1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/spaceDecorator.hpp"
  29 #include "memory/defNewGeneration.inline.hpp"
  30 #include "memory/gcLocker.inline.hpp"
  31 #include "memory/genCollectedHeap.hpp"
  32 #include "memory/genOopClosures.inline.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/iterator.hpp"
  35 #include "memory/referencePolicy.hpp"
  36 #include "memory/space.inline.hpp"
  37 #include "oops/instanceRefKlass.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "utilities/copy.hpp"
  41 #include "utilities/stack.inline.hpp"
  42 #ifdef TARGET_OS_FAMILY_linux
  43 # include "thread_linux.inline.hpp"
  44 #endif
  45 #ifdef TARGET_OS_FAMILY_solaris
  46 # include "thread_solaris.inline.hpp"
  47 #endif
  48 #ifdef TARGET_OS_FAMILY_windows
  49 # include "thread_windows.inline.hpp"
  50 #endif
  51 #ifdef TARGET_OS_FAMILY_bsd
  52 # include "thread_bsd.inline.hpp"
  53 #endif
  54 
  55 //
  56 // DefNewGeneration functions.
  57 
  58 // Methods of protected closure types.
  59 
  60 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  61   assert(g->level() == 0, "Optimized for youngest gen.");
  62 }
  63 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
  64   assert(false, "Do not call.");
  65 }
  66 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  67   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  68 }
  69 
  70 DefNewGeneration::KeepAliveClosure::
  71 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  72   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  73   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
  74   _rs = (CardTableRS*)rs;
  75 }
  76 
  77 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  78 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  79 
  80 
  81 DefNewGeneration::FastKeepAliveClosure::
  82 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  83   DefNewGeneration::KeepAliveClosure(cl) {
  84   _boundary = g->reserved().end();
  85 }
  86 
  87 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  88 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  89 
  90 DefNewGeneration::EvacuateFollowersClosure::
  91 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  92                          ScanClosure* cur, ScanClosure* older) :
  93   _gch(gch), _level(level),
  94   _scan_cur_or_nonheap(cur), _scan_older(older)
  95 {}
  96 
  97 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  98   do {
  99     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 100                                        _scan_older);
 101   } while (!_gch->no_allocs_since_save_marks(_level));
 102 }
 103 
 104 DefNewGeneration::FastEvacuateFollowersClosure::
 105 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
 106                              DefNewGeneration* gen,
 107                              FastScanClosure* cur, FastScanClosure* older) :
 108   _gch(gch), _level(level), _gen(gen),
 109   _scan_cur_or_nonheap(cur), _scan_older(older)
 110 {}
 111 
 112 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 113   do {
 114     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 115                                        _scan_older);
 116   } while (!_gch->no_allocs_since_save_marks(_level));
 117   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 118 }
 119 
 120 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 121   OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 122 {
 123   assert(_g->level() == 0, "Optimized for youngest generation");
 124   _boundary = _g->reserved().end();
 125 }
 126 
 127 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 128 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 129 
 130 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 131   OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 132 {
 133   assert(_g->level() == 0, "Optimized for youngest generation");
 134   _boundary = _g->reserved().end();
 135 }
 136 
 137 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 138 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 139 
 140 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 141   OopClosure(g->ref_processor()), _g(g)
 142 {
 143   assert(_g->level() == 0, "Optimized for youngest generation");
 144   _boundary = _g->reserved().end();
 145 }
 146 
 147 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 148 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 149 
 150 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 151 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 152 
 153 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 154                                    size_t initial_size,
 155                                    int level,
 156                                    const char* policy)
 157   : Generation(rs, initial_size, level),
 158     _promo_failure_drain_in_progress(false),
 159     _should_allocate_from_space(false)
 160 {
 161   MemRegion cmr((HeapWord*)_virtual_space.low(),
 162                 (HeapWord*)_virtual_space.high());
 163   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 164 
 165   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
 166     _eden_space = new ConcEdenSpace(this);
 167   } else {
 168     _eden_space = new EdenSpace(this);
 169   }
 170   _from_space = new ContiguousSpace();
 171   _to_space   = new ContiguousSpace();
 172 
 173   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 174     vm_exit_during_initialization("Could not allocate a new gen space");
 175 
 176   // Compute the maximum eden and survivor space sizes. These sizes
 177   // are computed assuming the entire reserved space is committed.
