1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1Log.hpp"
  33 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  34 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  35 #include "runtime/arguments.hpp"
  36 #include "runtime/java.hpp"
  37 #include "runtime/mutexLocker.hpp"
  38 #include "utilities/debug.hpp"
  39 
  40 // Different defaults for different number of GC threads
  41 // They were chosen by running GCOld and SPECjbb on debris with different
  42 //   numbers of GC threads and choosing them based on the results
  43 
  44 // all the same
  45 static double rs_length_diff_defaults[] = {
  46   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  47 };
  48 
  49 static double cost_per_card_ms_defaults[] = {
  50   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  51 };
  52 
  53 // all the same
  54 static double young_cards_per_entry_ratio_defaults[] = {
  55   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  56 };
  57 
  58 static double cost_per_entry_ms_defaults[] = {
  59   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  60 };
  61 
  62 static double cost_per_byte_ms_defaults[] = {
  63   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  64 };
  65 
  66 // these should be pretty consistent
  67 static double constant_other_time_ms_defaults[] = {
  68   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  69 };
  70 
  71 
  72 static double young_other_cost_per_region_ms_defaults[] = {
  73   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  74 };
  75 
  76 static double non_young_other_cost_per_region_ms_defaults[] = {
  77   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  78 };
  79 
  80 // Help class for avoiding interleaved logging
  81 class LineBuffer: public StackObj {
  82 
  83 private:
  84   static const int BUFFER_LEN = 1024;
  85   static const int INDENT_CHARS = 3;
  86   char _buffer[BUFFER_LEN];
  87   int _indent_level;
  88   int _cur;
  89 
  90   void vappend(const char* format, va_list ap) {
  91     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
  92     if (res != -1) {
  93       _cur += res;
  94     } else {
  95       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
  96       _buffer[BUFFER_LEN -1] = 0;
  97       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
  98     }
  99   }
 100 
 101 public:
 102   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
 103     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
 104       _buffer[_cur] = ' ';
 105     }
 106   }
 107 
 108 #ifndef PRODUCT
 109   ~LineBuffer() {
 110     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
 111   }
 112 #endif
 113 
 114   void append(const char* format, ...) {
 115     va_list ap;
 116     va_start(ap, format);
 117     vappend(format, ap);
 118     va_end(ap);
 119   }
 120 
 121   void append_and_print_cr(const char* format, ...) {
 122     va_list ap;
 123     va_start(ap, format);
 124     vappend(format, ap);
 125     va_end(ap);
 126     gclog_or_tty->print_cr("%s", _buffer);
 127     _cur = _indent_level * INDENT_CHARS;
 128   }
 129 };
 130 
 131 G1CollectorPolicy::G1CollectorPolicy() :
 132   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
 133                         ? ParallelGCThreads : 1),
 134 
 135   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 136   _all_pause_times_ms(new NumberSeq()),
 137   _stop_world_start(0.0),
 138   _all_stop_world_times_ms(new NumberSeq()),
 139   _all_yield_times_ms(new NumberSeq()),
 140 
 141   _summary(new Summary()),
 142 
 143   _cur_clear_ct_time_ms(0.0),
 144   _root_region_scan_wait_time_ms(0.0),
 145 
 146   _cur_ref_proc_time_ms(0.0),
 147   _cur_ref_enq_time_ms(0.0),
 148 
 149 #ifndef PRODUCT
 150   _min_clear_cc_time_ms(-1.0),
 151   _max_clear_cc_time_ms(-1.0),
 152   _cur_clear_cc_time_ms(0.0),
 153   _cum_clear_cc_time_ms(0.0),
 154   _num_cc_clears(0L),
 155 #endif
 156 
 157   _aux_num(10),
 158   _all_aux_times_ms(new NumberSeq[_aux_num]),
 159   _cur_aux_start_times_ms(new double[_aux_num]),
 160   _cur_aux_times_ms(new double[_aux_num]),
 161   _cur_aux_times_set(new bool[_aux_num]),
 162 
 163   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 164   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 165 
 166   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 167   _prev_collection_pause_end_ms(0.0),
 168   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 169   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 170   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 171   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 172   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 173   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 174   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 175   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 176   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 177   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 178   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 179   _non_young_other_cost_per_region_ms_seq(
 180                                          new TruncatedSeq(TruncatedSeqLength)),
 181 
 182   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 183   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 184 
 185   _pause_time_target_ms((double) MaxGCPauseMillis),
 186 
 187   _gcs_are_young(true),
 188   _young_pause_num(0),
 189   _mixed_pause_num(0),
 190 
 191   _during_marking(false),
 192   _in_marking_window(false),
 193   _in_marking_window_im(false),
 194 
 195   _recent_prev_end_times_for_all_gcs_sec(
 196                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 197 
 198   _recent_avg_pause_time_ratio(0.0),
 199 
 200   _all_full_gc_times_ms(new NumberSeq()),
 201 
 202   _initiate_conc_mark_if_possible(false),
 203   _during_initial_mark_pause(false),
 204   _last_young_gc(false),
 205   _last_gc_was_young(false),
 206 
 207   _eden_bytes_before_gc(0),
 208   _survivor_bytes_before_gc(0),
 209   _capacity_before_gc(0),
 210 
 211   _eden_cset_region_length(0),
 212   _survivor_cset_region_length(0),
 213   _old_cset_region_length(0),
 214 
 215   _collection_set(NULL),
 216   _collection_set_bytes_used_before(0),
 217 
 218   // Incremental CSet attributes
 219   _inc_cset_build_state(Inactive),
 220   _inc_cset_head(NULL),
 221   _inc_cset_tail(NULL),
 222   _inc_cset_bytes_used_before(0),
 223   _inc_cset_max_finger(NULL),
 224   _inc_cset_recorded_rs_lengths(0),
 225   _inc_cset_recorded_rs_lengths_diffs(0),
 226   _inc_cset_predicted_elapsed_time_ms(0.0),
 227   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 228 
 229 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 230 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 231 #endif // _MSC_VER
 232 
 233   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 234                                                  G1YoungSurvRateNumRegionsSummary)),
 235   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 236                                               G1YoungSurvRateNumRegionsSummary)),
 237   // add here any more surv rate groups
 238   _recorded_survivor_regions(0),
 239   _recorded_survivor_head(NULL),
 240   _recorded_survivor_tail(NULL),
 241   _survivors_age_table(true),
 242 
 243   _gc_overhead_perc(0.0) {
 244 
 245   // Set up the region size and associated fields. Given that the
 246   // policy is created before the heap, we have to set this up here,
 247   // so it's done as soon as possible.
 248   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 249   HeapRegionRemSet::setup_remset_size();
 250 
 251   G1ErgoVerbose::initialize();
 252   if (PrintAdaptiveSizePolicy) {
 253     // Currently, we only use a single switch for all the heuristics.
 254     G1ErgoVerbose::set_enabled(true);
 255     // Given that we don't currently have a verboseness level
 256     // parameter, we'll hardcode this to high. This can be easily
 257     // changed in the future.
 258     G1ErgoVerbose::set_level(ErgoHigh);
 259   } else {
 260     G1ErgoVerbose::set_enabled(false);
 261   }
 262 
 263   // Verify PLAB sizes
 264   const size_t region_size = HeapRegion::GrainWords;
 265   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 266     char buffer[128];
 267     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 268                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 269     vm_exit_during_initialization(buffer);
 270   }
 271 
 272   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 273   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 274 
 275   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
 276   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
 277   _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
 278 
 279   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
 280   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
 281 
 282   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
 283 
 284   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
 285 
 286   _par_last_termination_times_ms = new double[_parallel_gc_threads];
 287   _par_last_termination_attempts = new double[_parallel_gc_threads];
 288   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
 289   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
 290   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
 291 
 292   int index;
 293   if (ParallelGCThreads == 0)
 294     index = 0;
 295   else if (ParallelGCThreads > 8)
 296     index = 7;
 297   else
 298     index = ParallelGCThreads - 1;
 299 
 300   _pending_card_diff_seq->add(0.0);
 301   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 302   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 303   _young_cards_per_entry_ratio_seq->add(
 304                                   young_cards_per_entry_ratio_defaults[index]);
 305   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 306   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 307   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 308   _young_other_cost_per_region_ms_seq->add(
 309                                young_other_cost_per_region_ms_defaults[index]);
 310   _non_young_other_cost_per_region_ms_seq->add(
 311                            non_young_other_cost_per_region_ms_defaults[index]);
 312 
 313   // Below, we might need to calculate the pause time target based on
 314   // the pause interval. When we do so we are going to give G1 maximum
 315   // flexibility and allow it to do pauses when it needs to. So, we'll
 316   // arrange that the pause interval to be pause time target + 1 to
 317   // ensure that a) the pause time target is maximized with respect to
 318   // the pause interval and b) we maintain the invariant that pause
 319   // time target < pause interval. If the user does not want this
 320   // maximum flexibility, they will have to set the pause interval
 321   // explicitly.
 322 
 323   // First make sure that, if either parameter is set, its value is
 324   // reasonable.
 325   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 326     if (MaxGCPauseMillis < 1) {
 327       vm_exit_during_initialization("MaxGCPauseMillis should be "
 328                                     "greater than 0");
 329     }
 330   }
 331   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 332     if (GCPauseIntervalMillis < 1) {
 333       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 334                                     "greater than 0");
 335     }
 336   }
 337 
 338   // Then, if the pause time target parameter was not set, set it to
 339   // the default value.
 340   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 341     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 342       // The default pause time target in G1 is 200ms
 343       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 344     } else {
 345       // We do not allow the pause interval to be set without the
 346       // pause time target
 347       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 348                                     "without setting MaxGCPauseMillis");
 349     }
 350   }
 351 
 352   // Then, if the interval parameter was not set, set it according to
 353   // the pause time target (this will also deal with the case when the
 354   // pause time target is the default value).
 355   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 356     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 357   }
 358 
 359   // Finally, make sure that the two parameters are consistent.
 360   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 361     char buffer[256];
 362     jio_snprintf(buffer, 256,
 363                  "MaxGCPauseMillis (%u) should be less than "
 364                  "GCPauseIntervalMillis (%u)",
 365                  MaxGCPauseMillis, GCPauseIntervalMillis);
 366     vm_exit_during_initialization(buffer);
 367   }
 368 
 369   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 370   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 371   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 372   _sigma = (double) G1ConfidencePercent / 100.0;
 373 
 374   // start conservatively (around 50ms is about right)
 375   _concurrent_mark_remark_times_ms->add(0.05);
 376   _concurrent_mark_cleanup_times_ms->add(0.20);
 377   _tenuring_threshold = MaxTenuringThreshold;
 378   // _max_survivor_regions will be calculated by
 379   // update_young_list_target_length() during initialization.
 380   _max_survivor_regions = 0;
 381 
 382   assert(GCTimeRatio > 0,
 383          "we should have set it to a default value set_g1_gc_flags() "
 384          "if a user set it to 0");
 385   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 386 
 387   uintx reserve_perc = G1ReservePercent;
 388   // Put an artificial ceiling on this so that it's not set to a silly value.
 389   if (reserve_perc > 50) {
 390     reserve_perc = 50;
 391     warning("G1ReservePercent is set to a value that is too large, "
 392             "it's been updated to %u", reserve_perc);
 393   }
 394   _reserve_factor = (double) reserve_perc / 100.0;
 395   // This will be set when the heap is expanded
 396   // for the first time during initialization.
