1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1Log.hpp"
  30 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  31 #include "gc_implementation/g1/heapRegion.inline.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  34 #include "memory/genOopClosures.inline.hpp"
  35 #include "memory/iterator.hpp"
  36 #include "oops/oop.inline.hpp"
  37 
  38 int    HeapRegion::LogOfHRGrainBytes = 0;
  39 int    HeapRegion::LogOfHRGrainWords = 0;
  40 size_t HeapRegion::GrainBytes        = 0;
  41 size_t HeapRegion::GrainWords        = 0;
  42 size_t HeapRegion::CardsPerRegion    = 0;
  43 
  44 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  45                                  HeapRegion* hr, ExtendedOopClosure* cl,
  46                                  CardTableModRefBS::PrecisionStyle precision,
  47                                  FilterKind fk) :
  48   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  49   _hr(hr), _fk(fk), _g1(g1) { }
  50 
  51 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  52                                                    OopClosure* oc) :
  53   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  54 
  55 template<class ClosureType>
  56 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  57                                HeapRegion* hr,
  58                                HeapWord* cur, HeapWord* top) {
  59   oop cur_oop = oop(cur);
  60   int oop_size = cur_oop->size();
  61   HeapWord* next_obj = cur + oop_size;
  62   while (next_obj < top) {
  63     // Keep filtering the remembered set.
  64     if (!g1h->is_obj_dead(cur_oop, hr)) {
  65       // Bottom lies entirely below top, so we can call the
  66       // non-memRegion version of oop_iterate below.
  67       cur_oop->oop_iterate(cl);
  68     }
  69     cur = next_obj;
  70     cur_oop = oop(cur);
  71     oop_size = cur_oop->size();
  72     next_obj = cur + oop_size;
  73   }
  74   return cur;
  75 }
  76 
  77 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
  78                                               HeapWord* bottom,
  79                                               HeapWord* top,
  80                                               ExtendedOopClosure* cl) {
  81   G1CollectedHeap* g1h = _g1;
  82   int oop_size;
  83   ExtendedOopClosure* cl2 = NULL;
  84 
  85   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
  86   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
  87 
  88   switch (_fk) {
  89   case NoFilterKind:          cl2 = cl; break;
  90   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  91   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  92   default:                    ShouldNotReachHere();
  93   }
  94 
  95   // Start filtering what we add to the remembered set. If the object is
  96   // not considered dead, either because it is marked (in the mark bitmap)
  97   // or it was allocated after marking finished, then we add it. Otherwise
  98   // we can safely ignore the object.
  99   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 100     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 101   } else {
 102     oop_size = oop(bottom)->size();
 103   }
 104 
 105   bottom += oop_size;
 106 
 107   if (bottom < top) {
 108     // We replicate the loop below for several kinds of possible filters.
 109     switch (_fk) {
 110     case NoFilterKind:
 111       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 112       break;
 113 
 114     case IntoCSFilterKind: {
 115       FilterIntoCSClosure filt(this, g1h, cl);
 116       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 117       break;
 118     }
 119 
 120     case OutOfRegionFilterKind: {
 121       FilterOutOfRegionClosure filt(_hr, cl);
 122       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 123       break;
 124     }
 125 
 126     default:
 127       ShouldNotReachHere();
 128     }
 129 
 130     // Last object. Need to do dead-obj filtering here too.
 131     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 132       oop(bottom)->oop_iterate(cl2, mr);
 133     }
 134   }
 135 }
 136 
 137 // Minimum region size; we won't go lower than that.
 138 // We might want to decrease this in the future, to deal with small
 139 // heaps a bit more efficiently.
 140 #define MIN_REGION_SIZE  (      1024 * 1024 )
 141 
 142 // Maximum region size; we don't go higher than that. There's a good
 143 // reason for having an upper bound. We don't want regions to get too
 144 // large, otherwise cleanup's effectiveness would decrease as there
 145 // will be fewer opportunities to find totally empty regions after
 146 // marking.
 147 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 148 
 149 // The automatic region size calculation will try to have around this
 150 // many regions in the heap (based on the min heap size).
 151 #define TARGET_REGION_NUMBER          2048
 152 
 153 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 154   uintx region_size = G1HeapRegionSize;
 155   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 156     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 157     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
 158                        (uintx) MIN_REGION_SIZE);
 159   }
 160 
 161   int region_size_log = log2_long((jlong) region_size);
 162   // Recalculate the region size to make sure it's a power of
 163   // 2. This means that region_size is the largest power of 2 that's
 164   // <= what we've calculated so far.
 165   region_size = ((uintx)1 << region_size_log);
 166 
 167   // Now make sure that we don't go over or under our limits.
