1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/cardTableModRefBS.hpp"
  28 #include "memory/cardTableRS.hpp"
  29 #include "memory/sharedHeap.hpp"
  30 #include "memory/space.hpp"
  31 #include "memory/space.inline.hpp"
  32 #include "memory/universe.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/mutexLocker.hpp"
  35 #include "runtime/virtualspace.hpp"
  36 #include "services/memTracker.hpp"
  37 #include "utilities/macros.hpp"
  38 #ifdef COMPILER1
  39 #include "c1/c1_LIR.hpp"
  40 #include "c1/c1_LIRGenerator.hpp"
  41 #endif
  42 
  43 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
  44 // enumerate ref fields that have been modified (since the last
  45 // enumeration.)
  46 
  47 size_t CardTableModRefBS::compute_byte_map_size()
  48 {
  49   assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
  50                                         "uninitialized, check declaration order");
  51   assert(_page_size != 0, "uninitialized, check declaration order");
  52   const size_t granularity = os::vm_allocation_granularity();
  53   return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
  54 }
  55 
  56 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap) :
  57   ModRefBarrierSet(),
  58   _whole_heap(whole_heap),
  59   _guard_index(0),
  60   _guard_region(),
  61   _last_valid_index(0),
  62   _page_size(os::vm_page_size()),
  63   _byte_map_size(0),
  64   _covered(NULL),
  65   _committed(NULL),
  66   _cur_covered_regions(0),
  67   _byte_map(NULL),
  68   byte_map_base(NULL),
  69   // LNC functionality
  70   _lowest_non_clean(NULL),
  71   _lowest_non_clean_chunk_size(NULL),
  72   _lowest_non_clean_base_chunk_index(NULL),
  73   _last_LNC_resizing_collection(NULL)
  74 {
  75   _kind = BarrierSet::CardTableModRef;
  76 
  77   assert((uintptr_t(_whole_heap.start())  & (card_size - 1))  == 0, "heap must start at card boundary");
  78   assert((uintptr_t(_whole_heap.end()) & (card_size - 1))  == 0, "heap must end at card boundary");
  79 
  80   assert(card_size <= 512, "card_size must be less than 512"); // why?
  81 
  82   _covered   = new MemRegion[_max_covered_regions];
  83   if (_covered == NULL) {
  84     vm_exit_during_initialization("Could not allocate card table covered region set.");
  85   }
  86 }
  87 
  88 void CardTableModRefBS::initialize() {
  89   _guard_index = cards_required(_whole_heap.word_size()) - 1;
  90   _last_valid_index = _guard_index - 1;
  91 
  92   _byte_map_size = compute_byte_map_size();
  93 
  94   HeapWord* low_bound  = _whole_heap.start();
  95   HeapWord* high_bound = _whole_heap.end();
  96 
  97   _cur_covered_regions = 0;
  98   _committed = new MemRegion[_max_covered_regions];
  99   if (_committed == NULL) {
 100     vm_exit_during_initialization("Could not allocate card table committed region set.");
 101   }
 102 
 103   const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
 104     MAX2(_page_size, (size_t) os::vm_allocation_granularity());
 105   ReservedSpace heap_rs(_byte_map_size, rs_align, false);
 106 
 107   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
 108 
 109   os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
 110                        _page_size, heap_rs.base(), heap_rs.size());
 111   if (!heap_rs.is_reserved()) {
 112     vm_exit_during_initialization("Could not reserve enough space for the "
 113                                   "card marking array");
 114   }
 115 
 116   // The assembler store_check code will do an unsigned shift of the oop,
 117   // then add it to byte_map_base, i.e.