 397   _reserve_regions = 0;
 398 
 399   initialize_all();
 400   _collectionSetChooser = new CollectionSetChooser();
 401   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 402 }
 403 
 404 void G1CollectorPolicy::initialize_flags() {
 405   set_min_alignment(HeapRegion::GrainBytes);
 406   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 407   if (SurvivorRatio < 1) {
 408     vm_exit_during_initialization("Invalid survivor ratio specified");
 409   }
 410   CollectorPolicy::initialize_flags();
 411 }
 412 
 413 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 414   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
 415   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
 416   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
 417 
 418   if (FLAG_IS_CMDLINE(NewRatio)) {
 419     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 420       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 421     } else {
 422       _sizer_kind = SizerNewRatio;
 423       _adaptive_size = false;
 424       return;
 425     }
 426   }
 427 
 428   if (FLAG_IS_CMDLINE(NewSize)) {
 429     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 430                                      1U);
 431     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 432       _max_desired_young_length =
 433                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 434                                   1U);
 435       _sizer_kind = SizerMaxAndNewSize;
 436       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 437     } else {
 438       _sizer_kind = SizerNewSizeOnly;
 439     }
 440   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 441     _max_desired_young_length =
 442                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 443                                   1U);
 444     _sizer_kind = SizerMaxNewSizeOnly;
 445   }
 446 }
 447 
 448 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 449   uint default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
 450   return MAX2(1U, default_value);
 451 }
 452 
 453 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 454   uint default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
 455   return MAX2(1U, default_value);
 456 }
 457 
 458 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 459   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 460 
 461   switch (_sizer_kind) {
 462     case SizerDefaults:
 463       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 464       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 465       break;
 466     case SizerNewSizeOnly:
 467       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 468       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 469       break;
 470     case SizerMaxNewSizeOnly:
 471       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 472       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 473       break;
 474     case SizerMaxAndNewSize:
 475       // Do nothing. Values set on the command line, don't update them at runtime.
 476       break;
 477     case SizerNewRatio:
 478       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 479       _max_desired_young_length = _min_desired_young_length;
 480       break;
 481     default:
 482       ShouldNotReachHere();
 483   }
 484 
 485   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 486 }
 487 
 488 void G1CollectorPolicy::init() {
 489   // Set aside an initial future to_space.
 490   _g1 = G1CollectedHeap::heap();
 491 
 492   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 493 
 494   initialize_gc_policy_counters();
 495 
 496   if (adaptive_young_list_length()) {
 497     _young_list_fixed_length = 0;
 498   } else {
 499     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 500   }
 501   _free_regions_at_end_of_collection = _g1->free_regions();
 502   update_young_list_target_length();
 503   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
 504 
 505   // We may immediately start allocating regions and placing them on the
 506   // collection set list. Initialize the per-collection set info
 507   start_incremental_cset_building();
 508 }
 509 
 510 // Create the jstat counters for the policy.
 511 void G1CollectorPolicy::initialize_gc_policy_counters() {
 512   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 513 }
 514 
 515 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 516                                          double base_time_ms,
 517                                          uint base_free_regions,
 518                                          double target_pause_time_ms) {
 519   if (young_length >= base_free_regions) {
 520     // end condition 1: not enough space for the young regions
 521     return false;
 522   }
 523 
 524   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 525   size_t bytes_to_copy =
 526                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 527   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 528   double young_other_time_ms = predict_young_other_time_ms(young_length);
 529   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 530   if (pause_time_ms > target_pause_time_ms) {
 531     // end condition 2: prediction is over the target pause time
 532     return false;
 533   }
 534 
 535   size_t free_bytes =
 536                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 537   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 538     // end condition 3: out-of-space (conservatively!)
 539     return false;
 540   }
 541 
 542   // success!
 543   return true;
 544 }
 545 
 546 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 547   // re-calculate the necessary reserve
 548   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 549   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 550   // smaller than 1.0) we'll get 1.
 551   _reserve_regions = (uint) ceil(reserve_regions_d);
 552 
 553   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 554 }
 555 
 556 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 557                                                        uint base_min_length) {
 558   uint desired_min_length = 0;
 559   if (adaptive_young_list_length()) {
 560     if (_alloc_rate_ms_seq->num() > 3) {
 561       double now_sec = os::elapsedTime();
 562       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 563       double alloc_rate_ms = predict_alloc_rate_ms();
 564       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 565     } else {
 566       // otherwise we don't have enough info to make the prediction
 567     }
 568   }
 569   desired_min_length += base_min_length;
 570   // make sure we don't go below any user-defined minimum bound
 571   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 572 }
 573 
 574 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 575   // Here, we might want to also take into account any additional
 576   // constraints (i.e., user-defined minimum bound). Currently, we
 577   // effectively don't set this bound.
 578   return _young_gen_sizer->max_desired_young_length();
 579 }
 580 
 581 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 582   if (rs_lengths == (size_t) -1) {
 583     // if it's set to the default value (-1), we should predict it;
 584     // otherwise, use the given value.
 585     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 586   }
 587 
 588   // Calculate the absolute and desired min bounds.
 589 
 590   // This is how many young regions we already have (currently: the survivors).
 591   uint base_min_length = recorded_survivor_regions();
 592   // This is the absolute minimum young length, which ensures that we
 593   // can allocate one eden region in the worst-case.
 594   uint absolute_min_length = base_min_length + 1;
 595   uint desired_min_length =
 596                      calculate_young_list_desired_min_length(base_min_length);
 597   if (desired_min_length < absolute_min_length) {
 598     desired_min_length = absolute_min_length;
 599   }
 600 
 601   // Calculate the absolute and desired max bounds.
 602 
 603   // We will try our best not to "eat" into the reserve.
 604   uint absolute_max_length = 0;
 605   if (_free_regions_at_end_of_collection > _reserve_regions) {
 606     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 607   }
 608   uint desired_max_length = calculate_young_list_desired_max_length();
 609   if (desired_max_length > absolute_max_length) {
 610     desired_max_length = absolute_max_length;
 611   }
 612 
 613   uint young_list_target_length = 0;
 614   if (adaptive_young_list_length()) {
 615     if (gcs_are_young()) {
 616       young_list_target_length =
 617                         calculate_young_list_target_length(rs_lengths,
 618                                                            base_min_length,
 619                                                            desired_min_length,
 620                                                            desired_max_length);
 621       _rs_lengths_prediction = rs_lengths;
 622     } else {
 623       // Don't calculate anything and let the code below bound it to
 624       // the desired_min_length, i.e., do the next GC as soon as
 625       // possible to maximize how many old regions we can add to it.
 626     }
 627   } else {
 628     // The user asked for a fixed young gen so we'll fix the young gen
 629     // whether the next GC is young or mixed.
 630     young_list_target_length = _young_list_fixed_length;
 631   }
 632 
 633   // Make sure we don't go over the desired max length, nor under the
 634   // desired min length. In case they clash, desired_min_length wins
 635   // which is why that test is second.
 636   if (young_list_target_length > desired_max_length) {
 637     young_list_target_length = desired_max_length;
 638   }
 639   if (young_list_target_length < desired_min_length) {
 640     young_list_target_length = desired_min_length;
 641   }
 642 
 643   assert(young_list_target_length > recorded_survivor_regions(),
 644          "we should be able to allocate at least one eden region");
 645   assert(young_list_target_length >= absolute_min_length, "post-condition");
 646   _young_list_target_length = young_list_target_length;
 647 
 648   update_max_gc_locker_expansion();
 649 }
 650 
 651 uint
 652 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 653                                                      uint base_min_length,
 654                                                      uint desired_min_length,
 655                                                      uint desired_max_length) {
 656   assert(adaptive_young_list_length(), "pre-condition");
 657   assert(gcs_are_young(), "only call this for young GCs");
 658 
 659   // In case some edge-condition makes the desired max length too small...
 660   if (desired_max_length <= desired_min_length) {
 661     return desired_min_length;
 662   }
 663 
 664   // We'll adjust min_young_length and max_young_length not to include
 665   // the already allocated young regions (i.e., so they reflect the
 666   // min and max eden regions we'll allocate). The base_min_length
 667   // will be reflected in the predictions by the
 668   // survivor_regions_evac_time prediction.
 669   assert(desired_min_length > base_min_length, "invariant");
 670   uint min_young_length = desired_min_length - base_min_length;
 671   assert(desired_max_length > base_min_length, "invariant");
 672   uint max_young_length = desired_max_length - base_min_length;
 673 
 674   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 675   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 676   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 677   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 678   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 679   double base_time_ms =
 680     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 681     survivor_regions_evac_time;
 682   uint available_free_regions = _free_regions_at_end_of_collection;
 683   uint base_free_regions = 0;
 684   if (available_free_regions > _reserve_regions) {
 685     base_free_regions = available_free_regions - _reserve_regions;
 686   }
 687 
 688   // Here, we will make sure that the shortest young length that
 689   // makes sense fits within the target pause time.
 690 
 691   if (predict_will_fit(min_young_length, base_time_ms,
 692                        base_free_regions, target_pause_time_ms)) {
 693     // The shortest young length will fit into the target pause time;
 694     // we'll now check whether the absolute maximum number of young
 695     // regions will fit in the target pause time. If not, we'll do
 696     // a binary search between min_young_length and max_young_length.
 697     if (predict_will_fit(max_young_length, base_time_ms,
 698                          base_free_regions, target_pause_time_ms)) {
 699       // The maximum young length will fit into the target pause time.
 700       // We are done so set min young length to the maximum length (as
 701       // the result is assumed to be returned in min_young_length).
 702       min_young_length = max_young_length;
 703     } else {
 704       // The maximum possible number of young regions will not fit within
 705       // the target pause time so we'll search for the optimal
 706       // length. The loop invariants are:
 707       //
 708       // min_young_length < max_young_length
 709       // min_young_length is known to fit into the target pause time
 710       // max_young_length is known not to fit into the target pause time
 711       //
 712       // Going into the loop we know the above hold as we've just
 713       // checked them. Every time around the loop we check whether
 714       // the middle value between min_young_length and
 715       // max_young_length fits into the target pause time. If it
 716       // does, it becomes the new min. If it doesn't, it becomes
 717       // the new max. This way we maintain the loop invariants.
 718 
 719       assert(min_young_length < max_young_length, "invariant");
 720       uint diff = (max_young_length - min_young_length) / 2;
 721       while (diff > 0) {
 722         uint young_length = min_young_length + diff;
 723         if (predict_will_fit(young_length, base_time_ms,
 724                              base_free_regions, target_pause_time_ms)) {
 725           min_young_length = young_length;
 726         } else {
 727           max_young_length = young_length;
 728         }
 729         assert(min_young_length <  max_young_length, "invariant");
 730         diff = (max_young_length - min_young_length) / 2;
 731       }
 732       // The results is min_young_length which, according to the
 733       // loop invariants, should fit within the target pause time.
 734 
 735       // These are the post-conditions of the binary search above:
 736       assert(min_young_length < max_young_length,
 737              "otherwise we should have discovered that max_young_length "
 738              "fits into the pause target and not done the binary search");
 739       assert(predict_will_fit(min_young_length, base_time_ms,
 740                               base_free_regions, target_pause_time_ms),
 741              "min_young_length, the result of the binary search, should "
 742              "fit into the pause target");
 743       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 744                                base_free_regions, target_pause_time_ms),
 745              "min_young_length, the result of the binary search, should be "
 746              "optimal, so no larger length should fit into the pause target");
 747     }
 748   } else {
 749     // Even the minimum length doesn't fit into the pause time
 750     // target, return it as the result nevertheless.
