--- /dev/null 2014-12-01 09:12:12.387027487 +0100 +++ new/test/stress/gc/TestGCOld.java 2014-12-18 15:11:17.142734492 +0100 @@ -0,0 +1,418 @@ +/* +* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. +* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. +* +* This code is free software; you can redistribute it and/or modify it +* under the terms of the GNU General Public License version 2 only, as +* published by the Free Software Foundation. +* +* This code is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +* version 2 for more details (a copy is included in the LICENSE file that +* accompanied this code). +* +* You should have received a copy of the GNU General Public License version +* 2 along with this work; if not, write to the Free Software Foundation, +* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +* +* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA +* or visit www.oracle.com if you need additional information or have any +* questions. +*/ + +/* + * @test TestGCOld + * @key gc + * @key stress + * @requires vm.gc=="null" + * @summary Stress the GC by trying to make old objects more likely to be garbage than young objects. + * @run main/othervm -Xmx384M -XX:+UseSerialGC TestGCOld 50 1 20 10 10000 + * @run main/othervm -Xmx384M -XX:+UseParallelGC TestGCOld 50 1 20 10 10000 + * @run main/othervm -Xmx384M -XX:+UseParallelGC -XX:-UseParallelOldGC TestGCOld 50 1 20 10 10000 + * @run main/othervm -Xmx384M -XX:+UseConcMarkSweepGC TestGCOld 50 1 20 10 10000 + * @run main/othervm -Xmx384M -XX:+UseG1GC TestGCOld 50 1 20 10 10000 + */ + +import java.text.*; +import java.util.Random; + +class TreeNode { + public TreeNode left, right; + public int val; // will always be the height of the tree +} + + +/* Args: + live-data-size: in megabytes (approximate, will be rounded down). + work: units of mutator non-allocation work per byte allocated, + (in unspecified units. This will affect the promotion rate + printed at the end of the run: more mutator work per step implies + fewer steps per second implies fewer bytes promoted per second.) + short/long ratio: ratio of short-lived bytes allocated to long-lived + bytes allocated. + pointer mutation rate: number of pointer mutations per step. + steps: number of steps to do. +*/ + +public class TestGCOld { + + // Command-line parameters. + + private static int size, workUnits, promoteRate, ptrMutRate, steps; + + // Constants. + + private static final int MEG = 1000000; + private static final int INSIGNIFICANT = 999; // this many bytes don't matter + private static final int BYTES_PER_WORD = 4; + private static final int BYTES_PER_NODE = 20; // bytes per TreeNode + private static final int WORDS_DEAD = 100; // size of young garbage object + + private final static int treeHeight = 14; + private final static long treeSize = heightToBytes(treeHeight); + + private static final String msg1 + = "Usage: java TestGCOld "; + private static final String msg2 + = " where is the live storage in megabytes"; + private static final String msg3 + = " is the mutator work per step (arbitrary units)"; + private static final String msg4 + = " is the ratio of short-lived to long-lived allocation"; + private static final String msg5 + = " is the mutations per step"; + private static final String msg6 + = " is the number of steps"; + + // Counters (and global variables that discourage optimization) + + private static long youngBytes = 0; // total young bytes allocated + private static long nodes = 0; // total tree nodes allocated + private static long actuallyMut = 0; // pointer mutations in old trees + private static long mutatorSum = 0; // checksum to discourage optimization + public static int[] aexport; // exported array to discourage opt + + // Global variables. + + private static TreeNode[] trees; + private static int where = 0; // roving index into trees + private static Random rnd = new Random(); + + // Returns the height of the given tree. + + private static int height (TreeNode t) { + if (t == null) { + return 0; + } + else { + return 1 + Math.max (height (t.left), height (t.right)); + } + } + + // Returns the length of the