 118   //
 119   //   _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
 120   _byte_map = (jbyte*) heap_rs.base();
 121   byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
 122   assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
 123   assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
 124 
 125   jbyte* guard_card = &_byte_map[_guard_index];
 126   uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
 127   _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
 128   os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size,
 129                             !ExecMem, "card table last card");
 130   *guard_card = last_card;
 131 
 132   _lowest_non_clean =
 133     NEW_C_HEAP_ARRAY(CardArr, _max_covered_regions, mtGC);
 134   _lowest_non_clean_chunk_size =
 135     NEW_C_HEAP_ARRAY(size_t, _max_covered_regions, mtGC);
 136   _lowest_non_clean_base_chunk_index =
 137     NEW_C_HEAP_ARRAY(uintptr_t, _max_covered_regions, mtGC);
 138   _last_LNC_resizing_collection =
 139     NEW_C_HEAP_ARRAY(int, _max_covered_regions, mtGC);
 140   if (_lowest_non_clean == NULL
 141       || _lowest_non_clean_chunk_size == NULL
 142       || _lowest_non_clean_base_chunk_index == NULL
 143       || _last_LNC_resizing_collection == NULL)
 144     vm_exit_during_initialization("couldn't allocate an LNC array.");
 145   for (int i = 0; i < _max_covered_regions; i++) {
 146     _lowest_non_clean[i] = NULL;
 147     _lowest_non_clean_chunk_size[i] = 0;
 148     _last_LNC_resizing_collection[i] = -1;
 149   }
 150 
 151   if (TraceCardTableModRefBS) {
 152     gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
 153     gclog_or_tty->print_cr("  "
 154                   "  &_byte_map[0]: " INTPTR_FORMAT
 155                   "  &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
 156                   p2i(&_byte_map[0]),
 157                   p2i(&_byte_map[_last_valid_index]));
 158     gclog_or_tty->print_cr("  "
 159                   "  byte_map_base: " INTPTR_FORMAT,
 160                   p2i(byte_map_base));
 161   }
 162 }
 163 
 164 CardTableModRefBS::~CardTableModRefBS() {
 165   if (_covered) {
 166     delete[] _covered;
 167     _covered = NULL;
 168   }
 169   if (_committed) {
 170     delete[] _committed;
 171     _committed = NULL;
 172   }
 173   if (_lowest_non_clean) {
 174     FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean, mtGC);
 175     _lowest_non_clean = NULL;
 176   }
 177   if (_lowest_non_clean_chunk_size) {
 178     FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size, mtGC);
 179     _lowest_non_clean_chunk_size = NULL;
 180   }
 181   if (_lowest_non_clean_base_chunk_index) {
 182     FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index, mtGC);
 183     _lowest_non_clean_base_chunk_index = NULL;
 184   }
 185   if (_last_LNC_resizing_collection) {
 186     FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection, mtGC);
 187     _last_LNC_resizing_collection = NULL;
 188   }
 189 }
 190 
 191 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
 192   int i;
 193   for (i = 0; i < _cur_covered_regions; i++) {
 194     if (_covered[i].start() == base) return i;
 195     if (_covered[i].start() > base) break;
 196   }
 197   // If we didn't find it, create a new one.
 198   assert(_cur_covered_regions < _max_covered_regions,
 199          "too many covered regions");
 200   // Move the ones above up, to maintain sorted order.
 201   for (int j = _cur_covered_regions; j > i; j--) {
 202     _covered[j] = _covered[j-1];
 203     _committed[j] = _committed[j-1];
 204   }
 205   int res = i;
 206   _cur_covered_regions++;
 207   _covered[res].set_start(base);
 208   _covered[res].set_word_size(0);
 209   jbyte* ct_start = byte_for(base);
 210   uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
 211   _committed[res].set_start((HeapWord*)ct_start_aligned);
 212   _committed[res].set_word_size(0);
 213   return res;
 214 }
 215 
 216 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
 217   for (int i = 0; i < _cur_covered_regions; i++) {
 218     if (_covered[i].contains(addr)) {
 219       return i;
 220     }
 221   }
 222   assert(0, "address outside of heap?");
 223   return -1;
 224 }
 225 
 226 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
 227   HeapWord* max_end = NULL;
 228   for (int j = 0; j < ind; j++) {
 229     HeapWord* this_end = _committed[j].end();
 230     if (this_end > max_end) max_end = this_end;
 231   }
 232   return max_end;
 233 }
 234 
 235 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
 236                                                       MemRegion mr) const {
 237   MemRegion result = mr;
 238   for (int r = 0; r < _cur_covered_regions; r += 1) {
 239     if (r != self) {
 240       result = result.minus(_committed[r]);
 241     }
 242   }
 243   // Never include the guard page.
