1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/linkResolver.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "jvmtifiles/jvmtiEnv.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/metaspaceShared.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/instanceKlass.hpp"
  42 #include "oops/objArrayOop.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "prims/jvm_misc.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/jvmtiThreadState.hpp"
  49 #include "prims/privilegedStack.hpp"
  50 #include "runtime/arguments.hpp"
  51 #include "runtime/atomic.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/deoptimization.hpp"
  54 #include "runtime/fprofiler.hpp"
  55 #include "runtime/frame.inline.hpp"
  56 #include "runtime/init.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/jniPeriodicChecker.hpp"
  61 #include "runtime/memprofiler.hpp"
  62 #include "runtime/mutexLocker.hpp"
  63 #include "runtime/objectMonitor.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/osThread.hpp"
  66 #include "runtime/safepoint.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/statSampler.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/sweeper.hpp"
  71 #include "runtime/task.hpp"
  72 #include "runtime/thread.inline.hpp"
  73 #include "runtime/threadCritical.hpp"
  74 #include "runtime/threadLocalStorage.hpp"
  75 #include "runtime/vframe.hpp"
  76 #include "runtime/vframeArray.hpp"
  77 #include "runtime/vframe_hp.hpp"
  78 #include "runtime/vmThread.hpp"
  79 #include "runtime/vm_operations.hpp"
  80 #include "runtime/vm_version.hpp"
  81 #include "services/attachListener.hpp"
  82 #include "services/management.hpp"
  83 #include "services/memTracker.hpp"
  84 #include "services/threadService.hpp"
  85 #include "trace/tracing.hpp"
  86 #include "trace/traceMacros.hpp"
  87 #include "utilities/defaultStream.hpp"
  88 #include "utilities/dtrace.hpp"
  89 #include "utilities/events.hpp"
  90 #include "utilities/macros.hpp"
  91 #include "utilities/preserveException.hpp"
  92 #include "utilities/workgroup.hpp"
  93 #if INCLUDE_ALL_GCS
  94 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  95 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  96 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  97 #endif // INCLUDE_ALL_GCS
  98 #ifdef COMPILER1
  99 #include "c1/c1_Compiler.hpp"
 100 #endif
 101 #ifdef COMPILER2
 102 #include "opto/c2compiler.hpp"
 103 #include "opto/idealGraphPrinter.hpp"
 104 #endif
 105 #if INCLUDE_RTM_OPT
 106 #include "runtime/rtmLocking.hpp"
 107 #endif
 108 
 109 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 110 
 111 #ifdef DTRACE_ENABLED
 112 
 113 // Only bother with this argument setup if dtrace is available
 114 
 115   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 116   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 117 
 118   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 119     {                                                                      \
 120       ResourceMark rm(this);                                               \
 121       int len = 0;                                                         \
 122       const char* name = (javathread)->get_thread_name();                  \
 123       len = strlen(name);                                                  \
 124       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 125         (char *) name, len,                                                \
 126         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 127         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 128         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 129     }
 130 
 131 #else //  ndef DTRACE_ENABLED
 132 
 133   #define DTRACE_THREAD_PROBE(probe, javathread)
 134 
 135 #endif // ndef DTRACE_ENABLED
 136 
 137 
 138 // Class hierarchy
 139 // - Thread
 140 //   - VMThread
 141 //   - WatcherThread
 142 //   - ConcurrentMarkSweepThread
 143 //   - JavaThread
 144 //     - CompilerThread
 145 
 146 // ======= Thread ========
 147 // Support for forcing alignment of thread objects for biased locking
 148 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 149   if (UseBiasedLocking) {
 150     const int alignment = markOopDesc::biased_lock_alignment;
 151     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 152     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 153                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 154                                                          AllocFailStrategy::RETURN_NULL);
 155     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 156     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 157            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 158            "JavaThread alignment code overflowed allocated storage");
 159     if (TraceBiasedLocking) {
 160       if (aligned_addr != real_malloc_addr) {
 161         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 162                       real_malloc_addr, aligned_addr);
 163       }
 164     }
 165     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 166     return aligned_addr;
 167   } else {
 168     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 169                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 170   }
 171 }
 172 
 173 void Thread::operator delete(void* p) {
 174   if (UseBiasedLocking) {
 175     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 176     FreeHeap(real_malloc_addr);
 177   } else {
 178     FreeHeap(p);
 179   }
 180 }
 181 
 182 
 183 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 184 // JavaThread
 185 
 186 
 187 Thread::Thread() {
 188   // stack and get_thread
 189   set_stack_base(NULL);
 190   set_stack_size(0);
 191   set_self_raw_id(0);
 192   set_lgrp_id(-1);
 193 
 194   // allocated data structures
 195   set_osthread(NULL);
 196   set_resource_area(new (mtThread)ResourceArea());
 197   DEBUG_ONLY(_current_resource_mark = NULL;)
 198   set_handle_area(new (mtThread) HandleArea(NULL));
 199   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 200   set_active_handles(NULL);
 201   set_free_handle_block(NULL);
 202   set_last_handle_mark(NULL);
 203 
 204   // This initial value ==> never claimed.
 205   _oops_do_parity = 0;
 206 
 207   // the handle mark links itself to last_handle_mark
 208   new HandleMark(this);
 209 
 210   // plain initialization
 211   debug_only(_owned_locks = NULL;)
 212   debug_only(_allow_allocation_count = 0;)
 213   NOT_PRODUCT(_allow_safepoint_count = 0;)
 214   NOT_PRODUCT(_skip_gcalot = false;)
 215   _jvmti_env_iteration_count = 0;
 216   set_allocated_bytes(0);
 217   _vm_operation_started_count = 0;
 218   _vm_operation_completed_count = 0;
 219   _current_pending_monitor = NULL;
 220   _current_pending_monitor_is_from_java = true;
 221   _current_waiting_monitor = NULL;
 222   _num_nested_signal = 0;
 223   omFreeList = NULL;
 224   omFreeCount = 0;
 225   omFreeProvision = 32;
 226   omInUseList = NULL;
 227   omInUseCount = 0;
 228 
 229 #ifdef ASSERT
 230   _visited_for_critical_count = false;
 231 #endif
 232 
 233   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 234                          Monitor::_safepoint_check_sometimes);
 235   _suspend_flags = 0;
 236 
 237   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 238   _hashStateX = os::random();
 239   _hashStateY = 842502087;
 240   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 241   _hashStateW = 273326509;
 242 
 243   _OnTrap   = 0;
 244   _schedctl = NULL;
 245   _Stalled  = 0;
 246   _TypeTag  = 0x2BAD;
 247 
 248   // Many of the following fields are effectively final - immutable
 249   // Note that nascent threads can't use the Native Monitor-Mutex
 250   // construct until the _MutexEvent is initialized ...
 251   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 252   // we might instead use a stack of ParkEvents that we could provision on-demand.
 253   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 254   // and ::Release()
 255   _ParkEvent   = ParkEvent::Allocate(this);
 256   _SleepEvent  = ParkEvent::Allocate(this);
 257   _MutexEvent  = ParkEvent::Allocate(this);
 258   _MuxEvent    = ParkEvent::Allocate(this);
 259 
 260 #ifdef CHECK_UNHANDLED_OOPS
 261   if (CheckUnhandledOops) {
 262     _unhandled_oops = new UnhandledOops(this);
 263   }
 264 #endif // CHECK_UNHANDLED_OOPS
 265 #ifdef ASSERT
 266   if (UseBiasedLocking) {
 267     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 268     assert(this == _real_malloc_address ||
 269            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 270            "bug in forced alignment of thread objects");
 271   }
 272 #endif // ASSERT
 273 }
 274 
 275 void Thread::initialize_thread_local_storage() {
 276   // Note: Make sure this method only calls
 277   // non-blocking operations. Otherwise, it might not work
 278   // with the thread-startup/safepoint interaction.
 279 
 280   // During Java thread startup, safepoint code should allow this
 281   // method to complete because it may need to allocate memory to
 282   // store information for the new thread.
 283 
 284   // initialize structure dependent on thread local storage
 285   ThreadLocalStorage::set_thread(this);
 286 }
 287 
 288 void Thread::record_stack_base_and_size() {
 289   set_stack_base(os::current_stack_base());
 290   set_stack_size(os::current_stack_size());
 291   if (is_Java_thread()) {
 292     ((JavaThread*) this)->set_stack_overflow_limit();
 293   }
 294   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 295   // in initialize_thread(). Without the adjustment, stack size is
 296   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 297   // So far, only Solaris has real implementation of initialize_thread().
 298   //
 299   // set up any platform-specific state.
 300   os::initialize_thread(this);
 301 
 302 #if INCLUDE_NMT
 303   // record thread's native stack, stack grows downward
 304   address stack_low_addr = stack_base() - stack_size();
 305   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 306 #endif // INCLUDE_NMT
 307 }
 308 
 309 
 310 Thread::~Thread() {
 311   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 312   ObjectSynchronizer::omFlush(this);
 313 
 314   EVENT_THREAD_DESTRUCT(this);
 315 
 316   // stack_base can be NULL if the thread is never started or exited before
 317   // record_stack_base_and_size called. Although, we would like to ensure
 318   // that all started threads do call record_stack_base_and_size(), there is
 319   // not proper way to enforce that.
 320 #if INCLUDE_NMT
 321   if (_stack_base != NULL) {
 322     address low_stack_addr = stack_base() - stack_size();
 323     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 324 #ifdef ASSERT
 325     set_stack_base(NULL);
 326 #endif
 327   }
 328 #endif // INCLUDE_NMT
 329 
 330   // deallocate data structures
 331   delete resource_area();
 332   // since the handle marks are using the handle area, we have to deallocated the root
 333   // handle mark before deallocating the thread's handle area,
 334   assert(last_handle_mark() != NULL, "check we have an element");
 335   delete last_handle_mark();
 336   assert(last_handle_mark() == NULL, "check we have reached the end");
 337 
 338   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 339   // We NULL out the fields for good hygiene.
 340   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 341   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 342   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 343   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 344 
 345   delete handle_area();
 346   delete metadata_handles();
 347 
 348   // osthread() can be NULL, if creation of thread failed.
 349   if (osthread() != NULL) os::free_thread(osthread());
 350 
 351   delete _SR_lock;
 352 
 353   // clear thread local storage if the Thread is deleting itself
 354   if (this == Thread::current()) {
 355     ThreadLocalStorage::set_thread(NULL);
 356   } else {
 357     // In the case where we're not the current thread, invalidate all the
 358     // caches in case some code tries to get the current thread or the
 359     // thread that was destroyed, and gets stale information.
 360     ThreadLocalStorage::invalidate_all();
 361   }
 362   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 363 }
 364 
 365 // NOTE: dummy function for assertion purpose.
 366 void Thread::run() {
 367   ShouldNotReachHere();
 368 }
 369 
 370 #ifdef ASSERT
 371 // Private method to check for dangling thread pointer
 372 void check_for_dangling_thread_pointer(Thread *thread) {
 373   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 374          "possibility of dangling Thread pointer");
 375 }
 376 #endif
 377 
 378 ThreadPriority Thread::get_priority(const Thread* const thread) {
 379   ThreadPriority priority;
 380   // Can return an error!
 381   (void)os::get_priority(thread, priority);
 382   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 383   return priority;
 384 }
 385 
 386 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 387   debug_only(check_for_dangling_thread_pointer(thread);)
 388   // Can return an error!
 389   (void)os::set_priority(thread, priority);
 390 }
 391 
 392 
 393 void Thread::start(Thread* thread) {
 394   // Start is different from resume in that its safety is guaranteed by context or
 395   // being called from a Java method synchronized on the Thread object.
 396   if (!DisableStartThread) {
 397     if (thread->is_Java_thread()) {
 398       // Initialize the thread state to RUNNABLE before starting this thread.
 399       // Can not set it after the thread started because we do not know the
 400       // exact thread state at that time. It could be in MONITOR_WAIT or
 401       // in SLEEPING or some other state.
 402       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 403                                           java_lang_Thread::RUNNABLE);
 404     }
 405     os::start_thread(thread);
 406   }
 407 }
 408 
 409 // Enqueue a VM_Operation to do the job for us - sometime later
 410 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 411   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 412   VMThread::execute(vm_stop);
 413 }
 414 
 415 
 416 // Check if an external suspend request has completed (or has been
 417 // cancelled). Returns true if the thread is externally suspended and
 418 // false otherwise.
 419 //
 420 // The bits parameter returns information about the code path through
 421 // the routine. Useful for debugging:
 422 //
 423 // set in is_ext_suspend_completed():
 424 // 0x00000001 - routine was entered
 425 // 0x00000010 - routine return false at end
 426 // 0x00000100 - thread exited (return false)
 427 // 0x00000200 - suspend request cancelled (return false)
 428 // 0x00000400 - thread suspended (return true)
 429 // 0x00001000 - thread is in a suspend equivalent state (return true)
 430 // 0x00002000 - thread is native and walkable (return true)
 431 // 0x00004000 - thread is native_trans and walkable (needed retry)
 432 //
 433 // set in wait_for_ext_suspend_completion():
 434 // 0x00010000 - routine was entered
 435 // 0x00020000 - suspend request cancelled before loop (return false)
 436 // 0x00040000 - thread suspended before loop (return true)
 437 // 0x00080000 - suspend request cancelled in loop (return false)
 438 // 0x00100000 - thread suspended in loop (return true)
 439 // 0x00200000 - suspend not completed during retry loop (return false)
 440 
 441 // Helper class for tracing suspend wait debug bits.
 442 //
 443 // 0x00000100 indicates that the target thread exited before it could
 444 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 445 // 0x00080000 each indicate a cancelled suspend request so they don't
 446 // count as wait failures either.
 447 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 448 
 449 class TraceSuspendDebugBits : public StackObj {
 450  private:
 451   JavaThread * jt;
 452   bool         is_wait;
 453   bool         called_by_wait;  // meaningful when !is_wait
 454   uint32_t *   bits;
 455 
 456  public:
 457   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 458                         uint32_t *_bits) {
 459     jt             = _jt;
 460     is_wait        = _is_wait;
 461     called_by_wait = _called_by_wait;
 462     bits           = _bits;
 463   }
 464 
 465   ~TraceSuspendDebugBits() {
 466     if (!is_wait) {
 467 #if 1
 468       // By default, don't trace bits for is_ext_suspend_completed() calls.
 469       // That trace is very chatty.
 470       return;
 471 #else
 472       if (!called_by_wait) {
 473         // If tracing for is_ext_suspend_completed() is enabled, then only
 474         // trace calls to it from wait_for_ext_suspend_completion()
 475         return;
 476       }
 477 #endif
 478     }
 479 
 480     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 481       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 482         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 483         ResourceMark rm;
 484 
 485         tty->print_cr(
 486                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 487                       jt->get_thread_name(), *bits);
 488 
 489         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 490       }
 491     }
 492   }
 493 };
 494 #undef DEBUG_FALSE_BITS
 495 
 496 
 497 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 498                                           uint32_t *bits) {
 499   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 500 
 501   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 502   bool do_trans_retry;           // flag to force the retry
 503 
 504   *bits |= 0x00000001;
 505 
 506   do {
 507     do_trans_retry = false;
 508 
 509     if (is_exiting()) {
 510       // Thread is in the process of exiting. This is always checked
 511       // first to reduce the risk of dereferencing a freed JavaThread.
 512       *bits |= 0x00000100;
 513       return false;
 514     }
 515 
 516     if (!is_external_suspend()) {
 517       // Suspend request is cancelled. This is always checked before
 518       // is_ext_suspended() to reduce the risk of a rogue resume
 519       // confusing the thread that made the suspend request.
 520       *bits |= 0x00000200;
 521       return false;
 522     }
 523 
 524     if (is_ext_suspended()) {
 525       // thread is suspended
 526       *bits |= 0x00000400;
 527       return true;
 528     }
 529 
 530     // Now that we no longer do hard suspends of threads running
 531     // native code, the target thread can be changing thread state
 532     // while we are in this routine:
 533     //
 534     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 535     //
 536     // We save a copy of the thread state as observed at this moment
 537     // and make our decision about suspend completeness based on the
 538     // copy. This closes the race where the thread state is seen as
 539     // _thread_in_native_trans in the if-thread_blocked check, but is
 540     // seen as _thread_blocked in if-thread_in_native_trans check.
 541     JavaThreadState save_state = thread_state();
 542 
 543     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 544       // If the thread's state is _thread_blocked and this blocking
 545       // condition is known to be equivalent to a suspend, then we can
 546       // consider the thread to be externally suspended. This means that
 547       // the code that sets _thread_blocked has been modified to do
 548       // self-suspension if the blocking condition releases. We also
 549       // used to check for CONDVAR_WAIT here, but that is now covered by
 550       // the _thread_blocked with self-suspension check.
 551       //
 552       // Return true since we wouldn't be here unless there was still an
 553       // external suspend request.
 554       *bits |= 0x00001000;
 555       return true;
 556     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 557       // Threads running native code will self-suspend on native==>VM/Java
 558       // transitions. If its stack is walkable (should always be the case
 559       // unless this function is called before the actual java_suspend()
 560       // call), then the wait is done.
 561       *bits |= 0x00002000;
 562       return true;
 563     } else if (!called_by_wait && !did_trans_retry &&
 564                save_state == _thread_in_native_trans &&
 565                frame_anchor()->walkable()) {
 566       // The thread is transitioning from thread_in_native to another
 567       // thread state. check_safepoint_and_suspend_for_native_trans()
 568       // will force the thread to self-suspend. If it hasn't gotten
 569       // there yet we may have caught the thread in-between the native
 570       // code check above and the self-suspend. Lucky us. If we were
 571       // called by wait_for_ext_suspend_completion(), then it
 572       // will be doing the retries so we don't have to.
 573       //
 574       // Since we use the saved thread state in the if-statement above,
 575       // there is a chance that the thread has already transitioned to
 576       // _thread_blocked by the time we get here. In that case, we will
 577       // make a single unnecessary pass through the logic below. This
 578       // doesn't hurt anything since we still do the trans retry.
 579 
 580       *bits |= 0x00004000;
 581 
 582       // Once the thread leaves thread_in_native_trans for another
 583       // thread state, we break out of this retry loop. We shouldn't
 584       // need this flag to prevent us from getting back here, but
 585       // sometimes paranoia is good.
 586       did_trans_retry = true;
 587 
 588       // We wait for the thread to transition to a more usable state.
