1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gcTimer.hpp"
  30 #include "gc_implementation/shared/gcTraceTime.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/defNewGeneration.inline.hpp"
  34 #include "memory/gcLocker.inline.hpp"
  35 #include "memory/genCollectedHeap.hpp"
  36 #include "memory/genOopClosures.inline.hpp"
  37 #include "memory/genRemSet.hpp"
  38 #include "memory/generationSpec.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/space.inline.hpp"
  42 #include "oops/instanceRefKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/prefetch.inline.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/globalDefinitions.hpp"
  50 #include "utilities/stack.inline.hpp"
  51 
  52 //
  53 // DefNewGeneration functions.
  54 
  55 // Methods of protected closure types.
  56 
  57 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  58   assert(g->level() == 0, "Optimized for youngest gen.");
  59 }
  60 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  61   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  62 }
  63 
  64 DefNewGeneration::KeepAliveClosure::
  65 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  66   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  67   _rs = (CardTableRS*)rs;
  68 }
  69 
  70 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  71 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  72 
  73 
  74 DefNewGeneration::FastKeepAliveClosure::
  75 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  76   DefNewGeneration::KeepAliveClosure(cl) {
  77   _boundary = g->reserved().end();
  78 }
  79 
  80 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  81 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  82 
  83 DefNewGeneration::EvacuateFollowersClosure::
  84 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  85                          ScanClosure* cur, ScanClosure* older) :
  86   _gch(gch), _level(level),
  87   _scan_cur_or_nonheap(cur), _scan_older(older)
  88 {}
  89 
  90 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  91   do {
  92     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  93                                        _scan_older);
  94   } while (!_gch->no_allocs_since_save_marks(_level));
  95 }
  96 
  97 DefNewGeneration::FastEvacuateFollowersClosure::
  98 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  99                              DefNewGeneration* gen,
 100                              FastScanClosure* cur, FastScanClosure* older) :
 101   _gch(gch), _level(level), _gen(gen),
 102   _scan_cur_or_nonheap(cur), _scan_older(older)
 103 {}
 104 
 105 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 106   do {
 107     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 108                                        _scan_older);
 109   } while (!_gch->no_allocs_since_save_marks(_level));
 110   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 111 }
 112 
 113 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 114     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 115 {
 116   assert(_g->level() == 0, "Optimized for youngest generation");
 117   _boundary = _g->reserved().end();
 118 }
 119 
 120 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 121 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 122 
 123 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 124     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 125 {
 126   assert(_g->level() == 0, "Optimized for youngest generation");
 127   _boundary = _g->reserved().end();
 128 }
 129 
 130 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 131 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 132 
 133 void KlassScanClosure::do_klass(Klass* klass) {
 134 #ifndef PRODUCT
 135   if (TraceScavenge) {
 136     ResourceMark rm;
 137     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 138                            p2i(klass),
 139                            klass->external_name(),
 140                            klass->has_modified_oops() ? "true" : "false");
 141   }
 142 #endif
 143 
 144   // If the klass has not been dirtied we know that there's
 145   // no references into  the young gen and we can skip it.
 146   if (klass->has_modified_oops()) {
 147     if (_accumulate_modified_oops) {
 148       klass->accumulate_modified_oops();
 149     }
 150 
 151     // Clear this state since we're going to scavenge all the metadata.
 152     klass->clear_modified_oops();
 153 
 154     // Tell the closure which Klass is being scanned so that it can be dirtied
 155     // if oops are left pointing into the young gen.
 156     _scavenge_closure->set_scanned_klass(klass);
 157 
 158     klass->oops_do(_scavenge_closure);
 159 
 160     _scavenge_closure->set_scanned_klass(NULL);
 161   }
 162 }
 163 
 164 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 165   _g(g)
 166 {
 167   assert(_g->level() == 0, "Optimized for youngest generation");
 168   _boundary = _g->reserved().end();
 169 }
 170 
 171 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 172 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 173 
 174 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 175 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 176 
 177 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 178                                    KlassRemSet* klass_rem_set)
 179     : _scavenge_closure(scavenge_closure),
 180       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 181 
 182 
 183 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 184                                    size_t initial_size,
 185                                    int level,
 186                                    const char* policy)
 187   : Generation(rs, initial_size, level),
 188     _promo_failure_drain_in_progress(false),
 189     _should_allocate_from_space(false)
 190 {
 191   MemRegion cmr((HeapWord*)_virtual_space.low(),
 192                 (HeapWord*)_virtual_space.high());
 193   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 194 
 195   _eden_space = new ContiguousSpace();
 196   _from_space = new ContiguousSpace();
 197   _to_space   = new ContiguousSpace();
 198 
 199   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 200     vm_exit_during_initialization("Could not allocate a new gen space");
 201 
 202   // Compute the maximum eden and survivor space sizes. These sizes
 203   // are computed assuming the entire reserved space is committed.
