1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
  26 #define SHARE_VM_MEMORY_SPACE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/blockOffsetTable.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/iterator.hpp"
  32 #include "memory/memRegion.hpp"
  33 #include "memory/watermark.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "utilities/macros.hpp"
  37 #include "utilities/workgroup.hpp"
  38 
  39 // A space is an abstraction for the "storage units" backing
  40 // up the generation abstraction. It includes specific
  41 // implementations for keeping track of free and used space,
  42 // for iterating over objects and free blocks, etc.
  43 
  44 // Forward decls.
  45 class Space;
  46 class BlockOffsetArray;
  47 class BlockOffsetArrayContigSpace;
  48 class Generation;
  49 class CompactibleSpace;
  50 class BlockOffsetTable;
  51 class GenRemSet;
  52 class CardTableRS;
  53 class DirtyCardToOopClosure;
  54 
  55 // A Space describes a heap area. Class Space is an abstract
  56 // base class.
  57 //
  58 // Space supports allocation, size computation and GC support is provided.
  59 //
  60 // Invariant: bottom() and end() are on page_size boundaries and
  61 // bottom() <= top() <= end()
  62 // top() is inclusive and end() is exclusive.
  63 
  64 class Space: public CHeapObj<mtGC> {
  65   friend class TenuredGeneration;
  66   friend class VMStructs;
  67  protected:
  68   HeapWord* _bottom;
  69   HeapWord* _end;
  70 
  71   // Used in support of save_marks()
  72   HeapWord* _saved_mark_word;
  73 
  74   // A sequential tasks done structure. This supports
  75   // parallel GC, where we have threads dynamically
  76   // claiming sub-tasks from a larger parallel task.
  77   SequentialSubTasksDone _par_seq_tasks;
  78 
  79   Space():
  80     _bottom(NULL), _end(NULL) { }
  81 
  82  public:
  83   // Accessors
  84   HeapWord* bottom() const         { return _bottom; }
  85   HeapWord* end() const            { return _end;    }
  86   virtual void set_bottom(HeapWord* value) { _bottom = value; }
  87   virtual void set_end(HeapWord* value)    { _end = value; }
  88 
  89   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
  90 
  91   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
  92 
  93   // Returns true if this object has been allocated since a
  94   // generation's "save_marks" call.
  95   virtual bool obj_allocated_since_save_marks(const oop obj) const {
  96     return (HeapWord*)obj >= saved_mark_word();
  97   }
  98 
  99   virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
 100     return NULL;
 101   }
 102 
 103   // Returns a subregion of the space containing only the allocated objects in
 104   // the space.
 105   virtual MemRegion used_region() const = 0;
 106 
 107   // Returns a region that is guaranteed to contain (at least) all objects
 108   // allocated at the time of the last call to "save_marks".  If the space
 109   // initializes its DirtyCardToOopClosure's specifying the "contig" option
 110   // (that is, if the space is contiguous), then this region must contain only
 111   // such objects: the memregion will be from the bottom of the region to the
 112   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
 113   // the space must distinguish between objects in the region allocated before
 114   // and after the call to save marks.
 115   MemRegion used_region_at_save_marks() const {
 116     return MemRegion(bottom(), saved_mark_word());
 117   }
 118 
 119   // Initialization.
 120   // "initialize" should be called once on a space, before it is used for
 121   // any purpose.  The "mr" arguments gives the bounds of the space, and
 122   // the "clear_space" argument should be true unless the memory in "mr" is
 123   // known to be zeroed.
 124   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 125 
 126   // The "clear" method must be called on a region that may have
 127   // had allocation performed in it, but is now to be considered empty.
 128   virtual void clear(bool mangle_space);
 129 
 130   // For detecting GC bugs.  Should only be called at GC boundaries, since
 131   // some unused space may be used as scratch space during GC's.
 132   // Default implementation does nothing. We also call this when expanding
 133   // a space to satisfy an allocation request. See bug #4668531
 134   virtual void mangle_unused_area() {}
 135   virtual void mangle_unused_area_complete() {}
 136   virtual void mangle_region(MemRegion mr) {}
 137 
 138   // Testers
 139   bool is_empty() const              { return used() == 0; }
 140   bool not_empty() const             { return used() > 0; }
 141 
 142   // Returns true iff the given the space contains the
 143   // given address as part of an allocated object. For
 144   // certain kinds of spaces, this might be a potentially
 145   // expensive operation. To prevent performance problems
 146   // on account of its inadvertent use in product jvm's,
 147   // we restrict its use to assertion checks only.