 589       for (int i = 1; i <= SuspendRetryCount; i++) {
 590         // We used to do an "os::yield_all(i)" call here with the intention
 591         // that yielding would increase on each retry. However, the parameter
 592         // is ignored on Linux which means the yield didn't scale up. Waiting
 593         // on the SR_lock below provides a much more predictable scale up for
 594         // the delay. It also provides a simple/direct point to check for any
 595         // safepoint requests from the VMThread
 596 
 597         // temporarily drops SR_lock while doing wait with safepoint check
 598         // (if we're a JavaThread - the WatcherThread can also call this)
 599         // and increase delay with each retry
 600         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 601 
 602         // check the actual thread state instead of what we saved above
 603         if (thread_state() != _thread_in_native_trans) {
 604           // the thread has transitioned to another thread state so
 605           // try all the checks (except this one) one more time.
 606           do_trans_retry = true;
 607           break;
 608         }
 609       } // end retry loop
 610 
 611 
 612     }
 613   } while (do_trans_retry);
 614 
 615   *bits |= 0x00000010;
 616   return false;
 617 }
 618 
 619 // Wait for an external suspend request to complete (or be cancelled).
 620 // Returns true if the thread is externally suspended and false otherwise.
 621 //
 622 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 623                                                  uint32_t *bits) {
 624   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 625                              false /* !called_by_wait */, bits);
 626 
 627   // local flag copies to minimize SR_lock hold time
 628   bool is_suspended;
 629   bool pending;
 630   uint32_t reset_bits;
 631 
 632   // set a marker so is_ext_suspend_completed() knows we are the caller
 633   *bits |= 0x00010000;
 634 
 635   // We use reset_bits to reinitialize the bits value at the top of
 636   // each retry loop. This allows the caller to make use of any
 637   // unused bits for their own marking purposes.
 638   reset_bits = *bits;
 639 
 640   {
 641     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 642     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 643                                             delay, bits);
 644     pending = is_external_suspend();
 645   }
 646   // must release SR_lock to allow suspension to complete
 647 
 648   if (!pending) {
 649     // A cancelled suspend request is the only false return from
 650     // is_ext_suspend_completed() that keeps us from entering the
 651     // retry loop.
 652     *bits |= 0x00020000;
 653     return false;
 654   }
 655 
 656   if (is_suspended) {
 657     *bits |= 0x00040000;
 658     return true;
 659   }
 660 
 661   for (int i = 1; i <= retries; i++) {
 662     *bits = reset_bits;  // reinit to only track last retry
 663 
 664     // We used to do an "os::yield_all(i)" call here with the intention
 665     // that yielding would increase on each retry. However, the parameter
 666     // is ignored on Linux which means the yield didn't scale up. Waiting
 667     // on the SR_lock below provides a much more predictable scale up for
 668     // the delay. It also provides a simple/direct point to check for any
 669     // safepoint requests from the VMThread
 670 
 671     {
 672       MutexLocker ml(SR_lock());
 673       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 674       // can also call this)  and increase delay with each retry
 675       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 676 
 677       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 678                                               delay, bits);
 679 
 680       // It is possible for the external suspend request to be cancelled
 681       // (by a resume) before the actual suspend operation is completed.
 682       // Refresh our local copy to see if we still need to wait.
 683       pending = is_external_suspend();
 684     }
 685 
 686     if (!pending) {
 687       // A cancelled suspend request is the only false return from
 688       // is_ext_suspend_completed() that keeps us from staying in the
 689       // retry loop.
 690       *bits |= 0x00080000;
 691       return false;
 692     }
 693 
 694     if (is_suspended) {
 695       *bits |= 0x00100000;
 696       return true;
 697     }
 698   } // end retry loop
 699 
 700   // thread did not suspend after all our retries
 701   *bits |= 0x00200000;
 702   return false;
 703 }
 704 
 705 #ifndef PRODUCT
 706 void JavaThread::record_jump(address target, address instr, const char* file,
 707                              int line) {
 708 
 709   // This should not need to be atomic as the only way for simultaneous
 710   // updates is via interrupts. Even then this should be rare or non-existent
 711   // and we don't care that much anyway.
 712 
 713   int index = _jmp_ring_index;
 714   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 715   _jmp_ring[index]._target = (intptr_t) target;
 716   _jmp_ring[index]._instruction = (intptr_t) instr;
 717   _jmp_ring[index]._file = file;
 718   _jmp_ring[index]._line = line;
 719 }
 720 #endif // PRODUCT
 721 
 722 // Called by flat profiler
 723 // Callers have already called wait_for_ext_suspend_completion
 724 // The assertion for that is currently too complex to put here:
 725 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 726   bool gotframe = false;
 727   // self suspension saves needed state.
 728   if (has_last_Java_frame() && _anchor.walkable()) {
 729     *_fr = pd_last_frame();
 730     gotframe = true;
 731   }
 732   return gotframe;
 733 }
 734 
 735 void Thread::interrupt(Thread* thread) {
 736   debug_only(check_for_dangling_thread_pointer(thread);)
 737   os::interrupt(thread);
 738 }
 739 
 740 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 741   debug_only(check_for_dangling_thread_pointer(thread);)
 742   // Note:  If clear_interrupted==false, this simply fetches and
 743   // returns the value of the field osthread()->interrupted().
 744   return os::is_interrupted(thread, clear_interrupted);
 745 }
 746 
 747 
 748 // GC Support
 749 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 750   jint thread_parity = _oops_do_parity;
 751   if (thread_parity != strong_roots_parity) {
 752     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 753     if (res == thread_parity) {
 754       return true;
 755     } else {
 756       guarantee(res == strong_roots_parity, "Or else what?");
 757       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 758              "Should only fail when parallel.");
 759       return false;
 760     }
 761   }
 762   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 763          "Should only fail when parallel.");
 764   return false;
 765 }
 766 
 767 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 768   active_handles()->oops_do(f);
 769   // Do oop for ThreadShadow
 770   f->do_oop((oop*)&_pending_exception);
 771   handle_area()->oops_do(f);
 772 }
 773 
 774 void Thread::nmethods_do(CodeBlobClosure* cf) {
 775   // no nmethods in a generic thread...
 776 }
 777 
 778 void Thread::metadata_handles_do(void f(Metadata*)) {
 779   // Only walk the Handles in Thread.
 780   if (metadata_handles() != NULL) {
 781     for (int i = 0; i< metadata_handles()->length(); i++) {
 782       f(metadata_handles()->at(i));
 783     }
 784   }
 785 }
 786 
 787 void Thread::print_on(outputStream* st) const {
 788   // get_priority assumes osthread initialized
 789   if (osthread() != NULL) {
 790     int os_prio;
 791     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 792       st->print("os_prio=%d ", os_prio);
 793     }
 794     st->print("tid=" INTPTR_FORMAT " ", this);
 795     ext().print_on(st);
 796     osthread()->print_on(st);
 797   }
 798   debug_only(if (WizardMode) print_owned_locks_on(st);)
 799 }
 800 
 801 // Thread::print_on_error() is called by fatal error handler. Don't use
 802 // any lock or allocate memory.
 803 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 804   if (is_VM_thread())                 st->print("VMThread");
 805   else if (is_Compiler_thread())      st->print("CompilerThread");
 806   else if (is_Java_thread())          st->print("JavaThread");
 807   else if (is_GC_task_thread())       st->print("GCTaskThread");
 808   else if (is_Watcher_thread())       st->print("WatcherThread");
 809   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 810   else                                st->print("Thread");
 811 
 812   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 813             _stack_base - _stack_size, _stack_base);
 814 
 815   if (osthread()) {
 816     st->print(" [id=%d]", osthread()->thread_id());
 817   }
 818 }
 819 
 820 #ifdef ASSERT
 821 void Thread::print_owned_locks_on(outputStream* st) const {
 822   Monitor *cur = _owned_locks;
 823   if (cur == NULL) {
 824     st->print(" (no locks) ");
 825   } else {
 826     st->print_cr(" Locks owned:");
 827     while (cur) {
 828       cur->print_on(st);
 829       cur = cur->next();
 830     }
 831   }
 832 }
 833 
 834 static int ref_use_count  = 0;
 835 
 836 bool Thread::owns_locks_but_compiled_lock() const {
 837   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 838     if (cur != Compile_lock) return true;
 839   }
 840   return false;
 841 }
 842 
 843 
 844 #endif
 845 
 846 #ifndef PRODUCT
 847 
 848 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 849 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 850 // no threads which allow_vm_block's are held
 851 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 852   // Check if current thread is allowed to block at a safepoint
 853   if (!(_allow_safepoint_count == 0)) {
 854     fatal("Possible safepoint reached by thread that does not allow it");
 855   }
 856   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 857     fatal("LEAF method calling lock?");
 858   }
 859 
 860 #ifdef ASSERT
 861   if (potential_vm_operation && is_Java_thread()
 862       && !Universe::is_bootstrapping()) {
 863     // Make sure we do not hold any locks that the VM thread also uses.
 864     // This could potentially lead to deadlocks
 865     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 866       // Threads_lock is special, since the safepoint synchronization will not start before this is
 867       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 868       // since it is used to transfer control between JavaThreads and the VMThread
 869       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 870       if ((cur->allow_vm_block() &&
 871            cur != Threads_lock &&
 872            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 873            cur != VMOperationRequest_lock &&
 874            cur != VMOperationQueue_lock) ||
 875            cur->rank() == Mutex::special) {
 876         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 877       }
 878     }
 879   }
 880 
 881   if (GCALotAtAllSafepoints) {
 882     // We could enter a safepoint here and thus have a gc
 883     InterfaceSupport::check_gc_alot();
 884   }
 885 #endif
 886 }
 887 #endif
 888 
 889 bool Thread::is_in_stack(address adr) const {
 890   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 891   address end = os::current_stack_pointer();
 892   // Allow non Java threads to call this without stack_base
 893   if (_stack_base == NULL) return true;
 894   if (stack_base() >= adr && adr >= end) return true;
 895 
 896   return false;
 897 }
 898 
 899 
 900 bool Thread::is_in_usable_stack(address adr) const {
 901   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 902   size_t usable_stack_size = _stack_size - stack_guard_size;
 903 
 904   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 905 }
 906 
 907 
 908 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 909 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 910 // used for compilation in the future. If that change is made, the need for these methods
 911 // should be revisited, and they should be removed if possible.
 912 
 913 bool Thread::is_lock_owned(address adr) const {
 914   return on_local_stack(adr);
 915 }
 916 
 917 bool Thread::set_as_starting_thread() {
 918   // NOTE: this must be called inside the main thread.
 919   return os::create_main_thread((JavaThread*)this);
 920 }
 921 
 922 static void initialize_class(Symbol* class_name, TRAPS) {
 923   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 924   InstanceKlass::cast(klass)->initialize(CHECK);
 925 }
 926 
 927 
 928 // Creates the initial ThreadGroup
 929 static Handle create_initial_thread_group(TRAPS) {
 930   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 931   instanceKlassHandle klass (THREAD, k);
 932 
 933   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 934   {
 935     JavaValue result(T_VOID);
 936     JavaCalls::call_special(&result,
 937                             system_instance,
 938                             klass,
 939                             vmSymbols::object_initializer_name(),
 940                             vmSymbols::void_method_signature(),
 941                             CHECK_NH);
 942   }
 943   Universe::set_system_thread_group(system_instance());
 944 
 945   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 946   {
 947     JavaValue result(T_VOID);
 948     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 949     JavaCalls::call_special(&result,
 950                             main_instance,
 951                             klass,
 952                             vmSymbols::object_initializer_name(),
 953                             vmSymbols::threadgroup_string_void_signature(),
 954                             system_instance,
 955                             string,
 956                             CHECK_NH);
 957   }
 958   return main_instance;
 959 }
 960 
 961 // Creates the initial Thread
 962 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 963                                  TRAPS) {
 964   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 965   instanceKlassHandle klass (THREAD, k);
 966   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 967 
 968   java_lang_Thread::set_thread(thread_oop(), thread);
 969   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 970   thread->set_threadObj(thread_oop());
 971 
 972   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 973 
 974   JavaValue result(T_VOID);
 975   JavaCalls::call_special(&result, thread_oop,
 976                           klass,
 977                           vmSymbols::object_initializer_name(),
 978                           vmSymbols::threadgroup_string_void_signature(),
 979                           thread_group,
 980                           string,
 981                           CHECK_NULL);
 982   return thread_oop();
 983 }
 984 
 985 static void call_initializeSystemClass(TRAPS) {
 986   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 987   instanceKlassHandle klass (THREAD, k);
 988 
 989   JavaValue result(T_VOID);
 990   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 991                          vmSymbols::void_method_signature(), CHECK);
 992 }
 993 
 994 char java_runtime_name[128] = "";
 995 char java_runtime_version[128] = "";
 996 
 997 // extract the JRE name from sun.misc.Version.java_runtime_name
 998 static const char* get_java_runtime_name(TRAPS) {
 999   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1000                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1001   fieldDescriptor fd;
1002   bool found = k != NULL &&
1003                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1004                                                         vmSymbols::string_signature(), &fd);
1005   if (found) {
1006     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1007     if (name_oop == NULL) {
1008       return NULL;
1009     }
1010     const char* name = java_lang_String::as_utf8_string(name_oop,
1011                                                         java_runtime_name,
1012                                                         sizeof(java_runtime_name));
1013     return name;
1014   } else {
1015     return NULL;
1016   }
1017 }
1018 
1019 // extract the JRE version from sun.misc.Version.java_runtime_version
1020 static const char* get_java_runtime_version(TRAPS) {
1021   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1022                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1023   fieldDescriptor fd;
1024   bool found = k != NULL &&
1025                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1026                                                         vmSymbols::string_signature(), &fd);
1027   if (found) {
1028     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1029     if (name_oop == NULL) {
1030       return NULL;
1031     }
1032     const char* name = java_lang_String::as_utf8_string(name_oop,
1033                                                         java_runtime_version,
1034                                                         sizeof(java_runtime_version));
1035     return name;
1036   } else {
1037     return NULL;
1038   }
1039 }
1040 
1041 // General purpose hook into Java code, run once when the VM is initialized.
1042 // The Java library method itself may be changed independently from the VM.
1043 static void call_postVMInitHook(TRAPS) {
1044   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1045   instanceKlassHandle klass (THREAD, k);
1046   if (klass.not_null()) {
1047     JavaValue result(T_VOID);
1048     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1049                            vmSymbols::void_method_signature(),
1050                            CHECK);
1051   }
1052 }
1053 
1054 static void reset_vm_info_property(TRAPS) {
1055   // the vm info string
1056   ResourceMark rm(THREAD);
1057   const char *vm_info = VM_Version::vm_info_string();
1058 
1059   // java.lang.System class
1060   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1061   instanceKlassHandle klass (THREAD, k);
1062 
1063   // setProperty arguments
1064   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1065   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1066 
1067   // return value
1068   JavaValue r(T_OBJECT);
1069 
1070   // public static String setProperty(String key, String value);
1071   JavaCalls::call_static(&r,
1072                          klass,
1073                          vmSymbols::setProperty_name(),
1074                          vmSymbols::string_string_string_signature(),
1075                          key_str,
1076                          value_str,
1077                          CHECK);
1078 }
1079 
1080 
1081 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1082                                     bool daemon, TRAPS) {
1083   assert(thread_group.not_null(), "thread group should be specified");
1084   assert(threadObj() == NULL, "should only create Java thread object once");
1085 
1086   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1087   instanceKlassHandle klass (THREAD, k);
1088   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1089 
1090   java_lang_Thread::set_thread(thread_oop(), this);
1091   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1092   set_threadObj(thread_oop());
1093 
1094   JavaValue result(T_VOID);
1095   if (thread_name != NULL) {
1096     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1097     // Thread gets assigned specified name and null target
1098     JavaCalls::call_special(&result,
1099                             thread_oop,
1100                             klass,
1101                             vmSymbols::object_initializer_name(),
1102                             vmSymbols::threadgroup_string_void_signature(),
1103                             thread_group, // Argument 1
1104                             name,         // Argument 2
1105                             THREAD);
1106   } else {
1107     // Thread gets assigned name "Thread-nnn" and null target
1108     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1109     JavaCalls::call_special(&result,
1110                             thread_oop,
1111                             klass,
1112                             vmSymbols::object_initializer_name(),
1113                             vmSymbols::threadgroup_runnable_void_signature(),
1114                             thread_group, // Argument 1
1115                             Handle(),     // Argument 2
1116                             THREAD);
1117   }
1118 
1119 
1120   if (daemon) {
1121     java_lang_Thread::set_daemon(thread_oop());
1122   }
1123 
1124   if (HAS_PENDING_EXCEPTION) {
1125     return;
1126   }
1127 
1128   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1129   Handle threadObj(THREAD, this->threadObj());
1130 
1131   JavaCalls::call_special(&result,
1132                           thread_group,
1133                           group,
1134                           vmSymbols::add_method_name(),
1135                           vmSymbols::thread_void_signature(),
1136                           threadObj,          // Arg 1
1137                           THREAD);
1138 }
1139 
1140 // NamedThread --  non-JavaThread subclasses with multiple
1141 // uniquely named instances should derive from this.
1142 NamedThread::NamedThread() : Thread() {
1143   _name = NULL;
1144   _processed_thread = NULL;
1145 }
1146 
1147 NamedThread::~NamedThread() {
1148   if (_name != NULL) {
1149     FREE_C_HEAP_ARRAY(char, _name);
1150     _name = NULL;
1151   }
1152 }
1153 
1154 void NamedThread::set_name(const char* format, ...) {
1155   guarantee(_name == NULL, "Only get to set name once.");
1156   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1157   guarantee(_name != NULL, "alloc failure");
1158   va_list ap;
1159   va_start(ap, format);
1160   jio_vsnprintf(_name, max_name_len, format, ap);
1161   va_end(ap);
1162 }
1163 
1164 void NamedThread::initialize_named_thread() {
1165   set_native_thread_name(name());
1166 }
1167 
1168 void NamedThread::print_on(outputStream* st) const {
1169   st->print("\"%s\" ", name());
1170   Thread::print_on(st);
1171   st->cr();
1172 }
1173 
1174 
1175 // ======= WatcherThread ========
1176 
1177 // The watcher thread exists to simulate timer interrupts.  It should
1178 // be replaced by an abstraction over whatever native support for
1179 // timer interrupts exists on the platform.
1180 
1181 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1182 bool WatcherThread::_startable = false;
1183 volatile bool  WatcherThread::_should_terminate = false;
1184 
1185 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1186   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1187   if (os::create_thread(this, os::watcher_thread)) {
1188     _watcher_thread = this;
1189 
1190     // Set the watcher thread to the highest OS priority which should not be
1191     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1192     // is created. The only normal thread using this priority is the reference
1193     // handler thread, which runs for very short intervals only.