 204   // These values are exported as performance counters.
 205   uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 206   uintx size = _virtual_space.reserved_size();
 207   _max_survivor_size = compute_survivor_size(size, alignment);
 208   _max_eden_size = size - (2*_max_survivor_size);
 209 
 210   // allocate the performance counters
 211   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 212 
 213   // Generation counters -- generation 0, 3 subspaces
 214   _gen_counters = new GenerationCounters("new", 0, 3,
 215       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 216   _gc_counters = new CollectorCounters(policy, 0);
 217 
 218   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 219                                       _gen_counters);
 220   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 221                                       _gen_counters);
 222   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 223                                     _gen_counters);
 224 
 225   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 226   update_counters();
 227   _old_gen = NULL;
 228   _tenuring_threshold = MaxTenuringThreshold;
 229   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 230 
 231   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 232 }
 233 
 234 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 235                                                 bool clear_space,
 236                                                 bool mangle_space) {
 237   uintx alignment =
 238     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 239 
 240   // If the spaces are being cleared (only done at heap initialization
 241   // currently), the survivor spaces need not be empty.
 242   // Otherwise, no care is taken for used areas in the survivor spaces
 243   // so check.
 244   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 245     "Initialization of the survivor spaces assumes these are empty");
 246 
 247   // Compute sizes
 248   uintx size = _virtual_space.committed_size();
 249   uintx survivor_size = compute_survivor_size(size, alignment);
 250   uintx eden_size = size - (2*survivor_size);
 251   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 252 
 253   if (eden_size < minimum_eden_size) {
 254     // May happen due to 64Kb rounding, if so adjust eden size back up
 255     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 256     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 257     uintx unaligned_survivor_size =
 258       align_size_down(maximum_survivor_size, alignment);
 259     survivor_size = MAX2(unaligned_survivor_size, alignment);
 260     eden_size = size - (2*survivor_size);
 261     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 262     assert(eden_size >= minimum_eden_size, "just checking");
 263   }
 264 
 265   char *eden_start = _virtual_space.low();
 266   char *from_start = eden_start + eden_size;
 267   char *to_start   = from_start + survivor_size;
 268   char *to_end     = to_start   + survivor_size;
 269 
 270   assert(to_end == _virtual_space.high(), "just checking");
 271   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 272   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 273   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 274 
 275   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 276   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 277   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 278 
 279   // A minimum eden size implies that there is a part of eden that
 280   // is being used and that affects the initialization of any
 281   // newly formed eden.
 282   bool live_in_eden = minimum_eden_size > 0;
 283 
 284   // If not clearing the spaces, do some checking to verify that
 285   // the space are already mangled.
 286   if (!clear_space) {
 287     // Must check mangling before the spaces are reshaped.  Otherwise,
 288     // the bottom or end of one space may have moved into another
 289     // a failure of the check may not correctly indicate which space
 290     // is not properly mangled.
 291     if (ZapUnusedHeapArea) {
 292       HeapWord* limit = (HeapWord*) _virtual_space.high();
 293       eden()->check_mangled_unused_area(limit);
 294       from()->check_mangled_unused_area(limit);
 295         to()->check_mangled_unused_area(limit);
 296     }
 297   }
 298 
 299   // Reset the spaces for their new regions.
 300   eden()->initialize(edenMR,
 301                      clear_space && !live_in_eden,
 302                      SpaceDecorator::Mangle);
 303   // If clear_space and live_in_eden, we will not have cleared any
 304   // portion of eden above its top. This can cause newly
 305   // expanded space not to be mangled if using ZapUnusedHeapArea.
 306   // We explicitly do such mangling here.
