor_region(),
3793                                             _young_list->last_survivor_region());
3794 
3795         _young_list->reset_auxilary_lists();
3796 
3797         if (evacuation_failed()) {
3798           _summary_bytes_used = recalculate_used();
3799         } else {
3800           // The "used" of the the collection set have already been subtracted
3801           // when they were freed.  Add in the bytes evacuated.
3802           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3803         }
3804 
3805         if (g1_policy()->during_initial_mark_pause()) {
3806           // We have to do this before we notify the CM threads that
3807           // they can start working to make sure that all the
3808           // appropriate initialization is done on the CM object.
3809           concurrent_mark()->checkpointRootsInitialPost();
3810           set_marking_started();
3811           // Note that we don't actually trigger the CM thread at
3812           // this point. We do that later when we're sure that
3813           // the current thread has completed its logging output.
3814         }
3815 
3816         allocate_dummy_regions();
3817 
3818 #if YOUNG_LIST_VERBOSE
3819         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3820         _young_list->print();
3821         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3822 #endif // YOUNG_LIST_VERBOSE
3823 
3824         init_mutator_alloc_region();
3825 
3826         {
3827           size_t expand_bytes = g1_policy()->expansion_amount();
3828           if (expand_bytes > 0) {
3829             size_t bytes_before = capacity();
3830             // No need for an ergo verbose message here,
3831             // expansion_amount() does this when it returns a value > 0.
3832             if (!expand(expand_bytes)) {
3833               // We failed to expand the heap so let's verify that
3834               // committed/uncommitted amount match the backing store
3835               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3836               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3837             }
3838           }
3839         }
3840 
3841         // We redo the verificaiton but now wrt to the new CSet which
3842         // has just got initialized after the previous CSet was freed.
3843         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3844                                  true  /* verify_enqueued_buffers */,
3845                                  true  /* verify_thread_buffers */,
3846                                  true  /* verify_fingers */);
3847         _cm->note_end_of_gc();
3848 
3849         double end_time_sec = os::elapsedTime();
3850         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3851         g1_policy()->record_pause_time_ms(pause_time_ms);
3852         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3853                                 workers()->active_workers() : 1);
3854         g1_policy()->record_collection_pause_end(active_workers);
3855 
3856         MemoryService::track_memory_usage();
3857 
3858         // In prepare_for_verify() below we'll need to scan the deferred
3859         // update buffers to bring the RSets up-to-date if
3860         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3861         // the update buffers we'll probably need to scan cards on the
3862         // regions we just allocated to (i.e., the GC alloc
3863         // regions). However, during the last GC we called
3864         // set_saved_mark() on all the GC alloc regions, so card
3865         // scanning might skip the [saved_mark_word()...top()] area of
3866         // those regions (i.e., the area we allocated objects into
3867         // during the last GC). But it shouldn't. Given that
3868         // saved_mark_word() is conditional on whether the GC time stamp
3869         // on the region is current or not, by incrementing the GC time
3870         // stamp here we invalidate all the GC time stamps on all the
3871         // regions and saved_mark_word() will simply return top() for
3872         // all the regions. This is a nicer way of ensuring this rather
3873         // than iterating over the regions and fixing them. In fact, the
3874         // GC time stamp increment here also ensures that
3875         // saved_mark_word() will return top() between pauses, i.e.,
3876         // during concurrent refinement. So we don't need the
3877         // is_gc_active() check to decided which top to use when
3878         // scanning cards (see CR 7039627).
3879         increment_gc_time_stamp();
3880 
3881         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3882           HandleMark hm;  // Discard invalid handles created during verification
3883           gclog_or_tty->print(" VerifyAfterGC:");
3884           prepare_for_verify();
3885           Universe::verify(/* silent      */ false,
3886                            /* option      */ VerifyOption_G1UsePrevMarking);
3887         }
3888 
3889         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3890         ref_processor_stw()->verify_no_references_recorded();
3891 
3892         // CM reference discovery will be re-enabled if necessary.
3893       }
3894 
3895       // We should do this after we potentially expand the heap so
3896       // that all the COMMIT events are generated before the end GC
3897       // event, and after we retire the GC alloc regions so that all
3898       // RETIRE events are generated before the end GC event.
3899       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3900 
3901       // We have to do this after we decide whether to expand the heap or not.
3902       g1_policy()->print_heap_transition();
3903 
3904       if (mark_in_progress()) {
3905         concurrent_mark()->update_g1_committed();
3906       }
3907 
3908 #ifdef TRACESPINNING
3909       ParallelTaskTerminator::print_termination_counts();
3910 #endif
3911 
3912       gc_epilogue(false);
3913     }
3914 
3915     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3916       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3917       print_tracing_info();
3918       vm_exit(-1);
3919     }
3920   }
3921 
3922   // The closing of the inner scope, immediately above, will complete
3923   // logging at the "fine" level. The record_collection_pause_end() call
3924   // above will complete logging at the "finer" level.
3925   //
3926   // It is not yet to safe, however, to tell the concurrent mark to
3927   // start as we have some optional output below. We don't want the
3928   // output from the concurrent mark thread interfering with this
3929   // logging output either.
3930 
3931   _hrs.verify_optional();
3932   verify_region_sets_optional();
3933 
3934   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3935   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3936 
3937   print_heap_after_gc();
3938   g1mm()->update_sizes();
3939 
3940   if (G1SummarizeRSetStats &&
3941       (G1SummarizeRSetStatsPeriod > 0) &&
3942       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3943     g1_rem_set()->print_summary_info();
3944   }
3945 
3946   // It should now be safe to tell the concurrent mark thread to start
3947   // without its logging output interfering with the logging output
3948   // that came from the pause.
3949 
3950   if (should_start_conc_mark) {
3951     // CAUTION: after the doConcurrentMark() call below,
3952     // the concurrent marking thread(s) could be running
3953     // concurrently with us. Make sure that anything after
3954     // this point does not assume that we are the only GC thread
3955     // running. Note: of course, the actual marking work will
3956     // not start until the safepoint itself is released in
3957     // ConcurrentGCThread::safepoint_desynchronize().
3958     doConcurrentMark();
3959   }
3960 
3961   return true;
3962 }
3963 
3964 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3965 {
3966   size_t gclab_word_size;
3967   switch (purpose) {
3968     case GCAllocForSurvived:
3969       gclab_word_size = YoungPLABSize;
3970       break;
3971     case GCAllocForTenured:
3972       gclab_word_size = OldPLABSize;
3973       break;
3974     default:
3975       assert(false, "unknown GCAllocPurpose");
3976       gclab_word_size = OldPLABSize;
3977       break;
3978   }
3979   return gclab_word_size;
3980 }
3981 
3982 void G1CollectedHeap::init_mutator_alloc_region() {
3983   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3984   _mutator_alloc_region.init();
3985 }
3986 
3987 void G1CollectedHeap::release_mutator_alloc_region() {
3988   _mutator_alloc_region.release();
3989   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3990 }
3991 
3992 void G1CollectedHeap::init_gc_alloc_regions() {
3993   assert_at_safepoint(true /* should_be_vm_thread */);
3994 
3995   _survivor_gc_alloc_region.init();
3996   _old_gc_alloc_region.init();
3997   HeapRegion* retained_region = _retained_old_gc_alloc_region;
3998   _retained_old_gc_alloc_region = NULL;
3999 
4000   // We will discard the current GC alloc region if:
4001   // a) it's in the collection set (it can happen!),
4002   // b) it's already full (no point in using it),
4003   // c) it's empty (this means that it was emptied during
4004   // a cleanup and it should be on the free list now), or
4005   // d) it's humongous (this means that it was emptied
4006   // during a cleanup and was added to the free list, but
4007   // has been subseqently used to allocate a humongous
4008   // object that may be less than the region size).
4009   if (retained_region != NULL &&
4010       !retained_region->in_collection_set() &&
4011       !(retained_region->top() == retained_region->end()) &&
4012       !retained_region->is_empty() &&
4013       !retained_region->isHumongous()) {
4014     retained_region->set_saved_mark();
4015     // The retained region was added to the old region set when it was
4016     // retired. We have to remove it now, since we don't allow regions
4017     // we allocate to in the region sets. We'll re-add it later, when
4018     // it's retired again.
4019     _old_set.remove(retained_region);
4020     bool during_im = g1_policy()->during_initial_mark_pause();
4021     retained_region->note_start_of_copying(during_im);
4022     _old_gc_alloc_region.set(retained_region);
4023     _hr_printer.reuse(retained_region);
4024   }
4025 }
4026 
4027 void G1CollectedHeap::release_gc_alloc_regions() {
4028   _survivor_gc_alloc_region.release();
4029   // If we have an old GC alloc region to release, we'll save it in
4030   // _retained_old_gc_alloc_region. If we don't
4031   // _retained_old_gc_alloc_region will become NULL. This is what we
4032   // want either way so no reason to check explicitly for either
4033   // condition.
4034   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4035 }
4036 
4037 void G1CollectedHeap::abandon_gc_alloc_regions() {
4038   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4039   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4040   _retained_old_gc_alloc_region = NULL;
4041 }
4042 
4043 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4044   _drain_in_progress = false;
4045   set_evac_failure_closure(cl);
4046   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4047 }
4048 
4049 void G1CollectedHeap::finalize_for_evac_failure() {
4050   assert(_evac_failure_scan_stack != NULL &&
4051          _evac_failure_scan_stack->length() == 0,
4052          "Postcondition");
4053   assert(!_drain_in_progress, "Postcondition");
4054   delete _evac_failure_scan_stack;
4055   _evac_failure_scan_stack = NULL;
4056 }
4057 
4058 void G1CollectedHeap::remove_self_forwarding_pointers() {
4059   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4060 
4061   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4062 
4063   if (G1CollectedHeap::use_parallel_gc_threads()) {
4064     set_par_threads();
4065     workers()->run_task(&rsfp_task);
4066     set_par_threads(0);
4067   } else {
4068     rsfp_task.work(0);
4069   }
4070 
4071   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4072 
4073   // Reset the claim values in the regions in the collection set.
4074   reset_cset_heap_region_claim_values();
4075 
4076   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4077 
4078   // Now restore saved marks, if any.