1194     // If the VMThread's priority is not lower than the WatcherThread profiling
1195     // will be inaccurate.
1196     os::set_priority(this, MaxPriority);
1197     if (!DisableStartThread) {
1198       os::start_thread(this);
1199     }
1200   }
1201 }
1202 
1203 int WatcherThread::sleep() const {
1204   // The WatcherThread does not participate in the safepoint protocol
1205   // for the PeriodicTask_lock because it is not a JavaThread.
1206   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1207 
1208   if (_should_terminate) {
1209     // check for termination before we do any housekeeping or wait
1210     return 0;  // we did not sleep.
1211   }
1212 
1213   // remaining will be zero if there are no tasks,
1214   // causing the WatcherThread to sleep until a task is
1215   // enrolled
1216   int remaining = PeriodicTask::time_to_wait();
1217   int time_slept = 0;
1218 
1219   // we expect this to timeout - we only ever get unparked when
1220   // we should terminate or when a new task has been enrolled
1221   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1222 
1223   jlong time_before_loop = os::javaTimeNanos();
1224 
1225   while (true) {
1226     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1227                                             remaining);
1228     jlong now = os::javaTimeNanos();
1229 
1230     if (remaining == 0) {
1231       // if we didn't have any tasks we could have waited for a long time
1232       // consider the time_slept zero and reset time_before_loop
1233       time_slept = 0;
1234       time_before_loop = now;
1235     } else {
1236       // need to recalculate since we might have new tasks in _tasks
1237       time_slept = (int) ((now - time_before_loop) / 1000000);
1238     }
1239 
1240     // Change to task list or spurious wakeup of some kind
1241     if (timedout || _should_terminate) {
1242       break;
1243     }
1244 
1245     remaining = PeriodicTask::time_to_wait();
1246     if (remaining == 0) {
1247       // Last task was just disenrolled so loop around and wait until
1248       // another task gets enrolled
1249       continue;
1250     }
1251 
1252     remaining -= time_slept;
1253     if (remaining <= 0) {
1254       break;
1255     }
1256   }
1257 
1258   return time_slept;
1259 }
1260 
1261 void WatcherThread::run() {
1262   assert(this == watcher_thread(), "just checking");
1263 
1264   this->record_stack_base_and_size();
1265   this->initialize_thread_local_storage();
1266   this->set_native_thread_name(this->name());
1267   this->set_active_handles(JNIHandleBlock::allocate_block());
1268   while (true) {
1269     assert(watcher_thread() == Thread::current(), "thread consistency check");
1270     assert(watcher_thread() == this, "thread consistency check");
1271 
1272     // Calculate how long it'll be until the next PeriodicTask work
1273     // should be done, and sleep that amount of time.
1274     int time_waited = sleep();
1275 
1276     if (is_error_reported()) {
1277       // A fatal error has happened, the error handler(VMError::report_and_die)
1278       // should abort JVM after creating an error log file. However in some
1279       // rare cases, the error handler itself might deadlock. Here we try to
1280       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1281       //
1282       // This code is in WatcherThread because WatcherThread wakes up
1283       // periodically so the fatal error handler doesn't need to do anything;
1284       // also because the WatcherThread is less likely to crash than other
1285       // threads.
1286 
1287       for (;;) {
1288         if (!ShowMessageBoxOnError
1289             && (OnError == NULL || OnError[0] == '\0')
1290             && Arguments::abort_hook() == NULL) {
1291           os::sleep(this, 2 * 60 * 1000, false);
1292           fdStream err(defaultStream::output_fd());
1293           err.print_raw_cr("# [ timer expired, abort... ]");
1294           // skip atexit/vm_exit/vm_abort hooks
1295           os::die();
1296         }
1297 
1298         // Wake up 5 seconds later, the fatal handler may reset OnError or
1299         // ShowMessageBoxOnError when it is ready to abort.
1300         os::sleep(this, 5 * 1000, false);
1301       }
1302     }
1303 
1304     if (_should_terminate) {
1305       // check for termination before posting the next tick
1306       break;
1307     }
1308 
1309     PeriodicTask::real_time_tick(time_waited);
1310   }
1311 
1312   // Signal that it is terminated
1313   {
1314     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1315     _watcher_thread = NULL;
1316     Terminator_lock->notify();
1317   }
1318 
1319   // Thread destructor usually does this..
1320   ThreadLocalStorage::set_thread(NULL);
1321 }
1322 
1323 void WatcherThread::start() {
1324   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1325 
1326   if (watcher_thread() == NULL && _startable) {
1327     _should_terminate = false;
1328     // Create the single instance of WatcherThread
1329     new WatcherThread();
1330   }
1331 }
1332 
1333 void WatcherThread::make_startable() {
1334   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1335   _startable = true;
1336 }
1337 
1338 void WatcherThread::stop() {
1339   {
1340     // Follow normal safepoint aware lock enter protocol since the
1341     // WatcherThread is stopped by another JavaThread.
1342     MutexLocker ml(PeriodicTask_lock);
1343     _should_terminate = true;
1344 
1345     WatcherThread* watcher = watcher_thread();
1346     if (watcher != NULL) {
1347       // unpark the WatcherThread so it can see that it should terminate
1348       watcher->unpark();
1349     }
1350   }
1351 
1352   MutexLocker mu(Terminator_lock);
1353 
1354   while (watcher_thread() != NULL) {
1355     // This wait should make safepoint checks, wait without a timeout,
1356     // and wait as a suspend-equivalent condition.
1357     //
1358     // Note: If the FlatProfiler is running, then this thread is waiting
1359     // for the WatcherThread to terminate and the WatcherThread, via the
1360     // FlatProfiler task, is waiting for the external suspend request on
1361     // this thread to complete. wait_for_ext_suspend_completion() will
1362     // eventually timeout, but that takes time. Making this wait a
1363     // suspend-equivalent condition solves that timeout problem.
1364     //
1365     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1366                           Mutex::_as_suspend_equivalent_flag);
1367   }
1368 }
1369 
1370 void WatcherThread::unpark() {
1371   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1372   PeriodicTask_lock->notify();
1373 }
1374 
1375 void WatcherThread::print_on(outputStream* st) const {
1376   st->print("\"%s\" ", name());
1377   Thread::print_on(st);
1378   st->cr();
1379 }
1380 
1381 // ======= JavaThread ========
1382 
1383 // A JavaThread is a normal Java thread
1384 
1385 void JavaThread::initialize() {
1386   // Initialize fields
1387 
1388   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1389   set_claimed_par_id(UINT_MAX);
1390 
1391   set_saved_exception_pc(NULL);
1392   set_threadObj(NULL);
1393   _anchor.clear();
1394   set_entry_point(NULL);
1395   set_jni_functions(jni_functions());
1396   set_callee_target(NULL);
1397   set_vm_result(NULL);
1398   set_vm_result_2(NULL);
1399   set_vframe_array_head(NULL);
1400   set_vframe_array_last(NULL);
1401   set_deferred_locals(NULL);
1402   set_deopt_mark(NULL);
1403   set_deopt_nmethod(NULL);
1404   clear_must_deopt_id();
1405   set_monitor_chunks(NULL);
1406   set_next(NULL);
1407   set_thread_state(_thread_new);
1408   _terminated = _not_terminated;
1409   _privileged_stack_top = NULL;
1410   _array_for_gc = NULL;
1411   _suspend_equivalent = false;
1412   _in_deopt_handler = 0;
1413   _doing_unsafe_access = false;
1414   _stack_guard_state = stack_guard_unused;
1415   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1416   _exception_pc  = 0;
1417   _exception_handler_pc = 0;
1418   _is_method_handle_return = 0;
1419   _jvmti_thread_state= NULL;
1420   _should_post_on_exceptions_flag = JNI_FALSE;
1421   _jvmti_get_loaded_classes_closure = NULL;
1422   _interp_only_mode    = 0;
1423   _special_runtime_exit_condition = _no_async_condition;
1424   _pending_async_exception = NULL;
1425   _thread_stat = NULL;
1426   _thread_stat = new ThreadStatistics();
1427   _blocked_on_compilation = false;
1428   _jni_active_critical = 0;
1429   _pending_jni_exception_check_fn = NULL;
1430   _do_not_unlock_if_synchronized = false;
1431   _cached_monitor_info = NULL;
1432   _parker = Parker::Allocate(this);
1433 
1434 #ifndef PRODUCT
1435   _jmp_ring_index = 0;
1436   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1437     record_jump(NULL, NULL, NULL, 0);
1438   }
1439 #endif // PRODUCT
1440 
1441   set_thread_profiler(NULL);
1442   if (FlatProfiler::is_active()) {
1443     // This is where we would decide to either give each thread it's own profiler
1444     // or use one global one from FlatProfiler,
1445     // or up to some count of the number of profiled threads, etc.
1446     ThreadProfiler* pp = new ThreadProfiler();
1447     pp->engage();
1448     set_thread_profiler(pp);
1449   }
1450 
1451   // Setup safepoint state info for this thread
1452   ThreadSafepointState::create(this);
1453 
1454   debug_only(_java_call_counter = 0);
1455 
1456   // JVMTI PopFrame support
1457   _popframe_condition = popframe_inactive;
1458   _popframe_preserved_args = NULL;
1459   _popframe_preserved_args_size = 0;
1460   _frames_to_pop_failed_realloc = 0;
1461 
1462   pd_initialize();
1463 }
1464 
1465 #if INCLUDE_ALL_GCS
1466 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1467 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1468 #endif // INCLUDE_ALL_GCS
1469 
1470 JavaThread::JavaThread(bool is_attaching_via_jni) :
1471                        Thread()
1472 #if INCLUDE_ALL_GCS
1473                        , _satb_mark_queue(&_satb_mark_queue_set),
1474                        _dirty_card_queue(&_dirty_card_queue_set)
1475 #endif // INCLUDE_ALL_GCS
1476 {
1477   initialize();
1478   if (is_attaching_via_jni) {
1479     _jni_attach_state = _attaching_via_jni;
1480   } else {
1481     _jni_attach_state = _not_attaching_via_jni;
1482   }
1483   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1484 }
1485 
1486 bool JavaThread::reguard_stack(address cur_sp) {
1487   if (_stack_guard_state != stack_guard_yellow_disabled) {
1488     return true; // Stack already guarded or guard pages not needed.
1489   }
1490 
1491   if (register_stack_overflow()) {
1492     // For those architectures which have separate register and
1493     // memory stacks, we must check the register stack to see if
1494     // it has overflowed.
1495     return false;
1496   }
1497 
1498   // Java code never executes within the yellow zone: the latter is only
1499   // there to provoke an exception during stack banging.  If java code
1500   // is executing there, either StackShadowPages should be larger, or
1501   // some exception code in c1, c2 or the interpreter isn't unwinding
1502   // when it should.
1503   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1504 
1505   enable_stack_yellow_zone();
1506   return true;
1507 }
1508 
1509 bool JavaThread::reguard_stack(void) {
1510   return reguard_stack(os::current_stack_pointer());
1511 }
1512 
1513 
1514 void JavaThread::block_if_vm_exited() {
1515   if (_terminated == _vm_exited) {
1516     // _vm_exited is set at safepoint, and Threads_lock is never released
1517     // we will block here forever
1518     Threads_lock->lock_without_safepoint_check();
1519     ShouldNotReachHere();
1520   }
1521 }
1522 
1523 
1524 // Remove this ifdef when C1 is ported to the compiler interface.
1525 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1526 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1527 
1528 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1529                        Thread()
1530 #if INCLUDE_ALL_GCS
1531                        , _satb_mark_queue(&_satb_mark_queue_set),
1532                        _dirty_card_queue(&_dirty_card_queue_set)
1533 #endif // INCLUDE_ALL_GCS
1534 {
1535   initialize();
1536   _jni_attach_state = _not_attaching_via_jni;
1537   set_entry_point(entry_point);
1538   // Create the native thread itself.
1539   // %note runtime_23
1540   os::ThreadType thr_type = os::java_thread;
1541   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1542                                                      os::java_thread;
1543   os::create_thread(this, thr_type, stack_sz);
1544   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1545   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1546   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1547   // the exception consists of creating the exception object & initializing it, initialization
1548   // will leave the VM via a JavaCall and then all locks must be unlocked).
1549   //
1550   // The thread is still suspended when we reach here. Thread must be explicit started
1551   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1552   // by calling Threads:add. The reason why this is not done here, is because the thread
1553   // object must be fully initialized (take a look at JVM_Start)
1554 }
1555 
1556 JavaThread::~JavaThread() {
1557 
1558   // JSR166 -- return the parker to the free list
1559   Parker::Release(_parker);
1560   _parker = NULL;
1561 
1562   // Free any remaining  previous UnrollBlock
1563   vframeArray* old_array = vframe_array_last();
1564 
1565   if (old_array != NULL) {
1566     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1567     old_array->set_unroll_block(NULL);
1568     delete old_info;
1569     delete old_array;
1570   }
1571 
1572   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1573   if (deferred != NULL) {
1574     // This can only happen if thread is destroyed before deoptimization occurs.
1575     assert(deferred->length() != 0, "empty array!");
1576     do {
1577       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1578       deferred->remove_at(0);
1579       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1580       delete dlv;
1581     } while (deferred->length() != 0);
1582     delete deferred;
1583   }
1584 
1585   // All Java related clean up happens in exit
1586   ThreadSafepointState::destroy(this);
1587   if (_thread_profiler != NULL) delete _thread_profiler;
1588   if (_thread_stat != NULL) delete _thread_stat;
1589 }
1590 
1591 
1592 // The first routine called by a new Java thread
1593 void JavaThread::run() {
1594   // initialize thread-local alloc buffer related fields
1595   this->initialize_tlab();
1596 
1597   // used to test validity of stack trace backs
1598   this->record_base_of_stack_pointer();
1599 
1600   // Record real stack base and size.
1601   this->record_stack_base_and_size();
1602 
1603   // Initialize thread local storage; set before calling MutexLocker
1604   this->initialize_thread_local_storage();
1605 
1606   this->create_stack_guard_pages();
1607 
1608   this->cache_global_variables();
1609 
1610   // Thread is now sufficient initialized to be handled by the safepoint code as being
1611   // in the VM. Change thread state from _thread_new to _thread_in_vm
1612   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1613 
1614   assert(JavaThread::current() == this, "sanity check");
1615   assert(!Thread::current()->owns_locks(), "sanity check");
1616 
1617   DTRACE_THREAD_PROBE(start, this);
1618 
1619   // This operation might block. We call that after all safepoint checks for a new thread has
1620   // been completed.
1621   this->set_active_handles(JNIHandleBlock::allocate_block());
1622 
1623   if (JvmtiExport::should_post_thread_life()) {
1624     JvmtiExport::post_thread_start(this);
1625   }
1626 
1627   EventThreadStart event;
1628   if (event.should_commit()) {
1629     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1630     event.commit();
1631   }
1632 
1633   // We call another function to do the rest so we are sure that the stack addresses used
1634   // from there will be lower than the stack base just computed
1635   thread_main_inner();
1636 
1637   // Note, thread is no longer valid at this point!
1638 }
1639 
1640 
1641 void JavaThread::thread_main_inner() {
1642   assert(JavaThread::current() == this, "sanity check");
1643   assert(this->threadObj() != NULL, "just checking");
1644 
1645   // Execute thread entry point unless this thread has a pending exception
1646   // or has been stopped before starting.
1647   // Note: Due to JVM_StopThread we can have pending exceptions already!
1648   if (!this->has_pending_exception() &&
1649       !java_lang_Thread::is_stillborn(this->threadObj())) {
1650     {
1651       ResourceMark rm(this);
1652       this->set_native_thread_name(this->get_thread_name());
1653     }
1654     HandleMark hm(this);
1655     this->entry_point()(this, this);
1656   }
1657 
1658   DTRACE_THREAD_PROBE(stop, this);
1659 
1660   this->exit(false);
1661   delete this;
1662 }
1663 
1664 
1665 static void ensure_join(JavaThread* thread) {
1666   // We do not need to grap the Threads_lock, since we are operating on ourself.
1667   Handle threadObj(thread, thread->threadObj());
1668   assert(threadObj.not_null(), "java thread object must exist");
1669   ObjectLocker lock(threadObj, thread);
1670   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1671   thread->clear_pending_exception();
1672   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1673   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1674   // Clear the native thread instance - this makes isAlive return false and allows the join()
1675   // to complete once we've done the notify_all below
1676   java_lang_Thread::set_thread(threadObj(), NULL);
1677   lock.notify_all(thread);
1678   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1679   thread->clear_pending_exception();
1680 }
1681 
1682 
1683 // For any new cleanup additions, please check to see if they need to be applied to
1684 // cleanup_failed_attach_current_thread as well.
1685 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1686   assert(this == JavaThread::current(), "thread consistency check");
1687 
1688   HandleMark hm(this);
1689   Handle uncaught_exception(this, this->pending_exception());
1690   this->clear_pending_exception();
1691   Handle threadObj(this, this->threadObj());
1692   assert(threadObj.not_null(), "Java thread object should be created");
1693 
1694   if (get_thread_profiler() != NULL) {
1695     get_thread_profiler()->disengage();
1696     ResourceMark rm;
1697     get_thread_profiler()->print(get_thread_name());
1698   }
1699 
1700 
1701   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1702   {
1703     EXCEPTION_MARK;
1704 
1705     CLEAR_PENDING_EXCEPTION;
1706   }
1707   if (!destroy_vm) {
1708     if (uncaught_exception.not_null()) {
1709       EXCEPTION_MARK;
1710       // Call method Thread.dispatchUncaughtException().
1711       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1712       JavaValue result(T_VOID);
1713       JavaCalls::call_virtual(&result,
1714                               threadObj, thread_klass,
1715                               vmSymbols::dispatchUncaughtException_name(),
1716                               vmSymbols::throwable_void_signature(),
1717                               uncaught_exception,
1718                               THREAD);
1719       if (HAS_PENDING_EXCEPTION) {
1720         ResourceMark rm(this);
1721         jio_fprintf(defaultStream::error_stream(),
1722                     "\nException: %s thrown from the UncaughtExceptionHandler"
1723                     " in thread \"%s\"\n",
1724                     pending_exception()->klass()->external_name(),
1725                     get_thread_name());
1726         CLEAR_PENDING_EXCEPTION;
1727       }
1728     }
1729 
1730     // Called before the java thread exit since we want to read info
1731     // from java_lang_Thread object
1732     EventThreadEnd event;
1733     if (event.should_commit()) {
1734       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1735       event.commit();
1736     }
1737 
1738     // Call after last event on thread
1739     EVENT_THREAD_EXIT(this);
1740 
1741     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1742     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1743     // is deprecated anyhow.