 244   result = result.minus(_guard_region);
 245   return result;
 246 }
 247 
 248 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
 249   // We don't change the start of a region, only the end.
 250   assert(_whole_heap.contains(new_region),
 251            "attempt to cover area not in reserved area");
 252   debug_only(verify_guard();)
 253   // collided is true if the expansion would push into another committed region
 254   debug_only(bool collided = false;)
 255   int const ind = find_covering_region_by_base(new_region.start());
 256   MemRegion const old_region = _covered[ind];
 257   assert(old_region.start() == new_region.start(), "just checking");
 258   if (new_region.word_size() != old_region.word_size()) {
 259     // Commit new or uncommit old pages, if necessary.
 260     MemRegion cur_committed = _committed[ind];
 261     // Extend the end of this _committed region
 262     // to cover the end of any lower _committed regions.
 263     // This forms overlapping regions, but never interior regions.
 264     HeapWord* const max_prev_end = largest_prev_committed_end(ind);
 265     if (max_prev_end > cur_committed.end()) {
 266       cur_committed.set_end(max_prev_end);
 267     }
 268     // Align the end up to a page size (starts are already aligned).
 269     jbyte* const new_end = byte_after(new_region.last());
 270     HeapWord* new_end_aligned =
 271       (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
 272     assert(new_end_aligned >= (HeapWord*) new_end,
 273            "align up, but less");
 274     // Check the other regions (excludes "ind") to ensure that
 275     // the new_end_aligned does not intrude onto the committed
 276     // space of another region.
 277     int ri = 0;
 278     for (ri = 0; ri < _cur_covered_regions; ri++) {
 279       if (ri != ind) {
 280         if (_committed[ri].contains(new_end_aligned)) {
 281           // The prior check included in the assert
 282           // (new_end_aligned >= _committed[ri].start())
 283           // is redundant with the "contains" test.
 284           // Any region containing the new end
 285           // should start at or beyond the region found (ind)
 286           // for the new end (committed regions are not expected to
 287           // be proper subsets of other committed regions).
 288           assert(_committed[ri].start() >= _committed[ind].start(),
 289                  "New end of committed region is inconsistent");
 290           new_end_aligned = _committed[ri].start();
 291           // new_end_aligned can be equal to the start of its
 292           // committed region (i.e., of "ind") if a second
 293           // region following "ind" also start at the same location
 294           // as "ind".
 295           assert(new_end_aligned >= _committed[ind].start(),
 296             "New end of committed region is before start");
 297           debug_only(collided = true;)
 298           // Should only collide with 1 region
 299           break;
 300         }
 301       }
 302     }
 303 #ifdef ASSERT
 304     for (++ri; ri < _cur_covered_regions; ri++) {
 305       assert(!_committed[ri].contains(new_end_aligned),
 306         "New end of committed region is in a second committed region");
 307     }
 308 #endif
 309     // The guard page is always committed and should not be committed over.
 310     // "guarded" is used for assertion checking below and recalls the fact
 311     // that the would-be end of the new committed region would have
 312     // penetrated the guard page.
 313     HeapWord* new_end_for_commit = new_end_aligned;
 314 
 315     DEBUG_ONLY(bool guarded = false;)
 316     if (new_end_for_commit > _guard_region.start()) {
 317       new_end_for_commit = _guard_region.start();
 318       DEBUG_ONLY(guarded = true;)
 319     }
 320 
 321     if (new_end_for_commit > cur_committed.end()) {
 322       // Must commit new pages.