4079   if (_objs_with_preserved_marks != NULL) {
4080     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4081     guarantee(_objs_with_preserved_marks->length() ==
4082               _preserved_marks_of_objs->length(), "Both or none.");
4083     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4084       oop obj   = _objs_with_preserved_marks->at(i);
4085       markOop m = _preserved_marks_of_objs->at(i);
4086       obj->set_mark(m);
4087     }
4088 
4089     // Delete the preserved marks growable arrays (allocated on the C heap).
4090     delete _objs_with_preserved_marks;
4091     delete _preserved_marks_of_objs;
4092     _objs_with_preserved_marks = NULL;
4093     _preserved_marks_of_objs = NULL;
4094   }
4095 }
4096 
4097 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4098   _evac_failure_scan_stack->push(obj);
4099 }
4100 
4101 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4102   assert(_evac_failure_scan_stack != NULL, "precondition");
4103 
4104   while (_evac_failure_scan_stack->length() > 0) {
4105      oop obj = _evac_failure_scan_stack->pop();
4106      _evac_failure_closure->set_region(heap_region_containing(obj));
4107      obj->oop_iterate_backwards(_evac_failure_closure);
4108   }
4109 }
4110 
4111 oop
4112 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4113                                                oop old) {
4114   assert(obj_in_cs(old),
4115          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4116                  (HeapWord*) old));
4117   markOop m = old->mark();
4118   oop forward_ptr = old->forward_to_atomic(old);
4119   if (forward_ptr == NULL) {
4120     // Forward-to-self succeeded.
4121 
4122     if (_evac_failure_closure != cl) {
4123       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4124       assert(!_drain_in_progress,
4125              "Should only be true while someone holds the lock.");
4126       // Set the global evac-failure closure to the current thread's.
4127       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4128       set_evac_failure_closure(cl);
4129       // Now do the common part.
4130       handle_evacuation_failure_common(old, m);
4131       // Reset to NULL.
4132       set_evac_failure_closure(NULL);
4133     } else {
4134       // The lock is already held, and this is recursive.
4135       assert(_drain_in_progress, "This should only be the recursive case.");
4136       handle_evacuation_failure_common(old, m);
4137     }
4138     return old;
4139   } else {
4140     // Forward-to-self failed. Either someone else managed to allocate
4141     // space for this object (old != forward_ptr) or they beat us in
4142     // self-forwarding it (old == forward_ptr).
4143     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4144            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4145                    "should not be in the CSet",
4146                    (HeapWord*) old, (HeapWord*) forward_ptr));
4147     return forward_ptr;
4148   }
4149 }
4150 
4151 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4152   set_evacuation_failed(true);
4153 
4154   preserve_mark_if_necessary(old, m);
4155 
4156   HeapRegion* r = heap_region_containing(old);
4157   if (!r->evacuation_failed()) {
4158     r->set_evacuation_failed(true);
4159     _hr_printer.evac_failure(r);
4160   }
4161 
4162   push_on_evac_failure_scan_stack(old);
4163 
4164   if (!_drain_in_progress) {
4165     // prevent recursion in copy_to_survivor_space()
4166     _drain_in_progress = true;
4167     drain_evac_failure_scan_stack();
4168     _drain_in_progress = false;
4169   }
4170 }
4171 
4172 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4173   assert(evacuation_failed(), "Oversaving!");
4174   // We want to call the "for_promotion_failure" version only in the
4175   // case of a promotion failure.
4176   if (m->must_be_preserved_for_promotion_failure(obj)) {
4177     if (_objs_with_preserved_marks == NULL) {
4178       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4179       _objs_with_preserved_marks =
4180         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4181       _preserved_marks_of_objs =
4182         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4183     }
4184     _objs_with_preserved_marks->push(obj);
4185     _preserved_marks_of_objs->push(m);
4186   }
4187 }
4188 
4189 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4190                                                   size_t word_size) {
4191   if (purpose == GCAllocForSurvived) {
4192     HeapWord* result = survivor_attempt_allocation(word_size);
4193     if (result != NULL) {
4194       return result;
4195     } else {
4196       // Let's try to allocate in the old gen in case we can fit the
4197       // object there.
4198       return old_attempt_allocation(word_size);
4199     }
4200   } else {
4201     assert(purpose ==  GCAllocForTenured, "sanity");
4202     HeapWord* result = old_attempt_allocation(word_size);
4203     if (result != NULL) {
4204       return result;
4205     } else {
4206       // Let's try to allocate in the survivors in case we can fit the
4207       // object there.
4208       return survivor_attempt_allocation(word_size);
4209     }
4210   }
4211 
4212   ShouldNotReachHere();
4213   // Trying to keep some compilers happy.
4214   return NULL;
4215 }
4216 
4217 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4218   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4219 
4220 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4221   : _g1h(g1h),
4222     _refs(g1h->task_queue(queue_num)),
4223     _dcq(&g1h->dirty_card_queue_set()),
4224     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4225     _g1_rem(g1h->g1_rem_set()),
4226     _hash_seed(17), _queue_num(queue_num),
4227     _term_attempts(0),
4228     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4229     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4230     _age_table(false),
4231     _strong_roots_time(0), _term_time(0),
4232     _alloc_buffer_waste(0), _undo_waste(0) {
4233   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4234   // we "sacrifice" entry 0 to keep track of surviving bytes for
4235   // non-young regions (where the age is -1)
4236   // We also add a few elements at the beginning and at the end in
4237   // an attempt to eliminate cache contention
4238   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4239   uint array_length = PADDING_ELEM_NUM +
4240                       real_length +
4241                       PADDING_ELEM_NUM;
4242   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4243   if (_surviving_young_words_base == NULL)
4244     vm_exit_out_of_memory(array_length * sizeof(size_t),
4245                           "Not enough space for young surv histo.");
4246   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4247   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4248 
4249   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4250   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4251 
4252   _start = os::elapsedTime();
4253 }
4254 
4255 void
4256 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4257 {
4258   st->print_raw_cr("GC Termination Stats");
4259   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4260                    " ------waste (KiB)------");
4261   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4262                    "  total   alloc    undo");
4263   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4264                    " ------- ------- -------");
4265 }
4266 
4267 void
4268 G1ParScanThreadState::print_termination_stats(int i,
4269                                               outputStream* const st) const
4270 {
4271   const double elapsed_ms = elapsed_time() * 1000.0;
4272   const double s_roots_ms = strong_roots_time() * 1000.0;
4273   const double term_ms    = term_time() * 1000.0;
4274   st->print_cr("%3d %9.2f %9.2f %6.2f "
4275                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4276                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4277                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4278                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4279                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4280                alloc_buffer_waste() * HeapWordSize / K,
4281                undo_waste() * HeapWordSize / K);
4282 }
4283 
4284 #ifdef ASSERT
4285 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4286   assert(ref != NULL, "invariant");
4287   assert(UseCompressedOops, "sanity");
4288   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4289   oop p = oopDesc::load_decode_heap_oop(ref);
4290   assert(_g1h->is_in_g1_reserved(p),
4291          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4292   return true;
4293 }
4294 
4295 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4296   assert(ref != NULL, "invariant");
4297   if (has_partial_array_mask(ref)) {
4298     // Must be in the collection set--it's already been copied.
4299     oop p = clear_partial_array_mask(ref);
4300     assert(_g1h->obj_in_cs(p),
4301            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4302   } else {
4303     oop p = oopDesc::load_decode_heap_oop(ref);
4304     assert(_g1h->is_in_g1_reserved(p),
4305            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4306   }
4307   return true;
4308 }
4309 
4310 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4311   if (ref.is_narrow()) {
4312     return verify_ref((narrowOop*) ref);
4313   } else {
4314     return verify_ref((oop*) ref);
4315   }
4316 }
4317 #endif // ASSERT
4318 
4319 void G1ParScanThreadState::trim_queue() {
4320   assert(_evac_cl != NULL, "not set");
4321   assert(_evac_failure_cl != NULL, "not set");
4322   assert(_partial_scan_cl != NULL, "not set");
4323 
4324   StarTask ref;
4325   do {
4326     // Drain the overflow stack first, so other threads can steal.
4327     while (refs()->pop_overflow(ref)) {
4328       deal_with_reference(ref);
4329     }
4330 
4331     while (refs()->pop_local(ref)) {
4332       deal_with_reference(ref);
4333     }
4334   } while (!refs()->is_empty());
4335 }
4336 
4337 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4338                                      G1ParScanThreadState* par_scan_state) :
4339   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4340   _par_scan_state(par_scan_state),
4341   _worker_id(par_scan_state->queue_num()),
4342   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4343   _mark_in_progress(_g1->mark_in_progress()) { }
4344 
4345 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4346 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4347 #ifdef ASSERT
4348   HeapRegion* hr = _g1->heap_region_containing(obj);
4349   assert(hr != NULL, "sanity");
4350   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4351 #endif // ASSERT
4352 
4353   // We know that the object is not moving so it's safe to read its size.
4354   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4355 }
4356 
4357 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4358 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4359   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4360 #ifdef ASSERT
4361   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4362   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4363   assert(from_obj != to_obj, "should not be self-forwarded");
4364 
4365   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4366   assert(from_hr != NULL, "sanity");
4367   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4368 
4369   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4370   assert(to_hr != NULL, "sanity");
4371   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4372 #endif // ASSERT
4373 
4374   // The object might be in the process of being copied by another
4375   // worker so we cannot trust that its to-space image is
4376   // well-formed. So we have to read its size from its from-space
4377   // image which we know should not be changing.
4378   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4379 }
4380 
4381 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4382 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4383   ::copy_to_survivor_space(oop old) {
4384   size_t word_sz = old->size();
4385   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4386   // +1 to make the -1 indexes valid...
4387   int       young_index = from_region->young_index_in_cset()+1;
4388   assert( (from_region->is_young() && young_index >  0) ||
4389          (!from_region->is_young() && young_index == 0), "invariant" );
4390   G1CollectorPolicy* g1p = _g1->g1_policy();
4391   markOop m = old->mark();
4392   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4393                                            : m->age();
4394   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4395                                                              word_sz);
4396   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4397   oop       obj     = oop(obj_ptr);
4398 
4399   if (obj_ptr == NULL) {
4400     // This will either forward-to-self, or detect that someone else has
4401     // installed a forwarding pointer.