 148   bool is_in(const void* p) const {
 149     return used_region().contains(p);
 150   }
 151 
 152   // Returns true iff the given reserved memory of the space contains the
 153   // given address.
 154   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
 155 
 156   // Returns true iff the given block is not allocated.
 157   virtual bool is_free_block(const HeapWord* p) const = 0;
 158 
 159   // Test whether p is double-aligned
 160   static bool is_aligned(void* p) {
 161     return ((intptr_t)p & (sizeof(double)-1)) == 0;
 162   }
 163 
 164   // Size computations.  Sizes are in bytes.
 165   size_t capacity()     const { return byte_size(bottom(), end()); }
 166   virtual size_t used() const = 0;
 167   virtual size_t free() const = 0;
 168 
 169   // Iterate over all the ref-containing fields of all objects in the
 170   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
 171   // applications of the closure are not included in the iteration.
 172   virtual void oop_iterate(ExtendedOopClosure* cl);
 173 
 174   // Iterate over all objects in the space, calling "cl.do_object" on
 175   // each.  Objects allocated by applications of the closure are not
 176   // included in the iteration.
 177   virtual void object_iterate(ObjectClosure* blk) = 0;
 178   // Similar to object_iterate() except only iterates over
 179   // objects whose internal references point to objects in the space.
 180   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
 181 
 182   // Create and return a new dirty card to oop closure. Can be
 183   // overridden to return the appropriate type of closure
 184   // depending on the type of space in which the closure will
 185   // operate. ResourceArea allocated.
 186   virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 187                                              CardTableModRefBS::PrecisionStyle precision,
 188                                              HeapWord* boundary = NULL);
 189 
 190   // If "p" is in the space, returns the address of the start of the
 191   // "block" that contains "p".  We say "block" instead of "object" since
 192   // some heaps may not pack objects densely; a chunk may either be an
 193   // object or a non-object.  If "p" is not in the space, return NULL.
 194   virtual HeapWord* block_start_const(const void* p) const = 0;
 195 
 196   // The non-const version may have benevolent side effects on the data
 197   // structure supporting these calls, possibly speeding up future calls.
 198   // The default implementation, however, is simply to call the const
 199   // version.
 200   inline virtual HeapWord* block_start(const void* p);
 201 
 202   // Requires "addr" to be the start of a chunk, and returns its size.
 203   // "addr + size" is required to be the start of a new chunk, or the end
 204   // of the active area of the heap.
 205   virtual size_t block_size(const HeapWord* addr) const = 0;
 206 
 207   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 208   // the block is an object.
 209   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 210 
 211   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 212   // the block is an object and the object is alive.
 213   virtual bool obj_is_alive(const HeapWord* addr) const;
 214 
 215   // Allocation (return NULL if full).  Assumes the caller has established
 216   // mutually exclusive access to the space.
 217   virtual HeapWord* allocate(size_t word_size) = 0;
 218 
 219   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 220   virtual HeapWord* par_allocate(size_t word_size) = 0;
 221 
 222   // Mark-sweep-compact support: all spaces can update pointers to objects
 223   // moving as a part of compaction.
 224   virtual void adjust_pointers() = 0;
 225 
 226   // PrintHeapAtGC support
 227   virtual void print() const;
 228   virtual void print_on(outputStream* st) const;
 229   virtual void print_short() const;
 230   virtual void print_short_on(outputStream* st) const;
 231 
 232 
 233   // Accessor for parallel sequential tasks.
 234   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
 235 
 236   // IF "this" is a ContiguousSpace, return it, else return NULL.
 237   virtual ContiguousSpace* toContiguousSpace() {
 238     return NULL;
 239   }
 240 
 241   // Debugging
 242   virtual void verify() const = 0;
 243 };
 244 
 245 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
 246 // OopClosure to (the addresses of) all the ref-containing fields that could
 247 // be modified by virtue of the given MemRegion being dirty. (Note that
 248 // because of the imprecise nature of the write barrier, this may iterate
 249 // over oops beyond the region.)
