1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  35 #include "gc_implementation/g1/g1RemSet.hpp"
  36 #include "gc_implementation/g1/heapRegion.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  39 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  40 #include "gc_implementation/shared/vmGCOperations.hpp"
  41 #include "gc_implementation/shared/gcTimer.hpp"
  42 #include "gc_implementation/shared/gcTrace.hpp"
  43 #include "gc_implementation/shared/gcTraceTime.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/genOopClosures.inline.hpp"
  46 #include "memory/referencePolicy.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/prefetch.inline.hpp"
  52 #include "services/memTracker.hpp"
  53 
  54 // Concurrent marking bit map wrapper
  55 
  56 CMBitMapRO::CMBitMapRO(int shifter) :
  57   _bm(),
  58   _shifter(shifter) {
  59   _bmStartWord = 0;
  60   _bmWordSize = 0;
  61 }
  62 
  63 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  64                                                const HeapWord* limit) const {
  65   // First we must round addr *up* to a possible object boundary.
  66   addr = (HeapWord*)align_size_up((intptr_t)addr,
  67                                   HeapWordSize << _shifter);
  68   size_t addrOffset = heapWordToOffset(addr);
  69   if (limit == NULL) {
  70     limit = _bmStartWord + _bmWordSize;
  71   }
  72   size_t limitOffset = heapWordToOffset(limit);
  73   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  74   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  75   assert(nextAddr >= addr, "get_next_one postcondition");
  76   assert(nextAddr == limit || isMarked(nextAddr),
  77          "get_next_one postcondition");
  78   return nextAddr;
  79 }
  80 
  81 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  82                                                  const HeapWord* limit) const {
  83   size_t addrOffset = heapWordToOffset(addr);
  84   if (limit == NULL) {
  85     limit = _bmStartWord + _bmWordSize;
  86   }
  87   size_t limitOffset = heapWordToOffset(limit);
  88   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  89   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  90   assert(nextAddr >= addr, "get_next_one postcondition");
  91   assert(nextAddr == limit || !isMarked(nextAddr),
  92          "get_next_one postcondition");
  93   return nextAddr;
  94 }
  95 
  96 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  97   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  98   return (int) (diff >> _shifter);
  99 }
 100 
 101 #ifndef PRODUCT
 102 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 103   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 104   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 105          "size inconsistency");
 106   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 107          _bmWordSize  == heap_rs.word_size();
 108 }
 109 #endif
 110 
 111 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 112   _bm.print_on_error(st, prefix);
 113 }
 114 
 115 size_t CMBitMap::compute_size(size_t heap_size) {
 116   return heap_size / mark_distance();
 117 }
 118 
 119 size_t CMBitMap::mark_distance() {
 120   return MinObjAlignmentInBytes * BitsPerByte;
 121 }
 122 
 123 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 124   _bmStartWord = heap.start();
 125   _bmWordSize = heap.word_size();
 126 
 127   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 128   _bm.set_size(_bmWordSize >> _shifter);
 129 
 130   storage->set_mapping_changed_listener(&_listener);
 131 }
 132 
 133 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions) {
 134   // We need to clear the bitmap on commit, removing any existing information.
 135   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 136   _bm->clearRange(mr);
 137 }
 138 
 139 // Closure used for clearing the given mark bitmap.
 140 class ClearBitmapHRClosure : public HeapRegionClosure {
 141  private:
 142   ConcurrentMark* _cm;
 143   CMBitMap* _bitmap;
 144   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 145  public:
 146   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 147     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 148   }
 149 
 150   virtual bool doHeapRegion(HeapRegion* r) {
 151     size_t const chunk_size_in_words = M / HeapWordSize;
 152 
 153     HeapWord* cur = r->bottom();
 154     HeapWord* const end = r->end();
 155 
 156     while (cur < end) {
 157       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 158       _bitmap->clearRange(mr);
 159 
 160       cur += chunk_size_in_words;
 161 
 162       // Abort iteration if after yielding the marking has been aborted.
 163       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 164         return true;
 165       }
 166       // Repeat the asserts from before the start of the closure. We will do them
 167       // as asserts here to minimize their overhead on the product. However, we
 168       // will have them as guarantees at the beginning / end of the bitmap
 169       // clearing to get some checking in the product.
 170       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 171       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 172     }
 173 
 174     return false;
 175   }
 176 };
 177 
 178 void CMBitMap::clearAll() {
 179   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 180   G1CollectedHeap::heap()->heap_region_iterate(&cl);
 181   guarantee(cl.complete(), "Must have completed iteration.");
 182   return;
 183 }
 184 
 185 void CMBitMap::markRange(MemRegion mr) {
 186   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 187   assert(!mr.is_empty(), "unexpected empty region");
 188   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 189           ((HeapWord *) mr.end())),
 190          "markRange memory region end is not card aligned");
 191   // convert address range into offset range
 192   _bm.at_put_range(heapWordToOffset(mr.start()),
 193                    heapWordToOffset(mr.end()), true);
 194 }
 195 
 196 void CMBitMap::clearRange(MemRegion mr) {
 197   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 198   assert(!mr.is_empty(), "unexpected empty region");
 199   // convert address range into offset range
 200   _bm.at_put_range(heapWordToOffset(mr.start()),
 201                    heapWordToOffset(mr.end()), false);
 202 }
 203 
 204 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 205                                             HeapWord* end_addr) {
 206   HeapWord* start = getNextMarkedWordAddress(addr);
 207   start = MIN2(start, end_addr);
 208   HeapWord* end   = getNextUnmarkedWordAddress(start);
 209   end = MIN2(end, end_addr);
 210   assert(start <= end, "Consistency check");
 211   MemRegion mr(start, end);
 212   if (!mr.is_empty()) {
 213     clearRange(mr);
 214   }
 215   return mr;
 216 }
 217 
 218 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 219   _base(NULL), _cm(cm)
 220 #ifdef ASSERT
 221   , _drain_in_progress(false)
 222   , _drain_in_progress_yields(false)
 223 #endif
 224 {}
 225 
 226 bool CMMarkStack::allocate(size_t capacity) {
 227   // allocate a stack of the requisite depth
 228   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 229   if (!rs.is_reserved()) {
 230     warning("ConcurrentMark MarkStack allocation failure");
 231     return false;
 232   }
 233   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 234   if (!_virtual_space.initialize(rs, rs.size())) {
 235     warning("ConcurrentMark MarkStack backing store failure");
 236     // Release the virtual memory reserved for the marking stack
 237     rs.release();
 238     return false;
 239   }
 240   assert(_virtual_space.committed_size() == rs.size(),
 241          "Didn't reserve backing store for all of ConcurrentMark stack?");
 242   _base = (oop*) _virtual_space.low();
 243   setEmpty();
 244   _capacity = (jint) capacity;
 245   _saved_index = -1;
 246   _should_expand = false;
 247   NOT_PRODUCT(_max_depth = 0);
 248   return true;
 249 }
 250 
 251 void CMMarkStack::expand() {
 252   // Called, during remark, if we've overflown the marking stack during marking.
 253   assert(isEmpty(), "stack should been emptied while handling overflow");
 254   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 255   // Clear expansion flag
 256   _should_expand = false;
 257   if (_capacity == (jint) MarkStackSizeMax) {
 258     if (PrintGCDetails && Verbose) {
 259       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 260     }
 261     return;
 262   }
 263   // Double capacity if possible
 264   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 265   // Do not give up existing stack until we have managed to
 266   // get the double capacity that we desired.
 267   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 268                                                            sizeof(oop)));
 269   if (rs.is_reserved()) {
 270     // Release the backing store associated with old stack
 271     _virtual_space.release();
 272     // Reinitialize virtual space for new stack
 273     if (!_virtual_space.initialize(rs, rs.size())) {
 274       fatal("Not enough swap for expanded marking stack capacity");
 275     }
 276     _base = (oop*)(_virtual_space.low());
 277     _index = 0;
 278     _capacity = new_capacity;
 279   } else {
 280     if (PrintGCDetails && Verbose) {
 281       // Failed to double capacity, continue;
 282       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 283                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 284                           _capacity / K, new_capacity / K);
 285     }
 286   }
 287 }
 288 
 289 void CMMarkStack::set_should_expand() {
 290   // If we're resetting the marking state because of an
 291   // marking stack overflow, record that we should, if
 292   // possible, expand the stack.
 293   _should_expand = _cm->has_overflown();
 294 }
 295 
 296 CMMarkStack::~CMMarkStack() {
 297   if (_base != NULL) {
 298     _base = NULL;
 299     _virtual_space.release();
 300   }
 301 }
 302 
 303 void CMMarkStack::par_push(oop ptr) {
 304   while (true) {
 305     if (isFull()) {
 306       _overflow = true;
 307       return;
 308     }
 309     // Otherwise...
 310     jint index = _index;
 311     jint next_index = index+1;
 312     jint res = Atomic::cmpxchg(next_index, &_index, index);
 313     if (res == index) {
 314       _base[index] = ptr;
 315       // Note that we don't maintain this atomically.  We could, but it
 316       // doesn't seem necessary.
 317       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 318       return;
 319     }
 320     // Otherwise, we need to try again.
 321   }
 322 }
 323 
 324 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 325   while (true) {
 326     if (isFull()) {
 327       _overflow = true;
 328       return;
 329     }
 330     // Otherwise...
 331     jint index = _index;
 332     jint next_index = index + n;
 333     if (next_index > _capacity) {
 334       _overflow = true;
 335       return;
 336     }
 337     jint res = Atomic::cmpxchg(next_index, &_index, index);
 338     if (res == index) {
 339       for (int i = 0; i < n; i++) {
 340         int  ind = index + i;
 341         assert(ind < _capacity, "By overflow test above.");
 342         _base[ind] = ptr_arr[i];
 343       }
 344       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 345       return;
 346     }
 347     // Otherwise, we need to try again.
 348   }
 349 }
 350 
 351 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 352   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 353   jint start = _index;
 354   jint next_index = start + n;
 355   if (next_index > _capacity) {
 356     _overflow = true;
 357     return;
 358   }
 359   // Otherwise.
 360   _index = next_index;
 361   for (int i = 0; i < n; i++) {
 362     int ind = start + i;
 363     assert(ind < _capacity, "By overflow test above.");
 364     _base[ind] = ptr_arr[i];
 365   }
 366   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 367 }
 368 
 369 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 370   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 371   jint index = _index;
 372   if (index == 0) {
 373     *n = 0;
 374     return false;
 375   } else {
 376     int k = MIN2(max, index);
 377     jint  new_ind = index - k;
 378     for (int j = 0; j < k; j++) {
 379       ptr_arr[j] = _base[new_ind + j];
 380     }
 381     _index = new_ind;
 382     *n = k;
 383     return true;
 384   }
 385 }
 386 
 387 template<class OopClosureClass>
 388 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 389   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 390          || SafepointSynchronize::is_at_safepoint(),
 391          "Drain recursion must be yield-safe.");
 392   bool res = true;
 393   debug_only(_drain_in_progress = true);
 394   debug_only(_drain_in_progress_yields = yield_after);
 395   while (!isEmpty()) {
 396     oop newOop = pop();
 397     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 398     assert(newOop->is_oop(), "Expected an oop");
 399     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 400            "only grey objects on this stack");
 401     newOop->oop_iterate(cl);
 402     if (yield_after && _cm->do_yield_check()) {
 403       res = false;
 404       break;
 405     }
 406   }
 407   debug_only(_drain_in_progress = false);
 408   return res;
 409 }
 410 
 411 void CMMarkStack::note_start_of_gc() {
 412   assert(_saved_index == -1,
 413          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 414   _saved_index = _index;
 415 }
 416 
 417 void CMMarkStack::note_end_of_gc() {
 418   // This is intentionally a guarantee, instead of an assert. If we
 419   // accidentally add something to the mark stack during GC, it
 420   // will be a correctness issue so it's better if we crash. we'll
 421   // only check this once per GC anyway, so it won't be a performance
 422   // issue in any way.
 423   guarantee(_saved_index == _index,
 424             err_msg("saved index: %d index: %d", _saved_index, _index));
 425   _saved_index = -1;
 426 }
 427 
 428 void CMMarkStack::oops_do(OopClosure* f) {
 429   assert(_saved_index == _index,
 430          err_msg("saved index: %d index: %d", _saved_index, _index));
 431   for (int i = 0; i < _index; i += 1) {
 432     f->do_oop(&_base[i]);
 433   }
 434 }
 435 
 436 CMRootRegions::CMRootRegions() :
 437   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 438   _should_abort(false),  _next_survivor(NULL) { }
 439 
 440 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 441   _young_list = g1h->young_list();
 442   _cm = cm;
 443 }
 444 
 445 void CMRootRegions::prepare_for_scan() {
 446   assert(!scan_in_progress(), "pre-condition");
 447 
 448   // Currently, only survivors can be root regions.
 449   assert(_next_survivor == NULL, "pre-condition");
 450   _next_survivor = _young_list->first_survivor_region();
 451   _scan_in_progress = (_next_survivor != NULL);
 452   _should_abort = false;
 453 }
 454 
 455 HeapRegion* CMRootRegions::claim_next() {
 456   if (_should_abort) {
 457     // If someone has set the should_abort flag, we return NULL to
 458     // force the caller to bail out of their loop.
 459     return NULL;
 460   }
 461 
 462   // Currently, only survivors can be root regions.
 463   HeapRegion* res = _next_survivor;
 464   if (res != NULL) {
 465     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 466     // Read it again in case it changed while we were waiting for the lock.
 467     res = _next_survivor;
 468     if (res != NULL) {
 469       if (res == _young_list->last_survivor_region()) {
 470         // We just claimed the last survivor so store NULL to indicate
 471         // that we're done.
 472         _next_survivor = NULL;
 473       } else {
 474         _next_survivor = res->get_next_young_region();
 475       }
 476     } else {
 477       // Someone else claimed the last survivor while we were trying
 478       // to take the lock so nothing else to do.
 479     }
 480   }
 481   assert(res == NULL || res->is_survivor(), "post-condition");
 482 
 483   return res;
 484 }
 485 
 486 void CMRootRegions::scan_finished() {
 487   assert(scan_in_progress(), "pre-condition");
 488 
 489   // Currently, only survivors can be root regions.
 490   if (!_should_abort) {
 491     assert(_next_survivor == NULL, "we should have claimed all survivors");
 492   }
 493   _next_survivor = NULL;
 494 
 495   {
 496     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 497     _scan_in_progress = false;
 498     RootRegionScan_lock->notify_all();
 499   }
 500 }
 501 
 502 bool CMRootRegions::wait_until_scan_finished() {
 503   if (!scan_in_progress()) return false;
 504 
 505   {
 506     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 507     while (scan_in_progress()) {
 508       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 509     }
 510   }
 511   return true;
 512 }
 513 
 514 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 515 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 516 #endif // _MSC_VER
 517 
 518 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 519   return MAX2((n_par_threads + 2) / 4, 1U);
 520 }
 521 
 522 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 523   _g1h(g1h),
 524   _markBitMap1(),
 525   _markBitMap2(),
 526   _parallel_marking_threads(0),
 527   _max_parallel_marking_threads(0),
 528   _sleep_factor(0.0),
 529   _marking_task_overhead(1.0),
 530   _cleanup_sleep_factor(0.0),
 531   _cleanup_task_overhead(1.0),
 532   _cleanup_list("Cleanup List"),
 533   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 534   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 535             CardTableModRefBS::card_shift,
 536             false /* in_resource_area*/),
 537 
 538   _prevMarkBitMap(&_markBitMap1),
 539   _nextMarkBitMap(&_markBitMap2),
 540 
 541   _markStack(this),
 542   // _finger set in set_non_marking_state
 543 
 544   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 545   // _active_tasks set in set_non_marking_state
 546   // _tasks set inside the constructor
 547   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 548   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 549 
 550   _has_overflown(false),
 551   _concurrent(false),
 552   _has_aborted(false),
 553   _aborted_gc_id(GCId::undefined()),
 554   _restart_for_overflow(false),
 555   _concurrent_marking_in_progress(false),
 556 
 557   // _verbose_level set below
 558 
 559   _init_times(),
 560   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 561   _cleanup_times(),
 562   _total_counting_time(0.0),
 563   _total_rs_scrub_time(0.0),
 564 
 565   _parallel_workers(NULL),
 566 
 567   _count_card_bitmaps(NULL),
 568   _count_marked_bytes(NULL),
 569   _completed_initialization(false) {
 570   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 571   if (verbose_level < no_verbose) {
 572     verbose_level = no_verbose;
 573   }
 574   if (verbose_level > high_verbose) {
 575     verbose_level = high_verbose;
 576   }
 577   _verbose_level = verbose_level;
 578 
 579   if (verbose_low()) {
 580     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 581                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 582   }
 583 
 584   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 585   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 586 
 587   // Create & start a ConcurrentMark thread.
 588   _cmThread = new ConcurrentMarkThread(this);
 589   assert(cmThread() != NULL, "CM Thread should have been created");
 590   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 591   if (_cmThread->osthread() == NULL) {
 592       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 593   }
 594 
 595   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 596   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 597   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 598 
 599   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 600   satb_qs.set_buffer_size(G1SATBBufferSize);
 601 
 602   _root_regions.init(_g1h, this);
 603 
 604   if (ConcGCThreads > ParallelGCThreads) {
 605     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 606             "than ParallelGCThreads (" UINTX_FORMAT ").",
 607             ConcGCThreads, ParallelGCThreads);
 608     return;
 609   }
 610   if (ParallelGCThreads == 0) {
 611     // if we are not running with any parallel GC threads we will not
 612     // spawn any marking threads either
 613     _parallel_marking_threads =       0;
 614     _max_parallel_marking_threads =   0;
 615     _sleep_factor             =     0.0;
 616     _marking_task_overhead    =     1.0;
 617   } else {
 618     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 619       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 620       // if both are set
 621       _sleep_factor             = 0.0;
 622       _marking_task_overhead    = 1.0;
 623     } else if (G1MarkingOverheadPercent > 0) {
 624       // We will calculate the number of parallel marking threads based
 625       // on a target overhead with respect to the soft real-time goal
 626       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 627       double overall_cm_overhead =
 628         (double) MaxGCPauseMillis * marking_overhead /
 629         (double) GCPauseIntervalMillis;
 630       double cpu_ratio = 1.0 / (double) os::processor_count();
 631       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 632       double marking_task_overhead =
 633         overall_cm_overhead / marking_thread_num *
 634                                                 (double) os::processor_count();
 635       double sleep_factor =
 636                          (1.0 - marking_task_overhead) / marking_task_overhead;
 637 
 638       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 639       _sleep_factor             = sleep_factor;
 640       _marking_task_overhead    = marking_task_overhead;
 641     } else {
 642       // Calculate the number of parallel marking threads by scaling
 643       // the number of parallel GC threads.
 644       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 645       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 646       _sleep_factor             = 0.0;
 647       _marking_task_overhead    = 1.0;
 648     }
 649 
 650     assert(ConcGCThreads > 0, "Should have been set");
 651     _parallel_marking_threads = (uint) ConcGCThreads;
 652     _max_parallel_marking_threads = _parallel_marking_threads;
 653 
 654     if (parallel_marking_threads() > 1) {
 655       _cleanup_task_overhead = 1.0;
 656     } else {
 657       _cleanup_task_overhead = marking_task_overhead();
 658     }
 659     _cleanup_sleep_factor =
 660                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 661 
 662 #if 0
 663     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 664     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 665     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 666     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 667     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 668 #endif
 669 
 670     guarantee(parallel_marking_threads() > 0, "peace of mind");
 671     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 672          _max_parallel_marking_threads, false, true);
 673     if (_parallel_workers == NULL) {
 674       vm_exit_during_initialization("Failed necessary allocation.");
 675     } else {
 676       _parallel_workers->initialize_workers();
 677     }
 678   }
 679 
 680   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 681     uintx mark_stack_size =
 682       MIN2(MarkStackSizeMax,
 683           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 684     // Verify that the calculated value for MarkStackSize is in range.
