1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   bool _concurrent;
  96 public:
  97   RefineCardTableEntryClosure() : _concurrent(true) { }
  98 
  99   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 100     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 101     // This path is executed by the concurrent refine or mutator threads,
 102     // concurrently, and so we do not care if card_ptr contains references
 103     // that point into the collection set.
 104     assert(!oops_into_cset, "should be");
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_processed;
 121 
 122  public:
 123   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     *card_ptr = CardTableModRefBS::dirty_card_val();
 127     _num_processed++;
 128     return true;
 129   }
 130 
 131   size_t num_processed() const { return _num_processed; }
 132 };
 133 
 134 YoungList::YoungList(G1CollectedHeap* g1h) :
 135     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 136     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 137   guarantee(check_list_empty(false), "just making sure...");
 138 }
 139 
 140 void YoungList::push_region(HeapRegion *hr) {
 141   assert(!hr->is_young(), "should not already be young");
 142   assert(hr->get_next_young_region() == NULL, "cause it should!");
 143 
 144   hr->set_next_young_region(_head);
 145   _head = hr;
 146 
 147   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 148   ++_length;
 149 }
 150 
 151 void YoungList::add_survivor_region(HeapRegion* hr) {
 152   assert(hr->is_survivor(), "should be flagged as survivor region");
 153   assert(hr->get_next_young_region() == NULL, "cause it should!");
 154 
 155   hr->set_next_young_region(_survivor_head);
 156   if (_survivor_head == NULL) {
 157     _survivor_tail = hr;
 158   }
 159   _survivor_head = hr;
 160   ++_survivor_length;
 161 }
 162 
 163 void YoungList::empty_list(HeapRegion* list) {
 164   while (list != NULL) {
 165     HeapRegion* next = list->get_next_young_region();
 166     list->set_next_young_region(NULL);
 167     list->uninstall_surv_rate_group();
 168     // This is called before a Full GC and all the non-empty /
 169     // non-humongous regions at the end of the Full GC will end up as
 170     // old anyway.
 171     list->set_old();
 172     list = next;
 173   }
 174 }
 175 
 176 void YoungList::empty_list() {
 177   assert(check_list_well_formed(), "young list should be well formed");
 178 
 179   empty_list(_head);
 180   _head = NULL;
 181   _length = 0;
 182 
 183   empty_list(_survivor_head);
 184   _survivor_head = NULL;
 185   _survivor_tail = NULL;
 186   _survivor_length = 0;
 187 
 188   _last_sampled_rs_lengths = 0;
 189 
 190   assert(check_list_empty(false), "just making sure...");
 191 }
 192 
 193 bool YoungList::check_list_well_formed() {
 194   bool ret = true;
 195 
 196   uint length = 0;
 197   HeapRegion* curr = _head;
 198   HeapRegion* last = NULL;
 199   while (curr != NULL) {
 200     if (!curr->is_young()) {
 201       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 202                              "incorrectly tagged (y: %d, surv: %d)",
 203                              curr->bottom(), curr->end(),
 204                              curr->is_young(), curr->is_survivor());
 205       ret = false;
 206     }
 207     ++length;
 208     last = curr;
 209     curr = curr->get_next_young_region();
 210   }
 211   ret = ret && (length == _length);
 212 
 213   if (!ret) {
 214     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 215     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 216                            length, _length);
 217   }
 218 
 219   return ret;
 220 }
 221 
 222 bool YoungList::check_list_empty(bool check_sample) {
 223   bool ret = true;
 224 
 225   if (_length != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 227                   _length);
 228     ret = false;
 229   }
 230   if (check_sample && _last_sampled_rs_lengths != 0) {
 231     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 232     ret = false;
 233   }
 234   if (_head != NULL) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 236     ret = false;
 237   }
 238   if (!ret) {
 239     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 240   }
 241 
 242   return ret;
 243 }
 244 
 245 void
 246 YoungList::rs_length_sampling_init() {
 247   _sampled_rs_lengths = 0;
 248   _curr               = _head;
 249 }
 250 
 251 bool
 252 YoungList::rs_length_sampling_more() {
 253   return _curr != NULL;
 254 }
 255 
 256 void
 257 YoungList::rs_length_sampling_next() {
 258   assert( _curr != NULL, "invariant" );
 259   size_t rs_length = _curr->rem_set()->occupied();
 260 
 261   _sampled_rs_lengths += rs_length;
 262 
 263   // The current region may not yet have been added to the
 264   // incremental collection set (it gets added when it is
 265   // retired as the current allocation region).