 168   if (region_size < MIN_REGION_SIZE) {
 169     region_size = MIN_REGION_SIZE;
 170   } else if (region_size > MAX_REGION_SIZE) {
 171     region_size = MAX_REGION_SIZE;
 172   }
 173 
 174   if (region_size != G1HeapRegionSize) {
 175     // Update the flag to make sure that PrintFlagsFinal logs the correct value
 176     FLAG_SET_ERGO(uintx, G1HeapRegionSize, region_size);
 177   }
 178 
 179   // And recalculate the log.
 180   region_size_log = log2_long((jlong) region_size);
 181 
 182   if (G1Log::fine()) {
 183     gclog_or_tty->print_cr("G1 Heap region size: " SIZE_FORMAT "M", region_size / M);
 184   }
 185 
 186   // Now, set up the globals.
 187   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 188   LogOfHRGrainBytes = region_size_log;
 189 
 190   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 191   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 192 
 193   guarantee(GrainBytes == 0, "we should only set it once");
 194   // The cast to int is safe, given that we've bounded region_size by
 195   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 196   GrainBytes = (size_t)region_size;
 197 
 198   guarantee(GrainWords == 0, "we should only set it once");
 199   GrainWords = GrainBytes >> LogHeapWordSize;
 200   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 201 
 202   guarantee(CardsPerRegion == 0, "we should only set it once");
 203   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 204 }
 205 
 206 void HeapRegion::reset_after_compaction() {
 207   G1OffsetTableContigSpace::reset_after_compaction();
 208   // After a compaction the mark bitmap is invalid, so we must
 209   // treat all objects as being inside the unmarked area.
 210   zero_marked_bytes();
 211   init_top_at_mark_start();
 212 }
 213 
 214 void HeapRegion::hr_clear(bool par, bool clear_space) {
 215   assert(_humongous_type == NotHumongous,
 216          "we should have already filtered out humongous regions");
 217   assert(_humongous_start_region == NULL,
 218          "we should have already filtered out humongous regions");
 219   assert(_end == _orig_end,
 220          "we should have already filtered out humongous regions");
 221 
 222   _in_collection_set = false;
 223 
 224   set_young_index_in_cset(-1);
 225   uninstall_surv_rate_group();
 226   set_young_type(NotYoung);
 227   reset_pre_dummy_top();
 228 
 229   if (!par) {
 230     // If this is parallel, this will be done later.
 231     HeapRegionRemSet* hrrs = rem_set();
 232     hrrs->clear();
 233     _claimed = InitialClaimValue;
 234   }
 235   zero_marked_bytes();
 236 
 237   _offsets.resize(HeapRegion::GrainWords);
 238   init_top_at_mark_start();
 239   if (clear_space) clear(SpaceDecorator::Mangle);
 240 }
 241 
 242 void HeapRegion::par_clear() {
 243   assert(used() == 0, "the region should have been already cleared");
 244   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 245   HeapRegionRemSet* hrrs = rem_set();
 246   hrrs->clear();
 247   CardTableModRefBS* ct_bs =
 248                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 249   ct_bs->clear(MemRegion(bottom(), end()));
 250 }
 251 
 252 void HeapRegion::calc_gc_efficiency() {
 253   // GC efficiency is the ratio of how much space would be
 254   // reclaimed over how long we predict it would take to reclaim it.
 255   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 256   G1CollectorPolicy* g1p = g1h->g1_policy();
 257 
 258   // Retrieve a prediction of the elapsed time for this region for
 259   // a mixed gc because the region will only be evacuated during a
 260   // mixed gc.