 685     // It would be nice to use the private utility routine from Arguments.
 686     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 687       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 688               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 689               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 690       return;
 691     }
 692     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 693   } else {
 694     // Verify MarkStackSize is in range.
 695     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 696       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 697         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 698           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 699                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 700                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 701           return;
 702         }
 703       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 704         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 705           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 706                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 707                   MarkStackSize, MarkStackSizeMax);
 708           return;
 709         }
 710       }
 711     }
 712   }
 713 
 714   if (!_markStack.allocate(MarkStackSize)) {
 715     warning("Failed to allocate CM marking stack");
 716     return;
 717   }
 718 
 719   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 720   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 721 
 722   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 723   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 724 
 725   BitMap::idx_t card_bm_size = _card_bm.size();
 726 
 727   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 728   _active_tasks = _max_worker_id;
 729 
 730   size_t max_regions = (size_t) _g1h->max_regions();
 731   for (uint i = 0; i < _max_worker_id; ++i) {
 732     CMTaskQueue* task_queue = new CMTaskQueue();
 733     task_queue->initialize();
 734     _task_queues->register_queue(i, task_queue);
 735 
 736     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 737     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 738 
 739     _tasks[i] = new CMTask(i, this,
 740                            _count_marked_bytes[i],
 741                            &_count_card_bitmaps[i],
 742                            task_queue, _task_queues);
 743 
 744     _accum_task_vtime[i] = 0.0;
 745   }
 746 
 747   // Calculate the card number for the bottom of the heap. Used
 748   // in biasing indexes into the accounting card bitmaps.
 749   _heap_bottom_card_num =
 750     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 751                                 CardTableModRefBS::card_shift);
 752 
 753   // Clear all the liveness counting data
 754   clear_all_count_data();
 755 
 756   // so that the call below can read a sensible value
 757   _heap_start = g1h->reserved_region().start();
 758   set_non_marking_state();
 759   _completed_initialization = true;
 760 }
 761 
 762 void ConcurrentMark::reset() {
 763   // Starting values for these two. This should be called in a STW
 764   // phase.
 765   MemRegion reserved = _g1h->g1_reserved();
 766   _heap_start = reserved.start();
 767   _heap_end   = reserved.end();
 768 
 769   // Separated the asserts so that we know which one fires.
 770   assert(_heap_start != NULL, "heap bounds should look ok");
 771   assert(_heap_end != NULL, "heap bounds should look ok");
 772   assert(_heap_start < _heap_end, "heap bounds should look ok");
 773 
 774   // Reset all the marking data structures and any necessary flags
 775   reset_marking_state();
 776 
 777   if (verbose_low()) {
 778     gclog_or_tty->print_cr("[global] resetting");
 779   }
 780 
 781   // We do reset all of them, since different phases will use
 782   // different number of active threads. So, it's easiest to have all
 783   // of them ready.
 784   for (uint i = 0; i < _max_worker_id; ++i) {
 785     _tasks[i]->reset(_nextMarkBitMap);
 786   }
 787 
 788   // we need this to make sure that the flag is on during the evac
 789   // pause with initial mark piggy-backed
 790   set_concurrent_marking_in_progress();
 791 }
 792 
 793 
 794 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 795   _markStack.set_should_expand();
 796   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 797   if (clear_overflow) {
 798     clear_has_overflown();
 799   } else {
 800     assert(has_overflown(), "pre-condition");
 801   }
 802   _finger = _heap_start;
 803 
 804   for (uint i = 0; i < _max_worker_id; ++i) {
 805     CMTaskQueue* queue = _task_queues->queue(i);
 806     queue->set_empty();
 807   }
 808 }
 809 
 810 void ConcurrentMark::set_concurrency(uint active_tasks) {
 811   assert(active_tasks <= _max_worker_id, "we should not have more");
 812 
 813   _active_tasks = active_tasks;
 814   // Need to update the three data structures below according to the
 815   // number of active threads for this phase.
 816   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 817   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 818   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 819 }
 820 
 821 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 822   set_concurrency(active_tasks);
 823 
 824   _concurrent = concurrent;
 825   // We propagate this to all tasks, not just the active ones.
 826   for (uint i = 0; i < _max_worker_id; ++i)
 827     _tasks[i]->set_concurrent(concurrent);
 828 
 829   if (concurrent) {
 830     set_concurrent_marking_in_progress();
 831   } else {
 832     // We currently assume that the concurrent flag has been set to
 833     // false before we start remark. At this point we should also be
 834     // in a STW phase.
 835     assert(!concurrent_marking_in_progress(), "invariant");
 836     assert(out_of_regions(),
 837            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 838                    p2i(_finger), p2i(_heap_end)));
 839   }
 840 }
 841 
 842 void ConcurrentMark::set_non_marking_state() {
 843   // We set the global marking state to some default values when we're
 844   // not doing marking.
 845   reset_marking_state();
 846   _active_tasks = 0;
 847   clear_concurrent_marking_in_progress();
 848 }
 849 
 850 ConcurrentMark::~ConcurrentMark() {
 851   // The ConcurrentMark instance is never freed.
 852   ShouldNotReachHere();
 853 }
 854 
 855 void ConcurrentMark::clearNextBitmap() {
 856   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 857 
 858   // Make sure that the concurrent mark thread looks to still be in
 859   // the current cycle.
 860   guarantee(cmThread()->during_cycle(), "invariant");
 861 
 862   // We are finishing up the current cycle by clearing the next
 863   // marking bitmap and getting it ready for the next cycle. During
 864   // this time no other cycle can start. So, let's make sure that this
 865   // is the case.
 866   guarantee(!g1h->mark_in_progress(), "invariant");
 867 
 868   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 869   g1h->heap_region_iterate(&cl);
 870 
 871   // Clear the liveness counting data. If the marking has been aborted, the abort()
 872   // call already did that.
 873   if (cl.complete()) {
 874     clear_all_count_data();
 875   }
 876 
 877   // Repeat the asserts from above.
 878   guarantee(cmThread()->during_cycle(), "invariant");
 879   guarantee(!g1h->mark_in_progress(), "invariant");
 880 }
 881 
 882 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 883   CMBitMap* _bitmap;
 884   bool _error;
 885  public:
 886   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 887   }
 888 
 889   virtual bool doHeapRegion(HeapRegion* r) {
 890     // This closure can be called concurrently to the mutator, so we must make sure
 891     // that the result of the getNextMarkedWordAddress() call is compared to the
 892     // value passed to it as limit to detect any found bits.
 893     // We can use the region's orig_end() for the limit and the comparison value
 894     // as it always contains the "real" end of the region that never changes and
 895     // has no side effects.
 896     // Due to the latter, there can also be no problem with the compiler generating
 897     // reloads of the orig_end() call.
 898     HeapWord* end = r->orig_end();
 899     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 900   }
 901 };
 902 
 903 bool ConcurrentMark::nextMarkBitmapIsClear() {
 904   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 905   _g1h->heap_region_iterate(&cl);
 906   return cl.complete();
 907 }
 908 
 909 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 910 public:
 911   bool doHeapRegion(HeapRegion* r) {
 912     if (!r->continuesHumongous()) {
 913       r->note_start_of_marking();
 914     }
 915     return false;
 916   }
 917 };
 918 
 919 void ConcurrentMark::checkpointRootsInitialPre() {
 920   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 921   G1CollectorPolicy* g1p = g1h->g1_policy();
 922 
 923   _has_aborted = false;
 924 
 925 #ifndef PRODUCT
 926   if (G1PrintReachableAtInitialMark) {
 927     print_reachable("at-cycle-start",
 928                     VerifyOption_G1UsePrevMarking, true /* all */);
 929   }
 930 #endif
 931 
 932   // Initialise marking structures. This has to be done in a STW phase.
 933   reset();
 934 
 935   // For each region note start of marking.
 936   NoteStartOfMarkHRClosure startcl;
 937   g1h->heap_region_iterate(&startcl);
 938 }
 939 
 940 
 941 void ConcurrentMark::checkpointRootsInitialPost() {
 942   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 943 
 944   // If we force an overflow during remark, the remark operation will
 945   // actually abort and we'll restart concurrent marking. If we always
 946   // force an oveflow during remark we'll never actually complete the
 947   // marking phase. So, we initilize this here, at the start of the
 948   // cycle, so that at the remaining overflow number will decrease at
 949   // every remark and we'll eventually not need to cause one.
 950   force_overflow_stw()->init();
 951 
 952   // Start Concurrent Marking weak-reference discovery.
 953   ReferenceProcessor* rp = g1h->ref_processor_cm();
 954   // enable ("weak") refs discovery
 955   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 956   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 957 
 958   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 959   // This is the start of  the marking cycle, we're expected all
 960   // threads to have SATB queues with active set to false.
 961   satb_mq_set.set_active_all_threads(true, /* new active value */
 962                                      false /* expected_active */);
 963 
 964   _root_regions.prepare_for_scan();
 965 
 966   // update_g1_committed() will be called at the end of an evac pause
 967   // when marking is on. So, it's also called at the end of the
 968   // initial-mark pause to update the heap end, if the heap expands
 969   // during it. No need to call it here.
 970 }
 971 
 972 /*
 973  * Notice that in the next two methods, we actually leave the STS
 974  * during the barrier sync and join it immediately afterwards. If we
 975  * do not do this, the following deadlock can occur: one thread could
 976  * be in the barrier sync code, waiting for the other thread to also
 977  * sync up, whereas another one could be trying to yield, while also
 978  * waiting for the other threads to sync up too.
 979  *
 980  * Note, however, that this code is also used during remark and in
 981  * this case we should not attempt to leave / enter the STS, otherwise
 982  * we'll either hit an asseert (debug / fastdebug) or deadlock
 983  * (product). So we should only leave / enter the STS if we are
 984  * operating concurrently.
 985  *
 986  * Because the thread that does the sync barrier has left the STS, it
 987  * is possible to be suspended for a Full GC or an evacuation pause
 988  * could occur. This is actually safe, since the entering the sync
 989  * barrier is one of the last things do_marking_step() does, and it
 990  * doesn't manipulate any data structures afterwards.
 991  */
 992 
 993 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 994   if (verbose_low()) {
 995     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 996   }
 997 
 998   if (concurrent()) {
 999     SuspendibleThreadSet::leave();
1000   }
1001 
1002   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1003 
1004   if (concurrent()) {
1005     SuspendibleThreadSet::join();
1006   }
1007   // at this point everyone should have synced up and not be doing any
1008   // more work
1009 
1010   if (verbose_low()) {
1011     if (barrier_aborted) {
1012       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1013     } else {
1014       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1015     }
1016   }
1017 
1018   if (barrier_aborted) {
1019     // If the barrier aborted we ignore the overflow condition and
1020     // just abort the whole marking phase as quickly as possible.
1021     return;
1022   }
1023 
1024   // If we're executing the concurrent phase of marking, reset the marking
1025   // state; otherwise the marking state is reset after reference processing,
1026   // during the remark pause.
1027   // If we reset here as a result of an overflow during the remark we will
1028   // see assertion failures from any subsequent set_concurrency_and_phase()
1029   // calls.
1030   if (concurrent()) {
1031     // let the task associated with with worker 0 do this
1032     if (worker_id == 0) {
1033       // task 0 is responsible for clearing the global data structures
1034       // We should be here because of an overflow. During STW we should
1035       // not clear the overflow flag since we rely on it being true when
1036       // we exit this method to abort the pause and restart concurent
1037       // marking.
1038       reset_marking_state(true /* clear_overflow */);
1039       force_overflow()->update();
1040 
1041       if (G1Log::fine()) {
1042         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1043         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1044       }
1045     }
1046   }
1047 
1048   // after this, each task should reset its own data structures then
1049   // then go into the second barrier
1050 }
1051 
1052 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1053   if (verbose_low()) {
1054     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1055   }
1056 
1057   if (concurrent()) {
1058     SuspendibleThreadSet::leave();
1059   }
1060 
1061   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1062 
1063   if (concurrent()) {
1064     SuspendibleThreadSet::join();
1065   }
1066   // at this point everything should be re-initialized and ready to go
1067 
1068   if (verbose_low()) {
1069     if (barrier_aborted) {
1070       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1071     } else {
1072       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1073     }
1074   }
1075 }
1076 
1077 #ifndef PRODUCT
1078 void ForceOverflowSettings::init() {
1079   _num_remaining = G1ConcMarkForceOverflow;
1080   _force = false;
1081   update();
1082 }
1083 
1084 void ForceOverflowSettings::update() {
1085   if (_num_remaining > 0) {
1086     _num_remaining -= 1;
1087     _force = true;
1088   } else {
1089     _force = false;
1090   }
1091 }
1092 
1093 bool ForceOverflowSettings::should_force() {
1094   if (_force) {
1095     _force = false;
1096     return true;
1097   } else {
1098     return false;
1099   }
1100 }
1101 #endif // !PRODUCT
1102 
1103 class CMConcurrentMarkingTask: public AbstractGangTask {
1104 private:
1105   ConcurrentMark*       _cm;
1106   ConcurrentMarkThread* _cmt;
1107 
1108 public:
1109   void work(uint worker_id) {
1110     assert(Thread::current()->is_ConcurrentGC_thread(),
1111            "this should only be done by a conc GC thread");
1112     ResourceMark rm;
1113 
1114     double start_vtime = os::elapsedVTime();
1115 
1116     SuspendibleThreadSet::join();
1117 
1118     assert(worker_id < _cm->active_tasks(), "invariant");
1119     CMTask* the_task = _cm->task(worker_id);
1120     the_task->record_start_time();
1121     if (!_cm->has_aborted()) {
1122       do {
1123         double start_vtime_sec = os::elapsedVTime();
1124         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1125 
1126         the_task->do_marking_step(mark_step_duration_ms,
1127                                   true  /* do_termination */,
1128                                   false /* is_serial*/);
1129 
1130         double end_vtime_sec = os::elapsedVTime();
1131         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1132         _cm->clear_has_overflown();
1133 
1134         _cm->do_yield_check(worker_id);
1135 
1136         jlong sleep_time_ms;
1137         if (!_cm->has_aborted() && the_task->has_aborted()) {
1138           sleep_time_ms =
1139             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1140           SuspendibleThreadSet::leave();
1141           os::sleep(Thread::current(), sleep_time_ms, false);
1142           SuspendibleThreadSet::join();
1143         }
1144       } while (!_cm->has_aborted() && the_task->has_aborted());
1145     }
1146     the_task->record_end_time();
1147     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1148 
1149     SuspendibleThreadSet::leave();
1150 
1151     double end_vtime = os::elapsedVTime();
1152     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1153   }
1154 
1155   CMConcurrentMarkingTask(ConcurrentMark* cm,
1156                           ConcurrentMarkThread* cmt) :
1157       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1158 
1159   ~CMConcurrentMarkingTask() { }
1160 };
1161 
1162 // Calculates the number of active workers for a concurrent
1163 // phase.
1164 uint ConcurrentMark::calc_parallel_marking_threads() {
1165   if (G1CollectedHeap::use_parallel_gc_threads()) {
1166     uint n_conc_workers = 0;
1167     if (!UseDynamicNumberOfGCThreads ||
1168         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1169          !ForceDynamicNumberOfGCThreads)) {
1170       n_conc_workers = max_parallel_marking_threads();
1171     } else {
1172       n_conc_workers =
1173         AdaptiveSizePolicy::calc_default_active_workers(
1174                                      max_parallel_marking_threads(),
1175                                      1, /* Minimum workers */
1176                                      parallel_marking_threads(),
1177                                      Threads::number_of_non_daemon_threads());
1178       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1179       // that scaling has already gone into "_max_parallel_marking_threads".
1180     }
1181     assert(n_conc_workers > 0, "Always need at least 1");
1182     return n_conc_workers;
1183   }
1184   // If we are not running with any parallel GC threads we will not
1185   // have spawned any marking threads either. Hence the number of
1186   // concurrent workers should be 0.
1187   return 0;
1188 }
1189 
1190 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1191   // Currently, only survivors can be root regions.
1192   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1193   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1194 
1195   const uintx interval = PrefetchScanIntervalInBytes;
1196   HeapWord* curr = hr->bottom();
1197   const HeapWord* end = hr->top();
1198   while (curr < end) {
1199     Prefetch::read(curr, interval);
1200     oop obj = oop(curr);
1201     int size = obj->oop_iterate(&cl);
1202     assert(size == obj->size(), "sanity");
1203     curr += size;
1204   }
1205 }
1206 
1207 class CMRootRegionScanTask : public AbstractGangTask {
1208 private:
1209   ConcurrentMark* _cm;
1210 
1211 public:
1212   CMRootRegionScanTask(ConcurrentMark* cm) :
1213     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1214 
1215   void work(uint worker_id) {
1216     assert(Thread::current()->is_ConcurrentGC_thread(),
1217            "this should only be done by a conc GC thread");
1218 
1219     CMRootRegions* root_regions = _cm->root_regions();
1220     HeapRegion* hr = root_regions->claim_next();
1221     while (hr != NULL) {
1222       _cm->scanRootRegion(hr, worker_id);
1223       hr = root_regions->claim_next();
1224     }
1225   }
1226 };
1227 
1228 void ConcurrentMark::scanRootRegions() {
1229   // Start of concurrent marking.
1230   ClassLoaderDataGraph::clear_claimed_marks();
1231 
1232   // scan_in_progress() will have been set to true only if there was
1233   // at least one root region to scan. So, if it's false, we
1234   // should not attempt to do any further work.
1235   if (root_regions()->scan_in_progress()) {
1236     _parallel_marking_threads = calc_parallel_marking_threads();
1237     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1238            "Maximum number of marking threads exceeded");
1239     uint active_workers = MAX2(1U, parallel_marking_threads());
1240 
1241     CMRootRegionScanTask task(this);
1242     if (use_parallel_marking_threads()) {
1243       _parallel_workers->set_active_workers((int) active_workers);
1244       _parallel_workers->run_task(&task);
1245     } else {
1246       task.work(0);
1247     }
1248 
1249     // It's possible that has_aborted() is true here without actually
1250     // aborting the survivor scan earlier. This is OK as it's
1251     // mainly used for sanity checking.
1252     root_regions()->scan_finished();
1253   }
1254 }
1255 
1256 void ConcurrentMark::markFromRoots() {
1257   // we might be tempted to assert that:
1258   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1259   //        "inconsistent argument?");
1260   // However that wouldn't be right, because it's possible that
1261   // a safepoint is indeed in progress as a younger generation
1262   // stop-the-world GC happens even as we mark in this generation.
1263 
1264   _restart_for_overflow = false;
1265   force_overflow_conc()->init();
1266 
1267   // _g1h has _n_par_threads
1268   _parallel_marking_threads = calc_parallel_marking_threads();
1269   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1270     "Maximum number of marking threads exceeded");
1271 
1272   uint active_workers = MAX2(1U, parallel_marking_threads());
1273 
1274   // Parallel task terminator is set in "set_concurrency_and_phase()"
1275   set_concurrency_and_phase(active_workers, true /* concurrent */);
1276 
1277   CMConcurrentMarkingTask markingTask(this, cmThread());
1278   if (use_parallel_marking_threads()) {
1279     _parallel_workers->set_active_workers((int)active_workers);
1280     // Don't set _n_par_threads because it affects MT in process_roots()
1281     // and the decisions on that MT processing is made elsewhere.
