1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardTableRS.hpp"
  46 #include "memory/collectorPolicy.hpp"
  47 #include "memory/gcLocker.inline.hpp"
  48 #include "memory/genCollectedHeap.hpp"
  49 #include "memory/genMarkSweep.hpp"
  50 #include "memory/genOopClosures.inline.hpp"
  51 #include "memory/iterator.inline.hpp"
  52 #include "memory/padded.hpp"
  53 #include "memory/referencePolicy.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "memory/tenuredGeneration.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "runtime/atomic.inline.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/vmThread.hpp"
  64 #include "services/memoryService.hpp"
  65 #include "services/runtimeService.hpp"
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 // statics
  70 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  71 bool CMSCollector::_full_gc_requested = false;
  72 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  73 
  74 //////////////////////////////////////////////////////////////////
  75 // In support of CMS/VM thread synchronization
  76 //////////////////////////////////////////////////////////////////
  77 // We split use of the CGC_lock into 2 "levels".
  78 // The low-level locking is of the usual CGC_lock monitor. We introduce
  79 // a higher level "token" (hereafter "CMS token") built on top of the
  80 // low level monitor (hereafter "CGC lock").
  81 // The token-passing protocol gives priority to the VM thread. The
  82 // CMS-lock doesn't provide any fairness guarantees, but clients
  83 // should ensure that it is only held for very short, bounded
  84 // durations.
  85 //
  86 // When either of the CMS thread or the VM thread is involved in
  87 // collection operations during which it does not want the other
  88 // thread to interfere, it obtains the CMS token.
  89 //
  90 // If either thread tries to get the token while the other has
  91 // it, that thread waits. However, if the VM thread and CMS thread
  92 // both want the token, then the VM thread gets priority while the
  93 // CMS thread waits. This ensures, for instance, that the "concurrent"
  94 // phases of the CMS thread's work do not block out the VM thread
  95 // for long periods of time as the CMS thread continues to hog
  96 // the token. (See bug 4616232).
  97 //
  98 // The baton-passing functions are, however, controlled by the
  99 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 100 // and here the low-level CMS lock, not the high level token,
 101 // ensures mutual exclusion.
 102 //
 103 // Two important conditions that we have to satisfy:
 104 // 1. if a thread does a low-level wait on the CMS lock, then it
 105 //    relinquishes the CMS token if it were holding that token
 106 //    when it acquired the low-level CMS lock.
 107 // 2. any low-level notifications on the low-level lock
 108 //    should only be sent when a thread has relinquished the token.
 109 //
 110 // In the absence of either property, we'd have potential deadlock.
 111 //
 112 // We protect each of the CMS (concurrent and sequential) phases
 113 // with the CMS _token_, not the CMS _lock_.
 114 //
 115 // The only code protected by CMS lock is the token acquisition code
 116 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 117 // baton-passing code.
 118 //
 119 // Unfortunately, i couldn't come up with a good abstraction to factor and
 120 // hide the naked CGC_lock manipulation in the baton-passing code
 121 // further below. That's something we should try to do. Also, the proof
 122 // of correctness of this 2-level locking scheme is far from obvious,
 123 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 124 // that there may be a theoretical possibility of delay/starvation in the
 125 // low-level lock/wait/notify scheme used for the baton-passing because of
 126 // potential interference with the priority scheme embodied in the
 127 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 128 // invocation further below and marked with "XXX 20011219YSR".
 129 // Indeed, as we note elsewhere, this may become yet more slippery
 130 // in the presence of multiple CMS and/or multiple VM threads. XXX
 131 
 132 class CMSTokenSync: public StackObj {
 133  private:
 134   bool _is_cms_thread;
 135  public:
 136   CMSTokenSync(bool is_cms_thread):
 137     _is_cms_thread(is_cms_thread) {
 138     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 139            "Incorrect argument to constructor");
 140     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 141   }
 142 
 143   ~CMSTokenSync() {
 144     assert(_is_cms_thread ?
 145              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 146              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 147           "Incorrect state");
 148     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 149   }
 150 };
 151 
 152 // Convenience class that does a CMSTokenSync, and then acquires
 153 // upto three locks.
 154 class CMSTokenSyncWithLocks: public CMSTokenSync {
 155  private:
 156   // Note: locks are acquired in textual declaration order
 157   // and released in the opposite order
 158   MutexLockerEx _locker1, _locker2, _locker3;
 159  public:
 160   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 161                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 162     CMSTokenSync(is_cms_thread),
 163     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 164     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 165     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 166   { }
 167 };
 168 
 169 
 170 //////////////////////////////////////////////////////////////////
 171 //  Concurrent Mark-Sweep Generation /////////////////////////////
 172 //////////////////////////////////////////////////////////////////
 173 
 174 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 175 
 176 // This struct contains per-thread things necessary to support parallel
 177 // young-gen collection.
 178 class CMSParGCThreadState: public CHeapObj<mtGC> {
 179  public:
 180   CFLS_LAB lab;
 181   PromotionInfo promo;
 182 
 183   // Constructor.
 184   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 185     promo.setSpace(cfls);
 186   }
 187 };
 188 
 189 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 190      ReservedSpace rs, size_t initial_byte_size, int level,
 191      CardTableRS* ct, bool use_adaptive_freelists,
 192      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 193   CardGeneration(rs, initial_byte_size, level, ct),
 194   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 195   _debug_collection_type(Concurrent_collection_type),
 196   _did_compact(false)
 197 {
 198   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 199   HeapWord* end    = (HeapWord*) _virtual_space.high();
 200 
 201   _direct_allocated_words = 0;
 202   NOT_PRODUCT(
 203     _numObjectsPromoted = 0;
 204     _numWordsPromoted = 0;
 205     _numObjectsAllocated = 0;
 206     _numWordsAllocated = 0;
 207   )
 208 
 209   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 210                                            use_adaptive_freelists,
 211                                            dictionaryChoice);
 212   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 213   if (_cmsSpace == NULL) {
 214     vm_exit_during_initialization(
 215       "CompactibleFreeListSpace allocation failure");
 216   }
 217   _cmsSpace->_gen = this;
 218 
 219   _gc_stats = new CMSGCStats();
 220 
 221   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 222   // offsets match. The ability to tell free chunks from objects
 223   // depends on this property.
 224   debug_only(
 225     FreeChunk* junk = NULL;
 226     assert(UseCompressedClassPointers ||
 227            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 228            "Offset of FreeChunk::_prev within FreeChunk must match"
 229            "  that of OopDesc::_klass within OopDesc");
 230   )
 231   if (CollectedHeap::use_parallel_gc_threads()) {
 232     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 233     _par_gc_thread_states =
 234       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 235     if (_par_gc_thread_states == NULL) {
 236       vm_exit_during_initialization("Could not allocate par gc structs");
 237     }
 238     for (uint i = 0; i < ParallelGCThreads; i++) {
 239       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 240       if (_par_gc_thread_states[i] == NULL) {
 241         vm_exit_during_initialization("Could not allocate par gc structs");
 242       }
 243     }
 244   } else {
 245     _par_gc_thread_states = NULL;
 246   }
 247   _incremental_collection_failed = false;
 248   // The "dilatation_factor" is the expansion that can occur on
 249   // account of the fact that the minimum object size in the CMS
 250   // generation may be larger than that in, say, a contiguous young
 251   //  generation.
 252   // Ideally, in the calculation below, we'd compute the dilatation
 253   // factor as: MinChunkSize/(promoting_gen's min object size)
 254   // Since we do not have such a general query interface for the
 255   // promoting generation, we'll instead just use the minimum
 256   // object size (which today is a header's worth of space);
 257   // note that all arithmetic is in units of HeapWords.
 258   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 259   assert(_dilatation_factor >= 1.0, "from previous assert");
 260 }
 261 
 262 
 263 // The field "_initiating_occupancy" represents the occupancy percentage
 264 // at which we trigger a new collection cycle.  Unless explicitly specified
 265 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 266 // is calculated by:
 267 //
 268 //   Let "f" be MinHeapFreeRatio in
 269 //
 270 //    _initiating_occupancy = 100-f +
 271 //                           f * (CMSTriggerRatio/100)
 272 //   where CMSTriggerRatio is the argument "tr" below.
 273 //
 274 // That is, if we assume the heap is at its desired maximum occupancy at the
 275 // end of a collection, we let CMSTriggerRatio of the (purported) free
 276 // space be allocated before initiating a new collection cycle.
 277 //
 278 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 279   assert(io <= 100 && tr <= 100, "Check the arguments");
 280   if (io >= 0) {
 281     _initiating_occupancy = (double)io / 100.0;
 282   } else {
 283     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 284                              (double)(tr * MinHeapFreeRatio) / 100.0)
 285                             / 100.0;
 286   }
 287 }
 288 
 289 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 290   assert(collector() != NULL, "no collector");
 291   collector()->ref_processor_init();
 292 }
 293 
 294 void CMSCollector::ref_processor_init() {
 295   if (_ref_processor == NULL) {
 296     // Allocate and initialize a reference processor
 297     _ref_processor =
 298       new ReferenceProcessor(_span,                               // span
 299                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 300                              (int) ParallelGCThreads,             // mt processing degree
 301                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 302                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 303                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 304                              &_is_alive_closure);                 // closure for liveness info
 305     // Initialize the _ref_processor field of CMSGen
 306     _cmsGen->set_ref_processor(_ref_processor);
 307 
 308   }
 309 }
 310 
 311 AdaptiveSizePolicy* CMSCollector::size_policy() {
 312   GenCollectedHeap* gch = GenCollectedHeap::heap();
 313   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 314     "Wrong type of heap");
 315   return gch->gen_policy()->size_policy();
 316 }
 317 
 318 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 319 
 320   const char* gen_name = "old";
 321   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 322 
 323   // Generation Counters - generation 1, 1 subspace
 324   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 325       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 326 
 327   _space_counters = new GSpaceCounters(gen_name, 0,
 328                                        _virtual_space.reserved_size(),
 329                                        this, _gen_counters);
 330 }
 331 
 332 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 333   _cms_gen(cms_gen)
 334 {
 335   assert(alpha <= 100, "bad value");
 336   _saved_alpha = alpha;
 337 
 338   // Initialize the alphas to the bootstrap value of 100.
 339   _gc0_alpha = _cms_alpha = 100;
 340 
 341   _cms_begin_time.update();
 342   _cms_end_time.update();
 343 
 344   _gc0_duration = 0.0;
 345   _gc0_period = 0.0;
 346   _gc0_promoted = 0;
 347 
 348   _cms_duration = 0.0;
 349   _cms_period = 0.0;
 350   _cms_allocated = 0;
 351 
 352   _cms_used_at_gc0_begin = 0;
 353   _cms_used_at_gc0_end = 0;
 354   _allow_duty_cycle_reduction = false;
 355   _valid_bits = 0;
 356 }
 357 
 358 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 359   // TBD: CR 6909490
 360   return 1.0;
 361 }
 362 
 363 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 364 }
 365 
 366 // If promotion failure handling is on use
 367 // the padded average size of the promotion for each
 368 // young generation collection.
 369 double CMSStats::time_until_cms_gen_full() const {
 370   size_t cms_free = _cms_gen->cmsSpace()->free();
 371   GenCollectedHeap* gch = GenCollectedHeap::heap();
 372   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 373                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 374   if (cms_free > expected_promotion) {
 375     // Start a cms collection if there isn't enough space to promote
 376     // for the next minor collection.  Use the padded average as
 377     // a safety factor.
 378     cms_free -= expected_promotion;
 379 
 380     // Adjust by the safety factor.
 381     double cms_free_dbl = (double)cms_free;
 382     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 383     // Apply a further correction factor which tries to adjust
 384     // for recent occurance of concurrent mode failures.
 385     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 386     cms_free_dbl = cms_free_dbl * cms_adjustment;
 387 
 388     if (PrintGCDetails && Verbose) {
 389       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 390         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 391         cms_free, expected_promotion);
 392       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 393         cms_free_dbl, cms_consumption_rate() + 1.0);
 394     }
 395     // Add 1 in case the consumption rate goes to zero.
 396     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 397   }
 398   return 0.0;
 399 }
 400 
 401 // Compare the duration of the cms collection to the
 402 // time remaining before the cms generation is empty.
 403 // Note that the time from the start of the cms collection
 404 // to the start of the cms sweep (less than the total
 405 // duration of the cms collection) can be used.  This
 406 // has been tried and some applications experienced
 407 // promotion failures early in execution.  This was
 408 // possibly because the averages were not accurate
 409 // enough at the beginning.
 410 double CMSStats::time_until_cms_start() const {
 411   // We add "gc0_period" to the "work" calculation
 412   // below because this query is done (mostly) at the
 413   // end of a scavenge, so we need to conservatively
 414   // account for that much possible delay
 415   // in the query so as to avoid concurrent mode failures
 416   // due to starting the collection just a wee bit too
 417   // late.
 418   double work = cms_duration() + gc0_period();
 419   double deadline = time_until_cms_gen_full();
 420   // If a concurrent mode failure occurred recently, we want to be
 421   // more conservative and halve our expected time_until_cms_gen_full()
 422   if (work > deadline) {
 423     if (Verbose && PrintGCDetails) {
 424       gclog_or_tty->print(
 425         " CMSCollector: collect because of anticipated promotion "
 426         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 427         gc0_period(), time_until_cms_gen_full());
 428     }
 429     return 0.0;
 430   }
 431   return work - deadline;
 432 }
 433 
 434 #ifndef PRODUCT
 435 void CMSStats::print_on(outputStream *st) const {
 436   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 437   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 438                gc0_duration(), gc0_period(), gc0_promoted());
 439   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 440             cms_duration(), cms_duration_per_mb(),
 441             cms_period(), cms_allocated());
 442   st->print(",cms_since_beg=%g,cms_since_end=%g",
 443             cms_time_since_begin(), cms_time_since_end());
 444   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 445             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 446 
 447   if (valid()) {
 448     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 449               promotion_rate(), cms_allocation_rate());
 450     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 451               cms_consumption_rate(), time_until_cms_gen_full());
 452   }
 453   st->print(" ");
 454 }
 455 #endif // #ifndef PRODUCT
 456 
 457 CMSCollector::CollectorState CMSCollector::_collectorState =
 458                              CMSCollector::Idling;
 459 bool CMSCollector::_foregroundGCIsActive = false;
 460 bool CMSCollector::_foregroundGCShouldWait = false;
 461 
 462 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 463                            CardTableRS*                   ct,
 464                            ConcurrentMarkSweepPolicy*     cp):
 465   _cmsGen(cmsGen),
 466   _ct(ct),
 467   _ref_processor(NULL),    // will be set later
 468   _conc_workers(NULL),     // may be set later
 469   _abort_preclean(false),
 470   _start_sampling(false),
 471   _between_prologue_and_epilogue(false),
 472   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 473   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 474                  -1 /* lock-free */, "No_lock" /* dummy */),
 475   _modUnionClosure(&_modUnionTable),
 476   _modUnionClosurePar(&_modUnionTable),
 477   // Adjust my span to cover old (cms) gen
 478   _span(cmsGen->reserved()),
 479   // Construct the is_alive_closure with _span & markBitMap
 480   _is_alive_closure(_span, &_markBitMap),
 481   _restart_addr(NULL),
 482   _overflow_list(NULL),
 483   _stats(cmsGen),
 484   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 485   _eden_chunk_array(NULL),     // may be set in ctor body
 486   _eden_chunk_capacity(0),     // -- ditto --
 487   _eden_chunk_index(0),        // -- ditto --
 488   _survivor_plab_array(NULL),  // -- ditto --
 489   _survivor_chunk_array(NULL), // -- ditto --
 490   _survivor_chunk_capacity(0), // -- ditto --
 491   _survivor_chunk_index(0),    // -- ditto --
 492   _ser_pmc_preclean_ovflw(0),
 493   _ser_kac_preclean_ovflw(0),
 494   _ser_pmc_remark_ovflw(0),
 495   _par_pmc_remark_ovflw(0),
 496   _ser_kac_ovflw(0),
 497   _par_kac_ovflw(0),
 498 #ifndef PRODUCT
 499   _num_par_pushes(0),
 500 #endif
 501   _collection_count_start(0),
 502   _verifying(false),
 503   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 504   _completed_initialization(false),
 505   _collector_policy(cp),
 506   _should_unload_classes(CMSClassUnloadingEnabled),
 507   _concurrent_cycles_since_last_unload(0),
 508   _roots_scanning_options(SharedHeap::SO_None),
 509   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 510   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 511   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 512   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 513   _cms_start_registered(false)
 514 {
 515   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 516     ExplicitGCInvokesConcurrent = true;
 517   }
 518   // Now expand the span and allocate the collection support structures
 519   // (MUT, marking bit map etc.) to cover both generations subject to
 520   // collection.
 521 
 522   // For use by dirty card to oop closures.
 523   _cmsGen->cmsSpace()->set_collector(this);
 524 
 525   // Allocate MUT and marking bit map
 526   {
 527     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 528     if (!_markBitMap.allocate(_span)) {
 529       warning("Failed to allocate CMS Bit Map");
 530       return;
 531     }
 532     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 533   }
 534   {
 535     _modUnionTable.allocate(_span);
 536     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 537   }
 538 
 539   if (!_markStack.allocate(MarkStackSize)) {
 540     warning("Failed to allocate CMS Marking Stack");
 541     return;
 542   }
 543 
 544   // Support for multi-threaded concurrent phases
 545   if (CMSConcurrentMTEnabled) {
 546     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 547       // just for now
 548       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 549     }
 550     if (ConcGCThreads > 1) {
 551       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 552                                  ConcGCThreads, true);
 553       if (_conc_workers == NULL) {
 554         warning("GC/CMS: _conc_workers allocation failure: "
 555               "forcing -CMSConcurrentMTEnabled");
 556         CMSConcurrentMTEnabled = false;
 557       } else {
 558         _conc_workers->initialize_workers();
 559       }
 560     } else {
 561       CMSConcurrentMTEnabled = false;
 562     }
 563   }
 564   if (!CMSConcurrentMTEnabled) {
 565     ConcGCThreads = 0;
 566   } else {
 567     // Turn off CMSCleanOnEnter optimization temporarily for
 568     // the MT case where it's not fixed yet; see 6178663.
 569     CMSCleanOnEnter = false;
 570   }
 571   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 572          "Inconsistency");
 573 
 574   // Parallel task queues; these are shared for the
 575   // concurrent and stop-world phases of CMS, but
 576   // are not shared with parallel scavenge (ParNew).
 577   {
 578     uint i;
 579     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 580 
 581     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 582          || ParallelRefProcEnabled)
 583         && num_queues > 0) {
 584       _task_queues = new OopTaskQueueSet(num_queues);
 585       if (_task_queues == NULL) {
 586         warning("task_queues allocation failure.");
 587         return;
 588       }
 589       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 590       if (_hash_seed == NULL) {
 591         warning("_hash_seed array allocation failure");
 592         return;
 593       }
 594 
 595       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 596       for (i = 0; i < num_queues; i++) {
 597         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 598         if (q == NULL) {
 599           warning("work_queue allocation failure.");
 600           return;
 601         }
 602         _task_queues->register_queue(i, q);
 603       }
 604       for (i = 0; i < num_queues; i++) {
 605         _task_queues->queue(i)->initialize();
 606         _hash_seed[i] = 17;  // copied from ParNew
 607       }
 608     }
 609   }
 610 
 611   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 612 
 613   // Clip CMSBootstrapOccupancy between 0 and 100.
 614   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 615 
 616   _full_gcs_since_conc_gc = 0;
 617 
 618   // Now tell CMS generations the identity of their collector
 619   ConcurrentMarkSweepGeneration::set_collector(this);
 620 
 621   // Create & start a CMS thread for this CMS collector
 622   _cmsThread = ConcurrentMarkSweepThread::start(this);
 623   assert(cmsThread() != NULL, "CMS Thread should have been created");
 624   assert(cmsThread()->collector() == this,
 625          "CMS Thread should refer to this gen");
 626   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 627 
 628   // Support for parallelizing young gen rescan
 629   GenCollectedHeap* gch = GenCollectedHeap::heap();
 630   _young_gen = gch->prev_gen(_cmsGen);
 631   if (gch->supports_inline_contig_alloc()) {
 632     _top_addr = gch->top_addr();
 633     _end_addr = gch->end_addr();
 634     assert(_young_gen != NULL, "no _young_gen");
 635     _eden_chunk_index = 0;
 636     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 637     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 638     if (_eden_chunk_array == NULL) {
 639       _eden_chunk_capacity = 0;
 640       warning("GC/CMS: _eden_chunk_array allocation failure");
 641     }
 642   }
 643   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 644 
 645   // Support for parallelizing survivor space rescan
 646   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 647     const size_t max_plab_samples =
 648       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 649 
 650     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 651     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 652     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 653     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 654         || _cursor == NULL) {
 655       warning("Failed to allocate survivor plab/chunk array");
 656       if (_survivor_plab_array  != NULL) {
 657         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 658         _survivor_plab_array = NULL;
 659       }
 660       if (_survivor_chunk_array != NULL) {
 661         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 662         _survivor_chunk_array = NULL;
 663       }
 664       if (_cursor != NULL) {
 665         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 666         _cursor = NULL;
 667       }
 668     } else {
 669       _survivor_chunk_capacity = 2*max_plab_samples;
 670       for (uint i = 0; i < ParallelGCThreads; i++) {
 671         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 672         if (vec == NULL) {
 673           warning("Failed to allocate survivor plab array");
 674           for (int j = i; j > 0; j--) {
 675             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 676           }
 677           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 678           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 679           _survivor_plab_array = NULL;
 680           _survivor_chunk_array = NULL;
 681           _survivor_chunk_capacity = 0;
 682           break;
 683         } else {
 684           ChunkArray* cur =
 685             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 686                                                         max_plab_samples);
 687           assert(cur->end() == 0, "Should be 0");
 688           assert(cur->array() == vec, "Should be vec");
 689           assert(cur->capacity() == max_plab_samples, "Error");
 690         }
 691       }
 692     }
 693   }
 694   assert(   (   _survivor_plab_array  != NULL
 695              && _survivor_chunk_array != NULL)
 696          || (   _survivor_chunk_capacity == 0
 697              && _survivor_chunk_index == 0),
 698          "Error");
 699 
 700   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 701   _gc_counters = new CollectorCounters("CMS", 1);
 702   _completed_initialization = true;
 703   _inter_sweep_timer.start();  // start of time
 704 }
 705 
 706 const char* ConcurrentMarkSweepGeneration::name() const {
 707   return "concurrent mark-sweep generation";
 708 }
 709 void ConcurrentMarkSweepGeneration::update_counters() {
 710   if (UsePerfData) {
 711     _space_counters->update_all();
 712     _gen_counters->update_all();
 713   }
 714 }
 715 
 716 // this is an optimized version of update_counters(). it takes the
 717 // used value as a parameter rather than computing it.
 718 //
 719 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 720   if (UsePerfData) {
 721     _space_counters->update_used(used);
 722     _space_counters->update_capacity();
 723     _gen_counters->update_all();
 724   }
 725 }
 726 
 727 void ConcurrentMarkSweepGeneration::print() const {
 728   Generation::print();
 729   cmsSpace()->print();
 730 }
 731 
 732 #ifndef PRODUCT
 733 void ConcurrentMarkSweepGeneration::print_statistics() {
 734   cmsSpace()->printFLCensus(0);
 735 }
 736 #endif
 737 
 738 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 739   GenCollectedHeap* gch = GenCollectedHeap::heap();
 740   if (PrintGCDetails) {
 741     if (Verbose) {
 742       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 743         level(), short_name(), s, used(), capacity());
 744     } else {
 745       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 746         level(), short_name(), s, used() / K, capacity() / K);
 747     }
 748   }
 749   if (Verbose) {
 750     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 751               gch->used(), gch->capacity());
 752   } else {
 753     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 754               gch->used() / K, gch->capacity() / K);
 755   }
 756 }
 757 
 758 size_t
 759 ConcurrentMarkSweepGeneration::contiguous_available() const {
 760   // dld proposes an improvement in precision here. If the committed
 761   // part of the space ends in a free block we should add that to
 762   // uncommitted size in the calculation below. Will make this
 763   // change later, staying with the approximation below for the
 764   // time being. -- ysr.
 765   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 766 }
 767 
 768 size_t
 769 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 770   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 771 }
 772 
 773 size_t ConcurrentMarkSweepGeneration::max_available() const {
 774   return free() + _virtual_space.uncommitted_size();
 775 }
 776 
 777 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 778   size_t available = max_available();
 779   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 780   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 781   if (Verbose && PrintGCDetails) {
 782     gclog_or_tty->print_cr(
 783       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 784       "max_promo("SIZE_FORMAT")",
 785       res? "":" not", available, res? ">=":"<",
 786       av_promo, max_promotion_in_bytes);
 787   }
 788   return res;
 789 }
 790 
 791 // At a promotion failure dump information on block layout in heap
 792 // (cms old generation).
 793 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 794   if (CMSDumpAtPromotionFailure) {
 795     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 796   }
 797 }
 798 
 799 CompactibleSpace*
 800 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 801   return _cmsSpace;
 802 }
 803 
 804 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 805   // Clear the promotion information.  These pointers can be adjusted
 806   // along with all the other pointers into the heap but
 807   // compaction is expected to be a rare event with
 808   // a heap using cms so don't do it without seeing the need.
 809   if (CollectedHeap::use_parallel_gc_threads()) {
 810     for (uint i = 0; i < ParallelGCThreads; i++) {
 811       _par_gc_thread_states[i]->promo.reset();
 812     }
 813   }
 814 }
 815 
 816 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 817   blk->do_space(_cmsSpace);
 818 }
 819 
 820 void ConcurrentMarkSweepGeneration::compute_new_size() {
 821   assert_locked_or_safepoint(Heap_lock);
 822 
 823   // If incremental collection failed, we just want to expand
 824   // to the limit.
 825   if (incremental_collection_failed()) {
 826     clear_incremental_collection_failed();
 827     grow_to_reserved();
 828     return;
 829   }
 830 
 831   // The heap has been compacted but not reset yet.
 832   // Any metric such as free() or used() will be incorrect.
 833 
 834   CardGeneration::compute_new_size();
 835 
 836   // Reset again after a possible resizing
 837   if (did_compact()) {
 838     cmsSpace()->reset_after_compaction();
 839   }
 840 }
 841 
 842 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 843   assert_locked_or_safepoint(Heap_lock);
 844 
 845   // If incremental collection failed, we just want to expand
 846   // to the limit.
 847   if (incremental_collection_failed()) {
 848     clear_incremental_collection_failed();
 849     grow_to_reserved();
 850     return;
 851   }
 852 
 853   double free_percentage = ((double) free()) / capacity();
 854   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 855   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 856 
 857   // compute expansion delta needed for reaching desired free percentage
 858   if (free_percentage < desired_free_percentage) {
 859     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 860     assert(desired_capacity >= capacity(), "invalid expansion size");
 861     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 862     if (PrintGCDetails && Verbose) {
 863       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 864       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 865       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 866       gclog_or_tty->print_cr("  Desired free fraction %f",
 867         desired_free_percentage);
 868       gclog_or_tty->print_cr("  Maximum free fraction %f",
 869         maximum_free_percentage);
 870       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 871       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 872         desired_capacity/1000);
 873       int prev_level = level() - 1;
 874       if (prev_level >= 0) {
 875         size_t prev_size = 0;
 876         GenCollectedHeap* gch = GenCollectedHeap::heap();
 877         Generation* prev_gen = gch->_gens[prev_level];
 878         prev_size = prev_gen->capacity();
 879           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 880                                  prev_size/1000);
 881       }
 882       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 883         unsafe_max_alloc_nogc()/1000);
 884       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 885         contiguous_available()/1000);
 886       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 887         expand_bytes);
 888     }
 889     // safe if expansion fails
 890     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 891     if (PrintGCDetails && Verbose) {
 892       gclog_or_tty->print_cr("  Expanded free fraction %f",
 893         ((double) free()) / capacity());
 894     }
 895   } else {
 896     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 897     assert(desired_capacity <= capacity(), "invalid expansion size");
 898     size_t shrink_bytes = capacity() - desired_capacity;
 899     // Don't shrink unless the delta is greater than the minimum shrink we want
 900     if (shrink_bytes >= MinHeapDeltaBytes) {
 901       shrink_free_list_by(shrink_bytes);
 902     }
 903   }
 904 }
 905 
 906 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 907   return cmsSpace()->freelistLock();
 908 }
 909 
 910 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 911                                                   bool   tlab) {
 912   CMSSynchronousYieldRequest yr;
 913   MutexLockerEx x(freelistLock(),
 914                   Mutex::_no_safepoint_check_flag);
 915   return have_lock_and_allocate(size, tlab);
 916 }
 917 
 918 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 919                                                   bool   tlab /* ignored */) {
 920   assert_lock_strong(freelistLock());
 921   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 922   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 923   // Allocate the object live (grey) if the background collector has
 924   // started marking. This is necessary because the marker may
 925   // have passed this address and consequently this object will
 926   // not otherwise be greyed and would be incorrectly swept up.
 927   // Note that if this object contains references, the writing
 928   // of those references will dirty the card containing this object
 929   // allowing the object to be blackened (and its references scanned)
 930   // either during a preclean phase or at the final checkpoint.
 931   if (res != NULL) {
 932     // We may block here with an uninitialized object with
 933     // its mark-bit or P-bits not yet set. Such objects need
 934     // to be safely navigable by block_start().
 935     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 936     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 937     collector()->direct_allocated(res, adjustedSize);
 938     _direct_allocated_words += adjustedSize;
 939     // allocation counters
 940     NOT_PRODUCT(
 941       _numObjectsAllocated++;
 942       _numWordsAllocated += (int)adjustedSize;
 943     )
 944   }
 945   return res;
 946 }
 947 
 948 // In the case of direct allocation by mutators in a generation that
 949 // is being concurrently collected, the object must be allocated
 950 // live (grey) if the background collector has started marking.
 951 // This is necessary because the marker may
 952 // have passed this address and consequently this object will
 953 // not otherwise be greyed and would be incorrectly swept up.
 954 // Note that if this object contains references, the writing
 955 // of those references will dirty the card containing this object
 956 // allowing the object to be blackened (and its references scanned)
 957 // either during a preclean phase or at the final checkpoint.
 958 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 959   assert(_markBitMap.covers(start, size), "Out of bounds");
 960   if (_collectorState >= Marking) {
 961     MutexLockerEx y(_markBitMap.lock(),
 962                     Mutex::_no_safepoint_check_flag);
 963     // [see comments preceding SweepClosure::do_blk() below for details]
 964     //
 965     // Can the P-bits be deleted now?  JJJ
 966     //
 967     // 1. need to mark the object as live so it isn't collected
 968     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 969     // 3. need to mark the end of the object so marking, precleaning or sweeping
 970     //    can skip over uninitialized or unparsable objects. An allocated
 971     //    object is considered uninitialized for our purposes as long as
 972     //    its klass word is NULL.  All old gen objects are parsable
 973     //    as soon as they are initialized.)
 974     _markBitMap.mark(start);          // object is live
 975     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 976     _markBitMap.mark(start + size - 1);
 977                                       // mark end of object
 978   }
 979   // check that oop looks uninitialized
 980   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 981 }
 982 
 983 void CMSCollector::promoted(bool par, HeapWord* start,
 984                             bool is_obj_array, size_t obj_size) {
 985   assert(_markBitMap.covers(start), "Out of bounds");
 986   // See comment in direct_allocated() about when objects should
 987   // be allocated live.
 988   if (_collectorState >= Marking) {
 989     // we already hold the marking bit map lock, taken in
 990     // the prologue
 991     if (par) {
 992       _markBitMap.par_mark(start);
 993     } else {
 994       _markBitMap.mark(start);
 995     }
 996     // We don't need to mark the object as uninitialized (as
 997     // in direct_allocated above) because this is being done with the
 998     // world stopped and the object will be initialized by the
 999     // time the marking, precleaning or sweeping get to look at it.
1000     // But see the code for copying objects into the CMS generation,
1001     // where we need to ensure that concurrent readers of the
1002     // block offset table are able to safely navigate a block that
1003     // is in flux from being free to being allocated (and in
1004     // transition while being copied into) and subsequently
1005     // becoming a bona-fide object when the copy/promotion is complete.
1006     assert(SafepointSynchronize::is_at_safepoint(),
1007            "expect promotion only at safepoints");
1008 
1009     if (_collectorState < Sweeping) {
1010       // Mark the appropriate cards in the modUnionTable, so that
1011       // this object gets scanned before the sweep. If this is
1012       // not done, CMS generation references in the object might
1013       // not get marked.
1014       // For the case of arrays, which are otherwise precisely
1015       // marked, we need to dirty the entire array, not just its head.
1016       if (is_obj_array) {
1017         // The [par_]mark_range() method expects mr.end() below to
1018         // be aligned to the granularity of a bit's representation
1019         // in the heap. In the case of the MUT below, that's a
1020         // card size.
1021         MemRegion mr(start,
1022                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1023                         CardTableModRefBS::card_size /* bytes */));
1024         if (par) {
1025           _modUnionTable.par_mark_range(mr);
1026         } else {
1027           _modUnionTable.mark_range(mr);
1028         }
1029       } else {  // not an obj array; we can just mark the head
1030         if (par) {
1031           _modUnionTable.par_mark(start);
1032         } else {
1033           _modUnionTable.mark(start);
1034         }
1035       }
1036     }
1037   }
1038 }
1039 
1040 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1041 {
1042   size_t delta = pointer_delta(addr, space->bottom());
1043   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1044 }
1045 
1046 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1047   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1048   // allocate, copy and if necessary update promoinfo --
1049   // delegate to underlying space.
1050   assert_lock_strong(freelistLock());
1051 
1052 #ifndef PRODUCT
1053   if (Universe::heap()->promotion_should_fail()) {
1054     return NULL;
1055   }
1056 #endif  // #ifndef PRODUCT
1057 
1058   oop res = _cmsSpace->promote(obj, obj_size);
1059   if (res == NULL) {
1060     // expand and retry
1061     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1062     expand(s*HeapWordSize, MinHeapDeltaBytes,
1063       CMSExpansionCause::_satisfy_promotion);
1064     // Since there's currently no next generation, we don't try to promote
1065     // into a more senior generation.
1066     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1067                                "is made to pass on a possibly failing "
1068                                "promotion to next generation");
1069     res = _cmsSpace->promote(obj, obj_size);
1070   }
1071   if (res != NULL) {
1072     // See comment in allocate() about when objects should
1073     // be allocated live.
1074     assert(obj->is_oop(), "Will dereference klass pointer below");
1075     collector()->promoted(false,           // Not parallel
1076                           (HeapWord*)res, obj->is_objArray(), obj_size);
1077     // promotion counters
1078     NOT_PRODUCT(
1079       _numObjectsPromoted++;
1080       _numWordsPromoted +=
1081         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1082     )
1083   }
1084   return res;
1085 }
1086 
1087 
1088 // IMPORTANT: Notes on object size recognition in CMS.
1089 // ---------------------------------------------------
1090 // A block of storage in the CMS generation is always in
1091 // one of three states. A free block (FREE), an allocated
1092 // object (OBJECT) whose size() method reports the correct size,
1093 // and an intermediate state (TRANSIENT) in which its size cannot
1094 // be accurately determined.
1095 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1096 // -----------------------------------------------------
1097 // FREE:      klass_word & 1 == 1; mark_word holds block size
1098 //
1099 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1100 //            obj->size() computes correct size
1101 //
1102 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1103 //
1104 // STATE IDENTIFICATION: (64 bit+COOPS)
1105 // ------------------------------------
1106 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1107 //
1108 // OBJECT:    klass_word installed; klass_word != 0;
1109 //            obj->size() computes correct size
1110 //
1111 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1112 //
1113 //
1114 // STATE TRANSITION DIAGRAM
1115 //
1116 //        mut / parnew                     mut  /  parnew
1117 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1118 //  ^                                                                   |
1119 //  |------------------------ DEAD <------------------------------------|
1120 //         sweep                            mut
1121 //
1122 // While a block is in TRANSIENT state its size cannot be determined
1123 // so readers will either need to come back later or stall until
1124 // the size can be determined. Note that for the case of direct
1125 // allocation, P-bits, when available, may be used to determine the
1126 // size of an object that may not yet have been initialized.
1127 
1128 // Things to support parallel young-gen collection.
1129 oop
1130 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1131                                            oop old, markOop m,
1132                                            size_t word_sz) {
1133 #ifndef PRODUCT
1134   if (Universe::heap()->promotion_should_fail()) {
1135     return NULL;
1136   }
1137 #endif  // #ifndef PRODUCT
1138 
1139   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1140   PromotionInfo* promoInfo = &ps->promo;
1141   // if we are tracking promotions, then first ensure space for
1142   // promotion (including spooling space for saving header if necessary).
1143   // then allocate and copy, then track promoted info if needed.
1144   // When tracking (see PromotionInfo::track()), the mark word may
1145   // be displaced and in this case restoration of the mark word
1146   // occurs in the (oop_since_save_marks_)iterate phase.
1147   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1148     // Out of space for allocating spooling buffers;
1149     // try expanding and allocating spooling buffers.
1150     if (!expand_and_ensure_spooling_space(promoInfo)) {
1151       return NULL;
1152     }
1153   }
1154   assert(promoInfo->has_spooling_space(), "Control point invariant");
1155   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1156   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1157   if (obj_ptr == NULL) {
1158      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1159      if (obj_ptr == NULL) {
1160        return NULL;
1161      }
1162   }
1163   oop obj = oop(obj_ptr);
1164   OrderAccess::storestore();
1165   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1166   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1167   // IMPORTANT: See note on object initialization for CMS above.
1168   // Otherwise, copy the object.  Here we must be careful to insert the
1169   // klass pointer last, since this marks the block as an allocated object.
1170   // Except with compressed oops it's the mark word.
1171   HeapWord* old_ptr = (HeapWord*)old;
1172   // Restore the mark word copied above.
1173   obj->set_mark(m);
1174   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1175   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1176   OrderAccess::storestore();
1177 
1178   if (UseCompressedClassPointers) {
1179     // Copy gap missed by (aligned) header size calculation below
1180     obj->set_klass_gap(old->klass_gap());
1181   }
1182   if (word_sz > (size_t)oopDesc::header_size()) {
1183     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1184                                  obj_ptr + oopDesc::header_size(),
1185                                  word_sz - oopDesc::header_size());
1186   }
1187 
1188   // Now we can track the promoted object, if necessary.  We take care
1189   // to delay the transition from uninitialized to full object
1190   // (i.e., insertion of klass pointer) until after, so that it
1191   // atomically becomes a promoted object.
1192   if (promoInfo->tracking()) {
1193     promoInfo->track((PromotedObject*)obj, old->klass());
1194   }
1195   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1196   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1197   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1198 
1199   // Finally, install the klass pointer (this should be volatile).