 307   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 308     eden()->mangle_unused_area();
 309   }
 310   from()->initialize(fromMR, clear_space, mangle_space);
 311   to()->initialize(toMR, clear_space, mangle_space);
 312 
 313   // Set next compaction spaces.
 314   eden()->set_next_compaction_space(from());
 315   // The to-space is normally empty before a compaction so need
 316   // not be considered.  The exception is during promotion
 317   // failure handling when to-space can contain live objects.
 318   from()->set_next_compaction_space(NULL);
 319 }
 320 
 321 void DefNewGeneration::swap_spaces() {
 322   ContiguousSpace* s = from();
 323   _from_space        = to();
 324   _to_space          = s;
 325   eden()->set_next_compaction_space(from());
 326   // The to-space is normally empty before a compaction so need
 327   // not be considered.  The exception is during promotion
 328   // failure handling when to-space can contain live objects.
 329   from()->set_next_compaction_space(NULL);
 330 
 331   if (UsePerfData) {
 332     CSpaceCounters* c = _from_counters;
 333     _from_counters = _to_counters;
 334     _to_counters = c;
 335   }
 336 }
 337 
 338 bool DefNewGeneration::expand(size_t bytes) {
 339   MutexLocker x(ExpandHeap_lock);
 340   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 341   bool success = _virtual_space.expand_by(bytes);
 342   if (success && ZapUnusedHeapArea) {
 343     // Mangle newly committed space immediately because it
 344     // can be done here more simply that after the new
 345     // spaces have been computed.
 346     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 347     MemRegion mangle_region(prev_high, new_high);
 348     SpaceMangler::mangle_region(mangle_region);
 349   }
 350 
 351   // Do not attempt an expand-to-the reserve size.  The
 352   // request should properly observe the maximum size of
 353   // the generation so an expand-to-reserve should be
 354   // unnecessary.  Also a second call to expand-to-reserve
 355   // value potentially can cause an undue expansion.
 356   // For example if the first expand fail for unknown reasons,
 357   // but the second succeeds and expands the heap to its maximum
 358   // value.
 359   if (GC_locker::is_active()) {
 360     if (PrintGC && Verbose) {
 361       gclog_or_tty->print_cr("Garbage collection disabled, "
 362         "expanded heap instead");
 363     }
 364   }
 365 
 366   return success;
 367 }
 368 
 369 
 370 void DefNewGeneration::compute_new_size() {
 371   // This is called after a gc that includes the following generation
 372   // (which is required to exist.)  So from-space will normally be empty.
 373   // Note that we check both spaces, since if scavenge failed they revert roles.
 374   // If not we bail out (otherwise we would have to relocate the objects)
 375   if (!from()->is_empty() || !to()->is_empty()) {
 376     return;
 377   }
 378 
 379   int next_level = level() + 1;
 380   GenCollectedHeap* gch = GenCollectedHeap::heap();
 381   assert(next_level < gch->n_gens(),
 382          "DefNewGeneration cannot be an oldest gen");
 383 
 384   Generation* old_gen = gch->old_gen();
 385   size_t old_size = old_gen->capacity();
 386   size_t new_size_before = _virtual_space.committed_size();
 387   size_t min_new_size = spec()->init_size();
 388   size_t max_new_size = reserved().byte_size();
 389   assert(min_new_size <= new_size_before &&
 390          new_size_before <= max_new_size,
 391          "just checking");
 392   // All space sizes must be multiples of Generation::GenGrain.
 393   size_t alignment = Generation::GenGrain;
 394 
 395   // Compute desired new generation size based on NewRatio and
 396   // NewSizeThreadIncrease
 397   size_t desired_new_size = old_size/NewRatio;
 398   int threads_count = Threads::number_of_non_daemon_threads();
 399   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 400   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 401 
 402   // Adjust new generation size
 403   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 404   assert(desired_new_size <= max_new_size, "just checking");
 405 
 406   bool changed = false;
 407   if (desired_new_size > new_size_before) {
 408     size_t change = desired_new_size - new_size_before;
 409     assert(change % alignment == 0, "just checking");
 410     if (expand(change)) {
 411        changed = true;
 412     }
 413     // If the heap failed to expand to the desired size,
 414     // "changed" will be false.  If the expansion failed
 415     // (and at this point it was expected to succeed),
 416     // ignore the failure (leaving "changed" as false).