 266   if (_curr->in_collection_set()) {
 267     // Update the collection set policy information for this region
 268     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 269   }
 270 
 271   _curr = _curr->get_next_young_region();
 272   if (_curr == NULL) {
 273     _last_sampled_rs_lengths = _sampled_rs_lengths;
 274     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 275   }
 276 }
 277 
 278 void
 279 YoungList::reset_auxilary_lists() {
 280   guarantee( is_empty(), "young list should be empty" );
 281   assert(check_list_well_formed(), "young list should be well formed");
 282 
 283   // Add survivor regions to SurvRateGroup.
 284   _g1h->g1_policy()->note_start_adding_survivor_regions();
 285   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 286 
 287   int young_index_in_cset = 0;
 288   for (HeapRegion* curr = _survivor_head;
 289        curr != NULL;
 290        curr = curr->get_next_young_region()) {
 291     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 292 
 293     // The region is a non-empty survivor so let's add it to
 294     // the incremental collection set for the next evacuation
 295     // pause.
 296     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 297     young_index_in_cset += 1;
 298   }
 299   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 300   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 301 
 302   _head   = _survivor_head;
 303   _length = _survivor_length;
 304   if (_survivor_head != NULL) {
 305     assert(_survivor_tail != NULL, "cause it shouldn't be");
 306     assert(_survivor_length > 0, "invariant");
 307     _survivor_tail->set_next_young_region(NULL);
 308   }
 309 
 310   // Don't clear the survivor list handles until the start of
 311   // the next evacuation pause - we need it in order to re-tag
 312   // the survivor regions from this evacuation pause as 'young'
 313   // at the start of the next.
 314 
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 316 
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 }
 319 
 320 void YoungList::print() {
 321   HeapRegion* lists[] = {_head,   _survivor_head};
 322   const char* names[] = {"YOUNG", "SURVIVOR"};
 323 
 324   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 325     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 326     HeapRegion *curr = lists[list];
 327     if (curr == NULL)
 328       gclog_or_tty->print_cr("  empty");
 329     while (curr != NULL) {
 330       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 331                              HR_FORMAT_PARAMS(curr),
 332                              curr->prev_top_at_mark_start(),
 333                              curr->next_top_at_mark_start(),
 334                              curr->age_in_surv_rate_group_cond());
 335       curr = curr->get_next_young_region();
 336     }
 337   }
 338 
 339   gclog_or_tty->cr();
 340 }
 341 
 342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 343   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 344 }
 345 
 346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 347   // The from card cache is not the memory that is actually committed. So we cannot
 348   // take advantage of the zero_filled parameter.
 349   reset_from_card_cache(start_idx, num_regions);
 350 }
 351 
 352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 353 {
 354   // Claim the right to put the region on the dirty cards region list
 355   // by installing a self pointer.
 356   HeapRegion* next = hr->get_next_dirty_cards_region();
 357   if (next == NULL) {
 358     HeapRegion* res = (HeapRegion*)
 359       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 360                           NULL);
 361     if (res == NULL) {
 362       HeapRegion* head;
 363       do {
 364         // Put the region to the dirty cards region list.
 365         head = _dirty_cards_region_list;
 366         next = (HeapRegion*)
 367           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 368         if (next == head) {
 369           assert(hr->get_next_dirty_cards_region() == hr,
 370                  "hr->get_next_dirty_cards_region() != hr");
 371           if (next == NULL) {
 372             // The last region in the list points to itself.
 373             hr->set_next_dirty_cards_region(hr);
 374           } else {
 375             hr->set_next_dirty_cards_region(next);
 376           }
 377         }
 378       } while (next != head);
 379     }
 380   }
 381 }
 382 
 383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 384 {
 385   HeapRegion* head;
 386   HeapRegion* hr;
 387   do {
 388     head = _dirty_cards_region_list;
 389     if (head == NULL) {
 390       return NULL;
 391     }
 392     HeapRegion* new_head = head->get_next_dirty_cards_region();
 393     if (head == new_head) {
 394       // The last region.