 178   // These values are exported as performance counters.
 179   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
 180   uintx size = _virtual_space.reserved_size();
 181   _max_survivor_size = compute_survivor_size(size, alignment);
 182   _max_eden_size = size - (2*_max_survivor_size);
 183 
 184   // allocate the performance counters
 185 
 186   // Generation counters -- generation 0, 3 subspaces
 187   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
 188   _gc_counters = new CollectorCounters(policy, 0);
 189 
 190   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 191                                       _gen_counters);
 192   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 193                                       _gen_counters);
 194   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 195                                     _gen_counters);
 196 
 197   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 198   update_counters();
 199   _next_gen = NULL;
 200   _tenuring_threshold = MaxTenuringThreshold;
 201   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 202 }
 203 
 204 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 205                                                 bool clear_space,
 206                                                 bool mangle_space) {
 207   uintx alignment =
 208     GenCollectedHeap::heap()->collector_policy()->min_alignment();
 209 
 210   // If the spaces are being cleared (only done at heap initialization
 211   // currently), the survivor spaces need not be empty.
 212   // Otherwise, no care is taken for used areas in the survivor spaces
 213   // so check.
 214   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 215     "Initialization of the survivor spaces assumes these are empty");
 216 
 217   // Compute sizes
 218   uintx size = _virtual_space.committed_size();
 219   uintx survivor_size = compute_survivor_size(size, alignment);
 220   uintx eden_size = size - (2*survivor_size);
 221   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 222 
 223   if (eden_size < minimum_eden_size) {
 224     // May happen due to 64Kb rounding, if so adjust eden size back up
 225     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 226     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 227     uintx unaligned_survivor_size =
 228       align_size_down(maximum_survivor_size, alignment);
 229     survivor_size = MAX2(unaligned_survivor_size, alignment);
 230     eden_size = size - (2*survivor_size);
 231     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 232     assert(eden_size >= minimum_eden_size, "just checking");
 233   }
 234 
 235   char *eden_start = _virtual_space.low();
 236   char *from_start = eden_start + eden_size;
 237   char *to_start   = from_start + survivor_size;
 238   char *to_end     = to_start   + survivor_size;
 239 
 240   assert(to_end == _virtual_space.high(), "just checking");
 241   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 242   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 243   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 244 
 245   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 246   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 247   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 248 
 249   // A minimum eden size implies that there is a part of eden that
 250   // is being used and that affects the initialization of any
 251   // newly formed eden.
 252   bool live_in_eden = minimum_eden_size > 0;
 253 
 254   // If not clearing the spaces, do some checking to verify that
 255   // the space are already mangled.
 256   if (!clear_space) {
 257     // Must check mangling before the spaces are reshaped.  Otherwise,
 258     // the bottom or end of one space may have moved into another
 259     // a failure of the check may not correctly indicate which space
 260     // is not properly mangled.
 261     if (ZapUnusedHeapArea) {
 262       HeapWord* limit = (HeapWord*) _virtual_space.high();
 263       eden()->check_mangled_unused_area(limit);
 264       from()->check_mangled_unused_area(limit);
 265         to()->check_mangled_unused_area(limit);
 266     }
 267   }
 268 
 269   // Reset the spaces for their new regions.
 270   eden()->initialize(edenMR,
 271                      clear_space && !live_in_eden,
 272                      SpaceDecorator::Mangle);
 273   // If clear_space and live_in_eden, we will not have cleared any
 274   // portion of eden above its top. This can cause newly
 275   // expanded space not to be mangled if using ZapUnusedHeapArea.
 276   // We explicitly do such mangling here.
 277   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 278     eden()->mangle_unused_area();
 279   }
 280   from()->initialize(fromMR, clear_space, mangle_space);
 281   to()->initialize(toMR, clear_space, mangle_space);
 282 
 283   // Set next compaction spaces.
 284   eden()->set_next_compaction_space(from());
 285   // The to-space is normally empty before a compaction so need
 286   // not be considered.  The exception is during promotion
 287   // failure handling when to-space can contain live objects.