 417   }
 418   if (desired_new_size < new_size_before && eden()->is_empty()) {
 419     // bail out of shrinking if objects in eden
 420     size_t change = new_size_before - desired_new_size;
 421     assert(change % alignment == 0, "just checking");
 422     _virtual_space.shrink_by(change);
 423     changed = true;
 424   }
 425   if (changed) {
 426     // The spaces have already been mangled at this point but
 427     // may not have been cleared (set top = bottom) and should be.
 428     // Mangling was done when the heap was being expanded.
 429     compute_space_boundaries(eden()->used(),
 430                              SpaceDecorator::Clear,
 431                              SpaceDecorator::DontMangle);
 432     MemRegion cmr((HeapWord*)_virtual_space.low(),
 433                   (HeapWord*)_virtual_space.high());
 434     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 435     if (Verbose && PrintGC) {
 436       size_t new_size_after  = _virtual_space.committed_size();
 437       size_t eden_size_after = eden()->capacity();
 438       size_t survivor_size_after = from()->capacity();
 439       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 440         SIZE_FORMAT "K [eden="
 441         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 442         new_size_before/K, new_size_after/K,
 443         eden_size_after/K, survivor_size_after/K);
 444       if (WizardMode) {
 445         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 446           thread_increase_size/K, threads_count);
 447       }
 448       gclog_or_tty->cr();
 449     }
 450   }
 451 }
 452 
 453 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 454   assert(false, "NYI -- are you sure you want to call this?");
 455 }
 456 
 457 
 458 size_t DefNewGeneration::capacity() const {
 459   return eden()->capacity()
 460        + from()->capacity();  // to() is only used during scavenge
 461 }
 462 
 463 
 464 size_t DefNewGeneration::used() const {
 465   return eden()->used()
 466        + from()->used();      // to() is only used during scavenge
 467 }
 468 
 469 
 470 size_t DefNewGeneration::free() const {
 471   return eden()->free()
 472        + from()->free();      // to() is only used during scavenge
 473 }
 474 
 475 size_t DefNewGeneration::max_capacity() const {
 476   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 477   const size_t reserved_bytes = reserved().byte_size();
 478   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 479 }
 480 
 481 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 482   return eden()->free();
 483 }
 484 
 485 size_t DefNewGeneration::capacity_before_gc() const {
 486   return eden()->capacity();
 487 }
 488 
 489 size_t DefNewGeneration::contiguous_available() const {
 490   return eden()->free();
 491 }
 492 
 493 
 494 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 495 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 496 
 497 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 498   eden()->object_iterate(blk);
 499   from()->object_iterate(blk);
 500 }
 501 
 502 
 503 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 504                                      bool usedOnly) {
 505   blk->do_space(eden());
 506   blk->do_space(from());
 507   blk->do_space(to());
 508 }
 509 
 510 // The last collection bailed out, we are running out of heap space,
 511 // so we try to allocate the from-space, too.
 512 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 513   HeapWord* result = NULL;
 514   if (Verbose && PrintGCDetails) {
 515     gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
 516                         "  will_fail: %s"
 517                         "  heap_lock: %s"
 518                         "  free: " SIZE_FORMAT,
 519                         size,
 520                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 521                           "true" : "false",
 522                         Heap_lock->is_locked() ? "locked" : "unlocked",
 523                         from()->free());
 524   }
 525   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 526     if (Heap_lock->owned_by_self() ||
 527         (SafepointSynchronize::is_at_safepoint() &&
 528          Thread::current()->is_VM_thread())) {
 529       // If the Heap_lock is not locked by this thread, this will be called
 530       // again later with the Heap_lock held.
 531       result = from()->allocate(size);
 532     } else if (PrintGC && Verbose) {
 533       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 534     }
 535   } else if (PrintGC && Verbose) {
 536     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 537   }
 538   if (PrintGC && Verbose) {
 539     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 540   }
 541   return result;
 542 }
 543 
 544 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 545                                                 bool   is_tlab,
 546                                                 bool   parallel) {
 547   // We don't attempt to expand the young generation (but perhaps we should.)