1744     if (!is_Compiler_thread()) {
1745       int count = 3;
1746       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1747         EXCEPTION_MARK;
1748         JavaValue result(T_VOID);
1749         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1750         JavaCalls::call_virtual(&result,
1751                                 threadObj, thread_klass,
1752                                 vmSymbols::exit_method_name(),
1753                                 vmSymbols::void_method_signature(),
1754                                 THREAD);
1755         CLEAR_PENDING_EXCEPTION;
1756       }
1757     }
1758     // notify JVMTI
1759     if (JvmtiExport::should_post_thread_life()) {
1760       JvmtiExport::post_thread_end(this);
1761     }
1762 
1763     // We have notified the agents that we are exiting, before we go on,
1764     // we must check for a pending external suspend request and honor it
1765     // in order to not surprise the thread that made the suspend request.
1766     while (true) {
1767       {
1768         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1769         if (!is_external_suspend()) {
1770           set_terminated(_thread_exiting);
1771           ThreadService::current_thread_exiting(this);
1772           break;
1773         }
1774         // Implied else:
1775         // Things get a little tricky here. We have a pending external
1776         // suspend request, but we are holding the SR_lock so we
1777         // can't just self-suspend. So we temporarily drop the lock
1778         // and then self-suspend.
1779       }
1780 
1781       ThreadBlockInVM tbivm(this);
1782       java_suspend_self();
1783 
1784       // We're done with this suspend request, but we have to loop around
1785       // and check again. Eventually we will get SR_lock without a pending
1786       // external suspend request and will be able to mark ourselves as
1787       // exiting.
1788     }
1789     // no more external suspends are allowed at this point
1790   } else {
1791     // before_exit() has already posted JVMTI THREAD_END events
1792   }
1793 
1794   // Notify waiters on thread object. This has to be done after exit() is called
1795   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1796   // group should have the destroyed bit set before waiters are notified).
1797   ensure_join(this);
1798   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1799 
1800   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1801   // held by this thread must be released.  A detach operation must only
1802   // get here if there are no Java frames on the stack.  Therefore, any
1803   // owned monitors at this point MUST be JNI-acquired monitors which are
1804   // pre-inflated and in the monitor cache.
1805   //
1806   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1807   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1808     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1809     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1810     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1811   }
1812 
1813   // These things needs to be done while we are still a Java Thread. Make sure that thread
1814   // is in a consistent state, in case GC happens
1815   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1816 
1817   if (active_handles() != NULL) {
1818     JNIHandleBlock* block = active_handles();
1819     set_active_handles(NULL);
1820     JNIHandleBlock::release_block(block);
1821   }
1822 
1823   if (free_handle_block() != NULL) {
1824     JNIHandleBlock* block = free_handle_block();
1825     set_free_handle_block(NULL);
1826     JNIHandleBlock::release_block(block);
1827   }
1828 
1829   // These have to be removed while this is still a valid thread.
1830   remove_stack_guard_pages();
1831 
1832   if (UseTLAB) {
1833     tlab().make_parsable(true);  // retire TLAB
1834   }
1835 
1836   if (JvmtiEnv::environments_might_exist()) {
1837     JvmtiExport::cleanup_thread(this);
1838   }
1839 
1840   // We must flush any deferred card marks before removing a thread from
1841   // the list of active threads.
1842   Universe::heap()->flush_deferred_store_barrier(this);
1843   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1844 
1845 #if INCLUDE_ALL_GCS
1846   // We must flush the G1-related buffers before removing a thread
1847   // from the list of active threads. We must do this after any deferred
1848   // card marks have been flushed (above) so that any entries that are
1849   // added to the thread's dirty card queue as a result are not lost.
1850   if (UseG1GC) {
1851     flush_barrier_queues();
1852   }
1853 #endif // INCLUDE_ALL_GCS
1854 
1855   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1856   Threads::remove(this);
1857 }
1858 
1859 #if INCLUDE_ALL_GCS
1860 // Flush G1-related queues.
1861 void JavaThread::flush_barrier_queues() {
1862   satb_mark_queue().flush();
1863   dirty_card_queue().flush();
1864 }
1865 
1866 void JavaThread::initialize_queues() {
1867   assert(!SafepointSynchronize::is_at_safepoint(),
1868          "we should not be at a safepoint");
1869 
1870   ObjPtrQueue& satb_queue = satb_mark_queue();
1871   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1872   // The SATB queue should have been constructed with its active
1873   // field set to false.
1874   assert(!satb_queue.is_active(), "SATB queue should not be active");
1875   assert(satb_queue.is_empty(), "SATB queue should be empty");
1876   // If we are creating the thread during a marking cycle, we should
1877   // set the active field of the SATB queue to true.
1878   if (satb_queue_set.is_active()) {
1879     satb_queue.set_active(true);
1880   }
1881 
1882   DirtyCardQueue& dirty_queue = dirty_card_queue();
1883   // The dirty card queue should have been constructed with its
1884   // active field set to true.
1885   assert(dirty_queue.is_active(), "dirty card queue should be active");
1886 }
1887 #endif // INCLUDE_ALL_GCS
1888 
1889 void JavaThread::cleanup_failed_attach_current_thread() {
1890   if (get_thread_profiler() != NULL) {
1891     get_thread_profiler()->disengage();
1892     ResourceMark rm;
1893     get_thread_profiler()->print(get_thread_name());
1894   }
1895 
1896   if (active_handles() != NULL) {
1897     JNIHandleBlock* block = active_handles();
1898     set_active_handles(NULL);
1899     JNIHandleBlock::release_block(block);
1900   }
1901 
1902   if (free_handle_block() != NULL) {
1903     JNIHandleBlock* block = free_handle_block();
1904     set_free_handle_block(NULL);
1905     JNIHandleBlock::release_block(block);
1906   }
1907 
1908   // These have to be removed while this is still a valid thread.
1909   remove_stack_guard_pages();
1910 
1911   if (UseTLAB) {
1912     tlab().make_parsable(true);  // retire TLAB, if any
1913   }
1914 
1915 #if INCLUDE_ALL_GCS
1916   if (UseG1GC) {
1917     flush_barrier_queues();
1918   }
1919 #endif // INCLUDE_ALL_GCS
1920 
1921   Threads::remove(this);
1922   delete this;
1923 }
1924 
1925 
1926 
1927 
1928 JavaThread* JavaThread::active() {
1929   Thread* thread = ThreadLocalStorage::thread();
1930   assert(thread != NULL, "just checking");
1931   if (thread->is_Java_thread()) {
1932     return (JavaThread*) thread;
1933   } else {
1934     assert(thread->is_VM_thread(), "this must be a vm thread");
1935     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1936     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1937     assert(ret->is_Java_thread(), "must be a Java thread");
1938     return ret;
1939   }
1940 }
1941 
1942 bool JavaThread::is_lock_owned(address adr) const {
1943   if (Thread::is_lock_owned(adr)) return true;
1944 
1945   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1946     if (chunk->contains(adr)) return true;
1947   }
1948 
1949   return false;
1950 }
1951 
1952 
1953 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1954   chunk->set_next(monitor_chunks());
1955   set_monitor_chunks(chunk);
1956 }
1957 
1958 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1959   guarantee(monitor_chunks() != NULL, "must be non empty");
1960   if (monitor_chunks() == chunk) {
1961     set_monitor_chunks(chunk->next());
1962   } else {
1963     MonitorChunk* prev = monitor_chunks();
1964     while (prev->next() != chunk) prev = prev->next();
1965     prev->set_next(chunk->next());
1966   }
1967 }
1968 
1969 // JVM support.
1970 
1971 // Note: this function shouldn't block if it's called in
1972 // _thread_in_native_trans state (such as from
1973 // check_special_condition_for_native_trans()).
1974 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1975 
1976   if (has_last_Java_frame() && has_async_condition()) {
1977     // If we are at a polling page safepoint (not a poll return)
1978     // then we must defer async exception because live registers
1979     // will be clobbered by the exception path. Poll return is
1980     // ok because the call we a returning from already collides
1981     // with exception handling registers and so there is no issue.
1982     // (The exception handling path kills call result registers but
1983     //  this is ok since the exception kills the result anyway).
1984 
1985     if (is_at_poll_safepoint()) {
1986       // if the code we are returning to has deoptimized we must defer
1987       // the exception otherwise live registers get clobbered on the
1988       // exception path before deoptimization is able to retrieve them.
1989       //
1990       RegisterMap map(this, false);
1991       frame caller_fr = last_frame().sender(&map);
1992       assert(caller_fr.is_compiled_frame(), "what?");
1993       if (caller_fr.is_deoptimized_frame()) {
1994         if (TraceExceptions) {
1995           ResourceMark rm;
1996           tty->print_cr("deferred async exception at compiled safepoint");
1997         }
1998         return;
1999       }
2000     }
2001   }
2002 
2003   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2004   if (condition == _no_async_condition) {
2005     // Conditions have changed since has_special_runtime_exit_condition()
2006     // was called:
2007     // - if we were here only because of an external suspend request,
2008     //   then that was taken care of above (or cancelled) so we are done
2009     // - if we were here because of another async request, then it has
2010     //   been cleared between the has_special_runtime_exit_condition()
2011     //   and now so again we are done
2012     return;
2013   }
2014 
2015   // Check for pending async. exception
2016   if (_pending_async_exception != NULL) {
2017     // Only overwrite an already pending exception, if it is not a threadDeath.
2018     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2019 
2020       // We cannot call Exceptions::_throw(...) here because we cannot block
2021       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2022 
2023       if (TraceExceptions) {
2024         ResourceMark rm;
2025         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2026         if (has_last_Java_frame()) {
2027           frame f = last_frame();
2028           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2029         }
2030         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2031       }
2032       _pending_async_exception = NULL;
2033       clear_has_async_exception();
2034     }
2035   }
2036 
2037   if (check_unsafe_error &&
2038       condition == _async_unsafe_access_error && !has_pending_exception()) {
2039     condition = _no_async_condition;  // done
2040     switch (thread_state()) {
2041     case _thread_in_vm: {
2042       JavaThread* THREAD = this;
2043       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2044     }
2045     case _thread_in_native: {
2046       ThreadInVMfromNative tiv(this);
2047       JavaThread* THREAD = this;
2048       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2049     }
2050     case _thread_in_Java: {
2051       ThreadInVMfromJava tiv(this);
2052       JavaThread* THREAD = this;
2053       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2054     }
2055     default:
2056       ShouldNotReachHere();
2057     }
2058   }
2059 
2060   assert(condition == _no_async_condition || has_pending_exception() ||
2061          (!check_unsafe_error && condition == _async_unsafe_access_error),
2062          "must have handled the async condition, if no exception");
2063 }
2064 
2065 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2066   //
2067   // Check for pending external suspend. Internal suspend requests do
2068   // not use handle_special_runtime_exit_condition().
2069   // If JNIEnv proxies are allowed, don't self-suspend if the target
2070   // thread is not the current thread. In older versions of jdbx, jdbx
2071   // threads could call into the VM with another thread's JNIEnv so we
2072   // can be here operating on behalf of a suspended thread (4432884).
2073   bool do_self_suspend = is_external_suspend_with_lock();
2074   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2075     //
2076     // Because thread is external suspended the safepoint code will count
2077     // thread as at a safepoint. This can be odd because we can be here
2078     // as _thread_in_Java which would normally transition to _thread_blocked
2079     // at a safepoint. We would like to mark the thread as _thread_blocked
2080     // before calling java_suspend_self like all other callers of it but
2081     // we must then observe proper safepoint protocol. (We can't leave
2082     // _thread_blocked with a safepoint in progress). However we can be
2083     // here as _thread_in_native_trans so we can't use a normal transition
2084     // constructor/destructor pair because they assert on that type of
2085     // transition. We could do something like:
2086     //
2087     // JavaThreadState state = thread_state();
2088     // set_thread_state(_thread_in_vm);
2089     // {
2090     //   ThreadBlockInVM tbivm(this);
2091     //   java_suspend_self()
2092     // }
2093     // set_thread_state(_thread_in_vm_trans);
2094     // if (safepoint) block;
2095     // set_thread_state(state);
2096     //
2097     // but that is pretty messy. Instead we just go with the way the
2098     // code has worked before and note that this is the only path to
2099     // java_suspend_self that doesn't put the thread in _thread_blocked
2100     // mode.
2101 
2102     frame_anchor()->make_walkable(this);
2103     java_suspend_self();
2104 
2105     // We might be here for reasons in addition to the self-suspend request
2106     // so check for other async requests.
2107   }
2108 
2109   if (check_asyncs) {
2110     check_and_handle_async_exceptions();
2111   }
2112 }
2113 
2114 void JavaThread::send_thread_stop(oop java_throwable)  {
2115   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2116   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2117   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2118 
2119   // Do not throw asynchronous exceptions against the compiler thread
2120   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2121   if (is_Compiler_thread()) return;
2122 
2123   {
2124     // Actually throw the Throwable against the target Thread - however
2125     // only if there is no thread death exception installed already.
2126     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2127       // If the topmost frame is a runtime stub, then we are calling into
2128       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2129       // must deoptimize the caller before continuing, as the compiled  exception handler table
2130       // may not be valid
2131       if (has_last_Java_frame()) {
2132         frame f = last_frame();
2133         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2134           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2135           RegisterMap reg_map(this, UseBiasedLocking);
2136           frame compiled_frame = f.sender(&reg_map);
2137           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2138             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2139           }
2140         }
2141       }
2142 
2143       // Set async. pending exception in thread.
2144       set_pending_async_exception(java_throwable);
2145 
2146       if (TraceExceptions) {
2147         ResourceMark rm;
2148         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2149       }
2150       // for AbortVMOnException flag
2151       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2152     }
2153   }
2154 
2155 
2156   // Interrupt thread so it will wake up from a potential wait()
2157   Thread::interrupt(this);
2158 }
2159 
2160 // External suspension mechanism.
2161 //
2162 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2163 // to any VM_locks and it is at a transition
2164 // Self-suspension will happen on the transition out of the vm.
2165 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2166 //
2167 // Guarantees on return:
2168 //   + Target thread will not execute any new bytecode (that's why we need to
2169 //     force a safepoint)
2170 //   + Target thread will not enter any new monitors
2171 //
2172 void JavaThread::java_suspend() {
2173   { MutexLocker mu(Threads_lock);
2174     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2175       return;
2176     }
2177   }
2178 
2179   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2180     if (!is_external_suspend()) {
2181       // a racing resume has cancelled us; bail out now
2182       return;
2183     }
2184 
2185     // suspend is done
2186     uint32_t debug_bits = 0;
2187     // Warning: is_ext_suspend_completed() may temporarily drop the
2188     // SR_lock to allow the thread to reach a stable thread state if
2189     // it is currently in a transient thread state.
2190     if (is_ext_suspend_completed(false /* !called_by_wait */,
2191                                  SuspendRetryDelay, &debug_bits)) {
2192       return;
2193     }
2194   }
2195 
2196   VM_ForceSafepoint vm_suspend;
2197   VMThread::execute(&vm_suspend);
2198 }
2199 
2200 // Part II of external suspension.
2201 // A JavaThread self suspends when it detects a pending external suspend
2202 // request. This is usually on transitions. It is also done in places
2203 // where continuing to the next transition would surprise the caller,
2204 // e.g., monitor entry.
2205 //
2206 // Returns the number of times that the thread self-suspended.
2207 //
2208 // Note: DO NOT call java_suspend_self() when you just want to block current
2209 //       thread. java_suspend_self() is the second stage of cooperative
2210 //       suspension for external suspend requests and should only be used
2211 //       to complete an external suspend request.
2212 //
2213 int JavaThread::java_suspend_self() {
2214   int ret = 0;
2215 
2216   // we are in the process of exiting so don't suspend
2217   if (is_exiting()) {
2218     clear_external_suspend();
2219     return ret;
2220   }
2221 
2222   assert(_anchor.walkable() ||
2223          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2224          "must have walkable stack");
2225 
2226   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2227 
2228   assert(!this->is_ext_suspended(),
2229          "a thread trying to self-suspend should not already be suspended");
2230 
2231   if (this->is_suspend_equivalent()) {
2232     // If we are self-suspending as a result of the lifting of a
2233     // suspend equivalent condition, then the suspend_equivalent
2234     // flag is not cleared until we set the ext_suspended flag so
2235     // that wait_for_ext_suspend_completion() returns consistent
2236     // results.
2237     this->clear_suspend_equivalent();
2238   }
2239 
2240   // A racing resume may have cancelled us before we grabbed SR_lock
2241   // above. Or another external suspend request could be waiting for us
2242   // by the time we return from SR_lock()->wait(). The thread
2243   // that requested the suspension may already be trying to walk our
2244   // stack and if we return now, we can change the stack out from under
2245   // it. This would be a "bad thing (TM)" and cause the stack walker
2246   // to crash. We stay self-suspended until there are no more pending
2247   // external suspend requests.
2248   while (is_external_suspend()) {
2249     ret++;
2250     this->set_ext_suspended();
2251 
2252     // _ext_suspended flag is cleared by java_resume()
2253     while (is_ext_suspended()) {
2254       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2255     }
2256   }
2257 
2258   return ret;
2259 }
2260 
2261 #ifdef ASSERT
2262 // verify the JavaThread has not yet been published in the Threads::list, and
2263 // hence doesn't need protection from concurrent access at this stage
2264 void JavaThread::verify_not_published() {
2265   if (!Threads_lock->owned_by_self()) {
2266     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2267     assert(!Threads::includes(this),
2268            "java thread shouldn't have been published yet!");
2269   } else {
2270     assert(!Threads::includes(this),
2271            "java thread shouldn't have been published yet!");
2272   }
2273 }
2274 #endif
2275 
2276 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2277 // progress or when _suspend_flags is non-zero.
2278 // Current thread needs to self-suspend if there is a suspend request and/or
2279 // block if a safepoint is in progress.
2280 // Async exception ISN'T checked.
2281 // Note only the ThreadInVMfromNative transition can call this function
2282 // directly and when thread state is _thread_in_native_trans
2283 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2284   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2285 
2286   JavaThread *curJT = JavaThread::current();
2287   bool do_self_suspend = thread->is_external_suspend();
2288 
2289   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2290 
2291   // If JNIEnv proxies are allowed, don't self-suspend if the target
2292   // thread is not the current thread. In older versions of jdbx, jdbx
2293   // threads could call into the VM with another thread's JNIEnv so we
2294   // can be here operating on behalf of a suspended thread (4432884).