4402     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4403     return _g1->handle_evacuation_failure_par(cl, old);
4404   }
4405 
4406   // We're going to allocate linearly, so might as well prefetch ahead.
4407   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4408 
4409   oop forward_ptr = old->forward_to_atomic(obj);
4410   if (forward_ptr == NULL) {
4411     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4412     if (g1p->track_object_age(alloc_purpose)) {
4413       // We could simply do obj->incr_age(). However, this causes a
4414       // performance issue. obj->incr_age() will first check whether
4415       // the object has a displaced mark by checking its mark word;
4416       // getting the mark word from the new location of the object
4417       // stalls. So, given that we already have the mark word and we
4418       // are about to install it anyway, it's better to increase the
4419       // age on the mark word, when the object does not have a
4420       // displaced mark word. We're not expecting many objects to have
4421       // a displaced marked word, so that case is not optimized
4422       // further (it could be...) and we simply call obj->incr_age().
4423 
4424       if (m->has_displaced_mark_helper()) {
4425         // in this case, we have to install the mark word first,
4426         // otherwise obj looks to be forwarded (the old mark word,
4427         // which contains the forward pointer, was copied)
4428         obj->set_mark(m);
4429         obj->incr_age();
4430       } else {
4431         m = m->incr_age();
4432         obj->set_mark(m);
4433       }
4434       _par_scan_state->age_table()->add(obj, word_sz);
4435     } else {
4436       obj->set_mark(m);
4437     }
4438 
4439     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4440     surv_young_words[young_index] += word_sz;
4441 
4442     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4443       // We keep track of the next start index in the length field of
4444       // the to-space object. The actual length can be found in the
4445       // length field of the from-space object.
4446       arrayOop(obj)->set_length(0);
4447       oop* old_p = set_partial_array_mask(old);
4448       _par_scan_state->push_on_queue(old_p);
4449     } else {
4450       // No point in using the slower heap_region_containing() method,
4451       // given that we know obj is in the heap.
4452       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4453       obj->oop_iterate_backwards(&_scanner);
4454     }
4455   } else {
4456     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4457     obj = forward_ptr;
4458   }
4459   return obj;
4460 }
4461 
4462 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4463 template <class T>
4464 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4465 ::do_oop_work(T* p) {
4466   oop obj = oopDesc::load_decode_heap_oop(p);
4467   assert(barrier != G1BarrierRS || obj != NULL,
4468          "Precondition: G1BarrierRS implies obj is non-NULL");
4469 
4470   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4471 
4472   // here the null check is implicit in the cset_fast_test() test
4473   if (_g1->in_cset_fast_test(obj)) {
4474     oop forwardee;
4475     if (obj->is_forwarded()) {
4476       forwardee = obj->forwardee();
4477     } else {
4478       forwardee = copy_to_survivor_space(obj);
4479     }
4480     assert(forwardee != NULL, "forwardee should not be NULL");
4481     oopDesc::encode_store_heap_oop(p, forwardee);
4482     if (do_mark_object && forwardee != obj) {
4483       // If the object is self-forwarded we don't need to explicitly
4484       // mark it, the evacuation failure protocol will do so.
4485       mark_forwarded_object(obj, forwardee);
4486     }
4487 
4488     // When scanning the RS, we only care about objs in CS.
4489     if (barrier == G1BarrierRS) {
4490       _par_scan_state->update_rs(_from, p, _worker_id);
4491     }
4492   } else {
4493     // The object is not in collection set. If we're a root scanning
4494     // closure during an initial mark pause (i.e. do_mark_object will
4495     // be true) then attempt to mark the object.
4496     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4497       mark_object(obj);
4498     }
4499   }
4500 
4501   if (barrier == G1BarrierEvac && obj != NULL) {
4502     _par_scan_state->update_rs(_from, p, _worker_id);
4503   }
4504 
4505   if (do_gen_barrier && obj != NULL) {
4506     par_do_barrier(p);
4507   }
4508 }
4509 
4510 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4511 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4512 
4513 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4514   assert(has_partial_array_mask(p), "invariant");
4515   oop from_obj = clear_partial_array_mask(p);
4516 
4517   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4518   assert(from_obj->is_objArray(), "must be obj array");
4519   objArrayOop from_obj_array = objArrayOop(from_obj);
4520   // The from-space object contains the real length.
4521   int length                 = from_obj_array->length();
4522 
4523   assert(from_obj->is_forwarded(), "must be forwarded");
4524   oop to_obj                 = from_obj->forwardee();
4525   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4526   objArrayOop to_obj_array   = objArrayOop(to_obj);
4527   // We keep track of the next start index in the length field of the
4528   // to-space object.
4529   int next_index             = to_obj_array->length();
4530   assert(0 <= next_index && next_index < length,
4531          err_msg("invariant, next index: %d, length: %d", next_index, length));
4532 
4533   int start                  = next_index;
4534   int end                    = length;
4535   int remainder              = end - start;
4536   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4537   if (remainder > 2 * ParGCArrayScanChunk) {
4538     end = start + ParGCArrayScanChunk;
4539     to_obj_array->set_length(end);
4540     // Push the remainder before we process the range in case another
4541     // worker has run out of things to do and can steal it.
4542     oop* from_obj_p = set_partial_array_mask(from_obj);
4543     _par_scan_state->push_on_queue(from_obj_p);
4544   } else {
4545     assert(length == end, "sanity");
4546     // We'll process the final range for this object. Restore the length
4547     // so that the heap remains parsable in case of evacuation failure.
4548     to_obj_array->set_length(end);
4549   }
4550   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4551   // Process indexes [start,end). It will also process the header
4552   // along with the first chunk (i.e., the chunk with start == 0).
4553   // Note that at this point the length field of to_obj_array is not
4554   // correct given that we are using it to keep track of the next
4555   // start index. oop_iterate_range() (thankfully!) ignores the length
4556   // field and only relies on the start / end parameters.  It does
4557   // however return the size of the object which will be incorrect. So
4558   // we have to ignore it even if we wanted to use it.
4559   to_obj_array->oop_iterate_range(&_scanner, start, end);
4560 }
4561 
4562 class G1ParEvacuateFollowersClosure : public VoidClosure {
4563 protected:
4564   G1CollectedHeap*              _g1h;
4565   G1ParScanThreadState*         _par_scan_state;
4566   RefToScanQueueSet*            _queues;
4567   ParallelTaskTerminator*       _terminator;
4568 
4569   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4570   RefToScanQueueSet*      queues()         { return _queues; }
4571   ParallelTaskTerminator* terminator()     { return _terminator; }
4572 
4573 public:
4574   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4575                                 G1ParScanThreadState* par_scan_state,
4576                                 RefToScanQueueSet* queues,
4577                                 ParallelTaskTerminator* terminator)
4578     : _g1h(g1h), _par_scan_state(par_scan_state),
4579       _queues(queues), _terminator(terminator) {}
4580 
4581   void do_void();
4582 
4583 private:
4584   inline bool offer_termination();
4585 };
4586 
4587 bool G1ParEvacuateFollowersClosure::offer_termination() {
4588   G1ParScanThreadState* const pss = par_scan_state();
4589   pss->start_term_time();
4590   const bool res = terminator()->offer_termination();
4591   pss->end_term_time();
4592   return res;
4593 }
4594 
4595 void G1ParEvacuateFollowersClosure::do_void() {
4596   StarTask stolen_task;
4597   G1ParScanThreadState* const pss = par_scan_state();
4598   pss->trim_queue();
4599 
4600   do {
4601     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4602       assert(pss->verify_task(stolen_task), "sanity");
4603       if (stolen_task.is_narrow()) {
4604         pss->deal_with_reference((narrowOop*) stolen_task);
4605       } else {
4606         pss->deal_with_reference((oop*) stolen_task);
4607       }
4608 
4609       // We've just processed a reference and we might have made
4610       // available new entries on the queues. So we have to make sure
4611       // we drain the queues as necessary.
4612       pss->trim_queue();
4613     }
4614   } while (!offer_termination());
4615 
4616   pss->retire_alloc_buffers();
4617 }
4618 
4619 class G1ParTask : public AbstractGangTask {
4620 protected:
4621   G1CollectedHeap*       _g1h;
4622   RefToScanQueueSet      *_queues;
4623   ParallelTaskTerminator _terminator;
4624   uint _n_workers;
4625 
4626   Mutex _stats_lock;
4627   Mutex* stats_lock() { return &_stats_lock; }
4628 
4629   size_t getNCards() {
4630     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4631       / G1BlockOffsetSharedArray::N_bytes;
4632   }
4633 
4634 public:
4635   G1ParTask(G1CollectedHeap* g1h,
4636             RefToScanQueueSet *task_queues)
4637     : AbstractGangTask("G1 collection"),
4638       _g1h(g1h),
4639       _queues(task_queues),
4640       _terminator(0, _queues),
4641       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4642   {}
4643 
4644   RefToScanQueueSet* queues() { return _queues; }
4645 
4646   RefToScanQueue *work_queue(int i) {
4647     return queues()->queue(i);
4648   }
4649 
4650   ParallelTaskTerminator* terminator() { return &_terminator; }
4651 
4652   virtual void set_for_termination(int active_workers) {
4653     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4654     // in the young space (_par_seq_tasks) in the G1 heap
4655     // for SequentialSubTasksDone.
4656     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4657     // both of which need setting by set_n_termination().
4658     _g1h->SharedHeap::set_n_termination(active_workers);
4659     _g1h->set_n_termination(active_workers);
4660     terminator()->reset_for_reuse(active_workers);
4661     _n_workers = active_workers;
4662   }
4663 
4664   void work(uint worker_id) {
4665     if (worker_id >= _n_workers) return;  // no work needed this round
4666 
4667     double start_time_ms = os::elapsedTime() * 1000.0;
4668     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
4669 
4670     {
4671       ResourceMark rm;
4672       HandleMark   hm;
4673 
4674       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4675 
4676       G1ParScanThreadState            pss(_g1h, worker_id);
4677       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4678       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4679       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4680 
4681       pss.set_evac_closure(&scan_evac_cl);
4682       pss.set_evac_failure_closure(&evac_failure_cl);
4683       pss.set_partial_scan_closure(&partial_scan_cl);
4684 
4685       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4686       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4687 
4688       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4689       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4690 
4691       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4692       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4693 
4694       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4695         // We also need to mark copied objects.