 548   return allocate(size, is_tlab);
 549 }
 550 
 551 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 552   // Set the desired survivor size to half the real survivor space
 553   _tenuring_threshold =
 554     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 555 }
 556 
 557 void DefNewGeneration::collect(bool   full,
 558                                bool   clear_all_soft_refs,
 559                                size_t size,
 560                                bool   is_tlab) {
 561   assert(full || size > 0, "otherwise we don't want to collect");
 562 
 563   GenCollectedHeap* gch = GenCollectedHeap::heap();
 564 
 565   _gc_timer->register_gc_start();
 566   DefNewTracer gc_tracer;
 567   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 568 
 569   _old_gen = gch->old_gen();
 570 
 571   // If the next generation is too full to accommodate promotion
 572   // from this generation, pass on collection; let the next generation
 573   // do it.
 574   if (!collection_attempt_is_safe()) {
 575     if (Verbose && PrintGCDetails) {
 576       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 577     }
 578     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 579     return;
 580   }
 581   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 582 
 583   init_assuming_no_promotion_failure();
 584 
 585   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 586   // Capture heap used before collection (for printing).
 587   size_t gch_prev_used = gch->used();
 588 
 589   gch->trace_heap_before_gc(&gc_tracer);
 590 
 591   // These can be shared for all code paths
 592   IsAliveClosure is_alive(this);
 593   ScanWeakRefClosure scan_weak_ref(this);
 594 
 595   age_table()->clear();
 596   to()->clear(SpaceDecorator::Mangle);
 597 
 598   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 599 
 600   assert(gch->no_allocs_since_save_marks(0),
 601          "save marks have not been newly set.");
 602 
 603   // Not very pretty.
 604   CollectorPolicy* cp = gch->collector_policy();
 605 
 606   FastScanClosure fsc_with_no_gc_barrier(this, false);
 607   FastScanClosure fsc_with_gc_barrier(this, true);
 608 
 609   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 610                                       gch->rem_set()->klass_rem_set());
 611   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 612                                            &fsc_with_no_gc_barrier,
 613                                            false);
 614 
 615   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 616   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 617                                                   &fsc_with_no_gc_barrier,
 618                                                   &fsc_with_gc_barrier);
 619 
 620   assert(gch->no_allocs_since_save_marks(0),
 621          "save marks have not been newly set.");
 622 
 623   gch->gen_process_roots(_level,
 624                          true,  // Process younger gens, if any,
 625                                 // as strong roots.
 626                          true,  // activate StrongRootsScope
 627                          GenCollectedHeap::SO_ScavengeCodeCache,
 628                          GenCollectedHeap::StrongAndWeakRoots,
 629                          &fsc_with_no_gc_barrier,
 630                          &fsc_with_gc_barrier,
 631                          &cld_scan_closure);
 632 
 633   // "evacuate followers".
 634   evacuate_followers.do_void();
 635 
 636   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 637   ReferenceProcessor* rp = ref_processor();
 638   rp->setup_policy(clear_all_soft_refs);
 639   const ReferenceProcessorStats& stats =
 640   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 641                                     NULL, _gc_timer, gc_tracer.gc_id());
 642   gc_tracer.report_gc_reference_stats(stats);
 643 
 644   if (!_promotion_failed) {
 645     // Swap the survivor spaces.
 646     eden()->clear(SpaceDecorator::Mangle);
 647     from()->clear(SpaceDecorator::Mangle);
 648     if (ZapUnusedHeapArea) {
 649       // This is now done here because of the piece-meal mangling which
 650       // can check for valid mangling at intermediate points in the
 651       // collection(s).  When a minor collection fails to collect
 652       // sufficient space resizing of the young generation can occur
 653       // an redistribute the spaces in the young generation.  Mangle
 654       // here so that unzapped regions don't get distributed to
 655       // other spaces.
 656       to()->mangle_unused_area();
 657     }
 658     swap_spaces();
 659 
 660     assert(to()->is_empty(), "to space should be empty now");
 661 
 662     adjust_desired_tenuring_threshold();
 663 
 664     // A successful scavenge should restart the GC time limit count which is
 665     // for full GC's.
 666     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 667     size_policy->reset_gc_overhead_limit_count();
 668     assert(!gch->incremental_collection_failed(), "Should be clear");
 669   } else {
 670     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 671     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 672 
 673     remove_forwarding_pointers();
 674     if (PrintGCDetails) {
 675       gclog_or_tty->print(" (promotion failed) ");
 676     }
 677     // Add to-space to the list of space to compact
 678     // when a promotion failure has occurred.  In that
 679     // case there can be live objects in to-space
 680     // as a result of a partial evacuation of eden
 681     // and from-space.