2295   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2296     JavaThreadState state = thread->thread_state();
2297 
2298     // We mark this thread_blocked state as a suspend-equivalent so
2299     // that a caller to is_ext_suspend_completed() won't be confused.
2300     // The suspend-equivalent state is cleared by java_suspend_self().
2301     thread->set_suspend_equivalent();
2302 
2303     // If the safepoint code sees the _thread_in_native_trans state, it will
2304     // wait until the thread changes to other thread state. There is no
2305     // guarantee on how soon we can obtain the SR_lock and complete the
2306     // self-suspend request. It would be a bad idea to let safepoint wait for
2307     // too long. Temporarily change the state to _thread_blocked to
2308     // let the VM thread know that this thread is ready for GC. The problem
2309     // of changing thread state is that safepoint could happen just after
2310     // java_suspend_self() returns after being resumed, and VM thread will
2311     // see the _thread_blocked state. We must check for safepoint
2312     // after restoring the state and make sure we won't leave while a safepoint
2313     // is in progress.
2314     thread->set_thread_state(_thread_blocked);
2315     thread->java_suspend_self();
2316     thread->set_thread_state(state);
2317     // Make sure new state is seen by VM thread
2318     if (os::is_MP()) {
2319       if (UseMembar) {
2320         // Force a fence between the write above and read below
2321         OrderAccess::fence();
2322       } else {
2323         // Must use this rather than serialization page in particular on Windows
2324         InterfaceSupport::serialize_memory(thread);
2325       }
2326     }
2327   }
2328 
2329   if (SafepointSynchronize::do_call_back()) {
2330     // If we are safepointing, then block the caller which may not be
2331     // the same as the target thread (see above).
2332     SafepointSynchronize::block(curJT);
2333   }
2334 
2335   if (thread->is_deopt_suspend()) {
2336     thread->clear_deopt_suspend();
2337     RegisterMap map(thread, false);
2338     frame f = thread->last_frame();
2339     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2340       f = f.sender(&map);
2341     }
2342     if (f.id() == thread->must_deopt_id()) {
2343       thread->clear_must_deopt_id();
2344       f.deoptimize(thread);
2345     } else {
2346       fatal("missed deoptimization!");
2347     }
2348   }
2349 }
2350 
2351 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2352 // progress or when _suspend_flags is non-zero.
2353 // Current thread needs to self-suspend if there is a suspend request and/or
2354 // block if a safepoint is in progress.
2355 // Also check for pending async exception (not including unsafe access error).
2356 // Note only the native==>VM/Java barriers can call this function and when
2357 // thread state is _thread_in_native_trans.
2358 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2359   check_safepoint_and_suspend_for_native_trans(thread);
2360 
2361   if (thread->has_async_exception()) {
2362     // We are in _thread_in_native_trans state, don't handle unsafe
2363     // access error since that may block.
2364     thread->check_and_handle_async_exceptions(false);
2365   }
2366 }
2367 
2368 // This is a variant of the normal
2369 // check_special_condition_for_native_trans with slightly different
2370 // semantics for use by critical native wrappers.  It does all the
2371 // normal checks but also performs the transition back into
2372 // thread_in_Java state.  This is required so that critical natives
2373 // can potentially block and perform a GC if they are the last thread
2374 // exiting the GC_locker.
2375 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2376   check_special_condition_for_native_trans(thread);
2377 
2378   // Finish the transition
2379   thread->set_thread_state(_thread_in_Java);
2380 
2381   if (thread->do_critical_native_unlock()) {
2382     ThreadInVMfromJavaNoAsyncException tiv(thread);
2383     GC_locker::unlock_critical(thread);
2384     thread->clear_critical_native_unlock();
2385   }
2386 }
2387 
2388 // We need to guarantee the Threads_lock here, since resumes are not
2389 // allowed during safepoint synchronization
2390 // Can only resume from an external suspension
2391 void JavaThread::java_resume() {
2392   assert_locked_or_safepoint(Threads_lock);
2393 
2394   // Sanity check: thread is gone, has started exiting or the thread
2395   // was not externally suspended.
2396   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2397     return;
2398   }
2399 
2400   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2401 
2402   clear_external_suspend();
2403 
2404   if (is_ext_suspended()) {
2405     clear_ext_suspended();
2406     SR_lock()->notify_all();
2407   }
2408 }
2409 
2410 void JavaThread::create_stack_guard_pages() {
2411   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2412   address low_addr = stack_base() - stack_size();
2413   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2414 
2415   int allocate = os::allocate_stack_guard_pages();
2416   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2417 
2418   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2419     warning("Attempt to allocate stack guard pages failed.");
2420     return;
2421   }
2422 
2423   if (os::guard_memory((char *) low_addr, len)) {
2424     _stack_guard_state = stack_guard_enabled;
2425   } else {
2426     warning("Attempt to protect stack guard pages failed.");
2427     if (os::uncommit_memory((char *) low_addr, len)) {
2428       warning("Attempt to deallocate stack guard pages failed.");
2429     }
2430   }
2431 }
2432 
2433 void JavaThread::remove_stack_guard_pages() {
2434   assert(Thread::current() == this, "from different thread");
2435   if (_stack_guard_state == stack_guard_unused) return;
2436   address low_addr = stack_base() - stack_size();
2437   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2438 
2439   if (os::allocate_stack_guard_pages()) {
2440     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2441       _stack_guard_state = stack_guard_unused;
2442     } else {
2443       warning("Attempt to deallocate stack guard pages failed.");
2444     }
2445   } else {
2446     if (_stack_guard_state == stack_guard_unused) return;
2447     if (os::unguard_memory((char *) low_addr, len)) {
2448       _stack_guard_state = stack_guard_unused;
2449     } else {
2450       warning("Attempt to unprotect stack guard pages failed.");
2451     }
2452   }
2453 }
2454 
2455 void JavaThread::enable_stack_yellow_zone() {
2456   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2457   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2458 
2459   // The base notation is from the stacks point of view, growing downward.
2460   // We need to adjust it to work correctly with guard_memory()
2461   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2462 
2463   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2464   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2465 
2466   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2467     _stack_guard_state = stack_guard_enabled;
2468   } else {
2469     warning("Attempt to guard stack yellow zone failed.");
2470   }
2471   enable_register_stack_guard();
2472 }
2473 
2474 void JavaThread::disable_stack_yellow_zone() {
2475   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2476   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2477 
2478   // Simply return if called for a thread that does not use guard pages.
2479   if (_stack_guard_state == stack_guard_unused) return;
2480 
2481   // The base notation is from the stacks point of view, growing downward.
2482   // We need to adjust it to work correctly with guard_memory()
2483   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2484 
2485   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2486     _stack_guard_state = stack_guard_yellow_disabled;
2487   } else {
2488     warning("Attempt to unguard stack yellow zone failed.");
2489   }
2490   disable_register_stack_guard();
2491 }
2492 
2493 void JavaThread::enable_stack_red_zone() {
2494   // The base notation is from the stacks point of view, growing downward.
2495   // We need to adjust it to work correctly with guard_memory()
2496   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2497   address base = stack_red_zone_base() - stack_red_zone_size();
2498 
2499   guarantee(base < stack_base(), "Error calculating stack red zone");
2500   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2501 
2502   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2503     warning("Attempt to guard stack red zone failed.");
2504   }
2505 }
2506 
2507 void JavaThread::disable_stack_red_zone() {
2508   // The base notation is from the stacks point of view, growing downward.
2509   // We need to adjust it to work correctly with guard_memory()
2510   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2511   address base = stack_red_zone_base() - stack_red_zone_size();
2512   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2513     warning("Attempt to unguard stack red zone failed.");
2514   }
2515 }
2516 
2517 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2518   // ignore is there is no stack
2519   if (!has_last_Java_frame()) return;
2520   // traverse the stack frames. Starts from top frame.
2521   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2522     frame* fr = fst.current();
2523     f(fr, fst.register_map());
2524   }
2525 }
2526 
2527 
2528 #ifndef PRODUCT
2529 // Deoptimization
2530 // Function for testing deoptimization
2531 void JavaThread::deoptimize() {
2532   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2533   StackFrameStream fst(this, UseBiasedLocking);
2534   bool deopt = false;           // Dump stack only if a deopt actually happens.
2535   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2536   // Iterate over all frames in the thread and deoptimize
2537   for (; !fst.is_done(); fst.next()) {
2538     if (fst.current()->can_be_deoptimized()) {
2539 
2540       if (only_at) {
2541         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2542         // consists of comma or carriage return separated numbers so
2543         // search for the current bci in that string.
2544         address pc = fst.current()->pc();
2545         nmethod* nm =  (nmethod*) fst.current()->cb();
2546         ScopeDesc* sd = nm->scope_desc_at(pc);
2547         char buffer[8];
2548         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2549         size_t len = strlen(buffer);
2550         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2551         while (found != NULL) {
2552           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2553               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2554             // Check that the bci found is bracketed by terminators.
2555             break;
2556           }
2557           found = strstr(found + 1, buffer);
2558         }
2559         if (!found) {
2560           continue;
2561         }
2562       }
2563 
2564       if (DebugDeoptimization && !deopt) {
2565         deopt = true; // One-time only print before deopt
2566         tty->print_cr("[BEFORE Deoptimization]");
2567         trace_frames();
2568         trace_stack();
2569       }
2570       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2571     }
2572   }
2573 
2574   if (DebugDeoptimization && deopt) {
2575     tty->print_cr("[AFTER Deoptimization]");
2576     trace_frames();
2577   }
2578 }
2579 
2580 
2581 // Make zombies
2582 void JavaThread::make_zombies() {
2583   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2584     if (fst.current()->can_be_deoptimized()) {
2585       // it is a Java nmethod
2586       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2587       nm->make_not_entrant();
2588     }
2589   }
2590 }
2591 #endif // PRODUCT
2592 
2593 
2594 void JavaThread::deoptimized_wrt_marked_nmethods() {
2595   if (!has_last_Java_frame()) return;
2596   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2597   StackFrameStream fst(this, UseBiasedLocking);
2598   for (; !fst.is_done(); fst.next()) {
2599     if (fst.current()->should_be_deoptimized()) {
2600       if (LogCompilation && xtty != NULL) {
2601         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2602         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2603                    this->name(), nm != NULL ? nm->compile_id() : -1);
2604       }
2605 
2606       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2607     }
2608   }
2609 }
2610 
2611 
2612 // If the caller is a NamedThread, then remember, in the current scope,
2613 // the given JavaThread in its _processed_thread field.
2614 class RememberProcessedThread: public StackObj {
2615   NamedThread* _cur_thr;
2616  public:
2617   RememberProcessedThread(JavaThread* jthr) {
2618     Thread* thread = Thread::current();
2619     if (thread->is_Named_thread()) {
2620       _cur_thr = (NamedThread *)thread;
2621       _cur_thr->set_processed_thread(jthr);
2622     } else {
2623       _cur_thr = NULL;
2624     }
2625   }
2626 
2627   ~RememberProcessedThread() {
2628     if (_cur_thr) {
2629       _cur_thr->set_processed_thread(NULL);
2630     }
2631   }
2632 };
2633 
2634 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2635   // Verify that the deferred card marks have been flushed.
2636   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2637 
2638   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2639   // since there may be more than one thread using each ThreadProfiler.
2640 
2641   // Traverse the GCHandles
2642   Thread::oops_do(f, cld_f, cf);
2643 
2644   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2645          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2646 
2647   if (has_last_Java_frame()) {
2648     // Record JavaThread to GC thread
2649     RememberProcessedThread rpt(this);
2650 
2651     // Traverse the privileged stack
2652     if (_privileged_stack_top != NULL) {
2653       _privileged_stack_top->oops_do(f);
2654     }
2655 
2656     // traverse the registered growable array
2657     if (_array_for_gc != NULL) {
2658       for (int index = 0; index < _array_for_gc->length(); index++) {
2659         f->do_oop(_array_for_gc->adr_at(index));
2660       }
2661     }
2662 
2663     // Traverse the monitor chunks
2664     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2665       chunk->oops_do(f);
2666     }
2667 
2668     // Traverse the execution stack
2669     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2670       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2671     }
2672   }
2673 
2674   // callee_target is never live across a gc point so NULL it here should
2675   // it still contain a methdOop.
2676 
2677   set_callee_target(NULL);
2678 
2679   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2680   // If we have deferred set_locals there might be oops waiting to be
2681   // written
2682   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2683   if (list != NULL) {
2684     for (int i = 0; i < list->length(); i++) {
2685       list->at(i)->oops_do(f);
2686     }
2687   }
2688 
2689   // Traverse instance variables at the end since the GC may be moving things
2690   // around using this function
2691   f->do_oop((oop*) &_threadObj);
2692   f->do_oop((oop*) &_vm_result);
2693   f->do_oop((oop*) &_exception_oop);
2694   f->do_oop((oop*) &_pending_async_exception);
2695 
2696   if (jvmti_thread_state() != NULL) {
2697     jvmti_thread_state()->oops_do(f);
2698   }
2699 }
2700 
2701 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2702   Thread::nmethods_do(cf);  // (super method is a no-op)
2703 
2704   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2705          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2706 
2707   if (has_last_Java_frame()) {
2708     // Traverse the execution stack
2709     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2710       fst.current()->nmethods_do(cf);
2711     }
2712   }
2713 }
2714 
2715 void JavaThread::metadata_do(void f(Metadata*)) {
2716   if (has_last_Java_frame()) {
2717     // Traverse the execution stack to call f() on the methods in the stack
2718     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2719       fst.current()->metadata_do(f);
2720     }
2721   } else if (is_Compiler_thread()) {
2722     // need to walk ciMetadata in current compile tasks to keep alive.
2723     CompilerThread* ct = (CompilerThread*)this;
2724     if (ct->env() != NULL) {
2725       ct->env()->metadata_do(f);
2726     }
2727   }
2728 }
2729 
2730 // Printing
2731 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2732   switch (_thread_state) {
2733   case _thread_uninitialized:     return "_thread_uninitialized";
2734   case _thread_new:               return "_thread_new";
2735   case _thread_new_trans:         return "_thread_new_trans";
2736   case _thread_in_native:         return "_thread_in_native";
2737   case _thread_in_native_trans:   return "_thread_in_native_trans";
2738   case _thread_in_vm:             return "_thread_in_vm";
2739   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2740   case _thread_in_Java:           return "_thread_in_Java";
2741   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2742   case _thread_blocked:           return "_thread_blocked";
2743   case _thread_blocked_trans:     return "_thread_blocked_trans";
2744   default:                        return "unknown thread state";
2745   }
2746 }
2747 
2748 #ifndef PRODUCT
2749 void JavaThread::print_thread_state_on(outputStream *st) const {
2750   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2751 };
2752 void JavaThread::print_thread_state() const {
2753   print_thread_state_on(tty);
2754 }
2755 #endif // PRODUCT
2756 
2757 // Called by Threads::print() for VM_PrintThreads operation
2758 void JavaThread::print_on(outputStream *st) const {
2759   st->print("\"%s\" ", get_thread_name());
2760   oop thread_oop = threadObj();
2761   if (thread_oop != NULL) {
2762     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2763     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2764     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2765   }
2766   Thread::print_on(st);
2767   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2768   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2769   if (thread_oop != NULL) {
2770     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2771   }
2772 #ifndef PRODUCT
2773   print_thread_state_on(st);
2774   _safepoint_state->print_on(st);
2775 #endif // PRODUCT
2776 }
2777 
2778 // Called by fatal error handler. The difference between this and
2779 // JavaThread::print() is that we can't grab lock or allocate memory.
2780 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2781   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2782   oop thread_obj = threadObj();
2783   if (thread_obj != NULL) {
2784     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2785   }
2786   st->print(" [");
2787   st->print("%s", _get_thread_state_name(_thread_state));
2788   if (osthread()) {
2789     st->print(", id=%d", osthread()->thread_id());
2790   }
2791   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2792             _stack_base - _stack_size, _stack_base);
2793   st->print("]");
2794   return;
2795 }
2796 
2797 // Verification
2798 
2799 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2800 
2801 void JavaThread::verify() {
2802   // Verify oops in the thread.
2803   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2804 
2805   // Verify the stack frames.
2806   frames_do(frame_verify);
2807 }
2808 
2809 // CR 6300358 (sub-CR 2137150)
2810 // Most callers of this method assume that it can't return NULL but a
2811 // thread may not have a name whilst it is in the process of attaching to
2812 // the VM - see CR 6412693, and there are places where a JavaThread can be
2813 // seen prior to having it's threadObj set (eg JNI attaching threads and
2814 // if vm exit occurs during initialization). These cases can all be accounted
2815 // for such that this method never returns NULL.
2816 const char* JavaThread::get_thread_name() const {
2817 #ifdef ASSERT
2818   // early safepoints can hit while current thread does not yet have TLS
2819   if (!SafepointSynchronize::is_at_safepoint()) {
2820     Thread *cur = Thread::current();
2821     if (!(cur->is_Java_thread() && cur == this)) {
2822       // Current JavaThreads are allowed to get their own name without
2823       // the Threads_lock.
2824       assert_locked_or_safepoint(Threads_lock);
2825     }
2826   }
2827 #endif // ASSERT
2828   return get_thread_name_string();
2829 }
2830 
2831 // Returns a non-NULL representation of this thread's name, or a suitable
2832 // descriptive string if there is no set name
2833 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2834   const char* name_str;
2835   oop thread_obj = threadObj();
2836   if (thread_obj != NULL) {
2837     oop name = java_lang_Thread::name(thread_obj);
2838     if (name != NULL) {
2839       if (buf == NULL) {
2840         name_str = java_lang_String::as_utf8_string(name);
2841       } else {
2842         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2843       }
2844     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2845       name_str = "<no-name - thread is attaching>";
2846     } else {
2847       name_str = Thread::name();
2848     }
2849   } else {
2850     name_str = Thread::name();
2851   }
2852   assert(name_str != NULL, "unexpected NULL thread name");
2853   return name_str;
2854 }
2855 
2856 
2857 const char* JavaThread::get_threadgroup_name() const {
2858   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2859   oop thread_obj = threadObj();
2860   if (thread_obj != NULL) {
2861     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2862     if (thread_group != NULL) {
2863       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2864       // ThreadGroup.name can be null
2865       if (name != NULL) {
2866         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2867         return str;
2868       }
2869     }
2870   }
2871   return NULL;
2872 }
2873 
2874 const char* JavaThread::get_parent_name() const {
2875   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2876   oop thread_obj = threadObj();
2877   if (thread_obj != NULL) {
2878     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2879     if (thread_group != NULL) {
2880       oop parent = java_lang_ThreadGroup::parent(thread_group);
2881       if (parent != NULL) {
2882         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2883         // ThreadGroup.name can be null
2884         if (name != NULL) {
2885           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2886           return str;
2887         }
2888       }
2889     }
2890   }
2891   return NULL;
2892 }
2893 
2894 ThreadPriority JavaThread::java_priority() const {
2895   oop thr_oop = threadObj();
2896   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2897   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2898   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2899   return priority;
2900 }
2901 
2902 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2903 
2904   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2905   // Link Java Thread object <-> C++ Thread
2906 
2907   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2908   // and put it into a new Handle.  The Handle "thread_oop" can then
2909   // be used to pass the C++ thread object to other methods.