1282     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1283     _parallel_workers->run_task(&markingTask);
1284   } else {
1285     markingTask.work(0);
1286   }
1287   print_stats();
1288 }
1289 
1290 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1291   // world is stopped at this checkpoint
1292   assert(SafepointSynchronize::is_at_safepoint(),
1293          "world should be stopped");
1294 
1295   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1296 
1297   // If a full collection has happened, we shouldn't do this.
1298   if (has_aborted()) {
1299     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1300     return;
1301   }
1302 
1303   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1304 
1305   if (VerifyDuringGC) {
1306     HandleMark hm;  // handle scope
1307     Universe::heap()->prepare_for_verify();
1308     Universe::verify(VerifyOption_G1UsePrevMarking,
1309                      " VerifyDuringGC:(before)");
1310   }
1311   g1h->check_bitmaps("Remark Start");
1312 
1313   G1CollectorPolicy* g1p = g1h->g1_policy();
1314   g1p->record_concurrent_mark_remark_start();
1315 
1316   double start = os::elapsedTime();
1317 
1318   checkpointRootsFinalWork();
1319 
1320   double mark_work_end = os::elapsedTime();
1321 
1322   weakRefsWork(clear_all_soft_refs);
1323 
1324   if (has_overflown()) {
1325     // Oops.  We overflowed.  Restart concurrent marking.
1326     _restart_for_overflow = true;
1327     if (G1TraceMarkStackOverflow) {
1328       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1329     }
1330 
1331     // Verify the heap w.r.t. the previous marking bitmap.
1332     if (VerifyDuringGC) {
1333       HandleMark hm;  // handle scope
1334       Universe::heap()->prepare_for_verify();
1335       Universe::verify(VerifyOption_G1UsePrevMarking,
1336                        " VerifyDuringGC:(overflow)");
1337     }
1338 
1339     // Clear the marking state because we will be restarting
1340     // marking due to overflowing the global mark stack.
1341     reset_marking_state();
1342   } else {
1343     // Aggregate the per-task counting data that we have accumulated
1344     // while marking.
1345     aggregate_count_data();
1346 
1347     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1348     // We're done with marking.
1349     // This is the end of  the marking cycle, we're expected all
1350     // threads to have SATB queues with active set to true.
1351     satb_mq_set.set_active_all_threads(false, /* new active value */
1352                                        true /* expected_active */);
1353 
1354     if (VerifyDuringGC) {
1355       HandleMark hm;  // handle scope
1356       Universe::heap()->prepare_for_verify();
1357       Universe::verify(VerifyOption_G1UseNextMarking,
1358                        " VerifyDuringGC:(after)");
1359     }
1360     g1h->check_bitmaps("Remark End");
1361     assert(!restart_for_overflow(), "sanity");
1362     // Completely reset the marking state since marking completed
1363     set_non_marking_state();
1364   }
1365 
1366   // Expand the marking stack, if we have to and if we can.
1367   if (_markStack.should_expand()) {
1368     _markStack.expand();
1369   }
1370 
1371   // Statistics
1372   double now = os::elapsedTime();
1373   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1374   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1375   _remark_times.add((now - start) * 1000.0);
1376 
1377   g1p->record_concurrent_mark_remark_end();
1378 
1379   G1CMIsAliveClosure is_alive(g1h);
1380   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1381 }
1382 
1383 // Base class of the closures that finalize and verify the
1384 // liveness counting data.
1385 class CMCountDataClosureBase: public HeapRegionClosure {
1386 protected:
1387   G1CollectedHeap* _g1h;
1388   ConcurrentMark* _cm;
1389   CardTableModRefBS* _ct_bs;
1390 
1391   BitMap* _region_bm;
1392   BitMap* _card_bm;
1393 
1394   // Takes a region that's not empty (i.e., it has at least one
1395   // live object in it and sets its corresponding bit on the region
1396   // bitmap to 1. If the region is "starts humongous" it will also set
1397   // to 1 the bits on the region bitmap that correspond to its
1398   // associated "continues humongous" regions.
1399   void set_bit_for_region(HeapRegion* hr) {
1400     assert(!hr->continuesHumongous(), "should have filtered those out");
1401 
1402     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1403     if (!hr->startsHumongous()) {
1404       // Normal (non-humongous) case: just set the bit.
1405       _region_bm->par_at_put(index, true);
1406     } else {
1407       // Starts humongous case: calculate how many regions are part of
1408       // this humongous region and then set the bit range.
1409       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1410       _region_bm->par_at_put_range(index, end_index, true);
1411     }
1412   }
1413 
1414 public:
1415   CMCountDataClosureBase(G1CollectedHeap* g1h,
1416                          BitMap* region_bm, BitMap* card_bm):
1417     _g1h(g1h), _cm(g1h->concurrent_mark()),
1418     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1419     _region_bm(region_bm), _card_bm(card_bm) { }
1420 };
1421 
1422 // Closure that calculates the # live objects per region. Used
1423 // for verification purposes during the cleanup pause.
1424 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1425   CMBitMapRO* _bm;
1426   size_t _region_marked_bytes;
1427 
1428 public:
1429   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1430                          BitMap* region_bm, BitMap* card_bm) :
1431     CMCountDataClosureBase(g1h, region_bm, card_bm),
1432     _bm(bm), _region_marked_bytes(0) { }
1433 
1434   bool doHeapRegion(HeapRegion* hr) {
1435 
1436     if (hr->continuesHumongous()) {
1437       // We will ignore these here and process them when their
1438       // associated "starts humongous" region is processed (see
1439       // set_bit_for_heap_region()). Note that we cannot rely on their
1440       // associated "starts humongous" region to have their bit set to
1441       // 1 since, due to the region chunking in the parallel region
1442       // iteration, a "continues humongous" region might be visited
1443       // before its associated "starts humongous".
1444       return false;
1445     }
1446 
1447     HeapWord* ntams = hr->next_top_at_mark_start();
1448     HeapWord* start = hr->bottom();
1449 
1450     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1451            err_msg("Preconditions not met - "
1452                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1453                    p2i(start), p2i(ntams), p2i(hr->end())));
1454 
1455     // Find the first marked object at or after "start".
1456     start = _bm->getNextMarkedWordAddress(start, ntams);
1457 
1458     size_t marked_bytes = 0;
1459 
1460     while (start < ntams) {
1461       oop obj = oop(start);
1462       int obj_sz = obj->size();
1463       HeapWord* obj_end = start + obj_sz;
1464 
1465       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1466       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1467 
1468       // Note: if we're looking at the last region in heap - obj_end
1469       // could be actually just beyond the end of the heap; end_idx
1470       // will then correspond to a (non-existent) card that is also
1471       // just beyond the heap.
1472       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1473         // end of object is not card aligned - increment to cover
1474         // all the cards spanned by the object
1475         end_idx += 1;
1476       }
1477 
1478       // Set the bits in the card BM for the cards spanned by this object.
1479       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1480 
1481       // Add the size of this object to the number of marked bytes.
1482       marked_bytes += (size_t)obj_sz * HeapWordSize;
1483 
1484       // Find the next marked object after this one.
1485       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1486     }
1487 
1488     // Mark the allocated-since-marking portion...
1489     HeapWord* top = hr->top();
1490     if (ntams < top) {
1491       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1492       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1493 
1494       // Note: if we're looking at the last region in heap - top
1495       // could be actually just beyond the end of the heap; end_idx
1496       // will then correspond to a (non-existent) card that is also
1497       // just beyond the heap.
1498       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1499         // end of object is not card aligned - increment to cover
1500         // all the cards spanned by the object
1501         end_idx += 1;
1502       }
1503       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1504 
1505       // This definitely means the region has live objects.
1506       set_bit_for_region(hr);
1507     }
1508 
1509     // Update the live region bitmap.
1510     if (marked_bytes > 0) {
1511       set_bit_for_region(hr);
1512     }
1513 
1514     // Set the marked bytes for the current region so that
1515     // it can be queried by a calling verificiation routine
1516     _region_marked_bytes = marked_bytes;
1517 
1518     return false;
1519   }
1520 
1521   size_t region_marked_bytes() const { return _region_marked_bytes; }
1522 };
1523 
1524 // Heap region closure used for verifying the counting data
1525 // that was accumulated concurrently and aggregated during
1526 // the remark pause. This closure is applied to the heap
1527 // regions during the STW cleanup pause.
1528 
1529 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1530   G1CollectedHeap* _g1h;
1531   ConcurrentMark* _cm;
1532   CalcLiveObjectsClosure _calc_cl;
1533   BitMap* _region_bm;   // Region BM to be verified
1534   BitMap* _card_bm;     // Card BM to be verified
1535   bool _verbose;        // verbose output?
1536 
1537   BitMap* _exp_region_bm; // Expected Region BM values
1538   BitMap* _exp_card_bm;   // Expected card BM values
1539 
1540   int _failures;
1541 
1542 public:
1543   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1544                                 BitMap* region_bm,
1545                                 BitMap* card_bm,
1546                                 BitMap* exp_region_bm,
1547                                 BitMap* exp_card_bm,
1548                                 bool verbose) :
1549     _g1h(g1h), _cm(g1h->concurrent_mark()),
1550     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1551     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1552     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1553     _failures(0) { }
1554 
1555   int failures() const { return _failures; }
1556 
1557   bool doHeapRegion(HeapRegion* hr) {
1558     if (hr->continuesHumongous()) {
1559       // We will ignore these here and process them when their
1560       // associated "starts humongous" region is processed (see
1561       // set_bit_for_heap_region()). Note that we cannot rely on their
1562       // associated "starts humongous" region to have their bit set to
1563       // 1 since, due to the region chunking in the parallel region
1564       // iteration, a "continues humongous" region might be visited
1565       // before its associated "starts humongous".
1566       return false;
1567     }
1568 
1569     int failures = 0;
1570 
1571     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1572     // this region and set the corresponding bits in the expected region
1573     // and card bitmaps.
1574     bool res = _calc_cl.doHeapRegion(hr);
1575     assert(res == false, "should be continuing");
1576 
1577     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1578                     Mutex::_no_safepoint_check_flag);
1579 
1580     // Verify the marked bytes for this region.
1581     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1582     size_t act_marked_bytes = hr->next_marked_bytes();
1583 
1584     // We're not OK if expected marked bytes > actual marked bytes. It means
1585     // we have missed accounting some objects during the actual marking.
1586     if (exp_marked_bytes > act_marked_bytes) {
1587       if (_verbose) {
1588         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1589                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1590                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1591       }
1592       failures += 1;
1593     }
1594 
1595     // Verify the bit, for this region, in the actual and expected
1596     // (which was just calculated) region bit maps.
1597     // We're not OK if the bit in the calculated expected region
1598     // bitmap is set and the bit in the actual region bitmap is not.
1599     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1600 
1601     bool expected = _exp_region_bm->at(index);
1602     bool actual = _region_bm->at(index);
1603     if (expected && !actual) {
1604       if (_verbose) {
1605         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1606                                "expected: %s, actual: %s",
1607                                hr->hrm_index(),
1608                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1609       }
1610       failures += 1;
1611     }
1612 
1613     // Verify that the card bit maps for the cards spanned by the current
1614     // region match. We have an error if we have a set bit in the expected
1615     // bit map and the corresponding bit in the actual bitmap is not set.
1616 
1617     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1618     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1619 
1620     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1621       expected = _exp_card_bm->at(i);
1622       actual = _card_bm->at(i);
1623 
1624       if (expected && !actual) {
1625         if (_verbose) {
1626           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1627                                  "expected: %s, actual: %s",
1628                                  hr->hrm_index(), i,
1629                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1630         }
1631         failures += 1;
1632       }
1633     }
1634 
1635     if (failures > 0 && _verbose)  {
1636       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1637                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1638                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1639                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1640     }
1641 
1642     _failures += failures;
1643 
1644     // We could stop iteration over the heap when we
1645     // find the first violating region by returning true.
1646     return false;
1647   }
1648 };
1649 
1650 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1651 protected:
1652   G1CollectedHeap* _g1h;
1653   ConcurrentMark* _cm;
1654   BitMap* _actual_region_bm;
1655   BitMap* _actual_card_bm;
1656 
1657   uint    _n_workers;
1658 
1659   BitMap* _expected_region_bm;
1660   BitMap* _expected_card_bm;
1661 
1662   int  _failures;
1663   bool _verbose;
1664 
1665 public:
1666   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1667                             BitMap* region_bm, BitMap* card_bm,
1668                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1669     : AbstractGangTask("G1 verify final counting"),
1670       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1671       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1672       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1673       _failures(0), _verbose(false),
1674       _n_workers(0) {
1675     assert(VerifyDuringGC, "don't call this otherwise");
1676 
1677     // Use the value already set as the number of active threads
1678     // in the call to run_task().
1679     if (G1CollectedHeap::use_parallel_gc_threads()) {
1680       assert( _g1h->workers()->active_workers() > 0,
1681         "Should have been previously set");
1682       _n_workers = _g1h->workers()->active_workers();
1683     } else {
1684       _n_workers = 1;
1685     }
1686 
1687     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1688     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1689 
1690     _verbose = _cm->verbose_medium();
1691   }
1692 
1693   void work(uint worker_id) {
1694     assert(worker_id < _n_workers, "invariant");
1695 
1696     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1697                                             _actual_region_bm, _actual_card_bm,
1698                                             _expected_region_bm,
1699                                             _expected_card_bm,
1700                                             _verbose);
1701 
1702     if (G1CollectedHeap::use_parallel_gc_threads()) {
1703       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1704                                             worker_id,
1705                                             _n_workers,
1706                                             HeapRegion::VerifyCountClaimValue);
1707     } else {
1708       _g1h->heap_region_iterate(&verify_cl);
1709     }
1710 
1711     Atomic::add(verify_cl.failures(), &_failures);
1712   }
1713 
1714   int failures() const { return _failures; }
1715 };
1716 
1717 // Closure that finalizes the liveness counting data.
1718 // Used during the cleanup pause.
1719 // Sets the bits corresponding to the interval [NTAMS, top]
1720 // (which contains the implicitly live objects) in the
1721 // card liveness bitmap. Also sets the bit for each region,
1722 // containing live data, in the region liveness bitmap.
1723 
1724 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1725  public:
1726   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1727                               BitMap* region_bm,
1728                               BitMap* card_bm) :
1729     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1730 
1731   bool doHeapRegion(HeapRegion* hr) {
1732 
1733     if (hr->continuesHumongous()) {
1734       // We will ignore these here and process them when their
1735       // associated "starts humongous" region is processed (see
1736       // set_bit_for_heap_region()). Note that we cannot rely on their
1737       // associated "starts humongous" region to have their bit set to
1738       // 1 since, due to the region chunking in the parallel region
1739       // iteration, a "continues humongous" region might be visited
1740       // before its associated "starts humongous".
1741       return false;
1742     }
1743 
1744     HeapWord* ntams = hr->next_top_at_mark_start();
1745     HeapWord* top   = hr->top();
1746 
1747     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1748 
1749     // Mark the allocated-since-marking portion...
1750     if (ntams < top) {
1751       // This definitely means the region has live objects.
1752       set_bit_for_region(hr);
1753 
1754       // Now set the bits in the card bitmap for [ntams, top)
1755       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1756       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1757 
1758       // Note: if we're looking at the last region in heap - top
1759       // could be actually just beyond the end of the heap; end_idx
1760       // will then correspond to a (non-existent) card that is also
1761       // just beyond the heap.
1762       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1763         // end of object is not card aligned - increment to cover
1764         // all the cards spanned by the object
1765         end_idx += 1;
1766       }
1767 
1768       assert(end_idx <= _card_bm->size(),
1769              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1770                      end_idx, _card_bm->size()));
1771       assert(start_idx < _card_bm->size(),
1772              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1773                      start_idx, _card_bm->size()));
1774 
1775       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1776     }
1777 
1778     // Set the bit for the region if it contains live data
1779     if (hr->next_marked_bytes() > 0) {
1780       set_bit_for_region(hr);
1781     }
1782 
1783     return false;
1784   }
1785 };
1786 
1787 class G1ParFinalCountTask: public AbstractGangTask {
1788 protected:
1789   G1CollectedHeap* _g1h;
1790   ConcurrentMark* _cm;
1791   BitMap* _actual_region_bm;
1792   BitMap* _actual_card_bm;
1793 
1794   uint    _n_workers;
1795 
1796 public:
1797   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1798     : AbstractGangTask("G1 final counting"),
1799       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1800       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1801       _n_workers(0) {
1802     // Use the value already set as the number of active threads
1803     // in the call to run_task().
1804     if (G1CollectedHeap::use_parallel_gc_threads()) {
1805       assert( _g1h->workers()->active_workers() > 0,
1806         "Should have been previously set");
1807       _n_workers = _g1h->workers()->active_workers();
1808     } else {
1809       _n_workers = 1;
1810     }
1811   }
1812 
1813   void work(uint worker_id) {
1814     assert(worker_id < _n_workers, "invariant");
1815 
1816     FinalCountDataUpdateClosure final_update_cl(_g1h,
1817                                                 _actual_region_bm,
1818                                                 _actual_card_bm);
1819 
1820     if (G1CollectedHeap::use_parallel_gc_threads()) {
1821       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1822                                             worker_id,
1823                                             _n_workers,
1824                                             HeapRegion::FinalCountClaimValue);
1825     } else {
1826       _g1h->heap_region_iterate(&final_update_cl);
1827     }
1828   }
1829 };
1830 
1831 class G1ParNoteEndTask;
1832 
1833 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1834   G1CollectedHeap* _g1;
1835   size_t _max_live_bytes;
1836   uint _regions_claimed;
1837   size_t _freed_bytes;
1838   FreeRegionList* _local_cleanup_list;
1839   HeapRegionSetCount _old_regions_removed;
1840   HeapRegionSetCount _humongous_regions_removed;
1841   HRRSCleanupTask* _hrrs_cleanup_task;
1842   double _claimed_region_time;
1843   double _max_region_time;
1844 
1845 public:
1846   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1847                              FreeRegionList* local_cleanup_list,
1848                              HRRSCleanupTask* hrrs_cleanup_task) :
1849     _g1(g1),
1850     _max_live_bytes(0), _regions_claimed(0),
1851     _freed_bytes(0),
1852     _claimed_region_time(0.0), _max_region_time(0.0),
1853     _local_cleanup_list(local_cleanup_list),
1854     _old_regions_removed(),
1855     _humongous_regions_removed(),
1856     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1857 
1858   size_t freed_bytes() { return _freed_bytes; }
1859   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1860   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1861 
1862   bool doHeapRegion(HeapRegion *hr) {
1863     if (hr->continuesHumongous()) {
1864       return false;
1865     }
1866     // We use a claim value of zero here because all regions
1867     // were claimed with value 1 in the FinalCount task.