 682     swap_spaces();   // For uniformity wrt ParNewGeneration.
 683     from()->set_next_compaction_space(to());
 684     gch->set_incremental_collection_failed();
 685 
 686     // Inform the next generation that a promotion failure occurred.
 687     _old_gen->promotion_failure_occurred();
 688     gc_tracer.report_promotion_failed(_promotion_failed_info);
 689 
 690     // Reset the PromotionFailureALot counters.
 691     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 692   }
 693   if (PrintGC && !PrintGCDetails) {
 694     gch->print_heap_change(gch_prev_used);
 695   }
 696   // set new iteration safe limit for the survivor spaces
 697   from()->set_concurrent_iteration_safe_limit(from()->top());
 698   to()->set_concurrent_iteration_safe_limit(to()->top());
 699 
 700   // We need to use a monotonically non-decreasing time in ms
 701   // or we will see time-warp warnings and os::javaTimeMillis()
 702   // does not guarantee monotonicity.
 703   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 704   update_time_of_last_gc(now);
 705 
 706   gch->trace_heap_after_gc(&gc_tracer);
 707   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 708 
 709   _gc_timer->register_gc_end();
 710 
 711   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 712 }
 713 
 714 class RemoveForwardPointerClosure: public ObjectClosure {
 715 public:
 716   void do_object(oop obj) {
 717     obj->init_mark();
 718   }
 719 };
 720 
 721 void DefNewGeneration::init_assuming_no_promotion_failure() {
 722   _promotion_failed = false;
 723   _promotion_failed_info.reset();
 724   from()->set_next_compaction_space(NULL);
 725 }
 726 
 727 void DefNewGeneration::remove_forwarding_pointers() {
 728   RemoveForwardPointerClosure rspc;
 729   eden()->object_iterate(&rspc);
 730   from()->object_iterate(&rspc);
 731 
 732   // Now restore saved marks, if any.
 733   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 734          "should be the same");
 735   while (!_objs_with_preserved_marks.is_empty()) {
 736     oop obj   = _objs_with_preserved_marks.pop();
 737     markOop m = _preserved_marks_of_objs.pop();
 738     obj->set_mark(m);
 739   }
 740   _objs_with_preserved_marks.clear(true);
 741   _preserved_marks_of_objs.clear(true);
 742 }
 743 
 744 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 745   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 746          "Oversaving!");
 747   _objs_with_preserved_marks.push(obj);
 748   _preserved_marks_of_objs.push(m);
 749 }
 750 
 751 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 752   if (m->must_be_preserved_for_promotion_failure(obj)) {
 753     preserve_mark(obj, m);
 754   }
 755 }
 756 
 757 void DefNewGeneration::handle_promotion_failure(oop old) {
 758   if (PrintPromotionFailure && !_promotion_failed) {
 759     gclog_or_tty->print(" (promotion failure size = %d) ",
 760                         old->size());
 761   }
 762   _promotion_failed = true;
 763   _promotion_failed_info.register_copy_failure(old->size());
 764   preserve_mark_if_necessary(old, old->mark());
 765   // forward to self
 766   old->forward_to(old);
 767 
 768   _promo_failure_scan_stack.push(old);
 769 
 770   if (!_promo_failure_drain_in_progress) {
 771     // prevent recursion in copy_to_survivor_space()
 772     _promo_failure_drain_in_progress = true;
 773     drain_promo_failure_scan_stack();
 774     _promo_failure_drain_in_progress = false;
 775   }
 776 }
 777 
 778 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 779   assert(is_in_reserved(old) && !old->is_forwarded(),
 780          "shouldn't be scavenging this oop");
 781   size_t s = old->size();
 782   oop obj = NULL;
 783 
 784   // Try allocating obj in to-space (unless too old)
 785   if (old->age() < tenuring_threshold()) {
 786     obj = (oop) to()->allocate_aligned(s);
 787   }
 788 
 789   // Otherwise try allocating obj tenured
 790   if (obj == NULL) {
 791     obj = _old_gen->promote(old, s);
 792     if (obj == NULL) {
 793       handle_promotion_failure(old);
 794       return old;
 795     }
 796   } else {
 797     // Prefetch beyond obj
 798     const intx interval = PrefetchCopyIntervalInBytes;
 799     Prefetch::write(obj, interval);
 800 
 801     // Copy obj
 802     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 803 
 804     // Increment age if obj still in new generation
 805     obj->incr_age();
 806     age_table()->add(obj, s);
 807   }
 808 
 809   // Done, insert forward pointer to obj in this header
 810   old->forward_to(obj);
 811 
 812   return obj;
 813 }
 814 
 815 void DefNewGeneration::drain_promo_failure_scan_stack() {
 816   while (!_promo_failure_scan_stack.is_empty()) {
 817      oop obj = _promo_failure_scan_stack.pop();
 818      obj->oop_iterate(_promo_failure_scan_stack_closure);