1200   OrderAccess::storestore();
1201   obj->set_klass(old->klass());
1202   // We should now be able to calculate the right size for this object
1203   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1204 
1205   collector()->promoted(true,          // parallel
1206                         obj_ptr, old->is_objArray(), word_sz);
1207 
1208   NOT_PRODUCT(
1209     Atomic::inc_ptr(&_numObjectsPromoted);
1210     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1211   )
1212 
1213   return obj;
1214 }
1215 
1216 void
1217 ConcurrentMarkSweepGeneration::
1218 par_promote_alloc_undo(int thread_num,
1219                        HeapWord* obj, size_t word_sz) {
1220   // CMS does not support promotion undo.
1221   ShouldNotReachHere();
1222 }
1223 
1224 void
1225 ConcurrentMarkSweepGeneration::
1226 par_promote_alloc_done(int thread_num) {
1227   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1228   ps->lab.retire(thread_num);
1229 }
1230 
1231 void
1232 ConcurrentMarkSweepGeneration::
1233 par_oop_since_save_marks_iterate_done(int thread_num) {
1234   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1235   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1236   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1237 }
1238 
1239 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1240                                                    size_t size,
1241                                                    bool   tlab)
1242 {
1243   // We allow a STW collection only if a full
1244   // collection was requested.
1245   return full || should_allocate(size, tlab); // FIX ME !!!
1246   // This and promotion failure handling are connected at the
1247   // hip and should be fixed by untying them.
1248 }
1249 
1250 bool CMSCollector::shouldConcurrentCollect() {
1251   if (_full_gc_requested) {
1252     if (Verbose && PrintGCDetails) {
1253       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1254                              " gc request (or gc_locker)");
1255     }
1256     return true;
1257   }
1258 
1259   // For debugging purposes, change the type of collection.
1260   // If the rotation is not on the concurrent collection
1261   // type, don't start a concurrent collection.
1262   NOT_PRODUCT(
1263     if (RotateCMSCollectionTypes &&
1264         (_cmsGen->debug_collection_type() !=
1265           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1266       assert(_cmsGen->debug_collection_type() !=
1267         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1268         "Bad cms collection type");
1269       return false;
1270     }
1271   )
1272 
1273   FreelistLocker x(this);
1274   // ------------------------------------------------------------------
1275   // Print out lots of information which affects the initiation of
1276   // a collection.
1277   if (PrintCMSInitiationStatistics && stats().valid()) {
1278     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1279     gclog_or_tty->stamp();
1280     gclog_or_tty->cr();
1281     stats().print_on(gclog_or_tty);
1282     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1283       stats().time_until_cms_gen_full());
1284     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1285     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1286                            _cmsGen->contiguous_available());
1287     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1288     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1289     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1290     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1291     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1292     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1293     gclog_or_tty->print_cr("metadata initialized %d",
1294       MetaspaceGC::should_concurrent_collect());
1295   }
1296   // ------------------------------------------------------------------
1297 
1298   // If the estimated time to complete a cms collection (cms_duration())
1299   // is less than the estimated time remaining until the cms generation
1300   // is full, start a collection.
1301   if (!UseCMSInitiatingOccupancyOnly) {
1302     if (stats().valid()) {
1303       if (stats().time_until_cms_start() == 0.0) {
1304         return true;
1305       }
1306     } else {
1307       // We want to conservatively collect somewhat early in order
1308       // to try and "bootstrap" our CMS/promotion statistics;
1309       // this branch will not fire after the first successful CMS
1310       // collection because the stats should then be valid.
1311       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1312         if (Verbose && PrintGCDetails) {
1313           gclog_or_tty->print_cr(
1314             " CMSCollector: collect for bootstrapping statistics:"
1315             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1316             _bootstrap_occupancy);
1317         }
1318         return true;
1319       }
1320     }
1321   }
1322 
1323   // Otherwise, we start a collection cycle if
1324   // old gen want a collection cycle started. Each may use
1325   // an appropriate criterion for making this decision.
1326   // XXX We need to make sure that the gen expansion
1327   // criterion dovetails well with this. XXX NEED TO FIX THIS
1328   if (_cmsGen->should_concurrent_collect()) {
1329     if (Verbose && PrintGCDetails) {
1330       gclog_or_tty->print_cr("CMS old gen initiated");
1331     }
1332     return true;
1333   }
1334 
1335   // We start a collection if we believe an incremental collection may fail;
1336   // this is not likely to be productive in practice because it's probably too
1337   // late anyway.
1338   GenCollectedHeap* gch = GenCollectedHeap::heap();
1339   assert(gch->collector_policy()->is_generation_policy(),
1340          "You may want to check the correctness of the following");
1341   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1342     if (Verbose && PrintGCDetails) {
1343       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1344     }
1345     return true;
1346   }
1347 
1348   if (MetaspaceGC::should_concurrent_collect()) {
1349     if (Verbose && PrintGCDetails) {
1350       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1351     }
1352     return true;
1353   }
1354 
1355   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1356   if (CMSTriggerInterval >= 0) {
1357     if (CMSTriggerInterval == 0) {
1358       // Trigger always
1359       return true;
1360     }
1361 
1362     // Check the CMS time since begin (we do not check the stats validity
1363     // as we want to be able to trigger the first CMS cycle as well)
1364     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1365       if (Verbose && PrintGCDetails) {
1366         if (stats().valid()) {
1367           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1368                                  stats().cms_time_since_begin());
1369         } else {
1370           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1371         }
1372       }
1373       return true;
1374     }
1375   }
1376 
1377   return false;
1378 }
1379 
1380 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1381 
1382 // Clear _expansion_cause fields of constituent generations
1383 void CMSCollector::clear_expansion_cause() {
1384   _cmsGen->clear_expansion_cause();
1385 }
1386 
1387 // We should be conservative in starting a collection cycle.  To
1388 // start too eagerly runs the risk of collecting too often in the
1389 // extreme.  To collect too rarely falls back on full collections,
1390 // which works, even if not optimum in terms of concurrent work.
1391 // As a work around for too eagerly collecting, use the flag
1392 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1393 // giving the user an easily understandable way of controlling the
1394 // collections.
1395 // We want to start a new collection cycle if any of the following
1396 // conditions hold:
1397 // . our current occupancy exceeds the configured initiating occupancy
1398 //   for this generation, or
1399 // . we recently needed to expand this space and have not, since that
1400 //   expansion, done a collection of this generation, or
1401 // . the underlying space believes that it may be a good idea to initiate
1402 //   a concurrent collection (this may be based on criteria such as the
1403 //   following: the space uses linear allocation and linear allocation is
1404 //   going to fail, or there is believed to be excessive fragmentation in
1405 //   the generation, etc... or ...
1406 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1407 //   the case of the old generation; see CR 6543076):
1408 //   we may be approaching a point at which allocation requests may fail because
1409 //   we will be out of sufficient free space given allocation rate estimates.]
1410 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1411 
1412   assert_lock_strong(freelistLock());
1413   if (occupancy() > initiating_occupancy()) {
1414     if (PrintGCDetails && Verbose) {
1415       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1416         short_name(), occupancy(), initiating_occupancy());
1417     }
1418     return true;
1419   }
1420   if (UseCMSInitiatingOccupancyOnly) {
1421     return false;
1422   }
1423   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1424     if (PrintGCDetails && Verbose) {
1425       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1426         short_name());
1427     }
1428     return true;
1429   }
1430   if (_cmsSpace->should_concurrent_collect()) {
1431     if (PrintGCDetails && Verbose) {
1432       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1433         short_name());
1434     }
1435     return true;
1436   }
1437   return false;
1438 }
1439 
1440 void ConcurrentMarkSweepGeneration::collect(bool   full,
1441                                             bool   clear_all_soft_refs,
1442                                             size_t size,
1443                                             bool   tlab)
1444 {
1445   collector()->collect(full, clear_all_soft_refs, size, tlab);
1446 }
1447 
1448 void CMSCollector::collect(bool   full,
1449                            bool   clear_all_soft_refs,
1450                            size_t size,
1451                            bool   tlab)
1452 {
1453   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1454     // For debugging purposes skip the collection if the state
1455     // is not currently idle
1456     if (TraceCMSState) {
1457       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1458         Thread::current(), full, _collectorState);
1459     }
1460     return;
1461   }
1462 
1463   // The following "if" branch is present for defensive reasons.
1464   // In the current uses of this interface, it can be replaced with:
1465   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1466   // But I am not placing that assert here to allow future
1467   // generality in invoking this interface.
1468   if (GC_locker::is_active()) {
1469     // A consistency test for GC_locker
1470     assert(GC_locker::needs_gc(), "Should have been set already");
1471     // Skip this foreground collection, instead
1472     // expanding the heap if necessary.
1473     // Need the free list locks for the call to free() in compute_new_size()
1474     compute_new_size();
1475     return;
1476   }
1477   acquire_control_and_collect(full, clear_all_soft_refs);
1478   _full_gcs_since_conc_gc++;
1479 }
1480 
1481 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1482   GenCollectedHeap* gch = GenCollectedHeap::heap();
1483   unsigned int gc_count = gch->total_full_collections();
1484   if (gc_count == full_gc_count) {
1485     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1486     _full_gc_requested = true;
1487     _full_gc_cause = cause;
1488     CGC_lock->notify();   // nudge CMS thread
1489   } else {
1490     assert(gc_count > full_gc_count, "Error: causal loop");
1491   }
1492 }
1493 
1494 bool CMSCollector::is_external_interruption() {
1495   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1496   return GCCause::is_user_requested_gc(cause) ||
1497          GCCause::is_serviceability_requested_gc(cause);
1498 }
1499 
1500 void CMSCollector::report_concurrent_mode_interruption() {
1501   if (is_external_interruption()) {
1502     if (PrintGCDetails) {
1503       gclog_or_tty->print(" (concurrent mode interrupted)");
1504     }
1505   } else {
1506     if (PrintGCDetails) {
1507       gclog_or_tty->print(" (concurrent mode failure)");
1508     }
1509     _gc_tracer_cm->report_concurrent_mode_failure();
1510   }
1511 }
1512 
1513 
1514 // The foreground and background collectors need to coordinate in order
1515 // to make sure that they do not mutually interfere with CMS collections.
1516 // When a background collection is active,
1517 // the foreground collector may need to take over (preempt) and
1518 // synchronously complete an ongoing collection. Depending on the
1519 // frequency of the background collections and the heap usage
1520 // of the application, this preemption can be seldom or frequent.
1521 // There are only certain
1522 // points in the background collection that the "collection-baton"
1523 // can be passed to the foreground collector.
1524 //
1525 // The foreground collector will wait for the baton before
1526 // starting any part of the collection.  The foreground collector
1527 // will only wait at one location.
1528 //
1529 // The background collector will yield the baton before starting a new
1530 // phase of the collection (e.g., before initial marking, marking from roots,
1531 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1532 // of the loop which switches the phases. The background collector does some
1533 // of the phases (initial mark, final re-mark) with the world stopped.
1534 // Because of locking involved in stopping the world,
1535 // the foreground collector should not block waiting for the background
1536 // collector when it is doing a stop-the-world phase.  The background
1537 // collector will yield the baton at an additional point just before
1538 // it enters a stop-the-world phase.  Once the world is stopped, the
1539 // background collector checks the phase of the collection.  If the
1540 // phase has not changed, it proceeds with the collection.  If the
1541 // phase has changed, it skips that phase of the collection.  See
1542 // the comments on the use of the Heap_lock in collect_in_background().
1543 //
1544 // Variable used in baton passing.
1545 //   _foregroundGCIsActive - Set to true by the foreground collector when
1546 //      it wants the baton.  The foreground clears it when it has finished
1547 //      the collection.
1548 //   _foregroundGCShouldWait - Set to true by the background collector
1549 //        when it is running.  The foreground collector waits while
1550 //      _foregroundGCShouldWait is true.
1551 //  CGC_lock - monitor used to protect access to the above variables
1552 //      and to notify the foreground and background collectors.
1553 //  _collectorState - current state of the CMS collection.
1554 //
1555 // The foreground collector
1556 //   acquires the CGC_lock
1557 //   sets _foregroundGCIsActive
1558 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1559 //     various locks acquired in preparation for the collection
1560 //     are released so as not to block the background collector
1561 //     that is in the midst of a collection
1562 //   proceeds with the collection
1563 //   clears _foregroundGCIsActive
1564 //   returns
1565 //
1566 // The background collector in a loop iterating on the phases of the
1567 //      collection
1568 //   acquires the CGC_lock
1569 //   sets _foregroundGCShouldWait
1570 //   if _foregroundGCIsActive is set
1571 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1572 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1573 //     and exits the loop.
1574 //   otherwise
1575 //     proceed with that phase of the collection
1576 //     if the phase is a stop-the-world phase,
1577 //       yield the baton once more just before enqueueing
1578 //       the stop-world CMS operation (executed by the VM thread).
1579 //   returns after all phases of the collection are done
1580 //
1581 
1582 void CMSCollector::acquire_control_and_collect(bool full,
1583         bool clear_all_soft_refs) {
1584   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1585   assert(!Thread::current()->is_ConcurrentGC_thread(),
1586          "shouldn't try to acquire control from self!");
1587 
1588   // Start the protocol for acquiring control of the
1589   // collection from the background collector (aka CMS thread).
1590   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1591          "VM thread should have CMS token");
1592   // Remember the possibly interrupted state of an ongoing
1593   // concurrent collection
1594   CollectorState first_state = _collectorState;
1595 
1596   // Signal to a possibly ongoing concurrent collection that
1597   // we want to do a foreground collection.
1598   _foregroundGCIsActive = true;
1599 
1600   // release locks and wait for a notify from the background collector
1601   // releasing the locks in only necessary for phases which
1602   // do yields to improve the granularity of the collection.
1603   assert_lock_strong(bitMapLock());
1604   // We need to lock the Free list lock for the space that we are
1605   // currently collecting.
1606   assert(haveFreelistLocks(), "Must be holding free list locks");
1607   bitMapLock()->unlock();
1608   releaseFreelistLocks();
1609   {
1610     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1611     if (_foregroundGCShouldWait) {
1612       // We are going to be waiting for action for the CMS thread;
1613       // it had better not be gone (for instance at shutdown)!
1614       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1615              "CMS thread must be running");
1616       // Wait here until the background collector gives us the go-ahead
1617       ConcurrentMarkSweepThread::clear_CMS_flag(
1618         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1619       // Get a possibly blocked CMS thread going:
1620       //   Note that we set _foregroundGCIsActive true above,
1621       //   without protection of the CGC_lock.
1622       CGC_lock->notify();
1623       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1624              "Possible deadlock");
1625       while (_foregroundGCShouldWait) {
1626         // wait for notification
1627         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1628         // Possibility of delay/starvation here, since CMS token does
1629         // not know to give priority to VM thread? Actually, i think
1630         // there wouldn't be any delay/starvation, but the proof of
1631         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1632       }
1633       ConcurrentMarkSweepThread::set_CMS_flag(
1634         ConcurrentMarkSweepThread::CMS_vm_has_token);
1635     }
1636   }
1637   // The CMS_token is already held.  Get back the other locks.
1638   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1639          "VM thread should have CMS token");
1640   getFreelistLocks();
1641   bitMapLock()->lock_without_safepoint_check();
1642   if (TraceCMSState) {
1643     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1644       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1645     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1646   }
1647 
1648   // Check if we need to do a compaction, or if not, whether
1649   // we need to start the mark-sweep from scratch.
1650   bool should_compact    = false;
1651   bool should_start_over = false;
1652   decide_foreground_collection_type(clear_all_soft_refs,
1653     &should_compact, &should_start_over);
1654 
1655 NOT_PRODUCT(
1656   if (RotateCMSCollectionTypes) {
1657     if (_cmsGen->debug_collection_type() ==
1658         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1659       should_compact = true;
1660     } else if (_cmsGen->debug_collection_type() ==
1661                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1662       should_compact = false;
1663     }
1664   }
1665 )
1666 
1667   if (first_state > Idling) {
1668     report_concurrent_mode_interruption();
1669   }
1670 
1671   set_did_compact(should_compact);
1672   if (should_compact) {
1673     // If the collection is being acquired from the background
1674     // collector, there may be references on the discovered
1675     // references lists that have NULL referents (being those
1676     // that were concurrently cleared by a mutator) or
1677     // that are no longer active (having been enqueued concurrently
1678     // by the mutator).
1679     // Scrub the list of those references because Mark-Sweep-Compact
1680     // code assumes referents are not NULL and that all discovered
1681     // Reference objects are active.
1682     ref_processor()->clean_up_discovered_references();
1683 
1684     if (first_state > Idling) {
1685       save_heap_summary();
1686     }
1687 
1688     do_compaction_work(clear_all_soft_refs);
1689 
1690     // Has the GC time limit been exceeded?
1691     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1692     size_t max_eden_size = young_gen->max_capacity() -
1693                            young_gen->to()->capacity() -
1694                            young_gen->from()->capacity();
1695     GenCollectedHeap* gch = GenCollectedHeap::heap();
1696     GCCause::Cause gc_cause = gch->gc_cause();
1697     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1698                                            young_gen->eden()->used(),
1699                                            _cmsGen->max_capacity(),
1700                                            max_eden_size,
1701                                            full,
1702                                            gc_cause,
1703                                            gch->collector_policy());
1704   } else {
1705     do_mark_sweep_work(clear_all_soft_refs, first_state,
1706       should_start_over);
1707   }
1708   // Reset the expansion cause, now that we just completed
1709   // a collection cycle.
1710   clear_expansion_cause();
1711   _foregroundGCIsActive = false;
1712   return;
1713 }
1714 
1715 // Resize the tenured generation
1716 // after obtaining the free list locks for the
1717 // two generations.
1718 void CMSCollector::compute_new_size() {
1719   assert_locked_or_safepoint(Heap_lock);
1720   FreelistLocker z(this);
1721   MetaspaceGC::compute_new_size();
1722   _cmsGen->compute_new_size_free_list();
1723 }
1724 
1725 // A work method used by foreground collection to determine
1726 // what type of collection (compacting or not, continuing or fresh)
1727 // it should do.
1728 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1729 // and CMSCompactWhenClearAllSoftRefs the default in the future
1730 // and do away with the flags after a suitable period.
1731 void CMSCollector::decide_foreground_collection_type(
1732   bool clear_all_soft_refs, bool* should_compact,
1733   bool* should_start_over) {
1734   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1735   // flag is set, and we have either requested a System.gc() or
1736   // the number of full gc's since the last concurrent cycle
1737   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1738   // or if an incremental collection has failed
1739   GenCollectedHeap* gch = GenCollectedHeap::heap();
1740   assert(gch->collector_policy()->is_generation_policy(),
1741          "You may want to check the correctness of the following");
1742   // Inform cms gen if this was due to partial collection failing.
1743   // The CMS gen may use this fact to determine its expansion policy.
1744   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1745     assert(!_cmsGen->incremental_collection_failed(),
1746            "Should have been noticed, reacted to and cleared");
1747     _cmsGen->set_incremental_collection_failed();
1748   }
1749   *should_compact =
1750     UseCMSCompactAtFullCollection &&
1751     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1752      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1753      gch->incremental_collection_will_fail(true /* consult_young */));
1754   *should_start_over = false;
1755   if (clear_all_soft_refs && !*should_compact) {
1756     // We are about to do a last ditch collection attempt
1757     // so it would normally make sense to do a compaction
1758     // to reclaim as much space as possible.
1759     if (CMSCompactWhenClearAllSoftRefs) {
1760       // Default: The rationale is that in this case either
1761       // we are past the final marking phase, in which case
1762       // we'd have to start over, or so little has been done
1763       // that there's little point in saving that work. Compaction
1764       // appears to be the sensible choice in either case.
1765       *should_compact = true;
1766     } else {
1767       // We have been asked to clear all soft refs, but not to
1768       // compact. Make sure that we aren't past the final checkpoint
1769       // phase, for that is where we process soft refs. If we are already
1770       // past that phase, we'll need to redo the refs discovery phase and
1771       // if necessary clear soft refs that weren't previously
1772       // cleared. We do so by remembering the phase in which
1773       // we came in, and if we are past the refs processing
1774       // phase, we'll choose to just redo the mark-sweep
1775       // collection from scratch.
1776       if (_collectorState > FinalMarking) {
1777         // We are past the refs processing phase;
1778         // start over and do a fresh synchronous CMS cycle
1779         _collectorState = Resetting; // skip to reset to start new cycle
1780         reset(false /* == !asynch */);
1781         *should_start_over = true;
1782       } // else we can continue a possibly ongoing current cycle
1783     }
1784   }
1785 }
1786 
1787 // A work method used by the foreground collector to do
1788 // a mark-sweep-compact.
1789 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1790   GenCollectedHeap* gch = GenCollectedHeap::heap();
1791 
1792   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1793   gc_timer->register_gc_start();
1794 
1795   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1796   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1797 
1798   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1799   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1800     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1801       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1802   }
1803 
1804   // Temporarily widen the span of the weak reference processing to
1805   // the entire heap.
1806   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1807   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1808   // Temporarily, clear the "is_alive_non_header" field of the
1809   // reference processor.
1810   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1811   // Temporarily make reference _processing_ single threaded (non-MT).
1812   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1813   // Temporarily make refs discovery atomic
1814   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1815   // Temporarily make reference _discovery_ single threaded (non-MT)
1816   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1817 
1818   ref_processor()->set_enqueuing_is_done(false);
1819   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
1820   ref_processor()->setup_policy(clear_all_soft_refs);
1821   // If an asynchronous collection finishes, the _modUnionTable is
1822   // all clear.  If we are assuming the collection from an asynchronous
1823   // collection, clear the _modUnionTable.
1824   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1825     "_modUnionTable should be clear if the baton was not passed");
1826   _modUnionTable.clear_all();
1827   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1828     "mod union for klasses should be clear if the baton was passed");
1829   _ct->klass_rem_set()->clear_mod_union();
1830 
1831   // We must adjust the allocation statistics being maintained
1832   // in the free list space. We do so by reading and clearing
1833   // the sweep timer and updating the block flux rate estimates below.
1834   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1835   if (_inter_sweep_timer.is_active()) {
1836     _inter_sweep_timer.stop();
1837     // Note that we do not use this sample to update the _inter_sweep_estimate.
1838     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1839                                             _inter_sweep_estimate.padded_average(),
1840                                             _intra_sweep_estimate.padded_average());
1841   }
1842 
1843   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1844     ref_processor(), clear_all_soft_refs);
1845   #ifdef ASSERT
1846     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1847     size_t free_size = cms_space->free();
1848     assert(free_size ==
1849            pointer_delta(cms_space->end(), cms_space->compaction_top())
1850            * HeapWordSize,
1851       "All the free space should be compacted into one chunk at top");
1852     assert(cms_space->dictionary()->total_chunk_size(
1853                                       debug_only(cms_space->freelistLock())) == 0 ||
1854            cms_space->totalSizeInIndexedFreeLists() == 0,
1855       "All the free space should be in a single chunk");
1856     size_t num = cms_space->totalCount();
1857     assert((free_size == 0 && num == 0) ||
1858            (free_size > 0  && (num == 1 || num == 2)),
1859          "There should be at most 2 free chunks after compaction");
1860   #endif // ASSERT
1861   _collectorState = Resetting;
1862   assert(_restart_addr == NULL,
1863          "Should have been NULL'd before baton was passed");
1864   reset(false /* == !asynch */);
1865   _cmsGen->reset_after_compaction();
1866   _concurrent_cycles_since_last_unload = 0;
1867 
1868   // Clear any data recorded in the PLAB chunk arrays.
1869   if (_survivor_plab_array != NULL) {
1870     reset_survivor_plab_arrays();
1871   }
1872 
1873   // Adjust the per-size allocation stats for the next epoch.
1874   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1875   // Restart the "inter sweep timer" for the next epoch.
1876   _inter_sweep_timer.reset();
1877   _inter_sweep_timer.start();
1878 
1879   gc_timer->register_gc_end();
1880 
1881   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1882 
1883   // For a mark-sweep-compact, compute_new_size() will be called
1884   // in the heap's do_collection() method.
1885 }
1886 
1887 // A work method used by the foreground collector to do
1888 // a mark-sweep, after taking over from a possibly on-going
1889 // concurrent mark-sweep collection.
1890 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
1891   CollectorState first_state, bool should_start_over) {
1892   if (PrintGC && Verbose) {
1893     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
1894       "collector with count %d",
1895       _full_gcs_since_conc_gc);
1896   }
1897   switch (_collectorState) {
1898     case Idling:
1899       if (first_state == Idling || should_start_over) {
1900         // The background GC was not active, or should
1901         // restarted from scratch;  start the cycle.
1902         _collectorState = InitialMarking;
1903       }
1904       // If first_state was not Idling, then a background GC
1905       // was in progress and has now finished.  No need to do it
1906       // again.  Leave the state as Idling.
1907       break;
1908     case Precleaning:
1909       // In the foreground case don't do the precleaning since
1910       // it is not done concurrently and there is extra work
1911       // required.
1912       _collectorState = FinalMarking;
1913   }
1914   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
1915 
1916   // For a mark-sweep, compute_new_size() will be called
1917   // in the heap's do_collection() method.
1918 }
1919 
1920 
1921 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1922   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
1923   ContiguousSpace* eden_space = dng->eden();
1924   ContiguousSpace* from_space = dng->from();
1925   ContiguousSpace* to_space   = dng->to();
1926   // Eden
1927   if (_eden_chunk_array != NULL) {
1928     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1929                            eden_space->bottom(), eden_space->top(),
1930                            eden_space->end(), eden_space->capacity());
1931     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1932                            "_eden_chunk_capacity=" SIZE_FORMAT,
1933                            _eden_chunk_index, _eden_chunk_capacity);
1934     for (size_t i = 0; i < _eden_chunk_index; i++) {
1935       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1936                              i, _eden_chunk_array[i]);
1937     }
1938   }
1939   // Survivor
1940   if (_survivor_chunk_array != NULL) {
1941     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1942                            from_space->bottom(), from_space->top(),
1943                            from_space->end(), from_space->capacity());
1944     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1945                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1946                            _survivor_chunk_index, _survivor_chunk_capacity);
1947     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1948       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1949                              i, _survivor_chunk_array[i]);
1950     }
1951   }
1952 }
1953 
1954 void CMSCollector::getFreelistLocks() const {
1955   // Get locks for all free lists in all generations that this
1956   // collector is responsible for
1957   _cmsGen->freelistLock()->lock_without_safepoint_check();
1958 }
1959 
1960 void CMSCollector::releaseFreelistLocks() const {
1961   // Release locks for all free lists in all generations that this
1962   // collector is responsible for
1963   _cmsGen->freelistLock()->unlock();
1964 }
1965 
1966 bool CMSCollector::haveFreelistLocks() const {
1967   // Check locks for all free lists in all generations that this
1968   // collector is responsible for
1969   assert_lock_strong(_cmsGen->freelistLock());
1970   PRODUCT_ONLY(ShouldNotReachHere());
1971   return true;
1972 }
1973 
1974 // A utility class that is used by the CMS collector to
1975 // temporarily "release" the foreground collector from its
1976 // usual obligation to wait for the background collector to
1977 // complete an ongoing phase before proceeding.
1978 class ReleaseForegroundGC: public StackObj {
1979  private:
1980   CMSCollector* _c;
1981  public:
1982   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1983     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1984     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1985     // allow a potentially blocked foreground collector to proceed
1986     _c->_foregroundGCShouldWait = false;
1987     if (_c->_foregroundGCIsActive) {
1988       CGC_lock->notify();
1989     }
1990     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1991            "Possible deadlock");
1992   }
1993 
1994   ~ReleaseForegroundGC() {
1995     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1996     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1997     _c->_foregroundGCShouldWait = true;
1998   }
1999 };
2000 
2001 // There are separate collect_in_background and collect_in_foreground because of
2002 // the different locking requirements of the background collector and the
2003 // foreground collector.  There was originally an attempt to share
2004 // one "collect" method between the background collector and the foreground
2005 // collector but the if-then-else required made it cleaner to have
2006 // separate methods.
2007 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2008   assert(Thread::current()->is_ConcurrentGC_thread(),
2009     "A CMS asynchronous collection is only allowed on a CMS thread.");
2010 
2011   GenCollectedHeap* gch = GenCollectedHeap::heap();
2012   {
2013     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2014     MutexLockerEx hl(Heap_lock, safepoint_check);
2015     FreelistLocker fll(this);
2016     MutexLockerEx x(CGC_lock, safepoint_check);
2017     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2018       // The foreground collector is active or we're
2019       // not using asynchronous collections.  Skip this
2020       // background collection.
2021       assert(!_foregroundGCShouldWait, "Should be clear");
2022       return;
2023     } else {
2024       assert(_collectorState == Idling, "Should be idling before start.");
2025       _collectorState = InitialMarking;
2026       register_gc_start(cause);
2027       // Reset the expansion cause, now that we are about to begin
2028       // a new cycle.
2029       clear_expansion_cause();
2030 
2031       // Clear the MetaspaceGC flag since a concurrent collection
2032       // is starting but also clear it after the collection.
2033       MetaspaceGC::set_should_concurrent_collect(false);
2034     }
2035     // Decide if we want to enable class unloading as part of the
2036     // ensuing concurrent GC cycle.
2037     update_should_unload_classes();
2038     _full_gc_requested = false;           // acks all outstanding full gc requests
2039     _full_gc_cause = GCCause::_no_gc;
2040     // Signal that we are about to start a collection
2041     gch->increment_total_full_collections();  // ... starting a collection cycle
2042     _collection_count_start = gch->total_full_collections();
2043   }
2044 
2045   // Used for PrintGC
2046   size_t prev_used;
2047   if (PrintGC && Verbose) {
2048     prev_used = _cmsGen->used(); // XXXPERM
2049   }
2050 
2051   // The change of the collection state is normally done at this level;
2052   // the exceptions are phases that are executed while the world is
2053   // stopped.  For those phases the change of state is done while the
2054   // world is stopped.  For baton passing purposes this allows the
2055   // background collector to finish the phase and change state atomically.
2056   // The foreground collector cannot wait on a phase that is done
2057   // while the world is stopped because the foreground collector already
2058   // has the world stopped and would deadlock.
2059   while (_collectorState != Idling) {
2060     if (TraceCMSState) {
2061       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2062         Thread::current(), _collectorState);
2063     }
2064     // The foreground collector
2065     //   holds the Heap_lock throughout its collection.
2066     //   holds the CMS token (but not the lock)
2067     //     except while it is waiting for the background collector to yield.
2068     //
2069     // The foreground collector should be blocked (not for long)
2070     //   if the background collector is about to start a phase
2071     //   executed with world stopped.  If the background
2072     //   collector has already started such a phase, the
2073     //   foreground collector is blocked waiting for the
2074     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2075     //   are executed in the VM thread.
2076     //
2077     // The locking order is
2078     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2079     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2080     //   CMS token  (claimed in
2081     //                stop_world_and_do() -->
2082     //                  safepoint_synchronize() -->
2083     //                    CMSThread::synchronize())
2084 
2085     {
2086       // Check if the FG collector wants us to yield.
2087       CMSTokenSync x(true); // is cms thread
2088       if (waitForForegroundGC()) {
2089         // We yielded to a foreground GC, nothing more to be
2090         // done this round.
2091         assert(_foregroundGCShouldWait == false, "We set it to false in "
2092                "waitForForegroundGC()");
2093         if (TraceCMSState) {
2094           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2095             " exiting collection CMS state %d",
2096             Thread::current(), _collectorState);
2097         }
2098         return;
2099       } else {
2100         // The background collector can run but check to see if the
2101         // foreground collector has done a collection while the
2102         // background collector was waiting to get the CGC_lock
2103         // above.  If yes, break so that _foregroundGCShouldWait
2104         // is cleared before returning.
2105         if (_collectorState == Idling) {
2106           break;
2107         }
2108       }
2109     }
2110 
2111     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2112       "should be waiting");
2113 
2114     switch (_collectorState) {
2115       case InitialMarking:
2116         {
2117           ReleaseForegroundGC x(this);
2118           stats().record_cms_begin();
2119           VM_CMS_Initial_Mark initial_mark_op(this);
2120           VMThread::execute(&initial_mark_op);
2121         }
2122         // The collector state may be any legal state at this point
2123         // since the background collector may have yielded to the
2124         // foreground collector.
2125         break;
2126       case Marking:
2127         // initial marking in checkpointRootsInitialWork has been completed
2128         if (markFromRoots(true)) { // we were successful
2129           assert(_collectorState == Precleaning, "Collector state should "
2130             "have changed");
2131         } else {
2132           assert(_foregroundGCIsActive, "Internal state inconsistency");
2133         }
2134         break;
2135       case Precleaning:
2136         // marking from roots in markFromRoots has been completed
2137         preclean();
2138         assert(_collectorState == AbortablePreclean ||
2139                _collectorState == FinalMarking,
2140                "Collector state should have changed");
2141         break;
2142       case AbortablePreclean:
2143         abortable_preclean();
2144         assert(_collectorState == FinalMarking, "Collector state should "
2145           "have changed");
2146         break;
2147       case FinalMarking:
2148         {
2149           ReleaseForegroundGC x(this);
2150 
2151           VM_CMS_Final_Remark final_remark_op(this);
2152           VMThread::execute(&final_remark_op);
2153         }
2154         assert(_foregroundGCShouldWait, "block post-condition");
2155         break;
2156       case Sweeping:
2157         // final marking in checkpointRootsFinal has been completed
2158         sweep(true);
2159         assert(_collectorState == Resizing, "Collector state change "
2160           "to Resizing must be done under the free_list_lock");
2161         _full_gcs_since_conc_gc = 0;
2162 
2163       case Resizing: {
2164         // Sweeping has been completed...
2165         // At this point the background collection has completed.
2166         // Don't move the call to compute_new_size() down
2167         // into code that might be executed if the background
2168         // collection was preempted.
2169         {
2170           ReleaseForegroundGC x(this);   // unblock FG collection
2171           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2172           CMSTokenSync        z(true);   // not strictly needed.
2173           if (_collectorState == Resizing) {
2174             compute_new_size();
2175             save_heap_summary();
2176             _collectorState = Resetting;
2177           } else {
2178             assert(_collectorState == Idling, "The state should only change"
2179                    " because the foreground collector has finished the collection");
2180           }
2181         }
2182         break;
2183       }
2184       case Resetting:
2185         // CMS heap resizing has been completed
2186         reset(true);
2187         assert(_collectorState == Idling, "Collector state should "
2188           "have changed");
2189 
2190         MetaspaceGC::set_should_concurrent_collect(false);
2191 
2192         stats().record_cms_end();
2193         // Don't move the concurrent_phases_end() and compute_new_size()
2194         // calls to here because a preempted background collection
2195         // has it's state set to "Resetting".
2196         break;
2197       case Idling:
2198       default:
2199         ShouldNotReachHere();
2200         break;
2201     }
2202     if (TraceCMSState) {
2203       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2204         Thread::current(), _collectorState);
2205     }
2206     assert(_foregroundGCShouldWait, "block post-condition");
2207   }
2208 
2209   // Should this be in gc_epilogue?
2210   collector_policy()->counters()->update_counters();
2211 
2212   {
2213     // Clear _foregroundGCShouldWait and, in the event that the
2214     // foreground collector is waiting, notify it, before
2215     // returning.
2216     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2217     _foregroundGCShouldWait = false;
2218     if (_foregroundGCIsActive) {
2219       CGC_lock->notify();
2220     }
2221     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2222            "Possible deadlock");
2223   }
2224   if (TraceCMSState) {
2225     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2226       " exiting collection CMS state %d",
2227       Thread::current(), _collectorState);
2228   }
2229   if (PrintGC && Verbose) {
2230     _cmsGen->print_heap_change(prev_used);
2231   }
2232 }
2233 
2234 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2235   if (!_cms_start_registered) {
2236     register_gc_start(cause);
2237   }
2238 }
2239 
2240 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2241   _cms_start_registered = true;
2242   _gc_timer_cm->register_gc_start();
2243   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2244 }
2245 
2246 void CMSCollector::register_gc_end() {
2247   if (_cms_start_registered) {
2248     report_heap_summary(GCWhen::AfterGC);
2249 
2250     _gc_timer_cm->register_gc_end();
2251     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2252     _cms_start_registered = false;
2253   }
2254 }
2255 
2256 void CMSCollector::save_heap_summary() {
2257   GenCollectedHeap* gch = GenCollectedHeap::heap();
2258   _last_heap_summary = gch->create_heap_summary();
2259   _last_metaspace_summary = gch->create_metaspace_summary();
2260 }
2261 
2262 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2263   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2264   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2265 }
2266 
2267 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2268   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2269          "Foreground collector should be waiting, not executing");
2270   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2271     "may only be done by the VM Thread with the world stopped");
2272   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2273          "VM thread should have CMS token");
2274 
2275   // The gc id is created in register_foreground_gc_start if this collection is synchronous
2276   const GCId gc_id = _collectorState == InitialMarking ? GCId::peek() : _gc_tracer_cm->gc_id();
2277   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2278     true, NULL, gc_id);)
2279   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2280 
2281   HandleMark hm;  // Discard invalid handles created during verification
2282 
2283   if (VerifyBeforeGC &&
2284       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2285     Universe::verify();
2286   }
2287 
2288   // Snapshot the soft reference policy to be used in this collection cycle.
2289   ref_processor()->setup_policy(clear_all_soft_refs);
2290 
2291   // Decide if class unloading should be done
2292   update_should_unload_classes();
2293 
2294   bool init_mark_was_synchronous = false; // until proven otherwise
2295   while (_collectorState != Idling) {
2296     if (TraceCMSState) {
2297       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2298         Thread::current(), _collectorState);
2299     }
2300     switch (_collectorState) {
2301       case InitialMarking:
2302         register_foreground_gc_start(cause);
2303         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2304         checkpointRootsInitial(false);
2305         assert(_collectorState == Marking, "Collector state should have changed"
2306           " within checkpointRootsInitial()");
2307         break;
2308       case Marking:
2309         // initial marking in checkpointRootsInitialWork has been completed
2310         if (VerifyDuringGC &&
2311             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2312           Universe::verify("Verify before initial mark: ");
2313         }
2314         {
2315           bool res = markFromRoots(false);
2316           assert(res && _collectorState == FinalMarking, "Collector state should "
2317             "have changed");
2318           break;
2319         }
2320       case FinalMarking:
2321         if (VerifyDuringGC &&
2322             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2323           Universe::verify("Verify before re-mark: ");
2324         }
2325         checkpointRootsFinal(false, clear_all_soft_refs,
2326                              init_mark_was_synchronous);
2327         assert(_collectorState == Sweeping, "Collector state should not "
2328           "have changed within checkpointRootsFinal()");
2329         break;
2330       case Sweeping:
2331         // final marking in checkpointRootsFinal has been completed
2332         if (VerifyDuringGC &&
2333             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2334           Universe::verify("Verify before sweep: ");
2335         }
2336         sweep(false);
2337         assert(_collectorState == Resizing, "Incorrect state");
2338         break;
2339       case Resizing: {
2340         // Sweeping has been completed; the actual resize in this case
2341         // is done separately; nothing to be done in this state.