4696         scan_root_cl = &scan_mark_root_cl;
4697         scan_perm_cl = &scan_mark_perm_cl;
4698       }
4699 
4700       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4701 
4702       pss.start_strong_roots();
4703       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4704                                     SharedHeap::SO_AllClasses,
4705                                     scan_root_cl,
4706                                     &push_heap_rs_cl,
4707                                     scan_perm_cl,
4708                                     worker_id);
4709       pss.end_strong_roots();
4710 
4711       {
4712         double start = os::elapsedTime();
4713         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4714         evac.do_void();
4715         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4716         double term_ms = pss.term_time()*1000.0;
4717         _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
4718         _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
4719       }
4720       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4721       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4722 
4723       // Clean up any par-expanded rem sets.
4724       HeapRegionRemSet::par_cleanup();
4725 
4726       if (ParallelGCVerbose) {
4727         MutexLocker x(stats_lock());
4728         pss.print_termination_stats(worker_id);
4729       }
4730 
4731       assert(pss.refs()->is_empty(), "should be empty");
4732 
4733       // Close the inner scope so that the ResourceMark and HandleMark
4734       // destructors are executed here and are included as part of the
4735       // "GC Worker Time".
4736     }
4737 
4738     double end_time_ms = os::elapsedTime() * 1000.0;
4739     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
4740   }
4741 };
4742 
4743 // *** Common G1 Evacuation Stuff
4744 
4745 // Closures that support the filtering of CodeBlobs scanned during
4746 // external root scanning.
4747 
4748 // Closure applied to reference fields in code blobs (specifically nmethods)
4749 // to determine whether an nmethod contains references that point into
4750 // the collection set. Used as a predicate when walking code roots so
4751 // that only nmethods that point into the collection set are added to the
4752 // 'marked' list.
4753 
4754 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4755 
4756   class G1PointsIntoCSOopClosure : public OopClosure {
4757     G1CollectedHeap* _g1;
4758     bool _points_into_cs;
4759   public:
4760     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4761       _g1(g1), _points_into_cs(false) { }
4762 
4763     bool points_into_cs() const { return _points_into_cs; }
4764 
4765     template <class T>
4766     void do_oop_nv(T* p) {
4767       if (!_points_into_cs) {
4768         T heap_oop = oopDesc::load_heap_oop(p);
4769         if (!oopDesc::is_null(heap_oop) &&
4770             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4771           _points_into_cs = true;
4772         }
4773       }
4774     }
4775 
4776     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4777     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4778   };
4779 
4780   G1CollectedHeap* _g1;
4781 
4782 public:
4783   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4784     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4785 
4786   virtual void do_code_blob(CodeBlob* cb) {
4787     nmethod* nm = cb->as_nmethod_or_null();
4788     if (nm != NULL && !(nm->test_oops_do_mark())) {
4789       G1PointsIntoCSOopClosure predicate_cl(_g1);
4790       nm->oops_do(&predicate_cl);
4791 
4792       if (predicate_cl.points_into_cs()) {
4793         // At least one of the reference fields or the oop relocations
4794         // in the nmethod points into the collection set. We have to
4795         // 'mark' this nmethod.
4796         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4797         // or MarkingCodeBlobClosure::do_code_blob() change.
4798         if (!nm->test_set_oops_do_mark()) {
4799           do_newly_marked_nmethod(nm);
4800         }
4801       }
4802     }
4803   }
4804 };
4805 
4806 // This method is run in a GC worker.
4807 
4808 void
4809 G1CollectedHeap::
4810 g1_process_strong_roots(bool collecting_perm_gen,
4811                         ScanningOption so,
4812                         OopClosure* scan_non_heap_roots,
4813                         OopsInHeapRegionClosure* scan_rs,
4814                         OopsInGenClosure* scan_perm,
4815                         int worker_i) {
4816 
4817   // First scan the strong roots, including the perm gen.
4818   double ext_roots_start = os::elapsedTime();
4819   double closure_app_time_sec = 0.0;
4820 
4821   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4822   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4823   buf_scan_perm.set_generation(perm_gen());
4824 
4825   // Walk the code cache w/o buffering, because StarTask cannot handle
4826   // unaligned oop locations.
4827   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
4828 
4829   process_strong_roots(false, // no scoping; this is parallel code
4830                        collecting_perm_gen, so,
4831                        &buf_scan_non_heap_roots,
4832                        &eager_scan_code_roots,
4833                        &buf_scan_perm);
4834 
4835   // Now the CM ref_processor roots.
4836   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4837     // We need to treat the discovered reference lists of the
4838     // concurrent mark ref processor as roots and keep entries
4839     // (which are added by the marking threads) on them live
4840     // until they can be processed at the end of marking.
4841     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4842   }
4843 
4844   // Finish up any enqueued closure apps (attributed as object copy time).
4845   buf_scan_non_heap_roots.done();
4846   buf_scan_perm.done();
4847 
4848   double ext_roots_end = os::elapsedTime();
4849 
4850   g1_policy()->reset_obj_copy_time(worker_i);
4851   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4852                                 buf_scan_non_heap_roots.closure_app_seconds();
4853   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4854 
4855   double ext_root_time_ms =
4856     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4857 
4858   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4859 
4860   // During conc marking we have to filter the per-thread SATB buffers
4861   // to make sure we remove any oops into the CSet (which will show up
4862   // as implicitly live).
4863   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4864     if (mark_in_progress()) {
4865       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4866     }
4867   }
4868   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4869   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4870 
4871   // Now scan the complement of the collection set.
4872   if (scan_rs != NULL) {
4873     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4874   }
4875 
4876   _process_strong_tasks->all_tasks_completed();
4877 }
4878 
4879 void
4880 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4881                                        OopClosure* non_root_closure) {
4882   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4883   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4884 }
4885 
4886 // Weak Reference Processing support
4887 
4888 // An always "is_alive" closure that is used to preserve referents.
4889 // If the object is non-null then it's alive.  Used in the preservation
4890 // of referent objects that are pointed to by reference objects
4891 // discovered by the CM ref processor.
4892 class G1AlwaysAliveClosure: public BoolObjectClosure {
4893   G1CollectedHeap* _g1;
4894 public:
4895   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4896   void do_object(oop p) { assert(false, "Do not call."); }
4897   bool do_object_b(oop p) {
4898     if (p != NULL) {
4899       return true;
4900     }
4901     return false;
4902   }
4903 };
4904 
4905 bool G1STWIsAliveClosure::do_object_b(oop p) {
4906   // An object is reachable if it is outside the collection set,
4907   // or is inside and copied.
4908   return !_g1->obj_in_cs(p) || p->is_forwarded();
4909 }
4910 
4911 // Non Copying Keep Alive closure
4912 class G1KeepAliveClosure: public OopClosure {
4913   G1CollectedHeap* _g1;
4914 public:
4915   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4916   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4917   void do_oop(      oop* p) {
4918     oop obj = *p;
4919 
4920     if (_g1->obj_in_cs(obj)) {
4921       assert( obj->is_forwarded(), "invariant" );
4922       *p = obj->forwardee();
4923     }
4924   }
4925 };
4926 
4927 // Copying Keep Alive closure - can be called from both
4928 // serial and parallel code as long as different worker
4929 // threads utilize different G1ParScanThreadState instances
4930 // and different queues.
4931 
4932 class G1CopyingKeepAliveClosure: public OopClosure {
4933   G1CollectedHeap*         _g1h;
4934   OopClosure*              _copy_non_heap_obj_cl;
4935   OopsInHeapRegionClosure* _copy_perm_obj_cl;
4936   G1ParScanThreadState*    _par_scan_state;
4937 
4938 public:
4939   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4940                             OopClosure* non_heap_obj_cl,
4941                             OopsInHeapRegionClosure* perm_obj_cl,
4942                             G1ParScanThreadState* pss):
4943     _g1h(g1h),
4944     _copy_non_heap_obj_cl(non_heap_obj_cl),
4945     _copy_perm_obj_cl(perm_obj_cl),
4946     _par_scan_state(pss)
4947   {}
4948 
4949   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4950   virtual void do_oop(      oop* p) { do_oop_work(p); }
4951 
4952   template <class T> void do_oop_work(T* p) {
4953     oop obj = oopDesc::load_decode_heap_oop(p);
4954 
4955     if (_g1h->obj_in_cs(obj)) {
4956       // If the referent object has been forwarded (either copied
4957       // to a new location or to itself in the event of an
4958       // evacuation failure) then we need to update the reference
4959       // field and, if both reference and referent are in the G1
4960       // heap, update the RSet for the referent.
4961       //
4962       // If the referent has not been forwarded then we have to keep
4963       // it alive by policy. Therefore we have copy the referent.
4964       //
4965       // If the reference field is in the G1 heap then we can push
4966       // on the PSS queue. When the queue is drained (after each
4967       // phase of reference processing) the object and it's followers
4968       // will be copied, the reference field set to point to the
4969       // new location, and the RSet updated. Otherwise we need to
4970       // use the the non-heap or perm closures directly to copy
4971       // the refernt object and update the pointer, while avoiding
4972       // updating the RSet.
4973 
4974       if (_g1h->is_in_g1_reserved(p)) {
4975         _par_scan_state->push_on_queue(p);
4976       } else {
4977         // The reference field is not in the G1 heap.
4978         if (_g1h->perm_gen()->is_in(p)) {
4979           _copy_perm_obj_cl->do_oop(p);
4980         } else {
4981           _copy_non_heap_obj_cl->do_oop(p);
4982         }
4983       }
4984     }
4985   }
4986 };
4987 
4988 // Serial drain queue closure. Called as the 'complete_gc'
4989 // closure for each discovered list in some of the
4990 // reference processing phases.