 288   from()->set_next_compaction_space(NULL);
 289 }
 290 
 291 void DefNewGeneration::swap_spaces() {
 292   ContiguousSpace* s = from();
 293   _from_space        = to();
 294   _to_space          = s;
 295   eden()->set_next_compaction_space(from());
 296   // The to-space is normally empty before a compaction so need
 297   // not be considered.  The exception is during promotion
 298   // failure handling when to-space can contain live objects.
 299   from()->set_next_compaction_space(NULL);
 300 
 301   if (UsePerfData) {
 302     CSpaceCounters* c = _from_counters;
 303     _from_counters = _to_counters;
 304     _to_counters = c;
 305   }
 306 }
 307 
 308 bool DefNewGeneration::expand(size_t bytes) {
 309   MutexLocker x(ExpandHeap_lock);
 310   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 311   bool success = _virtual_space.expand_by(bytes);
 312   if (success && ZapUnusedHeapArea) {
 313     // Mangle newly committed space immediately because it
 314     // can be done here more simply that after the new
 315     // spaces have been computed.
 316     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 317     MemRegion mangle_region(prev_high, new_high);
 318     SpaceMangler::mangle_region(mangle_region);
 319   }
 320 
 321   // Do not attempt an expand-to-the reserve size.  The
 322   // request should properly observe the maximum size of
 323   // the generation so an expand-to-reserve should be
 324   // unnecessary.  Also a second call to expand-to-reserve
 325   // value potentially can cause an undue expansion.
 326   // For example if the first expand fail for unknown reasons,
 327   // but the second succeeds and expands the heap to its maximum
 328   // value.
 329   if (GC_locker::is_active()) {
 330     if (PrintGC && Verbose) {
 331       gclog_or_tty->print_cr("Garbage collection disabled, "
 332         "expanded heap instead");
 333     }
 334   }
 335 
 336   return success;
 337 }
 338 
 339 
 340 void DefNewGeneration::compute_new_size() {
 341   // This is called after a gc that includes the following generation
 342   // (which is required to exist.)  So from-space will normally be empty.
 343   // Note that we check both spaces, since if scavenge failed they revert roles.
 344   // If not we bail out (otherwise we would have to relocate the objects)
 345   if (!from()->is_empty() || !to()->is_empty()) {
 346     return;
 347   }
 348 
 349   int next_level = level() + 1;
 350   GenCollectedHeap* gch = GenCollectedHeap::heap();
 351   assert(next_level < gch->_n_gens,
 352          "DefNewGeneration cannot be an oldest gen");
 353 
 354   Generation* next_gen = gch->_gens[next_level];
 355   size_t old_size = next_gen->capacity();
 356   size_t new_size_before = _virtual_space.committed_size();
 357   size_t min_new_size = spec()->init_size();
 358   size_t max_new_size = reserved().byte_size();
 359   assert(min_new_size <= new_size_before &&
 360          new_size_before <= max_new_size,
 361          "just checking");
 362   // All space sizes must be multiples of Generation::GenGrain.
 363   size_t alignment = Generation::GenGrain;
 364 
 365   // Compute desired new generation size based on NewRatio and
 366   // NewSizeThreadIncrease
 367   size_t desired_new_size = old_size/NewRatio;
 368   int threads_count = Threads::number_of_non_daemon_threads();
 369   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 370   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 371 
 372   // Adjust new generation size
 373   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 374   assert(desired_new_size <= max_new_size, "just checking");
 375 
 376   bool changed = false;
 377   if (desired_new_size > new_size_before) {
 378     size_t change = desired_new_size - new_size_before;
 379     assert(change % alignment == 0, "just checking");
 380     if (expand(change)) {
 381        changed = true;
 382     }
 383     // If the heap failed to expand to the desired size,
 384     // "changed" will be false.  If the expansion failed
 385     // (and at this point it was expected to succeed),
 386     // ignore the failure (leaving "changed" as false).
 387   }
 388   if (desired_new_size < new_size_before && eden()->is_empty()) {
 389     // bail out of shrinking if objects in eden
 390     size_t change = new_size_before - desired_new_size;
 391     assert(change % alignment == 0, "just checking");
 392     _virtual_space.shrink_by(change);
 393     changed = true;
 394   }
 395   if (changed) {
 396     // The spaces have already been mangled at this point but
 397     // may not have been cleared (set top = bottom) and should be.