2342         _collectorState = Resetting;
2343         break;
2344       }
2345       case Resetting:
2346         // The heap has been resized.
2347         if (VerifyDuringGC &&
2348             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2349           Universe::verify("Verify before reset: ");
2350         }
2351         save_heap_summary();
2352         reset(false);
2353         assert(_collectorState == Idling, "Collector state should "
2354           "have changed");
2355         break;
2356       case Precleaning:
2357       case AbortablePreclean:
2358         // Elide the preclean phase
2359         _collectorState = FinalMarking;
2360         break;
2361       default:
2362         ShouldNotReachHere();
2363     }
2364     if (TraceCMSState) {
2365       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2366         Thread::current(), _collectorState);
2367     }
2368   }
2369 
2370   if (VerifyAfterGC &&
2371       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2372     Universe::verify();
2373   }
2374   if (TraceCMSState) {
2375     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2376       " exiting collection CMS state %d",
2377       Thread::current(), _collectorState);
2378   }
2379 }
2380 
2381 bool CMSCollector::waitForForegroundGC() {
2382   bool res = false;
2383   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2384          "CMS thread should have CMS token");
2385   // Block the foreground collector until the
2386   // background collectors decides whether to
2387   // yield.
2388   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2389   _foregroundGCShouldWait = true;
2390   if (_foregroundGCIsActive) {
2391     // The background collector yields to the
2392     // foreground collector and returns a value
2393     // indicating that it has yielded.  The foreground
2394     // collector can proceed.
2395     res = true;
2396     _foregroundGCShouldWait = false;
2397     ConcurrentMarkSweepThread::clear_CMS_flag(
2398       ConcurrentMarkSweepThread::CMS_cms_has_token);
2399     ConcurrentMarkSweepThread::set_CMS_flag(
2400       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2401     // Get a possibly blocked foreground thread going
2402     CGC_lock->notify();
2403     if (TraceCMSState) {
2404       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2405         Thread::current(), _collectorState);
2406     }
2407     while (_foregroundGCIsActive) {
2408       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2409     }
2410     ConcurrentMarkSweepThread::set_CMS_flag(
2411       ConcurrentMarkSweepThread::CMS_cms_has_token);
2412     ConcurrentMarkSweepThread::clear_CMS_flag(
2413       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2414   }
2415   if (TraceCMSState) {
2416     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2417       Thread::current(), _collectorState);
2418   }
2419   return res;
2420 }
2421 
2422 // Because of the need to lock the free lists and other structures in
2423 // the collector, common to all the generations that the collector is
2424 // collecting, we need the gc_prologues of individual CMS generations
2425 // delegate to their collector. It may have been simpler had the
2426 // current infrastructure allowed one to call a prologue on a
2427 // collector. In the absence of that we have the generation's
2428 // prologue delegate to the collector, which delegates back
2429 // some "local" work to a worker method in the individual generations
2430 // that it's responsible for collecting, while itself doing any
2431 // work common to all generations it's responsible for. A similar
2432 // comment applies to the  gc_epilogue()'s.
2433 // The role of the variable _between_prologue_and_epilogue is to
2434 // enforce the invocation protocol.
2435 void CMSCollector::gc_prologue(bool full) {
2436   // Call gc_prologue_work() for the CMSGen
2437   // we are responsible for.
2438 
2439   // The following locking discipline assumes that we are only called
2440   // when the world is stopped.
2441   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2442 
2443   // The CMSCollector prologue must call the gc_prologues for the
2444   // "generations" that it's responsible
2445   // for.
2446 
2447   assert(   Thread::current()->is_VM_thread()
2448          || (   CMSScavengeBeforeRemark
2449              && Thread::current()->is_ConcurrentGC_thread()),
2450          "Incorrect thread type for prologue execution");
2451 
2452   if (_between_prologue_and_epilogue) {
2453     // We have already been invoked; this is a gc_prologue delegation
2454     // from yet another CMS generation that we are responsible for, just
2455     // ignore it since all relevant work has already been done.
2456     return;
2457   }
2458 
2459   // set a bit saying prologue has been called; cleared in epilogue
2460   _between_prologue_and_epilogue = true;
2461   // Claim locks for common data structures, then call gc_prologue_work()
2462   // for each CMSGen.
2463 
2464   getFreelistLocks();   // gets free list locks on constituent spaces
2465   bitMapLock()->lock_without_safepoint_check();
2466 
2467   // Should call gc_prologue_work() for all cms gens we are responsible for
2468   bool duringMarking =    _collectorState >= Marking
2469                          && _collectorState < Sweeping;
2470 
2471   // The young collections clear the modified oops state, which tells if
2472   // there are any modified oops in the class. The remark phase also needs
2473   // that information. Tell the young collection to save the union of all
2474   // modified klasses.
2475   if (duringMarking) {
2476     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2477   }
2478 
2479   bool registerClosure = duringMarking;
2480 
2481   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2482                                                &_modUnionClosurePar
2483                                                : &_modUnionClosure;
2484   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2485 
2486   if (!full) {
2487     stats().record_gc0_begin();
2488   }
2489 }
2490 
2491 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2492 
2493   _capacity_at_prologue = capacity();
2494   _used_at_prologue = used();
2495 
2496   // Delegate to CMScollector which knows how to coordinate between
2497   // this and any other CMS generations that it is responsible for
2498   // collecting.
2499   collector()->gc_prologue(full);
2500 }
2501 
2502 // This is a "private" interface for use by this generation's CMSCollector.
2503 // Not to be called directly by any other entity (for instance,
2504 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2505 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2506   bool registerClosure, ModUnionClosure* modUnionClosure) {
2507   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2508   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2509     "Should be NULL");
2510   if (registerClosure) {
2511     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2512   }
2513   cmsSpace()->gc_prologue();
2514   // Clear stat counters
2515   NOT_PRODUCT(
2516     assert(_numObjectsPromoted == 0, "check");
2517     assert(_numWordsPromoted   == 0, "check");
2518     if (Verbose && PrintGC) {
2519       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2520                           SIZE_FORMAT" bytes concurrently",
2521       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2522     }
2523     _numObjectsAllocated = 0;
2524     _numWordsAllocated   = 0;
2525   )
2526 }
2527 
2528 void CMSCollector::gc_epilogue(bool full) {
2529   // The following locking discipline assumes that we are only called
2530   // when the world is stopped.
2531   assert(SafepointSynchronize::is_at_safepoint(),
2532          "world is stopped assumption");
2533 
2534   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2535   // if linear allocation blocks need to be appropriately marked to allow the
2536   // the blocks to be parsable. We also check here whether we need to nudge the
2537   // CMS collector thread to start a new cycle (if it's not already active).
2538   assert(   Thread::current()->is_VM_thread()
2539          || (   CMSScavengeBeforeRemark
2540              && Thread::current()->is_ConcurrentGC_thread()),
2541          "Incorrect thread type for epilogue execution");
2542 
2543   if (!_between_prologue_and_epilogue) {
2544     // We have already been invoked; this is a gc_epilogue delegation
2545     // from yet another CMS generation that we are responsible for, just
2546     // ignore it since all relevant work has already been done.
2547     return;
2548   }
2549   assert(haveFreelistLocks(), "must have freelist locks");
2550   assert_lock_strong(bitMapLock());
2551 
2552   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2553 
2554   _cmsGen->gc_epilogue_work(full);
2555 
2556   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2557     // in case sampling was not already enabled, enable it
2558     _start_sampling = true;
2559   }
2560   // reset _eden_chunk_array so sampling starts afresh
2561   _eden_chunk_index = 0;
2562 
2563   size_t cms_used   = _cmsGen->cmsSpace()->used();
2564 
2565   // update performance counters - this uses a special version of
2566   // update_counters() that allows the utilization to be passed as a
2567   // parameter, avoiding multiple calls to used().
2568   //
2569   _cmsGen->update_counters(cms_used);
2570 
2571   bitMapLock()->unlock();
2572   releaseFreelistLocks();
2573 
2574   if (!CleanChunkPoolAsync) {
2575     Chunk::clean_chunk_pool();
2576   }
2577 
2578   set_did_compact(false);
2579   _between_prologue_and_epilogue = false;  // ready for next cycle
2580 }
2581 
2582 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2583   collector()->gc_epilogue(full);
2584 
2585   // Also reset promotion tracking in par gc thread states.
2586   if (CollectedHeap::use_parallel_gc_threads()) {
2587     for (uint i = 0; i < ParallelGCThreads; i++) {
2588       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2589     }
2590   }
2591 }
2592 
2593 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2594   assert(!incremental_collection_failed(), "Should have been cleared");
2595   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2596   cmsSpace()->gc_epilogue();
2597     // Print stat counters
2598   NOT_PRODUCT(
2599     assert(_numObjectsAllocated == 0, "check");
2600     assert(_numWordsAllocated == 0, "check");
2601     if (Verbose && PrintGC) {
2602       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2603                           SIZE_FORMAT" bytes",
2604                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2605     }
2606     _numObjectsPromoted = 0;
2607     _numWordsPromoted   = 0;
2608   )
2609 
2610   if (PrintGC && Verbose) {
2611     // Call down the chain in contiguous_available needs the freelistLock
2612     // so print this out before releasing the freeListLock.
2613     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2614                         contiguous_available());
2615   }
2616 }
2617 
2618 #ifndef PRODUCT
2619 bool CMSCollector::have_cms_token() {
2620   Thread* thr = Thread::current();
2621   if (thr->is_VM_thread()) {
2622     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2623   } else if (thr->is_ConcurrentGC_thread()) {
2624     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2625   } else if (thr->is_GC_task_thread()) {
2626     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2627            ParGCRareEvent_lock->owned_by_self();
2628   }
2629   return false;
2630 }
2631 #endif
2632 
2633 // Check reachability of the given heap address in CMS generation,
2634 // treating all other generations as roots.
2635 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2636   // We could "guarantee" below, rather than assert, but I'll
2637   // leave these as "asserts" so that an adventurous debugger
2638   // could try this in the product build provided some subset of
2639   // the conditions were met, provided they were interested in the
2640   // results and knew that the computation below wouldn't interfere
2641   // with other concurrent computations mutating the structures
2642   // being read or written.
2643   assert(SafepointSynchronize::is_at_safepoint(),
2644          "Else mutations in object graph will make answer suspect");
2645   assert(have_cms_token(), "Should hold cms token");
2646   assert(haveFreelistLocks(), "must hold free list locks");
2647   assert_lock_strong(bitMapLock());
2648 
2649   // Clear the marking bit map array before starting, but, just
2650   // for kicks, first report if the given address is already marked
2651   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", addr,
2652                 _markBitMap.isMarked(addr) ? "" : " not");
2653 
2654   if (verify_after_remark()) {
2655     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2656     bool result = verification_mark_bm()->isMarked(addr);
2657     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", addr,
2658                            result ? "IS" : "is NOT");
2659     return result;
2660   } else {
2661     gclog_or_tty->print_cr("Could not compute result");
2662     return false;
2663   }
2664 }
2665 
2666 
2667 void
2668 CMSCollector::print_on_error(outputStream* st) {
2669   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2670   if (collector != NULL) {
2671     CMSBitMap* bitmap = &collector->_markBitMap;
2672     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2673     bitmap->print_on_error(st, " Bits: ");
2674 
2675     st->cr();
2676 
2677     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2678     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2679     mut_bitmap->print_on_error(st, " Bits: ");
2680   }
2681 }
2682 
2683 ////////////////////////////////////////////////////////
2684 // CMS Verification Support
2685 ////////////////////////////////////////////////////////
2686 // Following the remark phase, the following invariant
2687 // should hold -- each object in the CMS heap which is
2688 // marked in markBitMap() should be marked in the verification_mark_bm().
2689 
2690 class VerifyMarkedClosure: public BitMapClosure {
2691   CMSBitMap* _marks;
2692   bool       _failed;
2693 
2694  public:
2695   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2696 
2697   bool do_bit(size_t offset) {
2698     HeapWord* addr = _marks->offsetToHeapWord(offset);
2699     if (!_marks->isMarked(addr)) {
2700       oop(addr)->print_on(gclog_or_tty);
2701       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2702       _failed = true;
2703     }
2704     return true;
2705   }
2706 
2707   bool failed() { return _failed; }
2708 };
2709 
2710 bool CMSCollector::verify_after_remark(bool silent) {
2711   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2712   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2713   static bool init = false;
2714 
2715   assert(SafepointSynchronize::is_at_safepoint(),
2716          "Else mutations in object graph will make answer suspect");
2717   assert(have_cms_token(),
2718          "Else there may be mutual interference in use of "
2719          " verification data structures");
2720   assert(_collectorState > Marking && _collectorState <= Sweeping,
2721          "Else marking info checked here may be obsolete");
2722   assert(haveFreelistLocks(), "must hold free list locks");
2723   assert_lock_strong(bitMapLock());
2724 
2725 
2726   // Allocate marking bit map if not already allocated
2727   if (!init) { // first time
2728     if (!verification_mark_bm()->allocate(_span)) {
2729       return false;
2730     }
2731     init = true;
2732   }
2733 
2734   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2735 
2736   // Turn off refs discovery -- so we will be tracing through refs.
2737   // This is as intended, because by this time
2738   // GC must already have cleared any refs that need to be cleared,
2739   // and traced those that need to be marked; moreover,
2740   // the marking done here is not going to interfere in any
2741   // way with the marking information used by GC.
2742   NoRefDiscovery no_discovery(ref_processor());
2743 
2744   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2745 
2746   // Clear any marks from a previous round
2747   verification_mark_bm()->clear_all();
2748   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2749   verify_work_stacks_empty();
2750 
2751   GenCollectedHeap* gch = GenCollectedHeap::heap();
2752   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2753   // Update the saved marks which may affect the root scans.
2754   gch->save_marks();
2755 
2756   if (CMSRemarkVerifyVariant == 1) {
2757     // In this first variant of verification, we complete
2758     // all marking, then check if the new marks-vector is
2759     // a subset of the CMS marks-vector.
2760     verify_after_remark_work_1();
2761   } else if (CMSRemarkVerifyVariant == 2) {
2762     // In this second variant of verification, we flag an error
2763     // (i.e. an object reachable in the new marks-vector not reachable
2764     // in the CMS marks-vector) immediately, also indicating the
2765     // identify of an object (A) that references the unmarked object (B) --
2766     // presumably, a mutation to A failed to be picked up by preclean/remark?
2767     verify_after_remark_work_2();
2768   } else {
2769     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2770             CMSRemarkVerifyVariant);
2771   }
2772   if (!silent) gclog_or_tty->print(" done] ");
2773   return true;
2774 }
2775 
2776 void CMSCollector::verify_after_remark_work_1() {
2777   ResourceMark rm;
2778   HandleMark  hm;
2779   GenCollectedHeap* gch = GenCollectedHeap::heap();
2780 
2781   // Get a clear set of claim bits for the roots processing to work with.
2782   ClassLoaderDataGraph::clear_claimed_marks();
2783 
2784   // Mark from roots one level into CMS
2785   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2786   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2787 
2788   gch->gen_process_roots(_cmsGen->level(),
2789                          true,   // younger gens are roots
2790                          true,   // activate StrongRootsScope
2791                          SharedHeap::ScanningOption(roots_scanning_options()),
2792                          should_unload_classes(),
2793                          &notOlder,
2794                          NULL,
2795                          NULL);  // SSS: Provide correct closure
2796 
2797   // Now mark from the roots
2798   MarkFromRootsClosure markFromRootsClosure(this, _span,
2799     verification_mark_bm(), verification_mark_stack(),
2800     false /* don't yield */, true /* verifying */);
2801   assert(_restart_addr == NULL, "Expected pre-condition");
2802   verification_mark_bm()->iterate(&markFromRootsClosure);
2803   while (_restart_addr != NULL) {
2804     // Deal with stack overflow: by restarting at the indicated
2805     // address.
2806     HeapWord* ra = _restart_addr;
2807     markFromRootsClosure.reset(ra);
2808     _restart_addr = NULL;
2809     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2810   }
2811   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2812   verify_work_stacks_empty();
2813 
2814   // Marking completed -- now verify that each bit marked in
2815   // verification_mark_bm() is also marked in markBitMap(); flag all
2816   // errors by printing corresponding objects.
2817   VerifyMarkedClosure vcl(markBitMap());
2818   verification_mark_bm()->iterate(&vcl);
2819   if (vcl.failed()) {
2820     gclog_or_tty->print("Verification failed");
2821     Universe::heap()->print_on(gclog_or_tty);
2822     fatal("CMS: failed marking verification after remark");
2823   }
2824 }
2825 
2826 class VerifyKlassOopsKlassClosure : public KlassClosure {
2827   class VerifyKlassOopsClosure : public OopClosure {
2828     CMSBitMap* _bitmap;
2829    public:
2830     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2831     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2832     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2833   } _oop_closure;
2834  public:
2835   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2836   void do_klass(Klass* k) {
2837     k->oops_do(&_oop_closure);
2838   }
2839 };
2840 
2841 void CMSCollector::verify_after_remark_work_2() {
2842   ResourceMark rm;
2843   HandleMark  hm;
2844   GenCollectedHeap* gch = GenCollectedHeap::heap();
2845 
2846   // Get a clear set of claim bits for the roots processing to work with.
2847   ClassLoaderDataGraph::clear_claimed_marks();
2848 
2849   // Mark from roots one level into CMS
2850   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2851                                      markBitMap());
2852   CLDToOopClosure cld_closure(&notOlder, true);
2853 
2854   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2855 
2856   gch->gen_process_roots(_cmsGen->level(),
2857                          true,   // younger gens are roots
2858                          true,   // activate StrongRootsScope
2859                          SharedHeap::ScanningOption(roots_scanning_options()),
2860                          should_unload_classes(),
2861                          &notOlder,
2862                          NULL,
2863                          &cld_closure);
2864 
2865   // Now mark from the roots
2866   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2867     verification_mark_bm(), markBitMap(), verification_mark_stack());
2868   assert(_restart_addr == NULL, "Expected pre-condition");
2869   verification_mark_bm()->iterate(&markFromRootsClosure);
2870   while (_restart_addr != NULL) {
2871     // Deal with stack overflow: by restarting at the indicated
2872     // address.
2873     HeapWord* ra = _restart_addr;
2874     markFromRootsClosure.reset(ra);
2875     _restart_addr = NULL;
2876     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2877   }
2878   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2879   verify_work_stacks_empty();
2880 
2881   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2882   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2883 
2884   // Marking completed -- now verify that each bit marked in
2885   // verification_mark_bm() is also marked in markBitMap(); flag all
2886   // errors by printing corresponding objects.
2887   VerifyMarkedClosure vcl(markBitMap());
2888   verification_mark_bm()->iterate(&vcl);
2889   assert(!vcl.failed(), "Else verification above should not have succeeded");
2890 }
2891 
2892 void ConcurrentMarkSweepGeneration::save_marks() {
2893   // delegate to CMS space
2894   cmsSpace()->save_marks();
2895   for (uint i = 0; i < ParallelGCThreads; i++) {
2896     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2897   }
2898 }
2899 
2900 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2901   return cmsSpace()->no_allocs_since_save_marks();
2902 }
2903 
2904 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2905                                                                 \
2906 void ConcurrentMarkSweepGeneration::                            \
2907 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2908   cl->set_generation(this);                                     \
2909   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2910   cl->reset_generation();                                       \
2911   save_marks();                                                 \
2912 }
2913 
2914 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2915 
2916 void
2917 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
2918   cl->set_generation(this);
2919   younger_refs_in_space_iterate(_cmsSpace, cl);
2920   cl->reset_generation();
2921 }
2922 
2923 void
2924 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2925   if (freelistLock()->owned_by_self()) {
2926     Generation::oop_iterate(cl);
2927   } else {
2928     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2929     Generation::oop_iterate(cl);
2930   }
2931 }
2932 
2933 void
2934 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2935   if (freelistLock()->owned_by_self()) {
2936     Generation::object_iterate(cl);
2937   } else {
2938     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2939     Generation::object_iterate(cl);
2940   }
2941 }
2942 
2943 void
2944 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2945   if (freelistLock()->owned_by_self()) {
2946     Generation::safe_object_iterate(cl);
2947   } else {
2948     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2949     Generation::safe_object_iterate(cl);
2950   }
2951 }
2952 
2953 void
2954 ConcurrentMarkSweepGeneration::post_compact() {
2955 }
2956 
2957 void
2958 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2959   // Fix the linear allocation blocks to look like free blocks.
2960 
2961   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2962   // are not called when the heap is verified during universe initialization and
2963   // at vm shutdown.
2964   if (freelistLock()->owned_by_self()) {
2965     cmsSpace()->prepare_for_verify();
2966   } else {
2967     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2968     cmsSpace()->prepare_for_verify();
2969   }
2970 }
2971 
2972 void
2973 ConcurrentMarkSweepGeneration::verify() {
2974   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2975   // are not called when the heap is verified during universe initialization and
2976   // at vm shutdown.
2977   if (freelistLock()->owned_by_self()) {
2978     cmsSpace()->verify();
2979   } else {
2980     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2981     cmsSpace()->verify();
2982   }
2983 }
2984 
2985 void CMSCollector::verify() {
2986   _cmsGen->verify();
2987 }
2988 
2989 #ifndef PRODUCT
2990 bool CMSCollector::overflow_list_is_empty() const {
2991   assert(_num_par_pushes >= 0, "Inconsistency");
2992   if (_overflow_list == NULL) {
2993     assert(_num_par_pushes == 0, "Inconsistency");
2994   }
2995   return _overflow_list == NULL;
2996 }
2997 
2998 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2999 // merely consolidate assertion checks that appear to occur together frequently.
3000 void CMSCollector::verify_work_stacks_empty() const {
3001   assert(_markStack.isEmpty(), "Marking stack should be empty");
3002   assert(overflow_list_is_empty(), "Overflow list should be empty");
3003 }
3004 
3005 void CMSCollector::verify_overflow_empty() const {
3006   assert(overflow_list_is_empty(), "Overflow list should be empty");
3007   assert(no_preserved_marks(), "No preserved marks");
3008 }
3009 #endif // PRODUCT
3010 
3011 // Decide if we want to enable class unloading as part of the
3012 // ensuing concurrent GC cycle. We will collect and
3013 // unload classes if it's the case that:
3014 // (1) an explicit gc request has been made and the flag
3015 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3016 // (2) (a) class unloading is enabled at the command line, and
3017 //     (b) old gen is getting really full
3018 // NOTE: Provided there is no change in the state of the heap between
3019 // calls to this method, it should have idempotent results. Moreover,
3020 // its results should be monotonically increasing (i.e. going from 0 to 1,
3021 // but not 1 to 0) between successive calls between which the heap was
3022 // not collected. For the implementation below, it must thus rely on
3023 // the property that concurrent_cycles_since_last_unload()
3024 // will not decrease unless a collection cycle happened and that
3025 // _cmsGen->is_too_full() are
3026 // themselves also monotonic in that sense. See check_monotonicity()
3027 // below.
3028 void CMSCollector::update_should_unload_classes() {
3029   _should_unload_classes = false;
3030   // Condition 1 above
3031   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3032     _should_unload_classes = true;
3033   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3034     // Disjuncts 2.b.(i,ii,iii) above
3035     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3036                               CMSClassUnloadingMaxInterval)
3037                            || _cmsGen->is_too_full();
3038   }
3039 }
3040 
3041 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3042   bool res = should_concurrent_collect();
3043   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3044   return res;
3045 }
3046 
3047 void CMSCollector::setup_cms_unloading_and_verification_state() {
3048   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3049                              || VerifyBeforeExit;
3050   const  int  rso           =   SharedHeap::SO_AllCodeCache;
3051 
3052   // We set the proper root for this CMS cycle here.
3053   if (should_unload_classes()) {   // Should unload classes this cycle
3054     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3055     set_verifying(should_verify);    // Set verification state for this cycle
3056     return;                            // Nothing else needs to be done at this time
3057   }
3058 
3059   // Not unloading classes this cycle
3060   assert(!should_unload_classes(), "Inconsistency!");
3061 
3062   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3063     // Include symbols, strings and code cache elements to prevent their resurrection.
3064     add_root_scanning_option(rso);
3065     set_verifying(true);
3066   } else if (verifying() && !should_verify) {
3067     // We were verifying, but some verification flags got disabled.
3068     set_verifying(false);
3069     // Exclude symbols, strings and code cache elements from root scanning to
3070     // reduce IM and RM pauses.
3071     remove_root_scanning_option(rso);
3072   }
3073 }
3074 
3075 
3076 #ifndef PRODUCT
3077 HeapWord* CMSCollector::block_start(const void* p) const {
3078   const HeapWord* addr = (HeapWord*)p;
3079   if (_span.contains(p)) {
3080     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3081       return _cmsGen->cmsSpace()->block_start(p);
3082     }
3083   }
3084   return NULL;
3085 }
3086 #endif
3087 
3088 HeapWord*
3089 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3090                                                    bool   tlab,
3091                                                    bool   parallel) {
3092   CMSSynchronousYieldRequest yr;
3093   assert(!tlab, "Can't deal with TLAB allocation");
3094   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3095   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3096     CMSExpansionCause::_satisfy_allocation);
3097   if (GCExpandToAllocateDelayMillis > 0) {
3098     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3099   }
3100   return have_lock_and_allocate(word_size, tlab);
3101 }
3102 
3103 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3104 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3105 // to CardGeneration and share it...
3106 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3107   return CardGeneration::expand(bytes, expand_bytes);
3108 }
3109 
3110 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3111   CMSExpansionCause::Cause cause)
3112 {
3113 
3114   bool success = expand(bytes, expand_bytes);
3115 
3116   // remember why we expanded; this information is used
3117   // by shouldConcurrentCollect() when making decisions on whether to start
3118   // a new CMS cycle.
3119   if (success) {
3120     set_expansion_cause(cause);
3121     if (PrintGCDetails && Verbose) {
3122       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3123         CMSExpansionCause::to_string(cause));
3124     }
3125   }
3126 }
3127 
3128 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3129   HeapWord* res = NULL;
3130   MutexLocker x(ParGCRareEvent_lock);
3131   while (true) {
3132     // Expansion by some other thread might make alloc OK now:
3133     res = ps->lab.alloc(word_sz);
3134     if (res != NULL) return res;
3135     // If there's not enough expansion space available, give up.
3136     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3137       return NULL;
3138     }
3139     // Otherwise, we try expansion.
3140     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3141       CMSExpansionCause::_allocate_par_lab);
3142     // Now go around the loop and try alloc again;
3143     // A competing par_promote might beat us to the expansion space,
3144     // so we may go around the loop again if promotion fails again.
3145     if (GCExpandToAllocateDelayMillis > 0) {
3146       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3147     }
3148   }
3149 }
3150 
3151 
3152 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3153   PromotionInfo* promo) {
3154   MutexLocker x(ParGCRareEvent_lock);
3155   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3156   while (true) {
3157     // Expansion by some other thread might make alloc OK now:
3158     if (promo->ensure_spooling_space()) {
3159       assert(promo->has_spooling_space(),
3160              "Post-condition of successful ensure_spooling_space()");
3161       return true;
3162     }
3163     // If there's not enough expansion space available, give up.
3164     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3165       return false;
3166     }
3167     // Otherwise, we try expansion.
3168     expand(refill_size_bytes, MinHeapDeltaBytes,
3169       CMSExpansionCause::_allocate_par_spooling_space);
3170     // Now go around the loop and try alloc again;
3171     // A competing allocation might beat us to the expansion space,
3172     // so we may go around the loop again if allocation fails again.
3173     if (GCExpandToAllocateDelayMillis > 0) {
3174       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3175     }
3176   }
3177 }
3178 
3179 
3180 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3181   assert_locked_or_safepoint(ExpandHeap_lock);
3182   // Shrink committed space
3183   _virtual_space.shrink_by(bytes);
3184   // Shrink space; this also shrinks the space's BOT
3185   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3186   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3187   // Shrink the shared block offset array
3188   _bts->resize(new_word_size);
3189   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3190   // Shrink the card table
3191   Universe::heap()->barrier_set()->resize_covered_region(mr);
3192 
3193   if (Verbose && PrintGC) {
3194     size_t new_mem_size = _virtual_space.committed_size();
3195     size_t old_mem_size = new_mem_size + bytes;
3196     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3197                   name(), old_mem_size/K, new_mem_size/K);
3198   }
3199 }
3200 
3201 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3202   assert_locked_or_safepoint(Heap_lock);
3203   size_t size = ReservedSpace::page_align_size_down(bytes);
3204   // Only shrink if a compaction was done so that all the free space
3205   // in the generation is in a contiguous block at the end.
3206   if (size > 0 && did_compact()) {
3207     shrink_by(size);
3208   }
3209 }
3210 
3211 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3212   assert_locked_or_safepoint(Heap_lock);
3213   bool result = _virtual_space.expand_by(bytes);
3214   if (result) {
3215     size_t new_word_size =
3216       heap_word_size(_virtual_space.committed_size());
3217     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3218     _bts->resize(new_word_size);  // resize the block offset shared array
3219     Universe::heap()->barrier_set()->resize_covered_region(mr);
3220     // Hmmmm... why doesn't CFLS::set_end verify locking?
3221     // This is quite ugly; FIX ME XXX
3222     _cmsSpace->assert_locked(freelistLock());
3223     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3224 
3225     // update the space and generation capacity counters
3226     if (UsePerfData) {
3227       _space_counters->update_capacity();
3228       _gen_counters->update_all();
3229     }
3230 
3231     if (Verbose && PrintGC) {
3232       size_t new_mem_size = _virtual_space.committed_size();
3233       size_t old_mem_size = new_mem_size - bytes;
3234       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3235                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3236     }
3237   }
3238   return result;
3239 }
3240 
3241 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3242   assert_locked_or_safepoint(Heap_lock);
3243   bool success = true;
3244   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3245   if (remaining_bytes > 0) {
3246     success = grow_by(remaining_bytes);
3247     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3248   }
3249   return success;
3250 }
3251 
3252 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3253   assert_locked_or_safepoint(Heap_lock);
3254   assert_lock_strong(freelistLock());
3255   if (PrintGCDetails && Verbose) {
3256     warning("Shrinking of CMS not yet implemented");
3257   }
3258   return;
3259 }
3260 
3261 
3262 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3263 // phases.
3264 class CMSPhaseAccounting: public StackObj {
3265  public:
3266   CMSPhaseAccounting(CMSCollector *collector,
3267                      const char *phase,
3268                      const GCId gc_id,
3269                      bool print_cr = true);
3270   ~CMSPhaseAccounting();
3271 
3272  private:
3273   CMSCollector *_collector;
3274   const char *_phase;
3275   elapsedTimer _wallclock;
3276   bool _print_cr;
3277   const GCId _gc_id;
3278 
3279  public:
3280   // Not MT-safe; so do not pass around these StackObj's
3281   // where they may be accessed by other threads.
3282   jlong wallclock_millis() {
3283     assert(_wallclock.is_active(), "Wall clock should not stop");
3284     _wallclock.stop();  // to record time
3285     jlong ret = _wallclock.milliseconds();
3286     _wallclock.start(); // restart
3287     return ret;
3288   }
3289 };
3290 
3291 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3292                                        const char *phase,
3293                                        const GCId gc_id,
3294                                        bool print_cr) :
3295   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
3296 
3297   if (PrintCMSStatistics != 0) {
3298     _collector->resetYields();
3299   }
3300   if (PrintGCDetails) {
3301     gclog_or_tty->gclog_stamp(_gc_id);
3302     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3303       _collector->cmsGen()->short_name(), _phase);
3304   }
3305   _collector->resetTimer();
3306   _wallclock.start();
3307   _collector->startTimer();
3308 }
3309 
3310 CMSPhaseAccounting::~CMSPhaseAccounting() {
3311   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3312   _collector->stopTimer();
3313   _wallclock.stop();
3314   if (PrintGCDetails) {
3315     gclog_or_tty->gclog_stamp(_gc_id);
3316     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3317                  _collector->cmsGen()->short_name(),
3318                  _phase, _collector->timerValue(), _wallclock.seconds());
3319     if (_print_cr) {
3320       gclog_or_tty->cr();
3321     }
3322     if (PrintCMSStatistics != 0) {
3323       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3324                     _collector->yields());
3325     }
3326   }
3327 }
3328 
3329 // CMS work
3330 
3331 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3332 class CMSParMarkTask : public AbstractGangTask {
3333  protected:
3334   CMSCollector*     _collector;
3335   int               _n_workers;
3336   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3337       AbstractGangTask(name),
3338       _collector(collector),
3339       _n_workers(n_workers) {}
3340   // Work method in support of parallel rescan ... of young gen spaces
3341   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3342                              ContiguousSpace* space,
3343                              HeapWord** chunk_array, size_t chunk_top);
3344   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3345 };
3346 
3347 // Parallel initial mark task
3348 class CMSParInitialMarkTask: public CMSParMarkTask {
3349  public:
3350   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3351       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3352                      collector, n_workers) {}
3353   void work(uint worker_id);
3354 };
3355 
3356 // Checkpoint the roots into this generation from outside
3357 // this generation. [Note this initial checkpoint need only
3358 // be approximate -- we'll do a catch up phase subsequently.]
3359 void CMSCollector::checkpointRootsInitial(bool asynch) {
3360   assert(_collectorState == InitialMarking, "Wrong collector state");
3361   check_correct_thread_executing();
3362   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3363 
3364   save_heap_summary();
3365   report_heap_summary(GCWhen::BeforeGC);
3366 
3367   ReferenceProcessor* rp = ref_processor();
3368   SpecializationStats::clear();
3369   assert(_restart_addr == NULL, "Control point invariant");
3370   if (asynch) {
3371     // acquire locks for subsequent manipulations
3372     MutexLockerEx x(bitMapLock(),
3373                     Mutex::_no_safepoint_check_flag);
3374     checkpointRootsInitialWork(asynch);
3375     // enable ("weak") refs discovery
3376     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3377     _collectorState = Marking;
3378   } else {
3379     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3380     // which recognizes if we are a CMS generation, and doesn't try to turn on
3381     // discovery; verify that they aren't meddling.
3382     assert(!rp->discovery_is_atomic(),
3383            "incorrect setting of discovery predicate");
3384     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3385            "ref discovery for this generation kind");
3386     // already have locks
3387     checkpointRootsInitialWork(asynch);
3388     // now enable ("weak") refs discovery
3389     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3390     _collectorState = Marking;
3391   }
3392   SpecializationStats::print();
3393 }
3394 
3395 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3396   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3397   assert(_collectorState == InitialMarking, "just checking");
3398 
3399   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3400   // precede our marking with a collection of all
3401   // younger generations to keep floating garbage to a minimum.
3402   // XXX: we won't do this for now -- it's an optimization to be done later.
3403 
3404   // already have locks
3405   assert_lock_strong(bitMapLock());
3406   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3407 
3408   // Setup the verification and class unloading state for this
3409   // CMS collection cycle.
3410   setup_cms_unloading_and_verification_state();
3411 
3412   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3413     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
3414 
3415   // Reset all the PLAB chunk arrays if necessary.
3416   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3417     reset_survivor_plab_arrays();
3418   }
3419 
3420   ResourceMark rm;
3421   HandleMark  hm;
3422 
3423   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3424   GenCollectedHeap* gch = GenCollectedHeap::heap();
3425 
3426   verify_work_stacks_empty();
3427   verify_overflow_empty();
3428 
3429   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3430   // Update the saved marks which may affect the root scans.
3431   gch->save_marks();
3432 
3433   // weak reference processing has not started yet.
3434   ref_processor()->set_enqueuing_is_done(false);
3435 
3436   // Need to remember all newly created CLDs,
3437   // so that we can guarantee that the remark finds them.
3438   ClassLoaderDataGraph::remember_new_clds(true);
3439 
3440   // Whenever a CLD is found, it will be claimed before proceeding to mark
3441   // the klasses. The claimed marks need to be cleared before marking starts.
3442   ClassLoaderDataGraph::clear_claimed_marks();
3443 
3444   if (CMSPrintEdenSurvivorChunks) {
3445     print_eden_and_survivor_chunk_arrays();
3446   }
3447 
3448   {
3449     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3450     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3451       // The parallel version.
3452       FlexibleWorkGang* workers = gch->workers();
3453       assert(workers != NULL, "Need parallel worker threads.");
3454       int n_workers = workers->active_workers();
3455       CMSParInitialMarkTask tsk(this, n_workers);
3456       gch->set_par_threads(n_workers);
3457       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3458       if (n_workers > 1) {
3459         GenCollectedHeap::StrongRootsScope srs(gch);
3460         workers->run_task(&tsk);
3461       } else {
3462         GenCollectedHeap::StrongRootsScope srs(gch);
3463         tsk.work(0);
3464       }
3465       gch->set_par_threads(0);
3466     } else {
3467       // The serial version.
3468       CLDToOopClosure cld_closure(&notOlder, true);
3469       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3470       gch->gen_process_roots(_cmsGen->level(),
3471                              true,   // younger gens are roots
3472                              true,   // activate StrongRootsScope
3473                              SharedHeap::ScanningOption(roots_scanning_options()),
3474                              should_unload_classes(),
3475                              &notOlder,
3476                              NULL,
3477                              &cld_closure);
3478     }
3479   }
3480 
3481   // Clear mod-union table; it will be dirtied in the prologue of
3482   // CMS generation per each younger generation collection.
3483 
3484   assert(_modUnionTable.isAllClear(),
3485        "Was cleared in most recent final checkpoint phase"
3486        " or no bits are set in the gc_prologue before the start of the next "
3487        "subsequent marking phase.");
3488 
3489   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3490 
3491   // Save the end of the used_region of the constituent generations
3492   // to be used to limit the extent of sweep in each generation.
3493   save_sweep_limits();
3494   verify_overflow_empty();
3495 }
3496 
3497 bool CMSCollector::markFromRoots(bool asynch) {
3498   // we might be tempted to assert that:
3499   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3500   //        "inconsistent argument?");
3501   // However that wouldn't be right, because it's possible that
3502   // a safepoint is indeed in progress as a younger generation
3503   // stop-the-world GC happens even as we mark in this generation.
3504   assert(_collectorState == Marking, "inconsistent state?");
3505   check_correct_thread_executing();
3506   verify_overflow_empty();
3507 
3508   bool res;
3509   if (asynch) {
3510     // Weak ref discovery note: We may be discovering weak
3511     // refs in this generation concurrent (but interleaved) with
3512     // weak ref discovery by a younger generation collector.