4991 
4992 class G1STWDrainQueueClosure: public VoidClosure {
4993 protected:
4994   G1CollectedHeap* _g1h;
4995   G1ParScanThreadState* _par_scan_state;
4996 
4997   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4998 
4999 public:
5000   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5001     _g1h(g1h),
5002     _par_scan_state(pss)
5003   { }
5004 
5005   void do_void() {
5006     G1ParScanThreadState* const pss = par_scan_state();
5007     pss->trim_queue();
5008   }
5009 };
5010 
5011 // Parallel Reference Processing closures
5012 
5013 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5014 // processing during G1 evacuation pauses.
5015 
5016 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5017 private:
5018   G1CollectedHeap*   _g1h;
5019   RefToScanQueueSet* _queues;
5020   FlexibleWorkGang*  _workers;
5021   int                _active_workers;
5022 
5023 public:
5024   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5025                         FlexibleWorkGang* workers,
5026                         RefToScanQueueSet *task_queues,
5027                         int n_workers) :
5028     _g1h(g1h),
5029     _queues(task_queues),
5030     _workers(workers),
5031     _active_workers(n_workers)
5032   {
5033     assert(n_workers > 0, "shouldn't call this otherwise");
5034   }
5035 
5036   // Executes the given task using concurrent marking worker threads.
5037   virtual void execute(ProcessTask& task);
5038   virtual void execute(EnqueueTask& task);
5039 };
5040 
5041 // Gang task for possibly parallel reference processing
5042 
5043 class G1STWRefProcTaskProxy: public AbstractGangTask {
5044   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5045   ProcessTask&     _proc_task;
5046   G1CollectedHeap* _g1h;
5047   RefToScanQueueSet *_task_queues;
5048   ParallelTaskTerminator* _terminator;
5049 
5050 public:
5051   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5052                      G1CollectedHeap* g1h,
5053                      RefToScanQueueSet *task_queues,
5054                      ParallelTaskTerminator* terminator) :
5055     AbstractGangTask("Process reference objects in parallel"),
5056     _proc_task(proc_task),
5057     _g1h(g1h),
5058     _task_queues(task_queues),
5059     _terminator(terminator)
5060   {}
5061 
5062   virtual void work(uint worker_id) {
5063     // The reference processing task executed by a single worker.
5064     ResourceMark rm;
5065     HandleMark   hm;
5066 
5067     G1STWIsAliveClosure is_alive(_g1h);
5068 
5069     G1ParScanThreadState pss(_g1h, worker_id);
5070 
5071     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5072     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5073     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5074 
5075     pss.set_evac_closure(&scan_evac_cl);
5076     pss.set_evac_failure_closure(&evac_failure_cl);
5077     pss.set_partial_scan_closure(&partial_scan_cl);
5078 
5079     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5080     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5081 
5082     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5083     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5084 
5085     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5086     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5087 
5088     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5089       // We also need to mark copied objects.
5090       copy_non_heap_cl = &copy_mark_non_heap_cl;
5091       copy_perm_cl = &copy_mark_perm_cl;
5092     }
5093 
5094     // Keep alive closure.
5095     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5096 
5097     // Complete GC closure
5098     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5099 
5100     // Call the reference processing task's work routine.
5101     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5102 
5103     // Note we cannot assert that the refs array is empty here as not all
5104     // of the processing tasks (specifically phase2 - pp2_work) execute
5105     // the complete_gc closure (which ordinarily would drain the queue) so
5106     // the queue may not be empty.
5107   }
5108 };
5109 
5110 // Driver routine for parallel reference processing.
5111 // Creates an instance of the ref processing gang
5112 // task and has the worker threads execute it.
5113 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5114   assert(_workers != NULL, "Need parallel worker threads.");
5115 
5116   ParallelTaskTerminator terminator(_active_workers, _queues);
5117   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5118 
5119   _g1h->set_par_threads(_active_workers);
5120   _workers->run_task(&proc_task_proxy);
5121   _g1h->set_par_threads(0);
5122 }
5123 
5124 // Gang task for parallel reference enqueueing.
5125 
5126 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5127   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5128   EnqueueTask& _enq_task;
5129 
5130 public:
5131   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5132     AbstractGangTask("Enqueue reference objects in parallel"),
5133     _enq_task(enq_task)
5134   { }
5135 
5136   virtual void work(uint worker_id) {
5137     _enq_task.work(worker_id);
5138   }
5139 };
5140 
5141 // Driver routine for parallel reference enqueing.
5142 // Creates an instance of the ref enqueueing gang
5143 // task and has the worker threads execute it.
5144 
5145 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5146   assert(_workers != NULL, "Need parallel worker threads.");
5147 
5148   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5149 
5150   _g1h->set_par_threads(_active_workers);
5151   _workers->run_task(&enq_task_proxy);
5152   _g1h->set_par_threads(0);
5153 }
5154 
5155 // End of weak reference support closures
5156 
5157 // Abstract task used to preserve (i.e. copy) any referent objects
5158 // that are in the collection set and are pointed to by reference
5159 // objects discovered by the CM ref processor.
5160 
5161 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5162 protected:
5163   G1CollectedHeap* _g1h;
5164   RefToScanQueueSet      *_queues;
5165   ParallelTaskTerminator _terminator;
5166   uint _n_workers;
5167 
5168 public:
5169   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5170     AbstractGangTask("ParPreserveCMReferents"),
5171     _g1h(g1h),
5172     _queues(task_queues),
5173     _terminator(workers, _queues),
5174     _n_workers(workers)
5175   { }
5176 
5177   void work(uint worker_id) {
5178     ResourceMark rm;
5179     HandleMark   hm;
5180 
5181     G1ParScanThreadState            pss(_g1h, worker_id);
5182     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5183     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5184     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5185 
5186     pss.set_evac_closure(&scan_evac_cl);
5187     pss.set_evac_failure_closure(&evac_failure_cl);
5188     pss.set_partial_scan_closure(&partial_scan_cl);
5189 
5190     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5191 
5192 
5193     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5194     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5195 
5196     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5197     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5198 
5199     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5200     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5201 
5202     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5203       // We also need to mark copied objects.
5204       copy_non_heap_cl = &copy_mark_non_heap_cl;
5205       copy_perm_cl = &copy_mark_perm_cl;
5206     }
5207 
5208     // Is alive closure
5209     G1AlwaysAliveClosure always_alive(_g1h);
5210 
5211     // Copying keep alive closure. Applied to referent objects that need
5212     // to be copied.
5213     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5214 
5215     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5216 
5217     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5218     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5219 
5220     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5221     // So this must be true - but assert just in case someone decides to
5222     // change the worker ids.
5223     assert(0 <= worker_id && worker_id < limit, "sanity");
5224     assert(!rp->discovery_is_atomic(), "check this code");
5225 
5226     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5227     for (uint idx = worker_id; idx < limit; idx += stride) {
5228       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5229 
5230       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5231       while (iter.has_next()) {
5232         // Since discovery is not atomic for the CM ref processor, we
5233         // can see some null referent objects.
5234         iter.load_ptrs(DEBUG_ONLY(true));
5235         oop ref = iter.obj();
5236 
5237         // This will filter nulls.
5238         if (iter.is_referent_alive()) {
5239           iter.make_referent_alive();
5240         }
5241         iter.move_to_next();
5242       }
5243     }
5244 
5245     // Drain the queue - which may cause stealing
5246     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5247     drain_queue.do_void();
5248     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5249     assert(pss.refs()->is_empty(), "should be");
5250   }
5251 };
5252 
5253 // Weak Reference processing during an evacuation pause (part 1).
5254 void G1CollectedHeap::process_discovered_references() {
5255   double ref_proc_start = os::elapsedTime();
5256 
5257   ReferenceProcessor* rp = _ref_processor_stw;
5258   assert(rp->discovery_enabled(), "should have been enabled");
5259 
5260   // Any reference objects, in the collection set, that were 'discovered'
5261   // by the CM ref processor should have already been copied (either by
5262   // applying the external root copy closure to the discovered lists, or
5263   // by following an RSet entry).
5264   //
5265   // But some of the referents, that are in the collection set, that these
5266   // reference objects point to may not have been copied: the STW ref
5267   // processor would have seen that the reference object had already
5268   // been 'discovered' and would have skipped discovering the reference,
5269   // but would not have treated the reference object as a regular oop.
5270   // As a reult the copy closure would not have been applied to the
5271   // referent object.
5272   //
5273   // We need to explicitly copy these referent objects - the references
5274   // will be processed at the end of remarking.
5275   //
5276   // We also need to do this copying before we process the reference
5277   // objects discovered by the STW ref processor in case one of these
5278   // referents points to another object which is also referenced by an
5279   // object discovered by the STW ref processor.
5280 
5281   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5282                         workers()->active_workers() : 1);
5283 
5284   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5285            active_workers == workers()->active_workers(),
5286            "Need to reset active_workers");
5287 
5288   set_par_threads(active_workers);
5289   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5290 
5291   if (G1CollectedHeap::use_parallel_gc_threads()) {
5292     workers()->run_task(&keep_cm_referents);
5293   } else {
5294     keep_cm_referents.work(0);
5295   }
5296 
5297   set_par_threads(0);
5298 
5299   // Closure to test whether a referent is alive.
5300   G1STWIsAliveClosure is_alive(this);
5301 
5302   // Even when parallel reference processing is enabled, the processing
5303   // of JNI refs is serial and performed serially by the current thread
5304   // rather than by a worker. The following PSS will be used for processing
5305   // JNI refs.
5306 
5307   // Use only a single queue for this PSS.
5308   G1ParScanThreadState pss(this, 0);
5309 
5310   // We do not embed a reference processor in the copying/scanning
5311   // closures while we're actually processing the discovered
5312   // reference objects.
5313   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5314   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5315   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5316 
5317   pss.set_evac_closure(&scan_evac_cl);
5318   pss.set_evac_failure_closure(&evac_failure_cl);
5319   pss.set_partial_scan_closure(&partial_scan_cl);
5320 
5321   assert(pss.refs()->is_empty(), "pre-condition");
5322 
5323   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5324   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5325 
5326   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5327   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5328 
5329   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5330   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5331 
5332   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5333     // We also need to mark copied objects.
5334     copy_non_heap_cl = &copy_mark_non_heap_cl;
5335     copy_perm_cl = &copy_mark_perm_cl;
5336   }
5337 
5338   // Keep alive closure.
