1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
  27 #include "gc_implementation/parNew/parNewGeneration.hpp"
  28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
  29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  30 #include "gc_implementation/shared/ageTable.hpp"
  31 #include "gc_implementation/shared/copyFailedInfo.hpp"
  32 #include "gc_implementation/shared/gcHeapSummary.hpp"
  33 #include "gc_implementation/shared/gcTimer.hpp"
  34 #include "gc_implementation/shared/gcTrace.hpp"
  35 #include "gc_implementation/shared/gcTraceTime.hpp"
  36 #include "gc_implementation/shared/parGCAllocBuffer.inline.hpp"
  37 #include "gc_implementation/shared/spaceDecorator.hpp"
  38 #include "memory/defNewGeneration.inline.hpp"
  39 #include "memory/genCollectedHeap.hpp"
  40 #include "memory/genOopClosures.inline.hpp"
  41 #include "memory/generation.hpp"
  42 #include "memory/generation.inline.hpp"
  43 #include "memory/referencePolicy.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/sharedHeap.hpp"
  46 #include "memory/space.hpp"
  47 #include "oops/objArrayOop.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/oop.pcgc.inline.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/handles.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/thread.inline.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/globalDefinitions.hpp"
  57 #include "utilities/workgroup.hpp"
  58 
  59 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  60 
  61 #ifdef _MSC_VER
  62 #pragma warning( push )
  63 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  64 #endif
  65 ParScanThreadState::ParScanThreadState(Space* to_space_,
  66                                        ParNewGeneration* gen_,
  67                                        Generation* old_gen_,
  68                                        int thread_num_,
  69                                        ObjToScanQueueSet* work_queue_set_,
  70                                        Stack<oop, mtGC>* overflow_stacks_,
  71                                        size_t desired_plab_sz_,
  72                                        ParNewTracer* gc_tracer,
  73                                        ParallelTaskTerminator& term_) :
  74   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
  75   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  76   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  77   _ageTable(false), // false ==> not the global age table, no perf data.
  78   _to_space_alloc_buffer(desired_plab_sz_),
  79   _gc_tracer(gc_tracer),
  80   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
  81   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
  82   _older_gen_closure(gen_, this),
  83   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  84                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
  85                       work_queue_set_, &term_),
  86   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
  87   _keep_alive_closure(&_scan_weak_ref_closure),
  88   _strong_roots_time(0.0), _term_time(0.0)
  89 {
  90   #if TASKQUEUE_STATS
  91   _term_attempts = 0;
  92   _overflow_refills = 0;
  93   _overflow_refill_objs = 0;
  94   #endif // TASKQUEUE_STATS
  95 
  96   _survivor_chunk_array =
  97     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
  98   _hash_seed = 17;  // Might want to take time-based random value.
  99   _start = os::elapsedTime();
 100   _old_gen_closure.set_generation(old_gen_);
 101   _old_gen_root_closure.set_generation(old_gen_);
 102 }
 103 #ifdef _MSC_VER
 104 #pragma warning( pop )
 105 #endif
 106 
 107 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 108                                               size_t plab_word_size) {
 109   ChunkArray* sca = survivor_chunk_array();
 110   if (sca != NULL) {
 111     // A non-null SCA implies that we want the PLAB data recorded.
 112     sca->record_sample(plab_start, plab_word_size);
 113   }
 114 }
 115 
 116 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 117   return new_obj->is_objArray() &&
 118          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 119          new_obj != old_obj;
 120 }
 121 
 122 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 123   assert(old->is_objArray(), "must be obj array");
 124   assert(old->is_forwarded(), "must be forwarded");
 125   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
 126   assert(!old_gen()->is_in(old), "must be in young generation.");
 127 
 128   objArrayOop obj = objArrayOop(old->forwardee());
 129   // Process ParGCArrayScanChunk elements now
 130   // and push the remainder back onto queue
 131   int start     = arrayOop(old)->length();
 132   int end       = obj->length();
 133   int remainder = end - start;
 134   assert(start <= end, "just checking");
 135   if (remainder > 2 * ParGCArrayScanChunk) {
 136     // Test above combines last partial chunk with a full chunk
 137     end = start + ParGCArrayScanChunk;
 138     arrayOop(old)->set_length(end);
 139     // Push remainder.
 140     bool ok = work_queue()->push(old);
 141     assert(ok, "just popped, push must be okay");
 142   } else {
 143     // Restore length so that it can be used if there
 144     // is a promotion failure and forwarding pointers
 145     // must be removed.
 146     arrayOop(old)->set_length(end);
 147   }
 148 
 149   // process our set of indices (include header in first chunk)
 150   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 151   if ((HeapWord *)obj < young_old_boundary()) {
 152     // object is in to_space
 153     obj->oop_iterate_range(&_to_space_closure, start, end);
 154   } else {
 155     // object is in old generation
 156     obj->oop_iterate_range(&_old_gen_closure, start, end);
 157   }
 158 }
 159 
 160 
 161 void ParScanThreadState::trim_queues(int max_size) {
 162   ObjToScanQueue* queue = work_queue();
 163   do {
 164     while (queue->size() > (juint)max_size) {
 165       oop obj_to_scan;
 166       if (queue->pop_local(obj_to_scan)) {
 167         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 168           if (obj_to_scan->is_objArray() &&
 169               obj_to_scan->is_forwarded() &&
 170               obj_to_scan->forwardee() != obj_to_scan) {
 171             scan_partial_array_and_push_remainder(obj_to_scan);
 172           } else {
 173             // object is in to_space
 174             obj_to_scan->oop_iterate(&_to_space_closure);
 175           }
 176         } else {
 177           // object is in old generation
 178           obj_to_scan->oop_iterate(&_old_gen_closure);
 179         }
 180       }
 181     }
 182     // For the  case of compressed oops, we have a private, non-shared
 183     // overflow stack, so we eagerly drain it so as to more evenly
 184     // distribute load early. Note: this may be good to do in
 185     // general rather than delay for the final stealing phase.
 186     // If applicable, we'll transfer a set of objects over to our
 187     // work queue, allowing them to be stolen and draining our
 188     // private overflow stack.
 189   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 190 }
 191 
 192 bool ParScanThreadState::take_from_overflow_stack() {
 193   assert(ParGCUseLocalOverflow, "Else should not call");
 194   assert(young_gen()->overflow_list() == NULL, "Error");
 195   ObjToScanQueue* queue = work_queue();
 196   Stack<oop, mtGC>* const of_stack = overflow_stack();
 197   const size_t num_overflow_elems = of_stack->size();
 198   const size_t space_available = queue->max_elems() - queue->size();
 199   const size_t num_take_elems = MIN3(space_available / 4,
 200                                      ParGCDesiredObjsFromOverflowList,
 201                                      num_overflow_elems);
 202   // Transfer the most recent num_take_elems from the overflow
 203   // stack to our work queue.