 395       new_head = NULL;
 396     }
 397     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 398                                           head);
 399   } while (hr != head);
 400   assert(hr != NULL, "invariant");
 401   hr->set_next_dirty_cards_region(NULL);
 402   return hr;
 403 }
 404 
 405 // Returns true if the reference points to an object that
 406 // can move in an incremental collection.
 407 bool G1CollectedHeap::is_scavengable(const void* p) {
 408   HeapRegion* hr = heap_region_containing(p);
 409   return !hr->is_humongous();
 410 }
 411 
 412 // Private class members.
 413 
 414 G1CollectedHeap* G1CollectedHeap::_g1h;
 415 
 416 // Private methods.
 417 
 418 HeapRegion*
 419 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 420   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 421   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 422     if (!_secondary_free_list.is_empty()) {
 423       if (G1ConcRegionFreeingVerbose) {
 424         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 425                                "secondary_free_list has %u entries",
 426                                _secondary_free_list.length());
 427       }
 428       // It looks as if there are free regions available on the
 429       // secondary_free_list. Let's move them to the free_list and try
 430       // again to allocate from it.
 431       append_secondary_free_list();
 432 
 433       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 434              "empty we should have moved at least one entry to the free_list");
 435       HeapRegion* res = _hrm.allocate_free_region(is_old);
 436       if (G1ConcRegionFreeingVerbose) {
 437         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 438                                "allocated "HR_FORMAT" from secondary_free_list",
 439                                HR_FORMAT_PARAMS(res));
 440       }
 441       return res;
 442     }
 443 
 444     // Wait here until we get notified either when (a) there are no
 445     // more free regions coming or (b) some regions have been moved on
 446     // the secondary_free_list.
 447     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 448   }
 449 
 450   if (G1ConcRegionFreeingVerbose) {
 451     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 452                            "could not allocate from secondary_free_list");
 453   }
 454   return NULL;
 455 }
 456 
 457 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 458   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 459          "the only time we use this to allocate a humongous region is "
 460          "when we are allocating a single humongous region");
 461 
 462   HeapRegion* res;
 463   if (G1StressConcRegionFreeing) {
 464     if (!_secondary_free_list.is_empty()) {
 465       if (G1ConcRegionFreeingVerbose) {
 466         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 467                                "forced to look at the secondary_free_list");
 468       }
 469       res = new_region_try_secondary_free_list(is_old);
 470       if (res != NULL) {
 471         return res;
 472       }
 473     }
 474   }
 475 
 476   res = _hrm.allocate_free_region(is_old);
 477 
 478   if (res == NULL) {
 479     if (G1ConcRegionFreeingVerbose) {
 480       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 481                              "res == NULL, trying the secondary_free_list");
 482     }
 483     res = new_region_try_secondary_free_list(is_old);
 484   }
 485   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 486     // Currently, only attempts to allocate GC alloc regions set
 487     // do_expand to true. So, we should only reach here during a
 488     // safepoint. If this assumption changes we might have to
 489     // reconsider the use of _expand_heap_after_alloc_failure.
 490     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 491 
 492     ergo_verbose1(ErgoHeapSizing,
 493                   "attempt heap expansion",
 494                   ergo_format_reason("region allocation request failed")
 495                   ergo_format_byte("allocation request"),
 496                   word_size * HeapWordSize);
 497     if (expand(word_size * HeapWordSize)) {
 498       // Given that expand() succeeded in expanding the heap, and we
 499       // always expand the heap by an amount aligned to the heap
 500       // region size, the free list should in theory not be empty.
 501       // In either case allocate_free_region() will check for NULL.
 502       res = _hrm.allocate_free_region(is_old);
 503     } else {
 504       _expand_heap_after_alloc_failure = false;
 505     }
 506   }
 507   return res;
 508 }
 509 
 510 HeapWord*
 511 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 512                                                            uint num_regions,
 513                                                            size_t word_size,
 514                                                            AllocationContext_t context) {
 515   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 516   assert(is_humongous(word_size), "word_size should be humongous");
 517   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 518 
 519   // Index of last region in the series + 1.