2910 
2911   // Set the Java level thread object (jthread) field of the
2912   // new thread (a JavaThread *) to C++ thread object using the
2913   // "thread_oop" handle.
2914 
2915   // Set the thread field (a JavaThread *) of the
2916   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2917 
2918   Handle thread_oop(Thread::current(),
2919                     JNIHandles::resolve_non_null(jni_thread));
2920   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2921          "must be initialized");
2922   set_threadObj(thread_oop());
2923   java_lang_Thread::set_thread(thread_oop(), this);
2924 
2925   if (prio == NoPriority) {
2926     prio = java_lang_Thread::priority(thread_oop());
2927     assert(prio != NoPriority, "A valid priority should be present");
2928   }
2929 
2930   // Push the Java priority down to the native thread; needs Threads_lock
2931   Thread::set_priority(this, prio);
2932 
2933   prepare_ext();
2934 
2935   // Add the new thread to the Threads list and set it in motion.
2936   // We must have threads lock in order to call Threads::add.
2937   // It is crucial that we do not block before the thread is
2938   // added to the Threads list for if a GC happens, then the java_thread oop
2939   // will not be visited by GC.
2940   Threads::add(this);
2941 }
2942 
2943 oop JavaThread::current_park_blocker() {
2944   // Support for JSR-166 locks
2945   oop thread_oop = threadObj();
2946   if (thread_oop != NULL &&
2947       JDK_Version::current().supports_thread_park_blocker()) {
2948     return java_lang_Thread::park_blocker(thread_oop);
2949   }
2950   return NULL;
2951 }
2952 
2953 
2954 void JavaThread::print_stack_on(outputStream* st) {
2955   if (!has_last_Java_frame()) return;
2956   ResourceMark rm;
2957   HandleMark   hm;
2958 
2959   RegisterMap reg_map(this);
2960   vframe* start_vf = last_java_vframe(&reg_map);
2961   int count = 0;
2962   for (vframe* f = start_vf; f; f = f->sender()) {
2963     if (f->is_java_frame()) {
2964       javaVFrame* jvf = javaVFrame::cast(f);
2965       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2966 
2967       // Print out lock information
2968       if (JavaMonitorsInStackTrace) {
2969         jvf->print_lock_info_on(st, count);
2970       }
2971     } else {
2972       // Ignore non-Java frames
2973     }
2974 
2975     // Bail-out case for too deep stacks
2976     count++;
2977     if (MaxJavaStackTraceDepth == count) return;
2978   }
2979 }
2980 
2981 
2982 // JVMTI PopFrame support
2983 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2984   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2985   if (in_bytes(size_in_bytes) != 0) {
2986     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2987     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2988     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2989   }
2990 }
2991 
2992 void* JavaThread::popframe_preserved_args() {
2993   return _popframe_preserved_args;
2994 }
2995 
2996 ByteSize JavaThread::popframe_preserved_args_size() {
2997   return in_ByteSize(_popframe_preserved_args_size);
2998 }
2999 
3000 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3001   int sz = in_bytes(popframe_preserved_args_size());
3002   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3003   return in_WordSize(sz / wordSize);
3004 }
3005 
3006 void JavaThread::popframe_free_preserved_args() {
3007   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3008   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3009   _popframe_preserved_args = NULL;
3010   _popframe_preserved_args_size = 0;
3011 }
3012 
3013 #ifndef PRODUCT
3014 
3015 void JavaThread::trace_frames() {
3016   tty->print_cr("[Describe stack]");
3017   int frame_no = 1;
3018   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3019     tty->print("  %d. ", frame_no++);
3020     fst.current()->print_value_on(tty, this);
3021     tty->cr();
3022   }
3023 }
3024 
3025 class PrintAndVerifyOopClosure: public OopClosure {
3026  protected:
3027   template <class T> inline void do_oop_work(T* p) {
3028     oop obj = oopDesc::load_decode_heap_oop(p);
3029     if (obj == NULL) return;
3030     tty->print(INTPTR_FORMAT ": ", p);
3031     if (obj->is_oop_or_null()) {
3032       if (obj->is_objArray()) {
3033         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3034       } else {
3035         obj->print();
3036       }
3037     } else {
3038       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3039     }
3040     tty->cr();
3041   }
3042  public:
3043   virtual void do_oop(oop* p) { do_oop_work(p); }
3044   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3045 };
3046 
3047 
3048 static void oops_print(frame* f, const RegisterMap *map) {
3049   PrintAndVerifyOopClosure print;
3050   f->print_value();
3051   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3052 }
3053 
3054 // Print our all the locations that contain oops and whether they are
3055 // valid or not.  This useful when trying to find the oldest frame
3056 // where an oop has gone bad since the frame walk is from youngest to
3057 // oldest.
3058 void JavaThread::trace_oops() {
3059   tty->print_cr("[Trace oops]");
3060   frames_do(oops_print);
3061 }
3062 
3063 
3064 #ifdef ASSERT
3065 // Print or validate the layout of stack frames
3066 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3067   ResourceMark rm;
3068   PRESERVE_EXCEPTION_MARK;
3069   FrameValues values;
3070   int frame_no = 0;
3071   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3072     fst.current()->describe(values, ++frame_no);
3073     if (depth == frame_no) break;
3074   }
3075   if (validate_only) {
3076     values.validate();
3077   } else {
3078     tty->print_cr("[Describe stack layout]");
3079     values.print(this);
3080   }
3081 }
3082 #endif
3083 
3084 void JavaThread::trace_stack_from(vframe* start_vf) {
3085   ResourceMark rm;
3086   int vframe_no = 1;
3087   for (vframe* f = start_vf; f; f = f->sender()) {
3088     if (f->is_java_frame()) {
3089       javaVFrame::cast(f)->print_activation(vframe_no++);
3090     } else {
3091       f->print();
3092     }
3093     if (vframe_no > StackPrintLimit) {
3094       tty->print_cr("...<more frames>...");
3095       return;
3096     }
3097   }
3098 }
3099 
3100 
3101 void JavaThread::trace_stack() {
3102   if (!has_last_Java_frame()) return;
3103   ResourceMark rm;
3104   HandleMark   hm;
3105   RegisterMap reg_map(this);
3106   trace_stack_from(last_java_vframe(&reg_map));
3107 }
3108 
3109 
3110 #endif // PRODUCT
3111 
3112 
3113 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3114   assert(reg_map != NULL, "a map must be given");
3115   frame f = last_frame();
3116   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3117     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3118   }
3119   return NULL;
3120 }
3121 
3122 
3123 Klass* JavaThread::security_get_caller_class(int depth) {
3124   vframeStream vfst(this);
3125   vfst.security_get_caller_frame(depth);
3126   if (!vfst.at_end()) {
3127     return vfst.method()->method_holder();
3128   }
3129   return NULL;
3130 }
3131 
3132 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3133   assert(thread->is_Compiler_thread(), "must be compiler thread");
3134   CompileBroker::compiler_thread_loop();
3135 }
3136 
3137 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3138   NMethodSweeper::sweeper_loop();
3139 }
3140 
3141 // Create a CompilerThread
3142 CompilerThread::CompilerThread(CompileQueue* queue,
3143                                CompilerCounters* counters)
3144                                : JavaThread(&compiler_thread_entry) {
3145   _env   = NULL;
3146   _log   = NULL;
3147   _task  = NULL;
3148   _queue = queue;
3149   _counters = counters;
3150   _buffer_blob = NULL;
3151   _compiler = NULL;
3152 
3153 #ifndef PRODUCT
3154   _ideal_graph_printer = NULL;
3155 #endif
3156 }
3157 
3158 // Create sweeper thread
3159 CodeCacheSweeperThread::CodeCacheSweeperThread()
3160 : JavaThread(&sweeper_thread_entry) {
3161   _scanned_nmethod = NULL;
3162 }
3163 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3164   JavaThread::oops_do(f, cld_f, cf);
3165   if (_scanned_nmethod != NULL && cf != NULL) {
3166     // Safepoints can occur when the sweeper is scanning an nmethod so
3167     // process it here to make sure it isn't unloaded in the middle of
3168     // a scan.
3169     cf->do_code_blob(_scanned_nmethod);
3170   }
3171 }
3172 
3173 
3174 // ======= Threads ========
3175 
3176 // The Threads class links together all active threads, and provides
3177 // operations over all threads.  It is protected by its own Mutex
3178 // lock, which is also used in other contexts to protect thread
3179 // operations from having the thread being operated on from exiting
3180 // and going away unexpectedly (e.g., safepoint synchronization)
3181 
3182 JavaThread* Threads::_thread_list = NULL;
3183 int         Threads::_number_of_threads = 0;
3184 int         Threads::_number_of_non_daemon_threads = 0;
3185 int         Threads::_return_code = 0;
3186 int         Threads::_thread_claim_parity = 0;
3187 size_t      JavaThread::_stack_size_at_create = 0;
3188 #ifdef ASSERT
3189 bool        Threads::_vm_complete = false;
3190 #endif
3191 
3192 // All JavaThreads
3193 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3194 
3195 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3196 void Threads::threads_do(ThreadClosure* tc) {
3197   assert_locked_or_safepoint(Threads_lock);
3198   // ALL_JAVA_THREADS iterates through all JavaThreads
3199   ALL_JAVA_THREADS(p) {
3200     tc->do_thread(p);
3201   }
3202   // Someday we could have a table or list of all non-JavaThreads.
3203   // For now, just manually iterate through them.
3204   tc->do_thread(VMThread::vm_thread());
3205   Universe::heap()->gc_threads_do(tc);
3206   WatcherThread *wt = WatcherThread::watcher_thread();
3207   // Strictly speaking, the following NULL check isn't sufficient to make sure
3208   // the data for WatcherThread is still valid upon being examined. However,
3209   // considering that WatchThread terminates when the VM is on the way to
3210   // exit at safepoint, the chance of the above is extremely small. The right
3211   // way to prevent termination of WatcherThread would be to acquire
3212   // Terminator_lock, but we can't do that without violating the lock rank
3213   // checking in some cases.
3214   if (wt != NULL) {
3215     tc->do_thread(wt);
3216   }
3217 
3218   // If CompilerThreads ever become non-JavaThreads, add them here
3219 }
3220 
3221 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3222   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3223 
3224   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3225     create_vm_init_libraries();
3226   }
3227 
3228   initialize_class(vmSymbols::java_lang_String(), CHECK);
3229 
3230   // Initialize java_lang.System (needed before creating the thread)
3231   initialize_class(vmSymbols::java_lang_System(), CHECK);
3232   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3233   Handle thread_group = create_initial_thread_group(CHECK);
3234   Universe::set_main_thread_group(thread_group());
3235   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3236   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3237   main_thread->set_threadObj(thread_object);
3238   // Set thread status to running since main thread has
3239   // been started and running.
3240   java_lang_Thread::set_thread_status(thread_object,
3241                                       java_lang_Thread::RUNNABLE);
3242 
3243   // The VM creates & returns objects of this class. Make sure it's initialized.
3244   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3245 
3246   // The VM preresolves methods to these classes. Make sure that they get initialized
3247   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3248   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3249   call_initializeSystemClass(CHECK);
3250 
3251   // get the Java runtime name after java.lang.System is initialized
3252   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3253   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3254 
3255   // an instance of OutOfMemory exception has been allocated earlier
3256   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3257   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3258   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3259   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3260   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3261   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3262   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3263   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3264 }
3265 
3266 void Threads::initialize_jsr292_core_classes(TRAPS) {
3267   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3268   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3269   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3270 }
3271 
3272 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3273   extern void JDK_Version_init();
3274 
3275   // Check version
3276   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3277 
3278   // Initialize the output stream module
3279   ostream_init();
3280 
3281   // Process java launcher properties.
3282   Arguments::process_sun_java_launcher_properties(args);
3283 
3284   // Initialize the os module before using TLS
3285   os::init();
3286 
3287   // Initialize system properties.
3288   Arguments::init_system_properties();
3289 
3290   // So that JDK version can be used as a discriminator when parsing arguments
3291   JDK_Version_init();
3292 
3293   // Update/Initialize System properties after JDK version number is known
3294   Arguments::init_version_specific_system_properties();
3295 
3296   // Parse arguments
3297   jint parse_result = Arguments::parse(args);
3298   if (parse_result != JNI_OK) return parse_result;
3299 
3300   os::init_before_ergo();
3301 
3302   jint ergo_result = Arguments::apply_ergo();
3303   if (ergo_result != JNI_OK) return ergo_result;
3304 
3305   if (PauseAtStartup) {
3306     os::pause();
3307   }
3308 
3309   HOTSPOT_VM_INIT_BEGIN();
3310 
3311   // Record VM creation timing statistics
3312   TraceVmCreationTime create_vm_timer;
3313   create_vm_timer.start();
3314 
3315   // Timing (must come after argument parsing)
3316   TraceTime timer("Create VM", TraceStartupTime);
3317 
3318   // Initialize the os module after parsing the args
3319   jint os_init_2_result = os::init_2();
3320   if (os_init_2_result != JNI_OK) return os_init_2_result;
3321 
3322   jint adjust_after_os_result = Arguments::adjust_after_os();
3323   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3324 
3325   // initialize TLS
3326   ThreadLocalStorage::init();
3327 
3328   // Initialize output stream logging
3329   ostream_init_log();
3330 
3331   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3332   // Must be before create_vm_init_agents()
3333   if (Arguments::init_libraries_at_startup()) {
3334     convert_vm_init_libraries_to_agents();
3335   }
3336 
3337   // Launch -agentlib/-agentpath and converted -Xrun agents
3338   if (Arguments::init_agents_at_startup()) {
3339     create_vm_init_agents();
3340   }
3341 
3342   // Initialize Threads state
3343   _thread_list = NULL;
3344   _number_of_threads = 0;
3345   _number_of_non_daemon_threads = 0;
3346 
3347   // Initialize global data structures and create system classes in heap
3348   vm_init_globals();
3349 
3350   // Attach the main thread to this os thread
3351   JavaThread* main_thread = new JavaThread();
3352   main_thread->set_thread_state(_thread_in_vm);
3353   // must do this before set_active_handles and initialize_thread_local_storage
3354   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3355   // change the stack size recorded here to one based on the java thread
3356   // stacksize. This adjusted size is what is used to figure the placement
3357   // of the guard pages.
3358   main_thread->record_stack_base_and_size();
3359   main_thread->initialize_thread_local_storage();
3360 
3361   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3362 
3363   if (!main_thread->set_as_starting_thread()) {
3364     vm_shutdown_during_initialization(
3365                                       "Failed necessary internal allocation. Out of swap space");
3366     delete main_thread;
3367     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3368     return JNI_ENOMEM;
3369   }
3370 
3371   // Enable guard page *after* os::create_main_thread(), otherwise it would
3372   // crash Linux VM, see notes in os_linux.cpp.
3373   main_thread->create_stack_guard_pages();
3374 
3375   // Initialize Java-Level synchronization subsystem
3376   ObjectMonitor::Initialize();
3377 
3378   // Initialize global modules
3379   jint status = init_globals();
3380   if (status != JNI_OK) {
3381     delete main_thread;
3382     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3383     return status;
3384   }
3385 
3386   // Should be done after the heap is fully created
3387   main_thread->cache_global_variables();
3388 
3389   HandleMark hm;
3390 
3391   { MutexLocker mu(Threads_lock);
3392     Threads::add(main_thread);
3393   }
3394 
3395   // Any JVMTI raw monitors entered in onload will transition into
3396   // real raw monitor. VM is setup enough here for raw monitor enter.
3397   JvmtiExport::transition_pending_onload_raw_monitors();
3398 
3399   // Create the VMThread
3400   { TraceTime timer("Start VMThread", TraceStartupTime);
3401     VMThread::create();
3402     Thread* vmthread = VMThread::vm_thread();
3403 
3404     if (!os::create_thread(vmthread, os::vm_thread)) {
3405       vm_exit_during_initialization("Cannot create VM thread. "
3406                                     "Out of system resources.");
3407     }
3408 
3409     // Wait for the VM thread to become ready, and VMThread::run to initialize
3410     // Monitors can have spurious returns, must always check another state flag
3411     {
3412       MutexLocker ml(Notify_lock);
3413       os::start_thread(vmthread);
3414       while (vmthread->active_handles() == NULL) {
3415         Notify_lock->wait();
3416       }
3417     }
3418   }
3419 
3420   assert(Universe::is_fully_initialized(), "not initialized");
3421   if (VerifyDuringStartup) {
3422     // Make sure we're starting with a clean slate.
3423     VM_Verify verify_op;
3424     VMThread::execute(&verify_op);
3425   }
3426 
3427   Thread* THREAD = Thread::current();
3428 
3429   // At this point, the Universe is initialized, but we have not executed
3430   // any byte code.  Now is a good time (the only time) to dump out the
3431   // internal state of the JVM for sharing.
3432   if (DumpSharedSpaces) {
3433     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3434     ShouldNotReachHere();
3435   }
3436 
3437   // Always call even when there are not JVMTI environments yet, since environments
3438   // may be attached late and JVMTI must track phases of VM execution
3439   JvmtiExport::enter_start_phase();
3440 
3441   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3442   JvmtiExport::post_vm_start();
3443 
3444   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3445 
3446   // We need this for ClassDataSharing - the initial vm.info property is set
3447   // with the default value of CDS "sharing" which may be reset through
3448   // command line options.
3449   reset_vm_info_property(CHECK_JNI_ERR);
3450 
3451   quicken_jni_functions();
3452 
3453   // Must be run after init_ft which initializes ft_enabled
3454   if (TRACE_INITIALIZE() != JNI_OK) {
3455     vm_exit_during_initialization("Failed to initialize tracing backend");
3456   }
3457 
3458   // Set flag that basic initialization has completed. Used by exceptions and various
3459   // debug stuff, that does not work until all basic classes have been initialized.