 398     // Mangling was done when the heap was being expanded.
 399     compute_space_boundaries(eden()->used(),
 400                              SpaceDecorator::Clear,
 401                              SpaceDecorator::DontMangle);
 402     MemRegion cmr((HeapWord*)_virtual_space.low(),
 403                   (HeapWord*)_virtual_space.high());
 404     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 405     if (Verbose && PrintGC) {
 406       size_t new_size_after  = _virtual_space.committed_size();
 407       size_t eden_size_after = eden()->capacity();
 408       size_t survivor_size_after = from()->capacity();
 409       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 410         SIZE_FORMAT "K [eden="
 411         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 412         new_size_before/K, new_size_after/K,
 413         eden_size_after/K, survivor_size_after/K);
 414       if (WizardMode) {
 415         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 416           thread_increase_size/K, threads_count);
 417       }
 418       gclog_or_tty->cr();
 419     }
 420   }
 421 }
 422 
 423 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
 424   // $$$ This may be wrong in case of "scavenge failure"?
 425   eden()->object_iterate(cl);
 426 }
 427 
 428 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 429   assert(false, "NYI -- are you sure you want to call this?");
 430 }
 431 
 432 
 433 size_t DefNewGeneration::capacity() const {
 434   return eden()->capacity()
 435        + from()->capacity();  // to() is only used during scavenge
 436 }
 437 
 438 
 439 size_t DefNewGeneration::used() const {
 440   return eden()->used()
 441        + from()->used();      // to() is only used during scavenge
 442 }
 443 
 444 
 445 size_t DefNewGeneration::free() const {
 446   return eden()->free()
 447        + from()->free();      // to() is only used during scavenge
 448 }
 449 
 450 size_t DefNewGeneration::max_capacity() const {
 451   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
 452   const size_t reserved_bytes = reserved().byte_size();
 453   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 454 }
 455 
 456 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 457   return eden()->free();
 458 }
 459 
 460 size_t DefNewGeneration::capacity_before_gc() const {
 461   return eden()->capacity();
 462 }
 463 
 464 size_t DefNewGeneration::contiguous_available() const {
 465   return eden()->free();
 466 }
 467 
 468 
 469 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 470 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 471 
 472 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 473   eden()->object_iterate(blk);
 474   from()->object_iterate(blk);
 475 }
 476 
 477 
 478 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 479                                      bool usedOnly) {
 480   blk->do_space(eden());
 481   blk->do_space(from());
 482   blk->do_space(to());
 483 }
 484 
 485 // The last collection bailed out, we are running out of heap space,
 486 // so we try to allocate the from-space, too.
 487 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 488   HeapWord* result = NULL;
 489   if (Verbose && PrintGCDetails) {
 490     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
 491                         "  will_fail: %s"
 492                         "  heap_lock: %s"
 493                         "  free: " SIZE_FORMAT,
 494                         size,
 495                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 496                           "true" : "false",
 497                         Heap_lock->is_locked() ? "locked" : "unlocked",
 498                         from()->free());
 499   }
 500   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 501     if (Heap_lock->owned_by_self() ||
 502         (SafepointSynchronize::is_at_safepoint() &&
 503          Thread::current()->is_VM_thread())) {
 504       // If the Heap_lock is not locked by this thread, this will be called
 505       // again later with the Heap_lock held.
 506       result = from()->allocate(size);
 507     } else if (PrintGC && Verbose) {
 508       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 509     }
 510   } else if (PrintGC && Verbose) {
 511     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 512   }
 513   if (PrintGC && Verbose) {
 514     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 515   }
 516   return result;
 517 }
 518 
 519 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 520                                                 bool   is_tlab,
 521                                                 bool   parallel) {
 522   // We don't attempt to expand the young generation (but perhaps we should.)
 523   return allocate(size, is_tlab);
 524 }
 525 
 526 
 527 void DefNewGeneration::collect(bool   full,
 528                                bool   clear_all_soft_refs,
 529                                size_t size,
 530                                bool   is_tlab) {
 531   assert(full || size > 0, "otherwise we don't want to collect");
 532   GenCollectedHeap* gch = GenCollectedHeap::heap();
 533   _next_gen = gch->next_gen(this);
 534   assert(_next_gen != NULL,
 535     "This must be the youngest gen, and not the only gen");
 536 
 537   // If the next generation is too full to accomodate promotion
 538   // from this generation, pass on collection; let the next generation
 539   // do it.