 520   uint last = first + num_regions;
 521 
 522   // We need to initialize the region(s) we just discovered. This is
 523   // a bit tricky given that it can happen concurrently with
 524   // refinement threads refining cards on these regions and
 525   // potentially wanting to refine the BOT as they are scanning
 526   // those cards (this can happen shortly after a cleanup; see CR
 527   // 6991377). So we have to set up the region(s) carefully and in
 528   // a specific order.
 529 
 530   // The word size sum of all the regions we will allocate.
 531   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 532   assert(word_size <= word_size_sum, "sanity");
 533 
 534   // This will be the "starts humongous" region.
 535   HeapRegion* first_hr = region_at(first);
 536   // The header of the new object will be placed at the bottom of
 537   // the first region.
 538   HeapWord* new_obj = first_hr->bottom();
 539   // This will be the new end of the first region in the series that
 540   // should also match the end of the last region in the series.
 541   HeapWord* new_end = new_obj + word_size_sum;
 542   // This will be the new top of the first region that will reflect
 543   // this allocation.
 544   HeapWord* new_top = new_obj + word_size;
 545 
 546   // First, we need to zero the header of the space that we will be
 547   // allocating. When we update top further down, some refinement
 548   // threads might try to scan the region. By zeroing the header we
 549   // ensure that any thread that will try to scan the region will
 550   // come across the zero klass word and bail out.
 551   //
 552   // NOTE: It would not have been correct to have used
 553   // CollectedHeap::fill_with_object() and make the space look like
 554   // an int array. The thread that is doing the allocation will
 555   // later update the object header to a potentially different array
 556   // type and, for a very short period of time, the klass and length
 557   // fields will be inconsistent. This could cause a refinement
 558   // thread to calculate the object size incorrectly.
 559   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 560 
 561   // We will set up the first region as "starts humongous". This
 562   // will also update the BOT covering all the regions to reflect
 563   // that there is a single object that starts at the bottom of the
 564   // first region.
 565   first_hr->set_starts_humongous(new_top, new_end);
 566   first_hr->set_allocation_context(context);
 567   // Then, if there are any, we will set up the "continues
 568   // humongous" regions.
 569   HeapRegion* hr = NULL;
 570   for (uint i = first + 1; i < last; ++i) {
 571     hr = region_at(i);
 572     hr->set_continues_humongous(first_hr);
 573     hr->set_allocation_context(context);
 574   }
 575   // If we have "continues humongous" regions (hr != NULL), then the
 576   // end of the last one should match new_end.
 577   assert(hr == NULL || hr->end() == new_end, "sanity");
 578 
 579   // Up to this point no concurrent thread would have been able to
 580   // do any scanning on any region in this series. All the top
 581   // fields still point to bottom, so the intersection between
 582   // [bottom,top] and [card_start,card_end] will be empty. Before we
 583   // update the top fields, we'll do a storestore to make sure that
 584   // no thread sees the update to top before the zeroing of the
 585   // object header and the BOT initialization.
 586   OrderAccess::storestore();
 587 
 588   // Now that the BOT and the object header have been initialized,
 589   // we can update top of the "starts humongous" region.
 590   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 591          "new_top should be in this region");
 592   first_hr->set_top(new_top);
 593   if (_hr_printer.is_active()) {
 594     HeapWord* bottom = first_hr->bottom();
 595     HeapWord* end = first_hr->orig_end();
 596     if ((first + 1) == last) {
 597       // the series has a single humongous region
 598       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 599     } else {
 600       // the series has more than one humongous regions
 601       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 602     }
 603   }
 604 
 605   // Now, we will update the top fields of the "continues humongous"
 606   // regions. The reason we need to do this is that, otherwise,
 607   // these regions would look empty and this will confuse parts of
 608   // G1. For example, the code that looks for a consecutive number
 609   // of empty regions will consider them empty and try to
 610   // re-allocate them. We can extend is_empty() to also include
 611   // !is_continues_humongous(), but it is easier to just update the top
 612   // fields here. The way we set top for all regions (i.e., top ==
 613   // end for all regions but the last one, top == new_top for the
 614   // last one) is actually used when we will free up the humongous
 615   // region in free_humongous_region().