 250 // This base type for dirty card to oop closures handles memory regions
 251 // in non-contiguous spaces with no boundaries, and should be sub-classed
 252 // to support other space types. See ContiguousDCTOC for a sub-class
 253 // that works with ContiguousSpaces.
 254 
 255 class DirtyCardToOopClosure: public MemRegionClosureRO {
 256 protected:
 257   ExtendedOopClosure* _cl;
 258   Space* _sp;
 259   CardTableModRefBS::PrecisionStyle _precision;
 260   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
 261                                 // pointing below boundary.
 262   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
 263                                 // a downwards traversal; this is the
 264                                 // lowest location already done (or,
 265                                 // alternatively, the lowest address that
 266                                 // shouldn't be done again.  NULL means infinity.)
 267   NOT_PRODUCT(HeapWord* _last_bottom;)
 268   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
 269 
 270   // Get the actual top of the area on which the closure will
 271   // operate, given where the top is assumed to be (the end of the
 272   // memory region passed to do_MemRegion) and where the object
 273   // at the top is assumed to start. For example, an object may
 274   // start at the top but actually extend past the assumed top,
 275   // in which case the top becomes the end of the object.
 276   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 277 
 278   // Walk the given memory region from bottom to (actual) top
 279   // looking for objects and applying the oop closure (_cl) to
 280   // them. The base implementation of this treats the area as
 281   // blocks, where a block may or may not be an object. Sub-
 282   // classes should override this to provide more accurate
 283   // or possibly more efficient walking.
 284   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
 285 
 286 public:
 287   DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
 288                         CardTableModRefBS::PrecisionStyle precision,
 289                         HeapWord* boundary) :
 290     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
 291     _min_done(NULL) {
 292     NOT_PRODUCT(_last_bottom = NULL);
 293     NOT_PRODUCT(_last_explicit_min_done = NULL);
 294   }
 295 
 296   void do_MemRegion(MemRegion mr);
 297 
 298   void set_min_done(HeapWord* min_done) {
 299     _min_done = min_done;
 300     NOT_PRODUCT(_last_explicit_min_done = _min_done);
 301   }
 302 #ifndef PRODUCT
 303   void set_last_bottom(HeapWord* last_bottom) {
 304     _last_bottom = last_bottom;
 305   }
 306 #endif
 307 };
 308 
 309 // A structure to represent a point at which objects are being copied
 310 // during compaction.
 311 class CompactPoint : public StackObj {
 312 public:
 313   Generation* gen;
 314   CompactibleSpace* space;
 315   HeapWord* threshold;
 316 
 317   CompactPoint(Generation* g = NULL) :
 318     gen(g), space(NULL), threshold(0) {}
 319 };
 320 
 321 // A space that supports compaction operations.  This is usually, but not
 322 // necessarily, a space that is normally contiguous.  But, for example, a
 323 // free-list-based space whose normal collection is a mark-sweep without
 324 // compaction could still support compaction in full GC's.
 325 //
 326 // The compaction operations are implemented by the
 327 // scan_and_{adjust_pointers,compact,forward} function templates.
 328 // The following are, non-virtual, auxiliary functions used by these function templates:
 329 // - scan_limit()
 330 // - scanned_block_is_obj()
 331 // - scanned_block_size()
 332 // - adjust_obj_size()
 333 // - obj_size()
 334 // These functions are to be used exclusively by the scan_and_* function templates,
 335 // and must be defined for all (non-abstract) subclasses of CompactibleSpace.
 336 //
 337 // NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
 338 // in any of the auxiliary functions must also override the corresponding
 339 // prepare_for_compaction/adjust_pointers/compact functions using them.
 340 // If not, such changes will not be used or have no effect on the compaction operations.
 341 //
 342 // This translates to the following dependencies:
 343 // Overrides/definitions of
 344 //  - scan_limit
 345 //  - scanned_block_is_obj
 346 //  - scanned_block_size
 347 // require override/definition of prepare_for_compaction().
 348 // Similar dependencies exist between
 349 //  - adjust_obj_size  and adjust_pointers()
 350 //  - obj_size         and compact().