 540   if (!collection_attempt_is_safe()) {
 541     if (Verbose && PrintGCDetails) {
 542       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 543     }
 544     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 545     return;
 546   }
 547   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 548 
 549   init_assuming_no_promotion_failure();
 550 
 551   TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
 552   // Capture heap used before collection (for printing).
 553   size_t gch_prev_used = gch->used();
 554 
 555   SpecializationStats::clear();
 556 
 557   // These can be shared for all code paths
 558   IsAliveClosure is_alive(this);
 559   ScanWeakRefClosure scan_weak_ref(this);
 560 
 561   age_table()->clear();
 562   to()->clear(SpaceDecorator::Mangle);
 563 
 564   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 565 
 566   assert(gch->no_allocs_since_save_marks(0),
 567          "save marks have not been newly set.");
 568 
 569   // Not very pretty.
 570   CollectorPolicy* cp = gch->collector_policy();
 571 
 572   FastScanClosure fsc_with_no_gc_barrier(this, false);
 573   FastScanClosure fsc_with_gc_barrier(this, true);
 574 
 575   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 576   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 577                                                   &fsc_with_no_gc_barrier,
 578                                                   &fsc_with_gc_barrier);
 579 
 580   assert(gch->no_allocs_since_save_marks(0),
 581          "save marks have not been newly set.");
 582 
 583   gch->gen_process_strong_roots(_level,
 584                                 true,  // Process younger gens, if any,
 585                                        // as strong roots.
 586                                 true,  // activate StrongRootsScope
 587                                 false, // not collecting perm generation.
 588                                 SharedHeap::SO_AllClasses,
 589                                 &fsc_with_no_gc_barrier,
 590                                 true,   // walk *all* scavengable nmethods
 591                                 &fsc_with_gc_barrier);
 592 
 593   // "evacuate followers".
 594   evacuate_followers.do_void();
 595 
 596   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 597   ReferenceProcessor* rp = ref_processor();
 598   rp->setup_policy(clear_all_soft_refs);
 599   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 600                                     NULL);
 601   if (!promotion_failed()) {
 602     // Swap the survivor spaces.
 603     eden()->clear(SpaceDecorator::Mangle);
 604     from()->clear(SpaceDecorator::Mangle);
 605     if (ZapUnusedHeapArea) {
 606       // This is now done here because of the piece-meal mangling which
 607       // can check for valid mangling at intermediate points in the
 608       // collection(s).  When a minor collection fails to collect
 609       // sufficient space resizing of the young generation can occur
 610       // an redistribute the spaces in the young generation.  Mangle
 611       // here so that unzapped regions don't get distributed to
 612       // other spaces.
 613       to()->mangle_unused_area();
 614     }
 615     swap_spaces();
 616 
 617     assert(to()->is_empty(), "to space should be empty now");
 618 
 619     // Set the desired survivor size to half the real survivor space
 620     _tenuring_threshold =
 621       age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 622 
 623     // A successful scavenge should restart the GC time limit count which is
 624     // for full GC's.
 625     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 626     size_policy->reset_gc_overhead_limit_count();
 627     if (PrintGC && !PrintGCDetails) {
 628       gch->print_heap_change(gch_prev_used);
 629     }
 630     assert(!gch->incremental_collection_failed(), "Should be clear");
 631   } else {
 632     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 633     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 634 
 635     remove_forwarding_pointers();
 636     if (PrintGCDetails) {
 637       gclog_or_tty->print(" (promotion failed) ");
 638     }
 639     // Add to-space to the list of space to compact
 640     // when a promotion failure has occurred.  In that
 641     // case there can be live objects in to-space
 642     // as a result of a partial evacuation of eden
 643     // and from-space.
 644     swap_spaces();   // For uniformity wrt ParNewGeneration.
 645     from()->set_next_compaction_space(to());
 646     gch->set_incremental_collection_failed();
 647 
 648     // Inform the next generation that a promotion failure occurred.