1868     _g1->reset_gc_time_stamps(hr);
1869     double start = os::elapsedTime();
1870     _regions_claimed++;
1871     hr->note_end_of_marking();
1872     _max_live_bytes += hr->max_live_bytes();
1873 
1874     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1875       _freed_bytes += hr->used();
1876       hr->set_containing_set(NULL);
1877       if (hr->isHumongous()) {
1878         assert(hr->startsHumongous(), "we should only see starts humongous");
1879         _humongous_regions_removed.increment(1u, hr->capacity());
1880         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1881       } else {
1882         _old_regions_removed.increment(1u, hr->capacity());
1883         _g1->free_region(hr, _local_cleanup_list, true);
1884       }
1885     } else {
1886       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1887     }
1888 
1889     double region_time = (os::elapsedTime() - start);
1890     _claimed_region_time += region_time;
1891     if (region_time > _max_region_time) {
1892       _max_region_time = region_time;
1893     }
1894     return false;
1895   }
1896 
1897   size_t max_live_bytes() { return _max_live_bytes; }
1898   uint regions_claimed() { return _regions_claimed; }
1899   double claimed_region_time_sec() { return _claimed_region_time; }
1900   double max_region_time_sec() { return _max_region_time; }
1901 };
1902 
1903 class G1ParNoteEndTask: public AbstractGangTask {
1904   friend class G1NoteEndOfConcMarkClosure;
1905 
1906 protected:
1907   G1CollectedHeap* _g1h;
1908   size_t _max_live_bytes;
1909   size_t _freed_bytes;
1910   FreeRegionList* _cleanup_list;
1911 
1912 public:
1913   G1ParNoteEndTask(G1CollectedHeap* g1h,
1914                    FreeRegionList* cleanup_list) :
1915     AbstractGangTask("G1 note end"), _g1h(g1h),
1916     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1917 
1918   void work(uint worker_id) {
1919     double start = os::elapsedTime();
1920     FreeRegionList local_cleanup_list("Local Cleanup List");
1921     HRRSCleanupTask hrrs_cleanup_task;
1922     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1923                                            &hrrs_cleanup_task);
1924     if (G1CollectedHeap::use_parallel_gc_threads()) {
1925       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1926                                             _g1h->workers()->active_workers(),
1927                                             HeapRegion::NoteEndClaimValue);
1928     } else {
1929       _g1h->heap_region_iterate(&g1_note_end);
1930     }
1931     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1932 
1933     // Now update the lists
1934     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1935     {
1936       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1937       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1938       _max_live_bytes += g1_note_end.max_live_bytes();
1939       _freed_bytes += g1_note_end.freed_bytes();
1940 
1941       // If we iterate over the global cleanup list at the end of
1942       // cleanup to do this printing we will not guarantee to only
1943       // generate output for the newly-reclaimed regions (the list
1944       // might not be empty at the beginning of cleanup; we might
1945       // still be working on its previous contents). So we do the
1946       // printing here, before we append the new regions to the global
1947       // cleanup list.
1948 
1949       G1HRPrinter* hr_printer = _g1h->hr_printer();
1950       if (hr_printer->is_active()) {
1951         FreeRegionListIterator iter(&local_cleanup_list);
1952         while (iter.more_available()) {
1953           HeapRegion* hr = iter.get_next();
1954           hr_printer->cleanup(hr);
1955         }
1956       }
1957 
1958       _cleanup_list->add_ordered(&local_cleanup_list);
1959       assert(local_cleanup_list.is_empty(), "post-condition");
1960 
1961       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1962     }
1963   }
1964   size_t max_live_bytes() { return _max_live_bytes; }
1965   size_t freed_bytes() { return _freed_bytes; }
1966 };
1967 
1968 class G1ParScrubRemSetTask: public AbstractGangTask {
1969 protected:
1970   G1RemSet* _g1rs;
1971   BitMap* _region_bm;
1972   BitMap* _card_bm;
1973 public:
1974   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1975                        BitMap* region_bm, BitMap* card_bm) :
1976     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1977     _region_bm(region_bm), _card_bm(card_bm) { }
1978 
1979   void work(uint worker_id) {
1980     if (G1CollectedHeap::use_parallel_gc_threads()) {
1981       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1982                        HeapRegion::ScrubRemSetClaimValue);
1983     } else {
1984       _g1rs->scrub(_region_bm, _card_bm);
1985     }
1986   }
1987 
1988 };
1989 
1990 void ConcurrentMark::cleanup() {
1991   // world is stopped at this checkpoint
1992   assert(SafepointSynchronize::is_at_safepoint(),
1993          "world should be stopped");
1994   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1995 
1996   // If a full collection has happened, we shouldn't do this.
1997   if (has_aborted()) {
1998     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1999     return;
2000   }
2001 
2002   g1h->verify_region_sets_optional();
2003 
2004   if (VerifyDuringGC) {
2005     HandleMark hm;  // handle scope
2006     Universe::heap()->prepare_for_verify();
2007     Universe::verify(VerifyOption_G1UsePrevMarking,
2008                      " VerifyDuringGC:(before)");
2009   }
2010   g1h->check_bitmaps("Cleanup Start");
2011 
2012   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
2013   g1p->record_concurrent_mark_cleanup_start();
2014 
2015   double start = os::elapsedTime();
2016 
2017   HeapRegionRemSet::reset_for_cleanup_tasks();
2018 
2019   uint n_workers;
2020 
2021   // Do counting once more with the world stopped for good measure.
2022   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2023 
2024   if (G1CollectedHeap::use_parallel_gc_threads()) {
2025    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2026            "sanity check");
2027 
2028     g1h->set_par_threads();
2029     n_workers = g1h->n_par_threads();
2030     assert(g1h->n_par_threads() == n_workers,
2031            "Should not have been reset");
2032     g1h->workers()->run_task(&g1_par_count_task);
2033     // Done with the parallel phase so reset to 0.
2034     g1h->set_par_threads(0);
2035 
2036     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2037            "sanity check");
2038   } else {
2039     n_workers = 1;
2040     g1_par_count_task.work(0);
2041   }
2042 
2043   if (VerifyDuringGC) {
2044     // Verify that the counting data accumulated during marking matches
2045     // that calculated by walking the marking bitmap.
2046 
2047     // Bitmaps to hold expected values
2048     BitMap expected_region_bm(_region_bm.size(), true);
2049     BitMap expected_card_bm(_card_bm.size(), true);
2050 
2051     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2052                                                  &_region_bm,
2053                                                  &_card_bm,
2054                                                  &expected_region_bm,
2055                                                  &expected_card_bm);
2056 
2057     if (G1CollectedHeap::use_parallel_gc_threads()) {
2058       g1h->set_par_threads((int)n_workers);
2059       g1h->workers()->run_task(&g1_par_verify_task);
2060       // Done with the parallel phase so reset to 0.
2061       g1h->set_par_threads(0);
2062 
2063       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2064              "sanity check");
2065     } else {
2066       g1_par_verify_task.work(0);
2067     }
2068 
2069     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2070   }
2071 
2072   size_t start_used_bytes = g1h->used();
2073   g1h->set_marking_complete();
2074 
2075   double count_end = os::elapsedTime();
2076   double this_final_counting_time = (count_end - start);
2077   _total_counting_time += this_final_counting_time;
2078 
2079   if (G1PrintRegionLivenessInfo) {
2080     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2081     _g1h->heap_region_iterate(&cl);
2082   }
2083 
2084   // Install newly created mark bitMap as "prev".
2085   swapMarkBitMaps();
2086 
2087   g1h->reset_gc_time_stamp();
2088 
2089   // Note end of marking in all heap regions.
2090   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2091   if (G1CollectedHeap::use_parallel_gc_threads()) {
2092     g1h->set_par_threads((int)n_workers);
2093     g1h->workers()->run_task(&g1_par_note_end_task);
2094     g1h->set_par_threads(0);
2095 
2096     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2097            "sanity check");
2098   } else {
2099     g1_par_note_end_task.work(0);
2100   }
2101   g1h->check_gc_time_stamps();
2102 
2103   if (!cleanup_list_is_empty()) {
2104     // The cleanup list is not empty, so we'll have to process it
2105     // concurrently. Notify anyone else that might be wanting free
2106     // regions that there will be more free regions coming soon.
2107     g1h->set_free_regions_coming();
2108   }
2109 
2110   // call below, since it affects the metric by which we sort the heap
2111   // regions.
2112   if (G1ScrubRemSets) {
2113     double rs_scrub_start = os::elapsedTime();
2114     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2115     if (G1CollectedHeap::use_parallel_gc_threads()) {
2116       g1h->set_par_threads((int)n_workers);
2117       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2118       g1h->set_par_threads(0);
2119 
2120       assert(g1h->check_heap_region_claim_values(
2121                                             HeapRegion::ScrubRemSetClaimValue),
2122              "sanity check");
2123     } else {
2124       g1_par_scrub_rs_task.work(0);
2125     }
2126 
2127     double rs_scrub_end = os::elapsedTime();
2128     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2129     _total_rs_scrub_time += this_rs_scrub_time;
2130   }
2131 
2132   // this will also free any regions totally full of garbage objects,
2133   // and sort the regions.
2134   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2135 
2136   // Statistics.
2137   double end = os::elapsedTime();
2138   _cleanup_times.add((end - start) * 1000.0);
2139 
2140   if (G1Log::fine()) {
2141     g1h->print_size_transition(gclog_or_tty,
2142                                start_used_bytes,
2143                                g1h->used(),
2144                                g1h->capacity());
2145   }
2146 
2147   // Clean up will have freed any regions completely full of garbage.
2148   // Update the soft reference policy with the new heap occupancy.
2149   Universe::update_heap_info_at_gc();
2150 
2151   if (VerifyDuringGC) {
2152     HandleMark hm;  // handle scope
2153     Universe::heap()->prepare_for_verify();
2154     Universe::verify(VerifyOption_G1UsePrevMarking,
2155                      " VerifyDuringGC:(after)");
2156   }
2157   g1h->check_bitmaps("Cleanup End");
2158 
2159   g1h->verify_region_sets_optional();
2160 
2161   // We need to make this be a "collection" so any collection pause that
2162   // races with it goes around and waits for completeCleanup to finish.
2163   g1h->increment_total_collections();
2164 
2165   // Clean out dead classes and update Metaspace sizes.
2166   if (ClassUnloadingWithConcurrentMark) {
2167     ClassLoaderDataGraph::purge();
2168   }
2169   MetaspaceGC::compute_new_size();
2170 
2171   // We reclaimed old regions so we should calculate the sizes to make
2172   // sure we update the old gen/space data.
2173   g1h->g1mm()->update_sizes();
2174 
2175   g1h->trace_heap_after_concurrent_cycle();
2176 }
2177 
2178 void ConcurrentMark::completeCleanup() {
2179   if (has_aborted()) return;
2180 
2181   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2182 
2183   _cleanup_list.verify_optional();
2184   FreeRegionList tmp_free_list("Tmp Free List");
2185 
2186   if (G1ConcRegionFreeingVerbose) {
2187     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2188                            "cleanup list has %u entries",
2189                            _cleanup_list.length());
2190   }
2191 
2192   // No one else should be accessing the _cleanup_list at this point,
2193   // so it is not necessary to take any locks
2194   while (!_cleanup_list.is_empty()) {
2195     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2196     assert(hr != NULL, "Got NULL from a non-empty list");
2197     hr->par_clear();
2198     tmp_free_list.add_ordered(hr);
2199 
2200     // Instead of adding one region at a time to the secondary_free_list,
2201     // we accumulate them in the local list and move them a few at a
2202     // time. This also cuts down on the number of notify_all() calls
2203     // we do during this process. We'll also append the local list when
2204     // _cleanup_list is empty (which means we just removed the last
2205     // region from the _cleanup_list).
2206     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2207         _cleanup_list.is_empty()) {
2208       if (G1ConcRegionFreeingVerbose) {
2209         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2210                                "appending %u entries to the secondary_free_list, "
2211                                "cleanup list still has %u entries",
2212                                tmp_free_list.length(),
2213                                _cleanup_list.length());
2214       }
2215 
2216       {
2217         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2218         g1h->secondary_free_list_add(&tmp_free_list);
2219         SecondaryFreeList_lock->notify_all();
2220       }
2221 
2222       if (G1StressConcRegionFreeing) {
2223         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2224           os::sleep(Thread::current(), (jlong) 1, false);
2225         }
2226       }
2227     }
2228   }
2229   assert(tmp_free_list.is_empty(), "post-condition");
2230 }
2231 
2232 // Supporting Object and Oop closures for reference discovery
2233 // and processing in during marking
2234 
2235 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2236   HeapWord* addr = (HeapWord*)obj;
2237   return addr != NULL &&
2238          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2239 }
2240 
2241 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2242 // Uses the CMTask associated with a worker thread (for serial reference
2243 // processing the CMTask for worker 0 is used) to preserve (mark) and
2244 // trace referent objects.
2245 //
2246 // Using the CMTask and embedded local queues avoids having the worker
2247 // threads operating on the global mark stack. This reduces the risk
2248 // of overflowing the stack - which we would rather avoid at this late
2249 // state. Also using the tasks' local queues removes the potential
2250 // of the workers interfering with each other that could occur if
2251 // operating on the global stack.
2252 
2253 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2254   ConcurrentMark* _cm;
2255   CMTask*         _task;
2256   int             _ref_counter_limit;
2257   int             _ref_counter;
2258   bool            _is_serial;
2259  public:
2260   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2261     _cm(cm), _task(task), _is_serial(is_serial),
2262     _ref_counter_limit(G1RefProcDrainInterval) {
2263     assert(_ref_counter_limit > 0, "sanity");
2264     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2265     _ref_counter = _ref_counter_limit;
2266   }
2267 
2268   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2269   virtual void do_oop(      oop* p) { do_oop_work(p); }
2270 
2271   template <class T> void do_oop_work(T* p) {
2272     if (!_cm->has_overflown()) {
2273       oop obj = oopDesc::load_decode_heap_oop(p);
2274       if (_cm->verbose_high()) {
2275         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2276                                "*"PTR_FORMAT" = "PTR_FORMAT,
2277                                _task->worker_id(), p2i(p), p2i((void*) obj));
2278       }
2279 
2280       _task->deal_with_reference(obj);
2281       _ref_counter--;
2282 
2283       if (_ref_counter == 0) {
2284         // We have dealt with _ref_counter_limit references, pushing them
2285         // and objects reachable from them on to the local stack (and
2286         // possibly the global stack). Call CMTask::do_marking_step() to
2287         // process these entries.
2288         //
2289         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2290         // there's nothing more to do (i.e. we're done with the entries that
2291         // were pushed as a result of the CMTask::deal_with_reference() calls
2292         // above) or we overflow.
2293         //
2294         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2295         // flag while there may still be some work to do. (See the comment at
2296         // the beginning of CMTask::do_marking_step() for those conditions -
2297         // one of which is reaching the specified time target.) It is only
2298         // when CMTask::do_marking_step() returns without setting the
2299         // has_aborted() flag that the marking step has completed.
2300         do {
2301           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2302           _task->do_marking_step(mark_step_duration_ms,
2303                                  false      /* do_termination */,
2304                                  _is_serial);
2305         } while (_task->has_aborted() && !_cm->has_overflown());
2306         _ref_counter = _ref_counter_limit;
2307       }
2308     } else {
2309       if (_cm->verbose_high()) {
2310          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2311       }
2312     }
2313   }
2314 };
2315 
2316 // 'Drain' oop closure used by both serial and parallel reference processing.
2317 // Uses the CMTask associated with a given worker thread (for serial
2318 // reference processing the CMtask for worker 0 is used). Calls the
2319 // do_marking_step routine, with an unbelievably large timeout value,
2320 // to drain the marking data structures of the remaining entries
2321 // added by the 'keep alive' oop closure above.
2322 
2323 class G1CMDrainMarkingStackClosure: public VoidClosure {
2324   ConcurrentMark* _cm;
2325   CMTask*         _task;
2326   bool            _is_serial;
2327  public:
2328   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2329     _cm(cm), _task(task), _is_serial(is_serial) {
2330     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2331   }
2332 
2333   void do_void() {
2334     do {
2335       if (_cm->verbose_high()) {
2336         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2337                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2338       }
2339 
2340       // We call CMTask::do_marking_step() to completely drain the local
2341       // and global marking stacks of entries pushed by the 'keep alive'
2342       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2343       //
2344       // CMTask::do_marking_step() is called in a loop, which we'll exit
2345       // if there's nothing more to do (i.e. we'completely drained the
2346       // entries that were pushed as a a result of applying the 'keep alive'
2347       // closure to the entries on the discovered ref lists) or we overflow
2348       // the global marking stack.
2349       //
2350       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2351       // flag while there may still be some work to do. (See the comment at
2352       // the beginning of CMTask::do_marking_step() for those conditions -
2353       // one of which is reaching the specified time target.) It is only
2354       // when CMTask::do_marking_step() returns without setting the
2355       // has_aborted() flag that the marking step has completed.
2356 
2357       _task->do_marking_step(1000000000.0 /* something very large */,
2358                              true         /* do_termination */,
2359                              _is_serial);
2360     } while (_task->has_aborted() && !_cm->has_overflown());
2361   }
2362 };
2363 
2364 // Implementation of AbstractRefProcTaskExecutor for parallel
2365 // reference processing at the end of G1 concurrent marking
2366 
2367 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2368 private:
2369   G1CollectedHeap* _g1h;
2370   ConcurrentMark*  _cm;
2371   WorkGang*        _workers;
2372   int              _active_workers;
2373 
2374 public:
2375   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2376                         ConcurrentMark* cm,
2377                         WorkGang* workers,
2378                         int n_workers) :
2379     _g1h(g1h), _cm(cm),
2380     _workers(workers), _active_workers(n_workers) { }
2381 
2382   // Executes the given task using concurrent marking worker threads.
2383   virtual void execute(ProcessTask& task);
2384   virtual void execute(EnqueueTask& task);
2385 };
2386 
2387 class G1CMRefProcTaskProxy: public AbstractGangTask {
2388   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2389   ProcessTask&     _proc_task;
2390   G1CollectedHeap* _g1h;
2391   ConcurrentMark*  _cm;
2392 
2393 public:
2394   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2395                      G1CollectedHeap* g1h,
2396                      ConcurrentMark* cm) :
2397     AbstractGangTask("Process reference objects in parallel"),
2398     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2399     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2400     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2401   }
2402 
2403   virtual void work(uint worker_id) {
2404     ResourceMark rm;
2405     HandleMark hm;
2406     CMTask* task = _cm->task(worker_id);
2407     G1CMIsAliveClosure g1_is_alive(_g1h);
2408     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2409     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2410 
2411     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2412   }
2413 };
2414 
2415 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2416   assert(_workers != NULL, "Need parallel worker threads.");
2417   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2418 
2419   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2420 
2421   // We need to reset the concurrency level before each
2422   // proxy task execution, so that the termination protocol
2423   // and overflow handling in CMTask::do_marking_step() knows
2424   // how many workers to wait for.
2425   _cm->set_concurrency(_active_workers);
2426   _g1h->set_par_threads(_active_workers);
2427   _workers->run_task(&proc_task_proxy);
2428   _g1h->set_par_threads(0);
2429 }
2430 
2431 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2432   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2433   EnqueueTask& _enq_task;
2434 
2435 public:
2436   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2437     AbstractGangTask("Enqueue reference objects in parallel"),
2438     _enq_task(enq_task) { }
2439 
2440   virtual void work(uint worker_id) {
2441     _enq_task.work(worker_id);
2442   }
2443 };
2444 
2445 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2446   assert(_workers != NULL, "Need parallel worker threads.");
2447   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2448 
2449   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2450 
2451   // Not strictly necessary but...
2452   //
2453   // We need to reset the concurrency level before each
2454   // proxy task execution, so that the termination protocol
2455   // and overflow handling in CMTask::do_marking_step() knows
2456   // how many workers to wait for.
2457   _cm->set_concurrency(_active_workers);
2458   _g1h->set_par_threads(_active_workers);
2459   _workers->run_task(&enq_task_proxy);
2460   _g1h->set_par_threads(0);
2461 }
2462 
2463 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2464   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2465 }
2466 
2467 // Helper class to get rid of some boilerplate code.
2468 class G1RemarkGCTraceTime : public GCTraceTime {
2469   static bool doit_and_prepend(bool doit) {
2470     if (doit) {
2471       gclog_or_tty->put(' ');
2472     }
2473     return doit;
2474   }
2475 
2476  public:
2477   G1RemarkGCTraceTime(const char* title, bool doit)
2478     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
2479         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
2480   }
2481 };
2482 
2483 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2484   if (has_overflown()) {
2485     // Skip processing the discovered references if we have
2486     // overflown the global marking stack. Reference objects
2487     // only get discovered once so it is OK to not
2488     // de-populate the discovered reference lists. We could have,
2489     // but the only benefit would be that, when marking restarts,
2490     // less reference objects are discovered.