 261   double region_elapsed_time_ms =
 262     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 263   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 264 }
 265 
 266 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 267   assert(!isHumongous(), "sanity / pre-condition");
 268   assert(end() == _orig_end,
 269          "Should be normal before the humongous object allocation");
 270   assert(top() == bottom(), "should be empty");
 271   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 272 
 273   _humongous_type = StartsHumongous;
 274   _humongous_start_region = this;
 275 
 276   set_end(new_end);
 277   _offsets.set_for_starts_humongous(new_top);
 278 }
 279 
 280 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 281   assert(!isHumongous(), "sanity / pre-condition");
 282   assert(end() == _orig_end,
 283          "Should be normal before the humongous object allocation");
 284   assert(top() == bottom(), "should be empty");
 285   assert(first_hr->startsHumongous(), "pre-condition");
 286 
 287   _humongous_type = ContinuesHumongous;
 288   _humongous_start_region = first_hr;
 289 }
 290 
 291 void HeapRegion::set_notHumongous() {
 292   assert(isHumongous(), "pre-condition");
 293 
 294   if (startsHumongous()) {
 295     assert(top() <= end(), "pre-condition");
 296     set_end(_orig_end);
 297     if (top() > end()) {
 298       // at least one "continues humongous" region after it
 299       set_top(end());
 300     }
 301   } else {
 302     // continues humongous
 303     assert(end() == _orig_end, "sanity");
 304   }
 305 
 306   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 307   _humongous_type = NotHumongous;
 308   _humongous_start_region = NULL;
 309 }
 310 
 311 bool HeapRegion::claimHeapRegion(jint claimValue) {
 312   jint current = _claimed;
 313   if (current != claimValue) {
 314     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 315     if (res == current) {
 316       return true;
 317     }
 318   }
 319   return false;
 320 }
 321 
 322 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 323   HeapWord* low = addr;
 324   HeapWord* high = end();
 325   while (low < high) {
 326     size_t diff = pointer_delta(high, low);
 327     // Must add one below to bias toward the high amount.  Otherwise, if
 328   // "high" were at the desired value, and "low" were one less, we
 329     // would not converge on "high".  This is not symmetric, because
 330     // we set "high" to a block start, which might be the right one,
 331     // which we don't do for "low".
 332     HeapWord* middle = low + (diff+1)/2;
 333     if (middle == high) return high;
 334     HeapWord* mid_bs = block_start_careful(middle);
 335     if (mid_bs < addr) {
 336       low = middle;
 337     } else {
 338       high = mid_bs;
 339     }
 340   }
 341   assert(low == high && low >= addr, "Didn't work.");
 342   return low;
 343 }
 344 
 345 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 346 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 347 #endif // _MSC_VER
 348 
 349 
 350 HeapRegion::HeapRegion(uint hrs_index,
 351                        G1BlockOffsetSharedArray* sharedOffsetArray,
 352                        MemRegion mr) :
 353     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 354     _hrs_index(hrs_index),
 355     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 356     _in_collection_set(false),
 357     _next_in_special_set(NULL), _orig_end(NULL),
 358     _claimed(InitialClaimValue), _evacuation_failed(false),
 359     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 360     _young_type(NotYoung), _next_young_region(NULL),
 361     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
 362 #ifdef ASSERT
 363     _containing_set(NULL),
 364 #endif // ASSERT
 365      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 366     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 367     _predicted_bytes_to_copy(0)
 368 {
 369   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 370   _orig_end = mr.end();
 371   // Note that initialize() will set the start of the unmarked area of the
 372   // region.
 373   hr_clear(false /*par*/, false /*clear_space*/);
 374   set_top(bottom());
 375   set_saved_mark();
 376 
 377   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 378 }
 379 
 380 CompactibleSpace* HeapRegion::next_compaction_space() const {
 381   // We're not using an iterator given that it will wrap around when
 382   // it reaches the last region and this is not what we want here.
 383   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 384   uint index = hrs_index() + 1;
 385   while (index < g1h->n_regions()) {
 386     HeapRegion* hr = g1h->region_at(index);
 387     if (!hr->isHumongous()) {
 388       return hr;
 389     }
 390     index += 1;
 391   }
 392   return NULL;
 393 }
 394 
 395 void HeapRegion::save_marks() {
 396   set_saved_mark();
 397 }
 398 
 399 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 400   HeapWord* p = mr.start();
 401   HeapWord* e = mr.end();
 402   oop obj;
 403   while (p < e) {
 404     obj = oop(p);
 405     p += obj->oop_iterate(cl);
 406   }
 407   assert(p == e, "bad memregion: doesn't end on obj boundary");
 408 }
 409 
 410 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 411 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 412   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 413 }
 414 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 415 
 416 
 417 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
 418   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 419 }
 420 
 421 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 422                                                     bool during_conc_mark) {
 423   // We always recreate the prev marking info and we'll explicitly
 424   // mark all objects we find to be self-forwarded on the prev
 425   // bitmap. So all objects need to be below PTAMS.
 426   _prev_top_at_mark_start = top();
 427   _prev_marked_bytes = 0;
 428 
 429   if (during_initial_mark) {
 430     // During initial-mark, we'll also explicitly mark all objects
 431     // we find to be self-forwarded on the next bitmap. So all
 432     // objects need to be below NTAMS.
 433     _next_top_at_mark_start = top();
 434     _next_marked_bytes = 0;
 435   } else if (during_conc_mark) {
 436     // During concurrent mark, all objects in the CSet (including
 437     // the ones we find to be self-forwarded) are implicitly live.
 438     // So all objects need to be above NTAMS.