 323       MemRegion const new_committed =
 324         MemRegion(cur_committed.end(), new_end_for_commit);
 325 
 326       assert(!new_committed.is_empty(), "Region should not be empty here");
 327       os::commit_memory_or_exit((char*)new_committed.start(),
 328                                 new_committed.byte_size(), _page_size,
 329                                 !ExecMem, "card table expansion");
 330     // Use new_end_aligned (as opposed to new_end_for_commit) because
 331     // the cur_committed region may include the guard region.
 332     } else if (new_end_aligned < cur_committed.end()) {
 333       // Must uncommit pages.
 334       MemRegion const uncommit_region =
 335         committed_unique_to_self(ind, MemRegion(new_end_aligned,
 336                                                 cur_committed.end()));
 337       if (!uncommit_region.is_empty()) {
 338         // It is not safe to uncommit cards if the boundary between
 339         // the generations is moving.  A shrink can uncommit cards
 340         // owned by generation A but being used by generation B.
 341         if (!UseAdaptiveGCBoundary) {
 342           if (!os::uncommit_memory((char*)uncommit_region.start(),
 343                                    uncommit_region.byte_size())) {
 344             assert(false, "Card table contraction failed");
 345             // The call failed so don't change the end of the
 346             // committed region.  This is better than taking the
 347             // VM down.
 348             new_end_aligned = _committed[ind].end();
 349           }
 350         } else {
 351           new_end_aligned = _committed[ind].end();
 352         }
 353       }
 354     }
 355     // In any case, we can reset the end of the current committed entry.
 356     _committed[ind].set_end(new_end_aligned);
 357 
 358 #ifdef ASSERT
 359     // Check that the last card in the new region is committed according
 360     // to the tables.
 361     bool covered = false;
 362     for (int cr = 0; cr < _cur_covered_regions; cr++) {
 363       if (_committed[cr].contains(new_end - 1)) {
 364         covered = true;
 365         break;
 366       }
 367     }
 368     assert(covered, "Card for end of new region not committed");
 369 #endif
 370 
 371     // The default of 0 is not necessarily clean cards.
 372     jbyte* entry;
 373     if (old_region.last() < _whole_heap.start()) {
 374       entry = byte_for(_whole_heap.start());
 375     } else {
 376       entry = byte_after(old_region.last());
 377     }
 378     assert(index_for(new_region.last()) <  _guard_index,
 379       "The guard card will be overwritten");
 380     // This line commented out cleans the newly expanded region and
 381     // not the aligned up expanded region.
 382     // jbyte* const end = byte_after(new_region.last());
 383     jbyte* const end = (jbyte*) new_end_for_commit;
 384     assert((end >= byte_after(new_region.last())) || collided || guarded,
 385       "Expect to be beyond new region unless impacting another region");
 386     // do nothing if we resized downward.
 387 #ifdef ASSERT
 388     for (int ri = 0; ri < _cur_covered_regions; ri++) {
 389       if (ri != ind) {
 390         // The end of the new committed region should not
 391         // be in any existing region unless it matches
 392         // the start of the next region.
 393         assert(!_committed[ri].contains(end) ||
 394                (_committed[ri].start() == (HeapWord*) end),
 395                "Overlapping committed regions");
 396       }
 397     }
 398 #endif
 399     if (entry < end) {
 400       memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
 401     }
 402   }
 403   // In any case, the covered size changes.
 404   _covered[ind].set_word_size(new_region.word_size());
 405   if (TraceCardTableModRefBS) {
 406     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
 407     gclog_or_tty->print_cr("  "
 408                   "  _covered[%d].start(): " INTPTR_FORMAT
 409                   "  _covered[%d].last(): " INTPTR_FORMAT,
 410                   ind, p2i(_covered[ind].start()),
 411                   ind, p2i(_covered[ind].last()));
 412     gclog_or_tty->print_cr("  "
 413                   "  _committed[%d].start(): " INTPTR_FORMAT
 414                   "  _committed[%d].last(): " INTPTR_FORMAT,
 415                   ind, p2i(_committed[ind].start()),
 416                   ind, p2i(_committed[ind].last()));
 417     gclog_or_tty->print_cr("  "
 418                   "  byte_for(start): " INTPTR_FORMAT
 419                   "  byte_for(last): " INTPTR_FORMAT,
 420                   p2i(byte_for(_covered[ind].start())),
 421                   p2i(byte_for(_covered[ind].last())));
 422     gclog_or_tty->print_cr("  "
 423                   "  addr_for(start): " INTPTR_FORMAT
 424                   "  addr_for(last): " INTPTR_FORMAT,
 425                   p2i(addr_for((jbyte*) _committed[ind].start())),
 426                   p2i(addr_for((jbyte*) _committed[ind].last())));
 427   }
 428   // Touch the last card of the covered region to show that it
 429   // is committed (or SEGV).