3513 
3514     CMSTokenSyncWithLocks ts(true, bitMapLock());
3515     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3516     CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3517     res = markFromRootsWork(asynch);
3518     if (res) {
3519       _collectorState = Precleaning;
3520     } else { // We failed and a foreground collection wants to take over
3521       assert(_foregroundGCIsActive, "internal state inconsistency");
3522       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3523       if (PrintGCDetails) {
3524         gclog_or_tty->print_cr("bailing out to foreground collection");
3525       }
3526     }
3527   } else {
3528     assert(SafepointSynchronize::is_at_safepoint(),
3529            "inconsistent with asynch == false");
3530     // already have locks
3531     res = markFromRootsWork(asynch);
3532     _collectorState = FinalMarking;
3533   }
3534   verify_overflow_empty();
3535   return res;
3536 }
3537 
3538 bool CMSCollector::markFromRootsWork(bool asynch) {
3539   // iterate over marked bits in bit map, doing a full scan and mark
3540   // from these roots using the following algorithm:
3541   // . if oop is to the right of the current scan pointer,
3542   //   mark corresponding bit (we'll process it later)
3543   // . else (oop is to left of current scan pointer)
3544   //   push oop on marking stack
3545   // . drain the marking stack
3546 
3547   // Note that when we do a marking step we need to hold the
3548   // bit map lock -- recall that direct allocation (by mutators)
3549   // and promotion (by younger generation collectors) is also
3550   // marking the bit map. [the so-called allocate live policy.]
3551   // Because the implementation of bit map marking is not
3552   // robust wrt simultaneous marking of bits in the same word,
3553   // we need to make sure that there is no such interference
3554   // between concurrent such updates.
3555 
3556   // already have locks
3557   assert_lock_strong(bitMapLock());
3558 
3559   verify_work_stacks_empty();
3560   verify_overflow_empty();
3561   bool result = false;
3562   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3563     result = do_marking_mt(asynch);
3564   } else {
3565     result = do_marking_st(asynch);
3566   }
3567   return result;
3568 }
3569 
3570 // Forward decl
3571 class CMSConcMarkingTask;
3572 
3573 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3574   CMSCollector*       _collector;
3575   CMSConcMarkingTask* _task;
3576  public:
3577   virtual void yield();
3578 
3579   // "n_threads" is the number of threads to be terminated.
3580   // "queue_set" is a set of work queues of other threads.
3581   // "collector" is the CMS collector associated with this task terminator.
3582   // "yield" indicates whether we need the gang as a whole to yield.
3583   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3584     ParallelTaskTerminator(n_threads, queue_set),
3585     _collector(collector) { }
3586 
3587   void set_task(CMSConcMarkingTask* task) {
3588     _task = task;
3589   }
3590 };
3591 
3592 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3593   CMSConcMarkingTask* _task;
3594  public:
3595   bool should_exit_termination();
3596   void set_task(CMSConcMarkingTask* task) {
3597     _task = task;
3598   }
3599 };
3600 
3601 // MT Concurrent Marking Task
3602 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3603   CMSCollector* _collector;
3604   int           _n_workers;                  // requested/desired # workers
3605   bool          _asynch;
3606   bool          _result;
3607   CompactibleFreeListSpace*  _cms_space;
3608   char          _pad_front[64];   // padding to ...
3609   HeapWord*     _global_finger;   // ... avoid sharing cache line
3610   char          _pad_back[64];
3611   HeapWord*     _restart_addr;
3612 
3613   //  Exposed here for yielding support
3614   Mutex* const _bit_map_lock;
3615 
3616   // The per thread work queues, available here for stealing
3617   OopTaskQueueSet*  _task_queues;
3618 
3619   // Termination (and yielding) support
3620   CMSConcMarkingTerminator _term;
3621   CMSConcMarkingTerminatorTerminator _term_term;
3622 
3623  public:
3624   CMSConcMarkingTask(CMSCollector* collector,
3625                  CompactibleFreeListSpace* cms_space,
3626                  bool asynch,
3627                  YieldingFlexibleWorkGang* workers,
3628                  OopTaskQueueSet* task_queues):
3629     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3630     _collector(collector),
3631     _cms_space(cms_space),
3632     _asynch(asynch), _n_workers(0), _result(true),
3633     _task_queues(task_queues),
3634     _term(_n_workers, task_queues, _collector),
3635     _bit_map_lock(collector->bitMapLock())
3636   {
3637     _requested_size = _n_workers;
3638     _term.set_task(this);
3639     _term_term.set_task(this);
3640     _restart_addr = _global_finger = _cms_space->bottom();
3641   }
3642 
3643 
3644   OopTaskQueueSet* task_queues()  { return _task_queues; }
3645 
3646   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3647 
3648   HeapWord** global_finger_addr() { return &_global_finger; }
3649 
3650   CMSConcMarkingTerminator* terminator() { return &_term; }
3651 
3652   virtual void set_for_termination(int active_workers) {
3653     terminator()->reset_for_reuse(active_workers);
3654   }
3655 
3656   void work(uint worker_id);
3657   bool should_yield() {
3658     return    ConcurrentMarkSweepThread::should_yield()
3659            && !_collector->foregroundGCIsActive()
3660            && _asynch;
3661   }
3662 
3663   virtual void coordinator_yield();  // stuff done by coordinator
3664   bool result() { return _result; }
3665 
3666   void reset(HeapWord* ra) {
3667     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3668     _restart_addr = _global_finger = ra;
3669     _term.reset_for_reuse();
3670   }
3671 
3672   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3673                                            OopTaskQueue* work_q);
3674 
3675  private:
3676   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3677   void do_work_steal(int i);
3678   void bump_global_finger(HeapWord* f);
3679 };
3680 
3681 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3682   assert(_task != NULL, "Error");
3683   return _task->yielding();
3684   // Note that we do not need the disjunct || _task->should_yield() above
3685   // because we want terminating threads to yield only if the task
3686   // is already in the midst of yielding, which happens only after at least one
3687   // thread has yielded.
3688 }
3689 
3690 void CMSConcMarkingTerminator::yield() {
3691   if (_task->should_yield()) {
3692     _task->yield();
3693   } else {
3694     ParallelTaskTerminator::yield();
3695   }
3696 }
3697 
3698 ////////////////////////////////////////////////////////////////
3699 // Concurrent Marking Algorithm Sketch
3700 ////////////////////////////////////////////////////////////////
3701 // Until all tasks exhausted (both spaces):
3702 // -- claim next available chunk
3703 // -- bump global finger via CAS
3704 // -- find first object that starts in this chunk
3705 //    and start scanning bitmap from that position
3706 // -- scan marked objects for oops
3707 // -- CAS-mark target, and if successful:
3708 //    . if target oop is above global finger (volatile read)
3709 //      nothing to do
3710 //    . if target oop is in chunk and above local finger
3711 //        then nothing to do
3712 //    . else push on work-queue
3713 // -- Deal with possible overflow issues:
3714 //    . local work-queue overflow causes stuff to be pushed on
3715 //      global (common) overflow queue
3716 //    . always first empty local work queue
3717 //    . then get a batch of oops from global work queue if any
3718 //    . then do work stealing
3719 // -- When all tasks claimed (both spaces)
3720 //    and local work queue empty,
3721 //    then in a loop do:
3722 //    . check global overflow stack; steal a batch of oops and trace
3723 //    . try to steal from other threads oif GOS is empty
3724 //    . if neither is available, offer termination
3725 // -- Terminate and return result
3726 //
3727 void CMSConcMarkingTask::work(uint worker_id) {
3728   elapsedTimer _timer;
3729   ResourceMark rm;
3730   HandleMark hm;
3731 
3732   DEBUG_ONLY(_collector->verify_overflow_empty();)
3733 
3734   // Before we begin work, our work queue should be empty
3735   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3736   // Scan the bitmap covering _cms_space, tracing through grey objects.
3737   _timer.start();
3738   do_scan_and_mark(worker_id, _cms_space);
3739   _timer.stop();
3740   if (PrintCMSStatistics != 0) {
3741     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3742       worker_id, _timer.seconds());
3743       // XXX: need xxx/xxx type of notation, two timers
3744   }
3745 
3746   // ... do work stealing
3747   _timer.reset();
3748   _timer.start();
3749   do_work_steal(worker_id);
3750   _timer.stop();
3751   if (PrintCMSStatistics != 0) {
3752     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3753       worker_id, _timer.seconds());
3754       // XXX: need xxx/xxx type of notation, two timers
3755   }
3756   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3757   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3758   // Note that under the current task protocol, the
3759   // following assertion is true even of the spaces
3760   // expanded since the completion of the concurrent
3761   // marking. XXX This will likely change under a strict
3762   // ABORT semantics.
3763   // After perm removal the comparison was changed to
3764   // greater than or equal to from strictly greater than.
3765   // Before perm removal the highest address sweep would
3766   // have been at the end of perm gen but now is at the
3767   // end of the tenured gen.
3768   assert(_global_finger >=  _cms_space->end(),
3769          "All tasks have been completed");
3770   DEBUG_ONLY(_collector->verify_overflow_empty();)
3771 }
3772 
3773 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3774   HeapWord* read = _global_finger;
3775   HeapWord* cur  = read;
3776   while (f > read) {
3777     cur = read;
3778     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3779     if (cur == read) {
3780       // our cas succeeded
3781       assert(_global_finger >= f, "protocol consistency");
3782       break;
3783     }
3784   }
3785 }
3786 
3787 // This is really inefficient, and should be redone by
3788 // using (not yet available) block-read and -write interfaces to the
3789 // stack and the work_queue. XXX FIX ME !!!
3790 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3791                                                       OopTaskQueue* work_q) {
3792   // Fast lock-free check
3793   if (ovflw_stk->length() == 0) {
3794     return false;
3795   }
3796   assert(work_q->size() == 0, "Shouldn't steal");
3797   MutexLockerEx ml(ovflw_stk->par_lock(),
3798                    Mutex::_no_safepoint_check_flag);
3799   // Grab up to 1/4 the size of the work queue
3800   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3801                     (size_t)ParGCDesiredObjsFromOverflowList);
3802   num = MIN2(num, ovflw_stk->length());
3803   for (int i = (int) num; i > 0; i--) {
3804     oop cur = ovflw_stk->pop();
3805     assert(cur != NULL, "Counted wrong?");
3806     work_q->push(cur);
3807   }
3808   return num > 0;
3809 }
3810 
3811 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3812   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3813   int n_tasks = pst->n_tasks();
3814   // We allow that there may be no tasks to do here because
3815   // we are restarting after a stack overflow.
3816   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3817   uint nth_task = 0;
3818 
3819   HeapWord* aligned_start = sp->bottom();
3820   if (sp->used_region().contains(_restart_addr)) {
3821     // Align down to a card boundary for the start of 0th task
3822     // for this space.
3823     aligned_start =
3824       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3825                                  CardTableModRefBS::card_size);
3826   }
3827 
3828   size_t chunk_size = sp->marking_task_size();
3829   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3830     // Having claimed the nth task in this space,
3831     // compute the chunk that it corresponds to:
3832     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3833                                aligned_start + (nth_task+1)*chunk_size);
3834     // Try and bump the global finger via a CAS;
3835     // note that we need to do the global finger bump
3836     // _before_ taking the intersection below, because
3837     // the task corresponding to that region will be
3838     // deemed done even if the used_region() expands
3839     // because of allocation -- as it almost certainly will
3840     // during start-up while the threads yield in the
3841     // closure below.
3842     HeapWord* finger = span.end();
3843     bump_global_finger(finger);   // atomically
3844     // There are null tasks here corresponding to chunks
3845     // beyond the "top" address of the space.
3846     span = span.intersection(sp->used_region());
3847     if (!span.is_empty()) {  // Non-null task
3848       HeapWord* prev_obj;
3849       assert(!span.contains(_restart_addr) || nth_task == 0,
3850              "Inconsistency");
3851       if (nth_task == 0) {
3852         // For the 0th task, we'll not need to compute a block_start.
3853         if (span.contains(_restart_addr)) {
3854           // In the case of a restart because of stack overflow,
3855           // we might additionally skip a chunk prefix.
3856           prev_obj = _restart_addr;
3857         } else {
3858           prev_obj = span.start();
3859         }
3860       } else {
3861         // We want to skip the first object because
3862         // the protocol is to scan any object in its entirety
3863         // that _starts_ in this span; a fortiori, any
3864         // object starting in an earlier span is scanned
3865         // as part of an earlier claimed task.
3866         // Below we use the "careful" version of block_start
3867         // so we do not try to navigate uninitialized objects.
3868         prev_obj = sp->block_start_careful(span.start());
3869         // Below we use a variant of block_size that uses the
3870         // Printezis bits to avoid waiting for allocated
3871         // objects to become initialized/parsable.
3872         while (prev_obj < span.start()) {
3873           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3874           if (sz > 0) {
3875             prev_obj += sz;
3876           } else {
3877             // In this case we may end up doing a bit of redundant
3878             // scanning, but that appears unavoidable, short of
3879             // locking the free list locks; see bug 6324141.
3880             break;
3881           }
3882         }
3883       }
3884       if (prev_obj < span.end()) {
3885         MemRegion my_span = MemRegion(prev_obj, span.end());
3886         // Do the marking work within a non-empty span --
3887         // the last argument to the constructor indicates whether the
3888         // iteration should be incremental with periodic yields.
3889         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3890                                     &_collector->_markBitMap,
3891                                     work_queue(i),
3892                                     &_collector->_markStack,
3893                                     _asynch);
3894         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3895       } // else nothing to do for this task
3896     }   // else nothing to do for this task
3897   }
3898   // We'd be tempted to assert here that since there are no
3899   // more tasks left to claim in this space, the global_finger
3900   // must exceed space->top() and a fortiori space->end(). However,
3901   // that would not quite be correct because the bumping of
3902   // global_finger occurs strictly after the claiming of a task,
3903   // so by the time we reach here the global finger may not yet
3904   // have been bumped up by the thread that claimed the last
3905   // task.
3906   pst->all_tasks_completed();
3907 }
3908 
3909 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3910  private:
3911   CMSCollector* _collector;
3912   CMSConcMarkingTask* _task;
3913   MemRegion     _span;
3914   CMSBitMap*    _bit_map;
3915   CMSMarkStack* _overflow_stack;
3916   OopTaskQueue* _work_queue;
3917  protected:
3918   DO_OOP_WORK_DEFN
3919  public:
3920   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3921                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3922     MetadataAwareOopClosure(collector->ref_processor()),
3923     _collector(collector),
3924     _task(task),
3925     _span(collector->_span),
3926     _work_queue(work_queue),
3927     _bit_map(bit_map),
3928     _overflow_stack(overflow_stack)
3929   { }
3930   virtual void do_oop(oop* p);
3931   virtual void do_oop(narrowOop* p);
3932 
3933   void trim_queue(size_t max);
3934   void handle_stack_overflow(HeapWord* lost);
3935   void do_yield_check() {
3936     if (_task->should_yield()) {
3937       _task->yield();
3938     }
3939   }
3940 };
3941 
3942 // Grey object scanning during work stealing phase --
3943 // the salient assumption here is that any references
3944 // that are in these stolen objects being scanned must
3945 // already have been initialized (else they would not have
3946 // been published), so we do not need to check for
3947 // uninitialized objects before pushing here.
3948 void Par_ConcMarkingClosure::do_oop(oop obj) {
3949   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3950   HeapWord* addr = (HeapWord*)obj;
3951   // Check if oop points into the CMS generation
3952   // and is not marked
3953   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3954     // a white object ...
3955     // If we manage to "claim" the object, by being the
3956     // first thread to mark it, then we push it on our
3957     // marking stack
3958     if (_bit_map->par_mark(addr)) {     // ... now grey
3959       // push on work queue (grey set)
3960       bool simulate_overflow = false;
3961       NOT_PRODUCT(
3962         if (CMSMarkStackOverflowALot &&
3963             _collector->simulate_overflow()) {
3964           // simulate a stack overflow
3965           simulate_overflow = true;
3966         }
3967       )
3968       if (simulate_overflow ||
3969           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3970         // stack overflow
3971         if (PrintCMSStatistics != 0) {
3972           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3973                                  SIZE_FORMAT, _overflow_stack->capacity());
3974         }
3975         // We cannot assert that the overflow stack is full because
3976         // it may have been emptied since.
3977         assert(simulate_overflow ||
3978                _work_queue->size() == _work_queue->max_elems(),
3979               "Else push should have succeeded");
3980         handle_stack_overflow(addr);
3981       }
3982     } // Else, some other thread got there first
3983     do_yield_check();
3984   }
3985 }
3986 
3987 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3988 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3989 
3990 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3991   while (_work_queue->size() > max) {
3992     oop new_oop;
3993     if (_work_queue->pop_local(new_oop)) {
3994       assert(new_oop->is_oop(), "Should be an oop");
3995       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3996       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3997       new_oop->oop_iterate(this);  // do_oop() above
3998       do_yield_check();
3999     }
4000   }
4001 }
4002 
4003 // Upon stack overflow, we discard (part of) the stack,
4004 // remembering the least address amongst those discarded
4005 // in CMSCollector's _restart_address.
4006 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4007   // We need to do this under a mutex to prevent other
4008   // workers from interfering with the work done below.
4009   MutexLockerEx ml(_overflow_stack->par_lock(),
4010                    Mutex::_no_safepoint_check_flag);
4011   // Remember the least grey address discarded
4012   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4013   _collector->lower_restart_addr(ra);
4014   _overflow_stack->reset();  // discard stack contents
4015   _overflow_stack->expand(); // expand the stack if possible
4016 }
4017 
4018 
4019 void CMSConcMarkingTask::do_work_steal(int i) {
4020   OopTaskQueue* work_q = work_queue(i);
4021   oop obj_to_scan;
4022   CMSBitMap* bm = &(_collector->_markBitMap);
4023   CMSMarkStack* ovflw = &(_collector->_markStack);
4024   int* seed = _collector->hash_seed(i);
4025   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4026   while (true) {
4027     cl.trim_queue(0);
4028     assert(work_q->size() == 0, "Should have been emptied above");
4029     if (get_work_from_overflow_stack(ovflw, work_q)) {
4030       // Can't assert below because the work obtained from the
4031       // overflow stack may already have been stolen from us.
4032       // assert(work_q->size() > 0, "Work from overflow stack");
4033       continue;
4034     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4035       assert(obj_to_scan->is_oop(), "Should be an oop");
4036       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4037       obj_to_scan->oop_iterate(&cl);
4038     } else if (terminator()->offer_termination(&_term_term)) {
4039       assert(work_q->size() == 0, "Impossible!");
4040       break;
4041     } else if (yielding() || should_yield()) {
4042       yield();
4043     }
4044   }
4045 }
4046 
4047 // This is run by the CMS (coordinator) thread.
4048 void CMSConcMarkingTask::coordinator_yield() {
4049   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4050          "CMS thread should hold CMS token");
4051   // First give up the locks, then yield, then re-lock
4052   // We should probably use a constructor/destructor idiom to
4053   // do this unlock/lock or modify the MutexUnlocker class to
4054   // serve our purpose. XXX
4055   assert_lock_strong(_bit_map_lock);
4056   _bit_map_lock->unlock();
4057   ConcurrentMarkSweepThread::desynchronize(true);
4058   _collector->stopTimer();
4059   if (PrintCMSStatistics != 0) {
4060     _collector->incrementYields();
4061   }
4062 
4063   // It is possible for whichever thread initiated the yield request
4064   // not to get a chance to wake up and take the bitmap lock between
4065   // this thread releasing it and reacquiring it. So, while the
4066   // should_yield() flag is on, let's sleep for a bit to give the
4067   // other thread a chance to wake up. The limit imposed on the number
4068   // of iterations is defensive, to avoid any unforseen circumstances
4069   // putting us into an infinite loop. Since it's always been this
4070   // (coordinator_yield()) method that was observed to cause the
4071   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4072   // which is by default non-zero. For the other seven methods that
4073   // also perform the yield operation, as are using a different
4074   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4075   // can enable the sleeping for those methods too, if necessary.
4076   // See 6442774.
4077   //
4078   // We really need to reconsider the synchronization between the GC
4079   // thread and the yield-requesting threads in the future and we
4080   // should really use wait/notify, which is the recommended
4081   // way of doing this type of interaction. Additionally, we should
4082   // consolidate the eight methods that do the yield operation and they
4083   // are almost identical into one for better maintainability and
4084   // readability. See 6445193.
4085   //
4086   // Tony 2006.06.29
4087   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4088                    ConcurrentMarkSweepThread::should_yield() &&
4089                    !CMSCollector::foregroundGCIsActive(); ++i) {
4090     os::sleep(Thread::current(), 1, false);
4091   }
4092 
4093   ConcurrentMarkSweepThread::synchronize(true);
4094   _bit_map_lock->lock_without_safepoint_check();
4095   _collector->startTimer();
4096 }
4097 
4098 bool CMSCollector::do_marking_mt(bool asynch) {
4099   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4100   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4101                                        conc_workers()->total_workers(),
4102                                        conc_workers()->active_workers(),
4103                                        Threads::number_of_non_daemon_threads());
4104   conc_workers()->set_active_workers(num_workers);
4105 
4106   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4107 
4108   CMSConcMarkingTask tsk(this,
4109                          cms_space,
4110                          asynch,
4111                          conc_workers(),
4112                          task_queues());
4113 
4114   // Since the actual number of workers we get may be different
4115   // from the number we requested above, do we need to do anything different
4116   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4117   // class?? XXX
4118   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4119 
4120   // Refs discovery is already non-atomic.
4121   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4122   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4123   conc_workers()->start_task(&tsk);
4124   while (tsk.yielded()) {
4125     tsk.coordinator_yield();
4126     conc_workers()->continue_task(&tsk);
4127   }
4128   // If the task was aborted, _restart_addr will be non-NULL
4129   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4130   while (_restart_addr != NULL) {
4131     // XXX For now we do not make use of ABORTED state and have not
4132     // yet implemented the right abort semantics (even in the original
4133     // single-threaded CMS case). That needs some more investigation
4134     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4135     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4136     // If _restart_addr is non-NULL, a marking stack overflow
4137     // occurred; we need to do a fresh marking iteration from the
4138     // indicated restart address.
4139     if (_foregroundGCIsActive && asynch) {
4140       // We may be running into repeated stack overflows, having
4141       // reached the limit of the stack size, while making very
4142       // slow forward progress. It may be best to bail out and
4143       // let the foreground collector do its job.
4144       // Clear _restart_addr, so that foreground GC
4145       // works from scratch. This avoids the headache of
4146       // a "rescan" which would otherwise be needed because
4147       // of the dirty mod union table & card table.
4148       _restart_addr = NULL;
4149       return false;
4150     }
4151     // Adjust the task to restart from _restart_addr
4152     tsk.reset(_restart_addr);
4153     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4154                   _restart_addr);
4155     _restart_addr = NULL;
4156     // Get the workers going again
4157     conc_workers()->start_task(&tsk);
4158     while (tsk.yielded()) {
4159       tsk.coordinator_yield();
4160       conc_workers()->continue_task(&tsk);
4161     }
4162   }
4163   assert(tsk.completed(), "Inconsistency");
4164   assert(tsk.result() == true, "Inconsistency");
4165   return true;
4166 }
4167 
4168 bool CMSCollector::do_marking_st(bool asynch) {
4169   ResourceMark rm;
4170   HandleMark   hm;
4171 
4172   // Temporarily make refs discovery single threaded (non-MT)
4173   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4174   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4175     &_markStack, CMSYield && asynch);
4176   // the last argument to iterate indicates whether the iteration
4177   // should be incremental with periodic yields.
4178   _markBitMap.iterate(&markFromRootsClosure);
4179   // If _restart_addr is non-NULL, a marking stack overflow
4180   // occurred; we need to do a fresh iteration from the
4181   // indicated restart address.
4182   while (_restart_addr != NULL) {
4183     if (_foregroundGCIsActive && asynch) {
4184       // We may be running into repeated stack overflows, having
4185       // reached the limit of the stack size, while making very
4186       // slow forward progress. It may be best to bail out and
4187       // let the foreground collector do its job.
4188       // Clear _restart_addr, so that foreground GC
4189       // works from scratch. This avoids the headache of
4190       // a "rescan" which would otherwise be needed because
4191       // of the dirty mod union table & card table.
4192       _restart_addr = NULL;
4193       return false;  // indicating failure to complete marking
4194     }
4195     // Deal with stack overflow:
4196     // we restart marking from _restart_addr
4197     HeapWord* ra = _restart_addr;
4198     markFromRootsClosure.reset(ra);
4199     _restart_addr = NULL;
4200     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4201   }
4202   return true;
4203 }
4204 
4205 void CMSCollector::preclean() {
4206   check_correct_thread_executing();
4207   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4208   verify_work_stacks_empty();
4209   verify_overflow_empty();
4210   _abort_preclean = false;
4211   if (CMSPrecleaningEnabled) {
4212     if (!CMSEdenChunksRecordAlways) {
4213       _eden_chunk_index = 0;
4214     }
4215     size_t used = get_eden_used();
4216     size_t capacity = get_eden_capacity();
4217     // Don't start sampling unless we will get sufficiently
4218     // many samples.
4219     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4220                 * CMSScheduleRemarkEdenPenetration)) {
4221       _start_sampling = true;
4222     } else {
4223       _start_sampling = false;
4224     }
4225     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4226     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4227     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4228   }
4229   CMSTokenSync x(true); // is cms thread
4230   if (CMSPrecleaningEnabled) {
4231     sample_eden();
4232     _collectorState = AbortablePreclean;
4233   } else {
4234     _collectorState = FinalMarking;
4235   }
4236   verify_work_stacks_empty();
4237   verify_overflow_empty();
4238 }
4239 
4240 // Try and schedule the remark such that young gen
4241 // occupancy is CMSScheduleRemarkEdenPenetration %.
4242 void CMSCollector::abortable_preclean() {
4243   check_correct_thread_executing();
4244   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4245   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4246 
4247   // If Eden's current occupancy is below this threshold,
4248   // immediately schedule the remark; else preclean
4249   // past the next scavenge in an effort to
4250   // schedule the pause as described above. By choosing
4251   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4252   // we will never do an actual abortable preclean cycle.
4253   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4254     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4255     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4256     // We need more smarts in the abortable preclean
4257     // loop below to deal with cases where allocation
4258     // in young gen is very very slow, and our precleaning
4259     // is running a losing race against a horde of
4260     // mutators intent on flooding us with CMS updates
4261     // (dirty cards).
4262     // One, admittedly dumb, strategy is to give up
4263     // after a certain number of abortable precleaning loops
4264     // or after a certain maximum time. We want to make
4265     // this smarter in the next iteration.
4266     // XXX FIX ME!!! YSR
4267     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4268     while (!(should_abort_preclean() ||
4269              ConcurrentMarkSweepThread::should_terminate())) {
4270       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4271       cumworkdone += workdone;
4272       loops++;
4273       // Voluntarily terminate abortable preclean phase if we have
4274       // been at it for too long.
4275       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4276           loops >= CMSMaxAbortablePrecleanLoops) {
4277         if (PrintGCDetails) {
4278           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4279         }
4280         break;
4281       }
4282       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4283         if (PrintGCDetails) {
4284           gclog_or_tty->print(" CMS: abort preclean due to time ");
4285         }
4286         break;
4287       }
4288       // If we are doing little work each iteration, we should
4289       // take a short break.
4290       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4291         // Sleep for some time, waiting for work to accumulate
4292         stopTimer();
4293         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4294         startTimer();
4295         waited++;
4296       }
4297     }
4298     if (PrintCMSStatistics > 0) {
4299       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
4300                           loops, waited, cumworkdone);
4301     }
4302   }
4303   CMSTokenSync x(true); // is cms thread
4304   if (_collectorState != Idling) {
4305     assert(_collectorState == AbortablePreclean,
4306            "Spontaneous state transition?");
4307     _collectorState = FinalMarking;
4308   } // Else, a foreground collection completed this CMS cycle.
4309   return;
4310 }
4311 
4312 // Respond to an Eden sampling opportunity
4313 void CMSCollector::sample_eden() {
4314   // Make sure a young gc cannot sneak in between our
4315   // reading and recording of a sample.
4316   assert(Thread::current()->is_ConcurrentGC_thread(),
4317          "Only the cms thread may collect Eden samples");
4318   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4319          "Should collect samples while holding CMS token");
4320   if (!_start_sampling) {
4321     return;
4322   }
4323   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4324   // is populated by the young generation.
4325   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4326     if (_eden_chunk_index < _eden_chunk_capacity) {
4327       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4328       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4329              "Unexpected state of Eden");
4330       // We'd like to check that what we just sampled is an oop-start address;
4331       // however, we cannot do that here since the object may not yet have been
4332       // initialized. So we'll instead do the check when we _use_ this sample
4333       // later.
4334       if (_eden_chunk_index == 0 ||
4335           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4336                          _eden_chunk_array[_eden_chunk_index-1])
4337            >= CMSSamplingGrain)) {
4338         _eden_chunk_index++;  // commit sample
4339       }
4340     }
4341   }
4342   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4343     size_t used = get_eden_used();
4344     size_t capacity = get_eden_capacity();
4345     assert(used <= capacity, "Unexpected state of Eden");
4346     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4347       _abort_preclean = true;
4348     }
4349   }
4350 }
4351 
4352 
4353 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4354   assert(_collectorState == Precleaning ||
4355          _collectorState == AbortablePreclean, "incorrect state");
4356   ResourceMark rm;
4357   HandleMark   hm;
4358 
4359   // Precleaning is currently not MT but the reference processor
4360   // may be set for MT.  Disable it temporarily here.
4361   ReferenceProcessor* rp = ref_processor();
4362   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4363 
4364   // Do one pass of scrubbing the discovered reference lists
4365   // to remove any reference objects with strongly-reachable
4366   // referents.
4367   if (clean_refs) {
4368     CMSPrecleanRefsYieldClosure yield_cl(this);
4369     assert(rp->span().equals(_span), "Spans should be equal");
4370     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4371                                    &_markStack, true /* preclean */);
4372     CMSDrainMarkingStackClosure complete_trace(this,
4373                                    _span, &_markBitMap, &_markStack,
4374                                    &keep_alive, true /* preclean */);
4375 
4376     // We don't want this step to interfere with a young
4377     // collection because we don't want to take CPU
4378     // or memory bandwidth away from the young GC threads
4379     // (which may be as many as there are CPUs).
4380     // Note that we don't need to protect ourselves from
4381     // interference with mutators because they can't
4382     // manipulate the discovered reference lists nor affect
4383     // the computed reachability of the referents, the
4384     // only properties manipulated by the precleaning
4385     // of these reference lists.
4386     stopTimer();
4387     CMSTokenSyncWithLocks x(true /* is cms thread */,
4388                             bitMapLock());
4389     startTimer();
4390     sample_eden();
4391 
4392     // The following will yield to allow foreground
4393     // collection to proceed promptly. XXX YSR:
4394     // The code in this method may need further
4395     // tweaking for better performance and some restructuring
4396     // for cleaner interfaces.
4397     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4398     rp->preclean_discovered_references(
4399           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4400           gc_timer, _gc_tracer_cm->gc_id());
4401   }
4402 
4403   if (clean_survivor) {  // preclean the active survivor space(s)
4404     assert(_young_gen->kind() == Generation::DefNew ||
4405            _young_gen->kind() == Generation::ParNew,
4406          "incorrect type for cast");
4407     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4408     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4409                              &_markBitMap, &_modUnionTable,
4410                              &_markStack, true /* precleaning phase */);
4411     stopTimer();
4412     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4413                              bitMapLock());
4414     startTimer();
4415     unsigned int before_count =
4416       GenCollectedHeap::heap()->total_collections();
4417     SurvivorSpacePrecleanClosure
4418       sss_cl(this, _span, &_markBitMap, &_markStack,
4419              &pam_cl, before_count, CMSYield);
4420     dng->from()->object_iterate_careful(&sss_cl);
4421     dng->to()->object_iterate_careful(&sss_cl);
4422   }
4423   MarkRefsIntoAndScanClosure
4424     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4425              &_markStack, this, CMSYield,
4426              true /* precleaning phase */);
4427   // CAUTION: The following closure has persistent state that may need to
4428   // be reset upon a decrease in the sequence of addresses it
4429   // processes.
4430   ScanMarkedObjectsAgainCarefullyClosure
4431     smoac_cl(this, _span,
4432       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4433 
4434   // Preclean dirty cards in ModUnionTable and CardTable using
4435   // appropriate convergence criterion;
4436   // repeat CMSPrecleanIter times unless we find that
4437   // we are losing.
4438   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4439   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4440          "Bad convergence multiplier");
4441   assert(CMSPrecleanThreshold >= 100,
4442          "Unreasonably low CMSPrecleanThreshold");
4443 
4444   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4445   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4446        numIter < CMSPrecleanIter;
4447        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4448     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4449     if (Verbose && PrintGCDetails) {
4450       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
4451     }
4452     // Either there are very few dirty cards, so re-mark
4453     // pause will be small anyway, or our pre-cleaning isn't
4454     // that much faster than the rate at which cards are being
4455     // dirtied, so we might as well stop and re-mark since
4456     // precleaning won't improve our re-mark time by much.
4457     if (curNumCards <= CMSPrecleanThreshold ||
4458         (numIter > 0 &&
4459          (curNumCards * CMSPrecleanDenominator >
4460          lastNumCards * CMSPrecleanNumerator))) {
4461       numIter++;
4462       cumNumCards += curNumCards;
4463       break;
4464     }
4465   }
4466 
4467   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4468 
4469   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4470   cumNumCards += curNumCards;
4471   if (PrintGCDetails && PrintCMSStatistics != 0) {
4472     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4473                   curNumCards, cumNumCards, numIter);
4474   }
4475   return cumNumCards;   // as a measure of useful work done
4476 }
4477 
4478 // PRECLEANING NOTES:
4479 // Precleaning involves:
4480 // . reading the bits of the modUnionTable and clearing the set bits.
4481 // . For the cards corresponding to the set bits, we scan the
4482 //   objects on those cards. This means we need the free_list_lock
4483 //   so that we can safely iterate over the CMS space when scanning
4484 //   for oops.
4485 // . When we scan the objects, we'll be both reading and setting
4486 //   marks in the marking bit map, so we'll need the marking bit map.
4487 // . For protecting _collector_state transitions, we take the CGC_lock.
4488 //   Note that any races in the reading of of card table entries by the
4489 //   CMS thread on the one hand and the clearing of those entries by the
4490 //   VM thread or the setting of those entries by the mutator threads on the
4491 //   other are quite benign. However, for efficiency it makes sense to keep
4492 //   the VM thread from racing with the CMS thread while the latter is
4493 //   dirty card info to the modUnionTable. We therefore also use the
4494 //   CGC_lock to protect the reading of the card table and the mod union
4495 //   table by the CM thread.
4496 // . We run concurrently with mutator updates, so scanning
4497 //   needs to be done carefully  -- we should not try to scan
4498 //   potentially uninitialized objects.
4499 //
4500 // Locking strategy: While holding the CGC_lock, we scan over and
4501 // reset a maximal dirty range of the mod union / card tables, then lock
4502 // the free_list_lock and bitmap lock to do a full marking, then
4503 // release these locks; and repeat the cycle. This allows for a
4504 // certain amount of fairness in the sharing of these locks between
4505 // the CMS collector on the one hand, and the VM thread and the
4506 // mutators on the other.
4507 
4508 // NOTE: preclean_mod_union_table() and preclean_card_table()
4509 // further below are largely identical; if you need to modify
4510 // one of these methods, please check the other method too.
4511 
4512 size_t CMSCollector::preclean_mod_union_table(
4513   ConcurrentMarkSweepGeneration* gen,
4514   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4515   verify_work_stacks_empty();
4516   verify_overflow_empty();
4517 
4518   // strategy: starting with the first card, accumulate contiguous
4519   // ranges of dirty cards; clear these cards, then scan the region
4520   // covered by these cards.
4521 
4522   // Since all of the MUT is committed ahead, we can just use
4523   // that, in case the generations expand while we are precleaning.
4524   // It might also be fine to just use the committed part of the
4525   // generation, but we might potentially miss cards when the
4526   // generation is rapidly expanding while we are in the midst
4527   // of precleaning.
4528   HeapWord* startAddr = gen->reserved().start();
4529   HeapWord* endAddr   = gen->reserved().end();
4530 
4531   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4532 
4533   size_t numDirtyCards, cumNumDirtyCards;
4534   HeapWord *nextAddr, *lastAddr;
4535   for (cumNumDirtyCards = numDirtyCards = 0,
4536        nextAddr = lastAddr = startAddr;
4537        nextAddr < endAddr;
4538        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4539 
4540     ResourceMark rm;
4541     HandleMark   hm;
4542 
4543     MemRegion dirtyRegion;
4544     {
4545       stopTimer();
4546       // Potential yield point
4547       CMSTokenSync ts(true);
4548       startTimer();
4549       sample_eden();
4550       // Get dirty region starting at nextOffset (inclusive),
4551       // simultaneously clearing it.
4552       dirtyRegion =
4553         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4554       assert(dirtyRegion.start() >= nextAddr,
4555              "returned region inconsistent?");
4556     }
4557     // Remember where the next search should begin.
4558     // The returned region (if non-empty) is a right open interval,
4559     // so lastOffset is obtained from the right end of that
4560     // interval.
4561     lastAddr = dirtyRegion.end();
4562     // Should do something more transparent and less hacky XXX
4563     numDirtyCards =
4564       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4565 
4566     // We'll scan the cards in the dirty region (with periodic
4567     // yields for foreground GC as needed).
4568     if (!dirtyRegion.is_empty()) {
4569       assert(numDirtyCards > 0, "consistency check");
4570       HeapWord* stop_point = NULL;
4571       stopTimer();
4572       // Potential yield point
4573       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4574                                bitMapLock());
4575       startTimer();
4576       {
4577         verify_work_stacks_empty();
4578         verify_overflow_empty();
4579         sample_eden();
4580         stop_point =
4581           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4582       }
4583       if (stop_point != NULL) {
4584         // The careful iteration stopped early either because it found an
4585         // uninitialized object, or because we were in the midst of an
4586         // "abortable preclean", which should now be aborted. Redirty
4587         // the bits corresponding to the partially-scanned or unscanned
4588         // cards. We'll either restart at the next block boundary or
4589         // abort the preclean.
4590         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4591                "Should only be AbortablePreclean.");
4592         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4593         if (should_abort_preclean()) {
4594           break; // out of preclean loop
4595         } else {
4596           // Compute the next address at which preclean should pick up;
4597           // might need bitMapLock in order to read P-bits.
4598           lastAddr = next_card_start_after_block(stop_point);
4599         }
4600       }
4601     } else {
4602       assert(lastAddr == endAddr, "consistency check");
4603       assert(numDirtyCards == 0, "consistency check");
4604       break;
4605     }
4606   }
4607   verify_work_stacks_empty();
4608   verify_overflow_empty();
4609   return cumNumDirtyCards;
4610 }
4611 
4612 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4613 // below are largely identical; if you need to modify
4614 // one of these methods, please check the other method too.
4615 
4616 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4617   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4618   // strategy: it's similar to precleamModUnionTable above, in that
4619   // we accumulate contiguous ranges of dirty cards, mark these cards
4620   // precleaned, then scan the region covered by these cards.
4621   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4622   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4623 
4624   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4625 
4626   size_t numDirtyCards, cumNumDirtyCards;
4627   HeapWord *lastAddr, *nextAddr;
4628 
4629   for (cumNumDirtyCards = numDirtyCards = 0,
4630        nextAddr = lastAddr = startAddr;
4631        nextAddr < endAddr;
4632        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4633 
4634     ResourceMark rm;
4635     HandleMark   hm;
4636 
4637     MemRegion dirtyRegion;
4638     {
4639       // See comments in "Precleaning notes" above on why we
4640       // do this locking. XXX Could the locking overheads be
4641       // too high when dirty cards are sparse? [I don't think so.]
