1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1ErgoVerbose.hpp"
  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Log.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcLocker.inline.hpp"
  56 #include "gc/shared/gcTimer.hpp"
  57 #include "gc/shared/gcTrace.hpp"
  58 #include "gc/shared/gcTraceTime.hpp"
  59 #include "gc/shared/generationSpec.hpp"
  60 #include "gc/shared/isGCActiveMark.hpp"
  61 #include "gc/shared/referenceProcessor.hpp"
  62 #include "gc/shared/taskqueue.inline.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/iterator.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "runtime/atomic.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "utilities/globalDefinitions.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   bool _concurrent;
  94 public:
  95   RefineCardTableEntryClosure() : _concurrent(true) { }
  96 
  97   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  98     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111 
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 117  private:
 118   size_t _num_processed;
 119 
 120  public:
 121   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 122 
 123   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 124     *card_ptr = CardTableModRefBS::dirty_card_val();
 125     _num_processed++;
 126     return true;
 127   }
 128 
 129   size_t num_processed() const { return _num_processed; }
 130 };
 131 
 132 YoungList::YoungList(G1CollectedHeap* g1h) :
 133     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 134     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 135   guarantee(check_list_empty(false), "just making sure...");
 136 }
 137 
 138 void YoungList::push_region(HeapRegion *hr) {
 139   assert(!hr->is_young(), "should not already be young");
 140   assert(hr->get_next_young_region() == NULL, "cause it should!");
 141 
 142   hr->set_next_young_region(_head);
 143   _head = hr;
 144 
 145   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 146   ++_length;
 147 }
 148 
 149 void YoungList::add_survivor_region(HeapRegion* hr) {
 150   assert(hr->is_survivor(), "should be flagged as survivor region");
 151   assert(hr->get_next_young_region() == NULL, "cause it should!");
 152 
 153   hr->set_next_young_region(_survivor_head);
 154   if (_survivor_head == NULL) {
 155     _survivor_tail = hr;
 156   }
 157   _survivor_head = hr;
 158   ++_survivor_length;
 159 }
 160 
 161 void YoungList::empty_list(HeapRegion* list) {
 162   while (list != NULL) {
 163     HeapRegion* next = list->get_next_young_region();
 164     list->set_next_young_region(NULL);
 165     list->uninstall_surv_rate_group();
 166     // This is called before a Full GC and all the non-empty /
 167     // non-humongous regions at the end of the Full GC will end up as
 168     // old anyway.
 169     list->set_old();
 170     list = next;
 171   }
 172 }
 173 
 174 void YoungList::empty_list() {
 175   assert(check_list_well_formed(), "young list should be well formed");
 176 
 177   empty_list(_head);
 178   _head = NULL;
 179   _length = 0;
 180 
 181   empty_list(_survivor_head);
 182   _survivor_head = NULL;
 183   _survivor_tail = NULL;
 184   _survivor_length = 0;
 185 
 186   _last_sampled_rs_lengths = 0;
 187 
 188   assert(check_list_empty(false), "just making sure...");
 189 }
 190 
 191 bool YoungList::check_list_well_formed() {
 192   bool ret = true;
 193 
 194   uint length = 0;
 195   HeapRegion* curr = _head;
 196   HeapRegion* last = NULL;
 197   while (curr != NULL) {
 198     if (!curr->is_young()) {
 199       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 200                              "incorrectly tagged (y: %d, surv: %d)",
 201                              p2i(curr->bottom()), p2i(curr->end()),
 202                              curr->is_young(), curr->is_survivor());
 203       ret = false;
 204     }
 205     ++length;
 206     last = curr;
 207     curr = curr->get_next_young_region();
 208   }
 209   ret = ret && (length == _length);
 210 
 211   if (!ret) {
 212     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 213     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 214                            length, _length);
 215   }
 216 
 217   return ret;
 218 }
 219 
 220 bool YoungList::check_list_empty(bool check_sample) {
 221   bool ret = true;
 222 
 223   if (_length != 0) {
 224     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 225                   _length);
 226     ret = false;
 227   }
 228   if (check_sample && _last_sampled_rs_lengths != 0) {
 229     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 230     ret = false;
 231   }
 232   if (_head != NULL) {
 233     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 234     ret = false;
 235   }
 236   if (!ret) {
 237     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 238   }
 239 
 240   return ret;
 241 }
 242 
 243 void
 244 YoungList::rs_length_sampling_init() {
 245   _sampled_rs_lengths = 0;
 246   _curr               = _head;
 247 }
 248 
 249 bool
 250 YoungList::rs_length_sampling_more() {
 251   return _curr != NULL;
 252 }
 253 
 254 void
 255 YoungList::rs_length_sampling_next() {
 256   assert( _curr != NULL, "invariant" );
 257   size_t rs_length = _curr->rem_set()->occupied();
 258 
 259   _sampled_rs_lengths += rs_length;
 260 
 261   // The current region may not yet have been added to the
 262   // incremental collection set (it gets added when it is
 263   // retired as the current allocation region).
 264   if (_curr->in_collection_set()) {
 265     // Update the collection set policy information for this region
 266     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 267   }
 268 
 269   _curr = _curr->get_next_young_region();
 270   if (_curr == NULL) {
 271     _last_sampled_rs_lengths = _sampled_rs_lengths;
 272     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 273   }
 274 }
 275 
 276 void
 277 YoungList::reset_auxilary_lists() {
 278   guarantee( is_empty(), "young list should be empty" );
 279   assert(check_list_well_formed(), "young list should be well formed");
 280 
 281   // Add survivor regions to SurvRateGroup.
 282   _g1h->g1_policy()->note_start_adding_survivor_regions();
 283   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 284 
 285   int young_index_in_cset = 0;
 286   for (HeapRegion* curr = _survivor_head;
 287        curr != NULL;
 288        curr = curr->get_next_young_region()) {
 289     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 290 
 291     // The region is a non-empty survivor so let's add it to
 292     // the incremental collection set for the next evacuation
 293     // pause.
 294     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 295     young_index_in_cset += 1;
 296   }
 297   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 298   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 299 
 300   _head   = _survivor_head;
 301   _length = _survivor_length;
 302   if (_survivor_head != NULL) {
 303     assert(_survivor_tail != NULL, "cause it shouldn't be");
 304     assert(_survivor_length > 0, "invariant");
 305     _survivor_tail->set_next_young_region(NULL);
 306   }
 307 
 308   // Don't clear the survivor list handles until the start of
 309   // the next evacuation pause - we need it in order to re-tag
 310   // the survivor regions from this evacuation pause as 'young'
 311   // at the start of the next.
 312 
 313   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 314 
 315   assert(check_list_well_formed(), "young list should be well formed");
 316 }
 317 
 318 void YoungList::print() {
 319   HeapRegion* lists[] = {_head,   _survivor_head};
 320   const char* names[] = {"YOUNG", "SURVIVOR"};
 321 
 322   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 323     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 324     HeapRegion *curr = lists[list];
 325     if (curr == NULL)
 326       gclog_or_tty->print_cr("  empty");
 327     while (curr != NULL) {
 328       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 329                              HR_FORMAT_PARAMS(curr),
 330                              p2i(curr->prev_top_at_mark_start()),
 331                              p2i(curr->next_top_at_mark_start()),
 332                              curr->age_in_surv_rate_group_cond());
 333       curr = curr->get_next_young_region();
 334     }
 335   }
 336 
 337   gclog_or_tty->cr();
 338 }
 339 
 340 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 341   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 342 }
 343 
 344 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 345   // The from card cache is not the memory that is actually committed. So we cannot
 346   // take advantage of the zero_filled parameter.
 347   reset_from_card_cache(start_idx, num_regions);
 348 }
 349 
 350 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 351 {
 352   // Claim the right to put the region on the dirty cards region list
 353   // by installing a self pointer.
 354   HeapRegion* next = hr->get_next_dirty_cards_region();
 355   if (next == NULL) {
 356     HeapRegion* res = (HeapRegion*)
 357       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 358                           NULL);
 359     if (res == NULL) {
 360       HeapRegion* head;
 361       do {
 362         // Put the region to the dirty cards region list.
 363         head = _dirty_cards_region_list;
 364         next = (HeapRegion*)
 365           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 366         if (next == head) {
 367           assert(hr->get_next_dirty_cards_region() == hr,
 368                  "hr->get_next_dirty_cards_region() != hr");
 369           if (next == NULL) {
 370             // The last region in the list points to itself.
 371             hr->set_next_dirty_cards_region(hr);
 372           } else {
 373             hr->set_next_dirty_cards_region(next);
 374           }
 375         }
 376       } while (next != head);
 377     }
 378   }
 379 }
 380 
 381 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 382 {
 383   HeapRegion* head;
 384   HeapRegion* hr;
 385   do {
 386     head = _dirty_cards_region_list;
 387     if (head == NULL) {
 388       return NULL;
 389     }
 390     HeapRegion* new_head = head->get_next_dirty_cards_region();
 391     if (head == new_head) {
 392       // The last region.
 393       new_head = NULL;
 394     }
 395     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 396                                           head);
 397   } while (hr != head);
 398   assert(hr != NULL, "invariant");
 399   hr->set_next_dirty_cards_region(NULL);
 400   return hr;
 401 }
 402 
 403 // Returns true if the reference points to an object that
 404 // can move in an incremental collection.
 405 bool G1CollectedHeap::is_scavengable(const void* p) {
 406   HeapRegion* hr = heap_region_containing(p);
 407   return !hr->is_pinned();
 408 }
 409 
 410 // Private methods.
 411 
 412 HeapRegion*
 413 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 414   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 415   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 416     if (!_secondary_free_list.is_empty()) {
 417       if (G1ConcRegionFreeingVerbose) {
 418         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 419                                "secondary_free_list has %u entries",
 420                                _secondary_free_list.length());
 421       }
 422       // It looks as if there are free regions available on the
 423       // secondary_free_list. Let's move them to the free_list and try
 424       // again to allocate from it.
 425       append_secondary_free_list();
 426 
 427       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 428              "empty we should have moved at least one entry to the free_list");
 429       HeapRegion* res = _hrm.allocate_free_region(is_old);
 430       if (G1ConcRegionFreeingVerbose) {
 431         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 432                                "allocated "HR_FORMAT" from secondary_free_list",
 433                                HR_FORMAT_PARAMS(res));
 434       }
 435       return res;
 436     }
 437 
 438     // Wait here until we get notified either when (a) there are no
 439     // more free regions coming or (b) some regions have been moved on
 440     // the secondary_free_list.
 441     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 442   }
 443 
 444   if (G1ConcRegionFreeingVerbose) {
 445     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 446                            "could not allocate from secondary_free_list");
 447   }
 448   return NULL;
 449 }
 450 
 451 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 452   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 453          "the only time we use this to allocate a humongous region is "
 454          "when we are allocating a single humongous region");
 455 
 456   HeapRegion* res;
 457   if (G1StressConcRegionFreeing) {
 458     if (!_secondary_free_list.is_empty()) {
 459       if (G1ConcRegionFreeingVerbose) {
 460         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 461                                "forced to look at the secondary_free_list");
 462       }
 463       res = new_region_try_secondary_free_list(is_old);
 464       if (res != NULL) {
 465         return res;
 466       }
 467     }
 468   }
 469 
 470   res = _hrm.allocate_free_region(is_old);
 471 
 472   if (res == NULL) {
 473     if (G1ConcRegionFreeingVerbose) {
 474       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 475                              "res == NULL, trying the secondary_free_list");
 476     }
 477     res = new_region_try_secondary_free_list(is_old);
 478   }
 479   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 480     // Currently, only attempts to allocate GC alloc regions set
 481     // do_expand to true. So, we should only reach here during a
 482     // safepoint. If this assumption changes we might have to
 483     // reconsider the use of _expand_heap_after_alloc_failure.
 484     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 485 
 486     ergo_verbose1(ErgoHeapSizing,
 487                   "attempt heap expansion",
 488                   ergo_format_reason("region allocation request failed")
 489                   ergo_format_byte("allocation request"),
 490                   word_size * HeapWordSize);
 491     if (expand(word_size * HeapWordSize)) {
 492       // Given that expand() succeeded in expanding the heap, and we
 493       // always expand the heap by an amount aligned to the heap
 494       // region size, the free list should in theory not be empty.
 495       // In either case allocate_free_region() will check for NULL.
 496       res = _hrm.allocate_free_region(is_old);
 497     } else {
 498       _expand_heap_after_alloc_failure = false;
 499     }
 500   }
 501   return res;
 502 }
 503 
 504 HeapWord*
 505 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 506                                                            uint num_regions,
 507                                                            size_t word_size,
 508                                                            AllocationContext_t context) {
 509   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 510   assert(is_humongous(word_size), "word_size should be humongous");
 511   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 512 
 513   // Index of last region in the series + 1.
 514   uint last = first + num_regions;
 515 
 516   // We need to initialize the region(s) we just discovered. This is
 517   // a bit tricky given that it can happen concurrently with
 518   // refinement threads refining cards on these regions and
 519   // potentially wanting to refine the BOT as they are scanning
 520   // those cards (this can happen shortly after a cleanup; see CR
 521   // 6991377). So we have to set up the region(s) carefully and in
 522   // a specific order.
 523 
 524   // The word size sum of all the regions we will allocate.
 525   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 526   assert(word_size <= word_size_sum, "sanity");
 527 
 528   // This will be the "starts humongous" region.
 529   HeapRegion* first_hr = region_at(first);
 530   // The header of the new object will be placed at the bottom of
 531   // the first region.
 532   HeapWord* new_obj = first_hr->bottom();
 533   // This will be the new end of the first region in the series that
 534   // should also match the end of the last region in the series.
 535   HeapWord* new_end = new_obj + word_size_sum;
 536   // This will be the new top of the first region that will reflect
 537   // this allocation.
 538   HeapWord* new_top = new_obj + word_size;
 539 
 540   // First, we need to zero the header of the space that we will be
 541   // allocating. When we update top further down, some refinement
 542   // threads might try to scan the region. By zeroing the header we
 543   // ensure that any thread that will try to scan the region will
 544   // come across the zero klass word and bail out.
 545   //
 546   // NOTE: It would not have been correct to have used
 547   // CollectedHeap::fill_with_object() and make the space look like
 548   // an int array. The thread that is doing the allocation will
 549   // later update the object header to a potentially different array
 550   // type and, for a very short period of time, the klass and length
 551   // fields will be inconsistent. This could cause a refinement
 552   // thread to calculate the object size incorrectly.
 553   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 554 
 555   // We will set up the first region as "starts humongous". This
 556   // will also update the BOT covering all the regions to reflect
 557   // that there is a single object that starts at the bottom of the
 558   // first region.
 559   first_hr->set_starts_humongous(new_top, new_end);
 560   first_hr->set_allocation_context(context);
 561   // Then, if there are any, we will set up the "continues
 562   // humongous" regions.
 563   HeapRegion* hr = NULL;
 564   for (uint i = first + 1; i < last; ++i) {
 565     hr = region_at(i);
 566     hr->set_continues_humongous(first_hr);
 567     hr->set_allocation_context(context);
 568   }
 569   // If we have "continues humongous" regions (hr != NULL), then the
 570   // end of the last one should match new_end.
 571   assert(hr == NULL || hr->end() == new_end, "sanity");
 572 
 573   // Up to this point no concurrent thread would have been able to
 574   // do any scanning on any region in this series. All the top
 575   // fields still point to bottom, so the intersection between
 576   // [bottom,top] and [card_start,card_end] will be empty. Before we
 577   // update the top fields, we'll do a storestore to make sure that
 578   // no thread sees the update to top before the zeroing of the
 579   // object header and the BOT initialization.
 580   OrderAccess::storestore();
 581 
 582   // Now that the BOT and the object header have been initialized,
 583   // we can update top of the "starts humongous" region.
 584   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 585          "new_top should be in this region");
 586   first_hr->set_top(new_top);
 587   if (_hr_printer.is_active()) {
 588     HeapWord* bottom = first_hr->bottom();
 589     HeapWord* end = first_hr->orig_end();
 590     if ((first + 1) == last) {
 591       // the series has a single humongous region
 592       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 593     } else {
 594       // the series has more than one humongous regions
 595       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 596     }
 597   }
 598 
 599   // Now, we will update the top fields of the "continues humongous"
 600   // regions. The reason we need to do this is that, otherwise,
 601   // these regions would look empty and this will confuse parts of
 602   // G1. For example, the code that looks for a consecutive number
 603   // of empty regions will consider them empty and try to
 604   // re-allocate them. We can extend is_empty() to also include
 605   // !is_continues_humongous(), but it is easier to just update the top
 606   // fields here. The way we set top for all regions (i.e., top ==
 607   // end for all regions but the last one, top == new_top for the
 608   // last one) is actually used when we will free up the humongous
 609   // region in free_humongous_region().
 610   hr = NULL;
 611   for (uint i = first + 1; i < last; ++i) {
 612     hr = region_at(i);
 613     if ((i + 1) == last) {
 614       // last continues humongous region
 615       assert(hr->bottom() < new_top && new_top <= hr->end(),
 616              "new_top should fall on this region");
 617       hr->set_top(new_top);
 618       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 619     } else {
 620       // not last one
 621       assert(new_top > hr->end(), "new_top should be above this region");
 622       hr->set_top(hr->end());
 623       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 624     }
 625   }
 626   // If we have continues humongous regions (hr != NULL), then the
 627   // end of the last one should match new_end and its top should
 628   // match new_top.
 629   assert(hr == NULL ||
 630          (hr->end() == new_end && hr->top() == new_top), "sanity");
 631   check_bitmaps("Humongous Region Allocation", first_hr);
 632 
 633   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 634   _allocator->increase_used(first_hr->used());
 635   _humongous_set.add(first_hr);
 636 
 637   return new_obj;
 638 }
 639 
 640 // If could fit into free regions w/o expansion, try.
 641 // Otherwise, if can expand, do so.
 642 // Otherwise, if using ex regions might help, try with ex given back.
 643 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 644   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 645 
 646   verify_region_sets_optional();
 647 
 648   uint first = G1_NO_HRM_INDEX;
 649   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 650 
 651   if (obj_regions == 1) {
 652     // Only one region to allocate, try to use a fast path by directly allocating
 653     // from the free lists. Do not try to expand here, we will potentially do that
 654     // later.
 655     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 656     if (hr != NULL) {
 657       first = hr->hrm_index();
 658     }
 659   } else {
 660     // We can't allocate humongous regions spanning more than one region while
 661     // cleanupComplete() is running, since some of the regions we find to be
 662     // empty might not yet be added to the free list. It is not straightforward
 663     // to know in which list they are on so that we can remove them. We only
 664     // need to do this if we need to allocate more than one region to satisfy the
 665     // current humongous allocation request. If we are only allocating one region
 666     // we use the one-region region allocation code (see above), that already
 667     // potentially waits for regions from the secondary free list.
 668     wait_while_free_regions_coming();
 669     append_secondary_free_list_if_not_empty_with_lock();
 670 
 671     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 672     // are lucky enough to find some.
 673     first = _hrm.find_contiguous_only_empty(obj_regions);
 674     if (first != G1_NO_HRM_INDEX) {
 675       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 676     }
 677   }
 678 
 679   if (first == G1_NO_HRM_INDEX) {
 680     // Policy: We could not find enough regions for the humongous object in the
 681     // free list. Look through the heap to find a mix of free and uncommitted regions.
 682     // If so, try expansion.
 683     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 684     if (first != G1_NO_HRM_INDEX) {
 685       // We found something. Make sure these regions are committed, i.e. expand
 686       // the heap. Alternatively we could do a defragmentation GC.
 687       ergo_verbose1(ErgoHeapSizing,
 688                     "attempt heap expansion",
 689                     ergo_format_reason("humongous allocation request failed")
 690                     ergo_format_byte("allocation request"),
 691                     word_size * HeapWordSize);
 692 
 693       _hrm.expand_at(first, obj_regions);
 694       g1_policy()->record_new_heap_size(num_regions());
 695 
 696 #ifdef ASSERT
 697       for (uint i = first; i < first + obj_regions; ++i) {
 698         HeapRegion* hr = region_at(i);
 699         assert(hr->is_free(), "sanity");
 700         assert(hr->is_empty(), "sanity");
 701         assert(is_on_master_free_list(hr), "sanity");
 702       }
 703 #endif
 704       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 705     } else {
 706       // Policy: Potentially trigger a defragmentation GC.
 707     }
 708   }
 709 
 710   HeapWord* result = NULL;
 711   if (first != G1_NO_HRM_INDEX) {
 712     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 713                                                        word_size, context);
 714     assert(result != NULL, "it should always return a valid result");
 715 
 716     // A successful humongous object allocation changes the used space
 717     // information of the old generation so we need to recalculate the
 718     // sizes and update the jstat counters here.
 719     g1mm()->update_sizes();
 720   }
 721 
 722   verify_region_sets_optional();
 723 
 724   return result;
 725 }
 726 
 727 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 728   assert_heap_not_locked_and_not_at_safepoint();
 729   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 730 
 731   uint dummy_gc_count_before;
 732   uint dummy_gclocker_retry_count = 0;
 733   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 734 }
 735 
 736 HeapWord*
 737 G1CollectedHeap::mem_allocate(size_t word_size,
 738                               bool*  gc_overhead_limit_was_exceeded) {
 739   assert_heap_not_locked_and_not_at_safepoint();
 740 
 741   // Loop until the allocation is satisfied, or unsatisfied after GC.
 742   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 743     uint gc_count_before;
 744 
 745     HeapWord* result = NULL;
 746     if (!is_humongous(word_size)) {
 747       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 748     } else {
 749       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 750     }
 751     if (result != NULL) {
 752       return result;
 753     }
 754 
 755     // Create the garbage collection operation...
 756     VM_G1CollectForAllocation op(gc_count_before, word_size);
 757     op.set_allocation_context(AllocationContext::current());
 758 
 759     // ...and get the VM thread to execute it.
 760     VMThread::execute(&op);
 761 
 762     if (op.prologue_succeeded() && op.pause_succeeded()) {
 763       // If the operation was successful we'll return the result even
 764       // if it is NULL. If the allocation attempt failed immediately
 765       // after a Full GC, it's unlikely we'll be able to allocate now.
 766       HeapWord* result = op.result();
 767       if (result != NULL && !is_humongous(word_size)) {
 768         // Allocations that take place on VM operations do not do any
 769         // card dirtying and we have to do it here. We only have to do
 770         // this for non-humongous allocations, though.
 771         dirty_young_block(result, word_size);
 772       }
 773       return result;
 774     } else {
 775       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 776         return NULL;
 777       }
 778       assert(op.result() == NULL,
 779              "the result should be NULL if the VM op did not succeed");
 780     }
 781 
 782     // Give a warning if we seem to be looping forever.
 783     if ((QueuedAllocationWarningCount > 0) &&
 784         (try_count % QueuedAllocationWarningCount == 0)) {
 785       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 786     }
 787   }
 788 
 789   ShouldNotReachHere();
 790   return NULL;
 791 }
 792 
 793 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 794                                                    AllocationContext_t context,
 795                                                    uint* gc_count_before_ret,
 796                                                    uint* gclocker_retry_count_ret) {
 797   // Make sure you read the note in attempt_allocation_humongous().
 798 
 799   assert_heap_not_locked_and_not_at_safepoint();
 800   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 801          "be called for humongous allocation requests");
 802 
 803   // We should only get here after the first-level allocation attempt
 804   // (attempt_allocation()) failed to allocate.
 805 
 806   // We will loop until a) we manage to successfully perform the
 807   // allocation or b) we successfully schedule a collection which
 808   // fails to perform the allocation. b) is the only case when we'll
 809   // return NULL.
 810   HeapWord* result = NULL;
 811   for (int try_count = 1; /* we'll return */; try_count += 1) {
 812     bool should_try_gc;
 813     uint gc_count_before;
 814 
 815     {
 816       MutexLockerEx x(Heap_lock);
 817       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 818                                                                                     false /* bot_updates */);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       // If we reach here, attempt_allocation_locked() above failed to
 824       // allocate a new region. So the mutator alloc region should be NULL.
 825       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 826 
 827       if (GC_locker::is_active_and_needs_gc()) {
 828         if (g1_policy()->can_expand_young_list()) {
 829           // No need for an ergo verbose message here,
 830           // can_expand_young_list() does this when it returns true.
 831           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 832                                                                                        false /* bot_updates */);
 833           if (result != NULL) {
 834             return result;
 835           }
 836         }
 837         should_try_gc = false;
 838       } else {
 839         // The GCLocker may not be active but the GCLocker initiated
 840         // GC may not yet have been performed (GCLocker::needs_gc()
 841         // returns true). In this case we do not try this GC and
 842         // wait until the GCLocker initiated GC is performed, and
 843         // then retry the allocation.
 844         if (GC_locker::needs_gc()) {
 845           should_try_gc = false;
 846         } else {
 847           // Read the GC count while still holding the Heap_lock.
 848           gc_count_before = total_collections();
 849           should_try_gc = true;
 850         }
 851       }
 852     }
 853 
 854     if (should_try_gc) {
 855       bool succeeded;
 856       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 857                                    GCCause::_g1_inc_collection_pause);
 858       if (result != NULL) {
 859         assert(succeeded, "only way to get back a non-NULL result");
 860         return result;
 861       }
 862 
 863       if (succeeded) {
 864         // If we get here we successfully scheduled a collection which
 865         // failed to allocate. No point in trying to allocate
 866         // further. We'll just return NULL.
 867         MutexLockerEx x(Heap_lock);
 868         *gc_count_before_ret = total_collections();
 869         return NULL;
 870       }
 871     } else {
 872       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877       // The GCLocker is either active or the GCLocker initiated
 878       // GC has not yet been performed. Stall until it is and
 879       // then retry the allocation.
 880       GC_locker::stall_until_clear();
 881       (*gclocker_retry_count_ret) += 1;
 882     }
 883 
 884     // We can reach here if we were unsuccessful in scheduling a
 885     // collection (because another thread beat us to it) or if we were
 886     // stalled due to the GC locker. In either can we should retry the
 887     // allocation attempt in case another thread successfully
 888     // performed a collection and reclaimed enough space. We do the
 889     // first attempt (without holding the Heap_lock) here and the
 890     // follow-on attempt will be at the start of the next loop
 891     // iteration (after taking the Heap_lock).
 892     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 893                                                                            false /* bot_updates */);
 894     if (result != NULL) {
 895       return result;
 896     }
 897 
 898     // Give a warning if we seem to be looping forever.