 430   debug_only((void) (*byte_for(_covered[ind].last()));)
 431   debug_only(verify_guard();)
 432 }
 433 
 434 // Note that these versions are precise!  The scanning code has to handle the
 435 // fact that the write barrier may be either precise or imprecise.
 436 
 437 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool release) {
 438   inline_write_ref_field(field, newVal, release);
 439 }
 440 
 441 
 442 void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
 443                                                                  MemRegion mr,
 444                                                                  OopsInGenClosure* cl,
 445                                                                  CardTableRS* ct) {
 446   if (!mr.is_empty()) {
 447     // Caller (process_roots()) claims that all GC threads
 448     // execute this call.  With UseDynamicNumberOfGCThreads now all
 449     // active GC threads execute this call.  The number of active GC
 450     // threads needs to be passed to par_non_clean_card_iterate_work()
 451     // to get proper partitioning and termination.
 452     //
 453     // This is an example of where n_par_threads() is used instead
 454     // of workers()->active_workers().  n_par_threads can be set to 0 to
 455     // turn off parallelism.  For example when this code is called as
 456     // part of verification and SharedHeap::process_roots() is being
 457     // used, then n_par_threads() may have been set to 0.  active_workers
 458     // is not overloaded with the meaning that it is a switch to disable
 459     // parallelism and so keeps the meaning of the number of
 460     // active gc workers.  If parallelism has not been shut off by
 461     // setting n_par_threads to 0, then n_par_threads should be
 462     // equal to active_workers.  When a different mechanism for shutting
 463     // off parallelism is used, then active_workers can be used in
 464     // place of n_par_threads.
 465     //  This is an example of a path where n_par_threads is
 466     // set to 0 to turn off parallelism.
 467     //  [7] CardTableModRefBS::non_clean_card_iterate()
 468     //  [8] CardTableRS::younger_refs_in_space_iterate()
 469     //  [9] Generation::younger_refs_in_space_iterate()
 470     //  [10] OneContigSpaceCardGeneration::younger_refs_iterate()
 471     //  [11] CompactingPermGenGen::younger_refs_iterate()
 472     //  [12] CardTableRS::younger_refs_iterate()
 473     //  [13] SharedHeap::process_strong_roots()
 474     //  [14] G1CollectedHeap::verify()
 475     //  [15] Universe::verify()
 476     //  [16] G1CollectedHeap::do_collection_pause_at_safepoint()
 477     //
 478     int n_threads =  SharedHeap::heap()->n_par_threads();
 479     bool is_par = n_threads > 0;
 480     if (is_par) {
 481 #if INCLUDE_ALL_GCS
 482       assert(SharedHeap::heap()->n_par_threads() ==
 483              SharedHeap::heap()->workers()->active_workers(), "Mismatch");
 484       non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
 485 #else  // INCLUDE_ALL_GCS
 486       fatal("Parallel gc not supported here.");
 487 #endif // INCLUDE_ALL_GCS
 488     } else {
 489       // We do not call the non_clean_card_iterate_serial() version below because
 490       // we want to clear the cards (which non_clean_card_iterate_serial() does not
 491       // do for us): clear_cl here does the work of finding contiguous dirty ranges
 492       // of cards to process and clear.