 351 //
 352 // Additionally, this also means that changes to block_size() or block_is_obj() that
 353 // should be effective during the compaction operations must provide a corresponding
 354 // definition of scanned_block_size/scanned_block_is_obj respectively.
 355 class CompactibleSpace: public Space {
 356   friend class VMStructs;
 357   friend class CompactibleFreeListSpace;
 358 private:
 359   HeapWord* _compaction_top;
 360   CompactibleSpace* _next_compaction_space;
 361 
 362   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
 363   inline size_t adjust_obj_size(size_t size) const {
 364     return size;
 365   }
 366 
 367   inline size_t obj_size(const HeapWord* addr) const {
 368     return oop(addr)->size();
 369   }
 370 
 371 public:
 372   CompactibleSpace() :
 373    _compaction_top(NULL), _next_compaction_space(NULL) {}
 374 
 375   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 376   virtual void clear(bool mangle_space);
 377 
 378   // Used temporarily during a compaction phase to hold the value
 379   // top should have when compaction is complete.
 380   HeapWord* compaction_top() const { return _compaction_top;    }
 381 
 382   void set_compaction_top(HeapWord* value) {
 383     assert(value == NULL || (value >= bottom() && value <= end()),
 384       "should point inside space");
 385     _compaction_top = value;
 386   }
 387 
 388   // Perform operations on the space needed after a compaction
 389   // has been performed.
 390   virtual void reset_after_compaction() = 0;
 391 
 392   // Returns the next space (in the current generation) to be compacted in
 393   // the global compaction order.  Also is used to select the next
 394   // space into which to compact.
 395 
 396   virtual CompactibleSpace* next_compaction_space() const {
 397     return _next_compaction_space;
 398   }
 399 
 400   void set_next_compaction_space(CompactibleSpace* csp) {
 401     _next_compaction_space = csp;
 402   }
 403 
 404   // MarkSweep support phase2
 405 
 406   // Start the process of compaction of the current space: compute
 407   // post-compaction addresses, and insert forwarding pointers.  The fields
 408   // "cp->gen" and "cp->compaction_space" are the generation and space into
 409   // which we are currently compacting.  This call updates "cp" as necessary,
 410   // and leaves the "compaction_top" of the final value of
 411   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
 412   // this phase as if the final copy had occurred; if so, "cp->threshold"
 413   // indicates when the next such action should be taken.
 414   virtual void prepare_for_compaction(CompactPoint* cp) = 0;
 415   // MarkSweep support phase3
 416   virtual void adjust_pointers();
 417   // MarkSweep support phase4
 418   virtual void compact();
 419 
 420   // The maximum percentage of objects that can be dead in the compacted
 421   // live part of a compacted space ("deadwood" support.)
 422   virtual size_t allowed_dead_ratio() const { return 0; };
 423 
 424   // Some contiguous spaces may maintain some data structures that should
 425   // be updated whenever an allocation crosses a boundary.  This function
 426   // returns the first such boundary.
 427   // (The default implementation returns the end of the space, so the
 428   // boundary is never crossed.)
 429   virtual HeapWord* initialize_threshold() { return end(); }
 430 
 431   // "q" is an object of the given "size" that should be forwarded;
 432   // "cp" names the generation ("gen") and containing "this" (which must
 433   // also equal "cp->space").  "compact_top" is where in "this" the
 434   // next object should be forwarded to.  If there is room in "this" for
 435   // the object, insert an appropriate forwarding pointer in "q".
 436   // If not, go to the next compaction space (there must
 437   // be one, since compaction must succeed -- we go to the first space of
 438   // the previous generation if necessary, updating "cp"), reset compact_top
 439   // and then forward.  In either case, returns the new value of "compact_top".
 440   // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
 441   // function of the then-current compaction space, and updates "cp->threshold
 442   // accordingly".
 443   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
 444                     HeapWord* compact_top);
 445 
 446   // Return a size with adjustments as required of the space.
 447   virtual size_t adjust_object_size_v(size_t size) const { return size; }
 448 
 449 protected:
 450   // Used during compaction.
 451   HeapWord* _first_dead;
 452   HeapWord* _end_of_live;
 453 
 454   // Minimum size of a free block.