2491     return;
2492   }
2493 
2494   ResourceMark rm;
2495   HandleMark   hm;
2496 
2497   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2498 
2499   // Is alive closure.
2500   G1CMIsAliveClosure g1_is_alive(g1h);
2501 
2502   // Inner scope to exclude the cleaning of the string and symbol
2503   // tables from the displayed time.
2504   {
2505     if (G1Log::finer()) {
2506       gclog_or_tty->put(' ');
2507     }
2508     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2509 
2510     ReferenceProcessor* rp = g1h->ref_processor_cm();
2511 
2512     // See the comment in G1CollectedHeap::ref_processing_init()
2513     // about how reference processing currently works in G1.
2514 
2515     // Set the soft reference policy
2516     rp->setup_policy(clear_all_soft_refs);
2517     assert(_markStack.isEmpty(), "mark stack should be empty");
2518 
2519     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2520     // in serial reference processing. Note these closures are also
2521     // used for serially processing (by the the current thread) the
2522     // JNI references during parallel reference processing.
2523     //
2524     // These closures do not need to synchronize with the worker
2525     // threads involved in parallel reference processing as these
2526     // instances are executed serially by the current thread (e.g.
2527     // reference processing is not multi-threaded and is thus
2528     // performed by the current thread instead of a gang worker).
2529     //
2530     // The gang tasks involved in parallel reference procssing create
2531     // their own instances of these closures, which do their own
2532     // synchronization among themselves.
2533     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2534     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2535 
2536     // We need at least one active thread. If reference processing
2537     // is not multi-threaded we use the current (VMThread) thread,
2538     // otherwise we use the work gang from the G1CollectedHeap and
2539     // we utilize all the worker threads we can.
2540     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2541     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2542     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2543 
2544     // Parallel processing task executor.
2545     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2546                                               g1h->workers(), active_workers);
2547     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2548 
2549     // Set the concurrency level. The phase was already set prior to
2550     // executing the remark task.
2551     set_concurrency(active_workers);
2552 
2553     // Set the degree of MT processing here.  If the discovery was done MT,
2554     // the number of threads involved during discovery could differ from
2555     // the number of active workers.  This is OK as long as the discovered
2556     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2557     rp->set_active_mt_degree(active_workers);
2558 
2559     // Process the weak references.
2560     const ReferenceProcessorStats& stats =
2561         rp->process_discovered_references(&g1_is_alive,
2562                                           &g1_keep_alive,
2563                                           &g1_drain_mark_stack,
2564                                           executor,
2565                                           g1h->gc_timer_cm(),
2566                                           concurrent_gc_id());
2567     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2568 
2569     // The do_oop work routines of the keep_alive and drain_marking_stack
2570     // oop closures will set the has_overflown flag if we overflow the
2571     // global marking stack.
2572 
2573     assert(_markStack.overflow() || _markStack.isEmpty(),
2574             "mark stack should be empty (unless it overflowed)");
2575 
2576     if (_markStack.overflow()) {
2577       // This should have been done already when we tried to push an
2578       // entry on to the global mark stack. But let's do it again.
2579       set_has_overflown();
2580     }
2581 
2582     assert(rp->num_q() == active_workers, "why not");
2583 
2584     rp->enqueue_discovered_references(executor);
2585 
2586     rp->verify_no_references_recorded();
2587     assert(!rp->discovery_enabled(), "Post condition");
2588   }
2589 
2590   if (has_overflown()) {
2591     // We can not trust g1_is_alive if the marking stack overflowed
2592     return;
2593   }
2594 
2595   assert(_markStack.isEmpty(), "Marking should have completed");
2596 
2597   // Unload Klasses, String, Symbols, Code Cache, etc.
2598   {
2599     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
2600 
2601     if (ClassUnloadingWithConcurrentMark) {
2602       bool purged_classes;
2603 
2604       {
2605         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
2606         purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
2607       }
2608 
2609       {
2610         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
2611         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2612       }
2613     }
2614 
2615     if (G1StringDedup::is_enabled()) {
2616       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
2617       G1StringDedup::unlink(&g1_is_alive);
2618     }
2619   }
2620 }
2621 
2622 void ConcurrentMark::swapMarkBitMaps() {
2623   CMBitMapRO* temp = _prevMarkBitMap;
2624   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2625   _nextMarkBitMap  = (CMBitMap*)  temp;
2626 }
2627 
2628 class CMObjectClosure;
2629 
2630 // Closure for iterating over objects, currently only used for
2631 // processing SATB buffers.
2632 class CMObjectClosure : public ObjectClosure {
2633 private:
2634   CMTask* _task;
2635 
2636 public:
2637   void do_object(oop obj) {
2638     _task->deal_with_reference(obj);
2639   }
2640 
2641   CMObjectClosure(CMTask* task) : _task(task) { }
2642 };
2643 
2644 class G1RemarkThreadsClosure : public ThreadClosure {
2645   CMObjectClosure _cm_obj;
2646   G1CMOopClosure _cm_cl;
2647   MarkingCodeBlobClosure _code_cl;
2648   int _thread_parity;
2649   bool _is_par;
2650 
2651  public:
2652   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
2653     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2654     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
2655 
2656   void do_thread(Thread* thread) {
2657     if (thread->is_Java_thread()) {
2658       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2659         JavaThread* jt = (JavaThread*)thread;
2660 
2661         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2662         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2663         // * Alive if on the stack of an executing method
2664         // * Weakly reachable otherwise
2665         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2666         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2667         jt->nmethods_do(&_code_cl);
2668 
2669         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2670       }
2671     } else if (thread->is_VM_thread()) {
2672       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2673         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2674       }
2675     }
2676   }
2677 };
2678 
2679 class CMRemarkTask: public AbstractGangTask {
2680 private:
2681   ConcurrentMark* _cm;
2682   bool            _is_serial;
2683 public:
2684   void work(uint worker_id) {
2685     // Since all available tasks are actually started, we should
2686     // only proceed if we're supposed to be actived.
2687     if (worker_id < _cm->active_tasks()) {
2688       CMTask* task = _cm->task(worker_id);
2689       task->record_start_time();
2690       {
2691         ResourceMark rm;
2692         HandleMark hm;
2693 
2694         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
2695         Threads::threads_do(&threads_f);
2696       }
2697 
2698       do {
2699         task->do_marking_step(1000000000.0 /* something very large */,
2700                               true         /* do_termination       */,
2701                               _is_serial);
2702       } while (task->has_aborted() && !_cm->has_overflown());
2703       // If we overflow, then we do not want to restart. We instead
2704       // want to abort remark and do concurrent marking again.
2705       task->record_end_time();
2706     }
2707   }
2708 
2709   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2710     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2711     _cm->terminator()->reset_for_reuse(active_workers);
2712   }
2713 };
2714 
2715 void ConcurrentMark::checkpointRootsFinalWork() {
2716   ResourceMark rm;
2717   HandleMark   hm;
2718   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2719 
2720   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
2721 
2722   g1h->ensure_parsability(false);
2723 
2724   if (G1CollectedHeap::use_parallel_gc_threads()) {
2725     G1CollectedHeap::StrongRootsScope srs(g1h);
2726     // this is remark, so we'll use up all active threads
2727     uint active_workers = g1h->workers()->active_workers();
2728     if (active_workers == 0) {
2729       assert(active_workers > 0, "Should have been set earlier");
2730       active_workers = (uint) ParallelGCThreads;
2731       g1h->workers()->set_active_workers(active_workers);
2732     }
2733     set_concurrency_and_phase(active_workers, false /* concurrent */);
2734     // Leave _parallel_marking_threads at it's
2735     // value originally calculated in the ConcurrentMark
2736     // constructor and pass values of the active workers
2737     // through the gang in the task.
2738 
2739     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2740     // We will start all available threads, even if we decide that the
2741     // active_workers will be fewer. The extra ones will just bail out
2742     // immediately.
2743     g1h->set_par_threads(active_workers);
2744     g1h->workers()->run_task(&remarkTask);
2745     g1h->set_par_threads(0);
2746   } else {
2747     G1CollectedHeap::StrongRootsScope srs(g1h);
2748     uint active_workers = 1;
2749     set_concurrency_and_phase(active_workers, false /* concurrent */);
2750 
2751     // Note - if there's no work gang then the VMThread will be
2752     // the thread to execute the remark - serially. We have
2753     // to pass true for the is_serial parameter so that
2754     // CMTask::do_marking_step() doesn't enter the sync
2755     // barriers in the event of an overflow. Doing so will
2756     // cause an assert that the current thread is not a
2757     // concurrent GC thread.
2758     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2759     remarkTask.work(0);
2760   }
2761   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2762   guarantee(has_overflown() ||
2763             satb_mq_set.completed_buffers_num() == 0,
2764             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2765                     BOOL_TO_STR(has_overflown()),
2766                     satb_mq_set.completed_buffers_num()));
2767 
2768   print_stats();
2769 }
2770 
2771 #ifndef PRODUCT
2772 
2773 class PrintReachableOopClosure: public OopClosure {
2774 private:
2775   G1CollectedHeap* _g1h;
2776   outputStream*    _out;
2777   VerifyOption     _vo;
2778   bool             _all;
2779 
2780 public:
2781   PrintReachableOopClosure(outputStream* out,
2782                            VerifyOption  vo,
2783                            bool          all) :
2784     _g1h(G1CollectedHeap::heap()),
2785     _out(out), _vo(vo), _all(all) { }
2786 
2787   void do_oop(narrowOop* p) { do_oop_work(p); }
2788   void do_oop(      oop* p) { do_oop_work(p); }
2789 
2790   template <class T> void do_oop_work(T* p) {
2791     oop         obj = oopDesc::load_decode_heap_oop(p);
2792     const char* str = NULL;
2793     const char* str2 = "";
2794 
2795     if (obj == NULL) {
2796       str = "";
2797     } else if (!_g1h->is_in_g1_reserved(obj)) {
2798       str = " O";
2799     } else {
2800       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2801       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2802       bool marked = _g1h->is_marked(obj, _vo);
2803 
2804       if (over_tams) {
2805         str = " >";
2806         if (marked) {
2807           str2 = " AND MARKED";
2808         }
2809       } else if (marked) {
2810         str = " M";
2811       } else {
2812         str = " NOT";
2813       }
2814     }
2815 
2816     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2817                    p2i(p), p2i((void*) obj), str, str2);
2818   }
2819 };
2820 
2821 class PrintReachableObjectClosure : public ObjectClosure {
2822 private:
2823   G1CollectedHeap* _g1h;
2824   outputStream*    _out;
2825   VerifyOption     _vo;
2826   bool             _all;
2827   HeapRegion*      _hr;
2828 
2829 public:
2830   PrintReachableObjectClosure(outputStream* out,
2831                               VerifyOption  vo,
2832                               bool          all,
2833                               HeapRegion*   hr) :
2834     _g1h(G1CollectedHeap::heap()),
2835     _out(out), _vo(vo), _all(all), _hr(hr) { }
2836 
2837   void do_object(oop o) {
2838     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2839     bool marked = _g1h->is_marked(o, _vo);
2840     bool print_it = _all || over_tams || marked;
2841 
2842     if (print_it) {
2843       _out->print_cr(" "PTR_FORMAT"%s",
2844                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2845       PrintReachableOopClosure oopCl(_out, _vo, _all);
2846       o->oop_iterate_no_header(&oopCl);
2847     }
2848   }
2849 };
2850 
2851 class PrintReachableRegionClosure : public HeapRegionClosure {
2852 private:
2853   G1CollectedHeap* _g1h;
2854   outputStream*    _out;
2855   VerifyOption     _vo;
2856   bool             _all;
2857 
2858 public:
2859   bool doHeapRegion(HeapRegion* hr) {
2860     HeapWord* b = hr->bottom();
2861     HeapWord* e = hr->end();
2862     HeapWord* t = hr->top();
2863     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2864     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2865                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2866     _out->cr();
2867 
2868     HeapWord* from = b;
2869     HeapWord* to   = t;
2870 
2871     if (to > from) {
2872       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2873       _out->cr();
2874       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2875       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2876       _out->cr();
2877     }
2878 
2879     return false;
2880   }
2881 
2882   PrintReachableRegionClosure(outputStream* out,
2883                               VerifyOption  vo,
2884                               bool          all) :
2885     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2886 };
2887 
2888 void ConcurrentMark::print_reachable(const char* str,
2889                                      VerifyOption vo,
2890                                      bool all) {
2891   gclog_or_tty->cr();
2892   gclog_or_tty->print_cr("== Doing heap dump... ");
2893 
2894   if (G1PrintReachableBaseFile == NULL) {
2895     gclog_or_tty->print_cr("  #### error: no base file defined");
2896     return;
2897   }
2898 
2899   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2900       (JVM_MAXPATHLEN - 1)) {
2901     gclog_or_tty->print_cr("  #### error: file name too long");
2902     return;
2903   }
2904 
2905   char file_name[JVM_MAXPATHLEN];
2906   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2907   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2908 
2909   fileStream fout(file_name);
2910   if (!fout.is_open()) {
2911     gclog_or_tty->print_cr("  #### error: could not open file");
2912     return;
2913   }
2914 
2915   outputStream* out = &fout;
2916   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2917   out->cr();
2918 
2919   out->print_cr("--- ITERATING OVER REGIONS");
2920   out->cr();
2921   PrintReachableRegionClosure rcl(out, vo, all);
2922   _g1h->heap_region_iterate(&rcl);
2923   out->cr();
2924 
2925   gclog_or_tty->print_cr("  done");
2926   gclog_or_tty->flush();
2927 }
2928 
2929 #endif // PRODUCT
2930 
2931 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2932   // Note we are overriding the read-only view of the prev map here, via
2933   // the cast.
2934   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2935 }
2936 
2937 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2938   _nextMarkBitMap->clearRange(mr);
2939 }
2940 
2941 HeapRegion*
2942 ConcurrentMark::claim_region(uint worker_id) {
2943   // "checkpoint" the finger
2944   HeapWord* finger = _finger;
2945 
2946   // _heap_end will not change underneath our feet; it only changes at
2947   // yield points.
2948   while (finger < _heap_end) {
2949     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2950 
2951     // Note on how this code handles humongous regions. In the
2952     // normal case the finger will reach the start of a "starts
2953     // humongous" (SH) region. Its end will either be the end of the
2954     // last "continues humongous" (CH) region in the sequence, or the
2955     // standard end of the SH region (if the SH is the only region in
2956     // the sequence). That way claim_region() will skip over the CH
2957     // regions. However, there is a subtle race between a CM thread
2958     // executing this method and a mutator thread doing a humongous
2959     // object allocation. The two are not mutually exclusive as the CM
2960     // thread does not need to hold the Heap_lock when it gets
2961     // here. So there is a chance that claim_region() will come across
2962     // a free region that's in the progress of becoming a SH or a CH
2963     // region. In the former case, it will either
2964     //   a) Miss the update to the region's end, in which case it will
2965     //      visit every subsequent CH region, will find their bitmaps
2966     //      empty, and do nothing, or
2967     //   b) Will observe the update of the region's end (in which case
2968     //      it will skip the subsequent CH regions).
2969     // If it comes across a region that suddenly becomes CH, the
2970     // scenario will be similar to b). So, the race between
2971     // claim_region() and a humongous object allocation might force us
2972     // to do a bit of unnecessary work (due to some unnecessary bitmap
2973     // iterations) but it should not introduce and correctness issues.
2974     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2975 
2976     // Above heap_region_containing_raw may return NULL as we always scan claim
2977     // until the end of the heap. In this case, just jump to the next region.
2978     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2979 
2980     // Is the gap between reading the finger and doing the CAS too long?
2981     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2982     if (res == finger && curr_region != NULL) {
2983       // we succeeded
2984       HeapWord*   bottom        = curr_region->bottom();
2985       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2986 
2987       if (verbose_low()) {
2988         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2989                                "["PTR_FORMAT", "PTR_FORMAT"), "
2990                                "limit = "PTR_FORMAT,
2991                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2992       }
2993 
2994       // notice that _finger == end cannot be guaranteed here since,
2995       // someone else might have moved the finger even further
2996       assert(_finger >= end, "the finger should have moved forward");
2997 
2998       if (verbose_low()) {
2999         gclog_or_tty->print_cr("[%u] we were successful with region = "
3000                                PTR_FORMAT, worker_id, p2i(curr_region));
3001       }
3002 
3003       if (limit > bottom) {
3004         if (verbose_low()) {
3005           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
3006                                  "returning it ", worker_id, p2i(curr_region));
3007         }
3008         return curr_region;
3009       } else {
3010         assert(limit == bottom,
3011                "the region limit should be at bottom");
3012         if (verbose_low()) {
3013           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3014                                  "returning NULL", worker_id, p2i(curr_region));
3015         }
3016         // we return NULL and the caller should try calling
3017         // claim_region() again.
3018         return NULL;
3019       }
3020     } else {
3021       assert(_finger > finger, "the finger should have moved forward");
3022       if (verbose_low()) {
3023         if (curr_region == NULL) {
3024           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
3025                                  "global finger = "PTR_FORMAT", "
3026                                  "our finger = "PTR_FORMAT,
3027                                  worker_id, p2i(_finger), p2i(finger));
3028         } else {
3029           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3030                                  "global finger = "PTR_FORMAT", "
3031                                  "our finger = "PTR_FORMAT,
3032                                  worker_id, p2i(_finger), p2i(finger));
3033         }
3034       }
3035 
3036       // read it again
3037       finger = _finger;
3038     }
3039   }
3040 
3041   return NULL;
3042 }
3043 
3044 #ifndef PRODUCT
3045 enum VerifyNoCSetOopsPhase {
3046   VerifyNoCSetOopsStack,
3047   VerifyNoCSetOopsQueues,
3048   VerifyNoCSetOopsSATBCompleted,
3049   VerifyNoCSetOopsSATBThread
3050 };
3051 
3052 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
3053 private:
3054   G1CollectedHeap* _g1h;
3055   VerifyNoCSetOopsPhase _phase;
3056   int _info;
3057 
3058   const char* phase_str() {
3059     switch (_phase) {
3060     case VerifyNoCSetOopsStack:         return "Stack";
3061     case VerifyNoCSetOopsQueues:        return "Queue";
3062     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
3063     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
3064     default:                            ShouldNotReachHere();
3065     }
3066     return NULL;
3067   }
3068 
3069   void do_object_work(oop obj) {
3070     guarantee(!_g1h->obj_in_cs(obj),
3071               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3072                       p2i((void*) obj), phase_str(), _info));
3073   }
3074 
3075 public:
3076   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3077 
3078   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3079     _phase = phase;
3080     _info = info;
3081   }
3082 
3083   virtual void do_oop(oop* p) {
3084     oop obj = oopDesc::load_decode_heap_oop(p);
3085     do_object_work(obj);
3086   }
3087 
3088   virtual void do_oop(narrowOop* p) {
3089     // We should not come across narrow oops while scanning marking
3090     // stacks and SATB buffers.