 819   }
 820 }
 821 
 822 void DefNewGeneration::save_marks() {
 823   eden()->set_saved_mark();
 824   to()->set_saved_mark();
 825   from()->set_saved_mark();
 826 }
 827 
 828 
 829 void DefNewGeneration::reset_saved_marks() {
 830   eden()->reset_saved_mark();
 831   to()->reset_saved_mark();
 832   from()->reset_saved_mark();
 833 }
 834 
 835 
 836 bool DefNewGeneration::no_allocs_since_save_marks() {
 837   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 838   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 839   return to()->saved_mark_at_top();
 840 }
 841 
 842 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 843                                                                 \
 844 void DefNewGeneration::                                         \
 845 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 846   cl->set_generation(this);                                     \
 847   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 848   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 849   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 850   cl->reset_generation();                                       \
 851   save_marks();                                                 \
 852 }
 853 
 854 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 855 
 856 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 857 
 858 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 859                                          size_t max_alloc_words) {
 860   if (requestor == this || _promotion_failed) return;
 861   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 862 
 863   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 864   if (to_space->top() > to_space->bottom()) {
 865     trace("to_space not empty when contribute_scratch called");
 866   }
 867   */
 868 
 869   ContiguousSpace* to_space = to();
 870   assert(to_space->end() >= to_space->top(), "pointers out of order");
 871   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 872   if (free_words >= MinFreeScratchWords) {
 873     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 874     sb->num_words = free_words;
 875     sb->next = list;
 876     list = sb;
 877   }
 878 }
 879 
 880 void DefNewGeneration::reset_scratch() {
 881   // If contributing scratch in to_space, mangle all of
 882   // to_space if ZapUnusedHeapArea.  This is needed because
 883   // top is not maintained while using to-space as scratch.
 884   if (ZapUnusedHeapArea) {
 885     to()->mangle_unused_area_complete();
 886   }
 887 }
 888 
 889 bool DefNewGeneration::collection_attempt_is_safe() {
 890   if (!to()->is_empty()) {
 891     if (Verbose && PrintGCDetails) {
 892       gclog_or_tty->print(" :: to is not empty :: ");
 893     }
 894     return false;
 895   }
 896   if (_old_gen == NULL) {
 897     GenCollectedHeap* gch = GenCollectedHeap::heap();
 898     _old_gen = gch->old_gen();
 899   }
 900   return _old_gen->promotion_attempt_is_safe(used());
 901 }
 902 
 903 void DefNewGeneration::gc_epilogue(bool full) {
 904   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 905 
 906   assert(!GC_locker::is_active(), "We should not be executing here");
 907   // Check if the heap is approaching full after a collection has
 908   // been done.  Generally the young generation is empty at
 909   // a minimum at the end of a collection.  If it is not, then
 910   // the heap is approaching full.
 911   GenCollectedHeap* gch = GenCollectedHeap::heap();
 912   if (full) {
 913     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 914     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 915       if (Verbose && PrintGCDetails) {
 916         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 917                             GCCause::to_string(gch->gc_cause()));
 918       }
 919       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 920       set_should_allocate_from_space(); // we seem to be running out of space
 921     } else {
 922       if (Verbose && PrintGCDetails) {
 923         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 924                             GCCause::to_string(gch->gc_cause()));
 925       }
 926       gch->clear_incremental_collection_failed(); // We just did a full collection
 927       clear_should_allocate_from_space(); // if set
 928     }
 929   } else {
 930 #ifdef ASSERT
 931     // It is possible that incremental_collection_failed() == true
 932     // here, because an attempted scavenge did not succeed. The policy
 933     // is normally expected to cause a full collection which should
 934     // clear that condition, so we should not be here twice in a row
 935     // with incremental_collection_failed() == true without having done
 936     // a full collection in between.