 204   for (size_t i = 0; i != num_take_elems; i++) {
 205     oop cur = of_stack->pop();
 206     oop obj_to_push = cur->forwardee();
 207     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
 208     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 209     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 210     if (should_be_partially_scanned(obj_to_push, cur)) {
 211       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 212       obj_to_push = cur;
 213     }
 214     bool ok = queue->push(obj_to_push);
 215     assert(ok, "Should have succeeded");
 216   }
 217   assert(young_gen()->overflow_list() == NULL, "Error");
 218   return num_take_elems > 0;  // was something transferred?
 219 }
 220 
 221 void ParScanThreadState::push_on_overflow_stack(oop p) {
 222   assert(ParGCUseLocalOverflow, "Else should not call");
 223   overflow_stack()->push(p);
 224   assert(young_gen()->overflow_list() == NULL, "Error");
 225 }
 226 
 227 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz, oop const old, uint age) {
 228 
 229   // Otherwise, if the object is small enough, try to reallocate the
 230   // buffer.
 231   HeapWord* obj = NULL;
 232   if (!_to_space_full) {
 233     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
 234     Space*            const sp   = to_space();
 235     if (word_sz * 100 <
 236         ParallelGCBufferWastePct * plab->word_sz()) {
 237       // Is small enough; abandon this buffer and start a new one.
 238       plab->retire(false, false);
 239       size_t buf_size = plab->word_sz();
 240       HeapWord* buf_space = sp->par_allocate(buf_size);
 241       if (buf_space == NULL) {
 242         const size_t min_bytes =
 243           ParGCAllocBuffer::min_size() << LogHeapWordSize;
 244         size_t free_bytes = sp->free();
 245         while(buf_space == NULL && free_bytes >= min_bytes) {
 246           buf_size = free_bytes >> LogHeapWordSize;
 247           assert(buf_size == (size_t)align_object_size(buf_size),
 248                  "Invariant");
 249           buf_space  = sp->par_allocate(buf_size);
 250           free_bytes = sp->free();
 251         }
 252       }
 253       if (buf_space != NULL) {
 254         plab->set_word_size(buf_size);
 255         plab->set_buf(buf_space);
 256         record_survivor_plab(buf_space, buf_size);
 257         gc_tracer()->report_promotion_to_new_plab(old, age, false, buf_size);
 258         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 259         // Note that we cannot compare buf_size < word_sz below
 260         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
 261         assert(obj != NULL || plab->words_remaining() < word_sz,
 262                "Else should have been able to allocate");
 263         // It's conceivable that we may be able to use the
 264         // buffer we just grabbed for subsequent small requests
 265         // even if not for this one.
 266       } else {
 267         // We're used up.
 268         _to_space_full = true;
 269       }
 270 
 271     } else {
 272       // Too large; allocate the object individually.
 273       gc_tracer()->report_promotion_to_new_plab(old, age, false, old->size());
 274       obj = sp->par_allocate(word_sz);
 275     }
 276   }
 277   return obj;
 278 }
 279 
 280 
 281 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
 282                                                 size_t word_sz) {
 283   // Is the alloc in the current alloc buffer?
 284   if (to_space_alloc_buffer()->contains(obj)) {
 285     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
 286            "Should contain whole object.");
 287     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 288   } else {
 289     CollectedHeap::fill_with_object(obj, word_sz);
 290   }
 291 }
 292 
 293 void ParScanThreadState::print_promotion_failure_size() {
 294   if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
 295     gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 296                         _thread_num, _promotion_failed_info.first_size());
 297   }
 298 }
 299 
 300 class ParScanThreadStateSet: private ResourceArray {
 301 public:
 302   // Initializes states for the specified number of threads;
 303   ParScanThreadStateSet(int                     num_threads,
 304                         Space&                  to_space,
 305                         ParNewGeneration&       gen,
 306                         Generation&             old_gen,
 307                         ObjToScanQueueSet&      queue_set,
 308                         Stack<oop, mtGC>*       overflow_stacks_,
 309                         size_t                  desired_plab_sz,
 310                         ParNewTracer*           gc_tracer,
 311                         ParallelTaskTerminator& term);
 312 
 313   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 314 
 315   inline ParScanThreadState& thread_state(int i);
 316 
 317   void trace_promotion_failed(YoungGCTracer& gc_tracer);
 318   void reset(int active_workers, bool promotion_failed);
 319   void flush();
 320 
 321   #if TASKQUEUE_STATS
 322   static void
 323     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 324   void print_termination_stats(outputStream* const st = gclog_or_tty);
 325   static void
 326     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 327   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
 328   void reset_stats();
 329   #endif // TASKQUEUE_STATS
 330 
 331 private:
 332   ParallelTaskTerminator& _term;
 333   ParNewGeneration&       _gen;
 334   Generation&             _next_gen;
 335  public:
 336   bool is_valid(int id) const { return id < length(); }
 337   ParallelTaskTerminator* terminator() { return &_term; }
 338 };
 339 
 340 
 341 ParScanThreadStateSet::ParScanThreadStateSet(
 342   int num_threads, Space& to_space, ParNewGeneration& gen,
 343   Generation& old_gen, ObjToScanQueueSet& queue_set,
 344   Stack<oop, mtGC>* overflow_stacks,
 345   size_t desired_plab_sz,
 346   ParNewTracer* gc_tracer, ParallelTaskTerminator& term)
 347   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 348     _gen(gen), _next_gen(old_gen), _term(term)
 349 {
 350   assert(num_threads > 0, "sanity check!");
 351   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 352          "overflow_stack allocation mismatch");
 353   // Initialize states.
 354   for (int i = 0; i < num_threads; ++i) {
 355     new ((ParScanThreadState*)_data + i)
 356         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
 357                            overflow_stacks, desired_plab_sz, gc_tracer, term);
 358   }
 359 }
 360 
 361 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
 362 {
 363   assert(i >= 0 && i < length(), "sanity check!");
 364   return ((ParScanThreadState*)_data)[i];
 365 }
 366 
 367 void ParScanThreadStateSet::trace_promotion_failed(YoungGCTracer& gc_tracer) {
 368   for (int i = 0; i < length(); ++i) {
 369     if (thread_state(i).promotion_failed()) {
 370       gc_tracer.report_promotion_failed(thread_state(i).promotion_failed_info());
 371       thread_state(i).promotion_failed_info().reset();
 372     }
 373   }
 374 }
 375 
 376 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
 377 {
 378   _term.reset_for_reuse(active_threads);
 379   if (promotion_failed) {
 380     for (int i = 0; i < length(); ++i) {
 381       thread_state(i).print_promotion_failure_size();
 382     }
 383   }
 384 }
 385 
 386 #if TASKQUEUE_STATS
 387 void
 388 ParScanThreadState::reset_stats()
 389 {
 390   taskqueue_stats().reset();
 391   _term_attempts = 0;
 392   _overflow_refills = 0;
 393   _overflow_refill_objs = 0;
 394 }
 395 
 396 void ParScanThreadStateSet::reset_stats()
 397 {
 398   for (int i = 0; i < length(); ++i) {
 399     thread_state(i).reset_stats();
 400   }
 401 }
 402 
 403 void
 404 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
 405 {
 406   st->print_raw_cr("GC Termination Stats");
 407   st->print_raw_cr("     elapsed  --strong roots-- "
 408                    "-------termination-------");
 409   st->print_raw_cr("thr     ms        ms       %   "
 410                    "    ms       %   attempts");
 411   st->print_raw_cr("--- --------- --------- ------ "
 412                    "--------- ------ --------");
 413 }
 414 
 415 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
 416 {
 417   print_termination_stats_hdr(st);
 418 
 419   for (int i = 0; i < length(); ++i) {
 420     const ParScanThreadState & pss = thread_state(i);
 421     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 422     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 423     const double term_ms = pss.term_time() * 1000.0;
 424     st->print_cr("%3d %9.2f %9.2f %6.2f "
 425                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
 426                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 427                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 428   }
 429 }
 430 
 431 // Print stats related to work queue activity.