 751   }
 752   return base_min_length + min_young_length;
 753 }
 754 
 755 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 756   double survivor_regions_evac_time = 0.0;
 757   for (HeapRegion * r = _recorded_survivor_head;
 758        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 759        r = r->get_next_young_region()) {
 760     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
 761   }
 762   return survivor_regions_evac_time;
 763 }
 764 
 765 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 766   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 767 
 768   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 769   if (rs_lengths > _rs_lengths_prediction) {
 770     // add 10% to avoid having to recalculate often
 771     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 772     update_young_list_target_length(rs_lengths_prediction);
 773   }
 774 }
 775 
 776 
 777 
 778 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 779                                                bool is_tlab,
 780                                                bool* gc_overhead_limit_was_exceeded) {
 781   guarantee(false, "Not using this policy feature yet.");
 782   return NULL;
 783 }
 784 
 785 // This method controls how a collector handles one or more
 786 // of its generations being fully allocated.
 787 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 788                                                        bool is_tlab) {
 789   guarantee(false, "Not using this policy feature yet.");
 790   return NULL;
 791 }
 792 
 793 
 794 #ifndef PRODUCT
 795 bool G1CollectorPolicy::verify_young_ages() {
 796   HeapRegion* head = _g1->young_list()->first_region();
 797   return
 798     verify_young_ages(head, _short_lived_surv_rate_group);
 799   // also call verify_young_ages on any additional surv rate groups
 800 }
 801 
 802 bool
 803 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 804                                      SurvRateGroup *surv_rate_group) {
 805   guarantee( surv_rate_group != NULL, "pre-condition" );
 806 
 807   const char* name = surv_rate_group->name();
 808   bool ret = true;
 809   int prev_age = -1;
 810 
 811   for (HeapRegion* curr = head;
 812        curr != NULL;
 813        curr = curr->get_next_young_region()) {
 814     SurvRateGroup* group = curr->surv_rate_group();
 815     if (group == NULL && !curr->is_survivor()) {
 816       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 817       ret = false;
 818     }
 819 
 820     if (surv_rate_group == group) {
 821       int age = curr->age_in_surv_rate_group();
 822 
 823       if (age < 0) {
 824         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 825         ret = false;
 826       }
 827 
 828       if (age <= prev_age) {
 829         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 830                                "(%d, %d)", name, age, prev_age);
 831         ret = false;
 832       }
 833       prev_age = age;
 834     }
 835   }
 836 
 837   return ret;
 838 }
 839 #endif // PRODUCT
 840 
 841 void G1CollectorPolicy::record_full_collection_start() {
 842   _cur_collection_start_sec = os::elapsedTime();
 843   // Release the future to-space so that it is available for compaction into.
 844   _g1->set_full_collection();
 845 }
 846 
 847 void G1CollectorPolicy::record_full_collection_end() {
 848   // Consider this like a collection pause for the purposes of allocation
 849   // since last pause.
 850   double end_sec = os::elapsedTime();
 851   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
 852   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 853 
 854   _all_full_gc_times_ms->add(full_gc_time_ms);
 855 
 856   update_recent_gc_times(end_sec, full_gc_time_ms);
 857 
 858   _g1->clear_full_collection();
 859 
 860   // "Nuke" the heuristics that control the young/mixed GC
 861   // transitions and make sure we start with young GCs after the Full GC.
 862   set_gcs_are_young(true);
 863   _last_young_gc = false;
 864   clear_initiate_conc_mark_if_possible();
 865   clear_during_initial_mark_pause();
 866   _in_marking_window = false;
 867   _in_marking_window_im = false;
 868 
 869   _short_lived_surv_rate_group->start_adding_regions();
 870   // also call this on any additional surv rate groups
 871 
 872   record_survivor_regions(0, NULL, NULL);
 873 
 874   _free_regions_at_end_of_collection = _g1->free_regions();
 875   // Reset survivors SurvRateGroup.
 876   _survivor_surv_rate_group->reset();
 877   update_young_list_target_length();
 878   _collectionSetChooser->clear();
 879 }
 880 
 881 void G1CollectorPolicy::record_stop_world_start() {
 882   _stop_world_start = os::elapsedTime();
 883 }
 884 
 885 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 886                                                       size_t start_used) {
 887   if (G1Log::finer()) {
 888     gclog_or_tty->stamp(PrintGCTimeStamps);
 889     gclog_or_tty->print("[GC pause (%s) (%s)",
 890       GCCause::to_string(_g1->gc_cause()),
 891       gcs_are_young() ? "young" : "mixed");
 892   }
 893 
 894   // We only need to do this here as the policy will only be applied
 895   // to the GC we're about to start. so, no point is calculating this
 896   // every time we calculate / recalculate the target young length.
 897   update_survivors_policy();
 898 
 899   assert(_g1->used() == _g1->recalculate_used(),
 900          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 901                  _g1->used(), _g1->recalculate_used()));
 902 
 903   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 904   _all_stop_world_times_ms->add(s_w_t_ms);
 905   _stop_world_start = 0.0;
 906 
 907   _cur_collection_start_sec = start_time_sec;
 908   _cur_collection_pause_used_at_start_bytes = start_used;
 909   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 910   _pending_cards = _g1->pending_card_num();
 911   _max_pending_cards = _g1->max_pending_card_num();
 912 
 913   _bytes_in_collection_set_before_gc = 0;
 914   _bytes_copied_during_gc = 0;
 915 
 916   YoungList* young_list = _g1->young_list();
 917   _eden_bytes_before_gc = young_list->eden_used_bytes();
 918   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
 919   _capacity_before_gc = _g1->capacity();
 920 
 921 #ifdef DEBUG
 922   // initialise these to something well known so that we can spot
 923   // if they are not set properly
 924 
 925   for (int i = 0; i < _parallel_gc_threads; ++i) {
 926     _par_last_gc_worker_start_times_ms[i] = -1234.0;
 927     _par_last_ext_root_scan_times_ms[i] = -1234.0;
 928     _par_last_satb_filtering_times_ms[i] = -1234.0;
 929     _par_last_update_rs_times_ms[i] = -1234.0;
 930     _par_last_update_rs_processed_buffers[i] = -1234.0;
 931     _par_last_scan_rs_times_ms[i] = -1234.0;
 932     _par_last_obj_copy_times_ms[i] = -1234.0;
 933     _par_last_termination_times_ms[i] = -1234.0;
 934     _par_last_termination_attempts[i] = -1234.0;
 935     _par_last_gc_worker_end_times_ms[i] = -1234.0;
 936     _par_last_gc_worker_times_ms[i] = -1234.0;
 937     _par_last_gc_worker_other_times_ms[i] = -1234.0;
 938   }
 939 #endif
 940 
 941   for (int i = 0; i < _aux_num; ++i) {
 942     _cur_aux_times_ms[i] = 0.0;
 943     _cur_aux_times_set[i] = false;
 944   }
 945 
 946   // This is initialized to zero here and is set during the evacuation
 947   // pause if we actually waited for the root region scanning to finish.
 948   _root_region_scan_wait_time_ms = 0.0;
 949 
 950   _last_gc_was_young = false;
 951 
 952   // do that for any other surv rate groups
 953   _short_lived_surv_rate_group->stop_adding_regions();
 954   _survivors_age_table.clear();
 955 
 956   assert( verify_young_ages(), "region age verification" );
 957 }
 958 
 959 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 960                                                    mark_init_elapsed_time_ms) {
 961   _during_marking = true;
 962   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 963   clear_during_initial_mark_pause();
 964   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 965 }
 966 
 967 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 968   _mark_remark_start_sec = os::elapsedTime();
 969   _during_marking = false;
 970 }
 971 
 972 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 973   double end_time_sec = os::elapsedTime();
 974   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 975   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 976   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 977   _prev_collection_pause_end_ms += elapsed_time_ms;
 978 
 979   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 980 }
 981 
 982 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 983   _mark_cleanup_start_sec = os::elapsedTime();
 984 }
 985 
 986 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 987   _last_young_gc = true;
 988   _in_marking_window = false;
 989 }
 990 
 991 void G1CollectorPolicy::record_concurrent_pause() {
 992   if (_stop_world_start > 0.0) {
 993     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 994     _all_yield_times_ms->add(yield_ms);
 995   }
 996 }
 997 
 998 void G1CollectorPolicy::record_concurrent_pause_end() {
 999 }
1000 
1001 template<class T>
1002 T sum_of(T* sum_arr, int start, int n, int N) {
1003   T sum = (T)0;
1004   for (int i = 0; i < n; i++) {
1005     int j = (start + i) % N;
1006     sum += sum_arr[j];
1007   }
1008   return sum;
1009 }
1010 
1011 void G1CollectorPolicy::print_par_stats(int level,
1012                                         const char* str,
1013                                         double* data) {
1014   double min = data[0], max = data[0];
1015   double total = 0.0;
1016   LineBuffer buf(level);
1017   buf.append("[%s (ms):", str);
1018   for (uint i = 0; i < no_of_gc_threads(); ++i) {
1019     double val = data[i];
1020     if (val < min)
1021       min = val;
1022     if (val > max)
1023       max = val;
1024     total += val;
1025     if (G1Log::finest()) {
1026       buf.append("  %.1lf", val);
1027     }
1028   }
1029 
1030   if (G1Log::finest()) {
1031     buf.append_and_print_cr("");
1032   }
1033   double avg = total / (double) no_of_gc_threads();
1034   buf.append_and_print_cr(" Avg: %.1lf Min: %.1lf Max: %.1lf Diff: %.1lf]",
1035     avg, min, max, max - min);
1036 }
1037 
1038 void G1CollectorPolicy::print_par_sizes(int level,
1039                                         const char* str,
1040                                         double* data) {
1041   double min = data[0], max = data[0];
1042   double total = 0.0;
1043   LineBuffer buf(level);
1044   buf.append("[%s :", str);
1045   for (uint i = 0; i < no_of_gc_threads(); ++i) {
1046     double val = data[i];
1047     if (val < min)
1048       min = val;
1049     if (val > max)
1050       max = val;
1051     total += val;
1052     buf.append(" %d", (int) val);
1053   }
1054   buf.append_and_print_cr("");
1055   double avg = total / (double) no_of_gc_threads();
1056   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
1057     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1058 }
1059 
1060 void G1CollectorPolicy::print_stats(int level,
1061                                     const char* str,
1062                                     double value) {
1063   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1064 }
1065 
1066 void G1CollectorPolicy::print_stats(int level,
1067                                     const char* str,
1068                                     int value) {
1069   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1070 }
1071 
1072 double G1CollectorPolicy::avg_value(double* data) {
1073   if (G1CollectedHeap::use_parallel_gc_threads()) {
1074     double ret = 0.0;
1075     for (uint i = 0; i < no_of_gc_threads(); ++i) {
1076       ret += data[i];
1077     }
1078     return ret / (double) no_of_gc_threads();
1079   } else {
1080     return data[0];
1081   }
1082 }
1083 
1084 double G1CollectorPolicy::max_value(double* data) {
1085   if (G1CollectedHeap::use_parallel_gc_threads()) {
1086     double ret = data[0];
1087     for (uint i = 1; i < no_of_gc_threads(); ++i) {
1088       if (data[i] > ret) {
1089         ret = data[i];
1090       }
1091     }
1092     return ret;
1093   } else {
1094     return data[0];
1095   }
1096 }
1097 
1098 double G1CollectorPolicy::sum_of_values(double* data) {
1099   if (G1CollectedHeap::use_parallel_gc_threads()) {
1100     double sum = 0.0;
1101     for (uint i = 0; i < no_of_gc_threads(); i++) {
1102       sum += data[i];
1103     }
1104     return sum;
1105   } else {
1106     return data[0];
1107   }
1108 }
1109 
1110 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
1111   double ret = data1[0] + data2[0];
1112 
1113   if (G1CollectedHeap::use_parallel_gc_threads()) {
1114     for (uint i = 1; i < no_of_gc_threads(); ++i) {
1115       double data = data1[i] + data2[i];
1116       if (data > ret) {
1117         ret = data;
1118       }
1119     }
1120   }
1121   return ret;
1122 }
1123 
1124 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
1125   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
1126     return false;
1127   }
1128 
1129   size_t marking_initiating_used_threshold =
1130     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1131   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
1132   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
1133 
1134   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
1135     if (gcs_are_young()) {
1136       ergo_verbose5(ErgoConcCycles,
1137         "request concurrent cycle initiation",
1138         ergo_format_reason("occupancy higher than threshold")
1139         ergo_format_byte("occupancy")
1140         ergo_format_byte("allocation request")
1141         ergo_format_byte_perc("threshold")
1142         ergo_format_str("source"),
1143         cur_used_bytes,
1144         alloc_byte_size,
1145         marking_initiating_used_threshold,
1146         (double) InitiatingHeapOccupancyPercent,
1147         source);
1148       return true;
1149     } else {
1150       ergo_verbose5(ErgoConcCycles,
1151         "do not request concurrent cycle initiation",
1152         ergo_format_reason("still doing mixed collections")
1153         ergo_format_byte("occupancy")
1154         ergo_format_byte("allocation request")
1155         ergo_format_byte_perc("threshold")
1156         ergo_format_str("source"),
1157         cur_used_bytes,
1158         alloc_byte_size,
1159         marking_initiating_used_threshold,