4642       stopTimer();
4643       CMSTokenSync x(true); // is cms thread
4644       startTimer();
4645       sample_eden();
4646       // Get and clear dirty region from card table
4647       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4648                                     MemRegion(nextAddr, endAddr),
4649                                     true,
4650                                     CardTableModRefBS::precleaned_card_val());
4651 
4652       assert(dirtyRegion.start() >= nextAddr,
4653              "returned region inconsistent?");
4654     }
4655     lastAddr = dirtyRegion.end();
4656     numDirtyCards =
4657       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4658 
4659     if (!dirtyRegion.is_empty()) {
4660       stopTimer();
4661       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4662       startTimer();
4663       sample_eden();
4664       verify_work_stacks_empty();
4665       verify_overflow_empty();
4666       HeapWord* stop_point =
4667         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4668       if (stop_point != NULL) {
4669         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4670                "Should only be AbortablePreclean.");
4671         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4672         if (should_abort_preclean()) {
4673           break; // out of preclean loop
4674         } else {
4675           // Compute the next address at which preclean should pick up.
4676           lastAddr = next_card_start_after_block(stop_point);
4677         }
4678       }
4679     } else {
4680       break;
4681     }
4682   }
4683   verify_work_stacks_empty();
4684   verify_overflow_empty();
4685   return cumNumDirtyCards;
4686 }
4687 
4688 class PrecleanKlassClosure : public KlassClosure {
4689   KlassToOopClosure _cm_klass_closure;
4690  public:
4691   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4692   void do_klass(Klass* k) {
4693     if (k->has_accumulated_modified_oops()) {
4694       k->clear_accumulated_modified_oops();
4695 
4696       _cm_klass_closure.do_klass(k);
4697     }
4698   }
4699 };
4700 
4701 // The freelist lock is needed to prevent asserts, is it really needed?
4702 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4703 
4704   cl->set_freelistLock(freelistLock);
4705 
4706   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4707 
4708   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4709   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4710   PrecleanKlassClosure preclean_klass_closure(cl);
4711   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4712 
4713   verify_work_stacks_empty();
4714   verify_overflow_empty();
4715 }
4716 
4717 void CMSCollector::checkpointRootsFinal(bool asynch,
4718   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4719   assert(_collectorState == FinalMarking, "incorrect state transition?");
4720   check_correct_thread_executing();
4721   // world is stopped at this checkpoint
4722   assert(SafepointSynchronize::is_at_safepoint(),
4723          "world should be stopped");
4724   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4725 
4726   verify_work_stacks_empty();
4727   verify_overflow_empty();
4728 
4729   SpecializationStats::clear();
4730   if (PrintGCDetails) {
4731     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4732                         _young_gen->used() / K,
4733                         _young_gen->capacity() / K);
4734   }
4735   if (asynch) {
4736     if (CMSScavengeBeforeRemark) {
4737       GenCollectedHeap* gch = GenCollectedHeap::heap();
4738       // Temporarily set flag to false, GCH->do_collection will
4739       // expect it to be false and set to true
4740       FlagSetting fl(gch->_is_gc_active, false);
4741       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4742         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4743       int level = _cmsGen->level() - 1;
4744       if (level >= 0) {
4745         gch->do_collection(true,        // full (i.e. force, see below)
4746                            false,       // !clear_all_soft_refs
4747                            0,           // size
4748                            false,       // is_tlab
4749                            level        // max_level
4750                           );
4751       }
4752     }
4753     FreelistLocker x(this);
4754     MutexLockerEx y(bitMapLock(),
4755                     Mutex::_no_safepoint_check_flag);
4756     assert(!init_mark_was_synchronous, "but that's impossible!");
4757     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4758   } else {
4759     // already have all the locks
4760     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4761                              init_mark_was_synchronous);
4762   }
4763   verify_work_stacks_empty();
4764   verify_overflow_empty();
4765   SpecializationStats::print();
4766 }
4767 
4768 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4769   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4770 
4771   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4772 
4773   assert(haveFreelistLocks(), "must have free list locks");
4774   assert_lock_strong(bitMapLock());
4775 
4776   ResourceMark rm;
4777   HandleMark   hm;
4778 
4779   GenCollectedHeap* gch = GenCollectedHeap::heap();
4780 
4781   if (should_unload_classes()) {
4782     CodeCache::gc_prologue();
4783   }
4784   assert(haveFreelistLocks(), "must have free list locks");
4785   assert_lock_strong(bitMapLock());
4786 
4787   if (!init_mark_was_synchronous) {
4788     // We might assume that we need not fill TLAB's when
4789     // CMSScavengeBeforeRemark is set, because we may have just done
4790     // a scavenge which would have filled all TLAB's -- and besides
4791     // Eden would be empty. This however may not always be the case --
4792     // for instance although we asked for a scavenge, it may not have
4793     // happened because of a JNI critical section. We probably need
4794     // a policy for deciding whether we can in that case wait until
4795     // the critical section releases and then do the remark following
4796     // the scavenge, and skip it here. In the absence of that policy,
4797     // or of an indication of whether the scavenge did indeed occur,
4798     // we cannot rely on TLAB's having been filled and must do
4799     // so here just in case a scavenge did not happen.
4800     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4801     // Update the saved marks which may affect the root scans.
4802     gch->save_marks();
4803 
4804     if (CMSPrintEdenSurvivorChunks) {
4805       print_eden_and_survivor_chunk_arrays();
4806     }
4807 
4808     {
4809       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4810 
4811       // Note on the role of the mod union table:
4812       // Since the marker in "markFromRoots" marks concurrently with
4813       // mutators, it is possible for some reachable objects not to have been
4814       // scanned. For instance, an only reference to an object A was
4815       // placed in object B after the marker scanned B. Unless B is rescanned,
4816       // A would be collected. Such updates to references in marked objects
4817       // are detected via the mod union table which is the set of all cards
4818       // dirtied since the first checkpoint in this GC cycle and prior to
4819       // the most recent young generation GC, minus those cleaned up by the
4820       // concurrent precleaning.
4821       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4822         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4823         do_remark_parallel();
4824       } else {
4825         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4826                     _gc_timer_cm, _gc_tracer_cm->gc_id());
4827         do_remark_non_parallel();
4828       }
4829     }
4830   } else {
4831     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4832     // The initial mark was stop-world, so there's no rescanning to
4833     // do; go straight on to the next step below.
4834   }
4835   verify_work_stacks_empty();
4836   verify_overflow_empty();
4837 
4838   {
4839     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4840     refProcessingWork(asynch, clear_all_soft_refs);
4841   }
4842   verify_work_stacks_empty();
4843   verify_overflow_empty();
4844 
4845   if (should_unload_classes()) {
4846     CodeCache::gc_epilogue();
4847   }
4848   JvmtiExport::gc_epilogue();
4849 
4850   // If we encountered any (marking stack / work queue) overflow
4851   // events during the current CMS cycle, take appropriate
4852   // remedial measures, where possible, so as to try and avoid
4853   // recurrence of that condition.
4854   assert(_markStack.isEmpty(), "No grey objects");
4855   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4856                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4857   if (ser_ovflw > 0) {
4858     if (PrintCMSStatistics != 0) {
4859       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4860         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4861         ", kac_preclean="SIZE_FORMAT")",
4862         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4863         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4864     }
4865     _markStack.expand();
4866     _ser_pmc_remark_ovflw = 0;
4867     _ser_pmc_preclean_ovflw = 0;
4868     _ser_kac_preclean_ovflw = 0;
4869     _ser_kac_ovflw = 0;
4870   }
4871   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4872     if (PrintCMSStatistics != 0) {
4873       gclog_or_tty->print_cr("Work queue overflow (benign) "
4874         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4875         _par_pmc_remark_ovflw, _par_kac_ovflw);
4876     }
4877     _par_pmc_remark_ovflw = 0;
4878     _par_kac_ovflw = 0;
4879   }
4880   if (PrintCMSStatistics != 0) {
4881      if (_markStack._hit_limit > 0) {
4882        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4883                               _markStack._hit_limit);
4884      }
4885      if (_markStack._failed_double > 0) {
4886        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4887                               " current capacity "SIZE_FORMAT,
4888                               _markStack._failed_double,
4889                               _markStack.capacity());
4890      }
4891   }
4892   _markStack._hit_limit = 0;
4893   _markStack._failed_double = 0;
4894 
4895   if ((VerifyAfterGC || VerifyDuringGC) &&
4896       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4897     verify_after_remark();
4898   }
4899 
4900   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4901 
4902   // Change under the freelistLocks.
4903   _collectorState = Sweeping;
4904   // Call isAllClear() under bitMapLock
4905   assert(_modUnionTable.isAllClear(),
4906       "Should be clear by end of the final marking");
4907   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4908       "Should be clear by end of the final marking");
4909 }
4910 
4911 void CMSParInitialMarkTask::work(uint worker_id) {
4912   elapsedTimer _timer;
4913   ResourceMark rm;
4914   HandleMark   hm;
4915 
4916   // ---------- scan from roots --------------
4917   _timer.start();
4918   GenCollectedHeap* gch = GenCollectedHeap::heap();
4919   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4920 
4921   // ---------- young gen roots --------------
4922   {
4923     work_on_young_gen_roots(worker_id, &par_mri_cl);
4924     _timer.stop();
4925     if (PrintCMSStatistics != 0) {
4926       gclog_or_tty->print_cr(
4927         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4928         worker_id, _timer.seconds());
4929     }
4930   }
4931 
4932   // ---------- remaining roots --------------
4933   _timer.reset();
4934   _timer.start();
4935 
4936   CLDToOopClosure cld_closure(&par_mri_cl, true);
4937 
4938   gch->gen_process_roots(_collector->_cmsGen->level(),
4939                          false,     // yg was scanned above
4940                          false,     // this is parallel code
4941                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4942                          _collector->should_unload_classes(),
4943                          &par_mri_cl,
4944                          NULL,
4945                          &cld_closure);
4946   assert(_collector->should_unload_classes()
4947          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
4948          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4949   _timer.stop();
4950   if (PrintCMSStatistics != 0) {
4951     gclog_or_tty->print_cr(
4952       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4953       worker_id, _timer.seconds());
4954   }
4955 }
4956 
4957 // Parallel remark task
4958 class CMSParRemarkTask: public CMSParMarkTask {
4959   CompactibleFreeListSpace* _cms_space;
4960 
4961   // The per-thread work queues, available here for stealing.
4962   OopTaskQueueSet*       _task_queues;
4963   ParallelTaskTerminator _term;
4964 
4965  public:
4966   // A value of 0 passed to n_workers will cause the number of
4967   // workers to be taken from the active workers in the work gang.
4968   CMSParRemarkTask(CMSCollector* collector,
4969                    CompactibleFreeListSpace* cms_space,
4970                    int n_workers, FlexibleWorkGang* workers,
4971                    OopTaskQueueSet* task_queues):
4972     CMSParMarkTask("Rescan roots and grey objects in parallel",
4973                    collector, n_workers),
4974     _cms_space(cms_space),
4975     _task_queues(task_queues),
4976     _term(n_workers, task_queues) { }
4977 
4978   OopTaskQueueSet* task_queues() { return _task_queues; }
4979 
4980   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4981 
4982   ParallelTaskTerminator* terminator() { return &_term; }
4983   int n_workers() { return _n_workers; }
4984 
4985   void work(uint worker_id);
4986 
4987  private:
4988   // ... of  dirty cards in old space
4989   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4990                                   Par_MarkRefsIntoAndScanClosure* cl);
4991 
4992   // ... work stealing for the above
4993   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4994 };
4995 
4996 class RemarkKlassClosure : public KlassClosure {
4997   KlassToOopClosure _cm_klass_closure;
4998  public:
4999   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5000   void do_klass(Klass* k) {
5001     // Check if we have modified any oops in the Klass during the concurrent marking.
5002     if (k->has_accumulated_modified_oops()) {
5003       k->clear_accumulated_modified_oops();
5004 
5005       // We could have transfered the current modified marks to the accumulated marks,
5006       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5007     } else if (k->has_modified_oops()) {
5008       // Don't clear anything, this info is needed by the next young collection.
5009     } else {
5010       // No modified oops in the Klass.
5011       return;
5012     }
5013 
5014     // The klass has modified fields, need to scan the klass.
5015     _cm_klass_closure.do_klass(k);
5016   }
5017 };
5018 
5019 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5020   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5021   ContiguousSpace* eden_space = dng->eden();
5022   ContiguousSpace* from_space = dng->from();
5023   ContiguousSpace* to_space   = dng->to();
5024 
5025   HeapWord** eca = _collector->_eden_chunk_array;
5026   size_t     ect = _collector->_eden_chunk_index;
5027   HeapWord** sca = _collector->_survivor_chunk_array;
5028   size_t     sct = _collector->_survivor_chunk_index;
5029 
5030   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5031   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5032 
5033   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5034   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5035   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5036 }
5037 
5038 // work_queue(i) is passed to the closure
5039 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5040 // also is passed to do_dirty_card_rescan_tasks() and to
5041 // do_work_steal() to select the i-th task_queue.
5042 
5043 void CMSParRemarkTask::work(uint worker_id) {
5044   elapsedTimer _timer;
5045   ResourceMark rm;
5046   HandleMark   hm;
5047 
5048   // ---------- rescan from roots --------------
5049   _timer.start();
5050   GenCollectedHeap* gch = GenCollectedHeap::heap();
5051   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5052     _collector->_span, _collector->ref_processor(),
5053     &(_collector->_markBitMap),
5054     work_queue(worker_id));
5055 
5056   // Rescan young gen roots first since these are likely
5057   // coarsely partitioned and may, on that account, constitute
5058   // the critical path; thus, it's best to start off that
5059   // work first.
5060   // ---------- young gen roots --------------
5061   {
5062     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5063     _timer.stop();
5064     if (PrintCMSStatistics != 0) {
5065       gclog_or_tty->print_cr(
5066         "Finished young gen rescan work in %dth thread: %3.3f sec",
5067         worker_id, _timer.seconds());
5068     }
5069   }
5070 
5071   // ---------- remaining roots --------------
5072   _timer.reset();
5073   _timer.start();
5074   gch->gen_process_roots(_collector->_cmsGen->level(),
5075                          false,     // yg was scanned above
5076                          false,     // this is parallel code
5077                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5078                          _collector->should_unload_classes(),
5079                          &par_mrias_cl,
5080                          NULL,
5081                          NULL);     // The dirty klasses will be handled below
5082 
5083   assert(_collector->should_unload_classes()
5084          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5085          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5086   _timer.stop();
5087   if (PrintCMSStatistics != 0) {
5088     gclog_or_tty->print_cr(
5089       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5090       worker_id, _timer.seconds());
5091   }
5092 
5093   // ---------- unhandled CLD scanning ----------
5094   if (worker_id == 0) { // Single threaded at the moment.
5095     _timer.reset();
5096     _timer.start();
5097 
5098     // Scan all new class loader data objects and new dependencies that were
5099     // introduced during concurrent marking.
5100     ResourceMark rm;
5101     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5102     for (int i = 0; i < array->length(); i++) {
5103       par_mrias_cl.do_class_loader_data(array->at(i));
5104     }
5105 
5106     // We don't need to keep track of new CLDs anymore.
5107     ClassLoaderDataGraph::remember_new_clds(false);
5108 
5109     _timer.stop();
5110     if (PrintCMSStatistics != 0) {
5111       gclog_or_tty->print_cr(
5112           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5113           worker_id, _timer.seconds());
5114     }
5115   }
5116 
5117   // ---------- dirty klass scanning ----------
5118   if (worker_id == 0) { // Single threaded at the moment.
5119     _timer.reset();
5120     _timer.start();
5121 
5122     // Scan all classes that was dirtied during the concurrent marking phase.
5123     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5124     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5125 
5126     _timer.stop();
5127     if (PrintCMSStatistics != 0) {
5128       gclog_or_tty->print_cr(
5129           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5130           worker_id, _timer.seconds());
5131     }
5132   }
5133 
5134   // We might have added oops to ClassLoaderData::_handles during the
5135   // concurrent marking phase. These oops point to newly allocated objects
5136   // that are guaranteed to be kept alive. Either by the direct allocation
5137   // code, or when the young collector processes the roots. Hence,
5138   // we don't have to revisit the _handles block during the remark phase.
5139 
5140   // ---------- rescan dirty cards ------------
5141   _timer.reset();
5142   _timer.start();
5143 
5144   // Do the rescan tasks for each of the two spaces
5145   // (cms_space) in turn.
5146   // "worker_id" is passed to select the task_queue for "worker_id"
5147   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5148   _timer.stop();
5149   if (PrintCMSStatistics != 0) {
5150     gclog_or_tty->print_cr(
5151       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5152       worker_id, _timer.seconds());
5153   }
5154 
5155   // ---------- steal work from other threads ...
5156   // ---------- ... and drain overflow list.
5157   _timer.reset();
5158   _timer.start();
5159   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5160   _timer.stop();
5161   if (PrintCMSStatistics != 0) {
5162     gclog_or_tty->print_cr(
5163       "Finished work stealing in %dth thread: %3.3f sec",
5164       worker_id, _timer.seconds());
5165   }
5166 }
5167 
5168 // Note that parameter "i" is not used.
5169 void
5170 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5171   OopsInGenClosure* cl, ContiguousSpace* space,
5172   HeapWord** chunk_array, size_t chunk_top) {
5173   // Until all tasks completed:
5174   // . claim an unclaimed task
5175   // . compute region boundaries corresponding to task claimed
5176   //   using chunk_array
5177   // . par_oop_iterate(cl) over that region
5178 
5179   ResourceMark rm;
5180   HandleMark   hm;
5181 
5182   SequentialSubTasksDone* pst = space->par_seq_tasks();
5183 
5184   uint nth_task = 0;
5185   uint n_tasks  = pst->n_tasks();
5186 
5187   if (n_tasks > 0) {
5188     assert(pst->valid(), "Uninitialized use?");
5189     HeapWord *start, *end;
5190     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5191       // We claimed task # nth_task; compute its boundaries.
5192       if (chunk_top == 0) {  // no samples were taken
5193         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5194         start = space->bottom();
5195         end   = space->top();
5196       } else if (nth_task == 0) {
5197         start = space->bottom();
5198         end   = chunk_array[nth_task];
5199       } else if (nth_task < (uint)chunk_top) {
5200         assert(nth_task >= 1, "Control point invariant");
5201         start = chunk_array[nth_task - 1];
5202         end   = chunk_array[nth_task];
5203       } else {
5204         assert(nth_task == (uint)chunk_top, "Control point invariant");
5205         start = chunk_array[chunk_top - 1];
5206         end   = space->top();
5207       }
5208       MemRegion mr(start, end);
5209       // Verify that mr is in space
5210       assert(mr.is_empty() || space->used_region().contains(mr),
5211              "Should be in space");
5212       // Verify that "start" is an object boundary
5213       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5214              "Should be an oop");
5215       space->par_oop_iterate(mr, cl);
5216     }
5217     pst->all_tasks_completed();
5218   }
5219 }
5220 
5221 void
5222 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5223   CompactibleFreeListSpace* sp, int i,
5224   Par_MarkRefsIntoAndScanClosure* cl) {
5225   // Until all tasks completed:
5226   // . claim an unclaimed task
5227   // . compute region boundaries corresponding to task claimed
5228   // . transfer dirty bits ct->mut for that region
5229   // . apply rescanclosure to dirty mut bits for that region
5230 
5231   ResourceMark rm;
5232   HandleMark   hm;
5233 
5234   OopTaskQueue* work_q = work_queue(i);
5235   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5236   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5237   // CAUTION: This closure has state that persists across calls to
5238   // the work method dirty_range_iterate_clear() in that it has
5239   // embedded in it a (subtype of) UpwardsObjectClosure. The
5240   // use of that state in the embedded UpwardsObjectClosure instance
5241   // assumes that the cards are always iterated (even if in parallel
5242   // by several threads) in monotonically increasing order per each
5243   // thread. This is true of the implementation below which picks
5244   // card ranges (chunks) in monotonically increasing order globally
5245   // and, a-fortiori, in monotonically increasing order per thread
5246   // (the latter order being a subsequence of the former).
5247   // If the work code below is ever reorganized into a more chaotic
5248   // work-partitioning form than the current "sequential tasks"
5249   // paradigm, the use of that persistent state will have to be
5250   // revisited and modified appropriately. See also related
5251   // bug 4756801 work on which should examine this code to make
5252   // sure that the changes there do not run counter to the
5253   // assumptions made here and necessary for correctness and
5254   // efficiency. Note also that this code might yield inefficient
5255   // behavior in the case of very large objects that span one or
5256   // more work chunks. Such objects would potentially be scanned
5257   // several times redundantly. Work on 4756801 should try and
5258   // address that performance anomaly if at all possible. XXX
5259   MemRegion  full_span  = _collector->_span;
5260   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5261   MarkFromDirtyCardsClosure
5262     greyRescanClosure(_collector, full_span, // entire span of interest
5263                       sp, bm, work_q, cl);
5264 
5265   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5266   assert(pst->valid(), "Uninitialized use?");
5267   uint nth_task = 0;
5268   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5269   MemRegion span = sp->used_region();
5270   HeapWord* start_addr = span.start();
5271   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5272                                            alignment);
5273   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5274   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5275          start_addr, "Check alignment");
5276   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5277          chunk_size, "Check alignment");
5278 
5279   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5280     // Having claimed the nth_task, compute corresponding mem-region,
5281     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5282     // The alignment restriction ensures that we do not need any
5283     // synchronization with other gang-workers while setting or
5284     // clearing bits in thus chunk of the MUT.
5285     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5286                                     start_addr + (nth_task+1)*chunk_size);
5287     // The last chunk's end might be way beyond end of the
5288     // used region. In that case pull back appropriately.
5289     if (this_span.end() > end_addr) {
5290       this_span.set_end(end_addr);
5291       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5292     }
5293     // Iterate over the dirty cards covering this chunk, marking them
5294     // precleaned, and setting the corresponding bits in the mod union
5295     // table. Since we have been careful to partition at Card and MUT-word
5296     // boundaries no synchronization is needed between parallel threads.
5297     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5298                                                  &modUnionClosure);
5299 
5300     // Having transferred these marks into the modUnionTable,
5301     // rescan the marked objects on the dirty cards in the modUnionTable.
5302     // Even if this is at a synchronous collection, the initial marking
5303     // may have been done during an asynchronous collection so there
5304     // may be dirty bits in the mod-union table.
5305     _collector->_modUnionTable.dirty_range_iterate_clear(
5306                   this_span, &greyRescanClosure);
5307     _collector->_modUnionTable.verifyNoOneBitsInRange(
5308                                  this_span.start(),
5309                                  this_span.end());
5310   }
5311   pst->all_tasks_completed();  // declare that i am done
5312 }
5313 
5314 // . see if we can share work_queues with ParNew? XXX
5315 void
5316 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5317                                 int* seed) {
5318   OopTaskQueue* work_q = work_queue(i);
5319   NOT_PRODUCT(int num_steals = 0;)
5320   oop obj_to_scan;
5321   CMSBitMap* bm = &(_collector->_markBitMap);
5322 
5323   while (true) {
5324     // Completely finish any left over work from (an) earlier round(s)
5325     cl->trim_queue(0);
5326     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5327                                          (size_t)ParGCDesiredObjsFromOverflowList);
5328     // Now check if there's any work in the overflow list
5329     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5330     // only affects the number of attempts made to get work from the
5331     // overflow list and does not affect the number of workers.  Just
5332     // pass ParallelGCThreads so this behavior is unchanged.
5333     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5334                                                 work_q,
5335                                                 ParallelGCThreads)) {
5336       // found something in global overflow list;
5337       // not yet ready to go stealing work from others.
5338       // We'd like to assert(work_q->size() != 0, ...)
5339       // because we just took work from the overflow list,
5340       // but of course we can't since all of that could have
5341       // been already stolen from us.
5342       // "He giveth and He taketh away."
5343       continue;
5344     }
5345     // Verify that we have no work before we resort to stealing
5346     assert(work_q->size() == 0, "Have work, shouldn't steal");
5347     // Try to steal from other queues that have work
5348     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5349       NOT_PRODUCT(num_steals++;)
5350       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5351       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5352       // Do scanning work
5353       obj_to_scan->oop_iterate(cl);
5354       // Loop around, finish this work, and try to steal some more
5355     } else if (terminator()->offer_termination()) {
5356         break;  // nirvana from the infinite cycle
5357     }
5358   }
5359   NOT_PRODUCT(
5360     if (PrintCMSStatistics != 0) {
5361       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5362     }
5363   )
5364   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5365          "Else our work is not yet done");
5366 }
5367 
5368 // Record object boundaries in _eden_chunk_array by sampling the eden
5369 // top in the slow-path eden object allocation code path and record
5370 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5371 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5372 // sampling in sample_eden() that activates during the part of the
5373 // preclean phase.
5374 void CMSCollector::sample_eden_chunk() {
5375   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5376     if (_eden_chunk_lock->try_lock()) {
5377       // Record a sample. This is the critical section. The contents
5378       // of the _eden_chunk_array have to be non-decreasing in the
5379       // address order.
5380       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5381       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5382              "Unexpected state of Eden");
5383       if (_eden_chunk_index == 0 ||
5384           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5385            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5386                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5387         _eden_chunk_index++;  // commit sample
5388       }
5389       _eden_chunk_lock->unlock();
5390     }
5391   }
5392 }
5393 
5394 // Return a thread-local PLAB recording array, as appropriate.
5395 void* CMSCollector::get_data_recorder(int thr_num) {
5396   if (_survivor_plab_array != NULL &&
5397       (CMSPLABRecordAlways ||
5398        (_collectorState > Marking && _collectorState < FinalMarking))) {
5399     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5400     ChunkArray* ca = &_survivor_plab_array[thr_num];
5401     ca->reset();   // clear it so that fresh data is recorded
5402     return (void*) ca;
5403   } else {
5404     return NULL;
5405   }
5406 }
5407 
5408 // Reset all the thread-local PLAB recording arrays
5409 void CMSCollector::reset_survivor_plab_arrays() {
5410   for (uint i = 0; i < ParallelGCThreads; i++) {
5411     _survivor_plab_array[i].reset();
5412   }
5413 }
5414 
5415 // Merge the per-thread plab arrays into the global survivor chunk
5416 // array which will provide the partitioning of the survivor space
5417 // for CMS initial scan and rescan.
5418 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5419                                               int no_of_gc_threads) {
5420   assert(_survivor_plab_array  != NULL, "Error");
5421   assert(_survivor_chunk_array != NULL, "Error");
5422   assert(_collectorState == FinalMarking ||
5423          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5424   for (int j = 0; j < no_of_gc_threads; j++) {
5425     _cursor[j] = 0;
5426   }
5427   HeapWord* top = surv->top();
5428   size_t i;
5429   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5430     HeapWord* min_val = top;          // Higher than any PLAB address
5431     uint      min_tid = 0;            // position of min_val this round
5432     for (int j = 0; j < no_of_gc_threads; j++) {
5433       ChunkArray* cur_sca = &_survivor_plab_array[j];
5434       if (_cursor[j] == cur_sca->end()) {
5435         continue;
5436       }
5437       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5438       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5439       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5440       if (cur_val < min_val) {
5441         min_tid = j;
5442         min_val = cur_val;
5443       } else {
5444         assert(cur_val < top, "All recorded addresses should be less");
5445       }
5446     }
5447     // At this point min_val and min_tid are respectively
5448     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5449     // and the thread (j) that witnesses that address.
5450     // We record this address in the _survivor_chunk_array[i]
5451     // and increment _cursor[min_tid] prior to the next round i.
5452     if (min_val == top) {
5453       break;
5454     }
5455     _survivor_chunk_array[i] = min_val;
5456     _cursor[min_tid]++;
5457   }
5458   // We are all done; record the size of the _survivor_chunk_array
5459   _survivor_chunk_index = i; // exclusive: [0, i)
5460   if (PrintCMSStatistics > 0) {
5461     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5462   }
5463   // Verify that we used up all the recorded entries
5464   #ifdef ASSERT
5465     size_t total = 0;
5466     for (int j = 0; j < no_of_gc_threads; j++) {
5467       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5468       total += _cursor[j];
5469     }
5470     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5471     // Check that the merged array is in sorted order
5472     if (total > 0) {
5473       for (size_t i = 0; i < total - 1; i++) {
5474         if (PrintCMSStatistics > 0) {
5475           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5476                               i, _survivor_chunk_array[i]);
5477         }
5478         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5479                "Not sorted");
5480       }
5481     }
5482   #endif // ASSERT
5483 }
5484 
5485 // Set up the space's par_seq_tasks structure for work claiming
5486 // for parallel initial scan and rescan of young gen.
5487 // See ParRescanTask where this is currently used.
5488 void
5489 CMSCollector::
5490 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5491   assert(n_threads > 0, "Unexpected n_threads argument");
5492   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5493 
5494   // Eden space
5495   if (!dng->eden()->is_empty()) {
5496     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5497     assert(!pst->valid(), "Clobbering existing data?");
5498     // Each valid entry in [0, _eden_chunk_index) represents a task.
5499     size_t n_tasks = _eden_chunk_index + 1;
5500     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5501     // Sets the condition for completion of the subtask (how many threads
5502     // need to finish in order to be done).
5503     pst->set_n_threads(n_threads);
5504     pst->set_n_tasks((int)n_tasks);
5505   }
5506 
5507   // Merge the survivor plab arrays into _survivor_chunk_array
5508   if (_survivor_plab_array != NULL) {
5509     merge_survivor_plab_arrays(dng->from(), n_threads);
5510   } else {
5511     assert(_survivor_chunk_index == 0, "Error");
5512   }
5513 
5514   // To space
5515   {
5516     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5517     assert(!pst->valid(), "Clobbering existing data?");
5518     // Sets the condition for completion of the subtask (how many threads
5519     // need to finish in order to be done).
5520     pst->set_n_threads(n_threads);
5521     pst->set_n_tasks(1);
5522     assert(pst->valid(), "Error");
5523   }
5524 
5525   // From space
5526   {
5527     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5528     assert(!pst->valid(), "Clobbering existing data?");
5529     size_t n_tasks = _survivor_chunk_index + 1;
5530     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5531     // Sets the condition for completion of the subtask (how many threads
5532     // need to finish in order to be done).
5533     pst->set_n_threads(n_threads);
5534     pst->set_n_tasks((int)n_tasks);
5535     assert(pst->valid(), "Error");
5536   }
5537 }
5538 
5539 // Parallel version of remark
5540 void CMSCollector::do_remark_parallel() {
5541   GenCollectedHeap* gch = GenCollectedHeap::heap();
5542   FlexibleWorkGang* workers = gch->workers();
5543   assert(workers != NULL, "Need parallel worker threads.");
5544   // Choose to use the number of GC workers most recently set
5545   // into "active_workers".  If active_workers is not set, set it
5546   // to ParallelGCThreads.
5547   int n_workers = workers->active_workers();
5548   if (n_workers == 0) {
5549     assert(n_workers > 0, "Should have been set during scavenge");
5550     n_workers = ParallelGCThreads;
5551     workers->set_active_workers(n_workers);
5552   }
5553   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5554 
5555   CMSParRemarkTask tsk(this,
5556     cms_space,
5557     n_workers, workers, task_queues());
5558 
5559   // Set up for parallel process_roots work.
5560   gch->set_par_threads(n_workers);
5561   // We won't be iterating over the cards in the card table updating
5562   // the younger_gen cards, so we shouldn't call the following else
5563   // the verification code as well as subsequent younger_refs_iterate
5564   // code would get confused. XXX
5565   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5566 
5567   // The young gen rescan work will not be done as part of
5568   // process_roots (which currently doesn't know how to
5569   // parallelize such a scan), but rather will be broken up into
5570   // a set of parallel tasks (via the sampling that the [abortable]
5571   // preclean phase did of EdenSpace, plus the [two] tasks of
5572   // scanning the [two] survivor spaces. Further fine-grain
5573   // parallelization of the scanning of the survivor spaces
5574   // themselves, and of precleaning of the younger gen itself
5575   // is deferred to the future.
5576   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5577 
5578   // The dirty card rescan work is broken up into a "sequence"
5579   // of parallel tasks (per constituent space) that are dynamically
5580   // claimed by the parallel threads.
5581   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5582 
5583   // It turns out that even when we're using 1 thread, doing the work in a
5584   // separate thread causes wide variance in run times.  We can't help this
5585   // in the multi-threaded case, but we special-case n=1 here to get
5586   // repeatable measurements of the 1-thread overhead of the parallel code.
5587   if (n_workers > 1) {
5588     // Make refs discovery MT-safe, if it isn't already: it may not
5589     // necessarily be so, since it's possible that we are doing
5590     // ST marking.
5591     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5592     GenCollectedHeap::StrongRootsScope srs(gch);
5593     workers->run_task(&tsk);
5594   } else {
5595     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5596     GenCollectedHeap::StrongRootsScope srs(gch);
5597     tsk.work(0);
5598   }
5599 
5600   gch->set_par_threads(0);  // 0 ==> non-parallel.
5601   // restore, single-threaded for now, any preserved marks
5602   // as a result of work_q overflow
5603   restore_preserved_marks_if_any();
5604 }
5605 
5606 // Non-parallel version of remark
5607 void CMSCollector::do_remark_non_parallel() {
5608   ResourceMark rm;
5609   HandleMark   hm;
5610   GenCollectedHeap* gch = GenCollectedHeap::heap();
5611   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5612 
5613   MarkRefsIntoAndScanClosure
5614     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5615              &_markStack, this,
5616              false /* should_yield */, false /* not precleaning */);
5617   MarkFromDirtyCardsClosure
5618     markFromDirtyCardsClosure(this, _span,
5619                               NULL,  // space is set further below
5620                               &_markBitMap, &_markStack, &mrias_cl);
5621   {
5622     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5623     // Iterate over the dirty cards, setting the corresponding bits in the
5624     // mod union table.
5625     {
5626       ModUnionClosure modUnionClosure(&_modUnionTable);
5627       _ct->ct_bs()->dirty_card_iterate(
5628                       _cmsGen->used_region(),
5629                       &modUnionClosure);
5630     }
5631     // Having transferred these marks into the modUnionTable, we just need
5632     // to rescan the marked objects on the dirty cards in the modUnionTable.
5633     // The initial marking may have been done during an asynchronous
5634     // collection so there may be dirty bits in the mod-union table.
5635     const int alignment =
5636       CardTableModRefBS::card_size * BitsPerWord;
5637     {
5638       // ... First handle dirty cards in CMS gen
5639       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5640       MemRegion ur = _cmsGen->used_region();
5641       HeapWord* lb = ur.start();
5642       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5643       MemRegion cms_span(lb, ub);
5644       _modUnionTable.dirty_range_iterate_clear(cms_span,
5645                                                &markFromDirtyCardsClosure);
5646       verify_work_stacks_empty();
5647       if (PrintCMSStatistics != 0) {
5648         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5649           markFromDirtyCardsClosure.num_dirty_cards());
5650       }
5651     }
5652   }
5653   if (VerifyDuringGC &&
5654       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5655     HandleMark hm;  // Discard invalid handles created during verification
5656     Universe::verify();
5657   }
5658   {
5659     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5660 
5661     verify_work_stacks_empty();
5662 
5663     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5664     GenCollectedHeap::StrongRootsScope srs(gch);
5665 
5666     gch->gen_process_roots(_cmsGen->level(),
5667                            true,  // younger gens as roots
5668                            false, // use the local StrongRootsScope
5669                            SharedHeap::ScanningOption(roots_scanning_options()),
5670                            should_unload_classes(),
5671                            &mrias_cl,
5672                            NULL,
5673                            NULL); // The dirty klasses will be handled below
5674 
5675     assert(should_unload_classes()
5676            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5677            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5678   }
5679 
5680   {
5681     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5682 
5683     verify_work_stacks_empty();
5684 
5685     // Scan all class loader data objects that might have been introduced
5686     // during concurrent marking.
5687     ResourceMark rm;
5688     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5689     for (int i = 0; i < array->length(); i++) {
5690       mrias_cl.do_class_loader_data(array->at(i));
5691     }
5692 
5693     // We don't need to keep track of new CLDs anymore.
5694     ClassLoaderDataGraph::remember_new_clds(false);
5695 
5696     verify_work_stacks_empty();
5697   }
5698 
5699   {
5700     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5701 
5702     verify_work_stacks_empty();
5703 
5704     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5705     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5706 
5707     verify_work_stacks_empty();
5708   }
5709 
5710   // We might have added oops to ClassLoaderData::_handles during the
5711   // concurrent marking phase. These oops point to newly allocated objects
5712   // that are guaranteed to be kept alive. Either by the direct allocation
5713   // code, or when the young collector processes the roots. Hence,
5714   // we don't have to revisit the _handles block during the remark phase.
5715 
5716   verify_work_stacks_empty();
5717   // Restore evacuated mark words, if any, used for overflow list links
5718   if (!CMSOverflowEarlyRestoration) {
5719     restore_preserved_marks_if_any();
5720   }
5721   verify_overflow_empty();
5722 }
5723 
5724 ////////////////////////////////////////////////////////
5725 // Parallel Reference Processing Task Proxy Class
5726 ////////////////////////////////////////////////////////
5727 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5728   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5729   CMSCollector*          _collector;
5730   CMSBitMap*             _mark_bit_map;
5731   const MemRegion        _span;
5732   ProcessTask&           _task;
5733 
5734 public:
5735   CMSRefProcTaskProxy(ProcessTask&     task,
5736                       CMSCollector*    collector,
5737                       const MemRegion& span,
5738                       CMSBitMap*       mark_bit_map,
5739                       AbstractWorkGang* workers,
5740                       OopTaskQueueSet* task_queues):
5741     // XXX Should superclass AGTWOQ also know about AWG since it knows
5742     // about the task_queues used by the AWG? Then it could initialize
5743     // the terminator() object. See 6984287. The set_for_termination()
5744     // below is a temporary band-aid for the regression in 6984287.