5339   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5340 
5341   // Serial Complete GC closure
5342   G1STWDrainQueueClosure drain_queue(this, &pss);
5343 
5344   // Setup the soft refs policy...
5345   rp->setup_policy(false);
5346 
5347   if (!rp->processing_is_mt()) {
5348     // Serial reference processing...
5349     rp->process_discovered_references(&is_alive,
5350                                       &keep_alive,
5351                                       &drain_queue,
5352                                       NULL);
5353   } else {
5354     // Parallel reference processing
5355     assert(rp->num_q() == active_workers, "sanity");
5356     assert(active_workers <= rp->max_num_q(), "sanity");
5357 
5358     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5359     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5360   }
5361 
5362   // We have completed copying any necessary live referent objects
5363   // (that were not copied during the actual pause) so we can
5364   // retire any active alloc buffers
5365   pss.retire_alloc_buffers();
5366   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5367 
5368   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5369   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
5370 }
5371 
5372 // Weak Reference processing during an evacuation pause (part 2).
5373 void G1CollectedHeap::enqueue_discovered_references() {
5374   double ref_enq_start = os::elapsedTime();
5375 
5376   ReferenceProcessor* rp = _ref_processor_stw;
5377   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5378 
5379   // Now enqueue any remaining on the discovered lists on to
5380   // the pending list.
5381   if (!rp->processing_is_mt()) {
5382     // Serial reference processing...
5383     rp->enqueue_discovered_references();
5384   } else {
5385     // Parallel reference enqueuing
5386 
5387     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5388     assert(active_workers == workers()->active_workers(),
5389            "Need to reset active_workers");
5390     assert(rp->num_q() == active_workers, "sanity");
5391     assert(active_workers <= rp->max_num_q(), "sanity");
5392 
5393     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5394     rp->enqueue_discovered_references(&par_task_executor);
5395   }
5396 
5397   rp->verify_no_references_recorded();
5398   assert(!rp->discovery_enabled(), "should have been disabled");
5399 
5400   // FIXME
5401   // CM's reference processing also cleans up the string and symbol tables.
5402   // Should we do that here also? We could, but it is a serial operation
5403   // and could signicantly increase the pause time.
5404 
5405   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5406   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
5407 }
5408 
5409 void G1CollectedHeap::evacuate_collection_set() {
5410   _expand_heap_after_alloc_failure = true;
5411   set_evacuation_failed(false);
5412 
5413   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5414   concurrent_g1_refine()->set_use_cache(false);
5415   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5416 
5417   uint n_workers;
5418   if (G1CollectedHeap::use_parallel_gc_threads()) {
5419     n_workers =
5420       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5421                                      workers()->active_workers(),
5422                                      Threads::number_of_non_daemon_threads());
5423     assert(UseDynamicNumberOfGCThreads ||
5424            n_workers == workers()->total_workers(),
5425            "If not dynamic should be using all the  workers");
5426     workers()->set_active_workers(n_workers);
5427     set_par_threads(n_workers);
5428   } else {
5429     assert(n_par_threads() == 0,
5430            "Should be the original non-parallel value");
5431     n_workers = 1;
5432   }
5433 
5434   G1ParTask g1_par_task(this, _task_queues);
5435 
5436   init_for_evac_failure(NULL);
5437 
5438   rem_set()->prepare_for_younger_refs_iterate(true);
5439 
5440   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5441   double start_par_time_sec = os::elapsedTime();
5442   double end_par_time_sec;
5443 
5444   {
5445     StrongRootsScope srs(this);
5446 
5447     if (G1CollectedHeap::use_parallel_gc_threads()) {
5448       // The individual threads will set their evac-failure closures.
5449       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5450       // These tasks use ShareHeap::_process_strong_tasks
5451       assert(UseDynamicNumberOfGCThreads ||
5452              workers()->active_workers() == workers()->total_workers(),
5453              "If not dynamic should be using all the  workers");
5454       workers()->run_task(&g1_par_task);
5455     } else {
5456       g1_par_task.set_for_termination(n_workers);
5457       g1_par_task.work(0);
5458     }
5459     end_par_time_sec = os::elapsedTime();
5460 
5461     // Closing the inner scope will execute the destructor
5462     // for the StrongRootsScope object. We record the current
5463     // elapsed time before closing the scope so that time
5464     // taken for the SRS destructor is NOT included in the
5465     // reported parallel time.
5466   }
5467 
5468   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5469   g1_policy()->record_par_time(par_time_ms);
5470 
5471   double code_root_fixup_time_ms =
5472         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5473   g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
5474 
5475   set_par_threads(0);
5476 
5477   // Process any discovered reference objects - we have
5478   // to do this _before_ we retire the GC alloc regions
5479   // as we may have to copy some 'reachable' referent
5480   // objects (and their reachable sub-graphs) that were
5481   // not copied during the pause.
5482   process_discovered_references();
5483 
5484   // Weak root processing.
5485   // Note: when JSR 292 is enabled and code blobs can contain
5486   // non-perm oops then we will need to process the code blobs
5487   // here too.
5488   {
5489     G1STWIsAliveClosure is_alive(this);
5490     G1KeepAliveClosure keep_alive(this);
5491     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5492   }
5493 
5494   release_gc_alloc_regions();
5495   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5496 
5497   concurrent_g1_refine()->clear_hot_cache();
5498   concurrent_g1_refine()->set_use_cache(true);
5499 
5500   finalize_for_evac_failure();
5501 
5502   if (evacuation_failed()) {
5503     remove_self_forwarding_pointers();
5504     if (G1Log::finer()) {
5505       gclog_or_tty->print(" (to-space overflow)");
5506     } else if (G1Log::fine()) {
5507       gclog_or_tty->print("--");
5508     }
5509   }
5510 
5511   // Enqueue any remaining references remaining on the STW
5512   // reference processor's discovered lists. We need to do
5513   // this after the card table is cleaned (and verified) as
5514   // the act of enqueuing entries on to the pending list
5515   // will log these updates (and dirty their associated
5516   // cards). We need these updates logged to update any
5517   // RSets.
5518   enqueue_discovered_references();
5519 
5520   if (G1DeferredRSUpdate) {
5521     RedirtyLoggedCardTableEntryFastClosure redirty;
5522     dirty_card_queue_set().set_closure(&redirty);
5523     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5524 
5525     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5526     dcq.merge_bufferlists(&dirty_card_queue_set());
5527     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5528   }
5529   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5530 }
5531 
5532 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5533                                      size_t* pre_used,
5534                                      FreeRegionList* free_list,
5535                                      OldRegionSet* old_proxy_set,
5536                                      HumongousRegionSet* humongous_proxy_set,
5537                                      HRRSCleanupTask* hrrs_cleanup_task,
5538                                      bool par) {
5539   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5540     if (hr->isHumongous()) {
5541       assert(hr->startsHumongous(), "we should only see starts humongous");
5542       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5543     } else {
5544       _old_set.remove_with_proxy(hr, old_proxy_set);
5545       free_region(hr, pre_used, free_list, par);
5546     }
5547   } else {
5548     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5549   }
5550 }
5551 
5552 void G1CollectedHeap::free_region(HeapRegion* hr,
5553                                   size_t* pre_used,
5554                                   FreeRegionList* free_list,
5555                                   bool par) {
5556   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5557   assert(!hr->is_empty(), "the region should not be empty");
5558   assert(free_list != NULL, "pre-condition");
5559 
5560   *pre_used += hr->used();
5561   hr->hr_clear(par, true /* clear_space */);
5562   free_list->add_as_head(hr);
5563 }
5564 
5565 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5566                                      size_t* pre_used,
5567                                      FreeRegionList* free_list,
5568                                      HumongousRegionSet* humongous_proxy_set,
5569                                      bool par) {
5570   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5571   assert(free_list != NULL, "pre-condition");
5572   assert(humongous_proxy_set != NULL, "pre-condition");
5573 
5574   size_t hr_used = hr->used();
5575   size_t hr_capacity = hr->capacity();
5576   size_t hr_pre_used = 0;
5577   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5578   hr->set_notHumongous();
5579   free_region(hr, &hr_pre_used, free_list, par);
5580 
5581   uint i = hr->hrs_index() + 1;
5582   uint num = 1;
5583   while (i < n_regions()) {
5584     HeapRegion* curr_hr = region_at(i);
5585     if (!curr_hr->continuesHumongous()) {
5586       break;
5587     }
5588     curr_hr->set_notHumongous();
5589     free_region(curr_hr, &hr_pre_used, free_list, par);
5590     num += 1;
5591     i += 1;
5592   }
5593   assert(hr_pre_used == hr_used,
5594          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5595                  "should be the same", hr_pre_used, hr_used));
5596   *pre_used += hr_pre_used;
5597 }
5598 
5599 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5600                                        FreeRegionList* free_list,
5601                                        OldRegionSet* old_proxy_set,
5602                                        HumongousRegionSet* humongous_proxy_set,
5603                                        bool par) {
5604   if (pre_used > 0) {
5605     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5606     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5607     assert(_summary_bytes_used >= pre_used,
5608            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5609                    "should be >= pre_used: "SIZE_FORMAT,
5610                    _summary_bytes_used, pre_used));
5611     _summary_bytes_used -= pre_used;
5612   }
5613   if (free_list != NULL && !free_list->is_empty()) {
5614     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5615     _free_list.add_as_head(free_list);
5616   }
5617   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5618     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5619     _old_set.update_from_proxy(old_proxy_set);
5620   }
5621   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5622     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5623     _humongous_set.update_from_proxy(humongous_proxy_set);
5624   }
5625 }
5626 
5627 class G1ParCleanupCTTask : public AbstractGangTask {
5628   CardTableModRefBS* _ct_bs;
5629   G1CollectedHeap* _g1h;
5630   HeapRegion* volatile _su_head;
5631 public:
5632   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5633                      G1CollectedHeap* g1h) :
5634     AbstractGangTask("G1 Par Cleanup CT Task"),
5635     _ct_bs(ct_bs), _g1h(g1h) { }
5636 
5637   void work(uint worker_id) {
5638     HeapRegion* r;
5639     while (r = _g1h->pop_dirty_cards_region()) {
5640       clear_cards(r);
5641     }
5642   }
5643 
5644   void clear_cards(HeapRegion* r) {
5645     // Cards of the survivors should have already been dirtied.