 649     _next_gen->promotion_failure_occurred();
 650 
 651     // Reset the PromotionFailureALot counters.
 652     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 653   }
 654   // set new iteration safe limit for the survivor spaces
 655   from()->set_concurrent_iteration_safe_limit(from()->top());
 656   to()->set_concurrent_iteration_safe_limit(to()->top());
 657   SpecializationStats::print();
 658 
 659   // We need to use a monotonically non-deccreasing time in ms
 660   // or we will see time-warp warnings and os::javaTimeMillis()
 661   // does not guarantee monotonicity.
 662   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 663   update_time_of_last_gc(now);
 664 }
 665 
 666 class RemoveForwardPointerClosure: public ObjectClosure {
 667 public:
 668   void do_object(oop obj) {
 669     obj->init_mark();
 670   }
 671 };
 672 
 673 void DefNewGeneration::init_assuming_no_promotion_failure() {
 674   _promotion_failed = false;
 675   from()->set_next_compaction_space(NULL);
 676 }
 677 
 678 void DefNewGeneration::remove_forwarding_pointers() {
 679   RemoveForwardPointerClosure rspc;
 680   eden()->object_iterate(&rspc);
 681   from()->object_iterate(&rspc);
 682 
 683   // Now restore saved marks, if any.
 684   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 685          "should be the same");
 686   while (!_objs_with_preserved_marks.is_empty()) {
 687     oop obj   = _objs_with_preserved_marks.pop();
 688     markOop m = _preserved_marks_of_objs.pop();
 689     obj->set_mark(m);
 690   }
 691   _objs_with_preserved_marks.clear(true);
 692   _preserved_marks_of_objs.clear(true);
 693 }
 694 
 695 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 696   assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
 697          "Oversaving!");
 698   _objs_with_preserved_marks.push(obj);
 699   _preserved_marks_of_objs.push(m);
 700 }
 701 
 702 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 703   if (m->must_be_preserved_for_promotion_failure(obj)) {
 704     preserve_mark(obj, m);
 705   }
 706 }
 707 
 708 void DefNewGeneration::handle_promotion_failure(oop old) {
 709   if (PrintPromotionFailure && !_promotion_failed) {
 710     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
 711                         old->size());
 712   }
 713   _promotion_failed = true;
 714   preserve_mark_if_necessary(old, old->mark());
 715   // forward to self
 716   old->forward_to(old);
 717 
 718   _promo_failure_scan_stack.push(old);
 719 
 720   if (!_promo_failure_drain_in_progress) {
 721     // prevent recursion in copy_to_survivor_space()
 722     _promo_failure_drain_in_progress = true;
 723     drain_promo_failure_scan_stack();
 724     _promo_failure_drain_in_progress = false;
 725   }
 726 }
 727 
 728 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 729   assert(is_in_reserved(old) && !old->is_forwarded(),
 730          "shouldn't be scavenging this oop");
 731   size_t s = old->size();
 732   oop obj = NULL;
 733 
 734   // Try allocating obj in to-space (unless too old)
 735   if (old->age() < tenuring_threshold()) {
 736     obj = (oop) to()->allocate(s);
 737   }
 738 
 739   // Otherwise try allocating obj tenured
 740   if (obj == NULL) {
 741     obj = _next_gen->promote(old, s);
 742     if (obj == NULL) {
 743       handle_promotion_failure(old);
 744       return old;
 745     }
 746   } else {
 747     // Prefetch beyond obj
 748     const intx interval = PrefetchCopyIntervalInBytes;
 749     Prefetch::write(obj, interval);
 750 
 751     // Copy obj
 752     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 753 
 754     // Increment age if obj still in new generation
 755     obj->incr_age();
 756     age_table()->add(obj, s);
 757   }
 758 
 759   // Done, insert forward pointer to obj in this header
 760   old->forward_to(obj);
 761 
 762   return obj;
 763 }
 764 
 765 void DefNewGeneration::drain_promo_failure_scan_stack() {
 766   while (!_promo_failure_scan_stack.is_empty()) {
 767      oop obj = _promo_failure_scan_stack.pop();
 768      obj->oop_iterate(_promo_failure_scan_stack_closure);
 769   }
 770 }
 771 
 772 void DefNewGeneration::save_marks() {
 773   eden()->set_saved_mark();
 774   to()->set_saved_mark();
 775   from()->set_saved_mark();
 776 }
 777 
 778 
 779 void DefNewGeneration::reset_saved_marks() {
 780   eden()->reset_saved_mark();
 781   to()->reset_saved_mark();
 782   from()->reset_saved_mark();
 783 }
 784 
 785 
 786 bool DefNewGeneration::no_allocs_since_save_marks() {