5745     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5746       task_queues),
5747     _task(task),
5748     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5749   {
5750     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5751            "Inconsistency in _span");
5752     set_for_termination(workers->active_workers());
5753   }
5754 
5755   OopTaskQueueSet* task_queues() { return queues(); }
5756 
5757   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5758 
5759   void do_work_steal(int i,
5760                      CMSParDrainMarkingStackClosure* drain,
5761                      CMSParKeepAliveClosure* keep_alive,
5762                      int* seed);
5763 
5764   virtual void work(uint worker_id);
5765 };
5766 
5767 void CMSRefProcTaskProxy::work(uint worker_id) {
5768   ResourceMark rm;
5769   HandleMark hm;
5770   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5771   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5772                                         _mark_bit_map,
5773                                         work_queue(worker_id));
5774   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5775                                                  _mark_bit_map,
5776                                                  work_queue(worker_id));
5777   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5778   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5779   if (_task.marks_oops_alive()) {
5780     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5781                   _collector->hash_seed(worker_id));
5782   }
5783   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5784   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5785 }
5786 
5787 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5788   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5789   EnqueueTask& _task;
5790 
5791 public:
5792   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5793     : AbstractGangTask("Enqueue reference objects in parallel"),
5794       _task(task)
5795   { }
5796 
5797   virtual void work(uint worker_id)
5798   {
5799     _task.work(worker_id);
5800   }
5801 };
5802 
5803 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5804   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5805    _span(span),
5806    _bit_map(bit_map),
5807    _work_queue(work_queue),
5808    _mark_and_push(collector, span, bit_map, work_queue),
5809    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5810                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5811 { }
5812 
5813 // . see if we can share work_queues with ParNew? XXX
5814 void CMSRefProcTaskProxy::do_work_steal(int i,
5815   CMSParDrainMarkingStackClosure* drain,
5816   CMSParKeepAliveClosure* keep_alive,
5817   int* seed) {
5818   OopTaskQueue* work_q = work_queue(i);
5819   NOT_PRODUCT(int num_steals = 0;)
5820   oop obj_to_scan;
5821 
5822   while (true) {
5823     // Completely finish any left over work from (an) earlier round(s)
5824     drain->trim_queue(0);
5825     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5826                                          (size_t)ParGCDesiredObjsFromOverflowList);
5827     // Now check if there's any work in the overflow list
5828     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5829     // only affects the number of attempts made to get work from the
5830     // overflow list and does not affect the number of workers.  Just
5831     // pass ParallelGCThreads so this behavior is unchanged.
5832     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5833                                                 work_q,
5834                                                 ParallelGCThreads)) {
5835       // Found something in global overflow list;
5836       // not yet ready to go stealing work from others.
5837       // We'd like to assert(work_q->size() != 0, ...)
5838       // because we just took work from the overflow list,
5839       // but of course we can't, since all of that might have
5840       // been already stolen from us.
5841       continue;
5842     }
5843     // Verify that we have no work before we resort to stealing
5844     assert(work_q->size() == 0, "Have work, shouldn't steal");
5845     // Try to steal from other queues that have work
5846     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5847       NOT_PRODUCT(num_steals++;)
5848       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5849       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5850       // Do scanning work
5851       obj_to_scan->oop_iterate(keep_alive);
5852       // Loop around, finish this work, and try to steal some more
5853     } else if (terminator()->offer_termination()) {
5854       break;  // nirvana from the infinite cycle
5855     }
5856   }
5857   NOT_PRODUCT(
5858     if (PrintCMSStatistics != 0) {
5859       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5860     }
5861   )
5862 }
5863 
5864 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5865 {
5866   GenCollectedHeap* gch = GenCollectedHeap::heap();
5867   FlexibleWorkGang* workers = gch->workers();
5868   assert(workers != NULL, "Need parallel worker threads.");
5869   CMSRefProcTaskProxy rp_task(task, &_collector,
5870                               _collector.ref_processor()->span(),
5871                               _collector.markBitMap(),
5872                               workers, _collector.task_queues());
5873   workers->run_task(&rp_task);
5874 }
5875 
5876 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5877 {
5878 
5879   GenCollectedHeap* gch = GenCollectedHeap::heap();
5880   FlexibleWorkGang* workers = gch->workers();
5881   assert(workers != NULL, "Need parallel worker threads.");
5882   CMSRefEnqueueTaskProxy enq_task(task);
5883   workers->run_task(&enq_task);
5884 }
5885 
5886 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5887 
5888   ResourceMark rm;
5889   HandleMark   hm;
5890 
5891   ReferenceProcessor* rp = ref_processor();
5892   assert(rp->span().equals(_span), "Spans should be equal");
5893   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5894   // Process weak references.
5895   rp->setup_policy(clear_all_soft_refs);
5896   verify_work_stacks_empty();
5897 
5898   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5899                                           &_markStack, false /* !preclean */);
5900   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5901                                 _span, &_markBitMap, &_markStack,
5902                                 &cmsKeepAliveClosure, false /* !preclean */);
5903   {
5904     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5905 
5906     ReferenceProcessorStats stats;
5907     if (rp->processing_is_mt()) {
5908       // Set the degree of MT here.  If the discovery is done MT, there
5909       // may have been a different number of threads doing the discovery
5910       // and a different number of discovered lists may have Ref objects.
5911       // That is OK as long as the Reference lists are balanced (see
5912       // balance_all_queues() and balance_queues()).
5913       GenCollectedHeap* gch = GenCollectedHeap::heap();
5914       int active_workers = ParallelGCThreads;
5915       FlexibleWorkGang* workers = gch->workers();
5916       if (workers != NULL) {
5917         active_workers = workers->active_workers();
5918         // The expectation is that active_workers will have already
5919         // been set to a reasonable value.  If it has not been set,
5920         // investigate.
5921         assert(active_workers > 0, "Should have been set during scavenge");
5922       }
5923       rp->set_active_mt_degree(active_workers);
5924       CMSRefProcTaskExecutor task_executor(*this);
5925       stats = rp->process_discovered_references(&_is_alive_closure,
5926                                         &cmsKeepAliveClosure,
5927                                         &cmsDrainMarkingStackClosure,
5928                                         &task_executor,
5929                                         _gc_timer_cm,
5930                                         _gc_tracer_cm->gc_id());
5931     } else {
5932       stats = rp->process_discovered_references(&_is_alive_closure,
5933                                         &cmsKeepAliveClosure,
5934                                         &cmsDrainMarkingStackClosure,
5935                                         NULL,
5936                                         _gc_timer_cm,
5937                                         _gc_tracer_cm->gc_id());
5938     }
5939     _gc_tracer_cm->report_gc_reference_stats(stats);
5940 
5941   }
5942 
5943   // This is the point where the entire marking should have completed.
5944   verify_work_stacks_empty();
5945 
5946   if (should_unload_classes()) {
5947     {
5948       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5949 
5950       // Unload classes and purge the SystemDictionary.
5951       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5952 
5953       // Unload nmethods.
5954       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5955 
5956       // Prune dead klasses from subklass/sibling/implementor lists.
5957       Klass::clean_weak_klass_links(&_is_alive_closure);
5958     }
5959 
5960     {
5961       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5962       // Clean up unreferenced symbols in symbol table.
5963       SymbolTable::unlink();
5964     }
5965 
5966     {
5967       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5968       // Delete entries for dead interned strings.
5969       StringTable::unlink(&_is_alive_closure);
5970     }
5971   }
5972 
5973 
5974   // Restore any preserved marks as a result of mark stack or
5975   // work queue overflow
5976   restore_preserved_marks_if_any();  // done single-threaded for now
5977 
5978   rp->set_enqueuing_is_done(true);
5979   if (rp->processing_is_mt()) {
5980     rp->balance_all_queues();
5981     CMSRefProcTaskExecutor task_executor(*this);
5982     rp->enqueue_discovered_references(&task_executor);
5983   } else {
5984     rp->enqueue_discovered_references(NULL);
5985   }
5986   rp->verify_no_references_recorded();
5987   assert(!rp->discovery_enabled(), "should have been disabled");
5988 }
5989 
5990 #ifndef PRODUCT
5991 void CMSCollector::check_correct_thread_executing() {
5992   Thread* t = Thread::current();
5993   // Only the VM thread or the CMS thread should be here.
5994   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5995          "Unexpected thread type");
5996   // If this is the vm thread, the foreground process
5997   // should not be waiting.  Note that _foregroundGCIsActive is
5998   // true while the foreground collector is waiting.
5999   if (_foregroundGCShouldWait) {
6000     // We cannot be the VM thread
6001     assert(t->is_ConcurrentGC_thread(),
6002            "Should be CMS thread");
6003   } else {
6004     // We can be the CMS thread only if we are in a stop-world
6005     // phase of CMS collection.
6006     if (t->is_ConcurrentGC_thread()) {
6007       assert(_collectorState == InitialMarking ||
6008              _collectorState == FinalMarking,
6009              "Should be a stop-world phase");
6010       // The CMS thread should be holding the CMS_token.
6011       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6012              "Potential interference with concurrently "
6013              "executing VM thread");
6014     }
6015   }
6016 }
6017 #endif
6018 
6019 void CMSCollector::sweep(bool asynch) {
6020   assert(_collectorState == Sweeping, "just checking");
6021   check_correct_thread_executing();
6022   verify_work_stacks_empty();
6023   verify_overflow_empty();
6024   increment_sweep_count();
6025   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6026 
6027   _inter_sweep_timer.stop();
6028   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6029 
6030   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6031   _intra_sweep_timer.reset();
6032   _intra_sweep_timer.start();
6033   if (asynch) {
6034     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6035     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6036     // First sweep the old gen
6037     {
6038       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6039                                bitMapLock());
6040       sweepWork(_cmsGen, asynch);
6041     }
6042 
6043     // Update Universe::_heap_*_at_gc figures.
6044     // We need all the free list locks to make the abstract state
6045     // transition from Sweeping to Resetting. See detailed note
6046     // further below.
6047     {
6048       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6049       // Update heap occupancy information which is used as
6050       // input to soft ref clearing policy at the next gc.
6051       Universe::update_heap_info_at_gc();
6052       _collectorState = Resizing;
6053     }
6054   } else {
6055     // already have needed locks
6056     sweepWork(_cmsGen,  asynch);
6057     // Update heap occupancy information which is used as
6058     // input to soft ref clearing policy at the next gc.
6059     Universe::update_heap_info_at_gc();
6060     _collectorState = Resizing;
6061   }
6062   verify_work_stacks_empty();
6063   verify_overflow_empty();
6064 
6065   if (should_unload_classes()) {
6066     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
6067     // requires that the virtual spaces are stable and not deleted.
6068     ClassLoaderDataGraph::set_should_purge(true);
6069   }
6070 
6071   _intra_sweep_timer.stop();
6072   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6073 
6074   _inter_sweep_timer.reset();
6075   _inter_sweep_timer.start();
6076 
6077   // We need to use a monotonically non-decreasing time in ms
6078   // or we will see time-warp warnings and os::javaTimeMillis()
6079   // does not guarantee monotonicity.
6080   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6081   update_time_of_last_gc(now);
6082 
6083   // NOTE on abstract state transitions:
6084   // Mutators allocate-live and/or mark the mod-union table dirty
6085   // based on the state of the collection.  The former is done in
6086   // the interval [Marking, Sweeping] and the latter in the interval
6087   // [Marking, Sweeping).  Thus the transitions into the Marking state
6088   // and out of the Sweeping state must be synchronously visible
6089   // globally to the mutators.
6090   // The transition into the Marking state happens with the world
6091   // stopped so the mutators will globally see it.  Sweeping is
6092   // done asynchronously by the background collector so the transition
6093   // from the Sweeping state to the Resizing state must be done
6094   // under the freelistLock (as is the check for whether to
6095   // allocate-live and whether to dirty the mod-union table).
6096   assert(_collectorState == Resizing, "Change of collector state to"
6097     " Resizing must be done under the freelistLocks (plural)");
6098 
6099   // Now that sweeping has been completed, we clear
6100   // the incremental_collection_failed flag,
6101   // thus inviting a younger gen collection to promote into
6102   // this generation. If such a promotion may still fail,
6103   // the flag will be set again when a young collection is
6104   // attempted.
6105   GenCollectedHeap* gch = GenCollectedHeap::heap();
6106   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6107   gch->update_full_collections_completed(_collection_count_start);
6108 }
6109 
6110 // FIX ME!!! Looks like this belongs in CFLSpace, with
6111 // CMSGen merely delegating to it.
6112 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6113   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6114   HeapWord*  minAddr        = _cmsSpace->bottom();
6115   HeapWord*  largestAddr    =
6116     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6117   if (largestAddr == NULL) {
6118     // The dictionary appears to be empty.  In this case
6119     // try to coalesce at the end of the heap.
6120     largestAddr = _cmsSpace->end();
6121   }
6122   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6123   size_t nearLargestOffset =
6124     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6125   if (PrintFLSStatistics != 0) {
6126     gclog_or_tty->print_cr(
6127       "CMS: Large Block: " PTR_FORMAT ";"
6128       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6129       largestAddr,
6130       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6131   }
6132   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6133 }
6134 
6135 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6136   return addr >= _cmsSpace->nearLargestChunk();
6137 }
6138 
6139 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6140   return _cmsSpace->find_chunk_at_end();
6141 }
6142 
6143 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6144                                                     bool full) {
6145   // The next lower level has been collected.  Gather any statistics
6146   // that are of interest at this point.
6147   if (!full && (current_level + 1) == level()) {
6148     // Gather statistics on the young generation collection.
6149     collector()->stats().record_gc0_end(used());
6150   }
6151 }
6152 
6153 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6154   if (PrintGCDetails && Verbose) {
6155     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6156   }
6157   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6158   _debug_collection_type =
6159     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6160   if (PrintGCDetails && Verbose) {
6161     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6162   }
6163 }
6164 
6165 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6166   bool asynch) {
6167   // We iterate over the space(s) underlying this generation,
6168   // checking the mark bit map to see if the bits corresponding
6169   // to specific blocks are marked or not. Blocks that are
6170   // marked are live and are not swept up. All remaining blocks
6171   // are swept up, with coalescing on-the-fly as we sweep up
6172   // contiguous free and/or garbage blocks:
6173   // We need to ensure that the sweeper synchronizes with allocators
6174   // and stop-the-world collectors. In particular, the following
6175   // locks are used:
6176   // . CMS token: if this is held, a stop the world collection cannot occur
6177   // . freelistLock: if this is held no allocation can occur from this
6178   //                 generation by another thread
6179   // . bitMapLock: if this is held, no other thread can access or update
6180   //
6181 
6182   // Note that we need to hold the freelistLock if we use
6183   // block iterate below; else the iterator might go awry if
6184   // a mutator (or promotion) causes block contents to change
6185   // (for instance if the allocator divvies up a block).
6186   // If we hold the free list lock, for all practical purposes
6187   // young generation GC's can't occur (they'll usually need to
6188   // promote), so we might as well prevent all young generation
6189   // GC's while we do a sweeping step. For the same reason, we might
6190   // as well take the bit map lock for the entire duration
6191 
6192   // check that we hold the requisite locks
6193   assert(have_cms_token(), "Should hold cms token");
6194   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6195          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6196         "Should possess CMS token to sweep");
6197   assert_lock_strong(gen->freelistLock());
6198   assert_lock_strong(bitMapLock());
6199 
6200   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6201   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6202   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6203                                       _inter_sweep_estimate.padded_average(),
6204                                       _intra_sweep_estimate.padded_average());
6205   gen->setNearLargestChunk();
6206 
6207   {
6208     SweepClosure sweepClosure(this, gen, &_markBitMap,
6209                             CMSYield && asynch);
6210     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6211     // We need to free-up/coalesce garbage/blocks from a
6212     // co-terminal free run. This is done in the SweepClosure
6213     // destructor; so, do not remove this scope, else the
6214     // end-of-sweep-census below will be off by a little bit.
6215   }
6216   gen->cmsSpace()->sweep_completed();
6217   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6218   if (should_unload_classes()) {                // unloaded classes this cycle,
6219     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6220   } else {                                      // did not unload classes,
6221     _concurrent_cycles_since_last_unload++;     // ... increment count
6222   }
6223 }
6224 
6225 // Reset CMS data structures (for now just the marking bit map)
6226 // preparatory for the next cycle.
6227 void CMSCollector::reset(bool asynch) {
6228   if (asynch) {
6229     CMSTokenSyncWithLocks ts(true, bitMapLock());
6230 
6231     // If the state is not "Resetting", the foreground  thread
6232     // has done a collection and the resetting.
6233     if (_collectorState != Resetting) {
6234       assert(_collectorState == Idling, "The state should only change"
6235         " because the foreground collector has finished the collection");
6236       return;
6237     }
6238 
6239     // Clear the mark bitmap (no grey objects to start with)
6240     // for the next cycle.
6241     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6242     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6243 
6244     HeapWord* curAddr = _markBitMap.startWord();
6245     while (curAddr < _markBitMap.endWord()) {
6246       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6247       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6248       _markBitMap.clear_large_range(chunk);
6249       if (ConcurrentMarkSweepThread::should_yield() &&
6250           !foregroundGCIsActive() &&
6251           CMSYield) {
6252         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6253                "CMS thread should hold CMS token");
6254         assert_lock_strong(bitMapLock());
6255         bitMapLock()->unlock();
6256         ConcurrentMarkSweepThread::desynchronize(true);
6257         stopTimer();
6258         if (PrintCMSStatistics != 0) {
6259           incrementYields();
6260         }
6261 
6262         // See the comment in coordinator_yield()
6263         for (unsigned i = 0; i < CMSYieldSleepCount &&
6264                          ConcurrentMarkSweepThread::should_yield() &&
6265                          !CMSCollector::foregroundGCIsActive(); ++i) {
6266           os::sleep(Thread::current(), 1, false);
6267         }
6268 
6269         ConcurrentMarkSweepThread::synchronize(true);
6270         bitMapLock()->lock_without_safepoint_check();
6271         startTimer();
6272       }
6273       curAddr = chunk.end();
6274     }
6275     // A successful mostly concurrent collection has been done.
6276     // Because only the full (i.e., concurrent mode failure) collections
6277     // are being measured for gc overhead limits, clean the "near" flag
6278     // and count.
6279     size_policy()->reset_gc_overhead_limit_count();
6280     _collectorState = Idling;
6281   } else {
6282     // already have the lock
6283     assert(_collectorState == Resetting, "just checking");
6284     assert_lock_strong(bitMapLock());
6285     _markBitMap.clear_all();
6286     _collectorState = Idling;
6287   }
6288 
6289   NOT_PRODUCT(
6290     if (RotateCMSCollectionTypes) {
6291       _cmsGen->rotate_debug_collection_type();
6292     }
6293   )
6294 
6295   register_gc_end();
6296 }
6297 
6298 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6299   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6300   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6301   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
6302   TraceCollectorStats tcs(counters());
6303 
6304   switch (op) {
6305     case CMS_op_checkpointRootsInitial: {
6306       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6307       checkpointRootsInitial(true);       // asynch
6308       if (PrintGC) {
6309         _cmsGen->printOccupancy("initial-mark");
6310       }
6311       break;
6312     }
6313     case CMS_op_checkpointRootsFinal: {
6314       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6315       checkpointRootsFinal(true,    // asynch
6316                            false,   // !clear_all_soft_refs
6317                            false);  // !init_mark_was_synchronous
6318       if (PrintGC) {
6319         _cmsGen->printOccupancy("remark");
6320       }
6321       break;
6322     }
6323     default:
6324       fatal("No such CMS_op");
6325   }
6326 }
6327 
6328 #ifndef PRODUCT
6329 size_t const CMSCollector::skip_header_HeapWords() {
6330   return FreeChunk::header_size();
6331 }
6332 
6333 // Try and collect here conditions that should hold when
6334 // CMS thread is exiting. The idea is that the foreground GC
6335 // thread should not be blocked if it wants to terminate
6336 // the CMS thread and yet continue to run the VM for a while
6337 // after that.
6338 void CMSCollector::verify_ok_to_terminate() const {
6339   assert(Thread::current()->is_ConcurrentGC_thread(),
6340          "should be called by CMS thread");
6341   assert(!_foregroundGCShouldWait, "should be false");
6342   // We could check here that all the various low-level locks
6343   // are not held by the CMS thread, but that is overkill; see
6344   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6345   // is checked.
6346 }
6347 #endif
6348 
6349 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6350    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6351           "missing Printezis mark?");
6352   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6353   size_t size = pointer_delta(nextOneAddr + 1, addr);
6354   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6355          "alignment problem");
6356   assert(size >= 3, "Necessary for Printezis marks to work");
6357   return size;
6358 }
6359 
6360 // A variant of the above (block_size_using_printezis_bits()) except
6361 // that we return 0 if the P-bits are not yet set.
6362 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6363   if (_markBitMap.isMarked(addr + 1)) {
6364     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6365     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6366     size_t size = pointer_delta(nextOneAddr + 1, addr);
6367     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6368            "alignment problem");
6369     assert(size >= 3, "Necessary for Printezis marks to work");
6370     return size;
6371   }
6372   return 0;
6373 }
6374 
6375 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6376   size_t sz = 0;
6377   oop p = (oop)addr;
6378   if (p->klass_or_null() != NULL) {
6379     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6380   } else {
6381     sz = block_size_using_printezis_bits(addr);
6382   }
6383   assert(sz > 0, "size must be nonzero");
6384   HeapWord* next_block = addr + sz;
6385   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6386                                              CardTableModRefBS::card_size);
6387   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6388          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6389          "must be different cards");
6390   return next_card;
6391 }
6392 
6393 
6394 // CMS Bit Map Wrapper /////////////////////////////////////////
6395 
6396 // Construct a CMS bit map infrastructure, but don't create the
6397 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6398 // further below.
6399 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6400   _bm(),
6401   _shifter(shifter),
6402   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6403 {
6404   _bmStartWord = 0;
6405   _bmWordSize  = 0;
6406 }
6407 
6408 bool CMSBitMap::allocate(MemRegion mr) {
6409   _bmStartWord = mr.start();
6410   _bmWordSize  = mr.word_size();
6411   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6412                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6413   if (!brs.is_reserved()) {
6414     warning("CMS bit map allocation failure");
6415     return false;
6416   }
6417   // For now we'll just commit all of the bit map up front.
6418   // Later on we'll try to be more parsimonious with swap.
6419   if (!_virtual_space.initialize(brs, brs.size())) {
6420     warning("CMS bit map backing store failure");
6421     return false;
6422   }
6423   assert(_virtual_space.committed_size() == brs.size(),
6424          "didn't reserve backing store for all of CMS bit map?");
6425   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6426   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6427          _bmWordSize, "inconsistency in bit map sizing");
6428   _bm.set_size(_bmWordSize >> _shifter);
6429 
6430   // bm.clear(); // can we rely on getting zero'd memory? verify below
6431   assert(isAllClear(),
6432          "Expected zero'd memory from ReservedSpace constructor");
6433   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6434          "consistency check");
6435   return true;
6436 }
6437 
6438 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6439   HeapWord *next_addr, *end_addr, *last_addr;
6440   assert_locked();
6441   assert(covers(mr), "out-of-range error");
6442   // XXX assert that start and end are appropriately aligned
6443   for (next_addr = mr.start(), end_addr = mr.end();
6444        next_addr < end_addr; next_addr = last_addr) {
6445     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6446     last_addr = dirty_region.end();
6447     if (!dirty_region.is_empty()) {
6448       cl->do_MemRegion(dirty_region);
6449     } else {
6450       assert(last_addr == end_addr, "program logic");
6451       return;
6452     }
6453   }
6454 }
6455 
6456 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6457   _bm.print_on_error(st, prefix);
6458 }
6459 
6460 #ifndef PRODUCT
6461 void CMSBitMap::assert_locked() const {
6462   CMSLockVerifier::assert_locked(lock());
6463 }
6464 
6465 bool CMSBitMap::covers(MemRegion mr) const {
6466   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6467   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6468          "size inconsistency");
6469   return (mr.start() >= _bmStartWord) &&
6470          (mr.end()   <= endWord());
6471 }
6472 
6473 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6474     return (start >= _bmStartWord && (start + size) <= endWord());
6475 }
6476 
6477 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6478   // verify that there are no 1 bits in the interval [left, right)
6479   FalseBitMapClosure falseBitMapClosure;
6480   iterate(&falseBitMapClosure, left, right);
6481 }
6482 
6483 void CMSBitMap::region_invariant(MemRegion mr)
6484 {
6485   assert_locked();
6486   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6487   assert(!mr.is_empty(), "unexpected empty region");
6488   assert(covers(mr), "mr should be covered by bit map");
6489   // convert address range into offset range
6490   size_t start_ofs = heapWordToOffset(mr.start());
6491   // Make sure that end() is appropriately aligned
6492   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6493                         (1 << (_shifter+LogHeapWordSize))),
6494          "Misaligned mr.end()");
6495   size_t end_ofs   = heapWordToOffset(mr.end());
6496   assert(end_ofs > start_ofs, "Should mark at least one bit");
6497 }
6498 
6499 #endif
6500 
6501 bool CMSMarkStack::allocate(size_t size) {
6502   // allocate a stack of the requisite depth
6503   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6504                    size * sizeof(oop)));
6505   if (!rs.is_reserved()) {
6506     warning("CMSMarkStack allocation failure");
6507     return false;
6508   }
6509   if (!_virtual_space.initialize(rs, rs.size())) {
6510     warning("CMSMarkStack backing store failure");
6511     return false;
6512   }
6513   assert(_virtual_space.committed_size() == rs.size(),
6514          "didn't reserve backing store for all of CMS stack?");
6515   _base = (oop*)(_virtual_space.low());
6516   _index = 0;
6517   _capacity = size;
6518   NOT_PRODUCT(_max_depth = 0);
6519   return true;
6520 }
6521 
6522 // XXX FIX ME !!! In the MT case we come in here holding a
6523 // leaf lock. For printing we need to take a further lock
6524 // which has lower rank. We need to recalibrate the two
6525 // lock-ranks involved in order to be able to print the
6526 // messages below. (Or defer the printing to the caller.
6527 // For now we take the expedient path of just disabling the
6528 // messages for the problematic case.)
6529 void CMSMarkStack::expand() {
6530   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6531   if (_capacity == MarkStackSizeMax) {
6532     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6533       // We print a warning message only once per CMS cycle.
6534       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6535     }
6536     return;
6537   }
6538   // Double capacity if possible
6539   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6540   // Do not give up existing stack until we have managed to
6541   // get the double capacity that we desired.
6542   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6543                    new_capacity * sizeof(oop)));
6544   if (rs.is_reserved()) {
6545     // Release the backing store associated with old stack
6546     _virtual_space.release();
6547     // Reinitialize virtual space for new stack
6548     if (!_virtual_space.initialize(rs, rs.size())) {
6549       fatal("Not enough swap for expanded marking stack");
6550     }
6551     _base = (oop*)(_virtual_space.low());
6552     _index = 0;
6553     _capacity = new_capacity;
6554   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6555     // Failed to double capacity, continue;
6556     // we print a detail message only once per CMS cycle.
6557     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6558             SIZE_FORMAT"K",
6559             _capacity / K, new_capacity / K);
6560   }
6561 }
6562 
6563 
6564 // Closures
6565 // XXX: there seems to be a lot of code  duplication here;
6566 // should refactor and consolidate common code.
6567 
6568 // This closure is used to mark refs into the CMS generation in
6569 // the CMS bit map. Called at the first checkpoint. This closure
6570 // assumes that we do not need to re-mark dirty cards; if the CMS
6571 // generation on which this is used is not an oldest
6572 // generation then this will lose younger_gen cards!
6573 
6574 MarkRefsIntoClosure::MarkRefsIntoClosure(
6575   MemRegion span, CMSBitMap* bitMap):
6576     _span(span),
6577     _bitMap(bitMap)
6578 {
6579     assert(_ref_processor == NULL, "deliberately left NULL");
6580     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6581 }
6582 
6583 void MarkRefsIntoClosure::do_oop(oop obj) {
6584   // if p points into _span, then mark corresponding bit in _markBitMap
6585   assert(obj->is_oop(), "expected an oop");
6586   HeapWord* addr = (HeapWord*)obj;
6587   if (_span.contains(addr)) {
6588     // this should be made more efficient
6589     _bitMap->mark(addr);
6590   }
6591 }
6592 
6593 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6594 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6595 
6596 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6597   MemRegion span, CMSBitMap* bitMap):
6598     _span(span),
6599     _bitMap(bitMap)
6600 {
6601     assert(_ref_processor == NULL, "deliberately left NULL");
6602     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6603 }
6604 
6605 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6606   // if p points into _span, then mark corresponding bit in _markBitMap
6607   assert(obj->is_oop(), "expected an oop");
6608   HeapWord* addr = (HeapWord*)obj;
6609   if (_span.contains(addr)) {
6610     // this should be made more efficient
6611     _bitMap->par_mark(addr);
6612   }
6613 }
6614 
6615 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6616 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6617 
6618 // A variant of the above, used for CMS marking verification.
6619 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6620   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6621     _span(span),
6622     _verification_bm(verification_bm),
6623     _cms_bm(cms_bm)
6624 {
6625     assert(_ref_processor == NULL, "deliberately left NULL");
6626     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6627 }
6628 
6629 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6630   // if p points into _span, then mark corresponding bit in _markBitMap
6631   assert(obj->is_oop(), "expected an oop");
6632   HeapWord* addr = (HeapWord*)obj;
6633   if (_span.contains(addr)) {
6634     _verification_bm->mark(addr);
6635     if (!_cms_bm->isMarked(addr)) {
6636       oop(addr)->print();
6637       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6638       fatal("... aborting");
6639     }
6640   }
6641 }
6642 
6643 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6644 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6645 
6646 //////////////////////////////////////////////////
6647 // MarkRefsIntoAndScanClosure
6648 //////////////////////////////////////////////////
6649 
6650 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6651                                                        ReferenceProcessor* rp,
6652                                                        CMSBitMap* bit_map,
6653                                                        CMSBitMap* mod_union_table,
6654                                                        CMSMarkStack*  mark_stack,
6655                                                        CMSCollector* collector,
6656                                                        bool should_yield,
6657                                                        bool concurrent_precleaning):
6658   _collector(collector),
6659   _span(span),
6660   _bit_map(bit_map),
6661   _mark_stack(mark_stack),
6662   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6663                       mark_stack, concurrent_precleaning),
6664   _yield(should_yield),
6665   _concurrent_precleaning(concurrent_precleaning),
6666   _freelistLock(NULL)
6667 {
6668   _ref_processor = rp;
6669   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6670 }
6671 
6672 // This closure is used to mark refs into the CMS generation at the
6673 // second (final) checkpoint, and to scan and transitively follow
6674 // the unmarked oops. It is also used during the concurrent precleaning
6675 // phase while scanning objects on dirty cards in the CMS generation.
6676 // The marks are made in the marking bit map and the marking stack is
6677 // used for keeping the (newly) grey objects during the scan.
6678 // The parallel version (Par_...) appears further below.
6679 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6680   if (obj != NULL) {
6681     assert(obj->is_oop(), "expected an oop");
6682     HeapWord* addr = (HeapWord*)obj;
6683     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6684     assert(_collector->overflow_list_is_empty(),
6685            "overflow list should be empty");
6686     if (_span.contains(addr) &&
6687         !_bit_map->isMarked(addr)) {
6688       // mark bit map (object is now grey)
6689       _bit_map->mark(addr);
6690       // push on marking stack (stack should be empty), and drain the
6691       // stack by applying this closure to the oops in the oops popped
6692       // from the stack (i.e. blacken the grey objects)
6693       bool res = _mark_stack->push(obj);
6694       assert(res, "Should have space to push on empty stack");
6695       do {
6696         oop new_oop = _mark_stack->pop();
6697         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6698         assert(_bit_map->isMarked((HeapWord*)new_oop),
6699                "only grey objects on this stack");
6700         // iterate over the oops in this oop, marking and pushing
6701         // the ones in CMS heap (i.e. in _span).
6702         new_oop->oop_iterate(&_pushAndMarkClosure);
6703         // check if it's time to yield
6704         do_yield_check();
6705       } while (!_mark_stack->isEmpty() ||
6706                (!_concurrent_precleaning && take_from_overflow_list()));
6707         // if marking stack is empty, and we are not doing this
6708         // during precleaning, then check the overflow list
6709     }
6710     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6711     assert(_collector->overflow_list_is_empty(),
6712            "overflow list was drained above");
6713     // We could restore evacuated mark words, if any, used for
6714     // overflow list links here because the overflow list is
6715     // provably empty here. That would reduce the maximum
6716     // size requirements for preserved_{oop,mark}_stack.
6717     // But we'll just postpone it until we are all done
6718     // so we can just stream through.
6719     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6720       _collector->restore_preserved_marks_if_any();
6721       assert(_collector->no_preserved_marks(), "No preserved marks");
6722     }
6723     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6724            "All preserved marks should have been restored above");
6725   }
6726 }
6727 
6728 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6729 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6730 
6731 void MarkRefsIntoAndScanClosure::do_yield_work() {
6732   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6733          "CMS thread should hold CMS token");
6734   assert_lock_strong(_freelistLock);
6735   assert_lock_strong(_bit_map->lock());
6736   // relinquish the free_list_lock and bitMaplock()
6737   _bit_map->lock()->unlock();
6738   _freelistLock->unlock();
6739   ConcurrentMarkSweepThread::desynchronize(true);
6740   _collector->stopTimer();
6741   if (PrintCMSStatistics != 0) {
6742     _collector->incrementYields();
6743   }
6744 
6745   // See the comment in coordinator_yield()
6746   for (unsigned i = 0;
6747        i < CMSYieldSleepCount &&
6748        ConcurrentMarkSweepThread::should_yield() &&
6749        !CMSCollector::foregroundGCIsActive();
6750        ++i) {
6751     os::sleep(Thread::current(), 1, false);
6752   }
6753 
6754   ConcurrentMarkSweepThread::synchronize(true);
6755   _freelistLock->lock_without_safepoint_check();
6756   _bit_map->lock()->lock_without_safepoint_check();
6757   _collector->startTimer();
6758 }
6759 
6760 ///////////////////////////////////////////////////////////
6761 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6762 //                                 MarkRefsIntoAndScanClosure
6763 ///////////////////////////////////////////////////////////
6764 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6765   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6766   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6767   _span(span),
6768   _bit_map(bit_map),
6769   _work_queue(work_queue),
6770   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6771                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6772   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6773 {
6774   _ref_processor = rp;
6775   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6776 }
6777 
6778 // This closure is used to mark refs into the CMS generation at the
6779 // second (final) checkpoint, and to scan and transitively follow
6780 // the unmarked oops. The marks are made in the marking bit map and
6781 // the work_queue is used for keeping the (newly) grey objects during
6782 // the scan phase whence they are also available for stealing by parallel
6783 // threads. Since the marking bit map is shared, updates are
6784 // synchronized (via CAS).
6785 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6786   if (obj != NULL) {
6787     // Ignore mark word because this could be an already marked oop
6788     // that may be chained at the end of the overflow list.
6789     assert(obj->is_oop(true), "expected an oop");
6790     HeapWord* addr = (HeapWord*)obj;
6791     if (_span.contains(addr) &&
6792         !_bit_map->isMarked(addr)) {
6793       // mark bit map (object will become grey):
6794       // It is possible for several threads to be
6795       // trying to "claim" this object concurrently;
6796       // the unique thread that succeeds in marking the
6797       // object first will do the subsequent push on
6798       // to the work queue (or overflow list).
6799       if (_bit_map->par_mark(addr)) {
6800         // push on work_queue (which may not be empty), and trim the
6801         // queue to an appropriate length by applying this closure to
6802         // the oops in the oops popped from the stack (i.e. blacken the
6803         // grey objects)
6804         bool res = _work_queue->push(obj);
6805         assert(res, "Low water mark should be less than capacity?");
6806         trim_queue(_low_water_mark);
6807       } // Else, another thread claimed the object
6808     }
6809   }
6810 }
6811 
6812 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6813 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6814 
6815 // This closure is used to rescan the marked objects on the dirty cards
6816 // in the mod union table and the card table proper.
6817 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6818   oop p, MemRegion mr) {
6819 
6820   size_t size = 0;
6821   HeapWord* addr = (HeapWord*)p;
6822   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6823   assert(_span.contains(addr), "we are scanning the CMS generation");
6824   // check if it's time to yield
6825   if (do_yield_check()) {
6826     // We yielded for some foreground stop-world work,
6827     // and we have been asked to abort this ongoing preclean cycle.
6828     return 0;
6829   }
6830   if (_bitMap->isMarked(addr)) {
6831     // it's marked; is it potentially uninitialized?
6832     if (p->klass_or_null() != NULL) {
6833         // an initialized object; ignore mark word in verification below
6834         // since we are running concurrent with mutators
6835         assert(p->is_oop(true), "should be an oop");
6836         if (p->is_objArray()) {
6837           // objArrays are precisely marked; restrict scanning
6838           // to dirty cards only.
6839           size = CompactibleFreeListSpace::adjustObjectSize(
6840                    p->oop_iterate(_scanningClosure, mr));
6841         } else {
6842           // A non-array may have been imprecisely marked; we need
6843           // to scan object in its entirety.
6844           size = CompactibleFreeListSpace::adjustObjectSize(
6845                    p->oop_iterate(_scanningClosure));
6846         }
6847         #ifdef ASSERT
6848           size_t direct_size =
6849             CompactibleFreeListSpace::adjustObjectSize(p->size());
6850           assert(size == direct_size, "Inconsistency in size");
6851           assert(size >= 3, "Necessary for Printezis marks to work");
6852           if (!_bitMap->isMarked(addr+1)) {
6853             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6854           } else {
6855             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6856             assert(_bitMap->isMarked(addr+size-1),
6857                    "inconsistent Printezis mark");
6858           }
6859         #endif // ASSERT
6860     } else {
6861       // An uninitialized object.
6862       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6863       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6864       size = pointer_delta(nextOneAddr + 1, addr);
6865       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6866              "alignment problem");
6867       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6868       // will dirty the card when the klass pointer is installed in the
6869       // object (signaling the completion of initialization).
6870     }
6871   } else {
6872     // Either a not yet marked object or an uninitialized object
6873     if (p->klass_or_null() == NULL) {
6874       // An uninitialized object, skip to the next card, since
6875       // we may not be able to read its P-bits yet.
6876       assert(size == 0, "Initial value");
6877     } else {
6878       // An object not (yet) reached by marking: we merely need to
6879       // compute its size so as to go look at the next block.
6880       assert(p->is_oop(true), "should be an oop");
6881       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6882     }
6883   }
6884   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6885   return size;
6886 }
6887 
6888 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6889   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6890          "CMS thread should hold CMS token");
6891   assert_lock_strong(_freelistLock);
6892   assert_lock_strong(_bitMap->lock());
6893   // relinquish the free_list_lock and bitMaplock()
6894   _bitMap->lock()->unlock();
6895   _freelistLock->unlock();
6896   ConcurrentMarkSweepThread::desynchronize(true);
6897   _collector->stopTimer();
6898   if (PrintCMSStatistics != 0) {
6899     _collector->incrementYields();
6900   }
6901 
6902   // See the comment in coordinator_yield()
6903   for (unsigned i = 0; i < CMSYieldSleepCount &&
6904                    ConcurrentMarkSweepThread::should_yield() &&
6905                    !CMSCollector::foregroundGCIsActive(); ++i) {
6906     os::sleep(Thread::current(), 1, false);
6907   }
6908 
6909   ConcurrentMarkSweepThread::synchronize(true);
6910   _freelistLock->lock_without_safepoint_check();
6911   _bitMap->lock()->lock_without_safepoint_check();
6912   _collector->startTimer();
6913 }
6914 
6915 
6916 //////////////////////////////////////////////////////////////////
6917 // SurvivorSpacePrecleanClosure
6918 //////////////////////////////////////////////////////////////////
6919 // This (single-threaded) closure is used to preclean the oops in
6920 // the survivor spaces.