 432 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
 433 {
 434   st->print_raw_cr("GC Task Stats");
 435   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 436   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 437 }
 438 
 439 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
 440 {
 441   print_taskqueue_stats_hdr(st);
 442 
 443   TaskQueueStats totals;
 444   for (int i = 0; i < length(); ++i) {
 445     const ParScanThreadState & pss = thread_state(i);
 446     const TaskQueueStats & stats = pss.taskqueue_stats();
 447     st->print("%3d ", i); stats.print(st); st->cr();
 448     totals += stats;
 449 
 450     if (pss.overflow_refills() > 0) {
 451       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 452                    SIZE_FORMAT_W(10) " overflow objects",
 453                    pss.overflow_refills(), pss.overflow_refill_objs());
 454     }
 455   }
 456   st->print("tot "); totals.print(st); st->cr();
 457 
 458   DEBUG_ONLY(totals.verify());
 459 }
 460 #endif // TASKQUEUE_STATS
 461 
 462 void ParScanThreadStateSet::flush()
 463 {
 464   // Work in this loop should be kept as lightweight as
 465   // possible since this might otherwise become a bottleneck
 466   // to scaling. Should we add heavy-weight work into this
 467   // loop, consider parallelizing the loop into the worker threads.
 468   for (int i = 0; i < length(); ++i) {
 469     ParScanThreadState& par_scan_state = thread_state(i);
 470 
 471     // Flush stats related to To-space PLAB activity and
 472     // retire the last buffer.
 473     par_scan_state.to_space_alloc_buffer()->
 474       flush_stats_and_retire(_gen.plab_stats(),
 475                              true /* end_of_gc */,
 476                              false /* retain */);
 477 
 478     // Every thread has its own age table.  We need to merge
 479     // them all into one.
 480     ageTable *local_table = par_scan_state.age_table();
 481     _gen.age_table()->merge(local_table);
 482 
 483     // Inform old gen that we're done.
 484     _next_gen.par_promote_alloc_done(i);
 485     _next_gen.par_oop_since_save_marks_iterate_done(i);
 486   }
 487 
 488   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
 489     // We need to call this even when ResizeOldPLAB is disabled
 490     // so as to avoid breaking some asserts. While we may be able
 491     // to avoid this by reorganizing the code a bit, I am loathe
 492     // to do that unless we find cases where ergo leads to bad
 493     // performance.
 494     CFLS_LAB::compute_desired_plab_size();
 495   }
 496 }
 497 
 498 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 499                                ParScanThreadState* par_scan_state) :
 500   OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
 501 {
 502   assert(_g->level() == 0, "Optimized for youngest generation");
 503   _boundary = _g->reserved().end();
 504 }
 505 
 506 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 507 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 508 
 509 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 510 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 511 
 512 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 513 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 514 
 515 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 516 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 517 
 518 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 519                                              ParScanThreadState* par_scan_state)
 520   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 521 {}
 522 
 523 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 524 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 525 
 526 #ifdef WIN32
 527 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 528 #endif
 529 
 530 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 531     ParScanThreadState* par_scan_state_,
 532     ParScanWithoutBarrierClosure* to_space_closure_,
 533     ParScanWithBarrierClosure* old_gen_closure_,
 534     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 535     ParNewGeneration* par_gen_,
 536     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 537     ObjToScanQueueSet* task_queues_,
 538     ParallelTaskTerminator* terminator_) :
 539 
 540     _par_scan_state(par_scan_state_),
 541     _to_space_closure(to_space_closure_),
 542     _old_gen_closure(old_gen_closure_),
 543     _to_space_root_closure(to_space_root_closure_),
 544     _old_gen_root_closure(old_gen_root_closure_),
 545     _par_gen(par_gen_),
 546     _task_queues(task_queues_),
 547     _terminator(terminator_)
 548 {}
 549 
 550 void ParEvacuateFollowersClosure::do_void() {
 551   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 552 
 553   while (true) {
 554 
 555     // Scan to-space and old-gen objs until we run out of both.
 556     oop obj_to_scan;
 557     par_scan_state()->trim_queues(0);
 558 
 559     // We have no local work, attempt to steal from other threads.
 560 
 561     // attempt to steal work from promoted.
 562     if (task_queues()->steal(par_scan_state()->thread_num(),
 563                              par_scan_state()->hash_seed(),
 564                              obj_to_scan)) {
 565       bool res = work_q->push(obj_to_scan);
 566       assert(res, "Empty queue should have room for a push.");
 567 
 568       //   if successful, goto Start.
 569       continue;
 570 
 571       // try global overflow list.
 572     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 573       continue;
 574     }
 575 
 576     // Otherwise, offer termination.
 577     par_scan_state()->start_term_time();
 578     if (terminator()->offer_termination()) break;
 579     par_scan_state()->end_term_time();
 580   }
 581   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 582          "Broken overflow list?");
 583   // Finish the last termination pause.
 584   par_scan_state()->end_term_time();
 585 }
 586 
 587 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
 588                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
 589     AbstractGangTask("ParNewGeneration collection"),
 590     _gen(gen), _next_gen(next_gen),
 591     _young_old_boundary(young_old_boundary),
 592     _state_set(state_set)
 593   {}
 594 
 595 // Reset the terminator for the given number of
 596 // active threads.
 597 void ParNewGenTask::set_for_termination(int active_workers) {
 598   _state_set->reset(active_workers, _gen->promotion_failed());
 599   // Should the heap be passed in?  There's only 1 for now so
 600   // grab it instead.
 601   GenCollectedHeap* gch = GenCollectedHeap::heap();
 602   gch->set_n_termination(active_workers);
 603 }
 604 
 605 void ParNewGenTask::work(uint worker_id) {
 606   GenCollectedHeap* gch = GenCollectedHeap::heap();
 607   // Since this is being done in a separate thread, need new resource
 608   // and handle marks.
 609   ResourceMark rm;
 610   HandleMark hm;
 611   // We would need multiple old-gen queues otherwise.
 612   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
 613 
 614   Generation* old_gen = gch->next_gen(_gen);
 615 
 616   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 617   assert(_state_set->is_valid(worker_id), "Should not have been called");
 618 
 619   par_scan_state.set_young_old_boundary(_young_old_boundary);
 620 
 621   KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
 622                                       gch->rem_set()->klass_rem_set());
 623   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 624                                            &par_scan_state.to_space_root_closure(),
 625                                            false);
 626 
 627   par_scan_state.start_strong_roots();
 628   gch->gen_process_roots(_gen->level(),
 629                          true,  // Process younger gens, if any,
 630                                 // as strong roots.