 455   virtual size_t minimum_free_block_size() const { return 0; }
 456 
 457   // This the function is invoked when an allocation of an object covering
 458   // "start" to "end occurs crosses the threshold; returns the next
 459   // threshold.  (The default implementation does nothing.)
 460   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
 461     return end();
 462   }
 463 
 464   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
 465   // free block of the given "word_len", and that "q", were it an object,
 466   // would not move if forwarded.  If the size allows, fill the free
 467   // block with an object, to prevent excessive compaction.  Returns "true"
 468   // iff the free region was made deadspace, and modifies
 469   // "allowed_deadspace_words" to reflect the number of available deadspace
 470   // words remaining after this operation.
 471   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
 472                         size_t word_len);
 473 
 474   // Below are template functions for scan_and_* algorithms (avoiding virtual calls).
 475   // The space argument should be a subclass of CompactibleSpace, implementing
 476   // scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
 477   // and possibly also overriding obj_size(), and adjust_obj_size().
 478   // These functions should avoid virtual calls whenever possible.
 479 
 480   // Frequently calls adjust_obj_size().
 481   template <class SpaceType>
 482   static inline void scan_and_adjust_pointers(SpaceType* space);
 483 
 484   // Frequently calls obj_size().
 485   template <class SpaceType>
 486   static inline void scan_and_compact(SpaceType* space);
 487 
 488   // Frequently calls scanned_block_is_obj() and scanned_block_size().
 489   // Requires the scan_limit() function.
 490   template <class SpaceType>
 491   static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
 492 };
 493 
 494 class GenSpaceMangler;
 495 
 496 // A space in which the free area is contiguous.  It therefore supports
 497 // faster allocation, and compaction.
 498 class ContiguousSpace: public CompactibleSpace {
 499   friend class VMStructs;
 500   // Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
 501   template <typename SpaceType>
 502   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 503 
 504  private:
 505   // Auxiliary functions for scan_and_forward support.
 506   // See comments for CompactibleSpace for more information.
 507   inline HeapWord* scan_limit() const {
 508     return top();
 509   }
 510 
 511   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 512     return true; // Always true, since scan_limit is top
 513   }
 514 
 515   inline size_t scanned_block_size(const HeapWord* addr) const {
 516     return oop(addr)->size();
 517   }
 518 
 519  protected:
 520   HeapWord* _top;
 521   HeapWord* _concurrent_iteration_safe_limit;
 522   // A helper for mangling the unused area of the space in debug builds.
 523   GenSpaceMangler* _mangler;
 524 
 525   GenSpaceMangler* mangler() { return _mangler; }
 526 
 527   // Allocation helpers (return NULL if full).
 528   inline HeapWord* allocate_impl(size_t word_size);
 529   inline HeapWord* par_allocate_impl(size_t word_size);
 530 
 531  public:
 532   ContiguousSpace();
 533   ~ContiguousSpace();
 534 
 535   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 536   virtual void clear(bool mangle_space);
 537 
 538   // Accessors
 539   HeapWord* top() const            { return _top;    }
 540   void set_top(HeapWord* value)    { _top = value; }
 541 
 542   void set_saved_mark()            { _saved_mark_word = top();    }
 543   void reset_saved_mark()          { _saved_mark_word = bottom(); }
 544 
 545   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
 546   WaterMark top_mark()        { return WaterMark(this, top()); }
 547   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
 548   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
 549 
 550   // In debug mode mangle (write it with a particular bit
 551   // pattern) the unused part of a space.
 552 
 553   // Used to save the an address in a space for later use during mangling.
 554   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
 555   // Used to save the space's current top for later use during mangling.
 556   void set_top_for_allocations() PRODUCT_RETURN;
 557 
 558   // Mangle regions in the space from the current top up to the
 559   // previously mangled part of the space.
 560   void mangle_unused_area() PRODUCT_RETURN;
 561   // Mangle [top, end)
 562   void mangle_unused_area_complete() PRODUCT_RETURN;
 563   // Mangle the given MemRegion.
 564   void mangle_region(MemRegion mr) PRODUCT_RETURN;
 565 
 566   // Do some sparse checking on the area that should have been mangled.
 567   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
 568   // Check the complete area that should have been mangled.
 569   // This code may be NULL depending on the macro DEBUG_MANGLING.