 899     if ((QueuedAllocationWarningCount > 0) &&
 900         (try_count % QueuedAllocationWarningCount == 0)) {
 901       warning("G1CollectedHeap::attempt_allocation_slow() "
 902               "retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 void G1CollectedHeap::begin_record_alloc_range() {
 911   assert_at_safepoint(true /* should_be_vm_thread */);
 912   if (_recording_allocator == NULL) {
 913     _recording_allocator = G1RecordingAllocator::create_allocator(this);
 914   }
 915 }
 916 
 917 bool G1CollectedHeap::is_record_alloc_too_large(size_t word_size) {
 918   // Check whether the size would be considered humongous for a minimum-sized region.  
 919   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 920 }
 921 
 922 HeapWord* G1CollectedHeap::record_mem_allocate(size_t word_size) {
 923   assert_at_safepoint(true /* should_be_vm_thread */);
 924   assert(_recording_allocator != NULL, "_recording_allocator not initialized");
 925 
 926   // Return NULL if the size would be considered humongous for a minimum-sized region.
 927   // Otherwise, attempt to perform the allocation in the recorded space.
 928   if (is_record_alloc_too_large(word_size)) {
 929     return NULL;
 930   }
 931   return _recording_allocator->record_mem_allocate(word_size);
 932 }
 933 
 934 void G1CollectedHeap::end_record_alloc_range(GrowableArray<MemRegion>* ranges, 
 935                                              uint end_alignment) {
 936   assert_at_safepoint(true /* should_be_vm_thread */);
 937   assert(_recording_allocator != NULL, "recording allocator uninitialized");
 938 
 939   // Call complete_recording to do the real work, filling in the MemRegion
 940   // array with the recorded regions.  
 941   _recording_allocator->complete_recording(ranges, end_alignment);
 942 }
 943 
 944 void G1CollectedHeap::fill_with_non_humongous_objects(HeapWord* base_address, size_t word_size) {
 945   // Create filler objects for the specified range, being careful not to 
 946   // create any humongous objects.
 947   if (!is_humongous(word_size)) {
 948     CollectedHeap::fill_with_object(base_address, word_size);
 949   } else {
 950     size_t remainder = word_size;
 951     size_t increment = humongous_threshold_for(HeapRegion::GrainWords) / 2;
 952     HeapWord* fill_top = base_address;
 953     // Don't let remainder get smaller than the minimum filler object size.
 954     while ((remainder > increment) && (remainder - increment >= min_fill_size())) {
 955       CollectedHeap::fill_with_object(fill_top, increment);
 956       fill_top += increment;
 957       remainder -= increment;
 958     }
 959     if (remainder != 0) {
 960       CollectedHeap::fill_with_object(fill_top, remainder);
 961     }
 962   }
 963 }
 964 
 965 bool
 966 G1CollectedHeap::check_archive_addresses(MemRegion* ranges, uint count) {
 967   MemRegion mr = _hrm.reserved();
 968   for (uint i = 0; i < count; i++) {
 969     if (!mr.contains(ranges[i].start()) || !mr.contains(ranges[i].last())) {
 970       return false;
 971     }
 972   }
 973   return true;
 974 }
 975 
 976 bool
 977 G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, uint count) {
 978   MutexLockerEx x(Heap_lock);
 979 
 980   MemRegion mr = _hrm.reserved();
 981   HeapWord* prev_end_addr = NULL;
 982   uint prev_end_index = 0;
 983 
 984   // Temporarily disable pretouching of heap pages.  This interface is used 
 985   // when mmap'ing archived heap data in, so pre-touching is wasted.
 986   FlagSetting fs(AlwaysPreTouch, false);
 987 
 988   // Enable archive object checking in G1MarkSweep.  We have to let it know
 989   // about each archive range, so that objects in those ranges aren't marked.
 990   G1MarkSweep::enable_archive_object_check();
 991 
 992   // For each specified MemRegion range, allocate the corresponding G1
 993   // regions and mark them as archive regions.
 994   // We expect the ranges in ascending order, without overlap.
 995   for (uint i = 0; i < count; i++) {
 996     HeapWord* base_address = ranges[i].start();
 997     size_t word_size = ranges[i].word_size();
 998     HeapWord* end_address = ranges[i].last();
 999 
1000     assert((base_address > prev_end_addr) && (base_address < end_address),
1001            "invalid range specification");
1002 
1003     prev_end_addr = end_address;
1004     uint start_index = _hrm.addr_to_index(base_address);
1005     uint end_index = _hrm.addr_to_index(end_address);
1006 
1007     // Check for ranges that begin/end in the same G1 region
1008     // as as the previous range.
1009     if (start_index == prev_end_index) {
1010       if (end_index == prev_end_index) {
1011         break;
1012       }
1013       start_index++;
1014     }
1015     prev_end_index = end_index;
1016 
1017     // Ensure that each contained G1 region is available and free,
1018     // returning false if not.
1019     for (uint curr_index = start_index; curr_index <= end_index; curr_index++) {
1020       HeapRegion* curr_region;
1021       if ((curr_region = _hrm.at_or_null(curr_index)) == NULL) {
1022         ergo_verbose1(ErgoHeapSizing,
1023                       "attempt heap expansion",
1024                       ergo_format_reason("pinning region")
1025                       ergo_format_byte("region size"),
1026                       HeapRegion::GrainWords * HeapWordSize);
1027         _hrm.expand_at(curr_index, 1);
1028       } else {
1029         if (!curr_region->is_free()) {
1030           return false;
1031         }
1032       }
1033     }
1034     
1035     _hrm.allocate_free_regions_starting_at(start_index, (end_index - start_index) + 1);
1036     _allocator->increase_used(word_size * HeapWordSize);
1037 
1038     // Mark each G1 region touched by the range as archive, add it to the old set, and set
1039     // the allocation context and top. 
1040     for (uint i = start_index; i <= end_index; i++) {
1041       HeapRegion* curr = region_at(i);
1042       assert(curr->is_empty() && !curr->is_pinned(), "Invalid MemRegion");
1043       _hr_printer.alloc(curr, G1HRPrinter::Archive);
1044       curr->set_allocation_context(AllocationContext::system());
1045       if (i != end_index) {
1046         curr->set_top(curr->end());
1047       } else {
1048         curr->set_top(end_address + 1);
1049       }
1050       curr->set_archive();
1051       _old_set.add(curr);
1052     }
1053 
1054     // Notify mark-sweep of the archive range.
1055     G1MarkSweep::mark_range_archive(base_address, end_address);
1056   }
1057   return true;
1058 }
1059 
1060 void
1061 G1CollectedHeap::fill_archive_regions(MemRegion* ranges, uint count) {
1062 
1063   MemRegion mr = _hrm.reserved();
1064   HeapWord *prev_end_addr = NULL;
1065   uint prev_end_index = 0;
1066 
1067   // For each MemRegion, create filler objects, if needed, in the G1 regions
1068   // that contain the address range.  The address range actually within the 
1069   // MemRegion will not be modified.  That is assumed to have been initialized
1070   // elsewhere, probably via an mmap of archived heap data.
1071   MutexLockerEx x(Heap_lock);
1072   for (uint i = 0; i < count; i++) {
1073     HeapWord* base_address = ranges[i].start();
1074     size_t word_size = ranges[i].word_size();
1075     HeapWord* end_address = ranges[i].last();
1076 
1077     assert(mr.contains(base_address) && mr.contains(end_address),
1078            "MemRegion outside of heap");
1079 
1080     uint start_index = _hrm.addr_to_index(base_address);
1081     uint end_index = _hrm.addr_to_index(end_address);
1082     HeapRegion* start_region = _hrm.addr_to_region(base_address);
1083     HeapRegion* end_region = _hrm.addr_to_region(end_address);
1084     HeapWord* bottom_address = start_region->bottom();
1085 
1086     // Check for a range beginning in the same region in which the
1087     // previous one ended.
1088     if (start_index == prev_end_index) {
1089       bottom_address = prev_end_addr;
1090       start_index++;
1091     }
1092 
1093 #ifdef ASSERT
1094     // Verify the regions were all marked as archive regions by
1095     // alloc_fixed_ranges.
1096     for (uint i = start_index; i <= end_index; i++) {
1097       HeapRegion* curr = region_at(i);
1098       assert(curr->is_archive(), "Invalid range in fill_archive_regions");
1099     }
1100 #endif
1101 
1102     prev_end_addr = base_address + word_size;
1103     prev_end_index = end_index;
1104 
1105     // Fill the low part of the first allocated region with dummy object(s),
1106     // if the region base does not match the range address, or if the previous
1107     // range ended within the same G1 region, and there is a gap.
1108     if (base_address != bottom_address) { 
1109       size_t fill_size = base_address - bottom_address;
1110       G1CollectedHeap::fill_with_non_humongous_objects(bottom_address, fill_size);
1111       _allocator->increase_used(fill_size * HeapWordSize);
1112     }
1113   }
1114 }
1115 
1116 
1117 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1118                                                         uint* gc_count_before_ret,
1119                                                         uint* gclocker_retry_count_ret) {
1120   // The structure of this method has a lot of similarities to
1121   // attempt_allocation_slow(). The reason these two were not merged
1122   // into a single one is that such a method would require several "if
1123   // allocation is not humongous do this, otherwise do that"
1124   // conditional paths which would obscure its flow. In fact, an early
1125   // version of this code did use a unified method which was harder to
1126   // follow and, as a result, it had subtle bugs that were hard to
1127   // track down. So keeping these two methods separate allows each to
1128   // be more readable. It will be good to keep these two in sync as
1129   // much as possible.
1130 
1131   assert_heap_not_locked_and_not_at_safepoint();
1132   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1133          "should only be called for humongous allocations");
1134 
1135   // Humongous objects can exhaust the heap quickly, so we should check if we
1136   // need to start a marking cycle at each humongous object allocation. We do
1137   // the check before we do the actual allocation. The reason for doing it
1138   // before the allocation is that we avoid having to keep track of the newly
1139   // allocated memory while we do a GC.
1140   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1141                                            word_size)) {
1142     collect(GCCause::_g1_humongous_allocation);
1143   }
1144 
1145   // We will loop until a) we manage to successfully perform the
1146   // allocation or b) we successfully schedule a collection which
1147   // fails to perform the allocation. b) is the only case when we'll
1148   // return NULL.
1149   HeapWord* result = NULL;
1150   for (int try_count = 1; /* we'll return */; try_count += 1) {
1151     bool should_try_gc;
1152     uint gc_count_before;
1153 
1154     {
1155       MutexLockerEx x(Heap_lock);
1156 
1157       // Given that humongous objects are not allocated in young
1158       // regions, we'll first try to do the allocation without doing a
1159       // collection hoping that there's enough space in the heap.
1160       result = humongous_obj_allocate(word_size, AllocationContext::current());
1161       if (result != NULL) {
1162         return result;
1163       }
1164 
1165       if (GC_locker::is_active_and_needs_gc()) {
1166         should_try_gc = false;
1167       } else {
1168          // The GCLocker may not be active but the GCLocker initiated
1169         // GC may not yet have been performed (GCLocker::needs_gc()
1170         // returns true). In this case we do not try this GC and
1171         // wait until the GCLocker initiated GC is performed, and
1172         // then retry the allocation.
1173         if (GC_locker::needs_gc()) {
1174           should_try_gc = false;
1175         } else {
1176           // Read the GC count while still holding the Heap_lock.
1177           gc_count_before = total_collections();
1178           should_try_gc = true;
1179         }
1180       }
1181     }
1182 
1183     if (should_try_gc) {
1184       // If we failed to allocate the humongous object, we should try to
1185       // do a collection pause (if we're allowed) in case it reclaims
1186       // enough space for the allocation to succeed after the pause.
1187 
1188       bool succeeded;
1189       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1190                                    GCCause::_g1_humongous_allocation);
1191       if (result != NULL) {
1192         assert(succeeded, "only way to get back a non-NULL result");
1193         return result;
1194       }
1195 
1196       if (succeeded) {
1197         // If we get here we successfully scheduled a collection which
1198         // failed to allocate. No point in trying to allocate
1199         // further. We'll just return NULL.
1200         MutexLockerEx x(Heap_lock);
1201         *gc_count_before_ret = total_collections();
1202         return NULL;
1203       }
1204     } else {
1205       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1206         MutexLockerEx x(Heap_lock);
1207         *gc_count_before_ret = total_collections();
1208         return NULL;
1209       }
1210       // The GCLocker is either active or the GCLocker initiated
1211       // GC has not yet been performed. Stall until it is and
1212       // then retry the allocation.
1213       GC_locker::stall_until_clear();
1214       (*gclocker_retry_count_ret) += 1;
1215     }
1216 
1217     // We can reach here if we were unsuccessful in scheduling a
1218     // collection (because another thread beat us to it) or if we were
1219     // stalled due to the GC locker. In either can we should retry the
1220     // allocation attempt in case another thread successfully
1221     // performed a collection and reclaimed enough space.  Give a
1222     // warning if we seem to be looping forever.
1223 
1224     if ((QueuedAllocationWarningCount > 0) &&
1225         (try_count % QueuedAllocationWarningCount == 0)) {
1226       warning("G1CollectedHeap::attempt_allocation_humongous() "
1227               "retries %d times", try_count);
1228     }
1229   }
1230 
1231   ShouldNotReachHere();
1232   return NULL;
1233 }
1234 
1235 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1236                                                            AllocationContext_t context,
1237                                                            bool expect_null_mutator_alloc_region) {
1238   assert_at_safepoint(true /* should_be_vm_thread */);
1239   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1240                                              !expect_null_mutator_alloc_region,
1241          "the current alloc region was unexpectedly found to be non-NULL");
1242 
1243   if (!is_humongous(word_size)) {
1244     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1245                                                       false /* bot_updates */);
1246   } else {
1247     HeapWord* result = humongous_obj_allocate(word_size, context);
1248     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1249       g1_policy()->set_initiate_conc_mark_if_possible();
1250     }
1251     return result;
1252   }
1253 
1254   ShouldNotReachHere();
1255 }
1256 
1257 class PostMCRemSetClearClosure: public HeapRegionClosure {
1258   G1CollectedHeap* _g1h;
1259   ModRefBarrierSet* _mr_bs;
1260 public:
1261   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1262     _g1h(g1h), _mr_bs(mr_bs) {}
1263 
1264   bool doHeapRegion(HeapRegion* r) {
1265     HeapRegionRemSet* hrrs = r->rem_set();
1266 
1267     if (r->is_continues_humongous()) {
1268       // We'll assert that the strong code root list and RSet is empty
1269       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1270       assert(hrrs->occupied() == 0, "RSet should be empty");
1271       return false;
1272     }
1273 
1274     _g1h->reset_gc_time_stamps(r);
1275     hrrs->clear();
1276     // You might think here that we could clear just the cards
1277     // corresponding to the used region.  But no: if we leave a dirty card
1278     // in a region we might allocate into, then it would prevent that card
1279     // from being enqueued, and cause it to be missed.
1280     // Re: the performance cost: we shouldn't be doing full GC anyway!
1281     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1282 
1283     return false;
1284   }
1285 };
1286 
1287 void G1CollectedHeap::clear_rsets_post_compaction() {
1288   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1289   heap_region_iterate(&rs_clear);
1290 }
1291 
1292 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1293   G1CollectedHeap*   _g1h;
1294   UpdateRSOopClosure _cl;
1295 public:
1296   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1297     _cl(g1->g1_rem_set(), worker_i),
1298     _g1h(g1)
1299   { }
1300 
1301   bool doHeapRegion(HeapRegion* r) {
1302     if (!r->is_continues_humongous()) {
1303       _cl.set_from(r);
1304       r->oop_iterate(&_cl);
1305     }
1306     return false;
1307   }
1308 };
1309 
1310 class ParRebuildRSTask: public AbstractGangTask {
1311   G1CollectedHeap* _g1;
1312   HeapRegionClaimer _hrclaimer;
1313 
1314 public:
1315   ParRebuildRSTask(G1CollectedHeap* g1) :
1316       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1317 
1318   void work(uint worker_id) {
1319     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1320     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1321   }
1322 };
1323 
1324 class PostCompactionPrinterClosure: public HeapRegionClosure {
1325 private:
1326   G1HRPrinter* _hr_printer;
1327 public:
1328   bool doHeapRegion(HeapRegion* hr) {
1329     assert(!hr->is_young(), "not expecting to find young regions");
1330     if (hr->is_free()) {
1331       // We only generate output for non-empty regions.
1332     } else if (hr->is_starts_humongous()) {
1333       if (hr->region_num() == 1) {
1334         // single humongous region
1335         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1336       } else {
1337         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1338       }
1339     } else if (hr->is_continues_humongous()) {
1340       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1341     } else if (hr->is_archive()) {
1342       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1343     } else if (hr->is_old()) {
1344       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1345     } else {
1346       ShouldNotReachHere();
1347     }
1348     return false;
1349   }
1350 
1351   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1352     : _hr_printer(hr_printer) { }
1353 };
1354 
1355 void G1CollectedHeap::print_hrm_post_compaction() {
1356   PostCompactionPrinterClosure cl(hr_printer());
1357   heap_region_iterate(&cl);
1358 }
1359 
1360 bool G1CollectedHeap::do_collection(bool explicit_gc,
1361                                     bool clear_all_soft_refs,
1362                                     size_t word_size) {
1363   assert_at_safepoint(true /* should_be_vm_thread */);
1364 
1365   if (GC_locker::check_active_before_gc()) {
1366     return false;
1367   }
1368 
1369   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1370   gc_timer->register_gc_start();
1371 
1372   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1373   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1374 
1375   SvcGCMarker sgcm(SvcGCMarker::FULL);
1376   ResourceMark rm;
1377 
1378   G1Log::update_level();
1379   print_heap_before_gc();
1380   trace_heap_before_gc(gc_tracer);
1381 
1382   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1383 
1384   verify_region_sets_optional();
1385 
1386   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1387                            collector_policy()->should_clear_all_soft_refs();
1388 
1389   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1390 
1391   {
1392     IsGCActiveMark x;
1393 
1394     // Timing
1395     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1396     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1397 
1398     {
1399       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1400       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1401       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1402 
1403       g1_policy()->record_full_collection_start();
1404 
1405       // Note: When we have a more flexible GC logging framework that
1406       // allows us to add optional attributes to a GC log record we
1407       // could consider timing and reporting how long we wait in the
1408       // following two methods.
1409       wait_while_free_regions_coming();
1410       // If we start the compaction before the CM threads finish
1411       // scanning the root regions we might trip them over as we'll
1412       // be moving objects / updating references. So let's wait until
1413       // they are done. By telling them to abort, they should complete
1414       // early.
1415       _cm->root_regions()->abort();
1416       _cm->root_regions()->wait_until_scan_finished();
1417       append_secondary_free_list_if_not_empty_with_lock();
1418 
1419       gc_prologue(true);
1420       increment_total_collections(true /* full gc */);
1421       increment_old_marking_cycles_started();
1422 
1423       assert(used() == recalculate_used(), "Should be equal");
1424 
1425       verify_before_gc();
1426 
1427       check_bitmaps("Full GC Start");
1428       pre_full_gc_dump(gc_timer);
1429 
1430       COMPILER2_PRESENT(DerivedPointerTable::clear());
1431 
1432       // Disable discovery and empty the discovered lists
1433       // for the CM ref processor.
1434       ref_processor_cm()->disable_discovery();
1435       ref_processor_cm()->abandon_partial_discovery();
1436       ref_processor_cm()->verify_no_references_recorded();
1437 
1438       // Abandon current iterations of concurrent marking and concurrent
1439       // refinement, if any are in progress. We have to do this before
1440       // wait_until_scan_finished() below.
1441       concurrent_mark()->abort();
1442 
1443       // Make sure we'll choose a new allocation region afterwards.
1444       _allocator->release_mutator_alloc_region();
1445       _allocator->abandon_gc_alloc_regions();
1446       g1_rem_set()->cleanupHRRS();
1447 
1448       // We should call this after we retire any currently active alloc
1449       // regions so that all the ALLOC / RETIRE events are generated
1450       // before the start GC event.
1451       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1452 
1453       // We may have added regions to the current incremental collection
1454       // set between the last GC or pause and now. We need to clear the
1455       // incremental collection set and then start rebuilding it afresh
1456       // after this full GC.
1457       abandon_collection_set(g1_policy()->inc_cset_head());
1458       g1_policy()->clear_incremental_cset();
1459       g1_policy()->stop_incremental_cset_building();
1460 
1461       tear_down_region_sets(false /* free_list_only */);
1462       g1_policy()->set_gcs_are_young(true);
1463 
1464       // See the comments in g1CollectedHeap.hpp and
1465       // G1CollectedHeap::ref_processing_init() about
1466       // how reference processing currently works in G1.
1467 
1468       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1469       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1470 
1471       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1472       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1473 
1474       ref_processor_stw()->enable_discovery();
1475       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1476 
1477       // Do collection work
1478       {
1479         HandleMark hm;  // Discard invalid handles created during gc
1480         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1481       }
1482 
1483       assert(num_free_regions() == 0, "we should not have added any free regions");
1484       rebuild_region_sets(false /* free_list_only */);
1485 
1486       // Enqueue any discovered reference objects that have
1487       // not been removed from the discovered lists.
1488       ref_processor_stw()->enqueue_discovered_references();
1489 
1490       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1491 
1492       MemoryService::track_memory_usage();
1493 
1494       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1495       ref_processor_stw()->verify_no_references_recorded();
1496 
1497       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1498       ClassLoaderDataGraph::purge();
1499       MetaspaceAux::verify_metrics();
1500 
1501       // Note: since we've just done a full GC, concurrent
1502       // marking is no longer active. Therefore we need not
1503       // re-enable reference discovery for the CM ref processor.
1504       // That will be done at the start of the next marking cycle.
1505       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1506       ref_processor_cm()->verify_no_references_recorded();
1507 
1508       reset_gc_time_stamp();
1509       // Since everything potentially moved, we will clear all remembered
1510       // sets, and clear all cards.  Later we will rebuild remembered
1511       // sets. We will also reset the GC time stamps of the regions.
1512       clear_rsets_post_compaction();
1513       check_gc_time_stamps();
1514 
1515       // Resize the heap if necessary.
1516       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1517 
1518       if (_hr_printer.is_active()) {
1519         // We should do this after we potentially resize the heap so
1520         // that all the COMMIT / UNCOMMIT events are generated before
1521         // the end GC event.
1522 
1523         print_hrm_post_compaction();
1524         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1525       }
1526 
1527       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1528       if (hot_card_cache->use_cache()) {
1529         hot_card_cache->reset_card_counts();
1530         hot_card_cache->reset_hot_cache();
1531       }
1532 
1533       // Rebuild remembered sets of all regions.
1534       uint n_workers =
1535         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1536                                                 workers()->active_workers(),
1537                                                 Threads::number_of_non_daemon_threads());
1538       workers()->set_active_workers(n_workers);
1539 
1540       ParRebuildRSTask rebuild_rs_task(this);
1541       workers()->run_task(&rebuild_rs_task);
1542 
1543       // Rebuild the strong code root lists for each region
1544       rebuild_strong_code_roots();
1545 
1546       if (true) { // FIXME
1547         MetaspaceGC::compute_new_size();
1548       }
1549 
1550 #ifdef TRACESPINNING
1551       ParallelTaskTerminator::print_termination_counts();
1552 #endif
1553 
1554       // Discard all rset updates
1555       JavaThread::dirty_card_queue_set().abandon_logs();
1556       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1557 
1558       _young_list->reset_sampled_info();
1559       // At this point there should be no regions in the
1560       // entire heap tagged as young.
1561       assert(check_young_list_empty(true /* check_heap */),
1562              "young list should be empty at this point");
1563 
1564       // Update the number of full collections that have been completed.
1565       increment_old_marking_cycles_completed(false /* concurrent */);
1566 
1567       _hrm.verify_optional();
1568       verify_region_sets_optional();
1569 
1570       verify_after_gc();
1571 
1572       // Clear the previous marking bitmap, if needed for bitmap verification.
1573       // Note we cannot do this when we clear the next marking bitmap in
1574       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1575       // objects marked during a full GC against the previous bitmap.
1576       // But we need to clear it before calling check_bitmaps below since
1577       // the full GC has compacted objects and updated TAMS but not updated
1578       // the prev bitmap.
1579       if (G1VerifyBitmaps) {
1580         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1581       }
1582       check_bitmaps("Full GC End");
1583 
1584       // Start a new incremental collection set for the next pause
1585       assert(g1_policy()->collection_set() == NULL, "must be");
1586       g1_policy()->start_incremental_cset_building();
1587 
1588       clear_cset_fast_test();
1589 
1590       _allocator->init_mutator_alloc_region();
1591 
1592       g1_policy()->record_full_collection_end();
1593 
1594       if (G1Log::fine()) {
1595         g1_policy()->print_heap_transition();
1596       }
1597 
1598       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1599       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1600       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1601       // before any GC notifications are raised.
1602       g1mm()->update_sizes();
1603 
1604       gc_epilogue(true);
1605     }
1606 
1607     if (G1Log::finer()) {
1608       g1_policy()->print_detailed_heap_transition(true /* full */);
1609     }
1610 
1611     print_heap_after_gc();
1612     trace_heap_after_gc(gc_tracer);
1613 
1614     post_full_gc_dump(gc_timer);
1615 
1616     gc_timer->register_gc_end();
1617     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1618   }
1619 
1620   return true;
1621 }
1622 
1623 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1624   // do_collection() will return whether it succeeded in performing
1625   // the GC. Currently, there is no facility on the
1626   // do_full_collection() API to notify the caller than the collection
1627   // did not succeed (e.g., because it was locked out by the GC
1628   // locker). So, right now, we'll ignore the return value.
1629   bool dummy = do_collection(true,                /* explicit_gc */
1630                              clear_all_soft_refs,
1631                              0                    /* word_size */);
1632 }
1633 
1634 // This code is mostly copied from TenuredGeneration.
1635 void
1636 G1CollectedHeap::
1637 resize_if_necessary_after_full_collection(size_t word_size) {
1638   // Include the current allocation, if any, and bytes that will be
1639   // pre-allocated to support collections, as "used".
1640   const size_t used_after_gc = used();
1641   const size_t capacity_after_gc = capacity();
1642   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1643 
1644   // This is enforced in arguments.cpp.
1645   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1646          "otherwise the code below doesn't make sense");
1647 
1648   // We don't have floating point command-line arguments
1649   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1650   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1651   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1652   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1653 
1654   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1655   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1656 
1657   // We have to be careful here as these two calculations can overflow
1658   // 32-bit size_t's.
1659   double used_after_gc_d = (double) used_after_gc;
1660   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1661   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1662 
1663   // Let's make sure that they are both under the max heap size, which
1664   // by default will make them fit into a size_t.
1665   double desired_capacity_upper_bound = (double) max_heap_size;
1666   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1667                                     desired_capacity_upper_bound);
1668   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1669                                     desired_capacity_upper_bound);
1670 
1671   // We can now safely turn them into size_t's.
1672   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1673   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1674 
1675   // This assert only makes sense here, before we adjust them
1676   // with respect to the min and max heap size.