 631                          false, // no scope; this is parallel code
 632                          SharedHeap::SO_ScavengeCodeCache,
 633                          GenCollectedHeap::StrongAndWeakRoots,
 634                          &par_scan_state.to_space_root_closure(),
 635                          &par_scan_state.older_gen_closure(),
 636                          &cld_scan_closure);
 637 
 638   par_scan_state.end_strong_roots();
 639 
 640   // "evacuate followers".
 641   par_scan_state.evacuate_followers_closure().do_void();
 642 }
 643 
 644 #ifdef _MSC_VER
 645 #pragma warning( push )
 646 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 647 #endif
 648 ParNewGeneration::
 649 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
 650   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
 651   _overflow_list(NULL),
 652   _is_alive_closure(this),
 653   _plab_stats(YoungPLABSize, PLABWeight)
 654 {
 655   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 656   NOT_PRODUCT(_num_par_pushes = 0;)
 657   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 658   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 659 
 660   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
 661     ObjToScanQueue *q = new ObjToScanQueue();
 662     guarantee(q != NULL, "work_queue Allocation failure.");
 663     _task_queues->register_queue(i1, q);
 664   }
 665 
 666   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
 667     _task_queues->queue(i2)->initialize();
 668 
 669   _overflow_stacks = NULL;
 670   if (ParGCUseLocalOverflow) {
 671 
 672     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
 673     // with ','
 674     typedef Stack<oop, mtGC> GCOopStack;
 675 
 676     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 677     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 678       new (_overflow_stacks + i) Stack<oop, mtGC>();
 679     }
 680   }
 681 
 682   if (UsePerfData) {
 683     EXCEPTION_MARK;
 684     ResourceMark rm;
 685 
 686     const char* cname =
 687          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 688     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 689                                      ParallelGCThreads, CHECK);
 690   }
 691 }
 692 #ifdef _MSC_VER
 693 #pragma warning( pop )
 694 #endif
 695 
 696 // ParNewGeneration::
 697 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 698   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 699 
 700 template <class T>
 701 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 702 #ifdef ASSERT
 703   {
 704     assert(!oopDesc::is_null(*p), "expected non-null ref");
 705     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 706     // We never expect to see a null reference being processed
 707     // as a weak reference.
 708     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 709   }
 710 #endif // ASSERT
 711 
 712   _par_cl->do_oop_nv(p);
 713 
 714   if (Universe::heap()->is_in_reserved(p)) {
 715     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 716     _rs->write_ref_field_gc_par(p, obj);
 717   }
 718 }
 719 
 720 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 721 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 722 
 723 // ParNewGeneration::
 724 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 725   DefNewGeneration::KeepAliveClosure(cl) {}
 726 
 727 template <class T>
 728 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 729 #ifdef ASSERT
 730   {
 731     assert(!oopDesc::is_null(*p), "expected non-null ref");
 732     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 733     // We never expect to see a null reference being processed
 734     // as a weak reference.
 735     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 736   }
 737 #endif // ASSERT
 738 
 739   _cl->do_oop_nv(p);
 740 
 741   if (Universe::heap()->is_in_reserved(p)) {
 742     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 743     _rs->write_ref_field_gc_par(p, obj);
 744   }
 745 }
 746 
 747 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 748 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 749 
 750 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 751   T heap_oop = oopDesc::load_heap_oop(p);
 752   if (!oopDesc::is_null(heap_oop)) {
 753     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 754     if ((HeapWord*)obj < _boundary) {
 755       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 756       oop new_obj = obj->is_forwarded()
 757                       ? obj->forwardee()
 758                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 759       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 760     }
 761     if (_gc_barrier) {
 762       // If p points to a younger generation, mark the card.
 763       if ((HeapWord*)obj < _gen_boundary) {
 764         _rs->write_ref_field_gc_par(p, obj);
 765       }
 766     }
 767   }
 768 }
 769 
 770 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 771 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 772 
 773 class ParNewRefProcTaskProxy: public AbstractGangTask {
 774   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 775 public:
 776   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
 777                          Generation& next_gen,
 778                          HeapWord* young_old_boundary,
 779                          ParScanThreadStateSet& state_set);
 780 
 781 private:
 782   virtual void work(uint worker_id);
 783   virtual void set_for_termination(int active_workers) {
 784     _state_set.terminator()->reset_for_reuse(active_workers);
 785   }
 786 private:
 787   ParNewGeneration&      _gen;
 788   ProcessTask&           _task;
 789   Generation&            _next_gen;
 790   HeapWord*              _young_old_boundary;
 791   ParScanThreadStateSet& _state_set;
 792 };
 793 
 794 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
 795     ProcessTask& task, ParNewGeneration& gen,
 796     Generation& next_gen,
 797     HeapWord* young_old_boundary,
 798     ParScanThreadStateSet& state_set)
 799   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 800     _gen(gen),
 801     _task(task),
 802     _next_gen(next_gen),
 803     _young_old_boundary(young_old_boundary),
 804     _state_set(state_set)
 805 {
 806 }
 807 
 808 void ParNewRefProcTaskProxy::work(uint worker_id)
 809 {
 810   ResourceMark rm;
 811   HandleMark hm;
 812   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 813   par_scan_state.set_young_old_boundary(_young_old_boundary);
 814   _task.work(worker_id, par_scan_state.is_alive_closure(),
 815              par_scan_state.keep_alive_closure(),
 816              par_scan_state.evacuate_followers_closure());
 817 }
 818 
 819 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 820   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 821   EnqueueTask& _task;
 822 
 823 public:
 824   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 825     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 826       _task(task)
 827   { }
 828 
 829   virtual void work(uint worker_id)
 830   {
 831     _task.work(worker_id);
 832   }
 833 };
 834 
 835 
 836 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
 837 {
 838   GenCollectedHeap* gch = GenCollectedHeap::heap();
 839   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 840          "not a generational heap");
 841   FlexibleWorkGang* workers = gch->workers();
 842   assert(workers != NULL, "Need parallel worker threads.");
 843   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
 844   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
 845                                  _generation.reserved().end(), _state_set);
 846   workers->run_task(&rp_task);
 847   _state_set.reset(0 /* bad value in debug if not reset */,
 848                    _generation.promotion_failed());
 849 }
 850 
 851 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
 852 {
 853   GenCollectedHeap* gch = GenCollectedHeap::heap();
 854   FlexibleWorkGang* workers = gch->workers();
 855   assert(workers != NULL, "Need parallel worker threads.");
 856   ParNewRefEnqueueTaskProxy enq_task(task);
 857   workers->run_task(&enq_task);
 858 }
 859 
 860 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
 861 {
 862   _state_set.flush();
 863   GenCollectedHeap* gch = GenCollectedHeap::heap();
 864   gch->set_par_threads(0);  // 0 ==> non-parallel.