 787   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 788   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 789   return to()->saved_mark_at_top();
 790 }
 791 
 792 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 793                                                                 \
 794 void DefNewGeneration::                                         \
 795 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 796   cl->set_generation(this);                                     \
 797   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 798   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 799   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 800   cl->reset_generation();                                       \
 801   save_marks();                                                 \
 802 }
 803 
 804 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 805 
 806 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 807 
 808 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 809                                          size_t max_alloc_words) {
 810   if (requestor == this || _promotion_failed) return;
 811   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 812 
 813   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 814   if (to_space->top() > to_space->bottom()) {
 815     trace("to_space not empty when contribute_scratch called");
 816   }
 817   */
 818 
 819   ContiguousSpace* to_space = to();
 820   assert(to_space->end() >= to_space->top(), "pointers out of order");
 821   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 822   if (free_words >= MinFreeScratchWords) {
 823     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 824     sb->num_words = free_words;
 825     sb->next = list;
 826     list = sb;
 827   }
 828 }
 829 
 830 void DefNewGeneration::reset_scratch() {
 831   // If contributing scratch in to_space, mangle all of
 832   // to_space if ZapUnusedHeapArea.  This is needed because
 833   // top is not maintained while using to-space as scratch.
 834   if (ZapUnusedHeapArea) {
 835     to()->mangle_unused_area_complete();
 836   }
 837 }
 838 
 839 bool DefNewGeneration::collection_attempt_is_safe() {
 840   if (!to()->is_empty()) {
 841     if (Verbose && PrintGCDetails) {
 842       gclog_or_tty->print(" :: to is not empty :: ");
 843     }
 844     return false;
 845   }
 846   if (_next_gen == NULL) {
 847     GenCollectedHeap* gch = GenCollectedHeap::heap();
 848     _next_gen = gch->next_gen(this);
 849     assert(_next_gen != NULL,
 850            "This must be the youngest gen, and not the only gen");
 851   }
 852   return _next_gen->promotion_attempt_is_safe(used());
 853 }
 854 
 855 void DefNewGeneration::gc_epilogue(bool full) {
 856   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 857 
 858   assert(!GC_locker::is_active(), "We should not be executing here");
 859   // Check if the heap is approaching full after a collection has
 860   // been done.  Generally the young generation is empty at
 861   // a minimum at the end of a collection.  If it is not, then
 862   // the heap is approaching full.
 863   GenCollectedHeap* gch = GenCollectedHeap::heap();
 864   if (full) {
 865     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 866     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 867       if (Verbose && PrintGCDetails) {
 868         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 869                             GCCause::to_string(gch->gc_cause()));
 870       }
 871       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 872       set_should_allocate_from_space(); // we seem to be running out of space
 873     } else {
 874       if (Verbose && PrintGCDetails) {
 875         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 876                             GCCause::to_string(gch->gc_cause()));
 877       }
 878       gch->clear_incremental_collection_failed(); // We just did a full collection
 879       clear_should_allocate_from_space(); // if set
 880     }
 881   } else {
 882 #ifdef ASSERT
 883     // It is possible that incremental_collection_failed() == true
 884     // here, because an attempted scavenge did not succeed. The policy
 885     // is normally expected to cause a full collection which should
 886     // clear that condition, so we should not be here twice in a row
 887     // with incremental_collection_failed() == true without having done
 888     // a full collection in between.