1677   assert(minimum_desired_capacity <= maximum_desired_capacity,
1678          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1679                  "maximum_desired_capacity = "SIZE_FORMAT,
1680                  minimum_desired_capacity, maximum_desired_capacity));
1681 
1682   // Should not be greater than the heap max size. No need to adjust
1683   // it with respect to the heap min size as it's a lower bound (i.e.,
1684   // we'll try to make the capacity larger than it, not smaller).
1685   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1686   // Should not be less than the heap min size. No need to adjust it
1687   // with respect to the heap max size as it's an upper bound (i.e.,
1688   // we'll try to make the capacity smaller than it, not greater).
1689   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1690 
1691   if (capacity_after_gc < minimum_desired_capacity) {
1692     // Don't expand unless it's significant
1693     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1694     ergo_verbose4(ErgoHeapSizing,
1695                   "attempt heap expansion",
1696                   ergo_format_reason("capacity lower than "
1697                                      "min desired capacity after Full GC")
1698                   ergo_format_byte("capacity")
1699                   ergo_format_byte("occupancy")
1700                   ergo_format_byte_perc("min desired capacity"),
1701                   capacity_after_gc, used_after_gc,
1702                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1703     expand(expand_bytes);
1704 
1705     // No expansion, now see if we want to shrink
1706   } else if (capacity_after_gc > maximum_desired_capacity) {
1707     // Capacity too large, compute shrinking size
1708     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1709     ergo_verbose4(ErgoHeapSizing,
1710                   "attempt heap shrinking",
1711                   ergo_format_reason("capacity higher than "
1712                                      "max desired capacity after Full GC")
1713                   ergo_format_byte("capacity")
1714                   ergo_format_byte("occupancy")
1715                   ergo_format_byte_perc("max desired capacity"),
1716                   capacity_after_gc, used_after_gc,
1717                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1718     shrink(shrink_bytes);
1719   }
1720 }
1721 
1722 
1723 HeapWord*
1724 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1725                                            AllocationContext_t context,
1726                                            bool* succeeded) {
1727   assert_at_safepoint(true /* should_be_vm_thread */);
1728 
1729   *succeeded = true;
1730   // Let's attempt the allocation first.
1731   HeapWord* result =
1732     attempt_allocation_at_safepoint(word_size,
1733                                     context,
1734                                     false /* expect_null_mutator_alloc_region */);
1735   if (result != NULL) {
1736     assert(*succeeded, "sanity");
1737     return result;
1738   }
1739 
1740   // In a G1 heap, we're supposed to keep allocation from failing by
1741   // incremental pauses.  Therefore, at least for now, we'll favor
1742   // expansion over collection.  (This might change in the future if we can
1743   // do something smarter than full collection to satisfy a failed alloc.)
1744   result = expand_and_allocate(word_size, context);
1745   if (result != NULL) {
1746     assert(*succeeded, "sanity");
1747     return result;
1748   }
1749 
1750   // Expansion didn't work, we'll try to do a Full GC.
1751   bool gc_succeeded = do_collection(false, /* explicit_gc */
1752                                     false, /* clear_all_soft_refs */
1753                                     word_size);
1754   if (!gc_succeeded) {
1755     *succeeded = false;
1756     return NULL;
1757   }
1758 
1759   // Retry the allocation
1760   result = attempt_allocation_at_safepoint(word_size,
1761                                            context,
1762                                            true /* expect_null_mutator_alloc_region */);
1763   if (result != NULL) {
1764     assert(*succeeded, "sanity");
1765     return result;
1766   }
1767 
1768   // Then, try a Full GC that will collect all soft references.
1769   gc_succeeded = do_collection(false, /* explicit_gc */
1770                                true,  /* clear_all_soft_refs */
1771                                word_size);
1772   if (!gc_succeeded) {
1773     *succeeded = false;
1774     return NULL;
1775   }
1776 
1777   // Retry the allocation once more
1778   result = attempt_allocation_at_safepoint(word_size,
1779                                            context,
1780                                            true /* expect_null_mutator_alloc_region */);
1781   if (result != NULL) {
1782     assert(*succeeded, "sanity");
1783     return result;
1784   }
1785 
1786   assert(!collector_policy()->should_clear_all_soft_refs(),
1787          "Flag should have been handled and cleared prior to this point");
1788 
1789   // What else?  We might try synchronous finalization later.  If the total
1790   // space available is large enough for the allocation, then a more
1791   // complete compaction phase than we've tried so far might be
1792   // appropriate.
1793   assert(*succeeded, "sanity");
1794   return NULL;
1795 }
1796 
1797 // Attempting to expand the heap sufficiently
1798 // to support an allocation of the given "word_size".  If
1799 // successful, perform the allocation and return the address of the
1800 // allocated block, or else "NULL".
1801 
1802 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1803   assert_at_safepoint(true /* should_be_vm_thread */);
1804 
1805   verify_region_sets_optional();
1806 
1807   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1808   ergo_verbose1(ErgoHeapSizing,
1809                 "attempt heap expansion",
1810                 ergo_format_reason("allocation request failed")
1811                 ergo_format_byte("allocation request"),
1812                 word_size * HeapWordSize);
1813   if (expand(expand_bytes)) {
1814     _hrm.verify_optional();
1815     verify_region_sets_optional();
1816     return attempt_allocation_at_safepoint(word_size,
1817                                            context,
1818                                            false /* expect_null_mutator_alloc_region */);
1819   }
1820   return NULL;
1821 }
1822 
1823 bool G1CollectedHeap::expand(size_t expand_bytes) {
1824   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1825   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1826                                        HeapRegion::GrainBytes);
1827   ergo_verbose2(ErgoHeapSizing,
1828                 "expand the heap",
1829                 ergo_format_byte("requested expansion amount")
1830                 ergo_format_byte("attempted expansion amount"),
1831                 expand_bytes, aligned_expand_bytes);
1832 
1833   if (is_maximal_no_gc()) {
1834     ergo_verbose0(ErgoHeapSizing,
1835                       "did not expand the heap",
1836                       ergo_format_reason("heap already fully expanded"));
1837     return false;
1838   }
1839 
1840   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1841   assert(regions_to_expand > 0, "Must expand by at least one region");
1842 
1843   uint expanded_by = _hrm.expand_by(regions_to_expand);
1844 
1845   if (expanded_by > 0) {
1846     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1847     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1848     g1_policy()->record_new_heap_size(num_regions());
1849   } else {
1850     ergo_verbose0(ErgoHeapSizing,
1851                   "did not expand the heap",
1852                   ergo_format_reason("heap expansion operation failed"));
1853     // The expansion of the virtual storage space was unsuccessful.
1854     // Let's see if it was because we ran out of swap.
1855     if (G1ExitOnExpansionFailure &&
1856         _hrm.available() >= regions_to_expand) {
1857       // We had head room...
1858       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1859     }
1860   }
1861   return regions_to_expand > 0;
1862 }
1863 
1864 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1865   size_t aligned_shrink_bytes =
1866     ReservedSpace::page_align_size_down(shrink_bytes);
1867   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1868                                          HeapRegion::GrainBytes);
1869   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1870 
1871   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1872   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1873 
1874   ergo_verbose3(ErgoHeapSizing,
1875                 "shrink the heap",
1876                 ergo_format_byte("requested shrinking amount")
1877                 ergo_format_byte("aligned shrinking amount")
1878                 ergo_format_byte("attempted shrinking amount"),
1879                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1880   if (num_regions_removed > 0) {
1881     g1_policy()->record_new_heap_size(num_regions());
1882   } else {
1883     ergo_verbose0(ErgoHeapSizing,
1884                   "did not shrink the heap",
1885                   ergo_format_reason("heap shrinking operation failed"));
1886   }
1887 }
1888 
1889 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1890   verify_region_sets_optional();
1891 
1892   // We should only reach here at the end of a Full GC which means we
1893   // should not not be holding to any GC alloc regions. The method
1894   // below will make sure of that and do any remaining clean up.
1895   _allocator->abandon_gc_alloc_regions();
1896 
1897   // Instead of tearing down / rebuilding the free lists here, we
1898   // could instead use the remove_all_pending() method on free_list to
1899   // remove only the ones that we need to remove.
1900   tear_down_region_sets(true /* free_list_only */);
1901   shrink_helper(shrink_bytes);
1902   rebuild_region_sets(true /* free_list_only */);
1903 
1904   _hrm.verify_optional();
1905   verify_region_sets_optional();
1906 }
1907 
1908 // Public methods.
1909 
1910 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1911 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1912 #endif // _MSC_VER
1913 
1914 
1915 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1916   CollectedHeap(),
1917   _g1_policy(policy_),
1918   _dirty_card_queue_set(false),
1919   _into_cset_dirty_card_queue_set(false),
1920   _is_alive_closure_cm(this),
1921   _is_alive_closure_stw(this),
1922   _ref_processor_cm(NULL),
1923   _ref_processor_stw(NULL),
1924   _bot_shared(NULL),
1925   _evac_failure_scan_stack(NULL),
1926   _mark_in_progress(false),
1927   _cg1r(NULL),
1928   _g1mm(NULL),
1929   _refine_cte_cl(NULL),
1930   _full_collection(false),
1931   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1932   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1933   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1934   _humongous_reclaim_candidates(),
1935   _has_humongous_reclaim_candidates(false),
1936   _recording_allocator(NULL),
1937   _free_regions_coming(false),
1938   _young_list(new YoungList(this)),
1939   _gc_time_stamp(0),
1940   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1941   _old_plab_stats(OldPLABSize, PLABWeight),
1942   _expand_heap_after_alloc_failure(true),
1943   _surviving_young_words(NULL),
1944   _old_marking_cycles_started(0),
1945   _old_marking_cycles_completed(0),
1946   _concurrent_cycle_started(false),
1947   _heap_summary_sent(false),
1948   _in_cset_fast_test(),
1949   _dirty_cards_region_list(NULL),
1950   _worker_cset_start_region(NULL),
1951   _worker_cset_start_region_time_stamp(NULL),
1952   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1953   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1954   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1955   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1956 
1957   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1958                           /* are_GC_task_threads */true,
1959                           /* are_ConcurrentGC_threads */false);
1960   _workers->initialize_workers();
1961 
1962   _allocator = G1Allocator::create_allocator(this);
1963   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1964 
1965   int n_queues = (int)ParallelGCThreads;
1966   _task_queues = new RefToScanQueueSet(n_queues);
1967 
1968   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1969   assert(n_rem_sets > 0, "Invariant.");
1970 
1971   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1972   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1973   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1974 
1975   for (int i = 0; i < n_queues; i++) {
1976     RefToScanQueue* q = new RefToScanQueue();
1977     q->initialize();
1978     _task_queues->register_queue(i, q);
1979     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1980   }
1981   clear_cset_start_regions();
1982 
1983   // Initialize the G1EvacuationFailureALot counters and flags.
1984   NOT_PRODUCT(reset_evacuation_should_fail();)
1985 
1986   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1987 }
1988 
1989 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1990                                                                  size_t size,
1991                                                                  size_t translation_factor) {
1992   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1993   // Allocate a new reserved space, preferring to use large pages.
1994   ReservedSpace rs(size, preferred_page_size);
1995   G1RegionToSpaceMapper* result  =
1996     G1RegionToSpaceMapper::create_mapper(rs,
1997                                          size,
1998                                          rs.alignment(),
1999                                          HeapRegion::GrainBytes,
2000                                          translation_factor,
2001                                          mtGC);
2002   if (TracePageSizes) {
2003     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2004                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2005   }
2006   return result;
2007 }
2008 
2009 jint G1CollectedHeap::initialize() {
2010   CollectedHeap::pre_initialize();
2011   os::enable_vtime();
2012 
2013   G1Log::init();
2014 
2015   // Necessary to satisfy locking discipline assertions.
2016 
2017   MutexLocker x(Heap_lock);
2018 
2019   // We have to initialize the printer before committing the heap, as
2020   // it will be used then.
2021   _hr_printer.set_active(G1PrintHeapRegions);
2022 
2023   // While there are no constraints in the GC code that HeapWordSize
2024   // be any particular value, there are multiple other areas in the
2025   // system which believe this to be true (e.g. oop->object_size in some
2026   // cases incorrectly returns the size in wordSize units rather than
2027   // HeapWordSize).
2028   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2029 
2030   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2031   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2032   size_t heap_alignment = collector_policy()->heap_alignment();
2033 
2034   // Ensure that the sizes are properly aligned.
2035   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2036   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2037   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2038 
2039   _refine_cte_cl = new RefineCardTableEntryClosure();
2040 
2041   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2042 
2043   // Reserve the maximum.
2044 
2045   // When compressed oops are enabled, the preferred heap base
2046   // is calculated by subtracting the requested size from the
2047   // 32Gb boundary and using the result as the base address for
2048   // heap reservation. If the requested size is not aligned to
2049   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2050   // into the ReservedHeapSpace constructor) then the actual
2051   // base of the reserved heap may end up differing from the
2052   // address that was requested (i.e. the preferred heap base).
2053   // If this happens then we could end up using a non-optimal
2054   // compressed oops mode.
2055 
2056   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2057                                                  heap_alignment);
2058 
2059   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2060 
2061   // Create the barrier set for the entire reserved region.
2062   G1SATBCardTableLoggingModRefBS* bs
2063     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2064   bs->initialize();
2065   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2066   set_barrier_set(bs);
2067 
2068   // Also create a G1 rem set.
2069   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2070 
2071   // Carve out the G1 part of the heap.
2072 
2073   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2074   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2075   G1RegionToSpaceMapper* heap_storage =
2076     G1RegionToSpaceMapper::create_mapper(g1_rs,
2077                                          g1_rs.size(),
2078                                          page_size,
2079                                          HeapRegion::GrainBytes,
2080                                          1,
2081                                          mtJavaHeap);
2082   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2083                        max_byte_size, page_size,
2084                        heap_rs.base(),
2085                        heap_rs.size());
2086   heap_storage->set_mapping_changed_listener(&_listener);
2087 
2088   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2089   G1RegionToSpaceMapper* bot_storage =
2090     create_aux_memory_mapper("Block offset table",
2091                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2092                              G1BlockOffsetSharedArray::heap_map_factor());
2093 
2094   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2095   G1RegionToSpaceMapper* cardtable_storage =
2096     create_aux_memory_mapper("Card table",
2097                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2098                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2099 
2100   G1RegionToSpaceMapper* card_counts_storage =
2101     create_aux_memory_mapper("Card counts table",
2102                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2103                              G1CardCounts::heap_map_factor());
2104 
2105   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2106   G1RegionToSpaceMapper* prev_bitmap_storage =
2107     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2108   G1RegionToSpaceMapper* next_bitmap_storage =
2109     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2110 
2111   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2112   g1_barrier_set()->initialize(cardtable_storage);
2113    // Do later initialization work for concurrent refinement.
2114   _cg1r->init(card_counts_storage);
2115 
2116   // 6843694 - ensure that the maximum region index can fit
2117   // in the remembered set structures.
2118   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2119   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2120 
2121   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2122   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2123   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2124             "too many cards per region");
2125 
2126   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2127 
2128   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2129 
2130   {
2131     HeapWord* start = _hrm.reserved().start();
2132     HeapWord* end = _hrm.reserved().end();
2133     size_t granularity = HeapRegion::GrainBytes;
2134 
2135     _in_cset_fast_test.initialize(start, end, granularity);
2136     _humongous_reclaim_candidates.initialize(start, end, granularity);
2137   }
2138 
2139   // Create the ConcurrentMark data structure and thread.
2140   // (Must do this late, so that "max_regions" is defined.)
2141   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2142   if (_cm == NULL || !_cm->completed_initialization()) {
2143     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2144     return JNI_ENOMEM;
2145   }
2146   _cmThread = _cm->cmThread();
2147 
2148   // Initialize the from_card cache structure of HeapRegionRemSet.
2149   HeapRegionRemSet::init_heap(max_regions());
2150 
2151   // Now expand into the initial heap size.
2152   if (!expand(init_byte_size)) {
2153     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2154     return JNI_ENOMEM;
2155   }
2156 
2157   // Perform any initialization actions delegated to the policy.
2158   g1_policy()->init();
2159 
2160   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2161                                                SATB_Q_FL_lock,
2162                                                G1SATBProcessCompletedThreshold,
2163                                                Shared_SATB_Q_lock);
2164 
2165   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2166                                                 DirtyCardQ_CBL_mon,
2167                                                 DirtyCardQ_FL_lock,
2168                                                 concurrent_g1_refine()->yellow_zone(),
2169                                                 concurrent_g1_refine()->red_zone(),
2170                                                 Shared_DirtyCardQ_lock);
2171 
2172   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2173                                     DirtyCardQ_CBL_mon,
2174                                     DirtyCardQ_FL_lock,
2175                                     -1, // never trigger processing
2176                                     -1, // no limit on length
2177                                     Shared_DirtyCardQ_lock,
2178                                     &JavaThread::dirty_card_queue_set());
2179 
2180   // Initialize the card queue set used to hold cards containing
2181   // references into the collection set.
2182   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2183                                              DirtyCardQ_CBL_mon,
2184                                              DirtyCardQ_FL_lock,
2185                                              -1, // never trigger processing
2186                                              -1, // no limit on length
2187                                              Shared_DirtyCardQ_lock,
2188                                              &JavaThread::dirty_card_queue_set());
2189 
2190   // Here we allocate the dummy HeapRegion that is required by the
2191   // G1AllocRegion class.
2192   HeapRegion* dummy_region = _hrm.get_dummy_region();
2193 
2194   // We'll re-use the same region whether the alloc region will
2195   // require BOT updates or not and, if it doesn't, then a non-young
2196   // region will complain that it cannot support allocations without
2197   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2198   dummy_region->set_eden();
2199   // Make sure it's full.
2200   dummy_region->set_top(dummy_region->end());
2201   G1AllocRegion::setup(this, dummy_region);
2202 
2203   _allocator->init_mutator_alloc_region();
2204 
2205   // Do create of the monitoring and management support so that
2206   // values in the heap have been properly initialized.
2207   _g1mm = new G1MonitoringSupport(this);
2208 
2209   G1StringDedup::initialize();
2210 
2211   return JNI_OK;
2212 }
2213 
2214 void G1CollectedHeap::stop() {
2215   // Stop all concurrent threads. We do this to make sure these threads
2216   // do not continue to execute and access resources (e.g. gclog_or_tty)
2217   // that are destroyed during shutdown.
2218   _cg1r->stop();
2219   _cmThread->stop();
2220   if (G1StringDedup::is_enabled()) {
2221     G1StringDedup::stop();
2222   }
2223 }
2224 
2225 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2226   return HeapRegion::max_region_size();
2227 }
2228 
2229 void G1CollectedHeap::post_initialize() {
2230   CollectedHeap::post_initialize();
2231   ref_processing_init();
2232 }
2233 
2234 void G1CollectedHeap::ref_processing_init() {
2235   // Reference processing in G1 currently works as follows:
2236   //
2237   // * There are two reference processor instances. One is
2238   //   used to record and process discovered references
2239   //   during concurrent marking; the other is used to
2240   //   record and process references during STW pauses
2241   //   (both full and incremental).
2242   // * Both ref processors need to 'span' the entire heap as
2243   //   the regions in the collection set may be dotted around.
2244   //
2245   // * For the concurrent marking ref processor:
2246   //   * Reference discovery is enabled at initial marking.
2247   //   * Reference discovery is disabled and the discovered
2248   //     references processed etc during remarking.
2249   //   * Reference discovery is MT (see below).
2250   //   * Reference discovery requires a barrier (see below).
2251   //   * Reference processing may or may not be MT
2252   //     (depending on the value of ParallelRefProcEnabled
2253   //     and ParallelGCThreads).
2254   //   * A full GC disables reference discovery by the CM
2255   //     ref processor and abandons any entries on it's
2256   //     discovered lists.
2257   //
2258   // * For the STW processor:
2259   //   * Non MT discovery is enabled at the start of a full GC.
2260   //   * Processing and enqueueing during a full GC is non-MT.
2261   //   * During a full GC, references are processed after marking.
2262   //
2263   //   * Discovery (may or may not be MT) is enabled at the start
2264   //     of an incremental evacuation pause.
2265   //   * References are processed near the end of a STW evacuation pause.
2266   //   * For both types of GC:
2267   //     * Discovery is atomic - i.e. not concurrent.
2268   //     * Reference discovery will not need a barrier.
2269 
2270   MemRegion mr = reserved_region();
2271 
2272   // Concurrent Mark ref processor
2273   _ref_processor_cm =
2274     new ReferenceProcessor(mr,    // span
2275                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2276                                 // mt processing
2277                            (uint) ParallelGCThreads,
2278                                 // degree of mt processing
2279                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2280                                 // mt discovery
2281                            (uint) MAX2(ParallelGCThreads, ConcGCThreads),
2282                                 // degree of mt discovery
2283                            false,
2284                                 // Reference discovery is not atomic
2285                            &_is_alive_closure_cm);
2286                                 // is alive closure
2287                                 // (for efficiency/performance)
2288 
2289   // STW ref processor
2290   _ref_processor_stw =
2291     new ReferenceProcessor(mr,    // span
2292                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2293                                 // mt processing
2294                            (uint) ParallelGCThreads,
2295                                 // degree of mt processing
2296                            (ParallelGCThreads > 1),
2297                                 // mt discovery
2298                            (uint) ParallelGCThreads,
2299                                 // degree of mt discovery
2300                            true,
2301                                 // Reference discovery is atomic
2302                            &_is_alive_closure_stw);
2303                                 // is alive closure
2304                                 // (for efficiency/performance)
2305 }
2306 
2307 size_t G1CollectedHeap::capacity() const {
2308   return _hrm.length() * HeapRegion::GrainBytes;
2309 }
2310 
2311 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2312   assert(!hr->is_continues_humongous(), "pre-condition");
2313   hr->reset_gc_time_stamp();
2314   if (hr->is_starts_humongous()) {
2315     uint first_index = hr->hrm_index() + 1;
2316     uint last_index = hr->last_hc_index();
2317     for (uint i = first_index; i < last_index; i += 1) {
2318       HeapRegion* chr = region_at(i);
2319       assert(chr->is_continues_humongous(), "sanity");
2320       chr->reset_gc_time_stamp();
2321     }
2322   }
2323 }
2324 
2325 #ifndef PRODUCT
2326 
2327 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2328 private:
2329   unsigned _gc_time_stamp;
2330   bool _failures;
2331 
2332 public:
2333   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2334     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2335 
2336   virtual bool doHeapRegion(HeapRegion* hr) {
2337     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2338     if (_gc_time_stamp != region_gc_time_stamp) {
2339       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2340                              "expected %d", HR_FORMAT_PARAMS(hr),
2341                              region_gc_time_stamp, _gc_time_stamp);
2342       _failures = true;
2343     }
2344     return false;
2345   }
2346 
2347   bool failures() { return _failures; }
2348 };
2349 
2350 void G1CollectedHeap::check_gc_time_stamps() {
2351   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2352   heap_region_iterate(&cl);
2353   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2354 }
2355 #endif // PRODUCT
2356 
2357 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2358                                                  DirtyCardQueue* into_cset_dcq,
2359                                                  bool concurrent,
2360                                                  uint worker_i) {
2361   // Clean cards in the hot card cache
2362   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2363   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2364 
2365   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2366   size_t n_completed_buffers = 0;
2367   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2368     n_completed_buffers++;
2369   }
2370   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2371   dcqs.clear_n_completed_buffers();
2372   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2373 }
2374 
2375 
2376 // Computes the sum of the storage used by the various regions.
2377 size_t G1CollectedHeap::used() const {
2378   size_t result = _allocator->used();
2379   if (_recording_allocator != NULL) {
2380     result += _recording_allocator->used();
2381   }
2382   return result;
2383 }
2384 
2385 size_t G1CollectedHeap::used_unlocked() const {
2386   return _allocator->used_unlocked();
2387 }
2388 
2389 class SumUsedClosure: public HeapRegionClosure {
2390   size_t _used;
2391 public:
2392   SumUsedClosure() : _used(0) {}
2393   bool doHeapRegion(HeapRegion* r) {
2394     if (!r->is_continues_humongous()) {
2395       _used += r->used();
2396     }
2397     return false;
2398   }
2399   size_t result() { return _used; }
2400 };
2401 
2402 size_t G1CollectedHeap::recalculate_used() const {
2403   double recalculate_used_start = os::elapsedTime();
2404 
2405   SumUsedClosure blk;
2406   heap_region_iterate(&blk);
2407 
2408   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2409   return blk.result();
2410 }
2411 
2412 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2413   switch (cause) {
2414     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2415     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2416     case GCCause::_g1_humongous_allocation: return true;
2417     case GCCause::_update_allocation_context_stats_inc: return true;
2418     case GCCause::_wb_conc_mark:            return true;
2419     default:                                return false;
2420   }
2421 }
2422 
2423 #ifndef PRODUCT
2424 void G1CollectedHeap::allocate_dummy_regions() {
2425   // Let's fill up most of the region
2426   size_t word_size = HeapRegion::GrainWords - 1024;
2427   // And as a result the region we'll allocate will be humongous.
2428   guarantee(is_humongous(word_size), "sanity");
2429 
2430   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2431     // Let's use the existing mechanism for the allocation
2432     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2433                                                  AllocationContext::system());
2434     if (dummy_obj != NULL) {
2435       MemRegion mr(dummy_obj, word_size);
2436       CollectedHeap::fill_with_object(mr);
2437     } else {
2438       // If we can't allocate once, we probably cannot allocate
2439       // again. Let's get out of the loop.
2440       break;
2441     }
2442   }
2443 }
2444 #endif // !PRODUCT
2445 
2446 void G1CollectedHeap::increment_old_marking_cycles_started() {
2447   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2448     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2449     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2450     _old_marking_cycles_started, _old_marking_cycles_completed));
2451 
2452   _old_marking_cycles_started++;
2453 }
2454 
2455 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2456   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2457 
2458   // We assume that if concurrent == true, then the caller is a
2459   // concurrent thread that was joined the Suspendible Thread
2460   // Set. If there's ever a cheap way to check this, we should add an
2461   // assert here.
2462 
2463   // Given that this method is called at the end of a Full GC or of a
2464   // concurrent cycle, and those can be nested (i.e., a Full GC can
2465   // interrupt a concurrent cycle), the number of full collections
2466   // completed should be either one (in the case where there was no
2467   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2468   // behind the number of full collections started.
2469 
2470   // This is the case for the inner caller, i.e. a Full GC.
2471   assert(concurrent ||
2472          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2473          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2474          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2475                  "is inconsistent with _old_marking_cycles_completed = %u",
2476                  _old_marking_cycles_started, _old_marking_cycles_completed));
2477 
2478   // This is the case for the outer caller, i.e. the concurrent cycle.