1160         (double) InitiatingHeapOccupancyPercent,
1161         source);
1162     }
1163   }
1164 
1165   return false;
1166 }
1167 
1168 // Anything below that is considered to be zero
1169 #define MIN_TIMER_GRANULARITY 0.0000001
1170 
1171 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
1172   double end_time_sec = os::elapsedTime();
1173   double elapsed_ms = _last_pause_time_ms;
1174   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1175   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
1176          "otherwise, the subtraction below does not make sense");
1177   size_t rs_size =
1178             _cur_collection_pause_used_regions_at_start - cset_region_length();
1179   size_t cur_used_bytes = _g1->used();
1180   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1181   bool last_pause_included_initial_mark = false;
1182   bool update_stats = !_g1->evacuation_failed();
1183   set_no_of_gc_threads(no_of_gc_threads);
1184 
1185 #ifndef PRODUCT
1186   if (G1YoungSurvRateVerbose) {
1187     gclog_or_tty->print_cr("");
1188     _short_lived_surv_rate_group->print();
1189     // do that for any other surv rate groups too
1190   }
1191 #endif // PRODUCT
1192 
1193   last_pause_included_initial_mark = during_initial_mark_pause();
1194   if (last_pause_included_initial_mark) {
1195     record_concurrent_mark_init_end(0.0);
1196   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
1197     // Note: this might have already been set, if during the last
1198     // pause we decided to start a cycle but at the beginning of
1199     // this pause we decided to postpone it. That's OK.
1200     set_initiate_conc_mark_if_possible();
1201   }
1202 
1203   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
1204                           end_time_sec, false);
1205 
1206   // This assert is exempted when we're doing parallel collection pauses,
1207   // because the fragmentation caused by the parallel GC allocation buffers
1208   // can lead to more memory being used during collection than was used
1209   // before. Best leave this out until the fragmentation problem is fixed.
1210   // Pauses in which evacuation failed can also lead to negative
1211   // collections, since no space is reclaimed from a region containing an
1212   // object whose evacuation failed.
1213   // Further, we're now always doing parallel collection.  But I'm still
1214   // leaving this here as a placeholder for a more precise assertion later.
1215   // (DLD, 10/05.)
1216   assert((true || parallel) // Always using GC LABs now.
1217          || _g1->evacuation_failed()
1218          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
1219          "Negative collection");
1220 
1221   size_t freed_bytes =
1222     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
1223   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1224 
1225   double survival_fraction =
1226     (double)surviving_bytes/
1227     (double)_collection_set_bytes_used_before;
1228 
1229   // These values are used to update the summary information that is
1230   // displayed when TraceGen0Time is enabled, and are output as part
1231   // of the "finer" output, in the non-parallel case.
1232 
1233   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1234   double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
1235   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
1236   double update_rs_processed_buffers =
1237     sum_of_values(_par_last_update_rs_processed_buffers);
1238   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
1239   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
1240   double termination_time = avg_value(_par_last_termination_times_ms);
1241 
1242   double known_time = ext_root_scan_time +
1243                       satb_filtering_time +
1244                       update_rs_time +
1245                       scan_rs_time +
1246                       obj_copy_time;
1247 
1248   double other_time_ms = elapsed_ms;
1249 
1250   // Subtract the root region scanning wait time. It's initialized to
1251   // zero at the start of the pause.
1252   other_time_ms -= _root_region_scan_wait_time_ms;
1253 
1254   if (parallel) {
1255     other_time_ms -= _cur_collection_par_time_ms;
1256   } else {
1257     other_time_ms -= known_time;
1258   }
1259 
1260   // Now subtract the time taken to fix up roots in generated code
1261   other_time_ms -= _cur_collection_code_root_fixup_time_ms;
1262 
1263   // Subtract the time taken to clean the card table from the
1264   // current value of "other time"
1265   other_time_ms -= _cur_clear_ct_time_ms;
1266 
1267   // TraceGen0Time and TraceGen1Time summary info updating.
1268   _all_pause_times_ms->add(elapsed_ms);
1269 
1270   if (update_stats) {
1271     _summary->record_total_time_ms(elapsed_ms);
1272     _summary->record_other_time_ms(other_time_ms);
1273 
1274     MainBodySummary* body_summary = _summary->main_body_summary();
1275     assert(body_summary != NULL, "should not be null!");
1276 
1277     body_summary->record_root_region_scan_wait_time_ms(
1278                                                _root_region_scan_wait_time_ms);
1279     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1280     body_summary->record_satb_filtering_time_ms(satb_filtering_time);
1281     body_summary->record_update_rs_time_ms(update_rs_time);
1282     body_summary->record_scan_rs_time_ms(scan_rs_time);
1283     body_summary->record_obj_copy_time_ms(obj_copy_time);
1284 
1285     if (parallel) {
1286       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
1287       body_summary->record_termination_time_ms(termination_time);
1288 
1289       double parallel_known_time = known_time + termination_time;
1290       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1291       body_summary->record_parallel_other_time_ms(parallel_other_time);
1292     }
1293 
1294     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1295 
1296     // We exempt parallel collection from this check because Alloc Buffer
1297     // fragmentation can produce negative collections.  Same with evac
1298     // failure.
1299     // Further, we're now always doing parallel collection.  But I'm still
1300     // leaving this here as a placeholder for a more precise assertion later.
1301     // (DLD, 10/05.
1302     assert((true || parallel)
1303            || _g1->evacuation_failed()
1304            || surviving_bytes <= _collection_set_bytes_used_before,
1305            "Or else negative collection!");
1306 
1307     // this is where we update the allocation rate of the application
1308     double app_time_ms =
1309       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
1310     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1311       // This usually happens due to the timer not having the required
1312       // granularity. Some Linuxes are the usual culprits.
1313       // We'll just set it to something (arbitrarily) small.
1314       app_time_ms = 1.0;
1315     }
1316     // We maintain the invariant that all objects allocated by mutator
1317     // threads will be allocated out of eden regions. So, we can use
1318     // the eden region number allocated since the previous GC to
1319     // calculate the application's allocate rate. The only exception
1320     // to that is humongous objects that are allocated separately. But
1321     // given that humongous object allocations do not really affect
1322     // either the pause's duration nor when the next pause will take
1323     // place we can safely ignore them here.
1324     uint regions_allocated = eden_cset_region_length();
1325     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1326     _alloc_rate_ms_seq->add(alloc_rate_ms);
1327 
1328     double interval_ms =
1329       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1330     update_recent_gc_times(end_time_sec, elapsed_ms);
1331     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1332     if (recent_avg_pause_time_ratio() < 0.0 ||
1333         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1334 #ifndef PRODUCT
1335       // Dump info to allow post-facto debugging
1336       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1337       gclog_or_tty->print_cr("-------------------------------------------");
1338       gclog_or_tty->print_cr("Recent GC Times (ms):");
1339       _recent_gc_times_ms->dump();
1340       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1341       _recent_prev_end_times_for_all_gcs_sec->dump();
1342       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1343                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1344       // In debug mode, terminate the JVM if the user wants to debug at this point.
1345       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1346 #endif  // !PRODUCT
1347       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1348       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1349       if (_recent_avg_pause_time_ratio < 0.0) {
1350         _recent_avg_pause_time_ratio = 0.0;
1351       } else {
1352         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1353         _recent_avg_pause_time_ratio = 1.0;
1354       }
1355     }
1356   }
1357 
1358   for (int i = 0; i < _aux_num; ++i) {
1359     if (_cur_aux_times_set[i]) {
1360       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1361     }
1362   }
1363 
1364   if (G1Log::finer()) {
1365     bool print_marking_info =
1366       _g1->mark_in_progress() && !last_pause_included_initial_mark;
1367 
1368     gclog_or_tty->print_cr("%s, %1.8lf secs]",
1369                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
1370                            elapsed_ms / 1000.0);
1371 
1372     if (_root_region_scan_wait_time_ms > 0.0) {
1373       print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms);
1374     }
1375     if (parallel) {
1376       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
1377       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
1378       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
1379       if (print_marking_info) {
1380         print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
1381       }
1382       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1383       if (G1Log::finest()) {
1384         print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1385       }
1386       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
1387       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
1388       print_par_stats(2, "Termination", _par_last_termination_times_ms);
1389       if (G1Log::finest()) {
1390         print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
1391       }
1392 
1393       for (int i = 0; i < _parallel_gc_threads; i++) {
1394         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] -
1395                                           _par_last_gc_worker_start_times_ms[i];
1396 
1397         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
1398                                    _par_last_satb_filtering_times_ms[i] +
1399                                    _par_last_update_rs_times_ms[i] +
1400                                    _par_last_scan_rs_times_ms[i] +
1401                                    _par_last_obj_copy_times_ms[i] +
1402                                    _par_last_termination_times_ms[i];
1403 
1404         _par_last_gc_worker_other_times_ms[i] = _par_last_gc_worker_times_ms[i] -
1405                                                 worker_known_time;
1406       }
1407 
1408       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
1409       print_par_stats(2, "GC Worker Total", _par_last_gc_worker_times_ms);
1410       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
1411     } else {
1412       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
1413       if (print_marking_info) {
1414         print_stats(1, "SATB Filtering", satb_filtering_time);
1415       }
1416       print_stats(1, "Update RS", update_rs_time);
1417       if (G1Log::finest()) {
1418         print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
1419       }
1420       print_stats(1, "Scan RS", scan_rs_time);
1421       print_stats(1, "Object Copying", obj_copy_time);
1422     }
1423     print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms);
1424     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1425 #ifndef PRODUCT
1426     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
1427     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
1428     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
1429     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
1430     if (_num_cc_clears > 0) {
1431       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
1432     }
1433 #endif
1434     print_stats(1, "Other", other_time_ms);
1435     print_stats(2, "Choose CSet",
1436                    (_recorded_young_cset_choice_time_ms +
1437                     _recorded_non_young_cset_choice_time_ms));
1438     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
1439     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
1440     print_stats(2, "Free CSet",
1441                    (_recorded_young_free_cset_time_ms +
1442                     _recorded_non_young_free_cset_time_ms));
1443 
1444     for (int i = 0; i < _aux_num; ++i) {
1445       if (_cur_aux_times_set[i]) {
1446         char buffer[96];
1447         sprintf(buffer, "Aux%d", i);
1448         print_stats(1, buffer, _cur_aux_times_ms[i]);
1449       }
1450     }
1451   }
1452 
1453   bool new_in_marking_window = _in_marking_window;
1454   bool new_in_marking_window_im = false;
1455   if (during_initial_mark_pause()) {
1456     new_in_marking_window = true;
1457     new_in_marking_window_im = true;
1458   }
1459 
1460   if (_last_young_gc) {
1461     // This is supposed to to be the "last young GC" before we start
1462     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1463 
1464     if (!last_pause_included_initial_mark) {
1465       if (next_gc_should_be_mixed("start mixed GCs",
1466                                   "do not start mixed GCs")) {
1467         set_gcs_are_young(false);
1468       }
1469     } else {
1470       ergo_verbose0(ErgoMixedGCs,
1471                     "do not start mixed GCs",
1472                     ergo_format_reason("concurrent cycle is about to start"));
1473     }
1474     _last_young_gc = false;
1475   }
1476 
1477   if (!_last_gc_was_young) {
1478     // This is a mixed GC. Here we decide whether to continue doing
1479     // mixed GCs or not.