5646     if (!r->is_survivor()) {
5647       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5648     }
5649   }
5650 };
5651 
5652 #ifndef PRODUCT
5653 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5654   G1CollectedHeap* _g1h;
5655   CardTableModRefBS* _ct_bs;
5656 public:
5657   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5658     : _g1h(g1h), _ct_bs(ct_bs) { }
5659   virtual bool doHeapRegion(HeapRegion* r) {
5660     if (r->is_survivor()) {
5661       _g1h->verify_dirty_region(r);
5662     } else {
5663       _g1h->verify_not_dirty_region(r);
5664     }
5665     return false;
5666   }
5667 };
5668 
5669 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5670   // All of the region should be clean.
5671   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5672   MemRegion mr(hr->bottom(), hr->end());
5673   ct_bs->verify_not_dirty_region(mr);
5674 }
5675 
5676 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5677   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5678   // dirty allocated blocks as they allocate them. The thread that
5679   // retires each region and replaces it with a new one will do a
5680   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5681   // not dirty that area (one less thing to have to do while holding
5682   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5683   // is dirty.
5684   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5685   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5686   ct_bs->verify_dirty_region(mr);
5687 }
5688 
5689 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5690   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5691   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5692     verify_dirty_region(hr);
5693   }
5694 }
5695 
5696 void G1CollectedHeap::verify_dirty_young_regions() {
5697   verify_dirty_young_list(_young_list->first_region());
5698   verify_dirty_young_list(_young_list->first_survivor_region());
5699 }
5700 #endif
5701 
5702 void G1CollectedHeap::cleanUpCardTable() {
5703   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5704   double start = os::elapsedTime();
5705 
5706   {
5707     // Iterate over the dirty cards region list.
5708     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5709 
5710     if (G1CollectedHeap::use_parallel_gc_threads()) {
5711       set_par_threads();
5712       workers()->run_task(&cleanup_task);
5713       set_par_threads(0);
5714     } else {
5715       while (_dirty_cards_region_list) {
5716         HeapRegion* r = _dirty_cards_region_list;
5717         cleanup_task.clear_cards(r);
5718         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5719         if (_dirty_cards_region_list == r) {
5720           // The last region.
5721           _dirty_cards_region_list = NULL;
5722         }
5723         r->set_next_dirty_cards_region(NULL);
5724       }
5725     }
5726 #ifndef PRODUCT
5727     if (G1VerifyCTCleanup || VerifyAfterGC) {
5728       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5729       heap_region_iterate(&cleanup_verifier);
5730     }
5731 #endif
5732   }
5733 
5734   double elapsed = os::elapsedTime() - start;
5735   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5736 }
5737 
5738 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5739   size_t pre_used = 0;
5740   FreeRegionList local_free_list("Local List for CSet Freeing");
5741 
5742   double young_time_ms     = 0.0;
5743   double non_young_time_ms = 0.0;
5744 
5745   // Since the collection set is a superset of the the young list,
5746   // all we need to do to clear the young list is clear its
5747   // head and length, and unlink any young regions in the code below
5748   _young_list->clear();
5749 
5750   G1CollectorPolicy* policy = g1_policy();
5751 
5752   double start_sec = os::elapsedTime();
5753   bool non_young = true;
5754 
5755   HeapRegion* cur = cs_head;
5756   int age_bound = -1;
5757   size_t rs_lengths = 0;
5758 
5759   while (cur != NULL) {
5760     assert(!is_on_master_free_list(cur), "sanity");
5761     if (non_young) {
5762       if (cur->is_young()) {
5763         double end_sec = os::elapsedTime();
5764         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5765         non_young_time_ms += elapsed_ms;
5766 
5767         start_sec = os::elapsedTime();
5768         non_young = false;
5769       }
5770     } else {
5771       if (!cur->is_young()) {
5772         double end_sec = os::elapsedTime();
5773         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5774         young_time_ms += elapsed_ms;
5775 
5776         start_sec = os::elapsedTime();
5777         non_young = true;
5778       }
5779     }
5780 
5781     rs_lengths += cur->rem_set()->occupied();
5782 
5783     HeapRegion* next = cur->next_in_collection_set();
5784     assert(cur->in_collection_set(), "bad CS");
5785     cur->set_next_in_collection_set(NULL);
5786     cur->set_in_collection_set(false);
5787 
5788     if (cur->is_young()) {
5789       int index = cur->young_index_in_cset();
5790       assert(index != -1, "invariant");
5791       assert((uint) index < policy->young_cset_region_length(), "invariant");
5792       size_t words_survived = _surviving_young_words[index];
5793       cur->record_surv_words_in_group(words_survived);
5794 
5795       // At this point the we have 'popped' cur from the collection set
5796       // (linked via next_in_collection_set()) but it is still in the
5797       // young list (linked via next_young_region()). Clear the
5798       // _next_young_region field.
5799       cur->set_next_young_region(NULL);
5800     } else {
5801       int index = cur->young_index_in_cset();
5802       assert(index == -1, "invariant");
5803     }
5804 
5805     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5806             (!cur->is_young() && cur->young_index_in_cset() == -1),
5807             "invariant" );
5808 
5809     if (!cur->evacuation_failed()) {
5810       MemRegion used_mr = cur->used_region();
5811 
5812       // And the region is empty.
5813       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5814       free_region(cur, &pre_used, &local_free_list, false /* par */);
5815     } else {
5816       cur->uninstall_surv_rate_group();
5817       if (cur->is_young()) {
5818         cur->set_young_index_in_cset(-1);
5819       }
5820       cur->set_not_young();
5821       cur->set_evacuation_failed(false);
5822       // The region is now considered to be old.
5823       _old_set.add(cur);
5824     }
5825     cur = next;
5826   }
5827 
5828   policy->record_max_rs_lengths(rs_lengths);
5829   policy->cset_regions_freed();
5830 
5831   double end_sec = os::elapsedTime();
5832   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5833 
5834   if (non_young) {
5835     non_young_time_ms += elapsed_ms;
5836   } else {
5837     young_time_ms += elapsed_ms;
5838   }
5839 
5840   update_sets_after_freeing_regions(pre_used, &local_free_list,
5841                                     NULL /* old_proxy_set */,
5842                                     NULL /* humongous_proxy_set */,
5843                                     false /* par */);
5844   policy->record_young_free_cset_time_ms(young_time_ms);
5845   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5846 }
5847 
5848 // This routine is similar to the above but does not record
5849 // any policy statistics or update free lists; we are abandoning
5850 // the current incremental collection set in preparation of a
5851 // full collection. After the full GC we will start to build up
5852 // the incremental collection set again.
5853 // This is only called when we're doing a full collection
5854 // and is immediately followed by the tearing down of the young list.
5855 
5856 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5857   HeapRegion* cur = cs_head;
5858 
5859   while (cur != NULL) {
5860     HeapRegion* next = cur->next_in_collection_set();
5861     assert(cur->in_collection_set(), "bad CS");
5862     cur->set_next_in_collection_set(NULL);
5863     cur->set_in_collection_set(false);
5864     cur->set_young_index_in_cset(-1);
5865     cur = next;
5866   }
5867 }
5868 
5869 void G1CollectedHeap::set_free_regions_coming() {
5870   if (G1ConcRegionFreeingVerbose) {
5871     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5872                            "setting free regions coming");
5873   }
5874 
5875   assert(!free_regions_coming(), "pre-condition");
5876   _free_regions_coming = true;
5877 }
5878 
5879 void G1CollectedHeap::reset_free_regions_coming() {
5880   assert(free_regions_coming(), "pre-condition");
5881 
5882   {
5883     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5884     _free_regions_coming = false;
5885     SecondaryFreeList_lock->notify_all();
5886   }
5887 
5888   if (G1ConcRegionFreeingVerbose) {
5889     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5890                            "reset free regions coming");
5891   }
5892 }
5893 
5894 void G1CollectedHeap::wait_while_free_regions_coming() {
5895   // Most of the time we won't have to wait, so let's do a quick test
5896   // first before we take the lock.
5897   if (!free_regions_coming()) {
5898     return;
5899   }
5900 
5901   if (G1ConcRegionFreeingVerbose) {
5902     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5903                            "waiting for free regions");
5904   }
5905 
5906   {
5907     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5908     while (free_regions_coming()) {
5909       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5910     }
5911   }
5912 
5913   if (G1ConcRegionFreeingVerbose) {
5914     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5915                            "done waiting for free regions");
5916   }
5917 }
5918 
5919 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5920   assert(heap_lock_held_for_gc(),
5921               "the heap lock should already be held by or for this thread");
5922   _young_list->push_region(hr);
5923 }
5924 
5925 class NoYoungRegionsClosure: public HeapRegionClosure {
5926 private:
5927   bool _success;
5928 public:
5929   NoYoungRegionsClosure() : _success(true) { }
5930   bool doHeapRegion(HeapRegion* r) {
5931     if (r->is_young()) {
5932       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5933                              r->bottom(), r->end());
5934       _success = false;
5935     }
5936     return false;
5937   }
5938   bool success() { return _success; }
5939 };
5940 
5941 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5942   bool ret = _young_list->check_list_empty(check_sample);
5943 
5944   if (check_heap) {
5945     NoYoungRegionsClosure closure;
5946     heap_region_iterate(&closure);
5947     ret = ret && closure.success();
5948   }
5949 
5950   return ret;
5951 }
5952 
5953 class TearDownRegionSetsClosure : public HeapRegionClosure {
5954 private:
5955   OldRegionSet *_old_set;
5956 
5957 public:
5958   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
5959 
5960   bool doHeapRegion(HeapRegion* r) {
5961     if (r->is_empty()) {
5962       // We ignore empty regions, we'll empty the free list afterwards
5963     } else if (r->is_young()) {
5964       // We ignore young regions, we'll empty the young list afterwards
5965     } else if (r->isHumongous()) {
5966       // We ignore humongous regions, we're not tearing down the
5967       // humongous region set
5968     } else {
5969       // The rest should be old
5970       _old_set->remove(r);
5971     }
5972     return false;
5973   }
5974 
5975   ~TearDownRegionSetsClosure() {
5976     assert(_old_set->is_empty(), "post-condition");
5977   }
5978 };
5979 
5980 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5981   assert_at_safepoint(true /* should_be_vm_thread */);
5982 
5983   if (!free_list_only) {
5984     TearDownRegionSetsClosure cl(&_old_set);
5985     heap_region_iterate(&cl);
5986 
5987     // Need to do this after the heap iteration to be able to
5988     // recognize the young regions and ignore them during the iteration.