2479   assert(!concurrent ||
2480          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2481          err_msg("for outer caller (concurrent cycle): "
2482                  "_old_marking_cycles_started = %u "
2483                  "is inconsistent with _old_marking_cycles_completed = %u",
2484                  _old_marking_cycles_started, _old_marking_cycles_completed));
2485 
2486   _old_marking_cycles_completed += 1;
2487 
2488   // We need to clear the "in_progress" flag in the CM thread before
2489   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2490   // is set) so that if a waiter requests another System.gc() it doesn't
2491   // incorrectly see that a marking cycle is still in progress.
2492   if (concurrent) {
2493     _cmThread->clear_in_progress();
2494   }
2495 
2496   // This notify_all() will ensure that a thread that called
2497   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2498   // and it's waiting for a full GC to finish will be woken up. It is
2499   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2500   FullGCCount_lock->notify_all();
2501 }
2502 
2503 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2504   _concurrent_cycle_started = true;
2505   _gc_timer_cm->register_gc_start(start_time);
2506 
2507   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2508   trace_heap_before_gc(_gc_tracer_cm);
2509 }
2510 
2511 void G1CollectedHeap::register_concurrent_cycle_end() {
2512   if (_concurrent_cycle_started) {
2513     if (_cm->has_aborted()) {
2514       _gc_tracer_cm->report_concurrent_mode_failure();
2515     }
2516 
2517     _gc_timer_cm->register_gc_end();
2518     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2519 
2520     // Clear state variables to prepare for the next concurrent cycle.
2521     _concurrent_cycle_started = false;
2522     _heap_summary_sent = false;
2523   }
2524 }
2525 
2526 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2527   if (_concurrent_cycle_started) {
2528     // This function can be called when:
2529     //  the cleanup pause is run
2530     //  the concurrent cycle is aborted before the cleanup pause.
2531     //  the concurrent cycle is aborted after the cleanup pause,
2532     //   but before the concurrent cycle end has been registered.
2533     // Make sure that we only send the heap information once.
2534     if (!_heap_summary_sent) {
2535       trace_heap_after_gc(_gc_tracer_cm);
2536       _heap_summary_sent = true;
2537     }
2538   }
2539 }
2540 
2541 G1YCType G1CollectedHeap::yc_type() {
2542   bool is_young = g1_policy()->gcs_are_young();
2543   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2544   bool is_during_mark = mark_in_progress();
2545 
2546   if (is_initial_mark) {
2547     return InitialMark;
2548   } else if (is_during_mark) {
2549     return DuringMark;
2550   } else if (is_young) {
2551     return Normal;
2552   } else {
2553     return Mixed;
2554   }
2555 }
2556 
2557 void G1CollectedHeap::collect(GCCause::Cause cause) {
2558   assert_heap_not_locked();
2559 
2560   uint gc_count_before;
2561   uint old_marking_count_before;
2562   uint full_gc_count_before;
2563   bool retry_gc;
2564 
2565   do {
2566     retry_gc = false;
2567 
2568     {
2569       MutexLocker ml(Heap_lock);
2570 
2571       // Read the GC count while holding the Heap_lock
2572       gc_count_before = total_collections();
2573       full_gc_count_before = total_full_collections();
2574       old_marking_count_before = _old_marking_cycles_started;
2575     }
2576 
2577     if (should_do_concurrent_full_gc(cause)) {
2578       // Schedule an initial-mark evacuation pause that will start a
2579       // concurrent cycle. We're setting word_size to 0 which means that
2580       // we are not requesting a post-GC allocation.
2581       VM_G1IncCollectionPause op(gc_count_before,
2582                                  0,     /* word_size */
2583                                  true,  /* should_initiate_conc_mark */
2584                                  g1_policy()->max_pause_time_ms(),
2585                                  cause);
2586       op.set_allocation_context(AllocationContext::current());
2587 
2588       VMThread::execute(&op);
2589       if (!op.pause_succeeded()) {
2590         if (old_marking_count_before == _old_marking_cycles_started) {
2591           retry_gc = op.should_retry_gc();
2592         } else {
2593           // A Full GC happened while we were trying to schedule the
2594           // initial-mark GC. No point in starting a new cycle given
2595           // that the whole heap was collected anyway.
2596         }
2597 
2598         if (retry_gc) {
2599           if (GC_locker::is_active_and_needs_gc()) {
2600             GC_locker::stall_until_clear();
2601           }
2602         }
2603       }
2604     } else {
2605       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2606           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2607 
2608         // Schedule a standard evacuation pause. We're setting word_size
2609         // to 0 which means that we are not requesting a post-GC allocation.
2610         VM_G1IncCollectionPause op(gc_count_before,
2611                                    0,     /* word_size */
2612                                    false, /* should_initiate_conc_mark */
2613                                    g1_policy()->max_pause_time_ms(),
2614                                    cause);
2615         VMThread::execute(&op);
2616       } else {
2617         // Schedule a Full GC.
2618         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2619         VMThread::execute(&op);
2620       }
2621     }
2622   } while (retry_gc);
2623 }
2624 
2625 bool G1CollectedHeap::is_in(const void* p) const {
2626   if (_hrm.reserved().contains(p)) {
2627     // Given that we know that p is in the reserved space,
2628     // heap_region_containing_raw() should successfully
2629     // return the containing region.
2630     HeapRegion* hr = heap_region_containing_raw(p);
2631     return hr->is_in(p);
2632   } else {
2633     return false;
2634   }
2635 }
2636 
2637 #ifdef ASSERT
2638 bool G1CollectedHeap::is_in_exact(const void* p) const {
2639   bool contains = reserved_region().contains(p);
2640   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2641   if (contains && available) {
2642     return true;
2643   } else {
2644     return false;
2645   }
2646 }
2647 #endif
2648 
2649 // Iteration functions.
2650 
2651 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2652 
2653 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2654   ExtendedOopClosure* _cl;
2655 public:
2656   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2657   bool doHeapRegion(HeapRegion* r) {
2658     if (!r->is_continues_humongous()) {
2659       r->oop_iterate(_cl);
2660     }
2661     return false;
2662   }
2663 };
2664 
2665 // Iterates an ObjectClosure over all objects within a HeapRegion.
2666 
2667 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2668   ObjectClosure* _cl;
2669 public:
2670   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2671   bool doHeapRegion(HeapRegion* r) {
2672     if (!r->is_continues_humongous()) {
2673       r->object_iterate(_cl);
2674     }
2675     return false;
2676   }
2677 };
2678 
2679 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2680   IterateObjectClosureRegionClosure blk(cl);
2681   heap_region_iterate(&blk);
2682 }
2683 
2684 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2685   _hrm.iterate(cl);
2686 }
2687 
2688 void
2689 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2690                                          uint worker_id,
2691                                          HeapRegionClaimer *hrclaimer,
2692                                          bool concurrent) const {
2693   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2694 }
2695 
2696 // Clear the cached CSet starting regions and (more importantly)
2697 // the time stamps. Called when we reset the GC time stamp.
2698 void G1CollectedHeap::clear_cset_start_regions() {
2699   assert(_worker_cset_start_region != NULL, "sanity");
2700   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2701 
2702   for (uint i = 0; i < ParallelGCThreads; i++) {
2703     _worker_cset_start_region[i] = NULL;
2704     _worker_cset_start_region_time_stamp[i] = 0;
2705   }
2706 }
2707 
2708 // Given the id of a worker, obtain or calculate a suitable
2709 // starting region for iterating over the current collection set.
2710 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2711   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2712 
2713   HeapRegion* result = NULL;
2714   unsigned gc_time_stamp = get_gc_time_stamp();
2715 
2716   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2717     // Cached starting region for current worker was set
2718     // during the current pause - so it's valid.
2719     // Note: the cached starting heap region may be NULL
2720     // (when the collection set is empty).
2721     result = _worker_cset_start_region[worker_i];
2722     assert(result == NULL || result->in_collection_set(), "sanity");
2723     return result;
2724   }
2725 
2726   // The cached entry was not valid so let's calculate
2727   // a suitable starting heap region for this worker.
2728 
2729   // We want the parallel threads to start their collection
2730   // set iteration at different collection set regions to
2731   // avoid contention.
2732   // If we have:
2733   //          n collection set regions
2734   //          p threads
2735   // Then thread t will start at region floor ((t * n) / p)
2736 
2737   result = g1_policy()->collection_set();
2738   uint cs_size = g1_policy()->cset_region_length();
2739   uint active_workers = workers()->active_workers();
2740 
2741   uint end_ind   = (cs_size * worker_i) / active_workers;
2742   uint start_ind = 0;
2743 
2744   if (worker_i > 0 &&
2745       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2746     // Previous workers starting region is valid
2747     // so let's iterate from there
2748     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2749     result = _worker_cset_start_region[worker_i - 1];
2750   }
2751 
2752   for (uint i = start_ind; i < end_ind; i++) {
2753     result = result->next_in_collection_set();
2754   }
2755 
2756   // Note: the calculated starting heap region may be NULL
2757   // (when the collection set is empty).
2758   assert(result == NULL || result->in_collection_set(), "sanity");
2759   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2760          "should be updated only once per pause");
2761   _worker_cset_start_region[worker_i] = result;
2762   OrderAccess::storestore();
2763   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2764   return result;
2765 }
2766 
2767 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2768   HeapRegion* r = g1_policy()->collection_set();
2769   while (r != NULL) {
2770     HeapRegion* next = r->next_in_collection_set();
2771     if (cl->doHeapRegion(r)) {
2772       cl->incomplete();
2773       return;
2774     }
2775     r = next;
2776   }
2777 }
2778 
2779 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2780                                                   HeapRegionClosure *cl) {
2781   if (r == NULL) {
2782     // The CSet is empty so there's nothing to do.
2783     return;
2784   }
2785 
2786   assert(r->in_collection_set(),
2787          "Start region must be a member of the collection set.");
2788   HeapRegion* cur = r;
2789   while (cur != NULL) {
2790     HeapRegion* next = cur->next_in_collection_set();
2791     if (cl->doHeapRegion(cur) && false) {
2792       cl->incomplete();
2793       return;
2794     }
2795     cur = next;
2796   }
2797   cur = g1_policy()->collection_set();
2798   while (cur != r) {
2799     HeapRegion* next = cur->next_in_collection_set();
2800     if (cl->doHeapRegion(cur) && false) {
2801       cl->incomplete();
2802       return;
2803     }
2804     cur = next;
2805   }
2806 }
2807 
2808 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2809   HeapRegion* result = _hrm.next_region_in_heap(from);
2810   while (result != NULL && result->is_pinned()) {
2811     result = _hrm.next_region_in_heap(result);
2812   }
2813   return result;
2814 }
2815 
2816 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2817   HeapRegion* hr = heap_region_containing(addr);
2818   return hr->block_start(addr);
2819 }
2820 
2821 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2822   HeapRegion* hr = heap_region_containing(addr);
2823   return hr->block_size(addr);
2824 }
2825 
2826 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2827   HeapRegion* hr = heap_region_containing(addr);
2828   return hr->block_is_obj(addr);
2829 }
2830 
2831 bool G1CollectedHeap::supports_tlab_allocation() const {
2832   return true;
2833 }
2834 
2835 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2836   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2837 }
2838 
2839 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2840   return young_list()->eden_used_bytes();
2841 }
2842 
2843 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2844 // must be smaller than the humongous object limit.
2845 size_t G1CollectedHeap::max_tlab_size() const {
2846   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2847 }
2848 
2849 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2850   // Return the remaining space in the cur alloc region, but not less than
2851   // the min TLAB size.
2852 
2853   // Also, this value can be at most the humongous object threshold,
2854   // since we can't allow tlabs to grow big enough to accommodate
2855   // humongous objects.
2856 
2857   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2858   size_t max_tlab = max_tlab_size() * wordSize;
2859   if (hr == NULL) {
2860     return max_tlab;
2861   } else {
2862     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2863   }
2864 }
2865 
2866 size_t G1CollectedHeap::max_capacity() const {
2867   return _hrm.reserved().byte_size();
2868 }
2869 
2870 jlong G1CollectedHeap::millis_since_last_gc() {
2871   // assert(false, "NYI");
2872   return 0;
2873 }
2874 
2875 void G1CollectedHeap::prepare_for_verify() {
2876   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2877     ensure_parsability(false);
2878   }
2879   g1_rem_set()->prepare_for_verify();
2880 }
2881 
2882 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2883                                               VerifyOption vo) {
2884   switch (vo) {
2885   case VerifyOption_G1UsePrevMarking:
2886     return hr->obj_allocated_since_prev_marking(obj);
2887   case VerifyOption_G1UseNextMarking:
2888     return hr->obj_allocated_since_next_marking(obj);
2889   case VerifyOption_G1UseMarkWord:
2890     return false;
2891   default:
2892     ShouldNotReachHere();
2893   }
2894   return false; // keep some compilers happy
2895 }
2896 
2897 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2898   switch (vo) {
2899   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2900   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2901   case VerifyOption_G1UseMarkWord:    return NULL;
2902   default:                            ShouldNotReachHere();
2903   }
2904   return NULL; // keep some compilers happy
2905 }
2906 
2907 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2908   switch (vo) {
2909   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2910   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2911   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2912   default:                            ShouldNotReachHere();
2913   }
2914   return false; // keep some compilers happy
2915 }
2916 
2917 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2918   switch (vo) {
2919   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2920   case VerifyOption_G1UseNextMarking: return "NTAMS";
2921   case VerifyOption_G1UseMarkWord:    return "NONE";
2922   default:                            ShouldNotReachHere();
2923   }
2924   return NULL; // keep some compilers happy
2925 }
2926 
2927 class VerifyRootsClosure: public OopClosure {
2928 private:
2929   G1CollectedHeap* _g1h;
2930   VerifyOption     _vo;
2931   bool             _failures;
2932 public:
2933   // _vo == UsePrevMarking -> use "prev" marking information,
2934   // _vo == UseNextMarking -> use "next" marking information,
2935   // _vo == UseMarkWord    -> use mark word from object header.
2936   VerifyRootsClosure(VerifyOption vo) :
2937     _g1h(G1CollectedHeap::heap()),
2938     _vo(vo),
2939     _failures(false) { }
2940 
2941   bool failures() { return _failures; }
2942 
2943   template <class T> void do_oop_nv(T* p) {
2944     T heap_oop = oopDesc::load_heap_oop(p);
2945     if (!oopDesc::is_null(heap_oop)) {
2946       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2947       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2948         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2949                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2950         if (_vo == VerifyOption_G1UseMarkWord) {
2951           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2952         }
2953         obj->print_on(gclog_or_tty);
2954         _failures = true;
2955       }
2956     }
2957   }
2958 
2959   void do_oop(oop* p)       { do_oop_nv(p); }
2960   void do_oop(narrowOop* p) { do_oop_nv(p); }
2961 };
2962 
2963 class G1VerifyCodeRootOopClosure: public OopClosure {
2964   G1CollectedHeap* _g1h;
2965   OopClosure* _root_cl;
2966   nmethod* _nm;
2967   VerifyOption _vo;
2968   bool _failures;
2969 
2970   template <class T> void do_oop_work(T* p) {
2971     // First verify that this root is live
2972     _root_cl->do_oop(p);
2973 
2974     if (!G1VerifyHeapRegionCodeRoots) {
2975       // We're not verifying the code roots attached to heap region.
2976       return;
2977     }
2978 
2979     // Don't check the code roots during marking verification in a full GC
2980     if (_vo == VerifyOption_G1UseMarkWord) {
2981       return;
2982     }
2983 
2984     // Now verify that the current nmethod (which contains p) is
2985     // in the code root list of the heap region containing the
2986     // object referenced by p.
2987 
2988     T heap_oop = oopDesc::load_heap_oop(p);
2989     if (!oopDesc::is_null(heap_oop)) {
2990       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2991 
2992       // Now fetch the region containing the object
2993       HeapRegion* hr = _g1h->heap_region_containing(obj);
2994       HeapRegionRemSet* hrrs = hr->rem_set();
2995       // Verify that the strong code root list for this region
2996       // contains the nmethod
2997       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2998         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2999                                "from nmethod "PTR_FORMAT" not in strong "
3000                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3001                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3002         _failures = true;
3003       }
3004     }
3005   }
3006 
3007 public:
3008   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3009     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3010 
3011   void do_oop(oop* p) { do_oop_work(p); }
3012   void do_oop(narrowOop* p) { do_oop_work(p); }
3013 
3014   void set_nmethod(nmethod* nm) { _nm = nm; }
3015   bool failures() { return _failures; }
3016 };
3017 
3018 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3019   G1VerifyCodeRootOopClosure* _oop_cl;
3020 
3021 public:
3022   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3023     _oop_cl(oop_cl) {}
3024 
3025   void do_code_blob(CodeBlob* cb) {
3026     nmethod* nm = cb->as_nmethod_or_null();
3027     if (nm != NULL) {
3028       _oop_cl->set_nmethod(nm);
3029       nm->oops_do(_oop_cl);
3030     }
3031   }
3032 };
3033 
3034 class YoungRefCounterClosure : public OopClosure {
3035   G1CollectedHeap* _g1h;
3036   int              _count;
3037  public:
3038   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3039   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3040   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3041 
3042   int count() { return _count; }
3043   void reset_count() { _count = 0; };
3044 };
3045 
3046 class VerifyKlassClosure: public KlassClosure {
3047   YoungRefCounterClosure _young_ref_counter_closure;
3048   OopClosure *_oop_closure;
3049  public:
3050   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3051   void do_klass(Klass* k) {
3052     k->oops_do(_oop_closure);
3053 
3054     _young_ref_counter_closure.reset_count();
3055     k->oops_do(&_young_ref_counter_closure);
3056     if (_young_ref_counter_closure.count() > 0) {
3057       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3058     }
3059   }
3060 };
3061 
3062 class VerifyLivenessOopClosure: public OopClosure {
3063   G1CollectedHeap* _g1h;
3064   VerifyOption _vo;
3065 public:
3066   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3067     _g1h(g1h), _vo(vo)
3068   { }
3069   void do_oop(narrowOop *p) { do_oop_work(p); }
3070   void do_oop(      oop *p) { do_oop_work(p); }
3071 
3072   template <class T> void do_oop_work(T *p) {
3073     oop obj = oopDesc::load_decode_heap_oop(p);
3074     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3075               "Dead object referenced by a not dead object");
3076   }
3077 };
3078 
3079 class VerifyObjsInRegionClosure: public ObjectClosure {
3080 private:
3081   G1CollectedHeap* _g1h;
3082   size_t _live_bytes;
3083   HeapRegion *_hr;
3084   VerifyOption _vo;
3085 public:
3086   // _vo == UsePrevMarking -> use "prev" marking information,
3087   // _vo == UseNextMarking -> use "next" marking information,
3088   // _vo == UseMarkWord    -> use mark word from object header.
3089   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3090     : _live_bytes(0), _hr(hr), _vo(vo) {
3091     _g1h = G1CollectedHeap::heap();
3092   }
3093   void do_object(oop o) {
3094     VerifyLivenessOopClosure isLive(_g1h, _vo);
3095     assert(o != NULL, "Huh?");
3096     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3097       // If the object is alive according to the mark word,
3098       // then verify that the marking information agrees.
3099       // Note we can't verify the contra-positive of the
3100       // above: if the object is dead (according to the mark
3101       // word), it may not be marked, or may have been marked
3102       // but has since became dead, or may have been allocated
3103       // since the last marking.
3104       if (_vo == VerifyOption_G1UseMarkWord) {
3105         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3106       }
3107 
3108       o->oop_iterate_no_header(&isLive);
3109       if (!_hr->obj_allocated_since_prev_marking(o)) {
3110         size_t obj_size = o->size();    // Make sure we don't overflow
3111         _live_bytes += (obj_size * HeapWordSize);
3112       }
3113     }
3114   }
3115   size_t live_bytes() { return _live_bytes; }
3116 };
3117 
3118 
3119 class VerifyArchiveOopClosure: public OopClosure {
3120 public:
3121   VerifyArchiveOopClosure(HeapRegion *hr) { }
3122   void do_oop(narrowOop *p) { do_oop_work(p); }
3123   void do_oop(      oop *p) { do_oop_work(p); }
3124 
3125   template <class T> void do_oop_work(T *p) {
3126     oop obj = oopDesc::load_decode_heap_oop(p);
3127     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3128               "Archive object references a non-pinned object");
3129   }
3130 };
3131 
3132 class VerifyArchiveRegionClosure: public ObjectClosure {
3133 public:
3134   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3135   // Verify that all object pointers are to pinned regions.
3136   void do_object(oop o) {
3137     VerifyArchiveOopClosure checkOop(NULL);
3138     assert(o != NULL, "Should not be here for NULL oops");
3139     o->oop_iterate_no_header(&checkOop);
3140   }
3141 };
3142 
3143 
3144 class VerifyRegionClosure: public HeapRegionClosure {
3145 private:
3146   bool             _par;
3147   VerifyOption     _vo;
3148   bool             _failures;
3149 public:
3150   // _vo == UsePrevMarking -> use "prev" marking information,
3151   // _vo == UseNextMarking -> use "next" marking information,
3152   // _vo == UseMarkWord    -> use mark word from object header.
3153   VerifyRegionClosure(bool par, VerifyOption vo)
3154     : _par(par),
3155       _vo(vo),
3156       _failures(false) {}
3157 
3158   bool failures() {
3159     return _failures;
3160   }
3161 
3162   bool doHeapRegion(HeapRegion* r) {
3163     // For archive regions, verify there are no heap pointers to
3164     // non-pinned regions. For all others, verify liveness info.
3165     if (r->is_archive()) {
3166       VerifyArchiveRegionClosure verify_oop_pointers(r);
3167       r->object_iterate(&verify_oop_pointers);
3168       return true;
3169     }
3170     if (!r->is_continues_humongous()) {
3171       bool failures = false;
3172       r->verify(_vo, &failures);
3173       if (failures) {
3174         _failures = true;
3175       } else {
3176         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3177         r->object_iterate(&not_dead_yet_cl);
3178         if (_vo != VerifyOption_G1UseNextMarking) {
3179           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3180             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3181                                    "max_live_bytes "SIZE_FORMAT" "
3182                                    "< calculated "SIZE_FORMAT,
3183                                    p2i(r->bottom()), p2i(r->end()),
3184                                    r->max_live_bytes(),
3185                                  not_dead_yet_cl.live_bytes());
3186             _failures = true;
3187           }
3188         } else {
3189           // When vo == UseNextMarking we cannot currently do a sanity
3190           // check on the live bytes as the calculation has not been
3191           // finalized yet.
3192         }
3193       }
3194     }
3195     return false; // stop the region iteration if we hit a failure
3196   }
3197 };
3198 
3199 // This is the task used for parallel verification of the heap regions
3200 
3201 class G1ParVerifyTask: public AbstractGangTask {
3202 private:
3203   G1CollectedHeap*  _g1h;
3204   VerifyOption      _vo;
3205   bool              _failures;
3206   HeapRegionClaimer _hrclaimer;
3207 
3208 public:
3209   // _vo == UsePrevMarking -> use "prev" marking information,
3210   // _vo == UseNextMarking -> use "next" marking information,
3211   // _vo == UseMarkWord    -> use mark word from object header.
3212   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3213       AbstractGangTask("Parallel verify task"),
3214       _g1h(g1h),
3215       _vo(vo),
3216       _failures(false),
3217       _hrclaimer(g1h->workers()->active_workers()) {}
3218 
3219   bool failures() {
3220     return _failures;
3221   }
3222 
3223   void work(uint worker_id) {
3224     HandleMark hm;
3225     VerifyRegionClosure blk(true, _vo);
3226     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3227     if (blk.failures()) {
3228       _failures = true;
3229     }
3230   }
3231 };
3232 
3233 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3234   if (SafepointSynchronize::is_at_safepoint()) {
3235     assert(Thread::current()->is_VM_thread(),
3236            "Expected to be executed serially by the VM thread at this point");
3237 
3238     if (!silent) { gclog_or_tty->print("Roots "); }
3239     VerifyRootsClosure rootsCl(vo);
3240     VerifyKlassClosure klassCl(this, &rootsCl);
3241     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3242 
3243     // We apply the relevant closures to all the oops in the
3244     // system dictionary, class loader data graph, the string table
3245     // and the nmethods in the code cache.
3246     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3247     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3248 
3249     {
3250       G1RootProcessor root_processor(this, 1);
3251       root_processor.process_all_roots(&rootsCl,
3252                                        &cldCl,
3253                                        &blobsCl);
3254     }
3255 
3256     bool failures = rootsCl.failures() || codeRootsCl.failures();
3257 
3258     if (vo != VerifyOption_G1UseMarkWord) {
3259       // If we're verifying during a full GC then the region sets
3260       // will have been torn down at the start of the GC. Therefore
3261       // verifying the region sets will fail. So we only verify
3262       // the region sets when not in a full GC.
3263       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3264       verify_region_sets();
3265     }
3266 
3267     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3268     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3269 
3270       G1ParVerifyTask task(this, vo);
3271       workers()->run_task(&task);
3272       if (task.failures()) {
3273         failures = true;
3274       }
3275 
3276     } else {
3277       VerifyRegionClosure blk(false, vo);
3278       heap_region_iterate(&blk);
3279       if (blk.failures()) {
3280         failures = true;
3281       }
3282     }
3283 
3284     if (G1StringDedup::is_enabled()) {
3285       if (!silent) gclog_or_tty->print("StrDedup ");
3286       G1StringDedup::verify();
3287     }
3288 
3289     if (failures) {
3290       gclog_or_tty->print_cr("Heap:");
3291       // It helps to have the per-region information in the output to
3292       // help us track down what went wrong. This is why we call
3293       // print_extended_on() instead of print_on().