 865   gch->save_marks();
 866 }
 867 
 868 ScanClosureWithParBarrier::
 869 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 870   ScanClosure(g, gc_barrier) {}
 871 
 872 EvacuateFollowersClosureGeneral::
 873 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
 874                                 OopsInGenClosure* cur,
 875                                 OopsInGenClosure* older) :
 876   _gch(gch), _level(level),
 877   _scan_cur_or_nonheap(cur), _scan_older(older)
 878 {}
 879 
 880 void EvacuateFollowersClosureGeneral::do_void() {
 881   do {
 882     // Beware: this call will lead to closure applications via virtual
 883     // calls.
 884     _gch->oop_since_save_marks_iterate(_level,
 885                                        _scan_cur_or_nonheap,
 886                                        _scan_older);
 887   } while (!_gch->no_allocs_since_save_marks(_level));
 888 }
 889 
 890 
 891 // A Generation that does parallel young-gen collection.
 892 
 893 bool ParNewGeneration::_avoid_promotion_undo = false;
 894 
 895 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set, ParNewTracer& gc_tracer) {
 896   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 897   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 898 
 899   remove_forwarding_pointers();
 900   if (PrintGCDetails) {
 901     gclog_or_tty->print(" (promotion failed)");
 902   }
 903   // All the spaces are in play for mark-sweep.
 904   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 905   from()->set_next_compaction_space(to());
 906   gch->set_incremental_collection_failed();
 907   // Inform the next generation that a promotion failure occurred.
 908   _next_gen->promotion_failure_occurred();
 909 
 910   // Trace promotion failure in the parallel GC threads
 911   thread_state_set.trace_promotion_failed(gc_tracer);
 912   // Single threaded code may have reported promotion failure to the global state
 913   if (_promotion_failed_info.has_failed()) {
 914     gc_tracer.report_promotion_failed(_promotion_failed_info);
 915   }
 916   // Reset the PromotionFailureALot counters.
 917   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 918 }
 919 
 920 void ParNewGeneration::collect(bool   full,
 921                                bool   clear_all_soft_refs,
 922                                size_t size,
 923                                bool   is_tlab) {
 924   assert(full || size > 0, "otherwise we don't want to collect");
 925 
 926   GenCollectedHeap* gch = GenCollectedHeap::heap();
 927 
 928   _gc_timer->register_gc_start();
 929 
 930   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 931     "not a CMS generational heap");
 932   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 933   FlexibleWorkGang* workers = gch->workers();
 934   assert(workers != NULL, "Need workgang for parallel work");
 935   int active_workers =
 936       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 937                                    workers->active_workers(),
 938                                    Threads::number_of_non_daemon_threads());
 939   workers->set_active_workers(active_workers);
 940   assert(gch->n_gens() == 2,
 941          "Par collection currently only works with single older gen.");
 942   _next_gen = gch->next_gen(this);
 943   // Do we have to avoid promotion_undo?
 944   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
 945     set_avoid_promotion_undo(true);
 946   }
 947 
 948   // If the next generation is too full to accommodate worst-case promotion
 949   // from this generation, pass on collection; let the next generation
 950   // do it.
 951   if (!collection_attempt_is_safe()) {
 952     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 953     return;
 954   }
 955   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 956 
 957   ParNewTracer gc_tracer;
 958   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 959   gch->trace_heap_before_gc(&gc_tracer);
 960 
 961   init_assuming_no_promotion_failure();
 962 
 963   if (UseAdaptiveSizePolicy) {
 964     set_survivor_overflow(false);
 965     size_policy->minor_collection_begin();
 966   }
 967 
 968   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 969   // Capture heap used before collection (for printing).
 970   size_t gch_prev_used = gch->used();
 971 
 972   SpecializationStats::clear();
 973 
 974   age_table()->clear();
 975   to()->clear(SpaceDecorator::Mangle);
 976 
 977   gch->save_marks();
 978   assert(workers != NULL, "Need parallel worker threads.");
 979   int n_workers = active_workers;
 980 
 981   // Set the correct parallelism (number of queues) in the reference processor
 982   ref_processor()->set_active_mt_degree(n_workers);
 983 
 984   // Always set the terminator for the active number of workers
 985   // because only those workers go through the termination protocol.
 986   ParallelTaskTerminator _term(n_workers, task_queues());
 987   ParScanThreadStateSet thread_state_set(workers->active_workers(),
 988                                          *to(), *this, *_next_gen, *task_queues(),
 989                                          _overflow_stacks, desired_plab_sz(), &gc_tracer, _term);
 990 
 991   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
 992   gch->set_par_threads(n_workers);
 993   gch->rem_set()->prepare_for_younger_refs_iterate(true);
 994   // It turns out that even when we're using 1 thread, doing the work in a
 995   // separate thread causes wide variance in run times.  We can't help this
 996   // in the multi-threaded case, but we special-case n=1 here to get
 997   // repeatable measurements of the 1-thread overhead of the parallel code.
 998   if (n_workers > 1) {
 999     GenCollectedHeap::StrongRootsScope srs(gch);
1000     workers->run_task(&tsk);
1001   } else {
1002     GenCollectedHeap::StrongRootsScope srs(gch);
1003     tsk.work(0);
1004   }
1005   thread_state_set.reset(0 /* Bad value in debug if not reset */,
1006                          promotion_failed());
1007 
1008   // Process (weak) reference objects found during scavenge.
1009   ReferenceProcessor* rp = ref_processor();
1010   IsAliveClosure is_alive(this);
1011   ScanWeakRefClosure scan_weak_ref(this);
1012   KeepAliveClosure keep_alive(&scan_weak_ref);
1013   ScanClosure               scan_without_gc_barrier(this, false);
1014   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
1015   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
1016   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
1017     &scan_without_gc_barrier, &scan_with_gc_barrier);
1018   rp->setup_policy(clear_all_soft_refs);
1019   // Can  the mt_degree be set later (at run_task() time would be best)?
1020   rp->set_active_mt_degree(active_workers);
1021   ReferenceProcessorStats stats;
1022   if (rp->processing_is_mt()) {
1023     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1024     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1025                                               &evacuate_followers, &task_executor,
1026                                               _gc_timer, gc_tracer.gc_id());
1027   } else {
1028     thread_state_set.flush();
1029     gch->set_par_threads(0);  // 0 ==> non-parallel.
1030     gch->save_marks();
1031     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1032                                               &evacuate_followers, NULL,
1033                                               _gc_timer, gc_tracer.gc_id());
1034   }
1035   gc_tracer.report_gc_reference_stats(stats);
1036   if (!promotion_failed()) {
1037     // Swap the survivor spaces.
1038     eden()->clear(SpaceDecorator::Mangle);
1039     from()->clear(SpaceDecorator::Mangle);
1040     if (ZapUnusedHeapArea) {
1041       // This is now done here because of the piece-meal mangling which
1042       // can check for valid mangling at intermediate points in the
1043       // collection(s).  When a minor collection fails to collect
1044       // sufficient space resizing of the young generation can occur
1045       // an redistribute the spaces in the young generation.  Mangle
1046       // here so that unzapped regions don't get distributed to
1047       // other spaces.
1048       to()->mangle_unused_area();
1049     }
1050     swap_spaces();
1051 
1052     // A successful scavenge should restart the GC time limit count which is
1053     // for full GC's.