 439     _next_top_at_mark_start = bottom();
 440     _next_marked_bytes = 0;
 441   }
 442 }
 443 
 444 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 445                                                   bool during_conc_mark,
 446                                                   size_t marked_bytes) {
 447   assert(0 <= marked_bytes && marked_bytes <= used(),
 448          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 449                  marked_bytes, used()));
 450   _prev_marked_bytes = marked_bytes;
 451 }
 452 
 453 HeapWord*
 454 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 455                                                  ObjectClosure* cl) {
 456   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 457   // We used to use "block_start_careful" here.  But we're actually happy
 458   // to update the BOT while we do this...
 459   HeapWord* cur = block_start(mr.start());
 460   mr = mr.intersection(used_region());
 461   if (mr.is_empty()) return NULL;
 462   // Otherwise, find the obj that extends onto mr.start().
 463 
 464   assert(cur <= mr.start()
 465          && (oop(cur)->klass_or_null() == NULL ||
 466              cur + oop(cur)->size() > mr.start()),
 467          "postcondition of block_start");
 468   oop obj;
 469   while (cur < mr.end()) {
 470     obj = oop(cur);
 471     if (obj->klass_or_null() == NULL) {
 472       // Ran into an unparseable point.
 473       return cur;
 474     } else if (!g1h->is_obj_dead(obj)) {
 475       cl->do_object(obj);
 476     }
 477     if (cl->abort()) return cur;
 478     // The check above must occur before the operation below, since an
 479     // abort might invalidate the "size" operation.
 480     cur += obj->size();
 481   }
 482   return NULL;
 483 }
 484 
 485 HeapWord*
 486 HeapRegion::
 487 oops_on_card_seq_iterate_careful(MemRegion mr,
 488                                  FilterOutOfRegionClosure* cl,
 489                                  bool filter_young,
 490                                  jbyte* card_ptr) {
 491   // Currently, we should only have to clean the card if filter_young
 492   // is true and vice versa.
 493   if (filter_young) {
 494     assert(card_ptr != NULL, "pre-condition");
 495   } else {
 496     assert(card_ptr == NULL, "pre-condition");
 497   }
 498   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 499 
 500   // If we're within a stop-world GC, then we might look at a card in a
 501   // GC alloc region that extends onto a GC LAB, which may not be
 502   // parseable.  Stop such at the "saved_mark" of the region.
 503   if (g1h->is_gc_active()) {
 504     mr = mr.intersection(used_region_at_save_marks());
 505   } else {
 506     mr = mr.intersection(used_region());
 507   }
 508   if (mr.is_empty()) return NULL;
 509   // Otherwise, find the obj that extends onto mr.start().
 510 
 511   // The intersection of the incoming mr (for the card) and the
 512   // allocated part of the region is non-empty. This implies that
 513   // we have actually allocated into this region. The code in
 514   // G1CollectedHeap.cpp that allocates a new region sets the
 515   // is_young tag on the region before allocating. Thus we
 516   // safely know if this region is young.
 517   if (is_young() && filter_young) {
 518     return NULL;
 519   }
 520 
 521   assert(!is_young(), "check value of filter_young");
 522 
 523   // We can only clean the card here, after we make the decision that
 524   // the card is not young. And we only clean the card if we have been
 525   // asked to (i.e., card_ptr != NULL).
 526   if (card_ptr != NULL) {
 527     *card_ptr = CardTableModRefBS::clean_card_val();
 528     // We must complete this write before we do any of the reads below.
 529     OrderAccess::storeload();
 530   }
 531 
 532   // Cache the boundaries of the memory region in some const locals
 533   HeapWord* const start = mr.start();
 534   HeapWord* const end = mr.end();
 535 
 536   // We used to use "block_start_careful" here.  But we're actually happy
 537   // to update the BOT while we do this...
 538   HeapWord* cur = block_start(start);
 539   assert(cur <= start, "Postcondition");
 540 
 541   oop obj;
 542 
 543   HeapWord* next = cur;
 544   while (next <= start) {
 545     cur = next;
 546     obj = oop(cur);
 547     if (obj->klass_or_null() == NULL) {
 548       // Ran into an unparseable point.
 549       return cur;
 550     }
 551     // Otherwise...
 552     next = (cur + obj->size());
 553   }
 554 
 555   // If we finish the above loop...We have a parseable object that
 556   // begins on or before the start of the memory region, and ends
 557   // inside or spans the entire region.
 558 
 559   assert(obj == oop(cur), "sanity");
 560   assert(cur <= start &&
 561          obj->klass_or_null() != NULL &&
 562          (cur + obj->size()) > start,
 563          "Loop postcondition");
 564 
 565   if (!g1h->is_obj_dead(obj)) {
 566     obj->oop_iterate(cl, mr);
 567   }
 568 
 569   while (cur < end) {
 570     obj = oop(cur);
 571     if (obj->klass_or_null() == NULL) {
 572       // Ran into an unparseable point.