 570   void check_mangled_unused_area_complete() PRODUCT_RETURN;
 571 
 572   // Size computations: sizes in bytes.
 573   size_t capacity() const        { return byte_size(bottom(), end()); }
 574   size_t used() const            { return byte_size(bottom(), top()); }
 575   size_t free() const            { return byte_size(top(),    end()); }
 576 
 577   virtual bool is_free_block(const HeapWord* p) const;
 578 
 579   // In a contiguous space we have a more obvious bound on what parts
 580   // contain objects.
 581   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 582 
 583   // Allocation (return NULL if full)
 584   virtual HeapWord* allocate(size_t word_size);
 585   virtual HeapWord* par_allocate(size_t word_size);
 586   HeapWord* allocate_aligned(size_t word_size);
 587 
 588   // Iteration
 589   void oop_iterate(ExtendedOopClosure* cl);
 590   void object_iterate(ObjectClosure* blk);
 591   // For contiguous spaces this method will iterate safely over objects
 592   // in the space (i.e., between bottom and top) when at a safepoint.
 593   void safe_object_iterate(ObjectClosure* blk);
 594 
 595   // Iterate over as many initialized objects in the space as possible,
 596   // calling "cl.do_object_careful" on each. Return NULL if all objects
 597   // in the space (at the start of the iteration) were iterated over.
 598   // Return an address indicating the extent of the iteration in the
 599   // event that the iteration had to return because of finding an
 600   // uninitialized object in the space, or if the closure "cl"
 601   // signaled early termination.
 602   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
 603   HeapWord* concurrent_iteration_safe_limit() {
 604     assert(_concurrent_iteration_safe_limit <= top(),
 605            "_concurrent_iteration_safe_limit update missed");
 606     return _concurrent_iteration_safe_limit;
 607   }
 608   // changes the safe limit, all objects from bottom() to the new
 609   // limit should be properly initialized
 610   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
 611     assert(new_limit <= top(), "uninitialized objects in the safe range");
 612     _concurrent_iteration_safe_limit = new_limit;
 613   }
 614 
 615 
 616 #if INCLUDE_ALL_GCS
 617   // In support of parallel oop_iterate.
 618   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
 619     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
 620 
 621     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
 622   #undef ContigSpace_PAR_OOP_ITERATE_DECL
 623 #endif // INCLUDE_ALL_GCS
 624 
 625   // Compaction support
 626   virtual void reset_after_compaction() {
 627     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
 628     set_top(compaction_top());
 629     // set new iteration safe limit
 630     set_concurrent_iteration_safe_limit(compaction_top());
 631   }
 632 
 633   // Override.
 634   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 635                                      CardTableModRefBS::PrecisionStyle precision,
 636                                      HeapWord* boundary = NULL);
 637 
 638   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 639   // starting with the _saved_mark_word, which was noted during a generation's
 640   // save_marks and is required to denote the head of an object.
 641   // Fields in objects allocated by applications of the closure
 642   // *are* included in the iteration.
 643   // Updates _saved_mark_word to point to just after the last object
 644   // iterated over.
 645 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 646   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 647 
 648   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
 649 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
 650 
 651   // Same as object_iterate, but starting from "mark", which is required
 652   // to denote the start of an object.  Objects allocated by
 653   // applications of the closure *are* included in the iteration.
 654   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
 655 
 656   // Very inefficient implementation.
 657   virtual HeapWord* block_start_const(const void* p) const;
 658   size_t block_size(const HeapWord* p) const;
 659   // If a block is in the allocated area, it is an object.
 660   bool block_is_obj(const HeapWord* p) const { return p < top(); }
 661 
 662   // Addresses for inlined allocation
 663   HeapWord** top_addr() { return &_top; }
 664   HeapWord** end_addr() { return &_end; }
 665 
 666   // Overrides for more efficient compaction support.
 667   void prepare_for_compaction(CompactPoint* cp);
 668 
 669   // PrintHeapAtGC support.
 670   virtual void print_on(outputStream* st) const;
 671 
 672   // Checked dynamic downcasts.
 673   virtual ContiguousSpace* toContiguousSpace() {
 674     return this;
 675   }
 676 
 677   // Debugging
 678   virtual void verify() const;
 679 
 680   // Used to increase collection frequency.  "factor" of 0 means entire
 681   // space.