1054     size_policy->reset_gc_overhead_limit_count();
1055 
1056     assert(to()->is_empty(), "to space should be empty now");
1057 
1058     adjust_desired_tenuring_threshold();
1059   } else {
1060     handle_promotion_failed(gch, thread_state_set, gc_tracer);
1061   }
1062   // set new iteration safe limit for the survivor spaces
1063   from()->set_concurrent_iteration_safe_limit(from()->top());
1064   to()->set_concurrent_iteration_safe_limit(to()->top());
1065 
1066   if (ResizePLAB) {
1067     plab_stats()->adjust_desired_plab_sz(n_workers);
1068   }
1069 
1070   if (PrintGC && !PrintGCDetails) {
1071     gch->print_heap_change(gch_prev_used);
1072   }
1073 
1074   if (PrintGCDetails && ParallelGCVerbose) {
1075     TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1076     TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1077   }
1078 
1079   if (UseAdaptiveSizePolicy) {
1080     size_policy->minor_collection_end(gch->gc_cause());
1081     size_policy->avg_survived()->sample(from()->used());
1082   }
1083 
1084   // We need to use a monotonically non-decreasing time in ms
1085   // or we will see time-warp warnings and os::javaTimeMillis()
1086   // does not guarantee monotonicity.
1087   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1088   update_time_of_last_gc(now);
1089 
1090   SpecializationStats::print();
1091 
1092   rp->set_enqueuing_is_done(true);
1093   if (rp->processing_is_mt()) {
1094     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1095     rp->enqueue_discovered_references(&task_executor);
1096   } else {
1097     rp->enqueue_discovered_references(NULL);
1098   }
1099   rp->verify_no_references_recorded();
1100 
1101   gch->trace_heap_after_gc(&gc_tracer);
1102   gc_tracer.report_tenuring_threshold(tenuring_threshold());
1103 
1104   _gc_timer->register_gc_end();
1105 
1106   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1107 }
1108 
1109 static int sum;
1110 void ParNewGeneration::waste_some_time() {
1111   for (int i = 0; i < 100; i++) {
1112     sum += i;
1113   }
1114 }
1115 
1116 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1117 
1118 // Because of concurrency, there are times where an object for which
1119 // "is_forwarded()" is true contains an "interim" forwarding pointer
1120 // value.  Such a value will soon be overwritten with a real value.
1121 // This method requires "obj" to have a forwarding pointer, and waits, if
1122 // necessary for a real one to be inserted, and returns it.
1123 
1124 oop ParNewGeneration::real_forwardee(oop obj) {
1125   oop forward_ptr = obj->forwardee();
1126   if (forward_ptr != ClaimedForwardPtr) {
1127     return forward_ptr;
1128   } else {
1129     return real_forwardee_slow(obj);
1130   }
1131 }
1132 
1133 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1134   // Spin-read if it is claimed but not yet written by another thread.
1135   oop forward_ptr = obj->forwardee();
1136   while (forward_ptr == ClaimedForwardPtr) {
1137     waste_some_time();
1138     assert(obj->is_forwarded(), "precondition");
1139     forward_ptr = obj->forwardee();
1140   }
1141   return forward_ptr;
1142 }
1143 
1144 #ifdef ASSERT
1145 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
1146   return
1147     (_avoid_promotion_undo && p == ClaimedForwardPtr)
1148     || Universe::heap()->is_in_reserved(p);
1149 }
1150 #endif
1151 
1152 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1153   if (m->must_be_preserved_for_promotion_failure(obj)) {
1154     // We should really have separate per-worker stacks, rather
1155     // than use locking of a common pair of stacks.
1156     MutexLocker ml(ParGCRareEvent_lock);
1157     preserve_mark(obj, m);
1158   }
1159 }
1160 
1161 // Multiple GC threads may try to promote an object.  If the object
1162 // is successfully promoted, a forwarding pointer will be installed in
1163 // the object in the young generation.  This method claims the right
1164 // to install the forwarding pointer before it copies the object,
1165 // thus avoiding the need to undo the copy as in
1166 // copy_to_survivor_space_avoiding_with_undo.
1167 
1168 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
1169         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1170   // In the sequential version, this assert also says that the object is
1171   // not forwarded.  That might not be the case here.  It is the case that
1172   // the caller observed it to be not forwarded at some time in the past.
1173   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1174 
1175   // The sequential code read "old->age()" below.  That doesn't work here,
1176   // since the age is in the mark word, and that might be overwritten with
1177   // a forwarding pointer by a parallel thread.  So we must save the mark
1178   // word in a local and then analyze it.
1179   oopDesc dummyOld;
1180   dummyOld.set_mark(m);
1181   assert(!dummyOld.is_forwarded(),
1182          "should not be called with forwarding pointer mark word.");
1183 
1184   oop new_obj = NULL;
1185   oop forward_ptr;
1186 
1187   // Try allocating obj in to-space (unless too old)
1188   if (dummyOld.age() < tenuring_threshold()) {
1189     new_obj = (oop)par_scan_state->alloc_in_to_space(sz, old, dummyOld.age());
1190     if (new_obj == NULL) {
1191       set_survivor_overflow(true);
1192     }
1193   }
1194 
1195   if (new_obj == NULL) {
1196     // Either to-space is full or we decided to promote
1197     // try allocating obj tenured
1198 
1199     // Attempt to install a null forwarding pointer (atomically),
1200     // to claim the right to install the real forwarding pointer.
1201     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1202     if (forward_ptr != NULL) {
1203       // someone else beat us to it.
1204         return real_forwardee(old);
1205     }
1206 
1207     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1208                                        old, m, sz);
1209 
1210     if (new_obj == NULL) {
1211       // promotion failed, forward to self
1212       _promotion_failed = true;
1213       new_obj = old;
1214 
1215       preserve_mark_if_necessary(old, m);
1216       par_scan_state->register_promotion_failure(sz);
1217     }
1218 
1219     old->forward_to(new_obj);
1220     forward_ptr = NULL;
1221   } else {
1222     // Is in to-space; do copying ourselves.
1223     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1224     forward_ptr = old->forward_to_atomic(new_obj);
1225     // Restore the mark word copied above.
1226     new_obj->set_mark(m);
1227     // Increment age if obj still in new generation
1228     new_obj->incr_age();
1229     par_scan_state->age_table()->add(new_obj, sz);
1230   }
1231   assert(new_obj != NULL, "just checking");
1232 
1233 #ifndef PRODUCT
1234   // This code must come after the CAS test, or it will print incorrect
1235   // information.
1236   if (TraceScavenge) {
1237     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1238        is_in_reserved(new_obj) ? "copying" : "tenuring",
1239        new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
1240   }
1241 #endif
1242 
1243   if (forward_ptr == NULL) {
1244     oop obj_to_push = new_obj;
1245     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1246       // Length field used as index of next element to be scanned.
1247       // Real length can be obtained from real_forwardee()
1248       arrayOop(old)->set_length(0);
1249       obj_to_push = old;
1250       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1251              "push forwarded object");
1252     }
1253     // Push it on one of the queues of to-be-scanned objects.