3460   set_init_completed();
3461 
3462   Metaspace::post_initialize();
3463 
3464   HOTSPOT_VM_INIT_END();
3465 
3466   // record VM initialization completion time
3467 #if INCLUDE_MANAGEMENT
3468   Management::record_vm_init_completed();
3469 #endif // INCLUDE_MANAGEMENT
3470 
3471   // Compute system loader. Note that this has to occur after set_init_completed, since
3472   // valid exceptions may be thrown in the process.
3473   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3474   // set_init_completed has just been called, causing exceptions not to be shortcut
3475   // anymore. We call vm_exit_during_initialization directly instead.
3476   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3477 
3478 #if INCLUDE_ALL_GCS
3479   // Support for ConcurrentMarkSweep. This should be cleaned up
3480   // and better encapsulated. The ugly nested if test would go away
3481   // once things are properly refactored. XXX YSR
3482   if (UseConcMarkSweepGC || UseG1GC) {
3483     if (UseConcMarkSweepGC) {
3484       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3485     } else {
3486       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3487     }
3488   }
3489 #endif // INCLUDE_ALL_GCS
3490 
3491   // Always call even when there are not JVMTI environments yet, since environments
3492   // may be attached late and JVMTI must track phases of VM execution
3493   JvmtiExport::enter_live_phase();
3494 
3495   // Signal Dispatcher needs to be started before VMInit event is posted
3496   os::signal_init();
3497 
3498   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3499   if (!DisableAttachMechanism) {
3500     AttachListener::vm_start();
3501     if (StartAttachListener || AttachListener::init_at_startup()) {
3502       AttachListener::init();
3503     }
3504   }
3505 
3506   // Launch -Xrun agents
3507   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3508   // back-end can launch with -Xdebug -Xrunjdwp.
3509   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3510     create_vm_init_libraries();
3511   }
3512 
3513   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3514   JvmtiExport::post_vm_initialized();
3515 
3516   if (TRACE_START() != JNI_OK) {
3517     vm_exit_during_initialization("Failed to start tracing backend.");
3518   }
3519 
3520   if (CleanChunkPoolAsync) {
3521     Chunk::start_chunk_pool_cleaner_task();
3522   }
3523 
3524   // initialize compiler(s)
3525 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3526   CompileBroker::compilation_init();
3527 #endif
3528 
3529   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3530   // It is done after compilers are initialized, because otherwise compilations of
3531   // signature polymorphic MH intrinsics can be missed
3532   // (see SystemDictionary::find_method_handle_intrinsic).
3533   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3534 
3535 #if INCLUDE_MANAGEMENT
3536   Management::initialize(THREAD);
3537 
3538   if (HAS_PENDING_EXCEPTION) {
3539     // management agent fails to start possibly due to
3540     // configuration problem and is responsible for printing
3541     // stack trace if appropriate. Simply exit VM.
3542     vm_exit(1);
3543   }
3544 #endif // INCLUDE_MANAGEMENT
3545 
3546   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3547   if (MemProfiling)                   MemProfiler::engage();
3548   StatSampler::engage();
3549   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3550 
3551   BiasedLocking::init();
3552 
3553 #if INCLUDE_RTM_OPT
3554   RTMLockingCounters::init();
3555 #endif
3556 
3557   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3558     call_postVMInitHook(THREAD);
3559     // The Java side of PostVMInitHook.run must deal with all
3560     // exceptions and provide means of diagnosis.
3561     if (HAS_PENDING_EXCEPTION) {
3562       CLEAR_PENDING_EXCEPTION;
3563     }
3564   }
3565 
3566   {
3567     MutexLocker ml(PeriodicTask_lock);
3568     // Make sure the WatcherThread can be started by WatcherThread::start()
3569     // or by dynamic enrollment.
3570     WatcherThread::make_startable();
3571     // Start up the WatcherThread if there are any periodic tasks
3572     // NOTE:  All PeriodicTasks should be registered by now. If they
3573     //   aren't, late joiners might appear to start slowly (we might
3574     //   take a while to process their first tick).
3575     if (PeriodicTask::num_tasks() > 0) {
3576       WatcherThread::start();
3577     }
3578   }
3579 
3580   create_vm_timer.end();
3581 #ifdef ASSERT
3582   _vm_complete = true;
3583 #endif
3584   return JNI_OK;
3585 }
3586 
3587 // type for the Agent_OnLoad and JVM_OnLoad entry points
3588 extern "C" {
3589   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3590 }
3591 // Find a command line agent library and return its entry point for
3592 //         -agentlib:  -agentpath:   -Xrun
3593 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3594 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3595                                     const char *on_load_symbols[],
3596                                     size_t num_symbol_entries) {
3597   OnLoadEntry_t on_load_entry = NULL;
3598   void *library = NULL;
3599 
3600   if (!agent->valid()) {
3601     char buffer[JVM_MAXPATHLEN];
3602     char ebuf[1024] = "";
3603     const char *name = agent->name();
3604     const char *msg = "Could not find agent library ";
3605 
3606     // First check to see if agent is statically linked into executable
3607     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3608       library = agent->os_lib();
3609     } else if (agent->is_absolute_path()) {
3610       library = os::dll_load(name, ebuf, sizeof ebuf);
3611       if (library == NULL) {
3612         const char *sub_msg = " in absolute path, with error: ";
3613         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3614         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3615         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3616         // If we can't find the agent, exit.
3617         vm_exit_during_initialization(buf, NULL);
3618         FREE_C_HEAP_ARRAY(char, buf);
3619       }
3620     } else {
3621       // Try to load the agent from the standard dll directory
3622       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3623                              name)) {
3624         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3625       }
3626       if (library == NULL) { // Try the local directory
3627         char ns[1] = {0};
3628         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3629           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3630         }
3631         if (library == NULL) {
3632           const char *sub_msg = " on the library path, with error: ";
3633           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3634           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3635           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3636           // If we can't find the agent, exit.
3637           vm_exit_during_initialization(buf, NULL);
3638           FREE_C_HEAP_ARRAY(char, buf);
3639         }
3640       }
3641     }
3642     agent->set_os_lib(library);
3643     agent->set_valid();
3644   }
3645 
3646   // Find the OnLoad function.
3647   on_load_entry =
3648     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3649                                                           false,
3650                                                           on_load_symbols,
3651                                                           num_symbol_entries));
3652   return on_load_entry;
3653 }
3654 
3655 // Find the JVM_OnLoad entry point
3656 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3657   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3658   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3659 }
3660 
3661 // Find the Agent_OnLoad entry point
3662 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3663   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3664   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3665 }
3666 
3667 // For backwards compatibility with -Xrun
3668 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3669 // treated like -agentpath:
3670 // Must be called before agent libraries are created
3671 void Threads::convert_vm_init_libraries_to_agents() {
3672   AgentLibrary* agent;
3673   AgentLibrary* next;
3674 
3675   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3676     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3677     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3678 
3679     // If there is an JVM_OnLoad function it will get called later,
3680     // otherwise see if there is an Agent_OnLoad
3681     if (on_load_entry == NULL) {
3682       on_load_entry = lookup_agent_on_load(agent);
3683       if (on_load_entry != NULL) {
3684         // switch it to the agent list -- so that Agent_OnLoad will be called,
3685         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3686         Arguments::convert_library_to_agent(agent);
3687       } else {
3688         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3689       }
3690     }
3691   }
3692 }
3693 
3694 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3695 // Invokes Agent_OnLoad
3696 // Called very early -- before JavaThreads exist
3697 void Threads::create_vm_init_agents() {
3698   extern struct JavaVM_ main_vm;
3699   AgentLibrary* agent;
3700 
3701   JvmtiExport::enter_onload_phase();
3702 
3703   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3704     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3705 
3706     if (on_load_entry != NULL) {
3707       // Invoke the Agent_OnLoad function
3708       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3709       if (err != JNI_OK) {
3710         vm_exit_during_initialization("agent library failed to init", agent->name());
3711       }
3712     } else {
3713       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3714     }
3715   }
3716   JvmtiExport::enter_primordial_phase();
3717 }
3718 
3719 extern "C" {
3720   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3721 }
3722 
3723 void Threads::shutdown_vm_agents() {
3724   // Send any Agent_OnUnload notifications
3725   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3726   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3727   extern struct JavaVM_ main_vm;
3728   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3729 
3730     // Find the Agent_OnUnload function.
3731     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3732                                                    os::find_agent_function(agent,
3733                                                    false,
3734                                                    on_unload_symbols,
3735                                                    num_symbol_entries));
3736 
3737     // Invoke the Agent_OnUnload function
3738     if (unload_entry != NULL) {
3739       JavaThread* thread = JavaThread::current();
3740       ThreadToNativeFromVM ttn(thread);
3741       HandleMark hm(thread);
3742       (*unload_entry)(&main_vm);
3743     }
3744   }
3745 }
3746 
3747 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3748 // Invokes JVM_OnLoad
3749 void Threads::create_vm_init_libraries() {
3750   extern struct JavaVM_ main_vm;
3751   AgentLibrary* agent;
3752 
3753   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3754     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3755 
3756     if (on_load_entry != NULL) {
3757       // Invoke the JVM_OnLoad function
3758       JavaThread* thread = JavaThread::current();
3759       ThreadToNativeFromVM ttn(thread);
3760       HandleMark hm(thread);
3761       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3762       if (err != JNI_OK) {
3763         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3764       }
3765     } else {
3766       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3767     }
3768   }
3769 }
3770 
3771 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3772   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3773 
3774   JavaThread* java_thread = NULL;
3775   // Sequential search for now.  Need to do better optimization later.
3776   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3777     oop tobj = thread->threadObj();
3778     if (!thread->is_exiting() &&
3779         tobj != NULL &&
3780         java_tid == java_lang_Thread::thread_id(tobj)) {
3781       java_thread = thread;
3782       break;
3783     }
3784   }
3785   return java_thread;
3786 }
3787 
3788 
3789 // Last thread running calls java.lang.Shutdown.shutdown()
3790 void JavaThread::invoke_shutdown_hooks() {
3791   HandleMark hm(this);
3792 
3793   // We could get here with a pending exception, if so clear it now.
3794   if (this->has_pending_exception()) {
3795     this->clear_pending_exception();
3796   }
3797 
3798   EXCEPTION_MARK;
3799   Klass* k =
3800     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3801                                       THREAD);
3802   if (k != NULL) {
3803     // SystemDictionary::resolve_or_null will return null if there was
3804     // an exception.  If we cannot load the Shutdown class, just don't
3805     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3806     // and finalizers (if runFinalizersOnExit is set) won't be run.
3807     // Note that if a shutdown hook was registered or runFinalizersOnExit
3808     // was called, the Shutdown class would have already been loaded
3809     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3810     instanceKlassHandle shutdown_klass (THREAD, k);
3811     JavaValue result(T_VOID);
3812     JavaCalls::call_static(&result,
3813                            shutdown_klass,
3814                            vmSymbols::shutdown_method_name(),
3815                            vmSymbols::void_method_signature(),
3816                            THREAD);
3817   }
3818   CLEAR_PENDING_EXCEPTION;
3819 }
3820 
3821 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3822 // the program falls off the end of main(). Another VM exit path is through
3823 // vm_exit() when the program calls System.exit() to return a value or when
3824 // there is a serious error in VM. The two shutdown paths are not exactly
3825 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3826 // and VM_Exit op at VM level.
3827 //
3828 // Shutdown sequence:
3829 //   + Shutdown native memory tracking if it is on
3830 //   + Wait until we are the last non-daemon thread to execute
3831 //     <-- every thing is still working at this moment -->
3832 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3833 //        shutdown hooks, run finalizers if finalization-on-exit
3834 //   + Call before_exit(), prepare for VM exit
3835 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3836 //        currently the only user of this mechanism is File.deleteOnExit())
3837 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3838 //        post thread end and vm death events to JVMTI,
3839 //        stop signal thread
3840 //   + Call JavaThread::exit(), it will:
3841 //      > release JNI handle blocks, remove stack guard pages
3842 //      > remove this thread from Threads list
3843 //     <-- no more Java code from this thread after this point -->
3844 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3845 //     the compiler threads at safepoint
3846 //     <-- do not use anything that could get blocked by Safepoint -->
3847 //   + Disable tracing at JNI/JVM barriers
3848 //   + Set _vm_exited flag for threads that are still running native code
3849 //   + Delete this thread
3850 //   + Call exit_globals()
3851 //      > deletes tty
3852 //      > deletes PerfMemory resources
3853 //   + Return to caller
3854 
3855 bool Threads::destroy_vm() {
3856   JavaThread* thread = JavaThread::current();
3857 
3858 #ifdef ASSERT
3859   _vm_complete = false;
3860 #endif
3861   // Wait until we are the last non-daemon thread to execute
3862   { MutexLocker nu(Threads_lock);
3863     while (Threads::number_of_non_daemon_threads() > 1)
3864       // This wait should make safepoint checks, wait without a timeout,
3865       // and wait as a suspend-equivalent condition.
3866       //
3867       // Note: If the FlatProfiler is running and this thread is waiting
3868       // for another non-daemon thread to finish, then the FlatProfiler
3869       // is waiting for the external suspend request on this thread to
3870       // complete. wait_for_ext_suspend_completion() will eventually
3871       // timeout, but that takes time. Making this wait a suspend-
3872       // equivalent condition solves that timeout problem.
3873       //
3874       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3875                          Mutex::_as_suspend_equivalent_flag);
3876   }
3877 
3878   // Hang forever on exit if we are reporting an error.
3879   if (ShowMessageBoxOnError && is_error_reported()) {
3880     os::infinite_sleep();
3881   }
3882   os::wait_for_keypress_at_exit();
3883 
3884   // run Java level shutdown hooks
3885   thread->invoke_shutdown_hooks();
3886 
3887   before_exit(thread);
3888 
3889   thread->exit(true);
3890 
3891   // Stop VM thread.
3892   {
3893     // 4945125 The vm thread comes to a safepoint during exit.
3894     // GC vm_operations can get caught at the safepoint, and the
3895     // heap is unparseable if they are caught. Grab the Heap_lock
3896     // to prevent this. The GC vm_operations will not be able to
3897     // queue until after the vm thread is dead. After this point,
3898     // we'll never emerge out of the safepoint before the VM exits.
3899 
3900     MutexLocker ml(Heap_lock);
3901 
3902     VMThread::wait_for_vm_thread_exit();
3903     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3904     VMThread::destroy();
3905   }
3906 
3907   // clean up ideal graph printers
3908 #if defined(COMPILER2) && !defined(PRODUCT)
3909   IdealGraphPrinter::clean_up();
3910 #endif
3911 
3912   // Now, all Java threads are gone except daemon threads. Daemon threads
3913   // running Java code or in VM are stopped by the Safepoint. However,
3914   // daemon threads executing native code are still running.  But they
3915   // will be stopped at native=>Java/VM barriers. Note that we can't
3916   // simply kill or suspend them, as it is inherently deadlock-prone.
3917 
3918 #ifndef PRODUCT
3919   // disable function tracing at JNI/JVM barriers
3920   TraceJNICalls = false;
3921   TraceJVMCalls = false;
3922   TraceRuntimeCalls = false;
3923 #endif
3924 
3925   VM_Exit::set_vm_exited();
3926 
3927   notify_vm_shutdown();
3928 
3929   delete thread;
3930 
3931   // exit_globals() will delete tty
3932   exit_globals();
3933 
3934   return true;
3935 }
3936 
3937 
3938 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3939   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3940   return is_supported_jni_version(version);
3941 }
3942 
3943 
3944 jboolean Threads::is_supported_jni_version(jint version) {
3945   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3946   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3947   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3948   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3949   return JNI_FALSE;
3950 }
3951 
3952 
3953 void Threads::add(JavaThread* p, bool force_daemon) {
3954   // The threads lock must be owned at this point
3955   assert_locked_or_safepoint(Threads_lock);
3956 
3957   // See the comment for this method in thread.hpp for its purpose and
3958   // why it is called here.
3959   p->initialize_queues();
3960   p->set_next(_thread_list);
3961   _thread_list = p;
3962   _number_of_threads++;
3963   oop threadObj = p->threadObj();
3964   bool daemon = true;
3965   // Bootstrapping problem: threadObj can be null for initial
3966   // JavaThread (or for threads attached via JNI)
3967   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3968     _number_of_non_daemon_threads++;
3969     daemon = false;
3970   }
3971 
3972   ThreadService::add_thread(p, daemon);
3973 
3974   // Possible GC point.
3975   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3976 }
3977 
3978 void Threads::remove(JavaThread* p) {
3979   // Extra scope needed for Thread_lock, so we can check
3980   // that we do not remove thread without safepoint code notice
3981   { MutexLocker ml(Threads_lock);
3982 
3983     assert(includes(p), "p must be present");
3984 
3985     JavaThread* current = _thread_list;
3986     JavaThread* prev    = NULL;
3987 
3988     while (current != p) {
3989       prev    = current;
3990       current = current->next();
3991     }
3992 
3993     if (prev) {
3994       prev->set_next(current->next());
3995     } else {
3996       _thread_list = p->next();
3997     }
3998     _number_of_threads--;
3999     oop threadObj = p->threadObj();
4000     bool daemon = true;
4001     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4002       _number_of_non_daemon_threads--;
4003       daemon = false;
4004 
4005       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4006       // on destroy_vm will wake up.
4007       if (number_of_non_daemon_threads() == 1) {
4008         Threads_lock->notify_all();
4009       }
4010     }
4011     ThreadService::remove_thread(p, daemon);
4012 
4013     // Make sure that safepoint code disregard this thread. This is needed since
4014     // the thread might mess around with locks after this point. This can cause it
4015     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4016     // of this thread since it is removed from the queue.
4017     p->set_terminated_value();
4018   } // unlock Threads_lock
4019 
4020   // Since Events::log uses a lock, we grab it outside the Threads_lock
4021   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4022 }
4023 
4024 // Threads_lock must be held when this is called (or must be called during a safepoint)
4025 bool Threads::includes(JavaThread* p) {
4026   assert(Threads_lock->is_locked(), "sanity check");
4027   ALL_JAVA_THREADS(q) {
4028     if (q == p) {
4029       return true;
4030     }
4031   }
4032   return false;
4033 }
4034 
4035 // Operations on the Threads list for GC.  These are not explicitly locked,
4036 // but the garbage collector must provide a safe context for them to run.