1480 
1481     if (!next_gc_should_be_mixed("continue mixed GCs",
1482                                  "do not continue mixed GCs")) {
1483       set_gcs_are_young(true);
1484     }
1485   }
1486 
1487   _short_lived_surv_rate_group->start_adding_regions();
1488   // do that for any other surv rate groupsx
1489 
1490   if (update_stats) {
1491     double pause_time_ms = elapsed_ms;
1492 
1493     size_t diff = 0;
1494     if (_max_pending_cards >= _pending_cards) {
1495       diff = _max_pending_cards - _pending_cards;
1496     }
1497     _pending_card_diff_seq->add((double) diff);
1498 
1499     double cost_per_card_ms = 0.0;
1500     if (_pending_cards > 0) {
1501       cost_per_card_ms = update_rs_time / (double) _pending_cards;
1502       _cost_per_card_ms_seq->add(cost_per_card_ms);
1503     }
1504 
1505     size_t cards_scanned = _g1->cards_scanned();
1506 
1507     double cost_per_entry_ms = 0.0;
1508     if (cards_scanned > 10) {
1509       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1510       if (_last_gc_was_young) {
1511         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1512       } else {
1513         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1514       }
1515     }
1516 
1517     if (_max_rs_lengths > 0) {
1518       double cards_per_entry_ratio =
1519         (double) cards_scanned / (double) _max_rs_lengths;
1520       if (_last_gc_was_young) {
1521         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1522       } else {
1523         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1524       }
1525     }
1526 
1527     // This is defensive. For a while _max_rs_lengths could get
1528     // smaller than _recorded_rs_lengths which was causing
1529     // rs_length_diff to get very large and mess up the RSet length
1530     // predictions. The reason was unsafe concurrent updates to the
1531     // _inc_cset_recorded_rs_lengths field which the code below guards
1532     // against (see CR 7118202). This bug has now been fixed (see CR
1533     // 7119027). However, I'm still worried that
1534     // _inc_cset_recorded_rs_lengths might still end up somewhat
1535     // inaccurate. The concurrent refinement thread calculates an
1536     // RSet's length concurrently with other CR threads updating it
1537     // which might cause it to calculate the length incorrectly (if,
1538     // say, it's in mid-coarsening). So I'll leave in the defensive
1539     // conditional below just in case.
1540     size_t rs_length_diff = 0;
1541     if (_max_rs_lengths > _recorded_rs_lengths) {
1542       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1543     }
1544     _rs_length_diff_seq->add((double) rs_length_diff);
1545 
1546     size_t copied_bytes = surviving_bytes;
1547     double cost_per_byte_ms = 0.0;
1548     if (copied_bytes > 0) {
1549       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1550       if (_in_marking_window) {
1551         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1552       } else {
1553         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1554       }
1555     }
1556 
1557     double all_other_time_ms = pause_time_ms -
1558       (update_rs_time + scan_rs_time + obj_copy_time + termination_time);
1559 
1560     double young_other_time_ms = 0.0;
1561     if (young_cset_region_length() > 0) {
1562       young_other_time_ms =
1563         _recorded_young_cset_choice_time_ms +
1564         _recorded_young_free_cset_time_ms;
1565       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1566                                           (double) young_cset_region_length());
1567     }
1568     double non_young_other_time_ms = 0.0;
1569     if (old_cset_region_length() > 0) {
1570       non_young_other_time_ms =
1571         _recorded_non_young_cset_choice_time_ms +
1572         _recorded_non_young_free_cset_time_ms;
1573 
1574       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1575                                             (double) old_cset_region_length());
1576     }
1577 
1578     double constant_other_time_ms = all_other_time_ms -
1579       (young_other_time_ms + non_young_other_time_ms);
1580     _constant_other_time_ms_seq->add(constant_other_time_ms);
1581 
1582     double survival_ratio = 0.0;
1583     if (_bytes_in_collection_set_before_gc > 0) {
1584       survival_ratio = (double) _bytes_copied_during_gc /
1585                                    (double) _bytes_in_collection_set_before_gc;
1586     }
1587 
1588     _pending_cards_seq->add((double) _pending_cards);
1589     _rs_lengths_seq->add((double) _max_rs_lengths);
1590   }
1591 
1592   _in_marking_window = new_in_marking_window;
1593   _in_marking_window_im = new_in_marking_window_im;
1594   _free_regions_at_end_of_collection = _g1->free_regions();
1595   update_young_list_target_length();
1596 
1597   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1598   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1599   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1600 
1601   _collectionSetChooser->verify();
1602 }
1603 
1604 #define EXT_SIZE_FORMAT "%d%s"
1605 #define EXT_SIZE_PARAMS(bytes)                                  \
1606   byte_size_in_proper_unit((bytes)),                            \
1607   proper_unit_for_byte_size((bytes))
1608 
1609 void G1CollectorPolicy::print_heap_transition() {
1610   if (G1Log::finer()) {
1611     YoungList* young_list = _g1->young_list();
1612     size_t eden_bytes = young_list->eden_used_bytes();
1613     size_t survivor_bytes = young_list->survivor_used_bytes();
1614     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1615     size_t used = _g1->used();
1616     size_t capacity = _g1->capacity();
1617     size_t eden_capacity =
1618       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1619 
1620     gclog_or_tty->print_cr(
1621       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1622       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1623       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1624       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1625       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1626       EXT_SIZE_PARAMS(_prev_eden_capacity),
1627       EXT_SIZE_PARAMS(eden_bytes),
1628       EXT_SIZE_PARAMS(eden_capacity),
1629       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1630       EXT_SIZE_PARAMS(survivor_bytes),
1631       EXT_SIZE_PARAMS(used_before_gc),
1632       EXT_SIZE_PARAMS(_capacity_before_gc),
1633       EXT_SIZE_PARAMS(used),
1634       EXT_SIZE_PARAMS(capacity));
1635 
1636     _prev_eden_capacity = eden_capacity;
1637   } else if (G1Log::fine()) {
1638     _g1->print_size_transition(gclog_or_tty,
1639                                _cur_collection_pause_used_at_start_bytes,
1640                                _g1->used(), _g1->capacity());
1641   }
1642 }
1643 
1644 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1645                                                      double update_rs_processed_buffers,
1646                                                      double goal_ms) {
1647   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1648   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1649 
1650   if (G1UseAdaptiveConcRefinement) {
1651     const int k_gy = 3, k_gr = 6;
1652     const double inc_k = 1.1, dec_k = 0.9;
1653 
1654     int g = cg1r->green_zone();
1655     if (update_rs_time > goal_ms) {
1656       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1657     } else {
1658       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1659         g = (int)MAX2(g * inc_k, g + 1.0);
1660       }
1661     }
1662     // Change the refinement threads params
1663     cg1r->set_green_zone(g);
1664     cg1r->set_yellow_zone(g * k_gy);
1665     cg1r->set_red_zone(g * k_gr);
1666     cg1r->reinitialize_threads();
1667 
1668     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1669     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1670                                     cg1r->yellow_zone());
1671     // Change the barrier params
1672     dcqs.set_process_completed_threshold(processing_threshold);
1673     dcqs.set_max_completed_queue(cg1r->red_zone());
1674   }
1675 
1676   int curr_queue_size = dcqs.completed_buffers_num();
1677   if (curr_queue_size >= cg1r->yellow_zone()) {
1678     dcqs.set_completed_queue_padding(curr_queue_size);
1679   } else {
1680     dcqs.set_completed_queue_padding(0);
1681   }
1682   dcqs.notify_if_necessary();
1683 }
1684 
1685 double
1686 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1687   size_t rs_length = predict_rs_length_diff();
1688   size_t card_num;
1689   if (gcs_are_young()) {
1690     card_num = predict_young_card_num(rs_length);
1691   } else {
1692     card_num = predict_non_young_card_num(rs_length);
1693   }
1694   return predict_base_elapsed_time_ms(pending_cards, card_num);
1695 }
1696 
1697 double
1698 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1699                                                 size_t scanned_cards) {
1700   return
1701     predict_rs_update_time_ms(pending_cards) +
1702     predict_rs_scan_time_ms(scanned_cards) +
1703     predict_constant_other_time_ms();
1704 }
1705 
1706 double
1707 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1708                                                   bool young) {
1709   size_t rs_length = hr->rem_set()->occupied();
1710   size_t card_num;
1711   if (gcs_are_young()) {
1712     card_num = predict_young_card_num(rs_length);
1713   } else {
1714     card_num = predict_non_young_card_num(rs_length);
1715   }
1716   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1717 
1718   double region_elapsed_time_ms =
1719     predict_rs_scan_time_ms(card_num) +
1720     predict_object_copy_time_ms(bytes_to_copy);
1721 
1722   if (young)
1723     region_elapsed_time_ms += predict_young_other_time_ms(1);
1724   else
1725     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1726 
1727   return region_elapsed_time_ms;
1728 }
1729 
1730 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1731   size_t bytes_to_copy;
1732   if (hr->is_marked())
1733     bytes_to_copy = hr->max_live_bytes();
1734   else {
1735     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1736     int age = hr->age_in_surv_rate_group();
1737     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1738     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1739   }
1740   return bytes_to_copy;
1741 }
1742 
1743 void
1744 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1745                                             uint survivor_cset_region_length) {
1746   _eden_cset_region_length     = eden_cset_region_length;
1747   _survivor_cset_region_length = survivor_cset_region_length;
1748   _old_cset_region_length      = 0;
1749 }
1750 
1751 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1752   _recorded_rs_lengths = rs_lengths;
1753 }
1754 
1755 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1756                                                double elapsed_ms) {
1757   _recent_gc_times_ms->add(elapsed_ms);
1758   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1759   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1760 }
1761 
1762 size_t G1CollectorPolicy::expansion_amount() {
1763   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1764   double threshold = _gc_overhead_perc;
1765   if (recent_gc_overhead > threshold) {
1766     // We will double the existing space, or take
1767     // G1ExpandByPercentOfAvailable % of the available expansion
1768     // space, whichever is smaller, bounded below by a minimum
1769     // expansion (unless that's all that's left.)