6921 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6922 
6923   HeapWord* addr = (HeapWord*)p;
6924   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6925   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6926   assert(p->klass_or_null() != NULL, "object should be initialized");
6927   // an initialized object; ignore mark word in verification below
6928   // since we are running concurrent with mutators
6929   assert(p->is_oop(true), "should be an oop");
6930   // Note that we do not yield while we iterate over
6931   // the interior oops of p, pushing the relevant ones
6932   // on our marking stack.
6933   size_t size = p->oop_iterate(_scanning_closure);
6934   do_yield_check();
6935   // Observe that below, we do not abandon the preclean
6936   // phase as soon as we should; rather we empty the
6937   // marking stack before returning. This is to satisfy
6938   // some existing assertions. In general, it may be a
6939   // good idea to abort immediately and complete the marking
6940   // from the grey objects at a later time.
6941   while (!_mark_stack->isEmpty()) {
6942     oop new_oop = _mark_stack->pop();
6943     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6944     assert(_bit_map->isMarked((HeapWord*)new_oop),
6945            "only grey objects on this stack");
6946     // iterate over the oops in this oop, marking and pushing
6947     // the ones in CMS heap (i.e. in _span).
6948     new_oop->oop_iterate(_scanning_closure);
6949     // check if it's time to yield
6950     do_yield_check();
6951   }
6952   unsigned int after_count =
6953     GenCollectedHeap::heap()->total_collections();
6954   bool abort = (_before_count != after_count) ||
6955                _collector->should_abort_preclean();
6956   return abort ? 0 : size;
6957 }
6958 
6959 void SurvivorSpacePrecleanClosure::do_yield_work() {
6960   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6961          "CMS thread should hold CMS token");
6962   assert_lock_strong(_bit_map->lock());
6963   // Relinquish the bit map lock
6964   _bit_map->lock()->unlock();
6965   ConcurrentMarkSweepThread::desynchronize(true);
6966   _collector->stopTimer();
6967   if (PrintCMSStatistics != 0) {
6968     _collector->incrementYields();
6969   }
6970 
6971   // See the comment in coordinator_yield()
6972   for (unsigned i = 0; i < CMSYieldSleepCount &&
6973                        ConcurrentMarkSweepThread::should_yield() &&
6974                        !CMSCollector::foregroundGCIsActive(); ++i) {
6975     os::sleep(Thread::current(), 1, false);
6976   }
6977 
6978   ConcurrentMarkSweepThread::synchronize(true);
6979   _bit_map->lock()->lock_without_safepoint_check();
6980   _collector->startTimer();
6981 }
6982 
6983 // This closure is used to rescan the marked objects on the dirty cards
6984 // in the mod union table and the card table proper. In the parallel
6985 // case, although the bitMap is shared, we do a single read so the
6986 // isMarked() query is "safe".
6987 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6988   // Ignore mark word because we are running concurrent with mutators
6989   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6990   HeapWord* addr = (HeapWord*)p;
6991   assert(_span.contains(addr), "we are scanning the CMS generation");
6992   bool is_obj_array = false;
6993   #ifdef ASSERT
6994     if (!_parallel) {
6995       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6996       assert(_collector->overflow_list_is_empty(),
6997              "overflow list should be empty");
6998 
6999     }
7000   #endif // ASSERT
7001   if (_bit_map->isMarked(addr)) {
7002     // Obj arrays are precisely marked, non-arrays are not;
7003     // so we scan objArrays precisely and non-arrays in their
7004     // entirety.
7005     if (p->is_objArray()) {
7006       is_obj_array = true;
7007       if (_parallel) {
7008         p->oop_iterate(_par_scan_closure, mr);
7009       } else {
7010         p->oop_iterate(_scan_closure, mr);
7011       }
7012     } else {
7013       if (_parallel) {
7014         p->oop_iterate(_par_scan_closure);
7015       } else {
7016         p->oop_iterate(_scan_closure);
7017       }
7018     }
7019   }
7020   #ifdef ASSERT
7021     if (!_parallel) {
7022       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7023       assert(_collector->overflow_list_is_empty(),
7024              "overflow list should be empty");
7025 
7026     }
7027   #endif // ASSERT
7028   return is_obj_array;
7029 }
7030 
7031 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7032                         MemRegion span,
7033                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7034                         bool should_yield, bool verifying):
7035   _collector(collector),
7036   _span(span),
7037   _bitMap(bitMap),
7038   _mut(&collector->_modUnionTable),
7039   _markStack(markStack),
7040   _yield(should_yield),
7041   _skipBits(0)
7042 {
7043   assert(_markStack->isEmpty(), "stack should be empty");
7044   _finger = _bitMap->startWord();
7045   _threshold = _finger;
7046   assert(_collector->_restart_addr == NULL, "Sanity check");
7047   assert(_span.contains(_finger), "Out of bounds _finger?");
7048   DEBUG_ONLY(_verifying = verifying;)
7049 }
7050 
7051 void MarkFromRootsClosure::reset(HeapWord* addr) {
7052   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7053   assert(_span.contains(addr), "Out of bounds _finger?");
7054   _finger = addr;
7055   _threshold = (HeapWord*)round_to(
7056                  (intptr_t)_finger, CardTableModRefBS::card_size);
7057 }
7058 
7059 // Should revisit to see if this should be restructured for
7060 // greater efficiency.
7061 bool MarkFromRootsClosure::do_bit(size_t offset) {
7062   if (_skipBits > 0) {
7063     _skipBits--;
7064     return true;
7065   }
7066   // convert offset into a HeapWord*
7067   HeapWord* addr = _bitMap->startWord() + offset;
7068   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7069          "address out of range");
7070   assert(_bitMap->isMarked(addr), "tautology");
7071   if (_bitMap->isMarked(addr+1)) {
7072     // this is an allocated but not yet initialized object
7073     assert(_skipBits == 0, "tautology");
7074     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7075     oop p = oop(addr);
7076     if (p->klass_or_null() == NULL) {
7077       DEBUG_ONLY(if (!_verifying) {)
7078         // We re-dirty the cards on which this object lies and increase
7079         // the _threshold so that we'll come back to scan this object
7080         // during the preclean or remark phase. (CMSCleanOnEnter)
7081         if (CMSCleanOnEnter) {
7082           size_t sz = _collector->block_size_using_printezis_bits(addr);
7083           HeapWord* end_card_addr   = (HeapWord*)round_to(
7084                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7085           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7086           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7087           // Bump _threshold to end_card_addr; note that
7088           // _threshold cannot possibly exceed end_card_addr, anyhow.
7089           // This prevents future clearing of the card as the scan proceeds
7090           // to the right.
7091           assert(_threshold <= end_card_addr,
7092                  "Because we are just scanning into this object");
7093           if (_threshold < end_card_addr) {
7094             _threshold = end_card_addr;
7095           }
7096           if (p->klass_or_null() != NULL) {
7097             // Redirty the range of cards...
7098             _mut->mark_range(redirty_range);
7099           } // ...else the setting of klass will dirty the card anyway.
7100         }
7101       DEBUG_ONLY(})
7102       return true;
7103     }
7104   }
7105   scanOopsInOop(addr);
7106   return true;
7107 }
7108 
7109 // We take a break if we've been at this for a while,
7110 // so as to avoid monopolizing the locks involved.
7111 void MarkFromRootsClosure::do_yield_work() {
7112   // First give up the locks, then yield, then re-lock
7113   // We should probably use a constructor/destructor idiom to
7114   // do this unlock/lock or modify the MutexUnlocker class to
7115   // serve our purpose. XXX
7116   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7117          "CMS thread should hold CMS token");
7118   assert_lock_strong(_bitMap->lock());
7119   _bitMap->lock()->unlock();
7120   ConcurrentMarkSweepThread::desynchronize(true);
7121   _collector->stopTimer();
7122   if (PrintCMSStatistics != 0) {
7123     _collector->incrementYields();
7124   }
7125 
7126   // See the comment in coordinator_yield()
7127   for (unsigned i = 0; i < CMSYieldSleepCount &&
7128                        ConcurrentMarkSweepThread::should_yield() &&
7129                        !CMSCollector::foregroundGCIsActive(); ++i) {
7130     os::sleep(Thread::current(), 1, false);
7131   }
7132 
7133   ConcurrentMarkSweepThread::synchronize(true);
7134   _bitMap->lock()->lock_without_safepoint_check();
7135   _collector->startTimer();
7136 }
7137 
7138 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7139   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7140   assert(_markStack->isEmpty(),
7141          "should drain stack to limit stack usage");
7142   // convert ptr to an oop preparatory to scanning
7143   oop obj = oop(ptr);
7144   // Ignore mark word in verification below, since we
7145   // may be running concurrent with mutators.
7146   assert(obj->is_oop(true), "should be an oop");
7147   assert(_finger <= ptr, "_finger runneth ahead");
7148   // advance the finger to right end of this object
7149   _finger = ptr + obj->size();
7150   assert(_finger > ptr, "we just incremented it above");
7151   // On large heaps, it may take us some time to get through
7152   // the marking phase. During
7153   // this time it's possible that a lot of mutations have
7154   // accumulated in the card table and the mod union table --
7155   // these mutation records are redundant until we have
7156   // actually traced into the corresponding card.
7157   // Here, we check whether advancing the finger would make
7158   // us cross into a new card, and if so clear corresponding
7159   // cards in the MUT (preclean them in the card-table in the
7160   // future).
7161 
7162   DEBUG_ONLY(if (!_verifying) {)
7163     // The clean-on-enter optimization is disabled by default,
7164     // until we fix 6178663.
7165     if (CMSCleanOnEnter && (_finger > _threshold)) {
7166       // [_threshold, _finger) represents the interval
7167       // of cards to be cleared  in MUT (or precleaned in card table).
7168       // The set of cards to be cleared is all those that overlap
7169       // with the interval [_threshold, _finger); note that
7170       // _threshold is always kept card-aligned but _finger isn't
7171       // always card-aligned.
7172       HeapWord* old_threshold = _threshold;
7173       assert(old_threshold == (HeapWord*)round_to(
7174               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7175              "_threshold should always be card-aligned");
7176       _threshold = (HeapWord*)round_to(
7177                      (intptr_t)_finger, CardTableModRefBS::card_size);
7178       MemRegion mr(old_threshold, _threshold);
7179       assert(!mr.is_empty(), "Control point invariant");
7180       assert(_span.contains(mr), "Should clear within span");
7181       _mut->clear_range(mr);
7182     }
7183   DEBUG_ONLY(})
7184   // Note: the finger doesn't advance while we drain
7185   // the stack below.
7186   PushOrMarkClosure pushOrMarkClosure(_collector,
7187                                       _span, _bitMap, _markStack,
7188                                       _finger, this);
7189   bool res = _markStack->push(obj);
7190   assert(res, "Empty non-zero size stack should have space for single push");
7191   while (!_markStack->isEmpty()) {
7192     oop new_oop = _markStack->pop();
7193     // Skip verifying header mark word below because we are
7194     // running concurrent with mutators.
7195     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7196     // now scan this oop's oops
7197     new_oop->oop_iterate(&pushOrMarkClosure);
7198     do_yield_check();
7199   }
7200   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7201 }
7202 
7203 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7204                        CMSCollector* collector, MemRegion span,
7205                        CMSBitMap* bit_map,
7206                        OopTaskQueue* work_queue,
7207                        CMSMarkStack*  overflow_stack,
7208                        bool should_yield):
7209   _collector(collector),
7210   _whole_span(collector->_span),
7211   _span(span),
7212   _bit_map(bit_map),
7213   _mut(&collector->_modUnionTable),
7214   _work_queue(work_queue),
7215   _overflow_stack(overflow_stack),
7216   _yield(should_yield),
7217   _skip_bits(0),
7218   _task(task)
7219 {
7220   assert(_work_queue->size() == 0, "work_queue should be empty");
7221   _finger = span.start();
7222   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7223   assert(_span.contains(_finger), "Out of bounds _finger?");
7224 }
7225 
7226 // Should revisit to see if this should be restructured for
7227 // greater efficiency.
7228 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7229   if (_skip_bits > 0) {
7230     _skip_bits--;
7231     return true;
7232   }
7233   // convert offset into a HeapWord*
7234   HeapWord* addr = _bit_map->startWord() + offset;
7235   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7236          "address out of range");
7237   assert(_bit_map->isMarked(addr), "tautology");
7238   if (_bit_map->isMarked(addr+1)) {
7239     // this is an allocated object that might not yet be initialized
7240     assert(_skip_bits == 0, "tautology");
7241     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7242     oop p = oop(addr);
7243     if (p->klass_or_null() == NULL) {
7244       // in the case of Clean-on-Enter optimization, redirty card
7245       // and avoid clearing card by increasing  the threshold.
7246       return true;
7247     }
7248   }
7249   scan_oops_in_oop(addr);
7250   return true;
7251 }
7252 
7253 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7254   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7255   // Should we assert that our work queue is empty or
7256   // below some drain limit?
7257   assert(_work_queue->size() == 0,
7258          "should drain stack to limit stack usage");
7259   // convert ptr to an oop preparatory to scanning
7260   oop obj = oop(ptr);
7261   // Ignore mark word in verification below, since we
7262   // may be running concurrent with mutators.
7263   assert(obj->is_oop(true), "should be an oop");
7264   assert(_finger <= ptr, "_finger runneth ahead");
7265   // advance the finger to right end of this object
7266   _finger = ptr + obj->size();
7267   assert(_finger > ptr, "we just incremented it above");
7268   // On large heaps, it may take us some time to get through
7269   // the marking phase. During
7270   // this time it's possible that a lot of mutations have
7271   // accumulated in the card table and the mod union table --
7272   // these mutation records are redundant until we have
7273   // actually traced into the corresponding card.
7274   // Here, we check whether advancing the finger would make
7275   // us cross into a new card, and if so clear corresponding
7276   // cards in the MUT (preclean them in the card-table in the
7277   // future).
7278 
7279   // The clean-on-enter optimization is disabled by default,
7280   // until we fix 6178663.
7281   if (CMSCleanOnEnter && (_finger > _threshold)) {
7282     // [_threshold, _finger) represents the interval
7283     // of cards to be cleared  in MUT (or precleaned in card table).
7284     // The set of cards to be cleared is all those that overlap
7285     // with the interval [_threshold, _finger); note that
7286     // _threshold is always kept card-aligned but _finger isn't
7287     // always card-aligned.
7288     HeapWord* old_threshold = _threshold;
7289     assert(old_threshold == (HeapWord*)round_to(
7290             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7291            "_threshold should always be card-aligned");
7292     _threshold = (HeapWord*)round_to(
7293                    (intptr_t)_finger, CardTableModRefBS::card_size);
7294     MemRegion mr(old_threshold, _threshold);
7295     assert(!mr.is_empty(), "Control point invariant");
7296     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7297     _mut->clear_range(mr);
7298   }
7299 
7300   // Note: the local finger doesn't advance while we drain
7301   // the stack below, but the global finger sure can and will.
7302   HeapWord** gfa = _task->global_finger_addr();
7303   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7304                                       _span, _bit_map,
7305                                       _work_queue,
7306                                       _overflow_stack,
7307                                       _finger,
7308                                       gfa, this);
7309   bool res = _work_queue->push(obj);   // overflow could occur here
7310   assert(res, "Will hold once we use workqueues");
7311   while (true) {
7312     oop new_oop;
7313     if (!_work_queue->pop_local(new_oop)) {
7314       // We emptied our work_queue; check if there's stuff that can
7315       // be gotten from the overflow stack.
7316       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7317             _overflow_stack, _work_queue)) {
7318         do_yield_check();
7319         continue;
7320       } else {  // done
7321         break;
7322       }
7323     }
7324     // Skip verifying header mark word below because we are
7325     // running concurrent with mutators.
7326     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7327     // now scan this oop's oops
7328     new_oop->oop_iterate(&pushOrMarkClosure);
7329     do_yield_check();
7330   }
7331   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7332 }
7333 
7334 // Yield in response to a request from VM Thread or
7335 // from mutators.
7336 void Par_MarkFromRootsClosure::do_yield_work() {
7337   assert(_task != NULL, "sanity");
7338   _task->yield();
7339 }
7340 
7341 // A variant of the above used for verifying CMS marking work.
7342 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7343                         MemRegion span,
7344                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7345                         CMSMarkStack*  mark_stack):
7346   _collector(collector),
7347   _span(span),
7348   _verification_bm(verification_bm),
7349   _cms_bm(cms_bm),
7350   _mark_stack(mark_stack),
7351   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7352                       mark_stack)
7353 {
7354   assert(_mark_stack->isEmpty(), "stack should be empty");
7355   _finger = _verification_bm->startWord();
7356   assert(_collector->_restart_addr == NULL, "Sanity check");
7357   assert(_span.contains(_finger), "Out of bounds _finger?");
7358 }
7359 
7360 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7361   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7362   assert(_span.contains(addr), "Out of bounds _finger?");
7363   _finger = addr;
7364 }
7365 
7366 // Should revisit to see if this should be restructured for
7367 // greater efficiency.
7368 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7369   // convert offset into a HeapWord*
7370   HeapWord* addr = _verification_bm->startWord() + offset;
7371   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7372          "address out of range");
7373   assert(_verification_bm->isMarked(addr), "tautology");
7374   assert(_cms_bm->isMarked(addr), "tautology");
7375 
7376   assert(_mark_stack->isEmpty(),
7377          "should drain stack to limit stack usage");
7378   // convert addr to an oop preparatory to scanning
7379   oop obj = oop(addr);
7380   assert(obj->is_oop(), "should be an oop");
7381   assert(_finger <= addr, "_finger runneth ahead");
7382   // advance the finger to right end of this object
7383   _finger = addr + obj->size();
7384   assert(_finger > addr, "we just incremented it above");
7385   // Note: the finger doesn't advance while we drain
7386   // the stack below.
7387   bool res = _mark_stack->push(obj);
7388   assert(res, "Empty non-zero size stack should have space for single push");
7389   while (!_mark_stack->isEmpty()) {
7390     oop new_oop = _mark_stack->pop();
7391     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7392     // now scan this oop's oops
7393     new_oop->oop_iterate(&_pam_verify_closure);
7394   }
7395   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7396   return true;
7397 }
7398 
7399 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7400   CMSCollector* collector, MemRegion span,
7401   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7402   CMSMarkStack*  mark_stack):
7403   MetadataAwareOopClosure(collector->ref_processor()),
7404   _collector(collector),
7405   _span(span),
7406   _verification_bm(verification_bm),
7407   _cms_bm(cms_bm),
7408   _mark_stack(mark_stack)
7409 { }
7410 
7411 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7412 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7413 
7414 // Upon stack overflow, we discard (part of) the stack,
7415 // remembering the least address amongst those discarded
7416 // in CMSCollector's _restart_address.
7417 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7418   // Remember the least grey address discarded
7419   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7420   _collector->lower_restart_addr(ra);
7421   _mark_stack->reset();  // discard stack contents
7422   _mark_stack->expand(); // expand the stack if possible
7423 }
7424 
7425 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7426   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7427   HeapWord* addr = (HeapWord*)obj;
7428   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7429     // Oop lies in _span and isn't yet grey or black
7430     _verification_bm->mark(addr);            // now grey
7431     if (!_cms_bm->isMarked(addr)) {
7432       oop(addr)->print();
7433       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7434                              addr);
7435       fatal("... aborting");
7436     }
7437 
7438     if (!_mark_stack->push(obj)) { // stack overflow
7439       if (PrintCMSStatistics != 0) {
7440         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7441                                SIZE_FORMAT, _mark_stack->capacity());
7442       }
7443       assert(_mark_stack->isFull(), "Else push should have succeeded");
7444       handle_stack_overflow(addr);
7445     }
7446     // anything including and to the right of _finger
7447     // will be scanned as we iterate over the remainder of the
7448     // bit map
7449   }
7450 }
7451 
7452 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7453                      MemRegion span,
7454                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7455                      HeapWord* finger, MarkFromRootsClosure* parent) :
7456   MetadataAwareOopClosure(collector->ref_processor()),
7457   _collector(collector),
7458   _span(span),
7459   _bitMap(bitMap),
7460   _markStack(markStack),
7461   _finger(finger),
7462   _parent(parent)
7463 { }
7464 
7465 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7466                      MemRegion span,
7467                      CMSBitMap* bit_map,
7468                      OopTaskQueue* work_queue,
7469                      CMSMarkStack*  overflow_stack,
7470                      HeapWord* finger,
7471                      HeapWord** global_finger_addr,
7472                      Par_MarkFromRootsClosure* parent) :
7473   MetadataAwareOopClosure(collector->ref_processor()),
7474   _collector(collector),
7475   _whole_span(collector->_span),
7476   _span(span),
7477   _bit_map(bit_map),
7478   _work_queue(work_queue),
7479   _overflow_stack(overflow_stack),
7480   _finger(finger),
7481   _global_finger_addr(global_finger_addr),
7482   _parent(parent)
7483 { }
7484 
7485 // Assumes thread-safe access by callers, who are
7486 // responsible for mutual exclusion.
7487 void CMSCollector::lower_restart_addr(HeapWord* low) {
7488   assert(_span.contains(low), "Out of bounds addr");
7489   if (_restart_addr == NULL) {
7490     _restart_addr = low;
7491   } else {
7492     _restart_addr = MIN2(_restart_addr, low);
7493   }
7494 }
7495 
7496 // Upon stack overflow, we discard (part of) the stack,
7497 // remembering the least address amongst those discarded
7498 // in CMSCollector's _restart_address.
7499 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7500   // Remember the least grey address discarded
7501   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7502   _collector->lower_restart_addr(ra);
7503   _markStack->reset();  // discard stack contents
7504   _markStack->expand(); // expand the stack if possible
7505 }
7506 
7507 // Upon stack overflow, we discard (part of) the stack,
7508 // remembering the least address amongst those discarded
7509 // in CMSCollector's _restart_address.
7510 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7511   // We need to do this under a mutex to prevent other
7512   // workers from interfering with the work done below.
7513   MutexLockerEx ml(_overflow_stack->par_lock(),
7514                    Mutex::_no_safepoint_check_flag);
7515   // Remember the least grey address discarded
7516   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7517   _collector->lower_restart_addr(ra);
7518   _overflow_stack->reset();  // discard stack contents
7519   _overflow_stack->expand(); // expand the stack if possible
7520 }
7521 
7522 void PushOrMarkClosure::do_oop(oop obj) {
7523   // Ignore mark word because we are running concurrent with mutators.
7524   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7525   HeapWord* addr = (HeapWord*)obj;
7526   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7527     // Oop lies in _span and isn't yet grey or black
7528     _bitMap->mark(addr);            // now grey
7529     if (addr < _finger) {
7530       // the bit map iteration has already either passed, or
7531       // sampled, this bit in the bit map; we'll need to
7532       // use the marking stack to scan this oop's oops.
7533       bool simulate_overflow = false;
7534       NOT_PRODUCT(
7535         if (CMSMarkStackOverflowALot &&
7536             _collector->simulate_overflow()) {
7537           // simulate a stack overflow
7538           simulate_overflow = true;
7539         }
7540       )
7541       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7542         if (PrintCMSStatistics != 0) {
7543           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7544                                  SIZE_FORMAT, _markStack->capacity());
7545         }
7546         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7547         handle_stack_overflow(addr);
7548       }
7549     }
7550     // anything including and to the right of _finger
7551     // will be scanned as we iterate over the remainder of the
7552     // bit map
7553     do_yield_check();
7554   }
7555 }
7556 
7557 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7558 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7559 
7560 void Par_PushOrMarkClosure::do_oop(oop obj) {
7561   // Ignore mark word because we are running concurrent with mutators.
7562   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7563   HeapWord* addr = (HeapWord*)obj;
7564   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7565     // Oop lies in _span and isn't yet grey or black
7566     // We read the global_finger (volatile read) strictly after marking oop
7567     bool res = _bit_map->par_mark(addr);    // now grey
7568     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7569     // Should we push this marked oop on our stack?
7570     // -- if someone else marked it, nothing to do
7571     // -- if target oop is above global finger nothing to do
7572     // -- if target oop is in chunk and above local finger
7573     //      then nothing to do
7574     // -- else push on work queue
7575     if (   !res       // someone else marked it, they will deal with it
7576         || (addr >= *gfa)  // will be scanned in a later task
7577         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7578       return;
7579     }
7580     // the bit map iteration has already either passed, or
7581     // sampled, this bit in the bit map; we'll need to
7582     // use the marking stack to scan this oop's oops.
7583     bool simulate_overflow = false;
7584     NOT_PRODUCT(
7585       if (CMSMarkStackOverflowALot &&
7586           _collector->simulate_overflow()) {
7587         // simulate a stack overflow
7588         simulate_overflow = true;
7589       }
7590     )
7591     if (simulate_overflow ||
7592         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7593       // stack overflow
7594       if (PrintCMSStatistics != 0) {
7595         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7596                                SIZE_FORMAT, _overflow_stack->capacity());
7597       }
7598       // We cannot assert that the overflow stack is full because
7599       // it may have been emptied since.
7600       assert(simulate_overflow ||
7601              _work_queue->size() == _work_queue->max_elems(),
7602             "Else push should have succeeded");
7603       handle_stack_overflow(addr);
7604     }
7605     do_yield_check();
7606   }
7607 }
7608 
7609 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7610 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7611 
7612 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7613                                        MemRegion span,
7614                                        ReferenceProcessor* rp,
7615                                        CMSBitMap* bit_map,
7616                                        CMSBitMap* mod_union_table,
7617                                        CMSMarkStack*  mark_stack,
7618                                        bool           concurrent_precleaning):
7619   MetadataAwareOopClosure(rp),
7620   _collector(collector),
7621   _span(span),
7622   _bit_map(bit_map),
7623   _mod_union_table(mod_union_table),
7624   _mark_stack(mark_stack),
7625   _concurrent_precleaning(concurrent_precleaning)
7626 {
7627   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7628 }
7629 
7630 // Grey object rescan during pre-cleaning and second checkpoint phases --
7631 // the non-parallel version (the parallel version appears further below.)
7632 void PushAndMarkClosure::do_oop(oop obj) {
7633   // Ignore mark word verification. If during concurrent precleaning,
7634   // the object monitor may be locked. If during the checkpoint
7635   // phases, the object may already have been reached by a  different
7636   // path and may be at the end of the global overflow list (so
7637   // the mark word may be NULL).
7638   assert(obj->is_oop_or_null(true /* ignore mark word */),
7639          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7640   HeapWord* addr = (HeapWord*)obj;
7641   // Check if oop points into the CMS generation
7642   // and is not marked
7643   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7644     // a white object ...
7645     _bit_map->mark(addr);         // ... now grey
7646     // push on the marking stack (grey set)
7647     bool simulate_overflow = false;
7648     NOT_PRODUCT(
7649       if (CMSMarkStackOverflowALot &&
7650           _collector->simulate_overflow()) {
7651         // simulate a stack overflow
7652         simulate_overflow = true;
7653       }
7654     )
7655     if (simulate_overflow || !_mark_stack->push(obj)) {
7656       if (_concurrent_precleaning) {
7657          // During precleaning we can just dirty the appropriate card(s)
7658          // in the mod union table, thus ensuring that the object remains
7659          // in the grey set  and continue. In the case of object arrays
7660          // we need to dirty all of the cards that the object spans,
7661          // since the rescan of object arrays will be limited to the
7662          // dirty cards.
7663          // Note that no one can be interfering with us in this action
7664          // of dirtying the mod union table, so no locking or atomics
7665          // are required.
7666          if (obj->is_objArray()) {
7667            size_t sz = obj->size();
7668            HeapWord* end_card_addr = (HeapWord*)round_to(
7669                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7670            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7671            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7672            _mod_union_table->mark_range(redirty_range);
7673          } else {
7674            _mod_union_table->mark(addr);
7675          }
7676          _collector->_ser_pmc_preclean_ovflw++;
7677       } else {
7678          // During the remark phase, we need to remember this oop
7679          // in the overflow list.
7680          _collector->push_on_overflow_list(obj);
7681          _collector->_ser_pmc_remark_ovflw++;
7682       }
7683     }
7684   }
7685 }
7686 
7687 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7688                                                MemRegion span,
7689                                                ReferenceProcessor* rp,
7690                                                CMSBitMap* bit_map,
7691                                                OopTaskQueue* work_queue):
7692   MetadataAwareOopClosure(rp),
7693   _collector(collector),
7694   _span(span),
7695   _bit_map(bit_map),
7696   _work_queue(work_queue)
7697 {
7698   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7699 }
7700 
7701 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7702 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7703 
7704 // Grey object rescan during second checkpoint phase --
7705 // the parallel version.
7706 void Par_PushAndMarkClosure::do_oop(oop obj) {
7707   // In the assert below, we ignore the mark word because
7708   // this oop may point to an already visited object that is
7709   // on the overflow stack (in which case the mark word has
7710   // been hijacked for chaining into the overflow stack --
7711   // if this is the last object in the overflow stack then
7712   // its mark word will be NULL). Because this object may
7713   // have been subsequently popped off the global overflow
7714   // stack, and the mark word possibly restored to the prototypical
7715   // value, by the time we get to examined this failing assert in
7716   // the debugger, is_oop_or_null(false) may subsequently start
7717   // to hold.
7718   assert(obj->is_oop_or_null(true),
7719          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7720   HeapWord* addr = (HeapWord*)obj;
7721   // Check if oop points into the CMS generation
7722   // and is not marked
7723   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7724     // a white object ...
7725     // If we manage to "claim" the object, by being the
7726     // first thread to mark it, then we push it on our
7727     // marking stack
7728     if (_bit_map->par_mark(addr)) {     // ... now grey
7729       // push on work queue (grey set)
7730       bool simulate_overflow = false;
7731       NOT_PRODUCT(
7732         if (CMSMarkStackOverflowALot &&
7733             _collector->par_simulate_overflow()) {
7734           // simulate a stack overflow
7735           simulate_overflow = true;
7736         }
7737       )
7738       if (simulate_overflow || !_work_queue->push(obj)) {
7739         _collector->par_push_on_overflow_list(obj);
7740         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7741       }
7742     } // Else, some other thread got there first
7743   }
7744 }
7745 
7746 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7747 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7748 
7749 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7750   Mutex* bml = _collector->bitMapLock();
7751   assert_lock_strong(bml);
7752   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7753          "CMS thread should hold CMS token");
7754 
7755   bml->unlock();
7756   ConcurrentMarkSweepThread::desynchronize(true);
7757 
7758   _collector->stopTimer();
7759   if (PrintCMSStatistics != 0) {
7760     _collector->incrementYields();
7761   }
7762 
7763   // See the comment in coordinator_yield()
7764   for (unsigned i = 0; i < CMSYieldSleepCount &&
7765                        ConcurrentMarkSweepThread::should_yield() &&
7766                        !CMSCollector::foregroundGCIsActive(); ++i) {
7767     os::sleep(Thread::current(), 1, false);
7768   }
7769 
7770   ConcurrentMarkSweepThread::synchronize(true);
7771   bml->lock();
7772 
7773   _collector->startTimer();
7774 }
7775 
7776 bool CMSPrecleanRefsYieldClosure::should_return() {
7777   if (ConcurrentMarkSweepThread::should_yield()) {
7778     do_yield_work();
7779   }
7780   return _collector->foregroundGCIsActive();
7781 }
7782 
7783 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7784   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7785          "mr should be aligned to start at a card boundary");
7786   // We'd like to assert:
7787   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7788   //        "mr should be a range of cards");
7789   // However, that would be too strong in one case -- the last
7790   // partition ends at _unallocated_block which, in general, can be
7791   // an arbitrary boundary, not necessarily card aligned.
7792   if (PrintCMSStatistics != 0) {
7793     _num_dirty_cards +=
7794          mr.word_size()/CardTableModRefBS::card_size_in_words;
7795   }
7796   _space->object_iterate_mem(mr, &_scan_cl);
7797 }
7798 
7799 SweepClosure::SweepClosure(CMSCollector* collector,
7800                            ConcurrentMarkSweepGeneration* g,
7801                            CMSBitMap* bitMap, bool should_yield) :
7802   _collector(collector),
7803   _g(g),
7804   _sp(g->cmsSpace()),
7805   _limit(_sp->sweep_limit()),
7806   _freelistLock(_sp->freelistLock()),
7807   _bitMap(bitMap),
7808   _yield(should_yield),
7809   _inFreeRange(false),           // No free range at beginning of sweep
7810   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7811   _lastFreeRangeCoalesced(false),
7812   _freeFinger(g->used_region().start())
7813 {
7814   NOT_PRODUCT(
7815     _numObjectsFreed = 0;
7816     _numWordsFreed   = 0;
7817     _numObjectsLive = 0;
7818     _numWordsLive = 0;
7819     _numObjectsAlreadyFree = 0;
7820     _numWordsAlreadyFree = 0;
7821     _last_fc = NULL;
7822 
7823     _sp->initializeIndexedFreeListArrayReturnedBytes();
7824     _sp->dictionary()->initialize_dict_returned_bytes();
7825   )
7826   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7827          "sweep _limit out of bounds");
7828   if (CMSTraceSweeper) {
7829     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7830                         _limit);
7831   }
7832 }
7833 
7834 void SweepClosure::print_on(outputStream* st) const {
7835   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7836                 _sp->bottom(), _sp->end());
7837   tty->print_cr("_limit = " PTR_FORMAT, _limit);
7838   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
7839   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
7840   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7841                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7842 }
7843 
7844 #ifndef PRODUCT
7845 // Assertion checking only:  no useful work in product mode --
7846 // however, if any of the flags below become product flags,
7847 // you may need to review this code to see if it needs to be
7848 // enabled in product mode.
7849 SweepClosure::~SweepClosure() {
7850   assert_lock_strong(_freelistLock);
7851   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7852          "sweep _limit out of bounds");
7853   if (inFreeRange()) {
7854     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7855     print();
7856     ShouldNotReachHere();
7857   }
7858   if (Verbose && PrintGC) {
7859     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7860                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7861     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7862                            SIZE_FORMAT" bytes  "
7863       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7864       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7865       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7866     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7867                         * sizeof(HeapWord);
7868     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7869 
7870     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7871       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7872       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7873       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7874       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7875       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7876         indexListReturnedBytes);
7877       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7878         dict_returned_bytes);
7879     }
7880   }
7881   if (CMSTraceSweeper) {
7882     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7883                            _limit);
7884   }
7885 }
7886 #endif  // PRODUCT
7887 
7888 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7889     bool freeRangeInFreeLists) {
7890   if (CMSTraceSweeper) {
7891     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7892                freeFinger, freeRangeInFreeLists);
7893   }
7894   assert(!inFreeRange(), "Trampling existing free range");
7895   set_inFreeRange(true);
7896   set_lastFreeRangeCoalesced(false);
7897 
7898   set_freeFinger(freeFinger);
7899   set_freeRangeInFreeLists(freeRangeInFreeLists);
7900   if (CMSTestInFreeList) {
7901     if (freeRangeInFreeLists) {
7902       FreeChunk* fc = (FreeChunk*) freeFinger;
7903       assert(fc->is_free(), "A chunk on the free list should be free.");
7904       assert(fc->size() > 0, "Free range should have a size");
7905       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7906     }
7907   }
7908 }
7909 
7910 // Note that the sweeper runs concurrently with mutators. Thus,
7911 // it is possible for direct allocation in this generation to happen
7912 // in the middle of the sweep. Note that the sweeper also coalesces
7913 // contiguous free blocks. Thus, unless the sweeper and the allocator
7914 // synchronize appropriately freshly allocated blocks may get swept up.
7915 // This is accomplished by the sweeper locking the free lists while
7916 // it is sweeping. Thus blocks that are determined to be free are
7917 // indeed free. There is however one additional complication:
7918 // blocks that have been allocated since the final checkpoint and
7919 // mark, will not have been marked and so would be treated as
7920 // unreachable and swept up. To prevent this, the allocator marks
7921 // the bit map when allocating during the sweep phase. This leads,
7922 // however, to a further complication -- objects may have been allocated
7923 // but not yet initialized -- in the sense that the header isn't yet
7924 // installed. The sweeper can not then determine the size of the block
7925 // in order to skip over it. To deal with this case, we use a technique
7926 // (due to Printezis) to encode such uninitialized block sizes in the
7927 // bit map. Since the bit map uses a bit per every HeapWord, but the
7928 // CMS generation has a minimum object size of 3 HeapWords, it follows
7929 // that "normal marks" won't be adjacent in the bit map (there will
7930 // always be at least two 0 bits between successive 1 bits). We make use
7931 // of these "unused" bits to represent uninitialized blocks -- the bit
7932 // corresponding to the start of the uninitialized object and the next
7933 // bit are both set. Finally, a 1 bit marks the end of the object that
7934 // started with the two consecutive 1 bits to indicate its potentially
7935 // uninitialized state.
7936 
7937 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7938   FreeChunk* fc = (FreeChunk*)addr;
7939   size_t res;
7940 
7941   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7942   // than "addr == _limit" because although _limit was a block boundary when
7943   // we started the sweep, it may no longer be one because heap expansion
7944   // may have caused us to coalesce the block ending at the address _limit
7945   // with a newly expanded chunk (this happens when _limit was set to the
7946   // previous _end of the space), so we may have stepped past _limit:
7947   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7948   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7949     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7950            "sweep _limit out of bounds");
7951     assert(addr < _sp->end(), "addr out of bounds");
7952     // Flush any free range we might be holding as a single
7953     // coalesced chunk to the appropriate free list.
7954     if (inFreeRange()) {
7955       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7956              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
7957       flush_cur_free_chunk(freeFinger(),
7958                            pointer_delta(addr, freeFinger()));
7959       if (CMSTraceSweeper) {
7960         gclog_or_tty->print("Sweep: last chunk: ");
7961         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7962                    "[coalesced:%d]\n",
7963                    freeFinger(), pointer_delta(addr, freeFinger()),
7964                    lastFreeRangeCoalesced() ? 1 : 0);
7965       }
7966     }
7967 
7968     // help the iterator loop finish
7969     return pointer_delta(_sp->end(), addr);
7970   }
7971 
7972   assert(addr < _limit, "sweep invariant");
7973   // check if we should yield
7974   do_yield_check(addr);
7975   if (fc->is_free()) {
7976     // Chunk that is already free
7977     res = fc->size();
7978     do_already_free_chunk(fc);
7979     debug_only(_sp->verifyFreeLists());
7980     // If we flush the chunk at hand in lookahead_and_flush()
7981     // and it's coalesced with a preceding chunk, then the
7982     // process of "mangling" the payload of the coalesced block
7983     // will cause erasure of the size information from the
7984     // (erstwhile) header of all the coalesced blocks but the
7985     // first, so the first disjunct in the assert will not hold
7986     // in that specific case (in which case the second disjunct
7987     // will hold).