 573       return cur;
 574     };
 575 
 576     // Otherwise:
 577     next = (cur + obj->size());
 578 
 579     if (!g1h->is_obj_dead(obj)) {
 580       if (next < end || !obj->is_objArray()) {
 581         // This object either does not span the MemRegion
 582         // boundary, or if it does it's not an array.
 583         // Apply closure to whole object.
 584         obj->oop_iterate(cl);
 585       } else {
 586         // This obj is an array that spans the boundary.
 587         // Stop at the boundary.
 588         obj->oop_iterate(cl, mr);
 589       }
 590     }
 591     cur = next;
 592   }
 593   return NULL;
 594 }
 595 
 596 // Code roots support
 597 
 598 void HeapRegion::add_strong_code_root(nmethod* nm) {
 599   HeapRegionRemSet* hrrs = rem_set();
 600   hrrs->add_strong_code_root(nm);
 601 }
 602 
 603 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 604   HeapRegionRemSet* hrrs = rem_set();
 605   hrrs->remove_strong_code_root(nm);
 606 }
 607 
 608 void HeapRegion::migrate_strong_code_roots() {
 609   assert(in_collection_set(), "only collection set regions");
 610   assert(!isHumongous(), "not humongous regions");
 611 
 612   HeapRegionRemSet* hrrs = rem_set();
 613   hrrs->migrate_strong_code_roots();
 614 }
 615 
 616 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 617   HeapRegionRemSet* hrrs = rem_set();
 618   hrrs->strong_code_roots_do(blk);
 619 }
 620 
 621 class VerifyStrongCodeRootOopClosure: public OopClosure {
 622   const HeapRegion* _hr;
 623   nmethod* _nm;
 624   bool _failures;
 625   bool _has_oops_in_region;
 626 
 627   template <class T> void do_oop_work(T* p) {
 628     T heap_oop = oopDesc::load_heap_oop(p);
 629     if (!oopDesc::is_null(heap_oop)) {
 630       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 631 
 632       // Note: not all the oops embedded in the nmethod are in the
 633       // current region. We only look at those which are.
 634       if (_hr->is_in(obj)) {
 635         // Object is in the region. Check that its less than top
 636         if (_hr->top() <= (HeapWord*)obj) {
 637           // Object is above top
 638           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 639                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 640                                  "top "PTR_FORMAT,
 641                                  obj, _hr->bottom(), _hr->end(), _hr->top());
 642           _failures = true;
 643           return;
 644         }
 645         // Nmethod has at least one oop in the current region
 646         _has_oops_in_region = true;
 647       }
 648     }
 649   }
 650 
 651 public:
 652   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 653     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 654 
 655   void do_oop(narrowOop* p) { do_oop_work(p); }
 656   void do_oop(oop* p)       { do_oop_work(p); }
 657 
 658   bool failures()           { return _failures; }
 659   bool has_oops_in_region() { return _has_oops_in_region; }
 660 };
 661 
 662 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 663   const HeapRegion* _hr;
 664   bool _failures;
 665 public:
 666   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 667     _hr(hr), _failures(false) {}
 668 
 669   void do_code_blob(CodeBlob* cb) {
 670     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 671     if (nm != NULL) {
 672       // Verify that the nemthod is live
 673       if (!nm->is_alive()) {
 674         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 675                                PTR_FORMAT" in its strong code roots",
 676                                _hr->bottom(), _hr->end(), nm);
 677         _failures = true;
 678       } else {
 679         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 680         nm->oops_do(&oop_cl);
 681         if (!oop_cl.has_oops_in_region()) {
 682           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 683                                  PTR_FORMAT" in its strong code roots "
 684                                  "with no pointers into region",
 685                                  _hr->bottom(), _hr->end(), nm);
 686           _failures = true;
 687         } else if (oop_cl.failures()) {
 688           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 689                                  "failures for nmethod "PTR_FORMAT,
 690                                  _hr->bottom(), _hr->end(), nm);
 691           _failures = true;
 692         }
 693       }
 694     }
 695   }
 696 
 697   bool failures()       { return _failures; }
 698 };
 699 
 700 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 701   if (!G1VerifyHeapRegionCodeRoots) {
 702     // We're not verifying code roots.