4037 // In particular, these things should never be called when the Threads_lock
4038 // is held by some other thread. (Note: the Safepoint abstraction also
4039 // uses the Threads_lock to guarantee this property. It also makes sure that
4040 // all threads gets blocked when exiting or starting).
4041 
4042 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4043   ALL_JAVA_THREADS(p) {
4044     p->oops_do(f, cld_f, cf);
4045   }
4046   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4047 }
4048 
4049 void Threads::change_thread_claim_parity() {
4050   // Set the new claim parity.
4051   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4052          "Not in range.");
4053   _thread_claim_parity++;
4054   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4055   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4056          "Not in range.");
4057 }
4058 
4059 #ifndef PRODUCT
4060 void Threads::assert_all_threads_claimed() {
4061   ALL_JAVA_THREADS(p) {
4062     const int thread_parity = p->oops_do_parity();
4063     assert((thread_parity == _thread_claim_parity),
4064         err_msg("Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity));
4065   }
4066 }
4067 #endif // PRODUCT
4068 
4069 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4070   // Introduce a mechanism allowing parallel threads to claim threads as
4071   // root groups.  Overhead should be small enough to use all the time,
4072   // even in sequential code.
4073   SharedHeap* sh = SharedHeap::heap();
4074   // Cannot yet substitute active_workers for n_par_threads
4075   // because of G1CollectedHeap::verify() use of
4076   // SharedHeap::process_roots().  n_par_threads == 0 will
4077   // turn off parallelism in process_roots while active_workers
4078   // is being used for parallelism elsewhere.
4079   bool is_par = sh->n_par_threads() > 0;
4080   assert(!is_par ||
4081          (SharedHeap::heap()->n_par_threads() ==
4082          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4083   int cp = Threads::thread_claim_parity();
4084   ALL_JAVA_THREADS(p) {
4085     if (p->claim_oops_do(is_par, cp)) {
4086       p->oops_do(f, cld_f, cf);
4087     }
4088   }
4089   VMThread* vmt = VMThread::vm_thread();
4090   if (vmt->claim_oops_do(is_par, cp)) {
4091     vmt->oops_do(f, cld_f, cf);
4092   }
4093 }
4094 
4095 #if INCLUDE_ALL_GCS
4096 // Used by ParallelScavenge
4097 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4098   ALL_JAVA_THREADS(p) {
4099     q->enqueue(new ThreadRootsTask(p));
4100   }
4101   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4102 }
4103 
4104 // Used by Parallel Old
4105 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4106   ALL_JAVA_THREADS(p) {
4107     q->enqueue(new ThreadRootsMarkingTask(p));
4108   }
4109   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4110 }
4111 #endif // INCLUDE_ALL_GCS
4112 
4113 void Threads::nmethods_do(CodeBlobClosure* cf) {
4114   ALL_JAVA_THREADS(p) {
4115     p->nmethods_do(cf);
4116   }
4117   VMThread::vm_thread()->nmethods_do(cf);
4118 }
4119 
4120 void Threads::metadata_do(void f(Metadata*)) {
4121   ALL_JAVA_THREADS(p) {
4122     p->metadata_do(f);
4123   }
4124 }
4125 
4126 class ThreadHandlesClosure : public ThreadClosure {
4127   void (*_f)(Metadata*);
4128  public:
4129   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4130   virtual void do_thread(Thread* thread) {
4131     thread->metadata_handles_do(_f);
4132   }
4133 };
4134 
4135 void Threads::metadata_handles_do(void f(Metadata*)) {
4136   // Only walk the Handles in Thread.
4137   ThreadHandlesClosure handles_closure(f);
4138   threads_do(&handles_closure);
4139 }
4140 
4141 void Threads::deoptimized_wrt_marked_nmethods() {
4142   ALL_JAVA_THREADS(p) {
4143     p->deoptimized_wrt_marked_nmethods();
4144   }
4145 }
4146 
4147 
4148 // Get count Java threads that are waiting to enter the specified monitor.
4149 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4150                                                          address monitor,
4151                                                          bool doLock) {
4152   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4153          "must grab Threads_lock or be at safepoint");
4154   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4155 
4156   int i = 0;
4157   {
4158     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4159     ALL_JAVA_THREADS(p) {
4160       if (p->is_Compiler_thread()) continue;
4161 
4162       address pending = (address)p->current_pending_monitor();
4163       if (pending == monitor) {             // found a match
4164         if (i < count) result->append(p);   // save the first count matches
4165         i++;
4166       }
4167     }
4168   }
4169   return result;
4170 }
4171 
4172 
4173 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4174                                                       bool doLock) {
4175   assert(doLock ||
4176          Threads_lock->owned_by_self() ||
4177          SafepointSynchronize::is_at_safepoint(),
4178          "must grab Threads_lock or be at safepoint");
4179 
4180   // NULL owner means not locked so we can skip the search
4181   if (owner == NULL) return NULL;
4182 
4183   {
4184     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4185     ALL_JAVA_THREADS(p) {
4186       // first, see if owner is the address of a Java thread
4187       if (owner == (address)p) return p;
4188     }
4189   }
4190   // Cannot assert on lack of success here since this function may be
4191   // used by code that is trying to report useful problem information
4192   // like deadlock detection.
4193   if (UseHeavyMonitors) return NULL;
4194 
4195   // If we didn't find a matching Java thread and we didn't force use of
4196   // heavyweight monitors, then the owner is the stack address of the
4197   // Lock Word in the owning Java thread's stack.
4198   //
4199   JavaThread* the_owner = NULL;
4200   {
4201     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4202     ALL_JAVA_THREADS(q) {
4203       if (q->is_lock_owned(owner)) {
4204         the_owner = q;
4205         break;
4206       }
4207     }
4208   }
4209   // cannot assert on lack of success here; see above comment
4210   return the_owner;
4211 }
4212 
4213 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4214 void Threads::print_on(outputStream* st, bool print_stacks,
4215                        bool internal_format, bool print_concurrent_locks) {
4216   char buf[32];
4217   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4218 
4219   st->print_cr("Full thread dump %s (%s %s):",
4220                Abstract_VM_Version::vm_name(),
4221                Abstract_VM_Version::vm_release(),
4222                Abstract_VM_Version::vm_info_string());
4223   st->cr();
4224 
4225 #if INCLUDE_ALL_GCS
4226   // Dump concurrent locks
4227   ConcurrentLocksDump concurrent_locks;
4228   if (print_concurrent_locks) {
4229     concurrent_locks.dump_at_safepoint();
4230   }
4231 #endif // INCLUDE_ALL_GCS
4232 
4233   ALL_JAVA_THREADS(p) {
4234     ResourceMark rm;
4235     p->print_on(st);
4236     if (print_stacks) {
4237       if (internal_format) {
4238         p->trace_stack();
4239       } else {
4240         p->print_stack_on(st);
4241       }
4242     }
4243     st->cr();
4244 #if INCLUDE_ALL_GCS
4245     if (print_concurrent_locks) {
4246       concurrent_locks.print_locks_on(p, st);
4247     }
4248 #endif // INCLUDE_ALL_GCS
4249   }
4250 
4251   VMThread::vm_thread()->print_on(st);
4252   st->cr();
4253   Universe::heap()->print_gc_threads_on(st);
4254   WatcherThread* wt = WatcherThread::watcher_thread();
4255   if (wt != NULL) {
4256     wt->print_on(st);
4257     st->cr();
4258   }
4259   CompileBroker::print_compiler_threads_on(st);
4260   st->flush();
4261 }
4262 
4263 // Threads::print_on_error() is called by fatal error handler. It's possible
4264 // that VM is not at safepoint and/or current thread is inside signal handler.
4265 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4266 // memory (even in resource area), it might deadlock the error handler.
4267 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4268                              int buflen) {
4269   bool found_current = false;
4270   st->print_cr("Java Threads: ( => current thread )");
4271   ALL_JAVA_THREADS(thread) {
4272     bool is_current = (current == thread);
4273     found_current = found_current || is_current;
4274 
4275     st->print("%s", is_current ? "=>" : "  ");
4276 
4277     st->print(PTR_FORMAT, thread);
4278     st->print(" ");
4279     thread->print_on_error(st, buf, buflen);
4280     st->cr();
4281   }
4282   st->cr();
4283 
4284   st->print_cr("Other Threads:");
4285   if (VMThread::vm_thread()) {
4286     bool is_current = (current == VMThread::vm_thread());
4287     found_current = found_current || is_current;
4288     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4289 
4290     st->print(PTR_FORMAT, VMThread::vm_thread());
4291     st->print(" ");
4292     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4293     st->cr();
4294   }
4295   WatcherThread* wt = WatcherThread::watcher_thread();
4296   if (wt != NULL) {
4297     bool is_current = (current == wt);
4298     found_current = found_current || is_current;
4299     st->print("%s", is_current ? "=>" : "  ");
4300 
4301     st->print(PTR_FORMAT, wt);
4302     st->print(" ");
4303     wt->print_on_error(st, buf, buflen);
4304     st->cr();
4305   }
4306   if (!found_current) {
4307     st->cr();
4308     st->print("=>" PTR_FORMAT " (exited) ", current);
4309     current->print_on_error(st, buf, buflen);
4310     st->cr();
4311   }
4312 }
4313 
4314 // Internal SpinLock and Mutex
4315 // Based on ParkEvent
4316 
4317 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4318 //
4319 // We employ SpinLocks _only for low-contention, fixed-length
4320 // short-duration critical sections where we're concerned
4321 // about native mutex_t or HotSpot Mutex:: latency.
4322 // The mux construct provides a spin-then-block mutual exclusion
4323 // mechanism.
4324 //
4325 // Testing has shown that contention on the ListLock guarding gFreeList
4326 // is common.  If we implement ListLock as a simple SpinLock it's common
4327 // for the JVM to devolve to yielding with little progress.  This is true
4328 // despite the fact that the critical sections protected by ListLock are
4329 // extremely short.
4330 //
4331 // TODO-FIXME: ListLock should be of type SpinLock.
4332 // We should make this a 1st-class type, integrated into the lock
4333 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4334 // should have sufficient padding to avoid false-sharing and excessive
4335 // cache-coherency traffic.
4336 
4337 
4338 typedef volatile int SpinLockT;
4339 
4340 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4341   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4342     return;   // normal fast-path return
4343   }
4344 
4345   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4346   TEVENT(SpinAcquire - ctx);
4347   int ctr = 0;
4348   int Yields = 0;
4349   for (;;) {
4350     while (*adr != 0) {
4351       ++ctr;
4352       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4353         if (Yields > 5) {
4354           os::naked_short_sleep(1);
4355         } else {
4356           os::naked_yield();
4357           ++Yields;
4358         }
4359       } else {
4360         SpinPause();
4361       }
4362     }
4363     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4364   }
4365 }
4366 
4367 void Thread::SpinRelease(volatile int * adr) {
4368   assert(*adr != 0, "invariant");
4369   OrderAccess::fence();      // guarantee at least release consistency.
4370   // Roach-motel semantics.
4371   // It's safe if subsequent LDs and STs float "up" into the critical section,
4372   // but prior LDs and STs within the critical section can't be allowed
4373   // to reorder or float past the ST that releases the lock.
4374   // Loads and stores in the critical section - which appear in program
4375   // order before the store that releases the lock - must also appear
4376   // before the store that releases the lock in memory visibility order.
4377   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4378   // the ST of 0 into the lock-word which releases the lock, so fence
4379   // more than covers this on all platforms.
4380   *adr = 0;
4381 }
4382 
4383 // muxAcquire and muxRelease:
4384 //
4385 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4386 //    The LSB of the word is set IFF the lock is held.
4387 //    The remainder of the word points to the head of a singly-linked list
4388 //    of threads blocked on the lock.
4389 //
4390 // *  The current implementation of muxAcquire-muxRelease uses its own
4391 //    dedicated Thread._MuxEvent instance.  If we're interested in
4392 //    minimizing the peak number of extant ParkEvent instances then
4393 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4394 //    as certain invariants were satisfied.  Specifically, care would need
4395 //    to be taken with regards to consuming unpark() "permits".
4396 //    A safe rule of thumb is that a thread would never call muxAcquire()
4397 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4398 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4399 //    consume an unpark() permit intended for monitorenter, for instance.
4400 //    One way around this would be to widen the restricted-range semaphore
4401 //    implemented in park().  Another alternative would be to provide
4402 //    multiple instances of the PlatformEvent() for each thread.  One
4403 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4404 //
4405 // *  Usage:
4406 //    -- Only as leaf locks
4407 //    -- for short-term locking only as muxAcquire does not perform
4408 //       thread state transitions.
4409 //
4410 // Alternatives:
4411 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4412 //    but with parking or spin-then-park instead of pure spinning.
4413 // *  Use Taura-Oyama-Yonenzawa locks.
4414 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4415 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4416 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4417 //    acquiring threads use timers (ParkTimed) to detect and recover from
4418 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4419 //    boundaries by using placement-new.
4420 // *  Augment MCS with advisory back-link fields maintained with CAS().
4421 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4422 //    The validity of the backlinks must be ratified before we trust the value.
4423 //    If the backlinks are invalid the exiting thread must back-track through the
4424 //    the forward links, which are always trustworthy.
4425 // *  Add a successor indication.  The LockWord is currently encoded as
4426 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4427 //    to provide the usual futile-wakeup optimization.
4428 //    See RTStt for details.
4429 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4430 //
4431 
4432 
4433 typedef volatile intptr_t MutexT;      // Mux Lock-word
4434 enum MuxBits { LOCKBIT = 1 };
4435 
4436 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4437   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4438   if (w == 0) return;
4439   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4440     return;
4441   }
4442 
4443   TEVENT(muxAcquire - Contention);
4444   ParkEvent * const Self = Thread::current()->_MuxEvent;
4445   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4446   for (;;) {
4447     int its = (os::is_MP() ? 100 : 0) + 1;
4448 
4449     // Optional spin phase: spin-then-park strategy
4450     while (--its >= 0) {
4451       w = *Lock;
4452       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4453         return;
4454       }
4455     }
4456 
4457     Self->reset();
4458     Self->OnList = intptr_t(Lock);
4459     // The following fence() isn't _strictly necessary as the subsequent
4460     // CAS() both serializes execution and ratifies the fetched *Lock value.
4461     OrderAccess::fence();
4462     for (;;) {
4463       w = *Lock;
4464       if ((w & LOCKBIT) == 0) {
4465         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4466           Self->OnList = 0;   // hygiene - allows stronger asserts
4467           return;
4468         }
4469         continue;      // Interference -- *Lock changed -- Just retry
4470       }
4471       assert(w & LOCKBIT, "invariant");
4472       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4473       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4474     }
4475 
4476     while (Self->OnList != 0) {
4477       Self->park();
4478     }
4479   }
4480 }
4481 
4482 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4483   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4484   if (w == 0) return;
4485   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4486     return;
4487   }
4488 
4489   TEVENT(muxAcquire - Contention);
4490   ParkEvent * ReleaseAfter = NULL;
4491   if (ev == NULL) {
4492     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4493   }
4494   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4495   for (;;) {
4496     guarantee(ev->OnList == 0, "invariant");
4497     int its = (os::is_MP() ? 100 : 0) + 1;
4498 
4499     // Optional spin phase: spin-then-park strategy
4500     while (--its >= 0) {
4501       w = *Lock;
4502       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4503         if (ReleaseAfter != NULL) {
4504           ParkEvent::Release(ReleaseAfter);
4505         }
4506         return;
4507       }
4508     }
4509 
4510     ev->reset();
4511     ev->OnList = intptr_t(Lock);
4512     // The following fence() isn't _strictly necessary as the subsequent
4513     // CAS() both serializes execution and ratifies the fetched *Lock value.
4514     OrderAccess::fence();
4515     for (;;) {
4516       w = *Lock;
4517       if ((w & LOCKBIT) == 0) {
4518         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4519           ev->OnList = 0;
4520           // We call ::Release while holding the outer lock, thus
4521           // artificially lengthening the critical section.
4522           // Consider deferring the ::Release() until the subsequent unlock(),
4523           // after we've dropped the outer lock.
4524           if (ReleaseAfter != NULL) {
4525             ParkEvent::Release(ReleaseAfter);
4526           }
4527           return;
4528         }
4529         continue;      // Interference -- *Lock changed -- Just retry
4530       }
4531       assert(w & LOCKBIT, "invariant");
4532       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4533       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4534     }
4535 
4536     while (ev->OnList != 0) {
4537       ev->park();
4538     }
4539   }
4540 }
4541 
4542 // Release() must extract a successor from the list and then wake that thread.
4543 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4544 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4545 // Release() would :
4546 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4547 // (B) Extract a successor from the private list "in-hand"
4548 // (C) attempt to CAS() the residual back into *Lock over null.
4549 //     If there were any newly arrived threads and the CAS() would fail.
4550 //     In that case Release() would detach the RATs, re-merge the list in-hand
4551 //     with the RATs and repeat as needed.  Alternately, Release() might
4552 //     detach and extract a successor, but then pass the residual list to the wakee.
4553 //     The wakee would be responsible for reattaching and remerging before it
4554 //     competed for the lock.
4555 //
4556 // Both "pop" and DMR are immune from ABA corruption -- there can be
4557 // multiple concurrent pushers, but only one popper or detacher.
4558 // This implementation pops from the head of the list.  This is unfair,
4559 // but tends to provide excellent throughput as hot threads remain hot.
4560 // (We wake recently run threads first).
4561 //
4562 // All paths through muxRelease() will execute a CAS.
4563 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4564 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4565 // executed within the critical section are complete and globally visible before the
4566 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4567 void Thread::muxRelease(volatile intptr_t * Lock)  {
4568   for (;;) {
4569     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4570     assert(w & LOCKBIT, "invariant");
4571     if (w == LOCKBIT) return;
4572     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4573     assert(List != NULL, "invariant");
4574     assert(List->OnList == intptr_t(Lock), "invariant");
4575     ParkEvent * const nxt = List->ListNext;
4576     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4577 
4578     // The following CAS() releases the lock and pops the head element.
4579     // The CAS() also ratifies the previously fetched lock-word value.
4580     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4581       continue;
4582     }
4583     List->OnList = 0;
4584     OrderAccess::fence();
4585     List->unpark();
4586     return;
4587   }
4588 }
4589 
4590 
4591 void Threads::verify() {
4592   ALL_JAVA_THREADS(p) {
4593     p->verify();
4594   }
4595   VMThread* thread = VMThread::vm_thread();
4596   if (thread != NULL) thread->verify();
4597 }