3294       print_extended_on(gclog_or_tty);
3295       gclog_or_tty->cr();
3296       gclog_or_tty->flush();
3297     }
3298     guarantee(!failures, "there should not have been any failures");
3299   } else {
3300     if (!silent) {
3301       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3302       if (G1StringDedup::is_enabled()) {
3303         gclog_or_tty->print(", StrDedup");
3304       }
3305       gclog_or_tty->print(") ");
3306     }
3307   }
3308 }
3309 
3310 void G1CollectedHeap::verify(bool silent) {
3311   verify(silent, VerifyOption_G1UsePrevMarking);
3312 }
3313 
3314 double G1CollectedHeap::verify(bool guard, const char* msg) {
3315   double verify_time_ms = 0.0;
3316 
3317   if (guard && total_collections() >= VerifyGCStartAt) {
3318     double verify_start = os::elapsedTime();
3319     HandleMark hm;  // Discard invalid handles created during verification
3320     prepare_for_verify();
3321     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3322     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3323   }
3324 
3325   return verify_time_ms;
3326 }
3327 
3328 void G1CollectedHeap::verify_before_gc() {
3329   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3330   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3331 }
3332 
3333 void G1CollectedHeap::verify_after_gc() {
3334   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3335   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3336 }
3337 
3338 class PrintRegionClosure: public HeapRegionClosure {
3339   outputStream* _st;
3340 public:
3341   PrintRegionClosure(outputStream* st) : _st(st) {}
3342   bool doHeapRegion(HeapRegion* r) {
3343     r->print_on(_st);
3344     return false;
3345   }
3346 };
3347 
3348 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3349                                        const HeapRegion* hr,
3350                                        const VerifyOption vo) const {
3351   switch (vo) {
3352   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3353   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3354   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3355   default:                            ShouldNotReachHere();
3356   }
3357   return false; // keep some compilers happy
3358 }
3359 
3360 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3361                                        const VerifyOption vo) const {
3362   switch (vo) {
3363   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3364   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3365   case VerifyOption_G1UseMarkWord: {
3366     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3367     return !obj->is_gc_marked() && !hr->is_archive();
3368     }      
3369   default:                            ShouldNotReachHere();
3370   }
3371   return false; // keep some compilers happy
3372 }
3373 
3374 void G1CollectedHeap::print_on(outputStream* st) const {
3375   st->print(" %-20s", "garbage-first heap");
3376   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3377             capacity()/K, used_unlocked()/K);
3378   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3379             p2i(_hrm.reserved().start()),
3380             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3381             p2i(_hrm.reserved().end()));
3382   st->cr();
3383   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3384   uint young_regions = _young_list->length();
3385   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3386             (size_t) young_regions * HeapRegion::GrainBytes / K);
3387   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3388   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3389             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3390   st->cr();
3391   MetaspaceAux::print_on(st);
3392 }
3393 
3394 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3395   print_on(st);
3396 
3397   // Print the per-region information.
3398   st->cr();
3399   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3400                "HS=humongous(starts), HC=humongous(continues), "
3401                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3402                "PTAMS=previous top-at-mark-start, "
3403                "NTAMS=next top-at-mark-start)");
3404   PrintRegionClosure blk(st);
3405   heap_region_iterate(&blk);
3406 }
3407 
3408 void G1CollectedHeap::print_on_error(outputStream* st) const {
3409   this->CollectedHeap::print_on_error(st);
3410 
3411   if (_cm != NULL) {
3412     st->cr();
3413     _cm->print_on_error(st);
3414   }
3415 }
3416 
3417 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3418   workers()->print_worker_threads_on(st);
3419   _cmThread->print_on(st);
3420   st->cr();
3421   _cm->print_worker_threads_on(st);
3422   _cg1r->print_worker_threads_on(st);
3423   if (G1StringDedup::is_enabled()) {
3424     G1StringDedup::print_worker_threads_on(st);
3425   }
3426 }
3427 
3428 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3429   workers()->threads_do(tc);
3430   tc->do_thread(_cmThread);
3431   _cg1r->threads_do(tc);
3432   if (G1StringDedup::is_enabled()) {
3433     G1StringDedup::threads_do(tc);
3434   }
3435 }
3436 
3437 void G1CollectedHeap::print_tracing_info() const {
3438   // We'll overload this to mean "trace GC pause statistics."
3439   if (TraceYoungGenTime || TraceOldGenTime) {
3440     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3441     // to that.
3442     g1_policy()->print_tracing_info();
3443   }
3444   if (G1SummarizeRSetStats) {
3445     g1_rem_set()->print_summary_info();
3446   }
3447   if (G1SummarizeConcMark) {
3448     concurrent_mark()->print_summary_info();
3449   }
3450   g1_policy()->print_yg_surv_rate_info();
3451 }
3452 
3453 #ifndef PRODUCT
3454 // Helpful for debugging RSet issues.
3455 
3456 class PrintRSetsClosure : public HeapRegionClosure {
3457 private:
3458   const char* _msg;
3459   size_t _occupied_sum;
3460 
3461 public:
3462   bool doHeapRegion(HeapRegion* r) {
3463     HeapRegionRemSet* hrrs = r->rem_set();
3464     size_t occupied = hrrs->occupied();
3465     _occupied_sum += occupied;
3466 
3467     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3468                            HR_FORMAT_PARAMS(r));
3469     if (occupied == 0) {
3470       gclog_or_tty->print_cr("  RSet is empty");
3471     } else {
3472       hrrs->print();
3473     }
3474     gclog_or_tty->print_cr("----------");
3475     return false;
3476   }
3477 
3478   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3479     gclog_or_tty->cr();
3480     gclog_or_tty->print_cr("========================================");
3481     gclog_or_tty->print_cr("%s", msg);
3482     gclog_or_tty->cr();
3483   }
3484 
3485   ~PrintRSetsClosure() {
3486     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3487     gclog_or_tty->print_cr("========================================");
3488     gclog_or_tty->cr();
3489   }
3490 };
3491 
3492 void G1CollectedHeap::print_cset_rsets() {
3493   PrintRSetsClosure cl("Printing CSet RSets");
3494   collection_set_iterate(&cl);
3495 }
3496 
3497 void G1CollectedHeap::print_all_rsets() {
3498   PrintRSetsClosure cl("Printing All RSets");;
3499   heap_region_iterate(&cl);
3500 }
3501 #endif // PRODUCT
3502 
3503 G1CollectedHeap* G1CollectedHeap::heap() {
3504   CollectedHeap* heap = Universe::heap();
3505   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3506   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3507   return (G1CollectedHeap*)heap;
3508 }
3509 
3510 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3511   // always_do_update_barrier = false;
3512   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3513   // Fill TLAB's and such
3514   accumulate_statistics_all_tlabs();
3515   ensure_parsability(true);
3516 
3517   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3518       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3519     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3520   }
3521 }
3522 
3523 void G1CollectedHeap::gc_epilogue(bool full) {
3524 
3525   if (G1SummarizeRSetStats &&
3526       (G1SummarizeRSetStatsPeriod > 0) &&
3527       // we are at the end of the GC. Total collections has already been increased.
3528       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3529     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3530   }
3531 
3532   // FIXME: what is this about?
3533   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3534   // is set.
3535   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3536                         "derived pointer present"));
3537   // always_do_update_barrier = true;
3538 
3539   resize_all_tlabs();
3540   allocation_context_stats().update(full);
3541 
3542   // We have just completed a GC. Update the soft reference
3543   // policy with the new heap occupancy
3544   Universe::update_heap_info_at_gc();
3545 }
3546 
3547 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3548                                                uint gc_count_before,
3549                                                bool* succeeded,
3550                                                GCCause::Cause gc_cause) {
3551   assert_heap_not_locked_and_not_at_safepoint();
3552   g1_policy()->record_stop_world_start();
3553   VM_G1IncCollectionPause op(gc_count_before,
3554                              word_size,
3555                              false, /* should_initiate_conc_mark */
3556                              g1_policy()->max_pause_time_ms(),
3557                              gc_cause);
3558 
3559   op.set_allocation_context(AllocationContext::current());
3560   VMThread::execute(&op);
3561 
3562   HeapWord* result = op.result();
3563   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3564   assert(result == NULL || ret_succeeded,
3565          "the result should be NULL if the VM did not succeed");
3566   *succeeded = ret_succeeded;
3567 
3568   assert_heap_not_locked();
3569   return result;
3570 }
3571 
3572 void
3573 G1CollectedHeap::doConcurrentMark() {
3574   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3575   if (!_cmThread->in_progress()) {
3576     _cmThread->set_started();
3577     CGC_lock->notify();
3578   }
3579 }
3580 
3581 size_t G1CollectedHeap::pending_card_num() {
3582   size_t extra_cards = 0;
3583   JavaThread *curr = Threads::first();
3584   while (curr != NULL) {
3585     DirtyCardQueue& dcq = curr->dirty_card_queue();
3586     extra_cards += dcq.size();
3587     curr = curr->next();
3588   }
3589   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3590   size_t buffer_size = dcqs.buffer_size();
3591   size_t buffer_num = dcqs.completed_buffers_num();
3592 
3593   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3594   // in bytes - not the number of 'entries'. We need to convert
3595   // into a number of cards.
3596   return (buffer_size * buffer_num + extra_cards) / oopSize;
3597 }
3598 
3599 size_t G1CollectedHeap::cards_scanned() {
3600   return g1_rem_set()->cardsScanned();
3601 }
3602 
3603 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3604  private:
3605   size_t _total_humongous;
3606   size_t _candidate_humongous;
3607 
3608   DirtyCardQueue _dcq;
3609 
3610   // We don't nominate objects with many remembered set entries, on
3611   // the assumption that such objects are likely still live.
3612   bool is_remset_small(HeapRegion* region) const {
3613     HeapRegionRemSet* const rset = region->rem_set();
3614     return G1EagerReclaimHumongousObjectsWithStaleRefs
3615       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3616       : rset->is_empty();
3617   }
3618 
3619   bool is_typeArray_region(HeapRegion* region) const {
3620     return oop(region->bottom())->is_typeArray();
3621   }
3622 
3623   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3624     assert(region->is_starts_humongous(), "Must start a humongous object");
3625 
3626     // Candidate selection must satisfy the following constraints
3627     // while concurrent marking is in progress:
3628     //
3629     // * In order to maintain SATB invariants, an object must not be
3630     // reclaimed if it was allocated before the start of marking and
3631     // has not had its references scanned.  Such an object must have
3632     // its references (including type metadata) scanned to ensure no
3633     // live objects are missed by the marking process.  Objects
3634     // allocated after the start of concurrent marking don't need to
3635     // be scanned.
3636     //
3637     // * An object must not be reclaimed if it is on the concurrent
3638     // mark stack.  Objects allocated after the start of concurrent
3639     // marking are never pushed on the mark stack.
3640     //
3641     // Nominating only objects allocated after the start of concurrent
3642     // marking is sufficient to meet both constraints.  This may miss
3643     // some objects that satisfy the constraints, but the marking data
3644     // structures don't support efficiently performing the needed
3645     // additional tests or scrubbing of the mark stack.
3646     //
3647     // However, we presently only nominate is_typeArray() objects.
3648     // A humongous object containing references induces remembered
3649     // set entries on other regions.  In order to reclaim such an
3650     // object, those remembered sets would need to be cleaned up.
3651     //
3652     // We also treat is_typeArray() objects specially, allowing them
3653     // to be reclaimed even if allocated before the start of
3654     // concurrent mark.  For this we rely on mark stack insertion to
3655     // exclude is_typeArray() objects, preventing reclaiming an object
3656     // that is in the mark stack.  We also rely on the metadata for
3657     // such objects to be built-in and so ensured to be kept live.
3658     // Frequent allocation and drop of large binary blobs is an
3659     // important use case for eager reclaim, and this special handling
3660     // may reduce needed headroom.
3661 
3662     return is_typeArray_region(region) && is_remset_small(region);
3663   }
3664 
3665  public:
3666   RegisterHumongousWithInCSetFastTestClosure()
3667   : _total_humongous(0),
3668     _candidate_humongous(0),
3669     _dcq(&JavaThread::dirty_card_queue_set()) {
3670   }
3671 
3672   virtual bool doHeapRegion(HeapRegion* r) {
3673     if (!r->is_starts_humongous()) {
3674       return false;
3675     }
3676     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3677 
3678     bool is_candidate = humongous_region_is_candidate(g1h, r);
3679     uint rindex = r->hrm_index();
3680     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3681     if (is_candidate) {
3682       _candidate_humongous++;
3683       g1h->register_humongous_region_with_cset(rindex);
3684       // Is_candidate already filters out humongous object with large remembered sets.
3685       // If we have a humongous object with a few remembered sets, we simply flush these
3686       // remembered set entries into the DCQS. That will result in automatic
3687       // re-evaluation of their remembered set entries during the following evacuation
3688       // phase.
3689       if (!r->rem_set()->is_empty()) {
3690         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3691                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3692         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3693         HeapRegionRemSetIterator hrrs(r->rem_set());
3694         size_t card_index;
3695         while (hrrs.has_next(card_index)) {
3696           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3697           // The remembered set might contain references to already freed
3698           // regions. Filter out such entries to avoid failing card table
3699           // verification.
3700           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3701             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3702               *card_ptr = CardTableModRefBS::dirty_card_val();
3703               _dcq.enqueue(card_ptr);
3704             }
3705           }
3706         }
3707         r->rem_set()->clear_locked();
3708       }
3709       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3710     }
3711     _total_humongous++;
3712 
3713     return false;
3714   }
3715 
3716   size_t total_humongous() const { return _total_humongous; }
3717   size_t candidate_humongous() const { return _candidate_humongous; }
3718 
3719   void flush_rem_set_entries() { _dcq.flush(); }
3720 };
3721 
3722 void G1CollectedHeap::register_humongous_regions_with_cset() {
3723   if (!G1EagerReclaimHumongousObjects) {
3724     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3725     return;
3726   }
3727   double time = os::elapsed_counter();
3728 
3729   // Collect reclaim candidate information and register candidates with cset.
3730   RegisterHumongousWithInCSetFastTestClosure cl;
3731   heap_region_iterate(&cl);
3732 
3733   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3734   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3735                                                                   cl.total_humongous(),
3736                                                                   cl.candidate_humongous());
3737   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3738 
3739   // Finally flush all remembered set entries to re-check into the global DCQS.
3740   cl.flush_rem_set_entries();
3741 }
3742 
3743 void
3744 G1CollectedHeap::setup_surviving_young_words() {
3745   assert(_surviving_young_words == NULL, "pre-condition");
3746   uint array_length = g1_policy()->young_cset_region_length();
3747   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3748   if (_surviving_young_words == NULL) {
3749     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3750                           "Not enough space for young surv words summary.");
3751   }
3752   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3753 #ifdef ASSERT
3754   for (uint i = 0;  i < array_length; ++i) {
3755     assert( _surviving_young_words[i] == 0, "memset above" );
3756   }
3757 #endif // !ASSERT
3758 }
3759 
3760 void
3761 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3762   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3763   uint array_length = g1_policy()->young_cset_region_length();
3764   for (uint i = 0; i < array_length; ++i) {
3765     _surviving_young_words[i] += surv_young_words[i];
3766   }
3767 }
3768 
3769 void
3770 G1CollectedHeap::cleanup_surviving_young_words() {
3771   guarantee( _surviving_young_words != NULL, "pre-condition" );
3772   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3773   _surviving_young_words = NULL;
3774 }
3775 
3776 #ifdef ASSERT
3777 class VerifyCSetClosure: public HeapRegionClosure {
3778 public:
3779   bool doHeapRegion(HeapRegion* hr) {
3780     // Here we check that the CSet region's RSet is ready for parallel
3781     // iteration. The fields that we'll verify are only manipulated
3782     // when the region is part of a CSet and is collected. Afterwards,
3783     // we reset these fields when we clear the region's RSet (when the
3784     // region is freed) so they are ready when the region is
3785     // re-allocated. The only exception to this is if there's an
3786     // evacuation failure and instead of freeing the region we leave
3787     // it in the heap. In that case, we reset these fields during
3788     // evacuation failure handling.
3789     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3790 
3791     // Here's a good place to add any other checks we'd like to
3792     // perform on CSet regions.
3793     return false;
3794   }
3795 };
3796 #endif // ASSERT
3797 
3798 uint G1CollectedHeap::num_task_queues() const {
3799   return _task_queues->size();
3800 }
3801 
3802 #if TASKQUEUE_STATS
3803 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3804   st->print_raw_cr("GC Task Stats");
3805   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3806   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3807 }
3808 
3809 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3810   print_taskqueue_stats_hdr(st);
3811 
3812   TaskQueueStats totals;
3813   const uint n = num_task_queues();
3814   for (uint i = 0; i < n; ++i) {
3815     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3816     totals += task_queue(i)->stats;
3817   }
3818   st->print_raw("tot "); totals.print(st); st->cr();
3819 
3820   DEBUG_ONLY(totals.verify());
3821 }
3822 
3823 void G1CollectedHeap::reset_taskqueue_stats() {
3824   const uint n = num_task_queues();
3825   for (uint i = 0; i < n; ++i) {
3826     task_queue(i)->stats.reset();
3827   }
3828 }
3829 #endif // TASKQUEUE_STATS
3830 
3831 void G1CollectedHeap::log_gc_header() {
3832   if (!G1Log::fine()) {
3833     return;
3834   }
3835 
3836   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3837 
3838   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3839     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3840     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3841 
3842   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3843 }
3844 
3845 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3846   if (!G1Log::fine()) {
3847     return;
3848   }
3849 
3850   if (G1Log::finer()) {
3851     if (evacuation_failed()) {
3852       gclog_or_tty->print(" (to-space exhausted)");
3853     }
3854     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3855     g1_policy()->phase_times()->note_gc_end();
3856     g1_policy()->phase_times()->print(pause_time_sec);
3857     g1_policy()->print_detailed_heap_transition();
3858   } else {
3859     if (evacuation_failed()) {
3860       gclog_or_tty->print("--");
3861     }
3862     g1_policy()->print_heap_transition();
3863     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3864   }
3865   gclog_or_tty->flush();
3866 }
3867 
3868 bool
3869 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3870   assert_at_safepoint(true /* should_be_vm_thread */);
3871   guarantee(!is_gc_active(), "collection is not reentrant");
3872 
3873   if (GC_locker::check_active_before_gc()) {
3874     return false;
3875   }
3876 
3877   _gc_timer_stw->register_gc_start();
3878 
3879   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3880 
3881   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3882   ResourceMark rm;
3883 
3884   G1Log::update_level();
3885   print_heap_before_gc();
3886   trace_heap_before_gc(_gc_tracer_stw);
3887 
3888   verify_region_sets_optional();
3889   verify_dirty_young_regions();
3890 
3891   // This call will decide whether this pause is an initial-mark
3892   // pause. If it is, during_initial_mark_pause() will return true
3893   // for the duration of this pause.
3894   g1_policy()->decide_on_conc_mark_initiation();
3895 
3896   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3897   assert(!g1_policy()->during_initial_mark_pause() ||
3898           g1_policy()->gcs_are_young(), "sanity");
3899 
3900   // We also do not allow mixed GCs during marking.
3901   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3902 
3903   // Record whether this pause is an initial mark. When the current
3904   // thread has completed its logging output and it's safe to signal
3905   // the CM thread, the flag's value in the policy has been reset.
3906   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3907 
3908   // Inner scope for scope based logging, timers, and stats collection
3909   {
3910     EvacuationInfo evacuation_info;
3911 
3912     if (g1_policy()->during_initial_mark_pause()) {
3913       // We are about to start a marking cycle, so we increment the
3914       // full collection counter.
3915       increment_old_marking_cycles_started();
3916       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3917     }
3918 
3919     _gc_tracer_stw->report_yc_type(yc_type());
3920 
3921     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3922 
3923     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3924                                                                   workers()->active_workers(),
3925                                                                   Threads::number_of_non_daemon_threads());
3926     workers()->set_active_workers(active_workers);
3927 
3928     double pause_start_sec = os::elapsedTime();
3929     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3930     log_gc_header();
3931 
3932     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3933     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3934 
3935     // If the secondary_free_list is not empty, append it to the
3936     // free_list. No need to wait for the cleanup operation to finish;
3937     // the region allocation code will check the secondary_free_list
3938     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3939     // set, skip this step so that the region allocation code has to
3940     // get entries from the secondary_free_list.
3941     if (!G1StressConcRegionFreeing) {
3942       append_secondary_free_list_if_not_empty_with_lock();
3943     }
3944 
3945     assert(check_young_list_well_formed(), "young list should be well formed");
3946 
3947     // Don't dynamically change the number of GC threads this early.  A value of
3948     // 0 is used to indicate serial work.  When parallel work is done,
3949     // it will be set.
3950 
3951     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3952       IsGCActiveMark x;
3953 
3954       gc_prologue(false);
3955       increment_total_collections(false /* full gc */);
3956       increment_gc_time_stamp();
3957 
3958       verify_before_gc();
3959 
3960       check_bitmaps("GC Start");
3961 
3962       COMPILER2_PRESENT(DerivedPointerTable::clear());
3963 
3964       // Please see comment in g1CollectedHeap.hpp and
3965       // G1CollectedHeap::ref_processing_init() to see how
3966       // reference processing currently works in G1.
3967 
3968       // Enable discovery in the STW reference processor
3969       ref_processor_stw()->enable_discovery();
3970 
3971       {
3972         // We want to temporarily turn off discovery by the
3973         // CM ref processor, if necessary, and turn it back on
3974         // on again later if we do. Using a scoped
3975         // NoRefDiscovery object will do this.
3976         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3977 
3978         // Forget the current alloc region (we might even choose it to be part
3979         // of the collection set!).
3980         _allocator->release_mutator_alloc_region();
3981 
3982         // We should call this after we retire the mutator alloc
3983         // region(s) so that all the ALLOC / RETIRE events are generated
3984         // before the start GC event.
3985         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3986 
3987         // This timing is only used by the ergonomics to handle our pause target.
3988         // It is unclear why this should not include the full pause. We will
3989         // investigate this in CR 7178365.
3990         //
3991         // Preserving the old comment here if that helps the investigation:
3992         //
3993         // The elapsed time induced by the start time below deliberately elides
3994         // the possible verification above.
3995         double sample_start_time_sec = os::elapsedTime();
3996 
3997 #if YOUNG_LIST_VERBOSE
3998         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3999         _young_list->print();
4000         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4001 #endif // YOUNG_LIST_VERBOSE
4002 
4003         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4004 
4005         double scan_wait_start = os::elapsedTime();
4006         // We have to wait until the CM threads finish scanning the
4007         // root regions as it's the only way to ensure that all the
4008         // objects on them have been correctly scanned before we start
4009         // moving them during the GC.
4010         bool waited = _cm->root_regions()->wait_until_scan_finished();
4011         double wait_time_ms = 0.0;
4012         if (waited) {
4013           double scan_wait_end = os::elapsedTime();
4014           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4015         }
4016         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4017 
4018 #if YOUNG_LIST_VERBOSE
4019         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4020         _young_list->print();
4021 #endif // YOUNG_LIST_VERBOSE
4022 
4023         if (g1_policy()->during_initial_mark_pause()) {
4024           concurrent_mark()->checkpointRootsInitialPre();
4025         }
4026 
4027 #if YOUNG_LIST_VERBOSE
4028         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4029         _young_list->print();
4030         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4031 #endif // YOUNG_LIST_VERBOSE
4032 
4033         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4034 
4035         register_humongous_regions_with_cset();
4036 
4037         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4038 
4039         _cm->note_start_of_gc();
4040         // We call this after finalize_cset() to
4041         // ensure that the CSet has been finalized.
4042         _cm->verify_no_cset_oops();
4043 
4044         if (_hr_printer.is_active()) {
4045           HeapRegion* hr = g1_policy()->collection_set();
4046           while (hr != NULL) {
4047             _hr_printer.cset(hr);
4048             hr = hr->next_in_collection_set();
4049           }
4050         }
4051 
4052 #ifdef ASSERT
4053         VerifyCSetClosure cl;
4054         collection_set_iterate(&cl);
4055 #endif // ASSERT
4056 
4057         setup_surviving_young_words();
4058 
4059         // Initialize the GC alloc regions.
4060         _allocator->init_gc_alloc_regions(evacuation_info);
4061 
4062         // Actually do the work...
4063         evacuate_collection_set(evacuation_info);
4064 
4065         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4066 
4067         eagerly_reclaim_humongous_regions();
4068 
4069         g1_policy()->clear_collection_set();
4070 
4071         cleanup_surviving_young_words();
4072 
4073         // Start a new incremental collection set for the next pause.
4074         g1_policy()->start_incremental_cset_building();
4075 
4076         clear_cset_fast_test();
4077 
4078         _young_list->reset_sampled_info();
4079 
4080         // Don't check the whole heap at this point as the
4081         // GC alloc regions from this pause have been tagged
4082         // as survivors and moved on to the survivor list.
4083         // Survivor regions will fail the !is_young() check.
4084         assert(check_young_list_empty(false /* check_heap */),
4085           "young list should be empty");
4086 
4087 #if YOUNG_LIST_VERBOSE
4088         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4089         _young_list->print();
4090 #endif // YOUNG_LIST_VERBOSE
4091 
4092         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4093                                              _young_list->first_survivor_region(),
4094                                              _young_list->last_survivor_region());
4095 
4096         _young_list->reset_auxilary_lists();
4097 
4098         if (evacuation_failed()) {
4099           _allocator->set_used(recalculate_used());
4100           if (_recording_allocator != NULL) {
4101             _recording_allocator->clear_used();
4102           }
4103           for (uint i = 0; i < ParallelGCThreads; i++) {
4104             if (_evacuation_failed_info_array[i].has_failed()) {
4105               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4106             }
4107           }
4108         } else {
4109           // The "used" of the the collection set have already been subtracted
4110           // when they were freed.  Add in the bytes evacuated.
4111           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4112         }
4113 
4114         if (g1_policy()->during_initial_mark_pause()) {
4115           // We have to do this before we notify the CM threads that
4116           // they can start working to make sure that all the
4117           // appropriate initialization is done on the CM object.
4118           concurrent_mark()->checkpointRootsInitialPost();
4119           set_marking_started();
4120           // Note that we don't actually trigger the CM thread at
4121           // this point. We do that later when we're sure that
4122           // the current thread has completed its logging output.
4123         }
4124 
4125         allocate_dummy_regions();
4126 
4127 #if YOUNG_LIST_VERBOSE
4128         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4129         _young_list->print();
4130         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4131 #endif // YOUNG_LIST_VERBOSE
4132 
4133         _allocator->init_mutator_alloc_region();
4134 
4135         {
4136           size_t expand_bytes = g1_policy()->expansion_amount();
4137           if (expand_bytes > 0) {
4138             size_t bytes_before = capacity();
4139             // No need for an ergo verbose message here,
4140             // expansion_amount() does this when it returns a value > 0.
4141             if (!expand(expand_bytes)) {
4142               // We failed to expand the heap. Cannot do anything about it.
4143             }
4144           }
4145         }
4146 
4147         // We redo the verification but now wrt to the new CSet which
4148         // has just got initialized after the previous CSet was freed.
4149         _cm->verify_no_cset_oops();
4150         _cm->note_end_of_gc();
4151 
4152         // This timing is only used by the ergonomics to handle our pause target.
4153         // It is unclear why this should not include the full pause. We will
4154         // investigate this in CR 7178365.