 703     return;
 704   }
 705   if (vo == VerifyOption_G1UseMarkWord) {
 706     // Marking verification during a full GC is performed after class
 707     // unloading, code cache unloading, etc so the strong code roots
 708     // attached to each heap region are in an inconsistent state. They won't
 709     // be consistent until the strong code roots are rebuilt after the
 710     // actual GC. Skip verifying the strong code roots in this particular
 711     // time.
 712     assert(VerifyDuringGC, "only way to get here");
 713     return;
 714   }
 715 
 716   HeapRegionRemSet* hrrs = rem_set();
 717   int strong_code_roots_length = hrrs->strong_code_roots_list_length();
 718 
 719   // if this region is empty then there should be no entries
 720   // on its strong code root list
 721   if (is_empty()) {
 722     if (strong_code_roots_length > 0) {
 723       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 724                              "but has "INT32_FORMAT" code root entries",
 725                              bottom(), end(), strong_code_roots_length);
 726       *failures = true;
 727     }
 728     return;
 729   }
 730 
 731   // An H-region should have an empty strong code root list
 732   if (isHumongous()) {
 733     if (strong_code_roots_length > 0) {
 734       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 735                              "but has "INT32_FORMAT" code root entries",
 736                              bottom(), end(), strong_code_roots_length);
 737       *failures = true;
 738     }
 739     return;
 740   }
 741 
 742   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 743   strong_code_roots_do(&cb_cl);
 744 
 745   if (cb_cl.failures()) {
 746     *failures = true;
 747   }
 748 }
 749 
 750 void HeapRegion::print() const { print_on(gclog_or_tty); }
 751 void HeapRegion::print_on(outputStream* st) const {
 752   if (isHumongous()) {
 753     if (startsHumongous())
 754       st->print(" HS");
 755     else
 756       st->print(" HC");
 757   } else {
 758     st->print("   ");
 759   }
 760   if (in_collection_set())
 761     st->print(" CS");
 762   else
 763     st->print("   ");
 764   if (is_young())
 765     st->print(is_survivor() ? " SU" : " Y ");
 766   else
 767     st->print("   ");
 768   if (is_empty())
 769     st->print(" F");
 770   else
 771     st->print("  ");
 772   st->print(" TS %5d", _gc_time_stamp);
 773   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 774             prev_top_at_mark_start(), next_top_at_mark_start());
 775   G1OffsetTableContigSpace::print_on(st);
 776 }
 777 
 778 class VerifyLiveClosure: public OopClosure {
 779 private:
 780   G1CollectedHeap* _g1h;
 781   CardTableModRefBS* _bs;
 782   oop _containing_obj;
 783   bool _failures;
 784   int _n_failures;
 785   VerifyOption _vo;
 786 public:
 787   // _vo == UsePrevMarking -> use "prev" marking information,
 788   // _vo == UseNextMarking -> use "next" marking information,
 789   // _vo == UseMarkWord    -> use mark word from object header.
 790   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 791     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 792     _failures(false), _n_failures(0), _vo(vo)
 793   {
 794     BarrierSet* bs = _g1h->barrier_set();
 795     if (bs->is_a(BarrierSet::CardTableModRef))
 796       _bs = (CardTableModRefBS*)bs;
 797   }
 798 
 799   void set_containing_obj(oop obj) {
 800     _containing_obj = obj;
 801   }
 802 
 803   bool failures() { return _failures; }
 804   int n_failures() { return _n_failures; }
 805 
 806   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 807   virtual void do_oop(      oop* p) { do_oop_work(p); }
 808 
 809   void print_object(outputStream* out, oop obj) {
 810 #ifdef PRODUCT
 811     Klass* k = obj->klass();
 812     const char* class_name = InstanceKlass::cast(k)->external_name();
 813     out->print_cr("class name %s", class_name);
 814 #else // PRODUCT
 815     obj->print_on(out);
 816 #endif // PRODUCT
 817   }
 818 
 819   template <class T>
 820   void do_oop_work(T* p) {
 821     assert(_containing_obj != NULL, "Precondition");
 822     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 823            "Precondition");
 824     T heap_oop = oopDesc::load_heap_oop(p);
 825     if (!oopDesc::is_null(heap_oop)) {
 826       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 827       bool failed = false;
 828       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 829         MutexLockerEx x(ParGCRareEvent_lock,
 830                         Mutex::_no_safepoint_check_flag);
 831 
 832         if (!_failures) {
 833           gclog_or_tty->print_cr("");
 834           gclog_or_tty->print_cr("----------");
 835         }
 836         if (!_g1h->is_in_closed_subset(obj)) {
 837           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 838           gclog_or_tty->print_cr("Field "PTR_FORMAT
 839                                  " of live obj "PTR_FORMAT" in region "
 840                                  "["PTR_FORMAT", "PTR_FORMAT")",
 841                                  p, (void*) _containing_obj,
 842                                  from->bottom(), from->end());
 843           print_object(gclog_or_tty, _containing_obj);
 844           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 845                                  (void*) obj);
 846         } else {
 847           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 848           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 849           gclog_or_tty->print_cr("Field "PTR_FORMAT
 850                                  " of live obj "PTR_FORMAT" in region "
 851                                  "["PTR_FORMAT", "PTR_FORMAT")",
 852                                  p, (void*) _containing_obj,
 853                                  from->bottom(), from->end());