shortest path in the given tree. + + private static int shortestPath (TreeNode t) { + if (t == null) { + return 0; + } + else { + return 1 + Math.min (shortestPath (t.left), shortestPath (t.right)); + } + } + + // Returns the number of nodes in a balanced tree of the given height. + + private static long heightToNodes (int h) { + if (h == 0) { + return 0; + } + else { + long n = 1; + while (h > 1) { + n = n + n; + h = h - 1; + } + return n + n - 1; + } + } + + // Returns the number of bytes in a balanced tree of the given height. + + private static long heightToBytes (int h) { + return BYTES_PER_NODE * heightToNodes (h); + } + + // Returns the height of the largest balanced tree + // that has no more than the given number of nodes. + + private static int nodesToHeight (long nodes) { + int h = 1; + long n = 1; + while (n + n - 1 <= nodes) { + n = n + n; + h = h + 1; + } + return h - 1; + } + + // Returns the height of the largest balanced tree + // that occupies no more than the given number of bytes. + + private static int bytesToHeight (long bytes) { + return nodesToHeight (bytes / BYTES_PER_NODE); + } + + // Returns a newly allocated balanced binary tree of height h. + + private static TreeNode makeTree(int h) { + if (h == 0) return null; + else { + TreeNode res = new TreeNode(); + nodes++; + res.left = makeTree(h-1); + res.right = makeTree(h-1); + res.val = h; + return res; + } + } + + // Allocates approximately size megabytes of trees and stores + // them into a global array. + + private static void init() { + int ntrees = (int) ((size * MEG) / treeSize); + trees = new TreeNode[ntrees]; + + System.err.println("Allocating " + ntrees + " trees."); + System.err.println(" (" + (ntrees * treeSize) + " bytes)"); + for (int i = 0; i < ntrees; i++) { + trees[i] = makeTree(treeHeight); + // doYoungGenAlloc(promoteRate*ntrees*treeSize, WORDS_DEAD); + } + System.err.println(" (" + nodes + " nodes)"); + + /* Allow any in-progress GC to catch up... */ + // try { Thread.sleep(20000); } catch (InterruptedException x) {} + } + + // Confirms that all trees are balanced and have the correct height. + + private static void checkTrees() { + int ntrees = trees.length; + for (int i = 0; i < ntrees; i++) { + TreeNode t = trees[i]; + int h1 = height(t); + int h2 = shortestPath(t); + if ((h1 != treeHeight) || (h2 != treeHeight)) { + System.err.println("*****BUG: " + h1 + " " + h2); + } + } + } + + // Called only by replaceTree (below) and by itself. + + private static void replaceTreeWork(TreeNode full, TreeNode partial, + boolean dir) { + boolean canGoLeft = full.left != null && full.left.val > partial.val; + boolean canGoRight = full.right != null && full.right.val > partial.val; + if (canGoLeft && canGoRight) { + if (dir) + replaceTreeWork(full.left, partial, !dir); + else + replaceTreeWork(full.right, partial, !dir); + } else if (!canGoLeft && !canGoRight) { + if (dir) + full.left = partial; + else + full.right = partial; + } else if (!canGoLeft) { + full.left = partial; + } else { + full.right = partial; + } + } + + // Given a balanced tree full and a smaller balanced tree partial, + // replaces an appropriate subtree of full by partial, taking care + // to preserve the shape of the full tree. + + private static void replaceTree(TreeNode full, TreeNode partial) { + boolean dir = (partial.val % 2) == 0; + actuallyMut++; + replaceTreeWork(full, partial, dir); + } + + // Allocates approximately n bytes of long-lived storage, + // replacing oldest existing long-lived storage. + + private static void oldGenAlloc(long n) { + int full = (int) (n / treeSize); + long partial = n % treeSize; + // System.out.println("In oldGenAlloc, doing " + full + " full trees " + // + "and one partial tree of size " + partial); + for (int i = 0; i < full; i++) { + trees[where++] = makeTree(treeHeight); + if (where == trees.length) where = 0; + } + while (partial > INSIGNIFICANT) { + int h = bytesToHeight(partial); + TreeNode newTree = makeTree(h); + replaceTree(trees[where++], newTree); + if (where == trees.length) where = 0; + partial = partial - heightToBytes(h); + } + } + + // Interchanges two randomly