4155         double sample_end_time_sec = os::elapsedTime();
4156         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4157         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4158 
4159         MemoryService::track_memory_usage();
4160 
4161         // In prepare_for_verify() below we'll need to scan the deferred
4162         // update buffers to bring the RSets up-to-date if
4163         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4164         // the update buffers we'll probably need to scan cards on the
4165         // regions we just allocated to (i.e., the GC alloc
4166         // regions). However, during the last GC we called
4167         // set_saved_mark() on all the GC alloc regions, so card
4168         // scanning might skip the [saved_mark_word()...top()] area of
4169         // those regions (i.e., the area we allocated objects into
4170         // during the last GC). But it shouldn't. Given that
4171         // saved_mark_word() is conditional on whether the GC time stamp
4172         // on the region is current or not, by incrementing the GC time
4173         // stamp here we invalidate all the GC time stamps on all the
4174         // regions and saved_mark_word() will simply return top() for
4175         // all the regions. This is a nicer way of ensuring this rather
4176         // than iterating over the regions and fixing them. In fact, the
4177         // GC time stamp increment here also ensures that
4178         // saved_mark_word() will return top() between pauses, i.e.,
4179         // during concurrent refinement. So we don't need the
4180         // is_gc_active() check to decided which top to use when
4181         // scanning cards (see CR 7039627).
4182         increment_gc_time_stamp();
4183 
4184         verify_after_gc();
4185         check_bitmaps("GC End");
4186 
4187         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4188         ref_processor_stw()->verify_no_references_recorded();
4189 
4190         // CM reference discovery will be re-enabled if necessary.
4191       }
4192 
4193       // We should do this after we potentially expand the heap so
4194       // that all the COMMIT events are generated before the end GC
4195       // event, and after we retire the GC alloc regions so that all
4196       // RETIRE events are generated before the end GC event.
4197       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4198 
4199 #ifdef TRACESPINNING
4200       ParallelTaskTerminator::print_termination_counts();
4201 #endif
4202 
4203       gc_epilogue(false);
4204     }
4205 
4206     // Print the remainder of the GC log output.
4207     log_gc_footer(os::elapsedTime() - pause_start_sec);
4208 
4209     // It is not yet to safe to tell the concurrent mark to
4210     // start as we have some optional output below. We don't want the
4211     // output from the concurrent mark thread interfering with this
4212     // logging output either.
4213 
4214     _hrm.verify_optional();
4215     verify_region_sets_optional();
4216 
4217     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4218     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4219 
4220     print_heap_after_gc();
4221     trace_heap_after_gc(_gc_tracer_stw);
4222 
4223     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4224     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4225     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4226     // before any GC notifications are raised.
4227     g1mm()->update_sizes();
4228 
4229     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4230     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4231     _gc_timer_stw->register_gc_end();
4232     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4233   }
4234   // It should now be safe to tell the concurrent mark thread to start
4235   // without its logging output interfering with the logging output
4236   // that came from the pause.
4237 
4238   if (should_start_conc_mark) {
4239     // CAUTION: after the doConcurrentMark() call below,
4240     // the concurrent marking thread(s) could be running
4241     // concurrently with us. Make sure that anything after
4242     // this point does not assume that we are the only GC thread
4243     // running. Note: of course, the actual marking work will
4244     // not start until the safepoint itself is released in
4245     // SuspendibleThreadSet::desynchronize().
4246     doConcurrentMark();
4247   }
4248 
4249   return true;
4250 }
4251 
4252 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4253   _drain_in_progress = false;
4254   set_evac_failure_closure(cl);
4255   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4256 }
4257 
4258 void G1CollectedHeap::finalize_for_evac_failure() {
4259   assert(_evac_failure_scan_stack != NULL &&
4260          _evac_failure_scan_stack->length() == 0,
4261          "Postcondition");
4262   assert(!_drain_in_progress, "Postcondition");
4263   delete _evac_failure_scan_stack;
4264   _evac_failure_scan_stack = NULL;
4265 }
4266 
4267 void G1CollectedHeap::remove_self_forwarding_pointers() {
4268   double remove_self_forwards_start = os::elapsedTime();
4269 
4270   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4271   workers()->run_task(&rsfp_task);
4272 
4273   // Now restore saved marks, if any.
4274   assert(_objs_with_preserved_marks.size() ==
4275             _preserved_marks_of_objs.size(), "Both or none.");
4276   while (!_objs_with_preserved_marks.is_empty()) {
4277     oop obj = _objs_with_preserved_marks.pop();
4278     markOop m = _preserved_marks_of_objs.pop();
4279     obj->set_mark(m);
4280   }
4281   _objs_with_preserved_marks.clear(true);
4282   _preserved_marks_of_objs.clear(true);
4283 
4284   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4285 }
4286 
4287 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4288   _evac_failure_scan_stack->push(obj);
4289 }
4290 
4291 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4292   assert(_evac_failure_scan_stack != NULL, "precondition");
4293 
4294   while (_evac_failure_scan_stack->length() > 0) {
4295      oop obj = _evac_failure_scan_stack->pop();
4296      _evac_failure_closure->set_region(heap_region_containing(obj));
4297      obj->oop_iterate_backwards(_evac_failure_closure);
4298   }
4299 }
4300 
4301 oop
4302 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4303                                                oop old) {
4304   assert(obj_in_cs(old),
4305          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4306                  p2i(old)));
4307   markOop m = old->mark();
4308   oop forward_ptr = old->forward_to_atomic(old);
4309   if (forward_ptr == NULL) {
4310     // Forward-to-self succeeded.
4311     assert(_par_scan_state != NULL, "par scan state");
4312     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4313     uint queue_num = _par_scan_state->queue_num();
4314 
4315     _evacuation_failed = true;
4316     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4317     if (_evac_failure_closure != cl) {
4318       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4319       assert(!_drain_in_progress,
4320              "Should only be true while someone holds the lock.");
4321       // Set the global evac-failure closure to the current thread's.
4322       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4323       set_evac_failure_closure(cl);
4324       // Now do the common part.
4325       handle_evacuation_failure_common(old, m);
4326       // Reset to NULL.
4327       set_evac_failure_closure(NULL);
4328     } else {
4329       // The lock is already held, and this is recursive.
4330       assert(_drain_in_progress, "This should only be the recursive case.");
4331       handle_evacuation_failure_common(old, m);
4332     }
4333     return old;
4334   } else {
4335     // Forward-to-self failed. Either someone else managed to allocate
4336     // space for this object (old != forward_ptr) or they beat us in
4337     // self-forwarding it (old == forward_ptr).
4338     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4339            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4340                    "should not be in the CSet",
4341                    p2i(old), p2i(forward_ptr)));
4342     return forward_ptr;
4343   }
4344 }
4345 
4346 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4347   preserve_mark_if_necessary(old, m);
4348 
4349   HeapRegion* r = heap_region_containing(old);
4350   if (!r->evacuation_failed()) {
4351     r->set_evacuation_failed(true);
4352     _hr_printer.evac_failure(r);
4353   }
4354 
4355   push_on_evac_failure_scan_stack(old);
4356 
4357   if (!_drain_in_progress) {
4358     // prevent recursion in copy_to_survivor_space()
4359     _drain_in_progress = true;
4360     drain_evac_failure_scan_stack();
4361     _drain_in_progress = false;
4362   }
4363 }
4364 
4365 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4366   assert(evacuation_failed(), "Oversaving!");
4367   // We want to call the "for_promotion_failure" version only in the
4368   // case of a promotion failure.
4369   if (m->must_be_preserved_for_promotion_failure(obj)) {
4370     _objs_with_preserved_marks.push(obj);
4371     _preserved_marks_of_objs.push(m);
4372   }
4373 }
4374 
4375 void G1ParCopyHelper::mark_object(oop obj) {
4376   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4377 
4378   // We know that the object is not moving so it's safe to read its size.
4379   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4380 }
4381 
4382 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4383   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4384   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4385   assert(from_obj != to_obj, "should not be self-forwarded");
4386 
4387   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4388   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4389 
4390   // The object might be in the process of being copied by another
4391   // worker so we cannot trust that its to-space image is
4392   // well-formed. So we have to read its size from its from-space
4393   // image which we know should not be changing.
4394   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4395 }
4396 
4397 template <class T>
4398 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4399   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4400     _scanned_klass->record_modified_oops();
4401   }
4402 }
4403 
4404 template <G1Barrier barrier, G1Mark do_mark_object>
4405 template <class T>
4406 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4407   T heap_oop = oopDesc::load_heap_oop(p);
4408 
4409   if (oopDesc::is_null(heap_oop)) {
4410     return;
4411   }
4412 
4413   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4414 
4415   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4416 
4417   const InCSetState state = _g1->in_cset_state(obj);
4418   if (state.is_in_cset()) {
4419     oop forwardee;
4420     markOop m = obj->mark();
4421     if (m->is_marked()) {
4422       forwardee = (oop) m->decode_pointer();
4423     } else {
4424       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4425     }
4426     assert(forwardee != NULL, "forwardee should not be NULL");
4427     oopDesc::encode_store_heap_oop(p, forwardee);
4428     if (do_mark_object != G1MarkNone && forwardee != obj) {
4429       // If the object is self-forwarded we don't need to explicitly
4430       // mark it, the evacuation failure protocol will do so.
4431       mark_forwarded_object(obj, forwardee);
4432     }
4433 
4434     if (barrier == G1BarrierKlass) {
4435       do_klass_barrier(p, forwardee);
4436     }
4437   } else {
4438     if (state.is_humongous()) {
4439       _g1->set_humongous_is_live(obj);
4440     }
4441     // The object is not in collection set. If we're a root scanning
4442     // closure during an initial mark pause then attempt to mark the object.
4443     if (do_mark_object == G1MarkFromRoot) {
4444       mark_object(obj);
4445     }
4446   }
4447 
4448   if (barrier == G1BarrierEvac) {
4449     _par_scan_state->update_rs(_from, p, _worker_id);
4450   }
4451 }
4452 
4453 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4454 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4455 
4456 class G1ParEvacuateFollowersClosure : public VoidClosure {
4457 protected:
4458   G1CollectedHeap*              _g1h;
4459   G1ParScanThreadState*         _par_scan_state;
4460   RefToScanQueueSet*            _queues;
4461   ParallelTaskTerminator*       _terminator;
4462 
4463   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4464   RefToScanQueueSet*      queues()         { return _queues; }
4465   ParallelTaskTerminator* terminator()     { return _terminator; }
4466 
4467 public:
4468   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4469                                 G1ParScanThreadState* par_scan_state,
4470                                 RefToScanQueueSet* queues,
4471                                 ParallelTaskTerminator* terminator)
4472     : _g1h(g1h), _par_scan_state(par_scan_state),
4473       _queues(queues), _terminator(terminator) {}
4474 
4475   void do_void();
4476 
4477 private:
4478   inline bool offer_termination();
4479 };
4480 
4481 bool G1ParEvacuateFollowersClosure::offer_termination() {
4482   G1ParScanThreadState* const pss = par_scan_state();
4483   pss->start_term_time();
4484   const bool res = terminator()->offer_termination();
4485   pss->end_term_time();
4486   return res;
4487 }
4488 
4489 void G1ParEvacuateFollowersClosure::do_void() {
4490   G1ParScanThreadState* const pss = par_scan_state();
4491   pss->trim_queue();
4492   do {
4493     pss->steal_and_trim_queue(queues());
4494   } while (!offer_termination());
4495 }
4496 
4497 class G1KlassScanClosure : public KlassClosure {
4498  G1ParCopyHelper* _closure;
4499  bool             _process_only_dirty;
4500  int              _count;
4501  public:
4502   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4503       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4504   void do_klass(Klass* klass) {
4505     // If the klass has not been dirtied we know that there's
4506     // no references into  the young gen and we can skip it.
4507    if (!_process_only_dirty || klass->has_modified_oops()) {
4508       // Clean the klass since we're going to scavenge all the metadata.
4509       klass->clear_modified_oops();
4510 
4511       // Tell the closure that this klass is the Klass to scavenge
4512       // and is the one to dirty if oops are left pointing into the young gen.
4513       _closure->set_scanned_klass(klass);
4514 
4515       klass->oops_do(_closure);
4516 
4517       _closure->set_scanned_klass(NULL);
4518     }
4519     _count++;
4520   }
4521 };
4522 
4523 class G1ParTask : public AbstractGangTask {
4524 protected:
4525   G1CollectedHeap*       _g1h;
4526   RefToScanQueueSet      *_queues;
4527   G1RootProcessor*       _root_processor;
4528   ParallelTaskTerminator _terminator;
4529   uint _n_workers;
4530 
4531   Mutex _stats_lock;
4532   Mutex* stats_lock() { return &_stats_lock; }
4533 
4534 public:
4535   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4536     : AbstractGangTask("G1 collection"),
4537       _g1h(g1h),
4538       _queues(task_queues),
4539       _root_processor(root_processor),
4540       _terminator(n_workers, _queues),
4541       _n_workers(n_workers),
4542       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4543   {}
4544 
4545   RefToScanQueueSet* queues() { return _queues; }
4546 
4547   RefToScanQueue *work_queue(int i) {
4548     return queues()->queue(i);
4549   }
4550 
4551   ParallelTaskTerminator* terminator() { return &_terminator; }
4552 
4553   // Helps out with CLD processing.
4554   //
4555   // During InitialMark we need to:
4556   // 1) Scavenge all CLDs for the young GC.
4557   // 2) Mark all objects directly reachable from strong CLDs.
4558   template <G1Mark do_mark_object>
4559   class G1CLDClosure : public CLDClosure {
4560     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4561     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4562     G1KlassScanClosure                                _klass_in_cld_closure;
4563     bool                                              _claim;
4564 
4565    public:
4566     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4567                  bool only_young, bool claim)
4568         : _oop_closure(oop_closure),
4569           _oop_in_klass_closure(oop_closure->g1(),
4570                                 oop_closure->pss(),
4571                                 oop_closure->rp()),
4572           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4573           _claim(claim) {
4574 
4575     }
4576 
4577     void do_cld(ClassLoaderData* cld) {
4578       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4579     }
4580   };
4581 
4582   void work(uint worker_id) {
4583     if (worker_id >= _n_workers) return;  // no work needed this round
4584 
4585     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4586 
4587     {
4588       ResourceMark rm;
4589       HandleMark   hm;
4590 
4591       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4592 
4593       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4594       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4595 
4596       pss.set_evac_failure_closure(&evac_failure_cl);
4597 
4598       bool only_young = _g1h->g1_policy()->gcs_are_young();
4599 
4600       // Non-IM young GC.
4601       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4602       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4603                                                                                only_young, // Only process dirty klasses.
4604                                                                                false);     // No need to claim CLDs.
4605       // IM young GC.
4606       //    Strong roots closures.
4607       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4608       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4609                                                                                false, // Process all klasses.
4610                                                                                true); // Need to claim CLDs.
4611       //    Weak roots closures.
4612       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4613       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4614                                                                                     false, // Process all klasses.
4615                                                                                     true); // Need to claim CLDs.
4616 
4617       OopClosure* strong_root_cl;
4618       OopClosure* weak_root_cl;
4619       CLDClosure* strong_cld_cl;
4620       CLDClosure* weak_cld_cl;
4621 
4622       bool trace_metadata = false;
4623 
4624       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4625         // We also need to mark copied objects.
4626         strong_root_cl = &scan_mark_root_cl;
4627         strong_cld_cl  = &scan_mark_cld_cl;
4628         if (ClassUnloadingWithConcurrentMark) {
4629           weak_root_cl = &scan_mark_weak_root_cl;
4630           weak_cld_cl  = &scan_mark_weak_cld_cl;
4631           trace_metadata = true;
4632         } else {
4633           weak_root_cl = &scan_mark_root_cl;
4634           weak_cld_cl  = &scan_mark_cld_cl;
4635         }
4636       } else {
4637         strong_root_cl = &scan_only_root_cl;
4638         weak_root_cl   = &scan_only_root_cl;
4639         strong_cld_cl  = &scan_only_cld_cl;
4640         weak_cld_cl    = &scan_only_cld_cl;
4641       }
4642 
4643       pss.start_strong_roots();
4644 
4645       _root_processor->evacuate_roots(strong_root_cl,
4646                                       weak_root_cl,
4647                                       strong_cld_cl,
4648                                       weak_cld_cl,
4649                                       trace_metadata,
4650                                       worker_id);
4651 
4652       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4653       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4654                                             weak_root_cl,
4655                                             worker_id);
4656       pss.end_strong_roots();
4657 
4658       {
4659         double start = os::elapsedTime();
4660         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4661         evac.do_void();
4662         double elapsed_sec = os::elapsedTime() - start;
4663         double term_sec = pss.term_time();
4664         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4665         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4666         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4667       }
4668       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4669       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4670 
4671       if (PrintTerminationStats) {
4672         MutexLocker x(stats_lock());
4673         pss.print_termination_stats(worker_id);
4674       }
4675 
4676       assert(pss.queue_is_empty(), "should be empty");
4677 
4678       // Close the inner scope so that the ResourceMark and HandleMark
4679       // destructors are executed here and are included as part of the
4680       // "GC Worker Time".
4681     }
4682     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4683   }
4684 };
4685 
4686 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4687 private:
4688   BoolObjectClosure* _is_alive;
4689   int _initial_string_table_size;
4690   int _initial_symbol_table_size;
4691 
4692   bool  _process_strings;
4693   int _strings_processed;
4694   int _strings_removed;
4695 
4696   bool  _process_symbols;
4697   int _symbols_processed;
4698   int _symbols_removed;
4699 
4700 public:
4701   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4702     AbstractGangTask("String/Symbol Unlinking"),
4703     _is_alive(is_alive),
4704     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4705     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4706 
4707     _initial_string_table_size = StringTable::the_table()->table_size();
4708     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4709     if (process_strings) {
4710       StringTable::clear_parallel_claimed_index();
4711     }
4712     if (process_symbols) {
4713       SymbolTable::clear_parallel_claimed_index();
4714     }
4715   }
4716 
4717   ~G1StringSymbolTableUnlinkTask() {
4718     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4719               err_msg("claim value %d after unlink less than initial string table size %d",
4720                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4721     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4722               err_msg("claim value %d after unlink less than initial symbol table size %d",
4723                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4724 
4725     if (G1TraceStringSymbolTableScrubbing) {
4726       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4727                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4728                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4729                              strings_processed(), strings_removed(),
4730                              symbols_processed(), symbols_removed());
4731     }
4732   }
4733 
4734   void work(uint worker_id) {
4735     int strings_processed = 0;
4736     int strings_removed = 0;
4737     int symbols_processed = 0;
4738     int symbols_removed = 0;
4739     if (_process_strings) {
4740       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4741       Atomic::add(strings_processed, &_strings_processed);
4742       Atomic::add(strings_removed, &_strings_removed);
4743     }
4744     if (_process_symbols) {
4745       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4746       Atomic::add(symbols_processed, &_symbols_processed);
4747       Atomic::add(symbols_removed, &_symbols_removed);
4748     }
4749   }
4750 
4751   size_t strings_processed() const { return (size_t)_strings_processed; }
4752   size_t strings_removed()   const { return (size_t)_strings_removed; }
4753 
4754   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4755   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4756 };
4757 
4758 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4759 private:
4760   static Monitor* _lock;
4761 
4762   BoolObjectClosure* const _is_alive;
4763   const bool               _unloading_occurred;
4764   const uint               _num_workers;
4765 
4766   // Variables used to claim nmethods.
4767   nmethod* _first_nmethod;
4768   volatile nmethod* _claimed_nmethod;
4769 
4770   // The list of nmethods that need to be processed by the second pass.
4771   volatile nmethod* _postponed_list;
4772   volatile uint     _num_entered_barrier;
4773 
4774  public:
4775   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4776       _is_alive(is_alive),
4777       _unloading_occurred(unloading_occurred),
4778       _num_workers(num_workers),
4779       _first_nmethod(NULL),
4780       _claimed_nmethod(NULL),
4781       _postponed_list(NULL),
4782       _num_entered_barrier(0)
4783   {
4784     nmethod::increase_unloading_clock();
4785     // Get first alive nmethod
4786     NMethodIterator iter = NMethodIterator();
4787     if(iter.next_alive()) {
4788       _first_nmethod = iter.method();
4789     }
4790     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4791   }
4792 
4793   ~G1CodeCacheUnloadingTask() {
4794     CodeCache::verify_clean_inline_caches();
4795 
4796     CodeCache::set_needs_cache_clean(false);
4797     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4798 
4799     CodeCache::verify_icholder_relocations();
4800   }
4801 
4802  private:
4803   void add_to_postponed_list(nmethod* nm) {
4804       nmethod* old;
4805       do {
4806         old = (nmethod*)_postponed_list;
4807         nm->set_unloading_next(old);
4808       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4809   }
4810 
4811   void clean_nmethod(nmethod* nm) {
4812     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4813 
4814     if (postponed) {
4815       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4816       add_to_postponed_list(nm);
4817     }
4818 
4819     // Mark that this thread has been cleaned/unloaded.
4820     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4821     nm->set_unloading_clock(nmethod::global_unloading_clock());
4822   }
4823 
4824   void clean_nmethod_postponed(nmethod* nm) {
4825     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4826   }
4827 
4828   static const int MaxClaimNmethods = 16;
4829 
4830   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4831     nmethod* first;
4832     NMethodIterator last;
4833 
4834     do {
4835       *num_claimed_nmethods = 0;
4836 
4837       first = (nmethod*)_claimed_nmethod;
4838       last = NMethodIterator(first);
4839 
4840       if (first != NULL) {
4841 
4842         for (int i = 0; i < MaxClaimNmethods; i++) {
4843           if (!last.next_alive()) {
4844             break;
4845           }
4846           claimed_nmethods[i] = last.method();
4847           (*num_claimed_nmethods)++;
4848         }
4849       }
4850 
4851     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4852   }
4853 
4854   nmethod* claim_postponed_nmethod() {
4855     nmethod* claim;
4856     nmethod* next;
4857 
4858     do {
4859       claim = (nmethod*)_postponed_list;
4860       if (claim == NULL) {
4861         return NULL;
4862       }
4863 
4864       next = claim->unloading_next();
4865 
4866     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4867 
4868     return claim;
4869   }
4870 
4871  public:
4872   // Mark that we're done with the first pass of nmethod cleaning.
4873   void barrier_mark(uint worker_id) {
4874     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4875     _num_entered_barrier++;
4876     if (_num_entered_barrier == _num_workers) {
4877       ml.notify_all();
4878     }
4879   }
4880 
4881   // See if we have to wait for the other workers to
4882   // finish their first-pass nmethod cleaning work.
4883   void barrier_wait(uint worker_id) {
4884     if (_num_entered_barrier < _num_workers) {
4885       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4886       while (_num_entered_barrier < _num_workers) {
4887           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4888       }
4889     }
4890   }
4891 
4892   // Cleaning and unloading of nmethods. Some work has to be postponed
4893   // to the second pass, when we know which nmethods survive.
4894   void work_first_pass(uint worker_id) {
4895     // The first nmethods is claimed by the first worker.
4896     if (worker_id == 0 && _first_nmethod != NULL) {
4897       clean_nmethod(_first_nmethod);
4898       _first_nmethod = NULL;
4899     }
4900 
4901     int num_claimed_nmethods;
4902     nmethod* claimed_nmethods[MaxClaimNmethods];
4903 
4904     while (true) {
4905       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4906 
4907       if (num_claimed_nmethods == 0) {
4908         break;
4909       }
4910 
4911       for (int i = 0; i < num_claimed_nmethods; i++) {
4912         clean_nmethod(claimed_nmethods[i]);
4913       }
4914     }
4915   }
4916 
4917   void work_second_pass(uint worker_id) {
4918     nmethod* nm;
4919     // Take care of postponed nmethods.
4920     while ((nm = claim_postponed_nmethod()) != NULL) {
4921       clean_nmethod_postponed(nm);
4922     }
4923   }
4924 };
4925 
4926 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4927 
4928 class G1KlassCleaningTask : public StackObj {
4929   BoolObjectClosure*                      _is_alive;
4930   volatile jint                           _clean_klass_tree_claimed;
4931   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4932 
4933  public:
4934   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4935       _is_alive(is_alive),
4936       _clean_klass_tree_claimed(0),
4937       _klass_iterator() {
4938   }
4939 
4940  private:
4941   bool claim_clean_klass_tree_task() {
4942     if (_clean_klass_tree_claimed) {
4943       return false;
4944     }
4945 
4946     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4947   }
4948 
4949   InstanceKlass* claim_next_klass() {
4950     Klass* klass;
4951     do {
4952       klass =_klass_iterator.next_klass();
4953     } while (klass != NULL && !klass->oop_is_instance());
4954 
4955     return (InstanceKlass*)klass;
4956   }
4957 
4958 public:
4959 
4960   void clean_klass(InstanceKlass* ik) {
4961     ik->clean_implementors_list(_is_alive);
4962     ik->clean_method_data(_is_alive);
4963 
4964     // G1 specific cleanup work that has
4965     // been moved here to be done in parallel.
4966     ik->clean_dependent_nmethods();
4967   }
4968 
4969   void work() {
4970     ResourceMark rm;
4971 
4972     // One worker will clean the subklass/sibling klass tree.
4973     if (claim_clean_klass_tree_task()) {
4974       Klass::clean_subklass_tree(_is_alive);
4975     }
4976 
4977     // All workers will help cleaning the classes,
4978     InstanceKlass* klass;
4979     while ((klass = claim_next_klass()) != NULL) {
4980       clean_klass(klass);
4981     }
4982   }
4983 };
4984 
4985 // To minimize the remark pause times, the tasks below are done in parallel.
4986 class G1ParallelCleaningTask : public AbstractGangTask {
4987 private:
4988   G1StringSymbolTableUnlinkTask _string_symbol_task;
4989   G1CodeCacheUnloadingTask      _code_cache_task;
4990   G1KlassCleaningTask           _klass_cleaning_task;
4991 
4992 public:
4993   // The constructor is run in the VMThread.
4994   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4995       AbstractGangTask("Parallel Cleaning"),
4996       _string_symbol_task(is_alive, process_strings, process_symbols),
4997       _code_cache_task(num_workers, is_alive, unloading_occurred),
4998       _klass_cleaning_task(is_alive) {
4999   }
5000 
5001   // The parallel work done by all worker threads.
5002   void work(uint worker_id) {
5003     // Do first pass of code cache cleaning.
5004     _code_cache_task.work_first_pass(worker_id);
5005 
5006     // Let the threads mark that the first pass is done.
5007     _code_cache_task.barrier_mark(worker_id);
5008 
5009     // Clean the Strings and Symbols.
5010     _string_symbol_task.work(worker_id);
5011 
5012     // Wait for all workers to finish the first code cache cleaning pass.
5013     _code_cache_task.barrier_wait(worker_id);
5014 
5015     // Do the second code cache cleaning work, which realize on
5016     // the liveness information gathered during the first pass.
5017     _code_cache_task.work_second_pass(worker_id);
5018 
5019     // Clean all klasses that were not unloaded.