 682   void allocate_temporary_filler(int factor);
 683 };
 684 
 685 
 686 // A dirty card to oop closure that does filtering.
 687 // It knows how to filter out objects that are outside of the _boundary.
 688 class Filtering_DCTOC : public DirtyCardToOopClosure {
 689 protected:
 690   // Override.
 691   void walk_mem_region(MemRegion mr,
 692                        HeapWord* bottom, HeapWord* top);
 693 
 694   // Walk the given memory region, from bottom to top, applying
 695   // the given oop closure to (possibly) all objects found. The
 696   // given oop closure may or may not be the same as the oop
 697   // closure with which this closure was created, as it may
 698   // be a filtering closure which makes use of the _boundary.
 699   // We offer two signatures, so the FilteringClosure static type is
 700   // apparent.
 701   virtual void walk_mem_region_with_cl(MemRegion mr,
 702                                        HeapWord* bottom, HeapWord* top,
 703                                        ExtendedOopClosure* cl) = 0;
 704   virtual void walk_mem_region_with_cl(MemRegion mr,
 705                                        HeapWord* bottom, HeapWord* top,
 706                                        FilteringClosure* cl) = 0;
 707 
 708 public:
 709   Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl,
 710                   CardTableModRefBS::PrecisionStyle precision,
 711                   HeapWord* boundary) :
 712     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
 713 };
 714 
 715 // A dirty card to oop closure for contiguous spaces
 716 // (ContiguousSpace and sub-classes).
 717 // It is a FilteringClosure, as defined above, and it knows:
 718 //
 719 // 1. That the actual top of any area in a memory region
 720 //    contained by the space is bounded by the end of the contiguous
 721 //    region of the space.
 722 // 2. That the space is really made up of objects and not just
 723 //    blocks.
 724 
 725 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
 726 protected:
 727   // Overrides.
 728   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 729 
 730   virtual void walk_mem_region_with_cl(MemRegion mr,
 731                                        HeapWord* bottom, HeapWord* top,
 732                                        ExtendedOopClosure* cl);
 733   virtual void walk_mem_region_with_cl(MemRegion mr,
 734                                        HeapWord* bottom, HeapWord* top,
 735                                        FilteringClosure* cl);
 736 
 737 public:
 738   ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
 739                        CardTableModRefBS::PrecisionStyle precision,
 740                        HeapWord* boundary) :
 741     Filtering_DCTOC(sp, cl, precision, boundary)
 742   {}
 743 };
 744 
 745 // A ContigSpace that Supports an efficient "block_start" operation via
 746 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
 747 // other spaces.)  This is the abstract base class for old generation
 748 // (tenured) spaces.
 749 
 750 class OffsetTableContigSpace: public ContiguousSpace {
 751   friend class VMStructs;
 752  protected:
 753   BlockOffsetArrayContigSpace _offsets;
 754   Mutex _par_alloc_lock;
 755 
 756  public:
 757   // Constructor
 758   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 759                          MemRegion mr);
 760 
 761   void set_bottom(HeapWord* value);
 762   void set_end(HeapWord* value);
 763 
 764   void clear(bool mangle_space);
 765 
 766   inline HeapWord* block_start_const(const void* p) const;
 767 
 768   // Add offset table update.
 769   virtual inline HeapWord* allocate(size_t word_size);
 770   inline HeapWord* par_allocate(size_t word_size);
 771 
 772   // MarkSweep support phase3
 773   virtual HeapWord* initialize_threshold();
 774   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 775 
 776   virtual void print_on(outputStream* st) const;
 777 
 778   // Debugging
 779   void verify() const;
 780 };
 781 
 782 
 783 // Class TenuredSpace is used by TenuredGeneration
 784 
 785 class TenuredSpace: public OffsetTableContigSpace {
 786   friend class VMStructs;
 787  protected:
 788   // Mark sweep support
 789   size_t allowed_dead_ratio() const;
 790  public:
 791   // Constructor
 792   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
 793                MemRegion mr) :
 794     OffsetTableContigSpace(sharedOffsetArray, mr) {}
 795 };
 796 #endif // SHARE_VM_MEMORY_SPACE_HPP