 937     if (!seen_incremental_collection_failed &&
 938         gch->incremental_collection_failed()) {
 939       if (Verbose && PrintGCDetails) {
 940         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 941                             GCCause::to_string(gch->gc_cause()));
 942       }
 943       seen_incremental_collection_failed = true;
 944     } else if (seen_incremental_collection_failed) {
 945       if (Verbose && PrintGCDetails) {
 946         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 947                             GCCause::to_string(gch->gc_cause()));
 948       }
 949       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 950              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 951              !gch->incremental_collection_failed(),
 952              "Twice in a row");
 953       seen_incremental_collection_failed = false;
 954     }
 955 #endif // ASSERT
 956   }
 957 
 958   if (ZapUnusedHeapArea) {
 959     eden()->check_mangled_unused_area_complete();
 960     from()->check_mangled_unused_area_complete();
 961     to()->check_mangled_unused_area_complete();
 962   }
 963 
 964   if (!CleanChunkPoolAsync) {
 965     Chunk::clean_chunk_pool();
 966   }
 967 
 968   // update the generation and space performance counters
 969   update_counters();
 970   gch->collector_policy()->counters()->update_counters();
 971 }
 972 
 973 void DefNewGeneration::record_spaces_top() {
 974   assert(ZapUnusedHeapArea, "Not mangling unused space");
 975   eden()->set_top_for_allocations();
 976   to()->set_top_for_allocations();
 977   from()->set_top_for_allocations();
 978 }
 979 
 980 void DefNewGeneration::ref_processor_init() {
 981   Generation::ref_processor_init();
 982 }
 983 
 984 
 985 void DefNewGeneration::update_counters() {
 986   if (UsePerfData) {
 987     _eden_counters->update_all();
 988     _from_counters->update_all();
 989     _to_counters->update_all();
 990     _gen_counters->update_all();
 991   }
 992 }
 993 
 994 void DefNewGeneration::verify() {
 995   eden()->verify();
 996   from()->verify();
 997     to()->verify();
 998 }
 999 
1000 void DefNewGeneration::print_on(outputStream* st) const {
1001   Generation::print_on(st);
1002   st->print("  eden");
1003   eden()->print_on(st);
1004   st->print("  from");
1005   from()->print_on(st);
1006   st->print("  to  ");
1007   to()->print_on(st);
1008 }
1009 
1010 
1011 const char* DefNewGeneration::name() const {
1012   return "def new generation";
1013 }
1014 
1015 // Moved from inline file as they are not called inline
1016 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1017   return eden();
1018 }
1019 
1020 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1021   // This is the slow-path allocation for the DefNewGeneration.
1022   // Most allocations are fast-path in compiled code.
1023   // We try to allocate from the eden.  If that works, we are happy.
1024   // Note that since DefNewGeneration supports lock-free allocation, we
1025   // have to use it here, as well.
1026   HeapWord* result = eden()->par_allocate(word_size);
1027   if (result != NULL) {
1028     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1029       _old_gen->sample_eden_chunk();
1030     }
1031   } else {
1032     // If the eden is full and the last collection bailed out, we are running
1033     // out of heap space, and we try to allocate the from-space, too.
1034     // allocate_from_space can't be inlined because that would introduce a
1035     // circular dependency at compile time.
1036     result = allocate_from_space(word_size);
1037   }
1038   return result;
1039 }
1040 
1041 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1042                                          bool is_tlab) {
1043   HeapWord* res = eden()->par_allocate(word_size);
1044   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1045     _old_gen->sample_eden_chunk();
1046   }
1047   return res;
1048 }
1049 
1050 size_t DefNewGeneration::tlab_capacity() const {
1051   return eden()->capacity();
1052 }
1053 
1054 size_t DefNewGeneration::tlab_used() const {
1055   return eden()->used();
1056 }
1057 
1058 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1059   return unsafe_max_alloc_nogc();
1060 }