5989     _young_list->empty_list();
5990   }
5991   _free_list.remove_all();
5992 }
5993 
5994 class RebuildRegionSetsClosure : public HeapRegionClosure {
5995 private:
5996   bool            _free_list_only;
5997   OldRegionSet*   _old_set;
5998   FreeRegionList* _free_list;
5999   size_t          _total_used;
6000 
6001 public:
6002   RebuildRegionSetsClosure(bool free_list_only,
6003                            OldRegionSet* old_set, FreeRegionList* free_list) :
6004     _free_list_only(free_list_only),
6005     _old_set(old_set), _free_list(free_list), _total_used(0) {
6006     assert(_free_list->is_empty(), "pre-condition");
6007     if (!free_list_only) {
6008       assert(_old_set->is_empty(), "pre-condition");
6009     }
6010   }
6011 
6012   bool doHeapRegion(HeapRegion* r) {
6013     if (r->continuesHumongous()) {
6014       return false;
6015     }
6016 
6017     if (r->is_empty()) {
6018       // Add free regions to the free list
6019       _free_list->add_as_tail(r);
6020     } else if (!_free_list_only) {
6021       assert(!r->is_young(), "we should not come across young regions");
6022 
6023       if (r->isHumongous()) {
6024         // We ignore humongous regions, we left the humongous set unchanged
6025       } else {
6026         // The rest should be old, add them to the old set
6027         _old_set->add(r);
6028       }
6029       _total_used += r->used();
6030     }
6031 
6032     return false;
6033   }
6034 
6035   size_t total_used() {
6036     return _total_used;
6037   }
6038 };
6039 
6040 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6041   assert_at_safepoint(true /* should_be_vm_thread */);
6042 
6043   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6044   heap_region_iterate(&cl);
6045 
6046   if (!free_list_only) {
6047     _summary_bytes_used = cl.total_used();
6048   }
6049   assert(_summary_bytes_used == recalculate_used(),
6050          err_msg("inconsistent _summary_bytes_used, "
6051                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6052                  _summary_bytes_used, recalculate_used()));
6053 }
6054 
6055 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6056   _refine_cte_cl->set_concurrent(concurrent);
6057 }
6058 
6059 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6060   HeapRegion* hr = heap_region_containing(p);
6061   if (hr == NULL) {
6062     return is_in_permanent(p);
6063   } else {
6064     return hr->is_in(p);
6065   }
6066 }
6067 
6068 // Methods for the mutator alloc region
6069 
6070 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6071                                                       bool force) {
6072   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6073   assert(!force || g1_policy()->can_expand_young_list(),
6074          "if force is true we should be able to expand the young list");
6075   bool young_list_full = g1_policy()->is_young_list_full();
6076   if (force || !young_list_full) {
6077     HeapRegion* new_alloc_region = new_region(word_size,
6078                                               false /* do_expand */);
6079     if (new_alloc_region != NULL) {
6080       set_region_short_lived_locked(new_alloc_region);
6081       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6082       return new_alloc_region;
6083     }
6084   }
6085   return NULL;
6086 }
6087 
6088 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6089                                                   size_t allocated_bytes) {
6090   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6091   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6092 
6093   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6094   _summary_bytes_used += allocated_bytes;
6095   _hr_printer.retire(alloc_region);
6096   // We update the eden sizes here, when the region is retired,
6097   // instead of when it's allocated, since this is the point that its
6098   // used space has been recored in _summary_bytes_used.
6099   g1mm()->update_eden_size();
6100 }
6101 
6102 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6103                                                     bool force) {
6104   return _g1h->new_mutator_alloc_region(word_size, force);
6105 }
6106 
6107 void G1CollectedHeap::set_par_threads() {
6108   // Don't change the number of workers.  Use the value previously set
6109   // in the workgroup.
6110   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6111   uint n_workers = workers()->active_workers();
6112   assert(UseDynamicNumberOfGCThreads ||
6113            n_workers == workers()->total_workers(),
6114       "Otherwise should be using the total number of workers");
6115   if (n_workers == 0) {
6116     assert(false, "Should have been set in prior evacuation pause.");
6117     n_workers = ParallelGCThreads;
6118     workers()->set_active_workers(n_workers);
6119   }
6120   set_par_threads(n_workers);
6121 }
6122 
6123 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6124                                        size_t allocated_bytes) {
6125   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6126 }
6127 
6128 // Methods for the GC alloc regions
6129 
6130 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6131                                                  uint count,
6132                                                  GCAllocPurpose ap) {
6133   assert(FreeList_lock->owned_by_self(), "pre-condition");
6134 
6135   if (count < g1_policy()->max_regions(ap)) {
6136     HeapRegion* new_alloc_region = new_region(word_size,
6137                                               true /* do_expand */);
6138     if (new_alloc_region != NULL) {
6139       // We really only need to do this for old regions given that we
6140       // should never scan survivors. But it doesn't hurt to do it
6141       // for survivors too.
6142       new_alloc_region->set_saved_mark();
6143       if (ap == GCAllocForSurvived) {
6144         new_alloc_region->set_survivor();
6145         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6146       } else {
6147         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6148       }
6149       bool during_im = g1_policy()->during_initial_mark_pause();
6150       new_alloc_region->note_start_of_copying(during_im);
6151       return new_alloc_region;
6152     } else {
6153       g1_policy()->note_alloc_region_limit_reached(ap);
6154     }
6155   }
6156   return NULL;
6157 }
6158 
6159 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6160                                              size_t allocated_bytes,
6161                                              GCAllocPurpose ap) {
6162   bool during_im = g1_policy()->during_initial_mark_pause();
6163   alloc_region->note_end_of_copying(during_im);
6164   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6165   if (ap == GCAllocForSurvived) {
6166     young_list()->add_survivor_region(alloc_region);
6167   } else {
6168     _old_set.add(alloc_region);
6169   }
6170   _hr_printer.retire(alloc_region);
6171 }
6172 
6173 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6174                                                        bool force) {
6175   assert(!force, "not supported for GC alloc regions");
6176   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6177 }
6178 
6179 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6180                                           size_t allocated_bytes) {
6181   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6182                                GCAllocForSurvived);
6183 }
6184 
6185 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6186                                                   bool force) {
6187   assert(!force, "not supported for GC alloc regions");
6188   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6189 }
6190 
6191 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6192                                      size_t allocated_bytes) {
6193   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6194                                GCAllocForTenured);
6195 }
6196 // Heap region set verification
6197 
6198 class VerifyRegionListsClosure : public HeapRegionClosure {
6199 private:
6200   FreeRegionList*     _free_list;
6201   OldRegionSet*       _old_set;
6202   HumongousRegionSet* _humongous_set;
6203   uint                _region_count;
6204 
6205 public:
6206   VerifyRegionListsClosure(OldRegionSet* old_set,
6207                            HumongousRegionSet* humongous_set,
6208                            FreeRegionList* free_list) :
6209     _old_set(old_set), _humongous_set(humongous_set),
6210     _free_list(free_list), _region_count(0) { }
6211 
6212   uint region_count() { return _region_count; }
6213 
6214   bool doHeapRegion(HeapRegion* hr) {
6215     _region_count += 1;
6216 
6217     if (hr->continuesHumongous()) {
6218       return false;
6219     }
6220 
6221     if (hr->is_young()) {
6222       // TODO
6223     } else if (hr->startsHumongous()) {
6224       _humongous_set->verify_next_region(hr);
6225     } else if (hr->is_empty()) {
6226       _free_list->verify_next_region(hr);
6227     } else {
6228       _old_set->verify_next_region(hr);
6229     }
6230     return false;
6231   }
6232 };
6233 
6234 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6235                                              HeapWord* bottom) {
6236   HeapWord* end = bottom + HeapRegion::GrainWords;
6237   MemRegion mr(bottom, end);
6238   assert(_g1_reserved.contains(mr), "invariant");
6239   // This might return NULL if the allocation fails
6240   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6241 }
6242 
6243 void G1CollectedHeap::verify_region_sets() {
6244   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6245 
6246   // First, check the explicit lists.
6247   _free_list.verify();
6248   {
6249     // Given that a concurrent operation might be adding regions to
6250     // the secondary free list we have to take the lock before
6251     // verifying it.
6252     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6253     _secondary_free_list.verify();
6254   }
6255   _old_set.verify();
6256   _humongous_set.verify();
6257 
6258   // If a concurrent region freeing operation is in progress it will
6259   // be difficult to correctly attributed any free regions we come
6260   // across to the correct free list given that they might belong to
6261   // one of several (free_list, secondary_free_list, any local lists,
6262   // etc.). So, if that's the case we will skip the rest of the
6263   // verification operation. Alternatively, waiting for the concurrent
6264   // operation to complete will have a non-trivial effect on the GC's
6265   // operation (no concurrent operation will last longer than the
6266   // interval between two calls to verification) and it might hide
6267   // any issues that we would like to catch during testing.
6268   if (free_regions_coming()) {
6269     return;
6270   }
6271 
6272   // Make sure we append the secondary_free_list on the free_list so
6273   // that all free regions we will come across can be safely
6274   // attributed to the free_list.
6275   append_secondary_free_list_if_not_empty_with_lock();
6276 
6277   // Finally, make sure that the region accounting in the lists is
6278   // consistent with what we see in the heap.
6279   _old_set.verify_start();
6280   _humongous_set.verify_start();
6281   _free_list.verify_start();
6282 
6283   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6284   heap_region_iterate(&cl);
6285 
6286   _old_set.verify_end();
6287   _humongous_set.verify_end();
6288   _free_list.verify_end();
6289 }