7988     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7989            "Otherwise the size info doesn't change at this step");
7990     NOT_PRODUCT(
7991       _numObjectsAlreadyFree++;
7992       _numWordsAlreadyFree += res;
7993     )
7994     NOT_PRODUCT(_last_fc = fc;)
7995   } else if (!_bitMap->isMarked(addr)) {
7996     // Chunk is fresh garbage
7997     res = do_garbage_chunk(fc);
7998     debug_only(_sp->verifyFreeLists());
7999     NOT_PRODUCT(
8000       _numObjectsFreed++;
8001       _numWordsFreed += res;
8002     )
8003   } else {
8004     // Chunk that is alive.
8005     res = do_live_chunk(fc);
8006     debug_only(_sp->verifyFreeLists());
8007     NOT_PRODUCT(
8008         _numObjectsLive++;
8009         _numWordsLive += res;
8010     )
8011   }
8012   return res;
8013 }
8014 
8015 // For the smart allocation, record following
8016 //  split deaths - a free chunk is removed from its free list because
8017 //      it is being split into two or more chunks.
8018 //  split birth - a free chunk is being added to its free list because
8019 //      a larger free chunk has been split and resulted in this free chunk.
8020 //  coal death - a free chunk is being removed from its free list because
8021 //      it is being coalesced into a large free chunk.
8022 //  coal birth - a free chunk is being added to its free list because
8023 //      it was created when two or more free chunks where coalesced into
8024 //      this free chunk.
8025 //
8026 // These statistics are used to determine the desired number of free
8027 // chunks of a given size.  The desired number is chosen to be relative
8028 // to the end of a CMS sweep.  The desired number at the end of a sweep
8029 // is the
8030 //      count-at-end-of-previous-sweep (an amount that was enough)
8031 //              - count-at-beginning-of-current-sweep  (the excess)
8032 //              + split-births  (gains in this size during interval)
8033 //              - split-deaths  (demands on this size during interval)
8034 // where the interval is from the end of one sweep to the end of the
8035 // next.
8036 //
8037 // When sweeping the sweeper maintains an accumulated chunk which is
8038 // the chunk that is made up of chunks that have been coalesced.  That
8039 // will be termed the left-hand chunk.  A new chunk of garbage that
8040 // is being considered for coalescing will be referred to as the
8041 // right-hand chunk.
8042 //
8043 // When making a decision on whether to coalesce a right-hand chunk with
8044 // the current left-hand chunk, the current count vs. the desired count
8045 // of the left-hand chunk is considered.  Also if the right-hand chunk
8046 // is near the large chunk at the end of the heap (see
8047 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8048 // left-hand chunk is coalesced.
8049 //
8050 // When making a decision about whether to split a chunk, the desired count
8051 // vs. the current count of the candidate to be split is also considered.
8052 // If the candidate is underpopulated (currently fewer chunks than desired)
8053 // a chunk of an overpopulated (currently more chunks than desired) size may
8054 // be chosen.  The "hint" associated with a free list, if non-null, points
8055 // to a free list which may be overpopulated.
8056 //
8057 
8058 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8059   const size_t size = fc->size();
8060   // Chunks that cannot be coalesced are not in the
8061   // free lists.
8062   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8063     assert(_sp->verify_chunk_in_free_list(fc),
8064       "free chunk should be in free lists");
8065   }
8066   // a chunk that is already free, should not have been
8067   // marked in the bit map
8068   HeapWord* const addr = (HeapWord*) fc;
8069   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8070   // Verify that the bit map has no bits marked between
8071   // addr and purported end of this block.
8072   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8073 
8074   // Some chunks cannot be coalesced under any circumstances.
8075   // See the definition of cantCoalesce().
8076   if (!fc->cantCoalesce()) {
8077     // This chunk can potentially be coalesced.
8078     if (_sp->adaptive_freelists()) {
8079       // All the work is done in
8080       do_post_free_or_garbage_chunk(fc, size);
8081     } else {  // Not adaptive free lists
8082       // this is a free chunk that can potentially be coalesced by the sweeper;
8083       if (!inFreeRange()) {
8084         // if the next chunk is a free block that can't be coalesced
8085         // it doesn't make sense to remove this chunk from the free lists
8086         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8087         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8088         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8089             nextChunk->is_free()               &&     // ... which is free...
8090             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8091           // nothing to do
8092         } else {
8093           // Potentially the start of a new free range:
8094           // Don't eagerly remove it from the free lists.
8095           // No need to remove it if it will just be put
8096           // back again.  (Also from a pragmatic point of view
8097           // if it is a free block in a region that is beyond
8098           // any allocated blocks, an assertion will fail)
8099           // Remember the start of a free run.
8100           initialize_free_range(addr, true);
8101           // end - can coalesce with next chunk
8102         }
8103       } else {
8104         // the midst of a free range, we are coalescing
8105         print_free_block_coalesced(fc);
8106         if (CMSTraceSweeper) {
8107           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8108         }
8109         // remove it from the free lists
8110         _sp->removeFreeChunkFromFreeLists(fc);
8111         set_lastFreeRangeCoalesced(true);
8112         // If the chunk is being coalesced and the current free range is
8113         // in the free lists, remove the current free range so that it
8114         // will be returned to the free lists in its entirety - all
8115         // the coalesced pieces included.
8116         if (freeRangeInFreeLists()) {
8117           FreeChunk* ffc = (FreeChunk*) freeFinger();
8118           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8119             "Size of free range is inconsistent with chunk size.");
8120           if (CMSTestInFreeList) {
8121             assert(_sp->verify_chunk_in_free_list(ffc),
8122               "free range is not in free lists");
8123           }
8124           _sp->removeFreeChunkFromFreeLists(ffc);
8125           set_freeRangeInFreeLists(false);
8126         }
8127       }
8128     }
8129     // Note that if the chunk is not coalescable (the else arm
8130     // below), we unconditionally flush, without needing to do
8131     // a "lookahead," as we do below.
8132     if (inFreeRange()) lookahead_and_flush(fc, size);
8133   } else {
8134     // Code path common to both original and adaptive free lists.
8135 
8136     // cant coalesce with previous block; this should be treated
8137     // as the end of a free run if any
8138     if (inFreeRange()) {
8139       // we kicked some butt; time to pick up the garbage
8140       assert(freeFinger() < addr, "freeFinger points too high");
8141       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8142     }
8143     // else, nothing to do, just continue
8144   }
8145 }
8146 
8147 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8148   // This is a chunk of garbage.  It is not in any free list.
8149   // Add it to a free list or let it possibly be coalesced into
8150   // a larger chunk.
8151   HeapWord* const addr = (HeapWord*) fc;
8152   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8153 
8154   if (_sp->adaptive_freelists()) {
8155     // Verify that the bit map has no bits marked between
8156     // addr and purported end of just dead object.
8157     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8158 
8159     do_post_free_or_garbage_chunk(fc, size);
8160   } else {
8161     if (!inFreeRange()) {
8162       // start of a new free range
8163       assert(size > 0, "A free range should have a size");
8164       initialize_free_range(addr, false);
8165     } else {
8166       // this will be swept up when we hit the end of the
8167       // free range
8168       if (CMSTraceSweeper) {
8169         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8170       }
8171       // If the chunk is being coalesced and the current free range is
8172       // in the free lists, remove the current free range so that it
8173       // will be returned to the free lists in its entirety - all
8174       // the coalesced pieces included.
8175       if (freeRangeInFreeLists()) {
8176         FreeChunk* ffc = (FreeChunk*)freeFinger();
8177         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8178           "Size of free range is inconsistent with chunk size.");
8179         if (CMSTestInFreeList) {
8180           assert(_sp->verify_chunk_in_free_list(ffc),
8181             "free range is not in free lists");
8182         }
8183         _sp->removeFreeChunkFromFreeLists(ffc);
8184         set_freeRangeInFreeLists(false);
8185       }
8186       set_lastFreeRangeCoalesced(true);
8187     }
8188     // this will be swept up when we hit the end of the free range
8189 
8190     // Verify that the bit map has no bits marked between
8191     // addr and purported end of just dead object.
8192     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8193   }
8194   assert(_limit >= addr + size,
8195          "A freshly garbage chunk can't possibly straddle over _limit");
8196   if (inFreeRange()) lookahead_and_flush(fc, size);
8197   return size;
8198 }
8199 
8200 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8201   HeapWord* addr = (HeapWord*) fc;
8202   // The sweeper has just found a live object. Return any accumulated
8203   // left hand chunk to the free lists.
8204   if (inFreeRange()) {
8205     assert(freeFinger() < addr, "freeFinger points too high");
8206     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8207   }
8208 
8209   // This object is live: we'd normally expect this to be
8210   // an oop, and like to assert the following:
8211   // assert(oop(addr)->is_oop(), "live block should be an oop");
8212   // However, as we commented above, this may be an object whose
8213   // header hasn't yet been initialized.
8214   size_t size;
8215   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8216   if (_bitMap->isMarked(addr + 1)) {
8217     // Determine the size from the bit map, rather than trying to
8218     // compute it from the object header.
8219     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8220     size = pointer_delta(nextOneAddr + 1, addr);
8221     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8222            "alignment problem");
8223 
8224 #ifdef ASSERT
8225       if (oop(addr)->klass_or_null() != NULL) {
8226         // Ignore mark word because we are running concurrent with mutators
8227         assert(oop(addr)->is_oop(true), "live block should be an oop");
8228         assert(size ==
8229                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8230                "P-mark and computed size do not agree");
8231       }
8232 #endif
8233 
8234   } else {
8235     // This should be an initialized object that's alive.
8236     assert(oop(addr)->klass_or_null() != NULL,
8237            "Should be an initialized object");
8238     // Ignore mark word because we are running concurrent with mutators
8239     assert(oop(addr)->is_oop(true), "live block should be an oop");
8240     // Verify that the bit map has no bits marked between
8241     // addr and purported end of this block.
8242     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8243     assert(size >= 3, "Necessary for Printezis marks to work");
8244     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8245     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8246   }
8247   return size;
8248 }
8249 
8250 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8251                                                  size_t chunkSize) {
8252   // do_post_free_or_garbage_chunk() should only be called in the case
8253   // of the adaptive free list allocator.
8254   const bool fcInFreeLists = fc->is_free();
8255   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8256   assert((HeapWord*)fc <= _limit, "sweep invariant");
8257   if (CMSTestInFreeList && fcInFreeLists) {
8258     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8259   }
8260 
8261   if (CMSTraceSweeper) {
8262     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", fc, chunkSize);
8263   }
8264 
8265   HeapWord* const fc_addr = (HeapWord*) fc;
8266 
8267   bool coalesce;
8268   const size_t left  = pointer_delta(fc_addr, freeFinger());
8269   const size_t right = chunkSize;
8270   switch (FLSCoalescePolicy) {
8271     // numeric value forms a coalition aggressiveness metric
8272     case 0:  { // never coalesce
8273       coalesce = false;
8274       break;
8275     }
8276     case 1: { // coalesce if left & right chunks on overpopulated lists
8277       coalesce = _sp->coalOverPopulated(left) &&
8278                  _sp->coalOverPopulated(right);
8279       break;
8280     }
8281     case 2: { // coalesce if left chunk on overpopulated list (default)
8282       coalesce = _sp->coalOverPopulated(left);
8283       break;
8284     }
8285     case 3: { // coalesce if left OR right chunk on overpopulated list
8286       coalesce = _sp->coalOverPopulated(left) ||
8287                  _sp->coalOverPopulated(right);
8288       break;
8289     }
8290     case 4: { // always coalesce
8291       coalesce = true;
8292       break;
8293     }
8294     default:
8295      ShouldNotReachHere();
8296   }
8297 
8298   // Should the current free range be coalesced?
8299   // If the chunk is in a free range and either we decided to coalesce above
8300   // or the chunk is near the large block at the end of the heap
8301   // (isNearLargestChunk() returns true), then coalesce this chunk.
8302   const bool doCoalesce = inFreeRange()
8303                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8304   if (doCoalesce) {
8305     // Coalesce the current free range on the left with the new
8306     // chunk on the right.  If either is on a free list,
8307     // it must be removed from the list and stashed in the closure.
8308     if (freeRangeInFreeLists()) {
8309       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8310       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8311         "Size of free range is inconsistent with chunk size.");
8312       if (CMSTestInFreeList) {
8313         assert(_sp->verify_chunk_in_free_list(ffc),
8314           "Chunk is not in free lists");
8315       }
8316       _sp->coalDeath(ffc->size());
8317       _sp->removeFreeChunkFromFreeLists(ffc);
8318       set_freeRangeInFreeLists(false);
8319     }
8320     if (fcInFreeLists) {
8321       _sp->coalDeath(chunkSize);
8322       assert(fc->size() == chunkSize,
8323         "The chunk has the wrong size or is not in the free lists");
8324       _sp->removeFreeChunkFromFreeLists(fc);
8325     }
8326     set_lastFreeRangeCoalesced(true);
8327     print_free_block_coalesced(fc);
8328   } else {  // not in a free range and/or should not coalesce
8329     // Return the current free range and start a new one.
8330     if (inFreeRange()) {
8331       // In a free range but cannot coalesce with the right hand chunk.
8332       // Put the current free range into the free lists.
8333       flush_cur_free_chunk(freeFinger(),
8334                            pointer_delta(fc_addr, freeFinger()));
8335     }
8336     // Set up for new free range.  Pass along whether the right hand
8337     // chunk is in the free lists.
8338     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8339   }
8340 }
8341 
8342 // Lookahead flush:
8343 // If we are tracking a free range, and this is the last chunk that
8344 // we'll look at because its end crosses past _limit, we'll preemptively
8345 // flush it along with any free range we may be holding on to. Note that
8346 // this can be the case only for an already free or freshly garbage
8347 // chunk. If this block is an object, it can never straddle
8348 // over _limit. The "straddling" occurs when _limit is set at
8349 // the previous end of the space when this cycle started, and
8350 // a subsequent heap expansion caused the previously co-terminal
8351 // free block to be coalesced with the newly expanded portion,
8352 // thus rendering _limit a non-block-boundary making it dangerous
8353 // for the sweeper to step over and examine.
8354 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8355   assert(inFreeRange(), "Should only be called if currently in a free range.");
8356   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8357   assert(_sp->used_region().contains(eob - 1),
8358          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8359                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8360                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8361                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8362   if (eob >= _limit) {
8363     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8364     if (CMSTraceSweeper) {
8365       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8366                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8367                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8368                              _limit, fc, eob, _sp->bottom(), _sp->end());
8369     }
8370     // Return the storage we are tracking back into the free lists.
8371     if (CMSTraceSweeper) {
8372       gclog_or_tty->print_cr("Flushing ... ");
8373     }
8374     assert(freeFinger() < eob, "Error");
8375     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8376   }
8377 }
8378 
8379 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8380   assert(inFreeRange(), "Should only be called if currently in a free range.");
8381   assert(size > 0,
8382     "A zero sized chunk cannot be added to the free lists.");
8383   if (!freeRangeInFreeLists()) {
8384     if (CMSTestInFreeList) {
8385       FreeChunk* fc = (FreeChunk*) chunk;
8386       fc->set_size(size);
8387       assert(!_sp->verify_chunk_in_free_list(fc),
8388         "chunk should not be in free lists yet");
8389     }
8390     if (CMSTraceSweeper) {
8391       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
8392                     chunk, size);
8393     }
8394     // A new free range is going to be starting.  The current
8395     // free range has not been added to the free lists yet or
8396     // was removed so add it back.
8397     // If the current free range was coalesced, then the death
8398     // of the free range was recorded.  Record a birth now.
8399     if (lastFreeRangeCoalesced()) {
8400       _sp->coalBirth(size);
8401     }
8402     _sp->addChunkAndRepairOffsetTable(chunk, size,
8403             lastFreeRangeCoalesced());
8404   } else if (CMSTraceSweeper) {
8405     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8406   }
8407   set_inFreeRange(false);
8408   set_freeRangeInFreeLists(false);
8409 }
8410 
8411 // We take a break if we've been at this for a while,
8412 // so as to avoid monopolizing the locks involved.
8413 void SweepClosure::do_yield_work(HeapWord* addr) {
8414   // Return current free chunk being used for coalescing (if any)
8415   // to the appropriate freelist.  After yielding, the next
8416   // free block encountered will start a coalescing range of
8417   // free blocks.  If the next free block is adjacent to the
8418   // chunk just flushed, they will need to wait for the next
8419   // sweep to be coalesced.
8420   if (inFreeRange()) {
8421     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8422   }
8423 
8424   // First give up the locks, then yield, then re-lock.
8425   // We should probably use a constructor/destructor idiom to
8426   // do this unlock/lock or modify the MutexUnlocker class to
8427   // serve our purpose. XXX
8428   assert_lock_strong(_bitMap->lock());
8429   assert_lock_strong(_freelistLock);
8430   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8431          "CMS thread should hold CMS token");
8432   _bitMap->lock()->unlock();
8433   _freelistLock->unlock();
8434   ConcurrentMarkSweepThread::desynchronize(true);
8435   _collector->stopTimer();
8436   if (PrintCMSStatistics != 0) {
8437     _collector->incrementYields();
8438   }
8439 
8440   // See the comment in coordinator_yield()
8441   for (unsigned i = 0; i < CMSYieldSleepCount &&
8442                        ConcurrentMarkSweepThread::should_yield() &&
8443                        !CMSCollector::foregroundGCIsActive(); ++i) {
8444     os::sleep(Thread::current(), 1, false);
8445   }
8446 
8447   ConcurrentMarkSweepThread::synchronize(true);
8448   _freelistLock->lock();
8449   _bitMap->lock()->lock_without_safepoint_check();
8450   _collector->startTimer();
8451 }
8452 
8453 #ifndef PRODUCT
8454 // This is actually very useful in a product build if it can
8455 // be called from the debugger.  Compile it into the product
8456 // as needed.
8457 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8458   return debug_cms_space->verify_chunk_in_free_list(fc);
8459 }
8460 #endif
8461 
8462 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8463   if (CMSTraceSweeper) {
8464     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8465                            fc, fc->size());
8466   }
8467 }
8468 
8469 // CMSIsAliveClosure
8470 bool CMSIsAliveClosure::do_object_b(oop obj) {
8471   HeapWord* addr = (HeapWord*)obj;
8472   return addr != NULL &&
8473          (!_span.contains(addr) || _bit_map->isMarked(addr));
8474 }
8475 
8476 
8477 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8478                       MemRegion span,
8479                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8480                       bool cpc):
8481   _collector(collector),
8482   _span(span),
8483   _bit_map(bit_map),
8484   _mark_stack(mark_stack),
8485   _concurrent_precleaning(cpc) {
8486   assert(!_span.is_empty(), "Empty span could spell trouble");
8487 }
8488 
8489 
8490 // CMSKeepAliveClosure: the serial version
8491 void CMSKeepAliveClosure::do_oop(oop obj) {
8492   HeapWord* addr = (HeapWord*)obj;
8493   if (_span.contains(addr) &&
8494       !_bit_map->isMarked(addr)) {
8495     _bit_map->mark(addr);
8496     bool simulate_overflow = false;
8497     NOT_PRODUCT(
8498       if (CMSMarkStackOverflowALot &&
8499           _collector->simulate_overflow()) {
8500         // simulate a stack overflow
8501         simulate_overflow = true;
8502       }
8503     )
8504     if (simulate_overflow || !_mark_stack->push(obj)) {
8505       if (_concurrent_precleaning) {
8506         // We dirty the overflown object and let the remark
8507         // phase deal with it.
8508         assert(_collector->overflow_list_is_empty(), "Error");
8509         // In the case of object arrays, we need to dirty all of
8510         // the cards that the object spans. No locking or atomics
8511         // are needed since no one else can be mutating the mod union
8512         // table.
8513         if (obj->is_objArray()) {
8514           size_t sz = obj->size();
8515           HeapWord* end_card_addr =
8516             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8517           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8518           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8519           _collector->_modUnionTable.mark_range(redirty_range);
8520         } else {
8521           _collector->_modUnionTable.mark(addr);
8522         }
8523         _collector->_ser_kac_preclean_ovflw++;
8524       } else {
8525         _collector->push_on_overflow_list(obj);
8526         _collector->_ser_kac_ovflw++;
8527       }
8528     }
8529   }
8530 }
8531 
8532 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8533 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8534 
8535 // CMSParKeepAliveClosure: a parallel version of the above.
8536 // The work queues are private to each closure (thread),
8537 // but (may be) available for stealing by other threads.
8538 void CMSParKeepAliveClosure::do_oop(oop obj) {
8539   HeapWord* addr = (HeapWord*)obj;
8540   if (_span.contains(addr) &&
8541       !_bit_map->isMarked(addr)) {
8542     // In general, during recursive tracing, several threads
8543     // may be concurrently getting here; the first one to
8544     // "tag" it, claims it.
8545     if (_bit_map->par_mark(addr)) {
8546       bool res = _work_queue->push(obj);
8547       assert(res, "Low water mark should be much less than capacity");
8548       // Do a recursive trim in the hope that this will keep
8549       // stack usage lower, but leave some oops for potential stealers
8550       trim_queue(_low_water_mark);
8551     } // Else, another thread got there first
8552   }
8553 }
8554 
8555 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8556 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8557 
8558 void CMSParKeepAliveClosure::trim_queue(uint max) {
8559   while (_work_queue->size() > max) {
8560     oop new_oop;
8561     if (_work_queue->pop_local(new_oop)) {
8562       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8563       assert(_bit_map->isMarked((HeapWord*)new_oop),
8564              "no white objects on this stack!");
8565       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8566       // iterate over the oops in this oop, marking and pushing
8567       // the ones in CMS heap (i.e. in _span).
8568       new_oop->oop_iterate(&_mark_and_push);
8569     }
8570   }
8571 }
8572 
8573 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8574                                 CMSCollector* collector,
8575                                 MemRegion span, CMSBitMap* bit_map,
8576                                 OopTaskQueue* work_queue):
8577   _collector(collector),
8578   _span(span),
8579   _bit_map(bit_map),
8580   _work_queue(work_queue) { }
8581 
8582 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8583   HeapWord* addr = (HeapWord*)obj;
8584   if (_span.contains(addr) &&
8585       !_bit_map->isMarked(addr)) {
8586     if (_bit_map->par_mark(addr)) {
8587       bool simulate_overflow = false;
8588       NOT_PRODUCT(
8589         if (CMSMarkStackOverflowALot &&
8590             _collector->par_simulate_overflow()) {
8591           // simulate a stack overflow
8592           simulate_overflow = true;
8593         }
8594       )
8595       if (simulate_overflow || !_work_queue->push(obj)) {
8596         _collector->par_push_on_overflow_list(obj);
8597         _collector->_par_kac_ovflw++;
8598       }
8599     } // Else another thread got there already
8600   }
8601 }
8602 
8603 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8604 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8605 
8606 //////////////////////////////////////////////////////////////////
8607 //  CMSExpansionCause                /////////////////////////////
8608 //////////////////////////////////////////////////////////////////
8609 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8610   switch (cause) {
8611     case _no_expansion:
8612       return "No expansion";
8613     case _satisfy_free_ratio:
8614       return "Free ratio";
8615     case _satisfy_promotion:
8616       return "Satisfy promotion";
8617     case _satisfy_allocation:
8618       return "allocation";
8619     case _allocate_par_lab:
8620       return "Par LAB";
8621     case _allocate_par_spooling_space:
8622       return "Par Spooling Space";
8623     case _adaptive_size_policy:
8624       return "Ergonomics";
8625     default:
8626       return "unknown";
8627   }
8628 }
8629 
8630 void CMSDrainMarkingStackClosure::do_void() {
8631   // the max number to take from overflow list at a time
8632   const size_t num = _mark_stack->capacity()/4;
8633   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8634          "Overflow list should be NULL during concurrent phases");
8635   while (!_mark_stack->isEmpty() ||
8636          // if stack is empty, check the overflow list
8637          _collector->take_from_overflow_list(num, _mark_stack)) {
8638     oop obj = _mark_stack->pop();
8639     HeapWord* addr = (HeapWord*)obj;
8640     assert(_span.contains(addr), "Should be within span");
8641     assert(_bit_map->isMarked(addr), "Should be marked");
8642     assert(obj->is_oop(), "Should be an oop");
8643     obj->oop_iterate(_keep_alive);
8644   }
8645 }
8646 
8647 void CMSParDrainMarkingStackClosure::do_void() {
8648   // drain queue
8649   trim_queue(0);
8650 }
8651 
8652 // Trim our work_queue so its length is below max at return
8653 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8654   while (_work_queue->size() > max) {
8655     oop new_oop;
8656     if (_work_queue->pop_local(new_oop)) {
8657       assert(new_oop->is_oop(), "Expected an oop");
8658       assert(_bit_map->isMarked((HeapWord*)new_oop),
8659              "no white objects on this stack!");
8660       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8661       // iterate over the oops in this oop, marking and pushing
8662       // the ones in CMS heap (i.e. in _span).
8663       new_oop->oop_iterate(&_mark_and_push);
8664     }
8665   }
8666 }
8667 
8668 ////////////////////////////////////////////////////////////////////
8669 // Support for Marking Stack Overflow list handling and related code
8670 ////////////////////////////////////////////////////////////////////
8671 // Much of the following code is similar in shape and spirit to the
8672 // code used in ParNewGC. We should try and share that code
8673 // as much as possible in the future.
8674 
8675 #ifndef PRODUCT
8676 // Debugging support for CMSStackOverflowALot
8677 
8678 // It's OK to call this multi-threaded;  the worst thing
8679 // that can happen is that we'll get a bunch of closely
8680 // spaced simulated overflows, but that's OK, in fact
8681 // probably good as it would exercise the overflow code
8682 // under contention.
8683 bool CMSCollector::simulate_overflow() {
8684   if (_overflow_counter-- <= 0) { // just being defensive
8685     _overflow_counter = CMSMarkStackOverflowInterval;
8686     return true;
8687   } else {
8688     return false;
8689   }
8690 }
8691 
8692 bool CMSCollector::par_simulate_overflow() {
8693   return simulate_overflow();
8694 }
8695 #endif
8696 
8697 // Single-threaded
8698 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8699   assert(stack->isEmpty(), "Expected precondition");
8700   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8701   size_t i = num;
8702   oop  cur = _overflow_list;
8703   const markOop proto = markOopDesc::prototype();
8704   NOT_PRODUCT(ssize_t n = 0;)
8705   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8706     next = oop(cur->mark());
8707     cur->set_mark(proto);   // until proven otherwise
8708     assert(cur->is_oop(), "Should be an oop");
8709     bool res = stack->push(cur);
8710     assert(res, "Bit off more than can chew?");
8711     NOT_PRODUCT(n++;)
8712   }
8713   _overflow_list = cur;
8714 #ifndef PRODUCT
8715   assert(_num_par_pushes >= n, "Too many pops?");
8716   _num_par_pushes -=n;
8717 #endif
8718   return !stack->isEmpty();
8719 }
8720 
8721 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8722 // (MT-safe) Get a prefix of at most "num" from the list.
8723 // The overflow list is chained through the mark word of
8724 // each object in the list. We fetch the entire list,
8725 // break off a prefix of the right size and return the
8726 // remainder. If other threads try to take objects from
8727 // the overflow list at that time, they will wait for
8728 // some time to see if data becomes available. If (and
8729 // only if) another thread places one or more object(s)
8730 // on the global list before we have returned the suffix
8731 // to the global list, we will walk down our local list
8732 // to find its end and append the global list to
8733 // our suffix before returning it. This suffix walk can
8734 // prove to be expensive (quadratic in the amount of traffic)
8735 // when there are many objects in the overflow list and
8736 // there is much producer-consumer contention on the list.
8737 // *NOTE*: The overflow list manipulation code here and
8738 // in ParNewGeneration:: are very similar in shape,
8739 // except that in the ParNew case we use the old (from/eden)
8740 // copy of the object to thread the list via its klass word.
8741 // Because of the common code, if you make any changes in
8742 // the code below, please check the ParNew version to see if
8743 // similar changes might be needed.
8744 // CR 6797058 has been filed to consolidate the common code.
8745 bool CMSCollector::par_take_from_overflow_list(size_t num,
8746                                                OopTaskQueue* work_q,
8747                                                int no_of_gc_threads) {
8748   assert(work_q->size() == 0, "First empty local work queue");
8749   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8750   if (_overflow_list == NULL) {
8751     return false;
8752   }
8753   // Grab the entire list; we'll put back a suffix
8754   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8755   Thread* tid = Thread::current();
8756   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8757   // set to ParallelGCThreads.
8758   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8759   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8760   // If the list is busy, we spin for a short while,
8761   // sleeping between attempts to get the list.
8762   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8763     os::sleep(tid, sleep_time_millis, false);
8764     if (_overflow_list == NULL) {
8765       // Nothing left to take
8766       return false;
8767     } else if (_overflow_list != BUSY) {
8768       // Try and grab the prefix
8769       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8770     }
8771   }
8772   // If the list was found to be empty, or we spun long
8773   // enough, we give up and return empty-handed. If we leave
8774   // the list in the BUSY state below, it must be the case that
8775   // some other thread holds the overflow list and will set it
8776   // to a non-BUSY state in the future.
8777   if (prefix == NULL || prefix == BUSY) {
8778      // Nothing to take or waited long enough
8779      if (prefix == NULL) {
8780        // Write back the NULL in case we overwrote it with BUSY above
8781        // and it is still the same value.
8782        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8783      }
8784      return false;
8785   }
8786   assert(prefix != NULL && prefix != BUSY, "Error");
8787   size_t i = num;
8788   oop cur = prefix;
8789   // Walk down the first "num" objects, unless we reach the end.
8790   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8791   if (cur->mark() == NULL) {
8792     // We have "num" or fewer elements in the list, so there
8793     // is nothing to return to the global list.
8794     // Write back the NULL in lieu of the BUSY we wrote
8795     // above, if it is still the same value.
8796     if (_overflow_list == BUSY) {
8797       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8798     }
8799   } else {
8800     // Chop off the suffix and return it to the global list.
8801     assert(cur->mark() != BUSY, "Error");
8802     oop suffix_head = cur->mark(); // suffix will be put back on global list
8803     cur->set_mark(NULL);           // break off suffix
8804     // It's possible that the list is still in the empty(busy) state
8805     // we left it in a short while ago; in that case we may be
8806     // able to place back the suffix without incurring the cost
8807     // of a walk down the list.
8808     oop observed_overflow_list = _overflow_list;
8809     oop cur_overflow_list = observed_overflow_list;
8810     bool attached = false;
8811     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8812       observed_overflow_list =
8813         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8814       if (cur_overflow_list == observed_overflow_list) {
8815         attached = true;
8816         break;
8817       } else cur_overflow_list = observed_overflow_list;
8818     }
8819     if (!attached) {
8820       // Too bad, someone else sneaked in (at least) an element; we'll need
8821       // to do a splice. Find tail of suffix so we can prepend suffix to global
8822       // list.
8823       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8824       oop suffix_tail = cur;
8825       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8826              "Tautology");
8827       observed_overflow_list = _overflow_list;
8828       do {
8829         cur_overflow_list = observed_overflow_list;
8830         if (cur_overflow_list != BUSY) {
8831           // Do the splice ...
8832           suffix_tail->set_mark(markOop(cur_overflow_list));
8833         } else { // cur_overflow_list == BUSY
8834           suffix_tail->set_mark(NULL);
8835         }
8836         // ... and try to place spliced list back on overflow_list ...
8837         observed_overflow_list =
8838           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8839       } while (cur_overflow_list != observed_overflow_list);
8840       // ... until we have succeeded in doing so.
8841     }
8842   }
8843 
8844   // Push the prefix elements on work_q
8845   assert(prefix != NULL, "control point invariant");
8846   const markOop proto = markOopDesc::prototype();
8847   oop next;
8848   NOT_PRODUCT(ssize_t n = 0;)
8849   for (cur = prefix; cur != NULL; cur = next) {
8850     next = oop(cur->mark());
8851     cur->set_mark(proto);   // until proven otherwise
8852     assert(cur->is_oop(), "Should be an oop");
8853     bool res = work_q->push(cur);
8854     assert(res, "Bit off more than we can chew?");
8855     NOT_PRODUCT(n++;)
8856   }
8857 #ifndef PRODUCT
8858   assert(_num_par_pushes >= n, "Too many pops?");
8859   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8860 #endif
8861   return true;
8862 }
8863 
8864 // Single-threaded
8865 void CMSCollector::push_on_overflow_list(oop p) {
8866   NOT_PRODUCT(_num_par_pushes++;)
8867   assert(p->is_oop(), "Not an oop");
8868   preserve_mark_if_necessary(p);
8869   p->set_mark((markOop)_overflow_list);
8870   _overflow_list = p;
8871 }
8872 
8873 // Multi-threaded; use CAS to prepend to overflow list
8874 void CMSCollector::par_push_on_overflow_list(oop p) {
8875   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8876   assert(p->is_oop(), "Not an oop");
8877   par_preserve_mark_if_necessary(p);
8878   oop observed_overflow_list = _overflow_list;
8879   oop cur_overflow_list;
8880   do {
8881     cur_overflow_list = observed_overflow_list;
8882     if (cur_overflow_list != BUSY) {
8883       p->set_mark(markOop(cur_overflow_list));
8884     } else {
8885       p->set_mark(NULL);
8886     }
8887     observed_overflow_list =
8888       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8889   } while (cur_overflow_list != observed_overflow_list);
8890 }
8891 #undef BUSY
8892 
8893 // Single threaded
8894 // General Note on GrowableArray: pushes may silently fail
8895 // because we are (temporarily) out of C-heap for expanding
8896 // the stack. The problem is quite ubiquitous and affects
8897 // a lot of code in the JVM. The prudent thing for GrowableArray
8898 // to do (for now) is to exit with an error. However, that may
8899 // be too draconian in some cases because the caller may be
8900 // able to recover without much harm. For such cases, we
8901 // should probably introduce a "soft_push" method which returns
8902 // an indication of success or failure with the assumption that
8903 // the caller may be able to recover from a failure; code in
8904 // the VM can then be changed, incrementally, to deal with such
8905 // failures where possible, thus, incrementally hardening the VM
8906 // in such low resource situations.
8907 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8908   _preserved_oop_stack.push(p);
8909   _preserved_mark_stack.push(m);
8910   assert(m == p->mark(), "Mark word changed");
8911   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8912          "bijection");
8913 }
8914 
8915 // Single threaded
8916 void CMSCollector::preserve_mark_if_necessary(oop p) {
8917   markOop m = p->mark();
8918   if (m->must_be_preserved(p)) {
8919     preserve_mark_work(p, m);
8920   }
8921 }
8922 
8923 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8924   markOop m = p->mark();
8925   if (m->must_be_preserved(p)) {
8926     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8927     // Even though we read the mark word without holding
8928     // the lock, we are assured that it will not change
8929     // because we "own" this oop, so no other thread can
8930     // be trying to push it on the overflow list; see
8931     // the assertion in preserve_mark_work() that checks
8932     // that m == p->mark().
8933     preserve_mark_work(p, m);
8934   }
8935 }
8936 
8937 // We should be able to do this multi-threaded,
8938 // a chunk of stack being a task (this is
8939 // correct because each oop only ever appears
8940 // once in the overflow list. However, it's
8941 // not very easy to completely overlap this with
8942 // other operations, so will generally not be done
8943 // until all work's been completed. Because we
8944 // expect the preserved oop stack (set) to be small,
8945 // it's probably fine to do this single-threaded.
8946 // We can explore cleverer concurrent/overlapped/parallel
8947 // processing of preserved marks if we feel the
8948 // need for this in the future. Stack overflow should
8949 // be so rare in practice and, when it happens, its
8950 // effect on performance so great that this will
8951 // likely just be in the noise anyway.
8952 void CMSCollector::restore_preserved_marks_if_any() {
8953   assert(SafepointSynchronize::is_at_safepoint(),
8954          "world should be stopped");
8955   assert(Thread::current()->is_ConcurrentGC_thread() ||
8956          Thread::current()->is_VM_thread(),
8957          "should be single-threaded");
8958   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8959          "bijection");
8960 
8961   while (!_preserved_oop_stack.is_empty()) {
8962     oop p = _preserved_oop_stack.pop();
8963     assert(p->is_oop(), "Should be an oop");
8964     assert(_span.contains(p), "oop should be in _span");
8965     assert(p->mark() == markOopDesc::prototype(),
8966            "Set when taken from overflow list");
8967     markOop m = _preserved_mark_stack.pop();
8968     p->set_mark(m);
8969   }
8970   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8971          "stacks were cleared above");
8972 }
8973 
8974 #ifndef PRODUCT
8975 bool CMSCollector::no_preserved_marks() const {
8976   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8977 }
8978 #endif
8979 
8980 // Transfer some number of overflown objects to usual marking
8981 // stack. Return true if some objects were transferred.
8982 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8983   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8984                     (size_t)ParGCDesiredObjsFromOverflowList);
8985 
8986   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8987   assert(_collector->overflow_list_is_empty() || res,
8988          "If list is not empty, we should have taken something");
8989   assert(!res || !_mark_stack->isEmpty(),
8990          "If we took something, it should now be on our stack");
8991   return res;
8992 }
8993 
8994 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8995   size_t res = _sp->block_size_no_stall(addr, _collector);
8996   if (_sp->block_is_obj(addr)) {
8997     if (_live_bit_map->isMarked(addr)) {
8998       // It can't have been dead in a previous cycle
8999       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9000     } else {
9001       _dead_bit_map->mark(addr);      // mark the dead object
9002     }
9003   }
9004   // Could be 0, if the block size could not be computed without stalling.
9005   return res;
9006 }
9007 
9008 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9009 
9010   switch (phase) {
9011     case CMSCollector::InitialMarking:
9012       initialize(true  /* fullGC */ ,
9013                  cause /* cause of the GC */,
9014                  true  /* recordGCBeginTime */,
9015                  true  /* recordPreGCUsage */,
9016                  false /* recordPeakUsage */,
9017                  false /* recordPostGCusage */,
9018                  true  /* recordAccumulatedGCTime */,
9019                  false /* recordGCEndTime */,
9020                  false /* countCollection */  );
9021       break;
9022 
9023     case CMSCollector::FinalMarking:
9024       initialize(true  /* fullGC */ ,
9025                  cause /* cause of the GC */,
9026                  false /* recordGCBeginTime */,
9027                  false /* recordPreGCUsage */,
9028                  false /* recordPeakUsage */,
9029                  false /* recordPostGCusage */,
9030                  true  /* recordAccumulatedGCTime */,
9031                  false /* recordGCEndTime */,
9032                  false /* countCollection */  );
9033       break;
9034 
9035     case CMSCollector::Sweeping:
9036       initialize(true  /* fullGC */ ,
9037                  cause /* cause of the GC */,
9038                  false /* recordGCBeginTime */,
9039                  false /* recordPreGCUsage */,
9040                  true  /* recordPeakUsage */,
9041                  true  /* recordPostGCusage */,
9042                  false /* recordAccumulatedGCTime */,
9043                  true  /* recordGCEndTime */,
9044                  true  /* countCollection */  );
9045       break;
9046 
9047     default:
9048       ShouldNotReachHere();
9049   }
9050 }