 854           print_object(gclog_or_tty, _containing_obj);
 855           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 856                                  "["PTR_FORMAT", "PTR_FORMAT")",
 857                                  (void*) obj, to->bottom(), to->end());
 858           print_object(gclog_or_tty, obj);
 859         }
 860         gclog_or_tty->print_cr("----------");
 861         gclog_or_tty->flush();
 862         _failures = true;
 863         failed = true;
 864         _n_failures++;
 865       }
 866 
 867       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 868         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 869         HeapRegion* to   = _g1h->heap_region_containing(obj);
 870         if (from != NULL && to != NULL &&
 871             from != to &&
 872             !to->isHumongous()) {
 873           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 874           jbyte cv_field = *_bs->byte_for_const(p);
 875           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 876 
 877           bool is_bad = !(from->is_young()
 878                           || to->rem_set()->contains_reference(p)
 879                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 880                               (_containing_obj->is_objArray() ?
 881                                   cv_field == dirty
 882                                : cv_obj == dirty || cv_field == dirty));
 883           if (is_bad) {
 884             MutexLockerEx x(ParGCRareEvent_lock,
 885                             Mutex::_no_safepoint_check_flag);
 886 
 887             if (!_failures) {
 888               gclog_or_tty->print_cr("");
 889               gclog_or_tty->print_cr("----------");
 890             }
 891             gclog_or_tty->print_cr("Missing rem set entry:");
 892             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 893                                    "of obj "PTR_FORMAT", "
 894                                    "in region "HR_FORMAT,
 895                                    p, (void*) _containing_obj,
 896                                    HR_FORMAT_PARAMS(from));
 897             _containing_obj->print_on(gclog_or_tty);
 898             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 899                                    "in region "HR_FORMAT,
 900                                    (void*) obj,
 901                                    HR_FORMAT_PARAMS(to));
 902             obj->print_on(gclog_or_tty);
 903             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 904                           cv_obj, cv_field);
 905             gclog_or_tty->print_cr("----------");
 906             gclog_or_tty->flush();
 907             _failures = true;
 908             if (!failed) _n_failures++;
 909           }
 910         }
 911       }
 912     }
 913   }
 914 };
 915 
 916 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 917 // We would need a mechanism to make that code skip dead objects.
 918 
 919 void HeapRegion::verify(VerifyOption vo,
 920                         bool* failures) const {
 921   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 922   *failures = false;
 923   HeapWord* p = bottom();
 924   HeapWord* prev_p = NULL;
 925   VerifyLiveClosure vl_cl(g1, vo);
 926   bool is_humongous = isHumongous();
 927   bool do_bot_verify = !is_young();
 928   size_t object_num = 0;
 929   while (p < top()) {
 930     oop obj = oop(p);
 931     size_t obj_size = obj->size();
 932     object_num += 1;
 933 
 934     if (is_humongous != g1->isHumongous(obj_size)) {
 935       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 936                              SIZE_FORMAT" words) in a %shumongous region",
 937                              p, g1->isHumongous(obj_size) ? "" : "non-",
 938                              obj_size, is_humongous ? "" : "non-");
 939        *failures = true;
 940        return;
 941     }
 942 
 943     // If it returns false, verify_for_object() will output the
 944     // appropriate messasge.
 945     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 946       *failures = true;
 947       return;
 948     }
 949 
 950     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 951       if (obj->is_oop()) {
 952         Klass* klass = obj->klass();
 953         if (!klass->is_metaspace_object()) {
 954           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 955                                  "not metadata", klass, obj);
 956           *failures = true;
 957           return;
 958         } else if (!klass->is_klass()) {
 959           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 960                                  "not a klass", klass, obj);
 961           *failures = true;
 962           return;
 963         } else {
 964           vl_cl.set_containing_obj(obj);
 965           obj->oop_iterate_no_header(&vl_cl);
 966           if (vl_cl.failures()) {
 967             *failures = true;
 968           }
 969           if (G1MaxVerifyFailures >= 0 &&
 970               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 971             return;
 972           }
 973         }
 974       } else {
 975         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
 976         *failures = true;
 977         return;
 978       }
 979     }
 980     prev_p = p;
 981     p += obj_size;
 982   }
 983 
 984   if (p != top()) {
 985     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 986                            "does not match top "PTR_FORMAT, p, top());
 987     *failures = true;
 988     return;
 989   }
 990 
 991   HeapWord* the_end = end();
 992   assert(p == top(), "it should still hold");
 993   // Do some extra BOT consistency checking for addresses in the
 994   // range [top, end). BOT look-ups in this range should yield
 995   // top. No point in doing that if top == end (there's nothing there).