3091     ShouldNotReachHere();
3092   }
3093 
3094   virtual void do_object(oop obj) {
3095     do_object_work(obj);
3096   }
3097 };
3098 
3099 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3100                                          bool verify_enqueued_buffers,
3101                                          bool verify_thread_buffers,
3102                                          bool verify_fingers) {
3103   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3104   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3105     return;
3106   }
3107 
3108   VerifyNoCSetOopsClosure cl;
3109 
3110   if (verify_stacks) {
3111     // Verify entries on the global mark stack
3112     cl.set_phase(VerifyNoCSetOopsStack);
3113     _markStack.oops_do(&cl);
3114 
3115     // Verify entries on the task queues
3116     for (uint i = 0; i < _max_worker_id; i += 1) {
3117       cl.set_phase(VerifyNoCSetOopsQueues, i);
3118       CMTaskQueue* queue = _task_queues->queue(i);
3119       queue->oops_do(&cl);
3120     }
3121   }
3122 
3123   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3124 
3125   // Verify entries on the enqueued SATB buffers
3126   if (verify_enqueued_buffers) {
3127     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3128     satb_qs.iterate_completed_buffers_read_only(&cl);
3129   }
3130 
3131   // Verify entries on the per-thread SATB buffers
3132   if (verify_thread_buffers) {
3133     cl.set_phase(VerifyNoCSetOopsSATBThread);
3134     satb_qs.iterate_thread_buffers_read_only(&cl);
3135   }
3136 
3137   if (verify_fingers) {
3138     // Verify the global finger
3139     HeapWord* global_finger = finger();
3140     if (global_finger != NULL && global_finger < _heap_end) {
3141       // The global finger always points to a heap region boundary. We
3142       // use heap_region_containing_raw() to get the containing region
3143       // given that the global finger could be pointing to a free region
3144       // which subsequently becomes continues humongous. If that
3145       // happens, heap_region_containing() will return the bottom of the
3146       // corresponding starts humongous region and the check below will
3147       // not hold any more.
3148       // Since we always iterate over all regions, we might get a NULL HeapRegion
3149       // here.
3150       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3151       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3152                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3153                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3154     }
3155 
3156     // Verify the task fingers
3157     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3158     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3159       CMTask* task = _tasks[i];
3160       HeapWord* task_finger = task->finger();
3161       if (task_finger != NULL && task_finger < _heap_end) {
3162         // See above note on the global finger verification.
3163         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3164         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3165                   !task_hr->in_collection_set(),
3166                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3167                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3168       }
3169     }
3170   }
3171 }
3172 #endif // PRODUCT
3173 
3174 // Aggregate the counting data that was constructed concurrently
3175 // with marking.
3176 class AggregateCountDataHRClosure: public HeapRegionClosure {
3177   G1CollectedHeap* _g1h;
3178   ConcurrentMark* _cm;
3179   CardTableModRefBS* _ct_bs;
3180   BitMap* _cm_card_bm;
3181   uint _max_worker_id;
3182 
3183  public:
3184   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3185                               BitMap* cm_card_bm,
3186                               uint max_worker_id) :
3187     _g1h(g1h), _cm(g1h->concurrent_mark()),
3188     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3189     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3190 
3191   bool doHeapRegion(HeapRegion* hr) {
3192     if (hr->continuesHumongous()) {
3193       // We will ignore these here and process them when their
3194       // associated "starts humongous" region is processed.
3195       // Note that we cannot rely on their associated
3196       // "starts humongous" region to have their bit set to 1
3197       // since, due to the region chunking in the parallel region
3198       // iteration, a "continues humongous" region might be visited
3199       // before its associated "starts humongous".
3200       return false;
3201     }
3202 
3203     HeapWord* start = hr->bottom();
3204     HeapWord* limit = hr->next_top_at_mark_start();
3205     HeapWord* end = hr->end();
3206 
3207     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3208            err_msg("Preconditions not met - "
3209                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3210                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3211                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3212 
3213     assert(hr->next_marked_bytes() == 0, "Precondition");
3214 
3215     if (start == limit) {
3216       // NTAMS of this region has not been set so nothing to do.
3217       return false;
3218     }
3219 
3220     // 'start' should be in the heap.
3221     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3222     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
3223     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3224 
3225     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3226     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3227     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3228 
3229     // If ntams is not card aligned then we bump card bitmap index
3230     // for limit so that we get the all the cards spanned by
3231     // the object ending at ntams.
3232     // Note: if this is the last region in the heap then ntams
3233     // could be actually just beyond the end of the the heap;
3234     // limit_idx will then  correspond to a (non-existent) card
3235     // that is also outside the heap.
3236     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3237       limit_idx += 1;
3238     }
3239 
3240     assert(limit_idx <= end_idx, "or else use atomics");
3241 
3242     // Aggregate the "stripe" in the count data associated with hr.
3243     uint hrm_index = hr->hrm_index();
3244     size_t marked_bytes = 0;
3245 
3246     for (uint i = 0; i < _max_worker_id; i += 1) {
3247       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3248       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3249 
3250       // Fetch the marked_bytes in this region for task i and
3251       // add it to the running total for this region.
3252       marked_bytes += marked_bytes_array[hrm_index];
3253 
3254       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3255       // into the global card bitmap.
3256       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3257 
3258       while (scan_idx < limit_idx) {
3259         assert(task_card_bm->at(scan_idx) == true, "should be");
3260         _cm_card_bm->set_bit(scan_idx);
3261         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3262 
3263         // BitMap::get_next_one_offset() can handle the case when
3264         // its left_offset parameter is greater than its right_offset
3265         // parameter. It does, however, have an early exit if
3266         // left_offset == right_offset. So let's limit the value
3267         // passed in for left offset here.
3268         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3269         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3270       }
3271     }
3272 
3273     // Update the marked bytes for this region.
3274     hr->add_to_marked_bytes(marked_bytes);
3275 
3276     // Next heap region
3277     return false;
3278   }
3279 };
3280 
3281 class G1AggregateCountDataTask: public AbstractGangTask {
3282 protected:
3283   G1CollectedHeap* _g1h;
3284   ConcurrentMark* _cm;
3285   BitMap* _cm_card_bm;
3286   uint _max_worker_id;
3287   int _active_workers;
3288 
3289 public:
3290   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3291                            ConcurrentMark* cm,
3292                            BitMap* cm_card_bm,
3293                            uint max_worker_id,
3294                            int n_workers) :
3295     AbstractGangTask("Count Aggregation"),
3296     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3297     _max_worker_id(max_worker_id),
3298     _active_workers(n_workers) { }
3299 
3300   void work(uint worker_id) {
3301     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3302 
3303     if (G1CollectedHeap::use_parallel_gc_threads()) {
3304       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3305                                             _active_workers,
3306                                             HeapRegion::AggregateCountClaimValue);
3307     } else {
3308       _g1h->heap_region_iterate(&cl);
3309     }
3310   }
3311 };
3312 
3313 
3314 void ConcurrentMark::aggregate_count_data() {
3315   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3316                         _g1h->workers()->active_workers() :
3317                         1);
3318 
3319   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3320                                            _max_worker_id, n_workers);
3321 
3322   if (G1CollectedHeap::use_parallel_gc_threads()) {
3323     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3324            "sanity check");
3325     _g1h->set_par_threads(n_workers);
3326     _g1h->workers()->run_task(&g1_par_agg_task);
3327     _g1h->set_par_threads(0);
3328 
3329     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3330            "sanity check");
3331     _g1h->reset_heap_region_claim_values();
3332   } else {
3333     g1_par_agg_task.work(0);
3334   }
3335   _g1h->allocation_context_stats().update_at_remark();
3336 }
3337 
3338 // Clear the per-worker arrays used to store the per-region counting data
3339 void ConcurrentMark::clear_all_count_data() {
3340   // Clear the global card bitmap - it will be filled during
3341   // liveness count aggregation (during remark) and the
3342   // final counting task.
3343   _card_bm.clear();
3344 
3345   // Clear the global region bitmap - it will be filled as part
3346   // of the final counting task.
3347   _region_bm.clear();
3348 
3349   uint max_regions = _g1h->max_regions();
3350   assert(_max_worker_id > 0, "uninitialized");
3351 
3352   for (uint i = 0; i < _max_worker_id; i += 1) {
3353     BitMap* task_card_bm = count_card_bitmap_for(i);
3354     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3355 
3356     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3357     assert(marked_bytes_array != NULL, "uninitialized");
3358 
3359     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3360     task_card_bm->clear();
3361   }
3362 }
3363 
3364 void ConcurrentMark::print_stats() {
3365   if (verbose_stats()) {
3366     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3367     for (size_t i = 0; i < _active_tasks; ++i) {
3368       _tasks[i]->print_stats();
3369       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3370     }
3371   }
3372 }
3373 
3374 // abandon current marking iteration due to a Full GC
3375 void ConcurrentMark::abort() {
3376   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3377   // concurrent bitmap clearing.
3378   _nextMarkBitMap->clearAll();
3379 
3380   // Note we cannot clear the previous marking bitmap here
3381   // since VerifyDuringGC verifies the objects marked during
3382   // a full GC against the previous bitmap.
3383 
3384   // Clear the liveness counting data
3385   clear_all_count_data();
3386   // Empty mark stack
3387   reset_marking_state();
3388   for (uint i = 0; i < _max_worker_id; ++i) {
3389     _tasks[i]->clear_region_fields();
3390   }
3391   _first_overflow_barrier_sync.abort();
3392   _second_overflow_barrier_sync.abort();
3393   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3394   if (!gc_id.is_undefined()) {
3395     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3396     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3397     _aborted_gc_id = gc_id;
3398    }
3399   _has_aborted = true;
3400 
3401   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3402   satb_mq_set.abandon_partial_marking();
3403   // This can be called either during or outside marking, we'll read
3404   // the expected_active value from the SATB queue set.
3405   satb_mq_set.set_active_all_threads(
3406                                  false, /* new active value */
3407                                  satb_mq_set.is_active() /* expected_active */);
3408 
3409   _g1h->trace_heap_after_concurrent_cycle();
3410   _g1h->register_concurrent_cycle_end();
3411 }
3412 
3413 const GCId& ConcurrentMark::concurrent_gc_id() {
3414   if (has_aborted()) {
3415     return _aborted_gc_id;
3416   }
3417   return _g1h->gc_tracer_cm()->gc_id();
3418 }
3419 
3420 static void print_ms_time_info(const char* prefix, const char* name,
3421                                NumberSeq& ns) {
3422   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3423                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3424   if (ns.num() > 0) {
3425     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3426                            prefix, ns.sd(), ns.maximum());
3427   }
3428 }
3429 
3430 void ConcurrentMark::print_summary_info() {
3431   gclog_or_tty->print_cr(" Concurrent marking:");
3432   print_ms_time_info("  ", "init marks", _init_times);
3433   print_ms_time_info("  ", "remarks", _remark_times);
3434   {
3435     print_ms_time_info("     ", "final marks", _remark_mark_times);
3436     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3437 
3438   }
3439   print_ms_time_info("  ", "cleanups", _cleanup_times);
3440   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3441                          _total_counting_time,
3442                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3443                           (double)_cleanup_times.num()
3444                          : 0.0));
3445   if (G1ScrubRemSets) {
3446     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3447                            _total_rs_scrub_time,
3448                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3449                             (double)_cleanup_times.num()
3450                            : 0.0));
3451   }
3452   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3453                          (_init_times.sum() + _remark_times.sum() +
3454                           _cleanup_times.sum())/1000.0);
3455   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3456                 "(%8.2f s marking).",
3457                 cmThread()->vtime_accum(),
3458                 cmThread()->vtime_mark_accum());
3459 }
3460 
3461 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3462   if (use_parallel_marking_threads()) {
3463     _parallel_workers->print_worker_threads_on(st);
3464   }
3465 }
3466 
3467 void ConcurrentMark::print_on_error(outputStream* st) const {
3468   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3469       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3470   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3471   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3472 }
3473 
3474 // We take a break if someone is trying to stop the world.
3475 bool ConcurrentMark::do_yield_check(uint worker_id) {
3476   if (SuspendibleThreadSet::should_yield()) {
3477     if (worker_id == 0) {
3478       _g1h->g1_policy()->record_concurrent_pause();
3479     }
3480     SuspendibleThreadSet::yield();
3481     return true;
3482   } else {
3483     return false;
3484   }
3485 }
3486 
3487 #ifndef PRODUCT
3488 // for debugging purposes
3489 void ConcurrentMark::print_finger() {
3490   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3491                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3492   for (uint i = 0; i < _max_worker_id; ++i) {
3493     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3494   }
3495   gclog_or_tty->cr();
3496 }
3497 #endif
3498 
3499 void CMTask::scan_object(oop obj) {
3500   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3501 
3502   if (_cm->verbose_high()) {
3503     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3504                            _worker_id, p2i((void*) obj));
3505   }
3506 
3507   size_t obj_size = obj->size();
3508   _words_scanned += obj_size;
3509 
3510   obj->oop_iterate(_cm_oop_closure);
3511   statsOnly( ++_objs_scanned );
3512   check_limits();
3513 }
3514 
3515 // Closure for iteration over bitmaps
3516 class CMBitMapClosure : public BitMapClosure {
3517 private:
3518   // the bitmap that is being iterated over
3519   CMBitMap*                   _nextMarkBitMap;
3520   ConcurrentMark*             _cm;
3521   CMTask*                     _task;
3522 
3523 public:
3524   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3525     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3526 
3527   bool do_bit(size_t offset) {
3528     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3529     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3530     assert( addr < _cm->finger(), "invariant");
3531 
3532     statsOnly( _task->increase_objs_found_on_bitmap() );
3533     assert(addr >= _task->finger(), "invariant");
3534 
3535     // We move that task's local finger along.
3536     _task->move_finger_to(addr);
3537 
3538     _task->scan_object(oop(addr));
3539     // we only partially drain the local queue and global stack
3540     _task->drain_local_queue(true);
3541     _task->drain_global_stack(true);
3542 
3543     // if the has_aborted flag has been raised, we need to bail out of
3544     // the iteration
3545     return !_task->has_aborted();
3546   }
3547 };
3548 
3549 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3550                                ConcurrentMark* cm,
3551                                CMTask* task)
3552   : _g1h(g1h), _cm(cm), _task(task) {
3553   assert(_ref_processor == NULL, "should be initialized to NULL");
3554 
3555   if (G1UseConcMarkReferenceProcessing) {
3556     _ref_processor = g1h->ref_processor_cm();
3557     assert(_ref_processor != NULL, "should not be NULL");
3558   }
3559 }
3560 
3561 void CMTask::setup_for_region(HeapRegion* hr) {
3562   assert(hr != NULL,
3563         "claim_region() should have filtered out NULL regions");
3564   assert(!hr->continuesHumongous(),
3565         "claim_region() should have filtered out continues humongous regions");
3566 
3567   if (_cm->verbose_low()) {
3568     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3569                            _worker_id, p2i(hr));
3570   }
3571 
3572   _curr_region  = hr;
3573   _finger       = hr->bottom();
3574   update_region_limit();
3575 }
3576 
3577 void CMTask::update_region_limit() {
3578   HeapRegion* hr            = _curr_region;
3579   HeapWord* bottom          = hr->bottom();
3580   HeapWord* limit           = hr->next_top_at_mark_start();
3581 
3582   if (limit == bottom) {
3583     if (_cm->verbose_low()) {
3584       gclog_or_tty->print_cr("[%u] found an empty region "
3585                              "["PTR_FORMAT", "PTR_FORMAT")",
3586                              _worker_id, p2i(bottom), p2i(limit));
3587     }
3588     // The region was collected underneath our feet.
3589     // We set the finger to bottom to ensure that the bitmap
3590     // iteration that will follow this will not do anything.
3591     // (this is not a condition that holds when we set the region up,
3592     // as the region is not supposed to be empty in the first place)
3593     _finger = bottom;
3594   } else if (limit >= _region_limit) {
3595     assert(limit >= _finger, "peace of mind");
3596   } else {
3597     assert(limit < _region_limit, "only way to get here");
3598     // This can happen under some pretty unusual circumstances.  An
3599     // evacuation pause empties the region underneath our feet (NTAMS
3600     // at bottom). We then do some allocation in the region (NTAMS
3601     // stays at bottom), followed by the region being used as a GC
3602     // alloc region (NTAMS will move to top() and the objects
3603     // originally below it will be grayed). All objects now marked in
3604     // the region are explicitly grayed, if below the global finger,
3605     // and we do not need in fact to scan anything else. So, we simply
3606     // set _finger to be limit to ensure that the bitmap iteration
3607     // doesn't do anything.
3608     _finger = limit;
3609   }
3610 
3611   _region_limit = limit;
3612 }
3613 
3614 void CMTask::giveup_current_region() {
3615   assert(_curr_region != NULL, "invariant");
3616   if (_cm->verbose_low()) {
3617     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3618                            _worker_id, p2i(_curr_region));
3619   }
3620   clear_region_fields();
3621 }
3622 
3623 void CMTask::clear_region_fields() {
3624   // Values for these three fields that indicate that we're not
3625   // holding on to a region.
3626   _curr_region   = NULL;
3627   _finger        = NULL;
3628   _region_limit  = NULL;
3629 }
3630 
3631 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3632   if (cm_oop_closure == NULL) {
3633     assert(_cm_oop_closure != NULL, "invariant");
3634   } else {
3635     assert(_cm_oop_closure == NULL, "invariant");
3636   }
3637   _cm_oop_closure = cm_oop_closure;
3638 }
3639 
3640 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3641   guarantee(nextMarkBitMap != NULL, "invariant");
3642 
3643   if (_cm->verbose_low()) {
3644     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3645   }
3646 
3647   _nextMarkBitMap                = nextMarkBitMap;
3648   clear_region_fields();
3649 
3650   _calls                         = 0;
3651   _elapsed_time_ms               = 0.0;
3652   _termination_time_ms           = 0.0;
3653   _termination_start_time_ms     = 0.0;
3654 
3655 #if _MARKING_STATS_
3656   _local_pushes                  = 0;
3657   _local_pops                    = 0;
3658   _local_max_size                = 0;
3659   _objs_scanned                  = 0;
3660   _global_pushes                 = 0;
3661   _global_pops                   = 0;
3662   _global_max_size               = 0;
3663   _global_transfers_to           = 0;
3664   _global_transfers_from         = 0;
3665   _regions_claimed               = 0;
3666   _objs_found_on_bitmap          = 0;
3667   _satb_buffers_processed        = 0;
3668   _steal_attempts                = 0;
3669   _steals                        = 0;
3670   _aborted                       = 0;
3671   _aborted_overflow              = 0;
3672   _aborted_cm_aborted            = 0;
3673   _aborted_yield                 = 0;
3674   _aborted_timed_out             = 0;
3675   _aborted_satb                  = 0;
3676   _aborted_termination           = 0;
3677 #endif // _MARKING_STATS_
3678 }
3679 
3680 bool CMTask::should_exit_termination() {
3681   regular_clock_call();
3682   // This is called when we are in the termination protocol. We should
3683   // quit if, for some reason, this task wants to abort or the global
3684   // stack is not empty (this means that we can get work from it).
3685   return !_cm->mark_stack_empty() || has_aborted();
3686 }
3687 
3688 void CMTask::reached_limit() {
3689   assert(_words_scanned >= _words_scanned_limit ||
3690          _refs_reached >= _refs_reached_limit ,
3691          "shouldn't have been called otherwise");
3692   regular_clock_call();
3693 }
3694 
3695 void CMTask::regular_clock_call() {
3696   if (has_aborted()) return;
3697 
3698   // First, we need to recalculate the words scanned and refs reached
3699   // limits for the next clock call.
3700   recalculate_limits();
3701 
3702   // During the regular clock call we do the following
3703 
3704   // (1) If an overflow has been flagged, then we abort.
3705   if (_cm->has_overflown()) {
3706     set_has_aborted();
3707     return;
3708   }
3709 
3710   // If we are not concurrent (i.e. we're doing remark) we don't need
3711   // to check anything else. The other steps are only needed during
3712   // the concurrent marking phase.
3713   if (!concurrent()) return;
3714 
3715   // (2) If marking has been aborted for Full GC, then we also abort.