1770     const size_t min_expand_bytes = 1*M;
1771     size_t reserved_bytes = _g1->max_capacity();
1772     size_t committed_bytes = _g1->capacity();
1773     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1774     size_t expand_bytes;
1775     size_t expand_bytes_via_pct =
1776       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1777     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1778     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1779     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1780 
1781     ergo_verbose5(ErgoHeapSizing,
1782                   "attempt heap expansion",
1783                   ergo_format_reason("recent GC overhead higher than "
1784                                      "threshold after GC")
1785                   ergo_format_perc("recent GC overhead")
1786                   ergo_format_perc("threshold")
1787                   ergo_format_byte("uncommitted")
1788                   ergo_format_byte_perc("calculated expansion amount"),
1789                   recent_gc_overhead, threshold,
1790                   uncommitted_bytes,
1791                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1792 
1793     return expand_bytes;
1794   } else {
1795     return 0;
1796   }
1797 }
1798 
1799 class CountCSClosure: public HeapRegionClosure {
1800   G1CollectorPolicy* _g1_policy;
1801 public:
1802   CountCSClosure(G1CollectorPolicy* g1_policy) :
1803     _g1_policy(g1_policy) {}
1804   bool doHeapRegion(HeapRegion* r) {
1805     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
1806     return false;
1807   }
1808 };
1809 
1810 void G1CollectorPolicy::count_CS_bytes_used() {
1811   CountCSClosure cs_closure(this);
1812   _g1->collection_set_iterate(&cs_closure);
1813 }
1814 
1815 void G1CollectorPolicy::print_summary(int level,
1816                                       const char* str,
1817                                       NumberSeq* seq) const {
1818   double sum = seq->sum();
1819   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
1820                 str, sum / 1000.0, seq->avg());
1821 }
1822 
1823 void G1CollectorPolicy::print_summary_sd(int level,
1824                                          const char* str,
1825                                          NumberSeq* seq) const {
1826   print_summary(level, str, seq);
1827   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
1828                 seq->num(), seq->sd(), seq->maximum());
1829 }
1830 
1831 void G1CollectorPolicy::check_other_times(int level,
1832                                         NumberSeq* other_times_ms,
1833                                         NumberSeq* calc_other_times_ms) const {
1834   bool should_print = false;
1835   LineBuffer buf(level + 2);
1836 
1837   double max_sum = MAX2(fabs(other_times_ms->sum()),
1838                         fabs(calc_other_times_ms->sum()));
1839   double min_sum = MIN2(fabs(other_times_ms->sum()),
1840                         fabs(calc_other_times_ms->sum()));
1841   double sum_ratio = max_sum / min_sum;
1842   if (sum_ratio > 1.1) {
1843     should_print = true;
1844     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
1845   }
1846 
1847   double max_avg = MAX2(fabs(other_times_ms->avg()),
1848                         fabs(calc_other_times_ms->avg()));
1849   double min_avg = MIN2(fabs(other_times_ms->avg()),
1850                         fabs(calc_other_times_ms->avg()));
1851   double avg_ratio = max_avg / min_avg;
1852   if (avg_ratio > 1.1) {
1853     should_print = true;
1854     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
1855   }
1856 
1857   if (other_times_ms->sum() < -0.01) {
1858     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
1859   }
1860 
1861   if (other_times_ms->avg() < -0.01) {
1862     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
1863   }
1864 
1865   if (calc_other_times_ms->sum() < -0.01) {
1866     should_print = true;
1867     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
1868   }
1869 
1870   if (calc_other_times_ms->avg() < -0.01) {
1871     should_print = true;
1872     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
1873   }
1874 
1875   if (should_print)
1876     print_summary(level, "Other(Calc)", calc_other_times_ms);
1877 }
1878 
1879 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
1880   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1881   MainBodySummary*    body_summary = summary->main_body_summary();
1882   if (summary->get_total_seq()->num() > 0) {
1883     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
1884     if (body_summary != NULL) {
1885       print_summary(1, "Root Region Scan Wait", body_summary->get_root_region_scan_wait_seq());
1886       if (parallel) {
1887         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
1888         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
1889         print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
1890         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
1891         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
1892         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
1893         print_summary(2, "Termination", body_summary->get_termination_seq());
1894         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
1895         {
1896           NumberSeq* other_parts[] = {
1897             body_summary->get_ext_root_scan_seq(),
1898             body_summary->get_satb_filtering_seq(),
1899             body_summary->get_update_rs_seq(),
1900             body_summary->get_scan_rs_seq(),
1901             body_summary->get_obj_copy_seq(),
1902             body_summary->get_termination_seq()
1903           };
1904           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
1905                                         6, other_parts);
1906           check_other_times(2, body_summary->get_parallel_other_seq(),
1907                             &calc_other_times_ms);
1908         }
1909       } else {
1910         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
1911         print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
1912         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
1913         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
1914         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
1915       }
1916     }
1917     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
1918     print_summary(1, "Other", summary->get_other_seq());
1919     {
1920       if (body_summary != NULL) {
1921         NumberSeq calc_other_times_ms;
1922         if (parallel) {
1923           // parallel
1924           NumberSeq* other_parts[] = {
1925             body_summary->get_root_region_scan_wait_seq(),
1926             body_summary->get_parallel_seq(),
1927             body_summary->get_clear_ct_seq()
1928           };
1929           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
1930                                           3, other_parts);
1931         } else {
1932           // serial
1933           NumberSeq* other_parts[] = {
1934             body_summary->get_root_region_scan_wait_seq(),
1935             body_summary->get_update_rs_seq(),
1936             body_summary->get_ext_root_scan_seq(),
1937             body_summary->get_satb_filtering_seq(),
1938             body_summary->get_scan_rs_seq(),
1939             body_summary->get_obj_copy_seq()
1940           };
1941           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
1942                                           6, other_parts);
1943         }
1944         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
1945       }
1946     }
1947   } else {
1948     LineBuffer(1).append_and_print_cr("none");
1949   }
1950   LineBuffer(0).append_and_print_cr("");
1951 }
1952 
1953 void G1CollectorPolicy::print_tracing_info() const {
1954   if (TraceGen0Time) {
1955     gclog_or_tty->print_cr("ALL PAUSES");
1956     print_summary_sd(0, "Total", _all_pause_times_ms);
1957     gclog_or_tty->print_cr("");
1958     gclog_or_tty->print_cr("");
1959     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
1960     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
1961     gclog_or_tty->print_cr("");
1962 
1963     gclog_or_tty->print_cr("EVACUATION PAUSES");
1964     print_summary(_summary);
1965 
1966     gclog_or_tty->print_cr("MISC");
1967     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
1968     print_summary_sd(0, "Yields", _all_yield_times_ms);
1969     for (int i = 0; i < _aux_num; ++i) {
1970       if (_all_aux_times_ms[i].num() > 0) {
1971         char buffer[96];
1972         sprintf(buffer, "Aux%d", i);
1973         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
1974       }
1975     }
1976   }
1977   if (TraceGen1Time) {
1978     if (_all_full_gc_times_ms->num() > 0) {
1979       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
1980                  _all_full_gc_times_ms->num(),
1981                  _all_full_gc_times_ms->sum() / 1000.0);
1982       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
1983       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
1984                     _all_full_gc_times_ms->sd(),
1985                     _all_full_gc_times_ms->maximum());
1986     }
1987   }
1988 }
1989 
1990 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1991 #ifndef PRODUCT
1992   _short_lived_surv_rate_group->print_surv_rate_summary();
1993   // add this call for any other surv rate groups
1994 #endif // PRODUCT
1995 }
1996 
1997 #ifndef PRODUCT
1998 // for debugging, bit of a hack...
1999 static char*
2000 region_num_to_mbs(int length) {
2001   static char buffer[64];
2002   double bytes = (double) (length * HeapRegion::GrainBytes);
2003   double mbs = bytes / (double) (1024 * 1024);
2004   sprintf(buffer, "%7.2lfMB", mbs);
2005   return buffer;
2006 }
2007 #endif // PRODUCT
2008 
2009 uint G1CollectorPolicy::max_regions(int purpose) {
2010   switch (purpose) {
2011     case GCAllocForSurvived:
2012       return _max_survivor_regions;
2013     case GCAllocForTenured:
2014       return REGIONS_UNLIMITED;
2015     default:
2016       ShouldNotReachHere();
2017       return REGIONS_UNLIMITED;
2018   };
2019 }
2020 
2021 void G1CollectorPolicy::update_max_gc_locker_expansion() {
2022   uint expansion_region_num = 0;
2023   if (GCLockerEdenExpansionPercent > 0) {
2024     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
2025     double expansion_region_num_d = perc * (double) _young_list_target_length;
2026     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
2027     // less than 1.0) we'll get 1.
2028     expansion_region_num = (uint) ceil(expansion_region_num_d);
2029   } else {
2030     assert(expansion_region_num == 0, "sanity");
2031   }
2032   _young_list_max_length = _young_list_target_length + expansion_region_num;
2033   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
2034 }
2035 
2036 // Calculates survivor space parameters.
2037 void G1CollectorPolicy::update_survivors_policy() {
2038   double max_survivor_regions_d =
2039                  (double) _young_list_target_length / (double) SurvivorRatio;
2040   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
2041   // smaller than 1.0) we'll get 1.
2042   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
2043 
2044   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2045         HeapRegion::GrainWords * _max_survivor_regions);
2046 }
2047 
2048 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
2049                                                      GCCause::Cause gc_cause) {
2050   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2051   if (!during_cycle) {
2052     ergo_verbose1(ErgoConcCycles,
2053                   "request concurrent cycle initiation",
2054                   ergo_format_reason("requested by GC cause")
2055                   ergo_format_str("GC cause"),
2056                   GCCause::to_string(gc_cause));
2057     set_initiate_conc_mark_if_possible();
2058     return true;
2059   } else {
2060     ergo_verbose1(ErgoConcCycles,
2061                   "do not request concurrent cycle initiation",
2062                   ergo_format_reason("concurrent cycle already in progress")
2063                   ergo_format_str("GC cause"),
2064                   GCCause::to_string(gc_cause));
2065     return false;
2066   }
2067 }
2068 
2069 void
2070 G1CollectorPolicy::decide_on_conc_mark_initiation() {
2071   // We are about to decide on whether this pause will be an
2072   // initial-mark pause.
2073 
2074   // First, during_initial_mark_pause() should not be already set. We
2075   // will set it here if we have to. However, it should be cleared by
2076   // the end of the pause (it's only set for the duration of an
2077   // initial-mark pause).
2078   assert(!during_initial_mark_pause(), "pre-condition");
2079 
2080   if (initiate_conc_mark_if_possible()) {
2081     // We had noticed on a previous pause that the heap occupancy has
2082     // gone over the initiating threshold and we should start a
2083     // concurrent marking cycle. So we might initiate one.