 996   if (p < the_end) {
 997     // Look up top
 998     HeapWord* addr_1 = p;
 999     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
1000     if (b_start_1 != p) {
1001       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
1002                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1003                              addr_1, b_start_1, p);
1004       *failures = true;
1005       return;
1006     }
1007 
1008     // Look up top + 1
1009     HeapWord* addr_2 = p + 1;
1010     if (addr_2 < the_end) {
1011       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
1012       if (b_start_2 != p) {
1013         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
1014                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1015                                addr_2, b_start_2, p);
1016         *failures = true;
1017         return;
1018       }
1019     }
1020 
1021     // Look up an address between top and end
1022     size_t diff = pointer_delta(the_end, p) / 2;
1023     HeapWord* addr_3 = p + diff;
1024     if (addr_3 < the_end) {
1025       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
1026       if (b_start_3 != p) {
1027         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
1028                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1029                                addr_3, b_start_3, p);
1030         *failures = true;
1031         return;
1032       }
1033     }
1034 
1035     // Loook up end - 1
1036     HeapWord* addr_4 = the_end - 1;
1037     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1038     if (b_start_4 != p) {
1039       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1040                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1041                              addr_4, b_start_4, p);
1042       *failures = true;
1043       return;
1044     }
1045   }
1046 
1047   if (is_humongous && object_num > 1) {
1048     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1049                            "but has "SIZE_FORMAT", objects",
1050                            bottom(), end(), object_num);
1051     *failures = true;
1052     return;
1053   }
1054 
1055   verify_strong_code_roots(vo, failures);
1056 }
1057 
1058 void HeapRegion::verify() const {
1059   bool dummy = false;
1060   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1061 }
1062 
1063 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1064 // away eventually.
1065 
1066 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1067   ContiguousSpace::clear(mangle_space);
1068   _offsets.zero_bottom_entry();
1069   _offsets.initialize_threshold();
1070 }
1071 
1072 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1073   Space::set_bottom(new_bottom);
1074   _offsets.set_bottom(new_bottom);
1075 }
1076 
1077 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1078   Space::set_end(new_end);
1079   _offsets.resize(new_end - bottom());
1080 }
1081 
1082 void G1OffsetTableContigSpace::print() const {
1083   print_short();
1084   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1085                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1086                 bottom(), top(), _offsets.threshold(), end());
1087 }
1088 
1089 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1090   return _offsets.initialize_threshold();
1091 }
1092 
1093 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1094                                                     HeapWord* end) {
1095   _offsets.alloc_block(start, end);
1096   return _offsets.threshold();
1097 }
1098 
1099 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1100   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1101   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1102   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1103     return top();
1104   else
1105     return ContiguousSpace::saved_mark_word();
1106 }
1107 
1108 void G1OffsetTableContigSpace::set_saved_mark() {
1109   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1110   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1111 
1112   if (_gc_time_stamp < curr_gc_time_stamp) {
1113     // The order of these is important, as another thread might be
1114     // about to start scanning this region. If it does so after
1115     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1116     // will be false, and it will pick up top() as the high water mark
1117     // of region. If it does so after _gc_time_stamp = ..., then it
1118     // will pick up the right saved_mark_word() as the high water mark
1119     // of the region. Either way, the behaviour will be correct.
1120     ContiguousSpace::set_saved_mark();
1121     OrderAccess::storestore();
1122     _gc_time_stamp = curr_gc_time_stamp;
1123     // No need to do another barrier to flush the writes above. If
1124     // this is called in parallel with other threads trying to
1125     // allocate into the region, the caller should call this while
1126     // holding a lock and when the lock is released the writes will be
1127     // flushed.
1128   }
1129 }
1130 
1131 G1OffsetTableContigSpace::
1132 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1133                          MemRegion mr) :
1134   _offsets(sharedOffsetArray, mr),
1135   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1136   _gc_time_stamp(0)
1137 {
1138   _offsets.set_space(this);
1139   // false ==> we'll do the clearing if there's clearing to be done.
1140   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
1141   _offsets.zero_bottom_entry();
1142   _offsets.initialize_threshold();
1143 }