3716   if (_cm->has_aborted()) {
3717     set_has_aborted();
3718     statsOnly( ++_aborted_cm_aborted );
3719     return;
3720   }
3721 
3722   double curr_time_ms = os::elapsedVTime() * 1000.0;
3723 
3724   // (3) If marking stats are enabled, then we update the step history.
3725 #if _MARKING_STATS_
3726   if (_words_scanned >= _words_scanned_limit) {
3727     ++_clock_due_to_scanning;
3728   }
3729   if (_refs_reached >= _refs_reached_limit) {
3730     ++_clock_due_to_marking;
3731   }
3732 
3733   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3734   _interval_start_time_ms = curr_time_ms;
3735   _all_clock_intervals_ms.add(last_interval_ms);
3736 
3737   if (_cm->verbose_medium()) {
3738       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3739                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3740                         _worker_id, last_interval_ms,
3741                         _words_scanned,
3742                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3743                         _refs_reached,
3744                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3745   }
3746 #endif // _MARKING_STATS_
3747 
3748   // (4) We check whether we should yield. If we have to, then we abort.
3749   if (SuspendibleThreadSet::should_yield()) {
3750     // We should yield. To do this we abort the task. The caller is
3751     // responsible for yielding.
3752     set_has_aborted();
3753     statsOnly( ++_aborted_yield );
3754     return;
3755   }
3756 
3757   // (5) We check whether we've reached our time quota. If we have,
3758   // then we abort.
3759   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3760   if (elapsed_time_ms > _time_target_ms) {
3761     set_has_aborted();
3762     _has_timed_out = true;
3763     statsOnly( ++_aborted_timed_out );
3764     return;
3765   }
3766 
3767   // (6) Finally, we check whether there are enough completed STAB
3768   // buffers available for processing. If there are, we abort.
3769   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3770   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3771     if (_cm->verbose_low()) {
3772       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3773                              _worker_id);
3774     }
3775     // we do need to process SATB buffers, we'll abort and restart
3776     // the marking task to do so
3777     set_has_aborted();
3778     statsOnly( ++_aborted_satb );
3779     return;
3780   }
3781 }
3782 
3783 void CMTask::recalculate_limits() {
3784   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3785   _words_scanned_limit      = _real_words_scanned_limit;
3786 
3787   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3788   _refs_reached_limit       = _real_refs_reached_limit;
3789 }
3790 
3791 void CMTask::decrease_limits() {
3792   // This is called when we believe that we're going to do an infrequent
3793   // operation which will increase the per byte scanned cost (i.e. move
3794   // entries to/from the global stack). It basically tries to decrease the
3795   // scanning limit so that the clock is called earlier.
3796 
3797   if (_cm->verbose_medium()) {
3798     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3799   }
3800 
3801   _words_scanned_limit = _real_words_scanned_limit -
3802     3 * words_scanned_period / 4;
3803   _refs_reached_limit  = _real_refs_reached_limit -
3804     3 * refs_reached_period / 4;
3805 }
3806 
3807 void CMTask::move_entries_to_global_stack() {
3808   // local array where we'll store the entries that will be popped
3809   // from the local queue
3810   oop buffer[global_stack_transfer_size];
3811 
3812   int n = 0;
3813   oop obj;
3814   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3815     buffer[n] = obj;
3816     ++n;
3817   }
3818 
3819   if (n > 0) {
3820     // we popped at least one entry from the local queue
3821 
3822     statsOnly( ++_global_transfers_to; _local_pops += n );
3823 
3824     if (!_cm->mark_stack_push(buffer, n)) {
3825       if (_cm->verbose_low()) {
3826         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3827                                _worker_id);
3828       }
3829       set_has_aborted();
3830     } else {
3831       // the transfer was successful
3832 
3833       if (_cm->verbose_medium()) {
3834         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3835                                _worker_id, n);
3836       }
3837       statsOnly( int tmp_size = _cm->mark_stack_size();
3838                  if (tmp_size > _global_max_size) {
3839                    _global_max_size = tmp_size;
3840                  }
3841                  _global_pushes += n );
3842     }
3843   }
3844 
3845   // this operation was quite expensive, so decrease the limits
3846   decrease_limits();
3847 }
3848 
3849 void CMTask::get_entries_from_global_stack() {
3850   // local array where we'll store the entries that will be popped
3851   // from the global stack.
3852   oop buffer[global_stack_transfer_size];
3853   int n;
3854   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3855   assert(n <= global_stack_transfer_size,
3856          "we should not pop more than the given limit");
3857   if (n > 0) {
3858     // yes, we did actually pop at least one entry
3859 
3860     statsOnly( ++_global_transfers_from; _global_pops += n );
3861     if (_cm->verbose_medium()) {
3862       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3863                              _worker_id, n);
3864     }
3865     for (int i = 0; i < n; ++i) {
3866       bool success = _task_queue->push(buffer[i]);
3867       // We only call this when the local queue is empty or under a
3868       // given target limit. So, we do not expect this push to fail.
3869       assert(success, "invariant");
3870     }
3871 
3872     statsOnly( int tmp_size = _task_queue->size();
3873                if (tmp_size > _local_max_size) {
3874                  _local_max_size = tmp_size;
3875                }
3876                _local_pushes += n );
3877   }
3878 
3879   // this operation was quite expensive, so decrease the limits
3880   decrease_limits();
3881 }
3882 
3883 void CMTask::drain_local_queue(bool partially) {
3884   if (has_aborted()) return;
3885 
3886   // Decide what the target size is, depending whether we're going to
3887   // drain it partially (so that other tasks can steal if they run out
3888   // of things to do) or totally (at the very end).
3889   size_t target_size;
3890   if (partially) {
3891     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3892   } else {
3893     target_size = 0;
3894   }
3895 
3896   if (_task_queue->size() > target_size) {
3897     if (_cm->verbose_high()) {
3898       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3899                              _worker_id, target_size);
3900     }
3901 
3902     oop obj;
3903     bool ret = _task_queue->pop_local(obj);
3904     while (ret) {
3905       statsOnly( ++_local_pops );
3906 
3907       if (_cm->verbose_high()) {
3908         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3909                                p2i((void*) obj));
3910       }
3911 
3912       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3913       assert(!_g1h->is_on_master_free_list(
3914                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3915 
3916       scan_object(obj);
3917 
3918       if (_task_queue->size() <= target_size || has_aborted()) {
3919         ret = false;
3920       } else {
3921         ret = _task_queue->pop_local(obj);
3922       }
3923     }
3924 
3925     if (_cm->verbose_high()) {
3926       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
3927                              _worker_id, _task_queue->size());
3928     }
3929   }
3930 }
3931 
3932 void CMTask::drain_global_stack(bool partially) {
3933   if (has_aborted()) return;
3934 
3935   // We have a policy to drain the local queue before we attempt to
3936   // drain the global stack.
3937   assert(partially || _task_queue->size() == 0, "invariant");
3938 
3939   // Decide what the target size is, depending whether we're going to
3940   // drain it partially (so that other tasks can steal if they run out
3941   // of things to do) or totally (at the very end).  Notice that,
3942   // because we move entries from the global stack in chunks or
3943   // because another task might be doing the same, we might in fact
3944   // drop below the target. But, this is not a problem.
3945   size_t target_size;
3946   if (partially) {
3947     target_size = _cm->partial_mark_stack_size_target();
3948   } else {
3949     target_size = 0;
3950   }
3951 
3952   if (_cm->mark_stack_size() > target_size) {
3953     if (_cm->verbose_low()) {
3954       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3955                              _worker_id, target_size);
3956     }
3957 
3958     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3959       get_entries_from_global_stack();
3960       drain_local_queue(partially);
3961     }
3962 
3963     if (_cm->verbose_low()) {
3964       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3965                              _worker_id, _cm->mark_stack_size());
3966     }
3967   }
3968 }
3969 
3970 // SATB Queue has several assumptions on whether to call the par or
3971 // non-par versions of the methods. this is why some of the code is
3972 // replicated. We should really get rid of the single-threaded version
3973 // of the code to simplify things.
3974 void CMTask::drain_satb_buffers() {
3975   if (has_aborted()) return;
3976 
3977   // We set this so that the regular clock knows that we're in the
3978   // middle of draining buffers and doesn't set the abort flag when it
3979   // notices that SATB buffers are available for draining. It'd be
3980   // very counter productive if it did that. :-)
3981   _draining_satb_buffers = true;
3982 
3983   CMObjectClosure oc(this);
3984   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3985   if (G1CollectedHeap::use_parallel_gc_threads()) {
3986     satb_mq_set.set_par_closure(_worker_id, &oc);
3987   } else {
3988     satb_mq_set.set_closure(&oc);
3989   }
3990 
3991   // This keeps claiming and applying the closure to completed buffers
3992   // until we run out of buffers or we need to abort.
3993   if (G1CollectedHeap::use_parallel_gc_threads()) {
3994     while (!has_aborted() &&
3995            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3996       if (_cm->verbose_medium()) {
3997         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3998       }
3999       statsOnly( ++_satb_buffers_processed );
4000       regular_clock_call();
4001     }
4002   } else {
4003     while (!has_aborted() &&
4004            satb_mq_set.apply_closure_to_completed_buffer()) {
4005       if (_cm->verbose_medium()) {
4006         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4007       }
4008       statsOnly( ++_satb_buffers_processed );
4009       regular_clock_call();
4010     }
4011   }
4012 
4013   _draining_satb_buffers = false;
4014 
4015   assert(has_aborted() ||
4016          concurrent() ||
4017          satb_mq_set.completed_buffers_num() == 0, "invariant");
4018 
4019   if (G1CollectedHeap::use_parallel_gc_threads()) {
4020     satb_mq_set.set_par_closure(_worker_id, NULL);
4021   } else {
4022     satb_mq_set.set_closure(NULL);
4023   }
4024 
4025   // again, this was a potentially expensive operation, decrease the
4026   // limits to get the regular clock call early
4027   decrease_limits();
4028 }
4029 
4030 void CMTask::print_stats() {
4031   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
4032                          _worker_id, _calls);
4033   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
4034                          _elapsed_time_ms, _termination_time_ms);
4035   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4036                          _step_times_ms.num(), _step_times_ms.avg(),
4037                          _step_times_ms.sd());
4038   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
4039                          _step_times_ms.maximum(), _step_times_ms.sum());
4040 
4041 #if _MARKING_STATS_
4042   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4043                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
4044                          _all_clock_intervals_ms.sd());
4045   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
4046                          _all_clock_intervals_ms.maximum(),
4047                          _all_clock_intervals_ms.sum());
4048   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
4049                          _clock_due_to_scanning, _clock_due_to_marking);
4050   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
4051                          _objs_scanned, _objs_found_on_bitmap);
4052   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
4053                          _local_pushes, _local_pops, _local_max_size);
4054   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
4055                          _global_pushes, _global_pops, _global_max_size);
4056   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
4057                          _global_transfers_to,_global_transfers_from);
4058   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4059   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
4060   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
4061                          _steal_attempts, _steals);
4062   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
4063   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
4064                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
4065   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
4066                          _aborted_timed_out, _aborted_satb, _aborted_termination);
4067 #endif // _MARKING_STATS_
4068 }
4069 
4070 /*****************************************************************************
4071 
4072     The do_marking_step(time_target_ms, ...) method is the building
4073     block of the parallel marking framework. It can be called in parallel
4074     with other invocations of do_marking_step() on different tasks
4075     (but only one per task, obviously) and concurrently with the
4076     mutator threads, or during remark, hence it eliminates the need
4077     for two versions of the code. When called during remark, it will
4078     pick up from where the task left off during the concurrent marking
4079     phase. Interestingly, tasks are also claimable during evacuation
4080     pauses too, since do_marking_step() ensures that it aborts before
4081     it needs to yield.
4082 
4083     The data structures that it uses to do marking work are the
4084     following:
4085 
4086       (1) Marking Bitmap. If there are gray objects that appear only
4087       on the bitmap (this happens either when dealing with an overflow
4088       or when the initial marking phase has simply marked the roots
4089       and didn't push them on the stack), then tasks claim heap
4090       regions whose bitmap they then scan to find gray objects. A
4091       global finger indicates where the end of the last claimed region
4092       is. A local finger indicates how far into the region a task has
4093       scanned. The two fingers are used to determine how to gray an
4094       object (i.e. whether simply marking it is OK, as it will be
4095       visited by a task in the future, or whether it needs to be also
4096       pushed on a stack).
4097 
4098       (2) Local Queue. The local queue of the task which is accessed
4099       reasonably efficiently by the task. Other tasks can steal from
4100       it when they run out of work. Throughout the marking phase, a
4101       task attempts to keep its local queue short but not totally
4102       empty, so that entries are available for stealing by other
4103       tasks. Only when there is no more work, a task will totally
4104       drain its local queue.
4105 
4106       (3) Global Mark Stack. This handles local queue overflow. During
4107       marking only sets of entries are moved between it and the local
4108       queues, as access to it requires a mutex and more fine-grain
4109       interaction with it which might cause contention. If it
4110       overflows, then the marking phase should restart and iterate
4111       over the bitmap to identify gray objects. Throughout the marking
4112       phase, tasks attempt to keep the global mark stack at a small
4113       length but not totally empty, so that entries are available for
4114       popping by other tasks. Only when there is no more work, tasks
4115       will totally drain the global mark stack.
4116 
4117       (4) SATB Buffer Queue. This is where completed SATB buffers are
4118       made available. Buffers are regularly removed from this queue
4119       and scanned for roots, so that the queue doesn't get too
4120       long. During remark, all completed buffers are processed, as
4121       well as the filled in parts of any uncompleted buffers.
4122 
4123     The do_marking_step() method tries to abort when the time target
4124     has been reached. There are a few other cases when the
4125     do_marking_step() method also aborts:
4126 
4127       (1) When the marking phase has been aborted (after a Full GC).
4128 
4129       (2) When a global overflow (on the global stack) has been
4130       triggered. Before the task aborts, it will actually sync up with
4131       the other tasks to ensure that all the marking data structures
4132       (local queues, stacks, fingers etc.)  are re-initialized so that
4133       when do_marking_step() completes, the marking phase can
4134       immediately restart.
4135 
4136       (3) When enough completed SATB buffers are available. The
4137       do_marking_step() method only tries to drain SATB buffers right
4138       at the beginning. So, if enough buffers are available, the
4139       marking step aborts and the SATB buffers are processed at
4140       the beginning of the next invocation.
4141 
4142       (4) To yield. when we have to yield then we abort and yield
4143       right at the end of do_marking_step(). This saves us from a lot
4144       of hassle as, by yielding we might allow a Full GC. If this
4145       happens then objects will be compacted underneath our feet, the
4146       heap might shrink, etc. We save checking for this by just
4147       aborting and doing the yield right at the end.
4148 
4149     From the above it follows that the do_marking_step() method should
4150     be called in a loop (or, otherwise, regularly) until it completes.
4151 
4152     If a marking step completes without its has_aborted() flag being
4153     true, it means it has completed the current marking phase (and
4154     also all other marking tasks have done so and have all synced up).
4155 
4156     A method called regular_clock_call() is invoked "regularly" (in
4157     sub ms intervals) throughout marking. It is this clock method that
4158     checks all the abort conditions which were mentioned above and
4159     decides when the task should abort. A work-based scheme is used to
4160     trigger this clock method: when the number of object words the
4161     marking phase has scanned or the number of references the marking
4162     phase has visited reach a given limit. Additional invocations to
4163     the method clock have been planted in a few other strategic places
4164     too. The initial reason for the clock method was to avoid calling
4165     vtime too regularly, as it is quite expensive. So, once it was in
4166     place, it was natural to piggy-back all the other conditions on it
4167     too and not constantly check them throughout the code.
4168 
4169     If do_termination is true then do_marking_step will enter its
4170     termination protocol.
4171 
4172     The value of is_serial must be true when do_marking_step is being
4173     called serially (i.e. by the VMThread) and do_marking_step should
4174     skip any synchronization in the termination and overflow code.
4175     Examples include the serial remark code and the serial reference
4176     processing closures.
4177 
4178     The value of is_serial must be false when do_marking_step is
4179     being called by any of the worker threads in a work gang.
4180     Examples include the concurrent marking code (CMMarkingTask),
4181     the MT remark code, and the MT reference processing closures.
4182 
4183  *****************************************************************************/
4184 
4185 void CMTask::do_marking_step(double time_target_ms,
4186                              bool do_termination,
4187                              bool is_serial) {
4188   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4189   assert(concurrent() == _cm->concurrent(), "they should be the same");
4190 
4191   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4192   assert(_task_queues != NULL, "invariant");
4193   assert(_task_queue != NULL, "invariant");
4194   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4195 
4196   assert(!_claimed,
4197          "only one thread should claim this task at any one time");
4198 
4199   // OK, this doesn't safeguard again all possible scenarios, as it is
4200   // possible for two threads to set the _claimed flag at the same
4201   // time. But it is only for debugging purposes anyway and it will
4202   // catch most problems.
4203   _claimed = true;
4204 
4205   _start_time_ms = os::elapsedVTime() * 1000.0;
4206   statsOnly( _interval_start_time_ms = _start_time_ms );
4207 
4208   // If do_stealing is true then do_marking_step will attempt to
4209   // steal work from the other CMTasks. It only makes sense to
4210   // enable stealing when the termination protocol is enabled
4211   // and do_marking_step() is not being called serially.
4212   bool do_stealing = do_termination && !is_serial;
4213 
4214   double diff_prediction_ms =
4215     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4216   _time_target_ms = time_target_ms - diff_prediction_ms;
4217 
4218   // set up the variables that are used in the work-based scheme to
4219   // call the regular clock method
4220   _words_scanned = 0;
4221   _refs_reached  = 0;
4222   recalculate_limits();
4223 
4224   // clear all flags
4225   clear_has_aborted();
4226   _has_timed_out = false;
4227   _draining_satb_buffers = false;
4228 
4229   ++_calls;
4230 
4231   if (_cm->verbose_low()) {
4232     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4233                            "target = %1.2lfms >>>>>>>>>>",
4234                            _worker_id, _calls, _time_target_ms);
4235   }
4236 
4237   // Set up the bitmap and oop closures. Anything that uses them is
4238   // eventually called from this method, so it is OK to allocate these
4239   // statically.
4240   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4241   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4242   set_cm_oop_closure(&cm_oop_closure);
4243 
4244   if (_cm->has_overflown()) {
4245     // This can happen if the mark stack overflows during a GC pause
4246     // and this task, after a yield point, restarts. We have to abort
4247     // as we need to get into the overflow protocol which happens
4248     // right at the end of this task.
4249     set_has_aborted();
4250   }
4251 
4252   // First drain any available SATB buffers. After this, we will not
4253   // look at SATB buffers before the next invocation of this method.
4254   // If enough completed SATB buffers are queued up, the regular clock
4255   // will abort this task so that it restarts.
4256   drain_satb_buffers();
4257   // ...then partially drain the local queue and the global stack
4258   drain_local_queue(true);
4259   drain_global_stack(true);
4260 
4261   do {
4262     if (!has_aborted() && _curr_region != NULL) {
4263       // This means that we're already holding on to a region.
4264       assert(_finger != NULL, "if region is not NULL, then the finger "
4265              "should not be NULL either");
4266 
4267       // We might have restarted this task after an evacuation pause
4268       // which might have evacuated the region we're holding on to
4269       // underneath our feet. Let's read its limit again to make sure
4270       // that we do not iterate over a region of the heap that
4271       // contains garbage (update_region_limit() will also move
4272       // _finger to the start of the region if it is found empty).