5020     _klass_cleaning_task.work();
5021   }
5022 };
5023 
5024 
5025 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5026                                         bool process_strings,
5027                                         bool process_symbols,
5028                                         bool class_unloading_occurred) {
5029   uint n_workers = workers()->active_workers();
5030 
5031   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5032                                         n_workers, class_unloading_occurred);
5033   workers()->run_task(&g1_unlink_task);
5034 }
5035 
5036 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5037                                                      bool process_strings, bool process_symbols) {
5038   {
5039     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5040     workers()->run_task(&g1_unlink_task);
5041   }
5042 
5043   if (G1StringDedup::is_enabled()) {
5044     G1StringDedup::unlink(is_alive);
5045   }
5046 }
5047 
5048 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5049  private:
5050   DirtyCardQueueSet* _queue;
5051  public:
5052   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5053 
5054   virtual void work(uint worker_id) {
5055     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5056     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5057 
5058     RedirtyLoggedCardTableEntryClosure cl;
5059     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5060 
5061     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5062   }
5063 };
5064 
5065 void G1CollectedHeap::redirty_logged_cards() {
5066   double redirty_logged_cards_start = os::elapsedTime();
5067 
5068   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5069   dirty_card_queue_set().reset_for_par_iteration();
5070   workers()->run_task(&redirty_task);
5071 
5072   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5073   dcq.merge_bufferlists(&dirty_card_queue_set());
5074   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5075 
5076   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5077 }
5078 
5079 // Weak Reference Processing support
5080 
5081 // An always "is_alive" closure that is used to preserve referents.
5082 // If the object is non-null then it's alive.  Used in the preservation
5083 // of referent objects that are pointed to by reference objects
5084 // discovered by the CM ref processor.
5085 class G1AlwaysAliveClosure: public BoolObjectClosure {
5086   G1CollectedHeap* _g1;
5087 public:
5088   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5089   bool do_object_b(oop p) {
5090     if (p != NULL) {
5091       return true;
5092     }
5093     return false;
5094   }
5095 };
5096 
5097 bool G1STWIsAliveClosure::do_object_b(oop p) {
5098   // An object is reachable if it is outside the collection set,
5099   // or is inside and copied.
5100   return !_g1->obj_in_cs(p) || p->is_forwarded();
5101 }
5102 
5103 // Non Copying Keep Alive closure
5104 class G1KeepAliveClosure: public OopClosure {
5105   G1CollectedHeap* _g1;
5106 public:
5107   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5108   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5109   void do_oop(oop* p) {
5110     oop obj = *p;
5111     assert(obj != NULL, "the caller should have filtered out NULL values");
5112 
5113     const InCSetState cset_state = _g1->in_cset_state(obj);
5114     if (!cset_state.is_in_cset_or_humongous()) {
5115       return;
5116     }
5117     if (cset_state.is_in_cset()) {
5118       assert( obj->is_forwarded(), "invariant" );
5119       *p = obj->forwardee();
5120     } else {
5121       assert(!obj->is_forwarded(), "invariant" );
5122       assert(cset_state.is_humongous(),
5123              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5124       _g1->set_humongous_is_live(obj);
5125     }
5126   }
5127 };
5128 
5129 // Copying Keep Alive closure - can be called from both
5130 // serial and parallel code as long as different worker
5131 // threads utilize different G1ParScanThreadState instances
5132 // and different queues.
5133 
5134 class G1CopyingKeepAliveClosure: public OopClosure {
5135   G1CollectedHeap*         _g1h;
5136   OopClosure*              _copy_non_heap_obj_cl;
5137   G1ParScanThreadState*    _par_scan_state;
5138 
5139 public:
5140   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5141                             OopClosure* non_heap_obj_cl,
5142                             G1ParScanThreadState* pss):
5143     _g1h(g1h),
5144     _copy_non_heap_obj_cl(non_heap_obj_cl),
5145     _par_scan_state(pss)
5146   {}
5147 
5148   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5149   virtual void do_oop(      oop* p) { do_oop_work(p); }
5150 
5151   template <class T> void do_oop_work(T* p) {
5152     oop obj = oopDesc::load_decode_heap_oop(p);
5153 
5154     if (_g1h->is_in_cset_or_humongous(obj)) {
5155       // If the referent object has been forwarded (either copied
5156       // to a new location or to itself in the event of an
5157       // evacuation failure) then we need to update the reference
5158       // field and, if both reference and referent are in the G1
5159       // heap, update the RSet for the referent.
5160       //
5161       // If the referent has not been forwarded then we have to keep
5162       // it alive by policy. Therefore we have copy the referent.
5163       //
5164       // If the reference field is in the G1 heap then we can push
5165       // on the PSS queue. When the queue is drained (after each
5166       // phase of reference processing) the object and it's followers
5167       // will be copied, the reference field set to point to the
5168       // new location, and the RSet updated. Otherwise we need to
5169       // use the the non-heap or metadata closures directly to copy
5170       // the referent object and update the pointer, while avoiding
5171       // updating the RSet.
5172 
5173       if (_g1h->is_in_g1_reserved(p)) {
5174         _par_scan_state->push_on_queue(p);
5175       } else {
5176         assert(!Metaspace::contains((const void*)p),
5177                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5178         _copy_non_heap_obj_cl->do_oop(p);
5179       }
5180     }
5181   }
5182 };
5183 
5184 // Serial drain queue closure. Called as the 'complete_gc'
5185 // closure for each discovered list in some of the
5186 // reference processing phases.
5187 
5188 class G1STWDrainQueueClosure: public VoidClosure {
5189 protected:
5190   G1CollectedHeap* _g1h;
5191   G1ParScanThreadState* _par_scan_state;
5192 
5193   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5194 
5195 public:
5196   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5197     _g1h(g1h),
5198     _par_scan_state(pss)
5199   { }
5200 
5201   void do_void() {
5202     G1ParScanThreadState* const pss = par_scan_state();
5203     pss->trim_queue();
5204   }
5205 };
5206 
5207 // Parallel Reference Processing closures
5208 
5209 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5210 // processing during G1 evacuation pauses.
5211 
5212 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5213 private:
5214   G1CollectedHeap*   _g1h;
5215   RefToScanQueueSet* _queues;
5216   FlexibleWorkGang*  _workers;
5217   uint               _active_workers;
5218 
5219 public:
5220   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5221                            FlexibleWorkGang* workers,
5222                            RefToScanQueueSet *task_queues,
5223                            uint n_workers) :
5224     _g1h(g1h),
5225     _queues(task_queues),
5226     _workers(workers),
5227     _active_workers(n_workers)
5228   {
5229     assert(n_workers > 0, "shouldn't call this otherwise");
5230   }
5231 
5232   // Executes the given task using concurrent marking worker threads.
5233   virtual void execute(ProcessTask& task);
5234   virtual void execute(EnqueueTask& task);
5235 };
5236 
5237 // Gang task for possibly parallel reference processing
5238 
5239 class G1STWRefProcTaskProxy: public AbstractGangTask {
5240   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5241   ProcessTask&     _proc_task;
5242   G1CollectedHeap* _g1h;
5243   RefToScanQueueSet *_task_queues;
5244   ParallelTaskTerminator* _terminator;
5245 
5246 public:
5247   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5248                      G1CollectedHeap* g1h,
5249                      RefToScanQueueSet *task_queues,
5250                      ParallelTaskTerminator* terminator) :
5251     AbstractGangTask("Process reference objects in parallel"),
5252     _proc_task(proc_task),
5253     _g1h(g1h),
5254     _task_queues(task_queues),
5255     _terminator(terminator)
5256   {}
5257 
5258   virtual void work(uint worker_id) {
5259     // The reference processing task executed by a single worker.
5260     ResourceMark rm;
5261     HandleMark   hm;
5262 
5263     G1STWIsAliveClosure is_alive(_g1h);
5264 
5265     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5266     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5267 
5268     pss.set_evac_failure_closure(&evac_failure_cl);
5269 
5270     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5271 
5272     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5273 
5274     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5275 
5276     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5277       // We also need to mark copied objects.
5278       copy_non_heap_cl = &copy_mark_non_heap_cl;
5279     }
5280 
5281     // Keep alive closure.
5282     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5283 
5284     // Complete GC closure
5285     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5286 
5287     // Call the reference processing task's work routine.
5288     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5289 
5290     // Note we cannot assert that the refs array is empty here as not all
5291     // of the processing tasks (specifically phase2 - pp2_work) execute
5292     // the complete_gc closure (which ordinarily would drain the queue) so
5293     // the queue may not be empty.
5294   }
5295 };
5296 
5297 // Driver routine for parallel reference processing.
5298 // Creates an instance of the ref processing gang
5299 // task and has the worker threads execute it.
5300 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5301   assert(_workers != NULL, "Need parallel worker threads.");
5302 
5303   ParallelTaskTerminator terminator(_active_workers, _queues);
5304   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5305 
5306   _workers->run_task(&proc_task_proxy);
5307 }
5308 
5309 // Gang task for parallel reference enqueueing.
5310 
5311 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5312   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5313   EnqueueTask& _enq_task;
5314 
5315 public:
5316   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5317     AbstractGangTask("Enqueue reference objects in parallel"),
5318     _enq_task(enq_task)
5319   { }
5320 
5321   virtual void work(uint worker_id) {
5322     _enq_task.work(worker_id);
5323   }
5324 };
5325 
5326 // Driver routine for parallel reference enqueueing.
5327 // Creates an instance of the ref enqueueing gang
5328 // task and has the worker threads execute it.
5329 
5330 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5331   assert(_workers != NULL, "Need parallel worker threads.");
5332 
5333   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5334 
5335   _workers->run_task(&enq_task_proxy);
5336 }
5337 
5338 // End of weak reference support closures
5339 
5340 // Abstract task used to preserve (i.e. copy) any referent objects
5341 // that are in the collection set and are pointed to by reference
5342 // objects discovered by the CM ref processor.
5343 
5344 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5345 protected:
5346   G1CollectedHeap* _g1h;
5347   RefToScanQueueSet      *_queues;
5348   ParallelTaskTerminator _terminator;
5349   uint _n_workers;
5350 
5351 public:
5352   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5353     AbstractGangTask("ParPreserveCMReferents"),
5354     _g1h(g1h),
5355     _queues(task_queues),
5356     _terminator(workers, _queues),
5357     _n_workers(workers)
5358   { }
5359 
5360   void work(uint worker_id) {
5361     ResourceMark rm;
5362     HandleMark   hm;
5363 
5364     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5365     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5366 
5367     pss.set_evac_failure_closure(&evac_failure_cl);
5368 
5369     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5370 
5371     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5372 
5373     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5374 
5375     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5376 
5377     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5378       // We also need to mark copied objects.
5379       copy_non_heap_cl = &copy_mark_non_heap_cl;
5380     }
5381 
5382     // Is alive closure
5383     G1AlwaysAliveClosure always_alive(_g1h);
5384 
5385     // Copying keep alive closure. Applied to referent objects that need
5386     // to be copied.
5387     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5388 
5389     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5390 
5391     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5392     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5393 
5394     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5395     // So this must be true - but assert just in case someone decides to
5396     // change the worker ids.
5397     assert(worker_id < limit, "sanity");
5398     assert(!rp->discovery_is_atomic(), "check this code");
5399 
5400     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5401     for (uint idx = worker_id; idx < limit; idx += stride) {
5402       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5403 
5404       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5405       while (iter.has_next()) {
5406         // Since discovery is not atomic for the CM ref processor, we
5407         // can see some null referent objects.
5408         iter.load_ptrs(DEBUG_ONLY(true));
5409         oop ref = iter.obj();
5410 
5411         // This will filter nulls.
5412         if (iter.is_referent_alive()) {
5413           iter.make_referent_alive();
5414         }
5415         iter.move_to_next();
5416       }
5417     }
5418 
5419     // Drain the queue - which may cause stealing
5420     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5421     drain_queue.do_void();
5422     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5423     assert(pss.queue_is_empty(), "should be");
5424   }
5425 };
5426 
5427 // Weak Reference processing during an evacuation pause (part 1).
5428 void G1CollectedHeap::process_discovered_references() {
5429   double ref_proc_start = os::elapsedTime();
5430 
5431   ReferenceProcessor* rp = _ref_processor_stw;
5432   assert(rp->discovery_enabled(), "should have been enabled");
5433 
5434   // Any reference objects, in the collection set, that were 'discovered'
5435   // by the CM ref processor should have already been copied (either by
5436   // applying the external root copy closure to the discovered lists, or
5437   // by following an RSet entry).
5438   //
5439   // But some of the referents, that are in the collection set, that these
5440   // reference objects point to may not have been copied: the STW ref
5441   // processor would have seen that the reference object had already
5442   // been 'discovered' and would have skipped discovering the reference,
5443   // but would not have treated the reference object as a regular oop.
5444   // As a result the copy closure would not have been applied to the
5445   // referent object.
5446   //
5447   // We need to explicitly copy these referent objects - the references
5448   // will be processed at the end of remarking.
5449   //
5450   // We also need to do this copying before we process the reference
5451   // objects discovered by the STW ref processor in case one of these
5452   // referents points to another object which is also referenced by an
5453   // object discovered by the STW ref processor.
5454 
5455   uint no_of_gc_workers = workers()->active_workers();
5456 
5457   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5458                                                  no_of_gc_workers,
5459                                                  _task_queues);
5460 
5461   workers()->run_task(&keep_cm_referents);
5462 
5463   // Closure to test whether a referent is alive.
5464   G1STWIsAliveClosure is_alive(this);
5465 
5466   // Even when parallel reference processing is enabled, the processing
5467   // of JNI refs is serial and performed serially by the current thread
5468   // rather than by a worker. The following PSS will be used for processing
5469   // JNI refs.
5470 
5471   // Use only a single queue for this PSS.
5472   G1ParScanThreadState            pss(this, 0, NULL);
5473 
5474   // We do not embed a reference processor in the copying/scanning
5475   // closures while we're actually processing the discovered
5476   // reference objects.
5477   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5478 
5479   pss.set_evac_failure_closure(&evac_failure_cl);
5480 
5481   assert(pss.queue_is_empty(), "pre-condition");
5482 
5483   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5484 
5485   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5486 
5487   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5488 
5489   if (g1_policy()->during_initial_mark_pause()) {
5490     // We also need to mark copied objects.
5491     copy_non_heap_cl = &copy_mark_non_heap_cl;
5492   }
5493 
5494   // Keep alive closure.
5495   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5496 
5497   // Serial Complete GC closure
5498   G1STWDrainQueueClosure drain_queue(this, &pss);
5499 
5500   // Setup the soft refs policy...
5501   rp->setup_policy(false);
5502 
5503   ReferenceProcessorStats stats;
5504   if (!rp->processing_is_mt()) {
5505     // Serial reference processing...
5506     stats = rp->process_discovered_references(&is_alive,
5507                                               &keep_alive,
5508                                               &drain_queue,
5509                                               NULL,
5510                                               _gc_timer_stw,
5511                                               _gc_tracer_stw->gc_id());
5512   } else {
5513     // Parallel reference processing
5514     assert(rp->num_q() == no_of_gc_workers, "sanity");
5515     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5516 
5517     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5518     stats = rp->process_discovered_references(&is_alive,
5519                                               &keep_alive,
5520                                               &drain_queue,
5521                                               &par_task_executor,
5522                                               _gc_timer_stw,
5523                                               _gc_tracer_stw->gc_id());
5524   }
5525 
5526   _gc_tracer_stw->report_gc_reference_stats(stats);
5527 
5528   // We have completed copying any necessary live referent objects.
5529   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5530 
5531   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5532   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5533 }
5534 
5535 // Weak Reference processing during an evacuation pause (part 2).
5536 void G1CollectedHeap::enqueue_discovered_references() {
5537   double ref_enq_start = os::elapsedTime();
5538 
5539   ReferenceProcessor* rp = _ref_processor_stw;
5540   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5541 
5542   // Now enqueue any remaining on the discovered lists on to
5543   // the pending list.
5544   if (!rp->processing_is_mt()) {
5545     // Serial reference processing...
5546     rp->enqueue_discovered_references();
5547   } else {
5548     // Parallel reference enqueueing
5549 
5550     uint n_workers = workers()->active_workers();
5551 
5552     assert(rp->num_q() == n_workers, "sanity");
5553     assert(n_workers <= rp->max_num_q(), "sanity");
5554 
5555     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5556     rp->enqueue_discovered_references(&par_task_executor);
5557   }
5558 
5559   rp->verify_no_references_recorded();
5560   assert(!rp->discovery_enabled(), "should have been disabled");
5561 
5562   // FIXME
5563   // CM's reference processing also cleans up the string and symbol tables.
5564   // Should we do that here also? We could, but it is a serial operation
5565   // and could significantly increase the pause time.
5566 
5567   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5568   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5569 }
5570 
5571 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5572   _expand_heap_after_alloc_failure = true;
5573   _evacuation_failed = false;
5574 
5575   // Should G1EvacuationFailureALot be in effect for this GC?
5576   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5577 
5578   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5579 
5580   // Disable the hot card cache.
5581   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5582   hot_card_cache->reset_hot_cache_claimed_index();
5583   hot_card_cache->set_use_cache(false);
5584 
5585   const uint n_workers = workers()->active_workers();
5586 
5587   init_for_evac_failure(NULL);
5588 
5589   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5590   double start_par_time_sec = os::elapsedTime();
5591   double end_par_time_sec;
5592 
5593   {
5594     G1RootProcessor root_processor(this, n_workers);
5595     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5596     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5597     if (g1_policy()->during_initial_mark_pause()) {
5598       ClassLoaderDataGraph::clear_claimed_marks();
5599     }
5600 
5601     // The individual threads will set their evac-failure closures.
5602     if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5603 
5604     workers()->run_task(&g1_par_task);
5605     end_par_time_sec = os::elapsedTime();
5606 
5607     // Closing the inner scope will execute the destructor
5608     // for the G1RootProcessor object. We record the current
5609     // elapsed time before closing the scope so that time
5610     // taken for the destructor is NOT included in the
5611     // reported parallel time.
5612   }
5613 
5614   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5615 
5616   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5617   phase_times->record_par_time(par_time_ms);
5618 
5619   double code_root_fixup_time_ms =
5620         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5621   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5622 
5623   // Process any discovered reference objects - we have
5624   // to do this _before_ we retire the GC alloc regions
5625   // as we may have to copy some 'reachable' referent
5626   // objects (and their reachable sub-graphs) that were
5627   // not copied during the pause.
5628   process_discovered_references();
5629 
5630   if (G1StringDedup::is_enabled()) {
5631     double fixup_start = os::elapsedTime();
5632 
5633     G1STWIsAliveClosure is_alive(this);
5634     G1KeepAliveClosure keep_alive(this);
5635     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5636 
5637     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5638     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5639   }
5640 
5641   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5642   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5643 
5644   // Reset and re-enable the hot card cache.
5645   // Note the counts for the cards in the regions in the
5646   // collection set are reset when the collection set is freed.
5647   hot_card_cache->reset_hot_cache();
5648   hot_card_cache->set_use_cache(true);
5649 
5650   purge_code_root_memory();
5651 
5652   finalize_for_evac_failure();
5653 
5654   if (evacuation_failed()) {
5655     remove_self_forwarding_pointers();
5656 
5657     // Reset the G1EvacuationFailureALot counters and flags
5658     // Note: the values are reset only when an actual
5659     // evacuation failure occurs.
5660     NOT_PRODUCT(reset_evacuation_should_fail();)
5661   }
5662 
5663   // Enqueue any remaining references remaining on the STW
5664   // reference processor's discovered lists. We need to do
5665   // this after the card table is cleaned (and verified) as
5666   // the act of enqueueing entries on to the pending list
5667   // will log these updates (and dirty their associated
5668   // cards). We need these updates logged to update any
5669   // RSets.
5670   enqueue_discovered_references();
5671 
5672   redirty_logged_cards();
5673   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5674 }
5675 
5676 void G1CollectedHeap::free_region(HeapRegion* hr,
5677                                   FreeRegionList* free_list,
5678                                   bool par,
5679                                   bool locked) {
5680   assert(!hr->is_free(), "the region should not be free");
5681   assert(!hr->is_empty(), "the region should not be empty");
5682   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5683   assert(free_list != NULL, "pre-condition");
5684 
5685   if (G1VerifyBitmaps) {
5686     MemRegion mr(hr->bottom(), hr->end());
5687     concurrent_mark()->clearRangePrevBitmap(mr);
5688   }
5689 
5690   // Clear the card counts for this region.
5691   // Note: we only need to do this if the region is not young
5692   // (since we don't refine cards in young regions).
5693   if (!hr->is_young()) {
5694     _cg1r->hot_card_cache()->reset_card_counts(hr);
5695   }
5696   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5697   free_list->add_ordered(hr);
5698 }
5699 
5700 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5701                                      FreeRegionList* free_list,
5702                                      bool par) {
5703   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5704   assert(free_list != NULL, "pre-condition");
5705 
5706   size_t hr_capacity = hr->capacity();
5707   // We need to read this before we make the region non-humongous,
5708   // otherwise the information will be gone.
5709   uint last_index = hr->last_hc_index();
5710   hr->clear_humongous();
5711   free_region(hr, free_list, par);
5712 
5713   uint i = hr->hrm_index() + 1;
5714   while (i < last_index) {
5715     HeapRegion* curr_hr = region_at(i);
5716     assert(curr_hr->is_continues_humongous(), "invariant");
5717     curr_hr->clear_humongous();
5718     free_region(curr_hr, free_list, par);
5719     i += 1;
5720   }
5721 }
5722 
5723 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5724                                        const HeapRegionSetCount& humongous_regions_removed) {
5725   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5726     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5727     _old_set.bulk_remove(old_regions_removed);
5728     _humongous_set.bulk_remove(humongous_regions_removed);
5729   }
5730 
5731 }
5732 
5733 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5734   assert(list != NULL, "list can't be null");
5735   if (!list->is_empty()) {
5736     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5737     _hrm.insert_list_into_free_list(list);
5738   }
5739 }
5740 
5741 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5742   _allocator->decrease_used(bytes);
5743 }
5744 
5745 class G1ParCleanupCTTask : public AbstractGangTask {
5746   G1SATBCardTableModRefBS* _ct_bs;
5747   G1CollectedHeap* _g1h;
5748   HeapRegion* volatile _su_head;
5749 public:
5750   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5751                      G1CollectedHeap* g1h) :
5752     AbstractGangTask("G1 Par Cleanup CT Task"),
5753     _ct_bs(ct_bs), _g1h(g1h) { }
5754 
5755   void work(uint worker_id) {
5756     HeapRegion* r;
5757     while (r = _g1h->pop_dirty_cards_region()) {
5758       clear_cards(r);
5759     }
5760   }
5761 
5762   void clear_cards(HeapRegion* r) {
5763     // Cards of the survivors should have already been dirtied.
5764     if (!r->is_survivor()) {
5765       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5766     }
5767   }
5768 };
5769 
5770 #ifndef PRODUCT
5771 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5772   G1CollectedHeap* _g1h;
5773   G1SATBCardTableModRefBS* _ct_bs;
5774 public:
5775   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5776     : _g1h(g1h), _ct_bs(ct_bs) { }
5777   virtual bool doHeapRegion(HeapRegion* r) {
5778     if (r->is_survivor()) {
5779       _g1h->verify_dirty_region(r);
5780     } else {
5781       _g1h->verify_not_dirty_region(r);
5782     }
5783     return false;
5784   }
5785 };
5786 
5787 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5788   // All of the region should be clean.
5789   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5790   MemRegion mr(hr->bottom(), hr->end());
5791   ct_bs->verify_not_dirty_region(mr);
5792 }
5793 
5794 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5795   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5796   // dirty allocated blocks as they allocate them. The thread that
5797   // retires each region and replaces it with a new one will do a
5798   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5799   // not dirty that area (one less thing to have to do while holding
5800   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5801   // is dirty.
5802   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5803   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5804   if (hr->is_young()) {
5805     ct_bs->verify_g1_young_region(mr);
5806   } else {
5807     ct_bs->verify_dirty_region(mr);
5808   }
5809 }
5810 
5811 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5812   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5813   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5814     verify_dirty_region(hr);
5815   }
5816 }
5817 
5818 void G1CollectedHeap::verify_dirty_young_regions() {
5819   verify_dirty_young_list(_young_list->first_region());
5820 }
5821 
5822 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5823                                                HeapWord* tams, HeapWord* end) {
5824   guarantee(tams <= end,
5825             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5826   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5827   if (result < end) {
5828     gclog_or_tty->cr();
5829     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5830                            bitmap_name, p2i(result));
5831     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5832                            bitmap_name, p2i(tams), p2i(end));
5833     return false;
5834   }
5835   return true;
5836 }
5837 
5838 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5839   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5840   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5841 
5842   HeapWord* bottom = hr->bottom();
5843   HeapWord* ptams  = hr->prev_top_at_mark_start();
5844   HeapWord* ntams  = hr->next_top_at_mark_start();
5845   HeapWord* end    = hr->end();
5846 
5847   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5848 
5849   bool res_n = true;
5850   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5851   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5852   // if we happen to be in that state.
5853   if (mark_in_progress() || !_cmThread->in_progress()) {
5854     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5855   }
5856   if (!res_p || !res_n) {
5857     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5858                            HR_FORMAT_PARAMS(hr));
5859     gclog_or_tty->print_cr("#### Caller: %s", caller);
5860     return false;
5861   }
5862   return true;
5863 }
5864 
5865 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5866   if (!G1VerifyBitmaps) return;
5867 
5868   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5869 }
5870 
5871 class G1VerifyBitmapClosure : public HeapRegionClosure {
5872 private:
5873   const char* _caller;
5874   G1CollectedHeap* _g1h;
5875   bool _failures;
5876 
5877 public:
5878   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5879     _caller(caller), _g1h(g1h), _failures(false) { }
5880 
5881   bool failures() { return _failures; }
5882 
5883   virtual bool doHeapRegion(HeapRegion* hr) {
5884     if (hr->is_continues_humongous()) return false;
5885 
5886     bool result = _g1h->verify_bitmaps(_caller, hr);
5887     if (!result) {
5888       _failures = true;
5889     }
5890     return false;
5891   }
5892 };
5893 
5894 void G1CollectedHeap::check_bitmaps(const char* caller) {
5895   if (!G1VerifyBitmaps) return;
5896 
5897   G1VerifyBitmapClosure cl(caller, this);
5898   heap_region_iterate(&cl);
5899   guarantee(!cl.failures(), "bitmap verification");
5900 }
5901 
5902 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5903  private:
5904   bool _failures;
5905  public:
5906   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5907 
5908   virtual bool doHeapRegion(HeapRegion* hr) {
5909     uint i = hr->hrm_index();
5910     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5911     if (hr->is_humongous()) {
5912       if (hr->in_collection_set()) {
5913         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5914         _failures = true;
5915         return true;
5916       }
5917       if (cset_state.is_in_cset()) {
5918         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5919         _failures = true;
5920         return true;
5921       }
5922       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5923         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5924         _failures = true;
5925         return true;
5926       }
5927     } else {
5928       if (cset_state.is_humongous()) {
5929         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5930         _failures = true;
5931         return true;
5932       }
5933       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5934         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5935                                hr->in_collection_set(), cset_state.value(), i);
5936         _failures = true;
5937         return true;
5938       }
5939       if (cset_state.is_in_cset()) {
5940         if (hr->is_young() != (cset_state.is_young())) {
5941           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5942                                  hr->is_young(), cset_state.value(), i);
5943           _failures = true;
5944           return true;
5945         }
5946         if (hr->is_old() != (cset_state.is_old())) {
5947           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5948                                  hr->is_old(), cset_state.value(), i);
5949           _failures = true;
5950           return true;
5951         }
5952       }
5953     }
5954     return false;
5955   }
5956 
5957   bool failures() const { return _failures; }
5958 };
5959 
5960 bool G1CollectedHeap::check_cset_fast_test() {
5961   G1CheckCSetFastTableClosure cl;
5962   _hrm.iterate(&cl);
5963   return !cl.failures();
5964 }
5965 #endif // PRODUCT
5966 
5967 void G1CollectedHeap::cleanUpCardTable() {
5968   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5969   double start = os::elapsedTime();
5970 
5971   {
5972     // Iterate over the dirty cards region list.