1254     bool simulate_overflow = false;
1255     NOT_PRODUCT(
1256       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1257         // simulate a stack overflow
1258         simulate_overflow = true;
1259       }
1260     )
1261     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1262       // Add stats for overflow pushes.
1263       if (Verbose && PrintGCDetails) {
1264         gclog_or_tty->print("queue overflow!\n");
1265       }
1266       push_on_overflow_list(old, par_scan_state);
1267       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1268     }
1269 
1270     return new_obj;
1271   }
1272 
1273   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1274   // allocate it?
1275   if (is_in_reserved(new_obj)) {
1276     // Must be in to_space.
1277     assert(to()->is_in_reserved(new_obj), "Checking");
1278     if (forward_ptr == ClaimedForwardPtr) {
1279       // Wait to get the real forwarding pointer value.
1280       forward_ptr = real_forwardee(old);
1281     }
1282     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1283   }
1284 
1285   return forward_ptr;
1286 }
1287 
1288 
1289 // Multiple GC threads may try to promote the same object.  If two
1290 // or more GC threads copy the object, only one wins the race to install
1291 // the forwarding pointer.  The other threads have to undo their copy.
1292 
1293 oop ParNewGeneration::copy_to_survivor_space_with_undo(
1294         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1295 
1296   // In the sequential version, this assert also says that the object is
1297   // not forwarded.  That might not be the case here.  It is the case that
1298   // the caller observed it to be not forwarded at some time in the past.
1299   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1300 
1301   // The sequential code read "old->age()" below.  That doesn't work here,
1302   // since the age is in the mark word, and that might be overwritten with
1303   // a forwarding pointer by a parallel thread.  So we must save the mark
1304   // word here, install it in a local oopDesc, and then analyze it.
1305   oopDesc dummyOld;
1306   dummyOld.set_mark(m);
1307   assert(!dummyOld.is_forwarded(),
1308          "should not be called with forwarding pointer mark word.");
1309 
1310   bool failed_to_promote = false;
1311   oop new_obj = NULL;
1312   oop forward_ptr;
1313 
1314   // Try allocating obj in to-space (unless too old)
1315   if (dummyOld.age() < tenuring_threshold()) {
1316     new_obj = (oop)par_scan_state->alloc_in_to_space(sz, old, dummyOld.age());
1317     if (new_obj == NULL) {
1318       set_survivor_overflow(true);
1319     }
1320   }
1321 
1322   if (new_obj == NULL) {
1323     // Either to-space is full or we decided to promote
1324     // try allocating obj tenured
1325     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1326                                        old, m, sz);
1327 
1328     if (new_obj == NULL) {
1329       // promotion failed, forward to self
1330       forward_ptr = old->forward_to_atomic(old);
1331       new_obj = old;
1332 
1333       if (forward_ptr != NULL) {
1334         return forward_ptr;   // someone else succeeded
1335       }
1336 
1337       _promotion_failed = true;
1338       failed_to_promote = true;
1339 
1340       preserve_mark_if_necessary(old, m);
1341       par_scan_state->register_promotion_failure(sz);
1342     }
1343   } else {
1344     // Is in to-space; do copying ourselves.
1345     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1346     // Restore the mark word copied above.
1347     new_obj->set_mark(m);
1348     // Increment age if new_obj still in new generation
1349     new_obj->incr_age();
1350     par_scan_state->age_table()->add(new_obj, sz);
1351   }
1352   assert(new_obj != NULL, "just checking");
1353 
1354 #ifndef PRODUCT
1355   // This code must come after the CAS test, or it will print incorrect
1356   // information.
1357   if (TraceScavenge) {
1358     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1359        is_in_reserved(new_obj) ? "copying" : "tenuring",
1360        new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
1361   }
1362 #endif
1363 
1364   // Now attempt to install the forwarding pointer (atomically).
1365   // We have to copy the mark word before overwriting with forwarding
1366   // ptr, so we can restore it below in the copy.
1367   if (!failed_to_promote) {
1368     forward_ptr = old->forward_to_atomic(new_obj);
1369   }
1370 
1371   if (forward_ptr == NULL) {
1372     oop obj_to_push = new_obj;
1373     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1374       // Length field used as index of next element to be scanned.
1375       // Real length can be obtained from real_forwardee()
1376       arrayOop(old)->set_length(0);
1377       obj_to_push = old;
1378       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1379              "push forwarded object");
1380     }
1381     // Push it on one of the queues of to-be-scanned objects.
1382     bool simulate_overflow = false;
1383     NOT_PRODUCT(
1384       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1385         // simulate a stack overflow
1386         simulate_overflow = true;
1387       }
1388     )
1389     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1390       // Add stats for overflow pushes.
1391       push_on_overflow_list(old, par_scan_state);
1392       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1393     }
1394 
1395     return new_obj;
1396   }
1397 
1398   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1399   // allocate it?
1400   if (is_in_reserved(new_obj)) {
1401     // Must be in to_space.
1402     assert(to()->is_in_reserved(new_obj), "Checking");
1403     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1404   } else {
1405     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
1406     _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
1407                                       (HeapWord*)new_obj, sz);
1408   }
1409 
1410   return forward_ptr;
1411 }
1412 
1413 #ifndef PRODUCT
1414 // It's OK to call this multi-threaded;  the worst thing
1415 // that can happen is that we'll get a bunch of closely
1416 // spaced simulated overflows, but that's OK, in fact
1417 // probably good as it would exercise the overflow code
1418 // under contention.
1419 bool ParNewGeneration::should_simulate_overflow() {
1420   if (_overflow_counter-- <= 0) { // just being defensive
1421     _overflow_counter = ParGCWorkQueueOverflowInterval;
1422     return true;
1423   } else {
1424     return false;
1425   }
1426 }
1427 #endif
1428 
1429 // In case we are using compressed oops, we need to be careful.
1430 // If the object being pushed is an object array, then its length
1431 // field keeps track of the "grey boundary" at which the next
1432 // incremental scan will be done (see ParGCArrayScanChunk).
1433 // When using compressed oops, this length field is kept in the
1434 // lower 32 bits of the erstwhile klass word and cannot be used
1435 // for the overflow chaining pointer (OCP below). As such the OCP
1436 // would itself need to be compressed into the top 32-bits in this
1437 // case. Unfortunately, see below, in the event that we have a
1438 // promotion failure, the node to be pushed on the list can be
1439 // outside of the Java heap, so the heap-based pointer compression
1440 // would not work (we would have potential aliasing between C-heap
1441 // and Java-heap pointers). For this reason, when using compressed
1442 // oops, we simply use a worker-thread-local, non-shared overflow
1443 // list in the form of a growable array, with a slightly different
1444 // overflow stack draining strategy. If/when we start using fat
1445 // stacks here, we can go back to using (fat) pointer chains
1446 // (although some performance comparisons would be useful since
1447 // single global lists have their own performance disadvantages
1448 // as we were made painfully aware not long ago, see 6786503).
1449 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1450 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1451   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1452   if (ParGCUseLocalOverflow) {
1453     // In the case of compressed oops, we use a private, not-shared
1454     // overflow stack.