 493 
 494       DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
 495                                                        cl->gen_boundary());
 496       ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
 497 
 498       clear_cl.do_MemRegion(mr);
 499     }
 500   }
 501 }
 502 
 503 // The iterator itself is not MT-aware, but
 504 // MT-aware callers and closures can use this to
 505 // accomplish dirty card iteration in parallel. The
 506 // iterator itself does not clear the dirty cards, or
 507 // change their values in any manner.
 508 void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
 509                                                       MemRegionClosure* cl) {
 510   bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
 511   assert(!is_par ||
 512           (SharedHeap::heap()->n_par_threads() ==
 513           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
 514   for (int i = 0; i < _cur_covered_regions; i++) {
 515     MemRegion mri = mr.intersection(_covered[i]);
 516     if (mri.word_size() > 0) {
 517       jbyte* cur_entry = byte_for(mri.last());
 518       jbyte* limit = byte_for(mri.start());
 519       while (cur_entry >= limit) {
 520         jbyte* next_entry = cur_entry - 1;
 521         if (*cur_entry != clean_card) {
 522           size_t non_clean_cards = 1;
 523           // Should the next card be included in this range of dirty cards.
 524           while (next_entry >= limit && *next_entry != clean_card) {
 525             non_clean_cards++;
 526             cur_entry = next_entry;
 527             next_entry--;
 528           }
 529           // The memory region may not be on a card boundary.  So that
 530           // objects beyond the end of the region are not processed, make
 531           // cur_cards precise with regard to the end of the memory region.
 532           MemRegion cur_cards(addr_for(cur_entry),
 533                               non_clean_cards * card_size_in_words);
 534           MemRegion dirty_region = cur_cards.intersection(mri);
 535           cl->do_MemRegion(dirty_region);
 536         }
 537         cur_entry = next_entry;
 538       }
 539     }
 540   }
 541 }
 542 
 543 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
 544   assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
 545   assert((HeapWord*)align_size_up  ((uintptr_t)mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
 546   jbyte* cur  = byte_for(mr.start());
 547   jbyte* last = byte_after(mr.last());
 548   while (cur < last) {
 549     *cur = dirty_card;
 550     cur++;
 551   }
 552 }
 553 
 554 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
 555   assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
 556   assert((HeapWord*)align_size_up  ((uintptr_t)mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
 557   for (int i = 0; i < _cur_covered_regions; i++) {
 558     MemRegion mri = mr.intersection(_covered[i]);
 559     if (!mri.is_empty()) dirty_MemRegion(mri);
 560   }
 561 }
 562 
 563 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
 564   // Be conservative: only clean cards entirely contained within the
 565   // region.
 566   jbyte* cur;
 567   if (mr.start() == _whole_heap.start()) {
 568     cur = byte_for(mr.start());
 569   } else {
 570     assert(mr.start() > _whole_heap.start(), "mr is not covered.");
 571     cur = byte_after(mr.start() - 1);
 572   }
 573   jbyte* last = byte_after(mr.last());
 574   memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
 575 }
 576 
 577 void CardTableModRefBS::clear(MemRegion mr) {
 578   for (int i = 0; i < _cur_covered_regions; i++) {
 579     MemRegion mri = mr.intersection(_covered[i]);
 580     if (!mri.is_empty()) clear_MemRegion(mri);
 581   }
 582 }
 583 
 584 void CardTableModRefBS::dirty(MemRegion mr) {
 585   jbyte* first = byte_for(mr.start());
 586   jbyte* last  = byte_after(mr.last());
 587   memset(first, dirty_card, last-first);
 588 }
 589 
 590 // Unlike several other card table methods, dirty_card_iterate()
 591 // iterates over dirty cards ranges in increasing address order.