selected subtrees (of same size and depth). + + private static void oldGenSwapSubtrees() { + // Randomly pick: + // * two tree indices + // * A depth + // * A path to that depth. + int index1 = rnd.nextInt(trees.length); + int index2 = rnd.nextInt(trees.length); + int depth = rnd.nextInt(treeHeight); + int path = rnd.nextInt(); + TreeNode tn1 = trees[index1]; + TreeNode tn2 = trees[index2]; + for (int i = 0; i < depth; i++) { + if ((path & 1) == 0) { + tn1 = tn1.left; + tn2 = tn2.left; + } else { + tn1 = tn1.right; + tn2 = tn2.right; + } + path >>= 1; + } + TreeNode tmp; + if ((path & 1) == 0) { + tmp = tn1.left; + tn1.left = tn2.left; + tn2.left = tmp; + } else { + tmp = tn1.right; + tn1.right = tn2.right; + tn2.right = tmp; + } + actuallyMut += 2; + } + + // Update "n" old-generation pointers. + + private static void oldGenMut(long n) { + for (int i = 0; i < n/2; i++) { + oldGenSwapSubtrees(); + } + } + + // Does the amount of mutator work appropriate for n bytes of young-gen + // garbage allocation. + + private static void doMutWork(long n) { + int sum = 0; + long limit = workUnits*n/10; + for (long k = 0; k < limit; k++) sum++; + // We don't want dead code elimination to eliminate the loop above. + mutatorSum = mutatorSum + sum; + } + + // Allocate n bytes of young-gen garbage, in units of "nwords" + // words. + + private static void doYoungGenAlloc(long n, int nwords) { + final int nbytes = nwords*BYTES_PER_WORD; + int allocated = 0; + while (allocated < n) { + aexport = new int[nwords]; + /* System.err.println("Step"); */ + allocated += nbytes; + } + youngBytes = youngBytes + allocated; + } + + // Allocate "n" bytes of young-gen data; and do the + // corresponding amount of old-gen allocation and pointer + // mutation. + + // oldGenAlloc may perform some mutations, so this code + // takes those mutations into account. + + private static void doStep(long n) { + long mutations = actuallyMut; + + doYoungGenAlloc(n, WORDS_DEAD); + doMutWork(n); + oldGenAlloc(n / promoteRate); + oldGenMut(Math.max(0L, (mutations + ptrMutRate) - actuallyMut)); + } + + public static void main(String[] args) { + if (args.length != 5) { + System.err.println(msg1); + System.err.println(msg2); + System.err.println(msg3); + System.err.println(msg4); + System.err.println(msg5); + System.err.println(msg6); + return; + } + + size = Integer.parseInt(args[0]); + workUnits = Integer.parseInt(args[1]); + promoteRate = Integer.parseInt(args[2]); + ptrMutRate = Integer.parseInt(args[3]); + steps = Integer.parseInt(args[4]); + + System.out.println(size + " megabytes of live storage"); + System.out.println(workUnits + " work units per step"); + System.out.println("promotion ratio is 1:" + promoteRate); + System.out.println("pointer mutation rate is " + ptrMutRate); + System.out.println(steps + " steps"); + + init(); +// checkTrees(); + youngBytes = 0; + nodes = 0; + + System.err.println("Initialization complete..."); + + long start = System.currentTimeMillis(); + + for (int step = 0; step < steps; step++) { + doStep(MEG); + } + + long end = System.currentTimeMillis(); + float secs = ((float)(end-start))/1000.0F; + +// checkTrees(); + + NumberFormat nf = NumberFormat.getInstance(); + nf.setMaximumFractionDigits(1); + System.out.println("\nTook " + nf.format(secs) + " sec in steady state."); + nf.setMaximumFractionDigits(2); + System.out.println("Allocated " + steps + " Mb of young gen garbage" + + " (= " + nf.format(((float)steps)/secs) + + " Mb/sec)"); + System.out.println(" (actually allocated " + + nf.format(((float) youngBytes)/MEG) + " megabytes)"); + float promoted = ((float)steps) / (float)promoteRate; + System.out.println("Promoted " + promoted + + " Mb (= " + nf.format(promoted/secs) + " Mb/sec)"); + System.out.println(" (actually promoted " + + nf.format(((float) (nodes * BYTES_PER_NODE))/MEG) + + " megabytes)"); + if (ptrMutRate != 0) { + System.out.println("Mutated " + actuallyMut + + " pointers (= " + + nf.format(actuallyMut/secs) + " ptrs/sec)"); + + } + // This output serves mainly to discourage optimization. + System.out.println("Checksum = " + (mutatorSum + aexport.length)); + + } +}