4273       update_region_limit();
4274       // We will start from _finger not from the start of the region,
4275       // as we might be restarting this task after aborting half-way
4276       // through scanning this region. In this case, _finger points to
4277       // the address where we last found a marked object. If this is a
4278       // fresh region, _finger points to start().
4279       MemRegion mr = MemRegion(_finger, _region_limit);
4280 
4281       if (_cm->verbose_low()) {
4282         gclog_or_tty->print_cr("[%u] we're scanning part "
4283                                "["PTR_FORMAT", "PTR_FORMAT") "
4284                                "of region "HR_FORMAT,
4285                                _worker_id, p2i(_finger), p2i(_region_limit),
4286                                HR_FORMAT_PARAMS(_curr_region));
4287       }
4288 
4289       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
4290              "humongous regions should go around loop once only");
4291 
4292       // Some special cases:
4293       // If the memory region is empty, we can just give up the region.
4294       // If the current region is humongous then we only need to check
4295       // the bitmap for the bit associated with the start of the object,
4296       // scan the object if it's live, and give up the region.
4297       // Otherwise, let's iterate over the bitmap of the part of the region
4298       // that is left.
4299       // If the iteration is successful, give up the region.
4300       if (mr.is_empty()) {
4301         giveup_current_region();
4302         regular_clock_call();
4303       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
4304         if (_nextMarkBitMap->isMarked(mr.start())) {
4305           // The object is marked - apply the closure
4306           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4307           bitmap_closure.do_bit(offset);
4308         }
4309         // Even if this task aborted while scanning the humongous object
4310         // we can (and should) give up the current region.
4311         giveup_current_region();
4312         regular_clock_call();
4313       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4314         giveup_current_region();
4315         regular_clock_call();
4316       } else {
4317         assert(has_aborted(), "currently the only way to do so");
4318         // The only way to abort the bitmap iteration is to return
4319         // false from the do_bit() method. However, inside the
4320         // do_bit() method we move the _finger to point to the
4321         // object currently being looked at. So, if we bail out, we
4322         // have definitely set _finger to something non-null.
4323         assert(_finger != NULL, "invariant");
4324 
4325         // Region iteration was actually aborted. So now _finger
4326         // points to the address of the object we last scanned. If we
4327         // leave it there, when we restart this task, we will rescan
4328         // the object. It is easy to avoid this. We move the finger by
4329         // enough to point to the next possible object header (the
4330         // bitmap knows by how much we need to move it as it knows its
4331         // granularity).
4332         assert(_finger < _region_limit, "invariant");
4333         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4334         // Check if bitmap iteration was aborted while scanning the last object
4335         if (new_finger >= _region_limit) {
4336           giveup_current_region();
4337         } else {
4338           move_finger_to(new_finger);
4339         }
4340       }
4341     }
4342     // At this point we have either completed iterating over the
4343     // region we were holding on to, or we have aborted.
4344 
4345     // We then partially drain the local queue and the global stack.
4346     // (Do we really need this?)
4347     drain_local_queue(true);
4348     drain_global_stack(true);
4349 
4350     // Read the note on the claim_region() method on why it might
4351     // return NULL with potentially more regions available for
4352     // claiming and why we have to check out_of_regions() to determine
4353     // whether we're done or not.
4354     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4355       // We are going to try to claim a new region. We should have
4356       // given up on the previous one.
4357       // Separated the asserts so that we know which one fires.
4358       assert(_curr_region  == NULL, "invariant");
4359       assert(_finger       == NULL, "invariant");
4360       assert(_region_limit == NULL, "invariant");
4361       if (_cm->verbose_low()) {
4362         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4363       }
4364       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4365       if (claimed_region != NULL) {
4366         // Yes, we managed to claim one
4367         statsOnly( ++_regions_claimed );
4368 
4369         if (_cm->verbose_low()) {
4370           gclog_or_tty->print_cr("[%u] we successfully claimed "
4371                                  "region "PTR_FORMAT,
4372                                  _worker_id, p2i(claimed_region));
4373         }
4374 
4375         setup_for_region(claimed_region);
4376         assert(_curr_region == claimed_region, "invariant");
4377       }
4378       // It is important to call the regular clock here. It might take
4379       // a while to claim a region if, for example, we hit a large
4380       // block of empty regions. So we need to call the regular clock
4381       // method once round the loop to make sure it's called
4382       // frequently enough.
4383       regular_clock_call();
4384     }
4385 
4386     if (!has_aborted() && _curr_region == NULL) {
4387       assert(_cm->out_of_regions(),
4388              "at this point we should be out of regions");
4389     }
4390   } while ( _curr_region != NULL && !has_aborted());
4391 
4392   if (!has_aborted()) {
4393     // We cannot check whether the global stack is empty, since other
4394     // tasks might be pushing objects to it concurrently.
4395     assert(_cm->out_of_regions(),
4396            "at this point we should be out of regions");
4397 
4398     if (_cm->verbose_low()) {
4399       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4400     }
4401 
4402     // Try to reduce the number of available SATB buffers so that
4403     // remark has less work to do.
4404     drain_satb_buffers();
4405   }
4406 
4407   // Since we've done everything else, we can now totally drain the
4408   // local queue and global stack.
4409   drain_local_queue(false);
4410   drain_global_stack(false);
4411 
4412   // Attempt at work stealing from other task's queues.
4413   if (do_stealing && !has_aborted()) {
4414     // We have not aborted. This means that we have finished all that
4415     // we could. Let's try to do some stealing...
4416 
4417     // We cannot check whether the global stack is empty, since other
4418     // tasks might be pushing objects to it concurrently.
4419     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4420            "only way to reach here");
4421 
4422     if (_cm->verbose_low()) {
4423       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4424     }
4425 
4426     while (!has_aborted()) {
4427       oop obj;
4428       statsOnly( ++_steal_attempts );
4429 
4430       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4431         if (_cm->verbose_medium()) {
4432           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4433                                  _worker_id, p2i((void*) obj));
4434         }
4435 
4436         statsOnly( ++_steals );
4437 
4438         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4439                "any stolen object should be marked");
4440         scan_object(obj);
4441 
4442         // And since we're towards the end, let's totally drain the
4443         // local queue and global stack.
4444         drain_local_queue(false);
4445         drain_global_stack(false);
4446       } else {
4447         break;
4448       }
4449     }
4450   }
4451 
4452   // If we are about to wrap up and go into termination, check if we
4453   // should raise the overflow flag.
4454   if (do_termination && !has_aborted()) {
4455     if (_cm->force_overflow()->should_force()) {
4456       _cm->set_has_overflown();
4457       regular_clock_call();
4458     }
4459   }
4460 
4461   // We still haven't aborted. Now, let's try to get into the
4462   // termination protocol.
4463   if (do_termination && !has_aborted()) {
4464     // We cannot check whether the global stack is empty, since other
4465     // tasks might be concurrently pushing objects on it.
4466     // Separated the asserts so that we know which one fires.
4467     assert(_cm->out_of_regions(), "only way to reach here");
4468     assert(_task_queue->size() == 0, "only way to reach here");
4469 
4470     if (_cm->verbose_low()) {
4471       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4472     }
4473 
4474     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4475 
4476     // The CMTask class also extends the TerminatorTerminator class,
4477     // hence its should_exit_termination() method will also decide
4478     // whether to exit the termination protocol or not.
4479     bool finished = (is_serial ||
4480                      _cm->terminator()->offer_termination(this));
4481     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4482     _termination_time_ms +=
4483       termination_end_time_ms - _termination_start_time_ms;
4484 
4485     if (finished) {
4486       // We're all done.
4487 
4488       if (_worker_id == 0) {
4489         // let's allow task 0 to do this
4490         if (concurrent()) {
4491           assert(_cm->concurrent_marking_in_progress(), "invariant");
4492           // we need to set this to false before the next
4493           // safepoint. This way we ensure that the marking phase
4494           // doesn't observe any more heap expansions.
4495           _cm->clear_concurrent_marking_in_progress();
4496         }
4497       }
4498 
4499       // We can now guarantee that the global stack is empty, since
4500       // all other tasks have finished. We separated the guarantees so
4501       // that, if a condition is false, we can immediately find out
4502       // which one.
4503       guarantee(_cm->out_of_regions(), "only way to reach here");
4504       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4505       guarantee(_task_queue->size() == 0, "only way to reach here");
4506       guarantee(!_cm->has_overflown(), "only way to reach here");
4507       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4508 
4509       if (_cm->verbose_low()) {
4510         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4511       }
4512     } else {
4513       // Apparently there's more work to do. Let's abort this task. It
4514       // will restart it and we can hopefully find more things to do.
4515 
4516       if (_cm->verbose_low()) {
4517         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4518                                _worker_id);
4519       }
4520 
4521       set_has_aborted();
4522       statsOnly( ++_aborted_termination );
4523     }
4524   }
4525 
4526   // Mainly for debugging purposes to make sure that a pointer to the
4527   // closure which was statically allocated in this frame doesn't
4528   // escape it by accident.
4529   set_cm_oop_closure(NULL);
4530   double end_time_ms = os::elapsedVTime() * 1000.0;
4531   double elapsed_time_ms = end_time_ms - _start_time_ms;
4532   // Update the step history.
4533   _step_times_ms.add(elapsed_time_ms);
4534 
4535   if (has_aborted()) {
4536     // The task was aborted for some reason.
4537 
4538     statsOnly( ++_aborted );
4539 
4540     if (_has_timed_out) {
4541       double diff_ms = elapsed_time_ms - _time_target_ms;
4542       // Keep statistics of how well we did with respect to hitting
4543       // our target only if we actually timed out (if we aborted for
4544       // other reasons, then the results might get skewed).
4545       _marking_step_diffs_ms.add(diff_ms);
4546     }
4547 
4548     if (_cm->has_overflown()) {
4549       // This is the interesting one. We aborted because a global
4550       // overflow was raised. This means we have to restart the
4551       // marking phase and start iterating over regions. However, in
4552       // order to do this we have to make sure that all tasks stop
4553       // what they are doing and re-initialise in a safe manner. We
4554       // will achieve this with the use of two barrier sync points.
4555 
4556       if (_cm->verbose_low()) {
4557         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4558       }
4559 
4560       if (!is_serial) {
4561         // We only need to enter the sync barrier if being called
4562         // from a parallel context
4563         _cm->enter_first_sync_barrier(_worker_id);
4564 
4565         // When we exit this sync barrier we know that all tasks have
4566         // stopped doing marking work. So, it's now safe to
4567         // re-initialise our data structures. At the end of this method,
4568         // task 0 will clear the global data structures.
4569       }
4570 
4571       statsOnly( ++_aborted_overflow );
4572 
4573       // We clear the local state of this task...
4574       clear_region_fields();
4575 
4576       if (!is_serial) {
4577         // ...and enter the second barrier.
4578         _cm->enter_second_sync_barrier(_worker_id);
4579       }
4580       // At this point, if we're during the concurrent phase of
4581       // marking, everything has been re-initialized and we're
4582       // ready to restart.
4583     }
4584 
4585     if (_cm->verbose_low()) {
4586       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4587                              "elapsed = %1.2lfms <<<<<<<<<<",
4588                              _worker_id, _time_target_ms, elapsed_time_ms);
4589       if (_cm->has_aborted()) {
4590         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4591                                _worker_id);
4592       }
4593     }
4594   } else {
4595     if (_cm->verbose_low()) {
4596       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4597                              "elapsed = %1.2lfms <<<<<<<<<<",
4598                              _worker_id, _time_target_ms, elapsed_time_ms);
4599     }
4600   }
4601 
4602   _claimed = false;
4603 }
4604 
4605 CMTask::CMTask(uint worker_id,
4606                ConcurrentMark* cm,
4607                size_t* marked_bytes,
4608                BitMap* card_bm,
4609                CMTaskQueue* task_queue,
4610                CMTaskQueueSet* task_queues)
4611   : _g1h(G1CollectedHeap::heap()),
4612     _worker_id(worker_id), _cm(cm),
4613     _claimed(false),
4614     _nextMarkBitMap(NULL), _hash_seed(17),
4615     _task_queue(task_queue),
4616     _task_queues(task_queues),
4617     _cm_oop_closure(NULL),
4618     _marked_bytes_array(marked_bytes),
4619     _card_bm(card_bm) {
4620   guarantee(task_queue != NULL, "invariant");
4621   guarantee(task_queues != NULL, "invariant");
4622 
4623   statsOnly( _clock_due_to_scanning = 0;
4624              _clock_due_to_marking  = 0 );
4625 
4626   _marking_step_diffs_ms.add(0.5);
4627 }
4628 
4629 // These are formatting macros that are used below to ensure
4630 // consistent formatting. The *_H_* versions are used to format the
4631 // header for a particular value and they should be kept consistent
4632 // with the corresponding macro. Also note that most of the macros add
4633 // the necessary white space (as a prefix) which makes them a bit
4634 // easier to compose.
4635 
4636 // All the output lines are prefixed with this string to be able to
4637 // identify them easily in a large log file.
4638 #define G1PPRL_LINE_PREFIX            "###"
4639 
4640 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4641 #ifdef _LP64
4642 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4643 #else // _LP64
4644 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4645 #endif // _LP64
4646 
4647 // For per-region info
4648 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4649 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4650 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4651 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4652 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4653 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4654 
4655 // For summary info
4656 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4657 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4658 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4659 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4660 
4661 G1PrintRegionLivenessInfoClosure::
4662 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4663   : _out(out),
4664     _total_used_bytes(0), _total_capacity_bytes(0),
4665     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4666     _hum_used_bytes(0), _hum_capacity_bytes(0),
4667     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4668     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4669   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4670   MemRegion g1_reserved = g1h->g1_reserved();
4671   double now = os::elapsedTime();
4672 
4673   // Print the header of the output.
4674   _out->cr();
4675   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4676   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4677                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4678                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4679                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4680                  HeapRegion::GrainBytes);
4681   _out->print_cr(G1PPRL_LINE_PREFIX);
4682   _out->print_cr(G1PPRL_LINE_PREFIX
4683                 G1PPRL_TYPE_H_FORMAT
4684                 G1PPRL_ADDR_BASE_H_FORMAT
4685                 G1PPRL_BYTE_H_FORMAT
4686                 G1PPRL_BYTE_H_FORMAT
4687                 G1PPRL_BYTE_H_FORMAT
4688                 G1PPRL_DOUBLE_H_FORMAT
4689                 G1PPRL_BYTE_H_FORMAT
4690                 G1PPRL_BYTE_H_FORMAT,
4691                 "type", "address-range",
4692                 "used", "prev-live", "next-live", "gc-eff",
4693                 "remset", "code-roots");
4694   _out->print_cr(G1PPRL_LINE_PREFIX
4695                 G1PPRL_TYPE_H_FORMAT
4696                 G1PPRL_ADDR_BASE_H_FORMAT
4697                 G1PPRL_BYTE_H_FORMAT
4698                 G1PPRL_BYTE_H_FORMAT
4699                 G1PPRL_BYTE_H_FORMAT
4700                 G1PPRL_DOUBLE_H_FORMAT
4701                 G1PPRL_BYTE_H_FORMAT
4702                 G1PPRL_BYTE_H_FORMAT,
4703                 "", "",
4704                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4705                 "(bytes)", "(bytes)");
4706 }
4707 
4708 // It takes as a parameter a reference to one of the _hum_* fields, it
4709 // deduces the corresponding value for a region in a humongous region
4710 // series (either the region size, or what's left if the _hum_* field
4711 // is < the region size), and updates the _hum_* field accordingly.
4712 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4713   size_t bytes = 0;
4714   // The > 0 check is to deal with the prev and next live bytes which
4715   // could be 0.
4716   if (*hum_bytes > 0) {
4717     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4718     *hum_bytes -= bytes;
4719   }
4720   return bytes;
4721 }
4722 
4723 // It deduces the values for a region in a humongous region series
4724 // from the _hum_* fields and updates those accordingly. It assumes
4725 // that that _hum_* fields have already been set up from the "starts
4726 // humongous" region and we visit the regions in address order.
4727 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4728                                                      size_t* capacity_bytes,
4729                                                      size_t* prev_live_bytes,
4730                                                      size_t* next_live_bytes) {
4731   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4732   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4733   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4734   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4735   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4736 }
4737 
4738 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4739   const char* type = "";
4740   HeapWord* bottom       = r->bottom();
4741   HeapWord* end          = r->end();
4742   size_t capacity_bytes  = r->capacity();
4743   size_t used_bytes      = r->used();
4744   size_t prev_live_bytes = r->live_bytes();
4745   size_t next_live_bytes = r->next_live_bytes();
4746   double gc_eff          = r->gc_efficiency();
4747   size_t remset_bytes    = r->rem_set()->mem_size();
4748   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4749 
4750   if (r->used() == 0) {
4751     type = "FREE";
4752   } else if (r->is_survivor()) {
4753     type = "SURV";
4754   } else if (r->is_young()) {
4755     type = "EDEN";
4756   } else if (r->startsHumongous()) {
4757     type = "HUMS";
4758 
4759     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4760            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4761            "they should have been zeroed after the last time we used them");
4762     // Set up the _hum_* fields.
4763     _hum_capacity_bytes  = capacity_bytes;
4764     _hum_used_bytes      = used_bytes;
4765     _hum_prev_live_bytes = prev_live_bytes;
4766     _hum_next_live_bytes = next_live_bytes;
4767     get_hum_bytes(&used_bytes, &capacity_bytes,
4768                   &prev_live_bytes, &next_live_bytes);
4769     end = bottom + HeapRegion::GrainWords;
4770   } else if (r->continuesHumongous()) {
4771     type = "HUMC";
4772     get_hum_bytes(&used_bytes, &capacity_bytes,
4773                   &prev_live_bytes, &next_live_bytes);
4774     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4775   } else {
4776     type = "OLD";
4777   }
4778 
4779   _total_used_bytes      += used_bytes;
4780   _total_capacity_bytes  += capacity_bytes;
4781   _total_prev_live_bytes += prev_live_bytes;
4782   _total_next_live_bytes += next_live_bytes;
4783   _total_remset_bytes    += remset_bytes;
4784   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4785 
4786   // Print a line for this particular region.
4787   _out->print_cr(G1PPRL_LINE_PREFIX
4788                  G1PPRL_TYPE_FORMAT
4789                  G1PPRL_ADDR_BASE_FORMAT
4790                  G1PPRL_BYTE_FORMAT
4791                  G1PPRL_BYTE_FORMAT
4792                  G1PPRL_BYTE_FORMAT
4793                  G1PPRL_DOUBLE_FORMAT
4794                  G1PPRL_BYTE_FORMAT
4795                  G1PPRL_BYTE_FORMAT,
4796                  type, p2i(bottom), p2i(end),
4797                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4798                  remset_bytes, strong_code_roots_bytes);
4799 
4800   return false;
4801 }
4802 
4803 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4804   // add static memory usages to remembered set sizes
4805   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4806   // Print the footer of the output.
4807   _out->print_cr(G1PPRL_LINE_PREFIX);
4808   _out->print_cr(G1PPRL_LINE_PREFIX
4809                  " SUMMARY"
4810                  G1PPRL_SUM_MB_FORMAT("capacity")
4811                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4812                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4813                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4814                  G1PPRL_SUM_MB_FORMAT("remset")
4815                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4816                  bytes_to_mb(_total_capacity_bytes),
4817                  bytes_to_mb(_total_used_bytes),
4818                  perc(_total_used_bytes, _total_capacity_bytes),
4819                  bytes_to_mb(_total_prev_live_bytes),
4820                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4821                  bytes_to_mb(_total_next_live_bytes),
4822                  perc(_total_next_live_bytes, _total_capacity_bytes),
4823                  bytes_to_mb(_total_remset_bytes),
4824                  bytes_to_mb(_total_strong_code_roots_bytes));
4825   _out->cr();
4826 }