 592 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
 593                                            MemRegionClosure* cl) {
 594   for (int i = 0; i < _cur_covered_regions; i++) {
 595     MemRegion mri = mr.intersection(_covered[i]);
 596     if (!mri.is_empty()) {
 597       jbyte *cur_entry, *next_entry, *limit;
 598       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
 599            cur_entry <= limit;
 600            cur_entry  = next_entry) {
 601         next_entry = cur_entry + 1;
 602         if (*cur_entry == dirty_card) {
 603           size_t dirty_cards;
 604           // Accumulate maximal dirty card range, starting at cur_entry
 605           for (dirty_cards = 1;
 606                next_entry <= limit && *next_entry == dirty_card;
 607                dirty_cards++, next_entry++);
 608           MemRegion cur_cards(addr_for(cur_entry),
 609                               dirty_cards*card_size_in_words);
 610           cl->do_MemRegion(cur_cards);
 611         }
 612       }
 613     }
 614   }
 615 }
 616 
 617 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
 618                                                           bool reset,
 619                                                           int reset_val) {
 620   for (int i = 0; i < _cur_covered_regions; i++) {
 621     MemRegion mri = mr.intersection(_covered[i]);
 622     if (!mri.is_empty()) {
 623       jbyte* cur_entry, *next_entry, *limit;
 624       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
 625            cur_entry <= limit;
 626            cur_entry  = next_entry) {
 627         next_entry = cur_entry + 1;
 628         if (*cur_entry == dirty_card) {
 629           size_t dirty_cards;
 630           // Accumulate maximal dirty card range, starting at cur_entry
 631           for (dirty_cards = 1;
 632                next_entry <= limit && *next_entry == dirty_card;
 633                dirty_cards++, next_entry++);
 634           MemRegion cur_cards(addr_for(cur_entry),
 635                               dirty_cards*card_size_in_words);
 636           if (reset) {
 637             for (size_t i = 0; i < dirty_cards; i++) {
 638               cur_entry[i] = reset_val;
 639             }
 640           }
 641           return cur_cards;
 642         }
 643       }
 644     }
 645   }
 646   return MemRegion(mr.end(), mr.end());
 647 }
 648 
 649 uintx CardTableModRefBS::ct_max_alignment_constraint() {
 650   return card_size * os::vm_page_size();
 651 }
 652 
 653 void CardTableModRefBS::verify_guard() {
 654   // For product build verification
 655   guarantee(_byte_map[_guard_index] == last_card,
 656             "card table guard has been modified");
 657 }
 658 
 659 void CardTableModRefBS::verify() {
 660   verify_guard();
 661 }
 662 
 663 #ifndef PRODUCT
 664 void CardTableModRefBS::verify_region(MemRegion mr,
 665                                       jbyte val, bool val_equals) {
 666   jbyte* start    = byte_for(mr.start());
 667   jbyte* end      = byte_for(mr.last());
 668   bool failures = false;
 669   for (jbyte* curr = start; curr <= end; ++curr) {
 670     jbyte curr_val = *curr;
 671     bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
 672     if (failed) {
 673       if (!failures) {
 674         tty->cr();
 675         tty->print_cr("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end));
 676         tty->print_cr("==   %sexpecting value: %d",
 677                       (val_equals) ? "" : "not ", val);
 678         failures = true;
 679       }
 680       tty->print_cr("==   card "PTR_FORMAT" ["PTR_FORMAT","PTR_FORMAT"], "
 681                     "val: %d", p2i(curr), p2i(addr_for(curr)),
 682                     p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)),
 683                     (int) curr_val);
 684     }
 685   }
 686   guarantee(!failures, "there should not have been any failures");
 687 }
 688 
 689 void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
 690   verify_region(mr, dirty_card, false /* val_equals */);
 691 }
 692 
 693 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
 694   verify_region(mr, dirty_card, true /* val_equals */);
 695 }
 696 #endif
 697 
 698 void CardTableModRefBS::print_on(outputStream* st) const {
 699   st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
 700                p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base));
 701 }
 702 
 703 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
 704   return
 705     CardTableModRefBS::card_will_be_scanned(cv) ||
 706     _rs->is_prev_nonclean_card_val(cv);
 707 };
 708 
 709 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
 710   return
 711     cv != clean_card &&
 712     (CardTableModRefBS::card_may_have_been_dirty(cv) ||
 713      CardTableRS::youngergen_may_have_been_dirty(cv));
 714 };