 889     if (!seen_incremental_collection_failed &&
 890         gch->incremental_collection_failed()) {
 891       if (Verbose && PrintGCDetails) {
 892         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 893                             GCCause::to_string(gch->gc_cause()));
 894       }
 895       seen_incremental_collection_failed = true;
 896     } else if (seen_incremental_collection_failed) {
 897       if (Verbose && PrintGCDetails) {
 898         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 899                             GCCause::to_string(gch->gc_cause()));
 900       }
 901       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 902              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 903              !gch->incremental_collection_failed(),
 904              "Twice in a row");
 905       seen_incremental_collection_failed = false;
 906     }
 907 #endif // ASSERT
 908   }
 909 
 910   if (ZapUnusedHeapArea) {
 911     eden()->check_mangled_unused_area_complete();
 912     from()->check_mangled_unused_area_complete();
 913     to()->check_mangled_unused_area_complete();
 914   }
 915 
 916   if (!CleanChunkPoolAsync) {
 917     Chunk::clean_chunk_pool();
 918   }
 919 
 920   // update the generation and space performance counters
 921   update_counters();
 922   gch->collector_policy()->counters()->update_counters();
 923 }
 924 
 925 void DefNewGeneration::record_spaces_top() {
 926   assert(ZapUnusedHeapArea, "Not mangling unused space");
 927   eden()->set_top_for_allocations();
 928   to()->set_top_for_allocations();
 929   from()->set_top_for_allocations();
 930 }
 931 
 932 
 933 void DefNewGeneration::update_counters() {
 934   if (UsePerfData) {
 935     _eden_counters->update_all();
 936     _from_counters->update_all();
 937     _to_counters->update_all();
 938     _gen_counters->update_all();
 939   }
 940 }
 941 
 942 void DefNewGeneration::verify() {
 943   eden()->verify();
 944   from()->verify();
 945     to()->verify();
 946 }
 947 
 948 void DefNewGeneration::print_on(outputStream* st) const {
 949   Generation::print_on(st);
 950   st->print("  eden");
 951   eden()->print_on(st);
 952   st->print("  from");
 953   from()->print_on(st);
 954   st->print("  to  ");
 955   to()->print_on(st);
 956 }
 957 
 958 
 959 const char* DefNewGeneration::name() const {
 960   return "def new generation";
 961 }
 962 
 963 // Moved from inline file as they are not called inline
 964 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
 965   return eden();
 966 }
 967 
 968 HeapWord* DefNewGeneration::allocate(size_t word_size,
 969                                      bool is_tlab) {
 970   // This is the slow-path allocation for the DefNewGeneration.
 971   // Most allocations are fast-path in compiled code.
 972   // We try to allocate from the eden.  If that works, we are happy.
 973   // Note that since DefNewGeneration supports lock-free allocation, we
 974   // have to use it here, as well.
 975   HeapWord* result = eden()->par_allocate(word_size);
 976   if (result != NULL) {
 977     return result;
 978   }
 979   do {
 980     HeapWord* old_limit = eden()->soft_end();
 981     if (old_limit < eden()->end()) {
 982       // Tell the next generation we reached a limit.
 983       HeapWord* new_limit =
 984         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
 985       if (new_limit != NULL) {
 986         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
 987       } else {
 988         assert(eden()->soft_end() == eden()->end(),
 989                "invalid state after allocation_limit_reached returned null");
 990       }
 991     } else {
 992       // The allocation failed and the soft limit is equal to the hard limit,
 993       // there are no reasons to do an attempt to allocate
 994       assert(old_limit == eden()->end(), "sanity check");
 995       break;
 996     }
 997     // Try to allocate until succeeded or the soft limit can't be adjusted
 998     result = eden()->par_allocate(word_size);
 999   } while (result == NULL);
1000 
1001   // If the eden is full and the last collection bailed out, we are running
1002   // out of heap space, and we try to allocate the from-space, too.
1003   // allocate_from_space can't be inlined because that would introduce a
1004   // circular dependency at compile time.
1005   if (result == NULL) {
1006     result = allocate_from_space(word_size);
1007   }
1008   return result;
1009 }
1010 
1011 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1012                                          bool is_tlab) {
1013   return eden()->par_allocate(word_size);
1014 }
1015 
1016 void DefNewGeneration::gc_prologue(bool full) {
1017   // Ensure that _end and _soft_end are the same in eden space.
1018   eden()->set_soft_end(eden()->end());
1019 }
1020 
1021 size_t DefNewGeneration::tlab_capacity() const {
1022   return eden()->capacity();
1023 }
1024 
1025 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1026   return unsafe_max_alloc_nogc();
1027 }