1455     par_scan_state->push_on_overflow_stack(from_space_obj);
1456   } else {
1457     assert(!UseCompressedOops, "Error");
1458     // if the object has been forwarded to itself, then we cannot
1459     // use the klass pointer for the linked list.  Instead we have
1460     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1461     // XXX This is horribly inefficient when a promotion failure occurs
1462     // and should be fixed. XXX FIX ME !!!
1463 #ifndef PRODUCT
1464     Atomic::inc_ptr(&_num_par_pushes);
1465     assert(_num_par_pushes > 0, "Tautology");
1466 #endif
1467     if (from_space_obj->forwardee() == from_space_obj) {
1468       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1469       listhead->forward_to(from_space_obj);
1470       from_space_obj = listhead;
1471     }
1472     oop observed_overflow_list = _overflow_list;
1473     oop cur_overflow_list;
1474     do {
1475       cur_overflow_list = observed_overflow_list;
1476       if (cur_overflow_list != BUSY) {
1477         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1478       } else {
1479         from_space_obj->set_klass_to_list_ptr(NULL);
1480       }
1481       observed_overflow_list =
1482         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1483     } while (cur_overflow_list != observed_overflow_list);
1484   }
1485 }
1486 
1487 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1488   bool res;
1489 
1490   if (ParGCUseLocalOverflow) {
1491     res = par_scan_state->take_from_overflow_stack();
1492   } else {
1493     assert(!UseCompressedOops, "Error");
1494     res = take_from_overflow_list_work(par_scan_state);
1495   }
1496   return res;
1497 }
1498 
1499 
1500 // *NOTE*: The overflow list manipulation code here and
1501 // in CMSCollector:: are very similar in shape,
1502 // except that in the CMS case we thread the objects
1503 // directly into the list via their mark word, and do
1504 // not need to deal with special cases below related
1505 // to chunking of object arrays and promotion failure
1506 // handling.
1507 // CR 6797058 has been filed to attempt consolidation of
1508 // the common code.
1509 // Because of the common code, if you make any changes in
1510 // the code below, please check the CMS version to see if
1511 // similar changes might be needed.
1512 // See CMSCollector::par_take_from_overflow_list() for
1513 // more extensive documentation comments.
1514 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1515   ObjToScanQueue* work_q = par_scan_state->work_queue();
1516   // How many to take?
1517   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1518                                  (size_t)ParGCDesiredObjsFromOverflowList);
1519 
1520   assert(!UseCompressedOops, "Error");
1521   assert(par_scan_state->overflow_stack() == NULL, "Error");
1522   if (_overflow_list == NULL) return false;
1523 
1524   // Otherwise, there was something there; try claiming the list.
1525   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1526   // Trim off a prefix of at most objsFromOverflow items
1527   Thread* tid = Thread::current();
1528   size_t spin_count = (size_t)ParallelGCThreads;
1529   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1530   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1531     // someone grabbed it before we did ...
1532     // ... we spin for a short while...
1533     os::sleep(tid, sleep_time_millis, false);
1534     if (_overflow_list == NULL) {
1535       // nothing left to take
1536       return false;
1537     } else if (_overflow_list != BUSY) {
1538      // try and grab the prefix
1539      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1540     }
1541   }
1542   if (prefix == NULL || prefix == BUSY) {
1543      // Nothing to take or waited long enough
1544      if (prefix == NULL) {
1545        // Write back the NULL in case we overwrote it with BUSY above
1546        // and it is still the same value.
1547        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1548      }
1549      return false;
1550   }
1551   assert(prefix != NULL && prefix != BUSY, "Error");
1552   size_t i = 1;
1553   oop cur = prefix;
1554   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1555     i++; cur = cur->list_ptr_from_klass();
1556   }
1557 
1558   // Reattach remaining (suffix) to overflow list
1559   if (cur->klass_or_null() == NULL) {
1560     // Write back the NULL in lieu of the BUSY we wrote
1561     // above and it is still the same value.
1562     if (_overflow_list == BUSY) {
1563       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1564     }
1565   } else {
1566     assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1567     oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1568     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1569     // It's possible that the list is still in the empty(busy) state
1570     // we left it in a short while ago; in that case we may be
1571     // able to place back the suffix.
1572     oop observed_overflow_list = _overflow_list;
1573     oop cur_overflow_list = observed_overflow_list;
1574     bool attached = false;
1575     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1576       observed_overflow_list =
1577         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1578       if (cur_overflow_list == observed_overflow_list) {
1579         attached = true;
1580         break;
1581       } else cur_overflow_list = observed_overflow_list;
1582     }
1583     if (!attached) {
1584       // Too bad, someone else got in in between; we'll need to do a splice.
1585       // Find the last item of suffix list
1586       oop last = suffix;
1587       while (last->klass_or_null() != NULL) {
1588         last = last->list_ptr_from_klass();
1589       }
1590       // Atomically prepend suffix to current overflow list
1591       observed_overflow_list = _overflow_list;
1592       do {
1593         cur_overflow_list = observed_overflow_list;
1594         if (cur_overflow_list != BUSY) {
1595           // Do the splice ...
1596           last->set_klass_to_list_ptr(cur_overflow_list);
1597         } else { // cur_overflow_list == BUSY
1598           last->set_klass_to_list_ptr(NULL);
1599         }
1600         observed_overflow_list =
1601           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1602       } while (cur_overflow_list != observed_overflow_list);
1603     }
1604   }
1605 
1606   // Push objects on prefix list onto this thread's work queue
1607   assert(prefix != NULL && prefix != BUSY, "program logic");
1608   cur = prefix;
1609   ssize_t n = 0;
1610   while (cur != NULL) {
1611     oop obj_to_push = cur->forwardee();
1612     oop next        = cur->list_ptr_from_klass();
1613     cur->set_klass(obj_to_push->klass());
1614     // This may be an array object that is self-forwarded. In that case, the list pointer
1615     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1616     if (!is_in_reserved(cur)) {
1617       // This can become a scaling bottleneck when there is work queue overflow coincident
1618       // with promotion failure.
1619       oopDesc* f = cur;
1620       FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
1621     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1622       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1623       obj_to_push = cur;
1624     }
1625     bool ok = work_q->push(obj_to_push);
1626     assert(ok, "Should have succeeded");
1627     cur = next;
1628     n++;
1629   }
1630   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1631 #ifndef PRODUCT
1632   assert(_num_par_pushes >= n, "Too many pops?");
1633   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1634 #endif
1635   return true;
1636 }
1637 #undef BUSY
1638 
1639 void ParNewGeneration::ref_processor_init() {
1640   if (_ref_processor == NULL) {
1641     // Allocate and initialize a reference processor
1642     _ref_processor =
1643       new ReferenceProcessor(_reserved,                  // span
1644                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1645                              (int) ParallelGCThreads,    // mt processing degree
1646                              refs_discovery_is_mt(),     // mt discovery
1647                              (int) ParallelGCThreads,    // mt discovery degree
1648                              refs_discovery_is_atomic(), // atomic_discovery
1649                              NULL);                      // is_alive_non_header
1650   }
1651 }
1652 
1653 const char* ParNewGeneration::name() const {
1654   return "par new generation";
1655 }