2084 
2085     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2086     if (!during_cycle) {
2087       // The concurrent marking thread is not "during a cycle", i.e.,
2088       // it has completed the last one. So we can go ahead and
2089       // initiate a new cycle.
2090 
2091       set_during_initial_mark_pause();
2092       // We do not allow mixed GCs during marking.
2093       if (!gcs_are_young()) {
2094         set_gcs_are_young(true);
2095         ergo_verbose0(ErgoMixedGCs,
2096                       "end mixed GCs",
2097                       ergo_format_reason("concurrent cycle is about to start"));
2098       }
2099 
2100       // And we can now clear initiate_conc_mark_if_possible() as
2101       // we've already acted on it.
2102       clear_initiate_conc_mark_if_possible();
2103 
2104       ergo_verbose0(ErgoConcCycles,
2105                   "initiate concurrent cycle",
2106                   ergo_format_reason("concurrent cycle initiation requested"));
2107     } else {
2108       // The concurrent marking thread is still finishing up the
2109       // previous cycle. If we start one right now the two cycles
2110       // overlap. In particular, the concurrent marking thread might
2111       // be in the process of clearing the next marking bitmap (which
2112       // we will use for the next cycle if we start one). Starting a
2113       // cycle now will be bad given that parts of the marking
2114       // information might get cleared by the marking thread. And we
2115       // cannot wait for the marking thread to finish the cycle as it
2116       // periodically yields while clearing the next marking bitmap
2117       // and, if it's in a yield point, it's waiting for us to
2118       // finish. So, at this point we will not start a cycle and we'll
2119       // let the concurrent marking thread complete the last one.
2120       ergo_verbose0(ErgoConcCycles,
2121                     "do not initiate concurrent cycle",
2122                     ergo_format_reason("concurrent cycle already in progress"));
2123     }
2124   }
2125 }
2126 
2127 class KnownGarbageClosure: public HeapRegionClosure {
2128   G1CollectedHeap* _g1h;
2129   CollectionSetChooser* _hrSorted;
2130 
2131 public:
2132   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2133     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
2134 
2135   bool doHeapRegion(HeapRegion* r) {
2136     // We only include humongous regions in collection
2137     // sets when concurrent mark shows that their contained object is
2138     // unreachable.
2139 
2140     // Do we have any marking information for this region?
2141     if (r->is_marked()) {
2142       // We will skip any region that's currently used as an old GC
2143       // alloc region (we should not consider those for collection
2144       // before we fill them up).
2145       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
2146         _hrSorted->add_region(r);
2147       }
2148     }
2149     return false;
2150   }
2151 };
2152 
2153 class ParKnownGarbageHRClosure: public HeapRegionClosure {
2154   G1CollectedHeap* _g1h;
2155   CollectionSetChooser* _hrSorted;
2156   uint _marked_regions_added;
2157   size_t _reclaimable_bytes_added;
2158   uint _chunk_size;
2159   uint _cur_chunk_idx;
2160   uint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
2161 
2162   void get_new_chunk() {
2163     _cur_chunk_idx = _hrSorted->claim_array_chunk(_chunk_size);
2164     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
2165   }
2166   void add_region(HeapRegion* r) {
2167     if (_cur_chunk_idx == _cur_chunk_end) {
2168       get_new_chunk();
2169     }
2170     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
2171     _hrSorted->set_region(_cur_chunk_idx, r);
2172     _marked_regions_added++;
2173     _reclaimable_bytes_added += r->reclaimable_bytes();
2174     _cur_chunk_idx++;
2175   }
2176 
2177 public:
2178   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
2179                            uint chunk_size) :
2180       _g1h(G1CollectedHeap::heap()),
2181       _hrSorted(hrSorted), _chunk_size(chunk_size),
2182       _marked_regions_added(0), _reclaimable_bytes_added(0),
2183       _cur_chunk_idx(0), _cur_chunk_end(0) { }
2184 
2185   bool doHeapRegion(HeapRegion* r) {
2186     // Do we have any marking information for this region?
2187     if (r->is_marked()) {
2188       // We will skip any region that's currently used as an old GC
2189       // alloc region (we should not consider those for collection
2190       // before we fill them up).
2191       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
2192         add_region(r);
2193       }
2194     }
2195     return false;
2196   }
2197   uint marked_regions_added() { return _marked_regions_added; }
2198   size_t reclaimable_bytes_added() { return _reclaimable_bytes_added; }
2199 };
2200 
2201 class ParKnownGarbageTask: public AbstractGangTask {
2202   CollectionSetChooser* _hrSorted;
2203   uint _chunk_size;
2204   G1CollectedHeap* _g1;
2205 public:
2206   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
2207     AbstractGangTask("ParKnownGarbageTask"),
2208     _hrSorted(hrSorted), _chunk_size(chunk_size),
2209     _g1(G1CollectedHeap::heap()) { }
2210 
2211   void work(uint worker_id) {
2212     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
2213 
2214     // Back to zero for the claim value.
2215     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
2216                                          _g1->workers()->active_workers(),
2217                                          HeapRegion::InitialClaimValue);
2218     uint regions_added = parKnownGarbageCl.marked_regions_added();
2219     size_t reclaimable_bytes_added =
2220                                    parKnownGarbageCl.reclaimable_bytes_added();
2221     _hrSorted->update_totals(regions_added, reclaimable_bytes_added);
2222   }
2223 };
2224 
2225 void
2226 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
2227   _collectionSetChooser->clear();
2228 
2229   uint region_num = _g1->n_regions();
2230   if (G1CollectedHeap::use_parallel_gc_threads()) {
2231     const uint OverpartitionFactor = 4;
2232     uint WorkUnit;
2233     // The use of MinChunkSize = 8 in the original code
2234     // causes some assertion failures when the total number of
2235     // region is less than 8.  The code here tries to fix that.
2236     // Should the original code also be fixed?
2237     if (no_of_gc_threads > 0) {
2238       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
2239       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
2240                       MinWorkUnit);
2241     } else {
2242       assert(no_of_gc_threads > 0,
2243         "The active gc workers should be greater than 0");
2244       // In a product build do something reasonable to avoid a crash.
2245       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
2246       WorkUnit =
2247         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
2248              MinWorkUnit);
2249     }
2250     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
2251                                                            WorkUnit);
2252     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2253                                             (int) WorkUnit);
2254     _g1->workers()->run_task(&parKnownGarbageTask);
2255 
2256     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2257            "sanity check");
2258   } else {
2259     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
2260     _g1->heap_region_iterate(&knownGarbagecl);
2261   }
2262 
2263   _collectionSetChooser->sort_regions();
2264 
2265   double end_sec = os::elapsedTime();
2266   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
2267   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
2268   _cur_mark_stop_world_time_ms += elapsed_time_ms;
2269   _prev_collection_pause_end_ms += elapsed_time_ms;
2270   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
2271 }
2272 
2273 // Add the heap region at the head of the non-incremental collection set
2274 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
2275   assert(_inc_cset_build_state == Active, "Precondition");
2276   assert(!hr->is_young(), "non-incremental add of young region");
2277 
2278   assert(!hr->in_collection_set(), "should not already be in the CSet");
2279   hr->set_in_collection_set(true);
2280   hr->set_next_in_collection_set(_collection_set);
2281   _collection_set = hr;
2282   _collection_set_bytes_used_before += hr->used();
2283   _g1->register_region_with_in_cset_fast_test(hr);
2284   size_t rs_length = hr->rem_set()->occupied();
2285   _recorded_rs_lengths += rs_length;
2286   _old_cset_region_length += 1;
2287 }
2288 
2289 // Initialize the per-collection-set information
2290 void G1CollectorPolicy::start_incremental_cset_building() {
2291   assert(_inc_cset_build_state == Inactive, "Precondition");
2292 
2293   _inc_cset_head = NULL;
2294   _inc_cset_tail = NULL;
2295   _inc_cset_bytes_used_before = 0;
2296 
2297   _inc_cset_max_finger = 0;
2298   _inc_cset_recorded_rs_lengths = 0;
2299   _inc_cset_recorded_rs_lengths_diffs = 0;
2300   _inc_cset_predicted_elapsed_time_ms = 0.0;
2301   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
2302   _inc_cset_build_state = Active;
2303 }
2304 
2305 void G1CollectorPolicy::finalize_incremental_cset_building() {
2306   assert(_inc_cset_build_state == Active, "Precondition");
2307   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2308 
2309   // The two "main" fields, _inc_cset_recorded_rs_lengths and
2310   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
2311   // that adds a new region to the CSet. Further updates by the
2312   // concurrent refinement thread that samples the young RSet lengths
2313   // are accumulated in the *_diffs fields. Here we add the diffs to
2314   // the "main" fields.
2315 
2316   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
2317     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
2318   } else {
2319     // This is defensive. The diff should in theory be always positive
2320     // as RSets can only grow between GCs. However, given that we
2321     // sample their size concurrently with other threads updating them
2322     // it's possible that we might get the wrong size back, which
2323     // could make the calculations somewhat inaccurate.
2324     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
2325     if (_inc_cset_recorded_rs_lengths >= diffs) {
2326       _inc_cset_recorded_rs_lengths -= diffs;
2327     } else {
2328       _inc_cset_recorded_rs_lengths = 0;
2329     }
2330   }
2331   _inc_cset_predicted_elapsed_time_ms +=
2332                                      _inc_cset_predicted_elapsed_time_ms_diffs;
2333 
2334   _inc_cset_recorded_rs_lengths_diffs = 0;
2335   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
2336 }
2337 
2338 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
2339   // This routine is used when:
2340   // * adding survivor regions to the incremental cset at the end of an
2341   //   evacuation pause,
2342   // * adding the current allocation region to the incremental cset
2343   //   when it is retired, and
2344   // * updating existing policy information for a region in the
2345   //   incremental cset via young list RSet sampling.
2346   // Therefore this routine may be called at a safepoint by the
2347   // VM thread, or in-between safepoints by mutator threads (when
2348   // retiring the current allocation region) or a concurrent
2349   // refine thread (RSet sampling).
2350 
2351   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2352   size_t used_bytes = hr->used();
2353   _inc_cset_recorded_rs_lengths += rs_length;
2354   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
2355   _inc_cset_bytes_used_before += used_bytes;
2356 
2357   // Cache the values we have added to the aggregated informtion
2358   // in the heap region in case we have to remove this region from
2359   // the incremental collection set, or it is updated by the
2360   // rset sampling code
2361   hr->set_recorded_rs_length(rs_length);
2362   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
2363 }
2364 
2365 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
2366                                                      size_t new_rs_length) {
2367   // Update the CSet information that is dependent on the new RS length
2368   assert(hr->is_young(), "Precondition");
2369   assert(!SafepointSynchronize::is_at_safepoint(),
2370                                                "should not be at a safepoint");
2371 
2372   // We could have updated _inc_cset_recorded_rs_lengths and
2373   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
2374   // that atomically, as this code is executed by a concurrent
2375   // refinement thread, potentially concurrently with a mutator thread
2376   // allocating a new region and also updating the same fields. To
2377   // avoid the atomic operations we accumulate these updates on two
2378   // separate fields (*_diffs) and we'll just add them to the "main"
2379   // fields at the start of a GC.