5973     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5974 
5975     workers()->run_task(&cleanup_task);
5976 #ifndef PRODUCT
5977     if (G1VerifyCTCleanup || VerifyAfterGC) {
5978       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5979       heap_region_iterate(&cleanup_verifier);
5980     }
5981 #endif
5982   }
5983 
5984   double elapsed = os::elapsedTime() - start;
5985   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5986 }
5987 
5988 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5989   size_t pre_used = 0;
5990   FreeRegionList local_free_list("Local List for CSet Freeing");
5991 
5992   double young_time_ms     = 0.0;
5993   double non_young_time_ms = 0.0;
5994 
5995   // Since the collection set is a superset of the the young list,
5996   // all we need to do to clear the young list is clear its
5997   // head and length, and unlink any young regions in the code below
5998   _young_list->clear();
5999 
6000   G1CollectorPolicy* policy = g1_policy();
6001 
6002   double start_sec = os::elapsedTime();
6003   bool non_young = true;
6004 
6005   HeapRegion* cur = cs_head;
6006   int age_bound = -1;
6007   size_t rs_lengths = 0;
6008 
6009   while (cur != NULL) {
6010     assert(!is_on_master_free_list(cur), "sanity");
6011     if (non_young) {
6012       if (cur->is_young()) {
6013         double end_sec = os::elapsedTime();
6014         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6015         non_young_time_ms += elapsed_ms;
6016 
6017         start_sec = os::elapsedTime();
6018         non_young = false;
6019       }
6020     } else {
6021       if (!cur->is_young()) {
6022         double end_sec = os::elapsedTime();
6023         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6024         young_time_ms += elapsed_ms;
6025 
6026         start_sec = os::elapsedTime();
6027         non_young = true;
6028       }
6029     }
6030 
6031     rs_lengths += cur->rem_set()->occupied_locked();
6032 
6033     HeapRegion* next = cur->next_in_collection_set();
6034     assert(cur->in_collection_set(), "bad CS");
6035     cur->set_next_in_collection_set(NULL);
6036     clear_in_cset(cur);
6037 
6038     if (cur->is_young()) {
6039       int index = cur->young_index_in_cset();
6040       assert(index != -1, "invariant");
6041       assert((uint) index < policy->young_cset_region_length(), "invariant");
6042       size_t words_survived = _surviving_young_words[index];
6043       cur->record_surv_words_in_group(words_survived);
6044 
6045       // At this point the we have 'popped' cur from the collection set
6046       // (linked via next_in_collection_set()) but it is still in the
6047       // young list (linked via next_young_region()). Clear the
6048       // _next_young_region field.
6049       cur->set_next_young_region(NULL);
6050     } else {
6051       int index = cur->young_index_in_cset();
6052       assert(index == -1, "invariant");
6053     }
6054 
6055     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6056             (!cur->is_young() && cur->young_index_in_cset() == -1),
6057             "invariant" );
6058 
6059     if (!cur->evacuation_failed()) {
6060       MemRegion used_mr = cur->used_region();
6061 
6062       // And the region is empty.
6063       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6064       pre_used += cur->used();
6065       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6066     } else {
6067       cur->uninstall_surv_rate_group();
6068       if (cur->is_young()) {
6069         cur->set_young_index_in_cset(-1);
6070       }
6071       cur->set_evacuation_failed(false);
6072       // The region is now considered to be old.
6073       cur->set_old();
6074       _old_set.add(cur);
6075       evacuation_info.increment_collectionset_used_after(cur->used());
6076     }
6077     cur = next;
6078   }
6079 
6080   evacuation_info.set_regions_freed(local_free_list.length());
6081   policy->record_max_rs_lengths(rs_lengths);
6082   policy->cset_regions_freed();
6083 
6084   double end_sec = os::elapsedTime();
6085   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6086 
6087   if (non_young) {
6088     non_young_time_ms += elapsed_ms;
6089   } else {
6090     young_time_ms += elapsed_ms;
6091   }
6092 
6093   prepend_to_freelist(&local_free_list);
6094   decrement_summary_bytes(pre_used);
6095   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6096   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6097 }
6098 
6099 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6100  private:
6101   FreeRegionList* _free_region_list;
6102   HeapRegionSet* _proxy_set;
6103   HeapRegionSetCount _humongous_regions_removed;
6104   size_t _freed_bytes;
6105  public:
6106 
6107   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6108     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6109   }
6110 
6111   virtual bool doHeapRegion(HeapRegion* r) {
6112     if (!r->is_starts_humongous()) {
6113       return false;
6114     }
6115 
6116     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6117 
6118     oop obj = (oop)r->bottom();
6119     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6120 
6121     // The following checks whether the humongous object is live are sufficient.
6122     // The main additional check (in addition to having a reference from the roots
6123     // or the young gen) is whether the humongous object has a remembered set entry.
6124     //
6125     // A humongous object cannot be live if there is no remembered set for it
6126     // because:
6127     // - there can be no references from within humongous starts regions referencing
6128     // the object because we never allocate other objects into them.
6129     // (I.e. there are no intra-region references that may be missed by the
6130     // remembered set)
6131     // - as soon there is a remembered set entry to the humongous starts region
6132     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6133     // until the end of a concurrent mark.
6134     //
6135     // It is not required to check whether the object has been found dead by marking
6136     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6137     // all objects allocated during that time are considered live.
6138     // SATB marking is even more conservative than the remembered set.
6139     // So if at this point in the collection there is no remembered set entry,
6140     // nobody has a reference to it.
6141     // At the start of collection we flush all refinement logs, and remembered sets
6142     // are completely up-to-date wrt to references to the humongous object.
6143     //
6144     // Other implementation considerations:
6145     // - never consider object arrays at this time because they would pose
6146     // considerable effort for cleaning up the the remembered sets. This is
6147     // required because stale remembered sets might reference locations that
6148     // are currently allocated into.
6149     uint region_idx = r->hrm_index();
6150     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6151         !r->rem_set()->is_empty()) {
6152 
6153       if (G1TraceEagerReclaimHumongousObjects) {
6154         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6155                                region_idx,
6156                                (size_t)obj->size() * HeapWordSize,
6157                                p2i(r->bottom()),
6158                                r->region_num(),
6159                                r->rem_set()->occupied(),
6160                                r->rem_set()->strong_code_roots_list_length(),
6161                                next_bitmap->isMarked(r->bottom()),
6162                                g1h->is_humongous_reclaim_candidate(region_idx),
6163                                obj->is_typeArray()
6164                               );
6165       }
6166 
6167       return false;
6168     }
6169 
6170     guarantee(obj->is_typeArray(),
6171               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6172                       PTR_FORMAT " is not.",
6173                       p2i(r->bottom())));
6174 
6175     if (G1TraceEagerReclaimHumongousObjects) {
6176       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6177                              region_idx,
6178                              (size_t)obj->size() * HeapWordSize,
6179                              p2i(r->bottom()),
6180                              r->region_num(),
6181                              r->rem_set()->occupied(),
6182                              r->rem_set()->strong_code_roots_list_length(),
6183                              next_bitmap->isMarked(r->bottom()),
6184                              g1h->is_humongous_reclaim_candidate(region_idx),
6185                              obj->is_typeArray()
6186                             );
6187     }
6188     // Need to clear mark bit of the humongous object if already set.
6189     if (next_bitmap->isMarked(r->bottom())) {
6190       next_bitmap->clear(r->bottom());
6191     }
6192     _freed_bytes += r->used();
6193     r->set_containing_set(NULL);
6194     _humongous_regions_removed.increment(1u, r->capacity());
6195     g1h->free_humongous_region(r, _free_region_list, false);
6196 
6197     return false;
6198   }
6199 
6200   HeapRegionSetCount& humongous_free_count() {
6201     return _humongous_regions_removed;
6202   }
6203 
6204   size_t bytes_freed() const {
6205     return _freed_bytes;
6206   }
6207 
6208   size_t humongous_reclaimed() const {
6209     return _humongous_regions_removed.length();
6210   }
6211 };
6212 
6213 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6214   assert_at_safepoint(true);
6215 
6216   if (!G1EagerReclaimHumongousObjects ||
6217       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6218     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6219     return;
6220   }
6221 
6222   double start_time = os::elapsedTime();
6223 
6224   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6225 
6226   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6227   heap_region_iterate(&cl);
6228 
6229   HeapRegionSetCount empty_set;
6230   remove_from_old_sets(empty_set, cl.humongous_free_count());
6231 
6232   G1HRPrinter* hrp = hr_printer();
6233   if (hrp->is_active()) {
6234     FreeRegionListIterator iter(&local_cleanup_list);
6235     while (iter.more_available()) {
6236       HeapRegion* hr = iter.get_next();
6237       hrp->cleanup(hr);
6238     }
6239   }
6240 
6241   prepend_to_freelist(&local_cleanup_list);
6242   decrement_summary_bytes(cl.bytes_freed());
6243 
6244   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6245                                                                     cl.humongous_reclaimed());
6246 }
6247 
6248 // This routine is similar to the above but does not record
6249 // any policy statistics or update free lists; we are abandoning
6250 // the current incremental collection set in preparation of a
6251 // full collection. After the full GC we will start to build up
6252 // the incremental collection set again.
6253 // This is only called when we're doing a full collection
6254 // and is immediately followed by the tearing down of the young list.
6255 
6256 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6257   HeapRegion* cur = cs_head;
6258 
6259   while (cur != NULL) {
6260     HeapRegion* next = cur->next_in_collection_set();
6261     assert(cur->in_collection_set(), "bad CS");
6262     cur->set_next_in_collection_set(NULL);
6263     clear_in_cset(cur);
6264     cur->set_young_index_in_cset(-1);
6265     cur = next;
6266   }
6267 }
6268 
6269 void G1CollectedHeap::set_free_regions_coming() {
6270   if (G1ConcRegionFreeingVerbose) {
6271     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6272                            "setting free regions coming");
6273   }
6274 
6275   assert(!free_regions_coming(), "pre-condition");
6276   _free_regions_coming = true;
6277 }
6278 
6279 void G1CollectedHeap::reset_free_regions_coming() {
6280   assert(free_regions_coming(), "pre-condition");
6281 
6282   {
6283     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6284     _free_regions_coming = false;
6285     SecondaryFreeList_lock->notify_all();
6286   }
6287 
6288   if (G1ConcRegionFreeingVerbose) {
6289     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6290                            "reset free regions coming");
6291   }
6292 }
6293 
6294 void G1CollectedHeap::wait_while_free_regions_coming() {
6295   // Most of the time we won't have to wait, so let's do a quick test
6296   // first before we take the lock.
6297   if (!free_regions_coming()) {
6298     return;
6299   }
6300 
6301   if (G1ConcRegionFreeingVerbose) {
6302     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6303                            "waiting for free regions");
6304   }
6305 
6306   {
6307     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6308     while (free_regions_coming()) {
6309       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6310     }
6311   }
6312 
6313   if (G1ConcRegionFreeingVerbose) {
6314     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6315                            "done waiting for free regions");
6316   }
6317 }
6318 
6319 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6320   _young_list->push_region(hr);
6321 }
6322 
6323 class NoYoungRegionsClosure: public HeapRegionClosure {
6324 private:
6325   bool _success;
6326 public:
6327   NoYoungRegionsClosure() : _success(true) { }
6328   bool doHeapRegion(HeapRegion* r) {
6329     if (r->is_young()) {
6330       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6331                              p2i(r->bottom()), p2i(r->end()));
6332       _success = false;
6333     }
6334     return false;
6335   }
6336   bool success() { return _success; }
6337 };
6338 
6339 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6340   bool ret = _young_list->check_list_empty(check_sample);
6341 
6342   if (check_heap) {
6343     NoYoungRegionsClosure closure;
6344     heap_region_iterate(&closure);
6345     ret = ret && closure.success();
6346   }
6347 
6348   return ret;
6349 }
6350 
6351 class TearDownRegionSetsClosure : public HeapRegionClosure {
6352 private:
6353   HeapRegionSet *_old_set;
6354 
6355 public:
6356   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6357 
6358   bool doHeapRegion(HeapRegion* r) {
6359     if (r->is_old()) {
6360       _old_set->remove(r);
6361     } else {
6362       // We ignore free regions, we'll empty the free list afterwards.
6363       // We ignore young regions, we'll empty the young list afterwards.
6364       // We ignore humongous regions, we're not tearing down the
6365       // humongous regions set.
6366       // We ignore archive regions.
6367       assert(r->is_free() || r->is_young() || r->is_humongous() || r->is_archive(),
6368              "it cannot be another type");
6369     }
6370     return false;
6371   }
6372 
6373   ~TearDownRegionSetsClosure() {
6374     assert(_old_set->is_empty(), "post-condition");
6375   }
6376 };
6377 
6378 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6379   assert_at_safepoint(true /* should_be_vm_thread */);
6380 
6381   if (!free_list_only) {
6382     TearDownRegionSetsClosure cl(&_old_set);
6383     heap_region_iterate(&cl);
6384 
6385     // Note that emptying the _young_list is postponed and instead done as
6386     // the first step when rebuilding the regions sets again. The reason for
6387     // this is that during a full GC string deduplication needs to know if
6388     // a collected region was young or old when the full GC was initiated.
6389   }
6390   _hrm.remove_all_free_regions();
6391 }
6392 
6393 class RebuildRegionSetsClosure : public HeapRegionClosure {
6394 private:
6395   bool            _free_list_only;
6396   HeapRegionSet*   _old_set;
6397   HeapRegionManager*   _hrm;
6398   size_t          _total_used;
6399 
6400 public:
6401   RebuildRegionSetsClosure(bool free_list_only,
6402                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6403     _free_list_only(free_list_only),
6404     _old_set(old_set), _hrm(hrm), _total_used(0) {
6405     assert(_hrm->num_free_regions() == 0, "pre-condition");
6406     if (!free_list_only) {
6407       assert(_old_set->is_empty(), "pre-condition");
6408     }
6409   }
6410 
6411   bool doHeapRegion(HeapRegion* r) {
6412     if (r->is_continues_humongous()) {
6413       return false;
6414     }
6415 
6416     if (r->is_empty()) {
6417       // Add free regions to the free list
6418       r->set_free();
6419       r->set_allocation_context(AllocationContext::system());
6420       _hrm->insert_into_free_list(r);
6421     } else if (!_free_list_only) {
6422       assert(!r->is_young(), "we should not come across young regions");
6423 
6424       if (r->is_humongous()) {
6425         // We ignore humongous regions.
6426         // We left the humongous set unchanged,
6427       } else {
6428         // Objects that were compacted would have ended up on regions
6429         // that were previously old or free.  Archive regions (which are
6430         // old) will not have been touched.
6431         assert(r->is_free() || r->is_old(), "invariant");
6432         // We now consider them old, so register as such. Leave
6433         // archive regions set that way, however, while still adding
6434         // them to the old set.
6435         if (!r->is_archive()) {
6436           r->set_old();
6437         }
6438         _old_set->add(r);
6439       }
6440       _total_used += r->used();
6441     }
6442 
6443     return false;
6444   }
6445 
6446   size_t total_used() {
6447     return _total_used;
6448   }
6449 };
6450 
6451 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6452   assert_at_safepoint(true /* should_be_vm_thread */);
6453 
6454   if (!free_list_only) {
6455     _young_list->empty_list();
6456   }
6457 
6458   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6459   heap_region_iterate(&cl);
6460 
6461   if (!free_list_only) {
6462     _allocator->set_used(cl.total_used());
6463     if (_recording_allocator != NULL) {
6464       _recording_allocator->clear_used();
6465     }
6466   }
6467   assert(_allocator->used_unlocked() == recalculate_used(),
6468          err_msg("inconsistent _allocator->used_unlocked(), "
6469                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6470                  _allocator->used_unlocked(), recalculate_used()));
6471 }
6472 
6473 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6474   _refine_cte_cl->set_concurrent(concurrent);
6475 }
6476 
6477 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6478   HeapRegion* hr = heap_region_containing(p);
6479   return hr->is_in(p);
6480 }
6481 
6482 // Methods for the mutator alloc region
6483 
6484 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6485                                                       bool force) {
6486   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6487   assert(!force || g1_policy()->can_expand_young_list(),
6488          "if force is true we should be able to expand the young list");
6489   bool young_list_full = g1_policy()->is_young_list_full();
6490   if (force || !young_list_full) {
6491     HeapRegion* new_alloc_region = new_region(word_size,
6492                                               false /* is_old */,
6493                                               false /* do_expand */);
6494     if (new_alloc_region != NULL) {
6495       set_region_short_lived_locked(new_alloc_region);
6496       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6497       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6498       return new_alloc_region;
6499     }
6500   }
6501   return NULL;
6502 }
6503 
6504 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6505                                                   size_t allocated_bytes) {
6506   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6507   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6508 
6509   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6510   _allocator->increase_used(allocated_bytes);
6511   _hr_printer.retire(alloc_region);
6512   // We update the eden sizes here, when the region is retired,
6513   // instead of when it's allocated, since this is the point that its
6514   // used space has been recored in _summary_bytes_used.
6515   g1mm()->update_eden_size();
6516 }
6517 
6518 // Methods for the GC alloc regions
6519 
6520 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6521                                                  uint count,
6522                                                  InCSetState dest) {
6523   assert(FreeList_lock->owned_by_self(), "pre-condition");
6524 
6525   if (count < g1_policy()->max_regions(dest)) {
6526     const bool is_survivor = (dest.is_young());
6527     HeapRegion* new_alloc_region = new_region(word_size,
6528                                               !is_survivor,
6529                                               true /* do_expand */);
6530     if (new_alloc_region != NULL) {
6531       // We really only need to do this for old regions given that we
6532       // should never scan survivors. But it doesn't hurt to do it
6533       // for survivors too.
6534       new_alloc_region->record_timestamp();
6535       if (is_survivor) {
6536         new_alloc_region->set_survivor();
6537         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6538         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6539       } else {
6540         new_alloc_region->set_old();
6541         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6542         check_bitmaps("Old Region Allocation", new_alloc_region);
6543       }
6544       bool during_im = g1_policy()->during_initial_mark_pause();
6545       new_alloc_region->note_start_of_copying(during_im);
6546       return new_alloc_region;
6547     }
6548   }
6549   return NULL;
6550 }
6551 
6552 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6553                                              size_t allocated_bytes,
6554                                              InCSetState dest) {
6555   bool during_im = g1_policy()->during_initial_mark_pause();
6556   alloc_region->note_end_of_copying(during_im);
6557   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6558   if (dest.is_young()) {
6559     young_list()->add_survivor_region(alloc_region);
6560   } else {
6561     _old_set.add(alloc_region);
6562   }
6563   _hr_printer.retire(alloc_region);
6564 }
6565 
6566 HeapRegion* G1CollectedHeap::alloc_highest_available_region() {
6567   bool expanded = false;
6568   uint index = _hrm.find_highest_available(&expanded);
6569 
6570   if (index != G1_NO_HRM_INDEX) {
6571     if (expanded) {
6572       ergo_verbose1(ErgoHeapSizing,
6573                     "attempt heap expansion",
6574                     ergo_format_reason("requested address range outside heap bounds")
6575                     ergo_format_byte("region size"),
6576                     HeapRegion::GrainWords * HeapWordSize);
6577     }
6578     _hrm.allocate_free_regions_starting_at(index, 1);
6579     return region_at(index);
6580   }
6581   return NULL;
6582 }
6583 
6584 
6585 // Heap region set verification
6586 
6587 class VerifyRegionListsClosure : public HeapRegionClosure {
6588 private:
6589   HeapRegionSet*   _old_set;
6590   HeapRegionSet*   _humongous_set;
6591   HeapRegionManager*   _hrm;
6592 
6593 public:
6594   HeapRegionSetCount _old_count;
6595   HeapRegionSetCount _humongous_count;
6596   HeapRegionSetCount _free_count;
6597 
6598   VerifyRegionListsClosure(HeapRegionSet* old_set,
6599                            HeapRegionSet* humongous_set,
6600                            HeapRegionManager* hrm) :
6601     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6602     _old_count(), _humongous_count(), _free_count(){ }
6603 
6604   bool doHeapRegion(HeapRegion* hr) {
6605     if (hr->is_continues_humongous()) {
6606       return false;
6607     }
6608 
6609     if (hr->is_young()) {
6610       // TODO
6611     } else if (hr->is_starts_humongous()) {
6612       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6613       _humongous_count.increment(1u, hr->capacity());
6614     } else if (hr->is_empty()) {
6615       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6616       _free_count.increment(1u, hr->capacity());
6617     } else if (hr->is_old()) {
6618       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6619       _old_count.increment(1u, hr->capacity());
6620     } else {
6621       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6622       ShouldNotReachHere();
6623     }
6624     return false;
6625   }
6626 
6627   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6628     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6629     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6630         old_set->total_capacity_bytes(), _old_count.capacity()));
6631 
6632     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6633     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6634         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6635 
6636     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6637     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6638         free_list->total_capacity_bytes(), _free_count.capacity()));
6639   }
6640 };
6641 
6642 void G1CollectedHeap::verify_region_sets() {
6643   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6644 
6645   // First, check the explicit lists.
6646   _hrm.verify();
6647   {
6648     // Given that a concurrent operation might be adding regions to
6649     // the secondary free list we have to take the lock before
6650     // verifying it.
6651     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6652     _secondary_free_list.verify_list();
6653   }
6654 
6655   // If a concurrent region freeing operation is in progress it will
6656   // be difficult to correctly attributed any free regions we come
6657   // across to the correct free list given that they might belong to
6658   // one of several (free_list, secondary_free_list, any local lists,
6659   // etc.). So, if that's the case we will skip the rest of the
6660   // verification operation. Alternatively, waiting for the concurrent
6661   // operation to complete will have a non-trivial effect on the GC's
6662   // operation (no concurrent operation will last longer than the
6663   // interval between two calls to verification) and it might hide
6664   // any issues that we would like to catch during testing.
6665   if (free_regions_coming()) {
6666     return;
6667   }
6668 
6669   // Make sure we append the secondary_free_list on the free_list so
6670   // that all free regions we will come across can be safely
6671   // attributed to the free_list.
6672   append_secondary_free_list_if_not_empty_with_lock();
6673 
6674   // Finally, make sure that the region accounting in the lists is
6675   // consistent with what we see in the heap.
6676 
6677   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6678   heap_region_iterate(&cl);
6679   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6680 }
6681 
6682 // Optimized nmethod scanning
6683 
6684 class RegisterNMethodOopClosure: public OopClosure {
6685   G1CollectedHeap* _g1h;
6686   nmethod* _nm;
6687 
6688   template <class T> void do_oop_work(T* p) {
6689     T heap_oop = oopDesc::load_heap_oop(p);
6690     if (!oopDesc::is_null(heap_oop)) {
6691       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6692       HeapRegion* hr = _g1h->heap_region_containing(obj);
6693       assert(!hr->is_continues_humongous(),
6694              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6695                      " starting at "HR_FORMAT,
6696                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6697 
6698       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6699       hr->add_strong_code_root_locked(_nm);
6700     }
6701   }
6702 
6703 public:
6704   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6705     _g1h(g1h), _nm(nm) {}
6706 
6707   void do_oop(oop* p)       { do_oop_work(p); }
6708   void do_oop(narrowOop* p) { do_oop_work(p); }
6709 };
6710 
6711 class UnregisterNMethodOopClosure: public OopClosure {
6712   G1CollectedHeap* _g1h;
6713   nmethod* _nm;
6714 
6715   template <class T> void do_oop_work(T* p) {
6716     T heap_oop = oopDesc::load_heap_oop(p);
6717     if (!oopDesc::is_null(heap_oop)) {
6718       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6719       HeapRegion* hr = _g1h->heap_region_containing(obj);
6720       assert(!hr->is_continues_humongous(),
6721              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6722                      " starting at "HR_FORMAT,
6723                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6724 
6725       hr->remove_strong_code_root(_nm);
6726     }
6727   }
6728 
6729 public:
6730   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6731     _g1h(g1h), _nm(nm) {}
6732 
6733   void do_oop(oop* p)       { do_oop_work(p); }
6734   void do_oop(narrowOop* p) { do_oop_work(p); }
6735 };
6736 
6737 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6738   CollectedHeap::register_nmethod(nm);
6739 
6740   guarantee(nm != NULL, "sanity");
6741   RegisterNMethodOopClosure reg_cl(this, nm);
6742   nm->oops_do(&reg_cl);
6743 }
6744 
6745 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6746   CollectedHeap::unregister_nmethod(nm);
6747 
6748   guarantee(nm != NULL, "sanity");
6749   UnregisterNMethodOopClosure reg_cl(this, nm);
6750   nm->oops_do(&reg_cl, true);
6751 }
6752 
6753 void G1CollectedHeap::purge_code_root_memory() {
6754   double purge_start = os::elapsedTime();
6755   G1CodeRootSet::purge();
6756   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6757   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6758 }
6759 
6760 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6761   G1CollectedHeap* _g1h;
6762 
6763 public:
6764   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6765     _g1h(g1h) {}
6766 
6767   void do_code_blob(CodeBlob* cb) {
6768     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6769     if (nm == NULL) {
6770       return;
6771     }
6772 
6773     if (ScavengeRootsInCode) {
6774       _g1h->register_nmethod(nm);
6775     }
6776   }
6777 };
6778 
6779 void G1CollectedHeap::rebuild_strong_code_roots() {
6780   RebuildStrongCodeRootClosure blob_cl(this);
6781   CodeCache::blobs_do(&blob_cl);
6782 }