2380 
2381   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
2382   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
2383   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
2384 
2385   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2386   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2387   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
2388   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
2389 
2390   hr->set_recorded_rs_length(new_rs_length);
2391   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
2392 }
2393 
2394 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2395   assert(hr->is_young(), "invariant");
2396   assert(hr->young_index_in_cset() > -1, "should have already been set");
2397   assert(_inc_cset_build_state == Active, "Precondition");
2398 
2399   // We need to clear and set the cached recorded/cached collection set
2400   // information in the heap region here (before the region gets added
2401   // to the collection set). An individual heap region's cached values
2402   // are calculated, aggregated with the policy collection set info,
2403   // and cached in the heap region here (initially) and (subsequently)
2404   // by the Young List sampling code.
2405 
2406   size_t rs_length = hr->rem_set()->occupied();
2407   add_to_incremental_cset_info(hr, rs_length);
2408 
2409   HeapWord* hr_end = hr->end();
2410   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
2411 
2412   assert(!hr->in_collection_set(), "invariant");
2413   hr->set_in_collection_set(true);
2414   assert( hr->next_in_collection_set() == NULL, "invariant");
2415 
2416   _g1->register_region_with_in_cset_fast_test(hr);
2417 }
2418 
2419 // Add the region at the RHS of the incremental cset
2420 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
2421   // We should only ever be appending survivors at the end of a pause
2422   assert( hr->is_survivor(), "Logic");
2423 
2424   // Do the 'common' stuff
2425   add_region_to_incremental_cset_common(hr);
2426 
2427   // Now add the region at the right hand side
2428   if (_inc_cset_tail == NULL) {
2429     assert(_inc_cset_head == NULL, "invariant");
2430     _inc_cset_head = hr;
2431   } else {
2432     _inc_cset_tail->set_next_in_collection_set(hr);
2433   }
2434   _inc_cset_tail = hr;
2435 }
2436 
2437 // Add the region to the LHS of the incremental cset
2438 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2439   // Survivors should be added to the RHS at the end of a pause
2440   assert(!hr->is_survivor(), "Logic");
2441 
2442   // Do the 'common' stuff
2443   add_region_to_incremental_cset_common(hr);
2444 
2445   // Add the region at the left hand side
2446   hr->set_next_in_collection_set(_inc_cset_head);
2447   if (_inc_cset_head == NULL) {
2448     assert(_inc_cset_tail == NULL, "Invariant");
2449     _inc_cset_tail = hr;
2450   }
2451   _inc_cset_head = hr;
2452 }
2453 
2454 #ifndef PRODUCT
2455 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2456   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2457 
2458   st->print_cr("\nCollection_set:");
2459   HeapRegion* csr = list_head;
2460   while (csr != NULL) {
2461     HeapRegion* next = csr->next_in_collection_set();
2462     assert(csr->in_collection_set(), "bad CS");
2463     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
2464                  HR_FORMAT_PARAMS(csr),
2465                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
2466                  csr->age_in_surv_rate_group_cond());
2467     csr = next;
2468   }
2469 }
2470 #endif // !PRODUCT
2471 
2472 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2473                                                 const char* false_action_str) {
2474   CollectionSetChooser* cset_chooser = _collectionSetChooser;
2475   if (cset_chooser->is_empty()) {
2476     ergo_verbose0(ErgoMixedGCs,
2477                   false_action_str,
2478                   ergo_format_reason("candidate old regions not available"));
2479     return false;
2480   }
2481   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2482   size_t capacity_bytes = _g1->capacity();
2483   double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
2484   double threshold = (double) G1HeapWastePercent;
2485   if (perc < threshold) {
2486     ergo_verbose4(ErgoMixedGCs,
2487               false_action_str,
2488               ergo_format_reason("reclaimable percentage lower than threshold")
2489               ergo_format_region("candidate old regions")
2490               ergo_format_byte_perc("reclaimable")
2491               ergo_format_perc("threshold"),
2492               cset_chooser->remaining_regions(),
2493               reclaimable_bytes, perc, threshold);
2494     return false;
2495   }
2496 
2497   ergo_verbose4(ErgoMixedGCs,
2498                 true_action_str,
2499                 ergo_format_reason("candidate old regions available")
2500                 ergo_format_region("candidate old regions")
2501                 ergo_format_byte_perc("reclaimable")
2502                 ergo_format_perc("threshold"),
2503                 cset_chooser->remaining_regions(),
2504                 reclaimable_bytes, perc, threshold);
2505   return true;
2506 }
2507 
2508 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
2509   // Set this here - in case we're not doing young collections.
2510   double non_young_start_time_sec = os::elapsedTime();
2511 
2512   YoungList* young_list = _g1->young_list();
2513   finalize_incremental_cset_building();
2514 
2515   guarantee(target_pause_time_ms > 0.0,
2516             err_msg("target_pause_time_ms = %1.6lf should be positive",
2517                     target_pause_time_ms));
2518   guarantee(_collection_set == NULL, "Precondition");
2519 
2520   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2521   double predicted_pause_time_ms = base_time_ms;
2522   double time_remaining_ms = target_pause_time_ms - base_time_ms;
2523 
2524   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2525                 "start choosing CSet",
2526                 ergo_format_ms("predicted base time")
2527                 ergo_format_ms("remaining time")
2528                 ergo_format_ms("target pause time"),
2529                 base_time_ms, time_remaining_ms, target_pause_time_ms);
2530 
2531   HeapRegion* hr;
2532   double young_start_time_sec = os::elapsedTime();
2533 
2534   _collection_set_bytes_used_before = 0;
2535   _last_gc_was_young = gcs_are_young() ? true : false;
2536 
2537   if (_last_gc_was_young) {
2538     ++_young_pause_num;
2539   } else {
2540     ++_mixed_pause_num;
2541   }
2542 
2543   // The young list is laid with the survivor regions from the previous
2544   // pause are appended to the RHS of the young list, i.e.
2545   //   [Newly Young Regions ++ Survivors from last pause].
2546 
2547   uint survivor_region_length = young_list->survivor_length();
2548   uint eden_region_length = young_list->length() - survivor_region_length;
2549   init_cset_region_lengths(eden_region_length, survivor_region_length);
2550   hr = young_list->first_survivor_region();
2551   while (hr != NULL) {
2552     assert(hr->is_survivor(), "badly formed young list");
2553     hr->set_young();
2554     hr = hr->get_next_young_region();
2555   }
2556 
2557   // Clear the fields that point to the survivor list - they are all young now.
2558   young_list->clear_survivors();
2559 
2560   _collection_set = _inc_cset_head;
2561   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2562   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
2563   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2564 
2565   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2566                 "add young regions to CSet",
2567                 ergo_format_region("eden")
2568                 ergo_format_region("survivors")
2569                 ergo_format_ms("predicted young region time"),
2570                 eden_region_length, survivor_region_length,
2571                 _inc_cset_predicted_elapsed_time_ms);
2572 
2573   // The number of recorded young regions is the incremental
2574   // collection set's current size
2575   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2576 
2577   double young_end_time_sec = os::elapsedTime();
2578   _recorded_young_cset_choice_time_ms =
2579     (young_end_time_sec - young_start_time_sec) * 1000.0;
2580 
2581   // We are doing young collections so reset this.
2582   non_young_start_time_sec = young_end_time_sec;
2583 
2584   if (!gcs_are_young()) {
2585     CollectionSetChooser* cset_chooser = _collectionSetChooser;
2586     cset_chooser->verify();
2587     const uint min_old_cset_length = cset_chooser->calc_min_old_cset_length();
2588     const uint max_old_cset_length = cset_chooser->calc_max_old_cset_length();
2589 
2590     uint expensive_region_num = 0;
2591     bool check_time_remaining = adaptive_young_list_length();
2592     HeapRegion* hr = cset_chooser->peek();
2593     while (hr != NULL) {
2594       if (old_cset_region_length() >= max_old_cset_length) {
2595         // Added maximum number of old regions to the CSet.
2596         ergo_verbose2(ErgoCSetConstruction,
2597                       "finish adding old regions to CSet",
2598                       ergo_format_reason("old CSet region num reached max")
2599                       ergo_format_region("old")
2600                       ergo_format_region("max"),
2601                       old_cset_region_length(), max_old_cset_length);
2602         break;
2603       }
2604 
2605       double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
2606       if (check_time_remaining) {
2607         if (predicted_time_ms > time_remaining_ms) {
2608           // Too expensive for the current CSet.
2609 
2610           if (old_cset_region_length() >= min_old_cset_length) {
2611             // We have added the minimum number of old regions to the CSet,
2612             // we are done with this CSet.
2613             ergo_verbose4(ErgoCSetConstruction,
2614                           "finish adding old regions to CSet",
2615                           ergo_format_reason("predicted time is too high")
2616                           ergo_format_ms("predicted time")
2617                           ergo_format_ms("remaining time")
2618                           ergo_format_region("old")
2619                           ergo_format_region("min"),
2620                           predicted_time_ms, time_remaining_ms,
2621                           old_cset_region_length(), min_old_cset_length);
2622             break;
2623           }
2624 
2625           // We'll add it anyway given that we haven't reached the
2626           // minimum number of old regions.
2627           expensive_region_num += 1;
2628         }
2629       } else {
2630         if (old_cset_region_length() >= min_old_cset_length) {
2631           // In the non-auto-tuning case, we'll finish adding regions
2632           // to the CSet if we reach the minimum.
2633           ergo_verbose2(ErgoCSetConstruction,
2634                         "finish adding old regions to CSet",
2635                         ergo_format_reason("old CSet region num reached min")
2636                         ergo_format_region("old")
2637                         ergo_format_region("min"),
2638                         old_cset_region_length(), min_old_cset_length);
2639           break;
2640         }
2641       }
2642 
2643       // We will add this region to the CSet.
2644       time_remaining_ms -= predicted_time_ms;
2645       predicted_pause_time_ms += predicted_time_ms;
2646       cset_chooser->remove_and_move_to_next(hr);
2647       _g1->old_set_remove(hr);
2648       add_old_region_to_cset(hr);
2649 
2650       hr = cset_chooser->peek();
2651     }
2652     if (hr == NULL) {
2653       ergo_verbose0(ErgoCSetConstruction,
2654                     "finish adding old regions to CSet",
2655                     ergo_format_reason("candidate old regions not available"));
2656     }
2657 
2658     if (expensive_region_num > 0) {
2659       // We print the information once here at the end, predicated on
2660       // whether we added any apparently expensive regions or not, to
2661       // avoid generating output per region.
2662       ergo_verbose4(ErgoCSetConstruction,
2663                     "added expensive regions to CSet",
2664                     ergo_format_reason("old CSet region num not reached min")
2665                     ergo_format_region("old")
2666                     ergo_format_region("expensive")
2667                     ergo_format_region("min")
2668                     ergo_format_ms("remaining time"),
2669                     old_cset_region_length(),
2670                     expensive_region_num,
2671                     min_old_cset_length,
2672                     time_remaining_ms);
2673     }
2674 
2675     cset_chooser->verify();
2676   }
2677 
2678   stop_incremental_cset_building();
2679 
2680   count_CS_bytes_used();
2681 
2682   ergo_verbose5(ErgoCSetConstruction,
2683                 "finish choosing CSet",
2684                 ergo_format_region("eden")
2685                 ergo_format_region("survivors")
2686                 ergo_format_region("old")
2687                 ergo_format_ms("predicted pause time")
2688                 ergo_format_ms("target pause time"),
2689                 eden_region_length, survivor_region_length,
2690                 old_cset_region_length(),
2691                 predicted_pause_time_ms, target_pause_time_ms);
2692 
2693   double non_young_end_time_sec = os::elapsedTime();
2694   _recorded_non_young_cset_choice_time_ms =
2695     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
2696 }