 616   hr = NULL;
 617   for (uint i = first + 1; i < last; ++i) {
 618     hr = region_at(i);
 619     if ((i + 1) == last) {
 620       // last continues humongous region
 621       assert(hr->bottom() < new_top && new_top <= hr->end(),
 622              "new_top should fall on this region");
 623       hr->set_top(new_top);
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 625     } else {
 626       // not last one
 627       assert(new_top > hr->end(), "new_top should be above this region");
 628       hr->set_top(hr->end());
 629       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 630     }
 631   }
 632   // If we have continues humongous regions (hr != NULL), then the
 633   // end of the last one should match new_end and its top should
 634   // match new_top.
 635   assert(hr == NULL ||
 636          (hr->end() == new_end && hr->top() == new_top), "sanity");
 637   check_bitmaps("Humongous Region Allocation", first_hr);
 638 
 639   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 640   _allocator->increase_used(first_hr->used());
 641   _humongous_set.add(first_hr);
 642 
 643   return new_obj;
 644 }
 645 
 646 // If could fit into free regions w/o expansion, try.
 647 // Otherwise, if can expand, do so.
 648 // Otherwise, if using ex regions might help, try with ex given back.
 649 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 650   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 651 
 652   verify_region_sets_optional();
 653 
 654   uint first = G1_NO_HRM_INDEX;
 655   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 656 
 657   if (obj_regions == 1) {
 658     // Only one region to allocate, try to use a fast path by directly allocating
 659     // from the free lists. Do not try to expand here, we will potentially do that
 660     // later.
 661     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 662     if (hr != NULL) {
 663       first = hr->hrm_index();
 664     }
 665   } else {
 666     // We can't allocate humongous regions spanning more than one region while
 667     // cleanupComplete() is running, since some of the regions we find to be
 668     // empty might not yet be added to the free list. It is not straightforward
 669     // to know in which list they are on so that we can remove them. We only
 670     // need to do this if we need to allocate more than one region to satisfy the
 671     // current humongous allocation request. If we are only allocating one region
 672     // we use the one-region region allocation code (see above), that already
 673     // potentially waits for regions from the secondary free list.
 674     wait_while_free_regions_coming();
 675     append_secondary_free_list_if_not_empty_with_lock();
 676 
 677     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 678     // are lucky enough to find some.
 679     first = _hrm.find_contiguous_only_empty(obj_regions);
 680     if (first != G1_NO_HRM_INDEX) {
 681       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 682     }
 683   }
 684 
 685   if (first == G1_NO_HRM_INDEX) {
 686     // Policy: We could not find enough regions for the humongous object in the
 687     // free list. Look through the heap to find a mix of free and uncommitted regions.
 688     // If so, try expansion.
 689     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 690     if (first != G1_NO_HRM_INDEX) {
 691       // We found something. Make sure these regions are committed, i.e. expand
 692       // the heap. Alternatively we could do a defragmentation GC.
 693       ergo_verbose1(ErgoHeapSizing,
 694                     "attempt heap expansion",
 695                     ergo_format_reason("humongous allocation request failed")
 696                     ergo_format_byte("allocation request"),
 697                     word_size * HeapWordSize);
 698 
 699       _hrm.expand_at(first, obj_regions);
 700       g1_policy()->record_new_heap_size(num_regions());
 701 
 702 #ifdef ASSERT
 703       for (uint i = first; i < first + obj_regions; ++i) {
 704         HeapRegion* hr = region_at(i);
 705         assert(hr->is_free(), "sanity");
 706         assert(hr->is_empty(), "sanity");
 707         assert(is_on_master_free_list(hr), "sanity");
 708       }
 709 #endif
 710       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 711     } else {
 712       // Policy: Potentially trigger a defragmentation GC.
 713     }
 714   }
 715 
 716   HeapWord* result = NULL;
 717   if (first != G1_NO_HRM_INDEX) {
 718     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 719                                                        word_size, context);
 720     assert(result != NULL, "it should always return a valid result");
 721 
 722     // A successful humongous object allocation changes the used space
 723     // information of the old generation so we need to recalculate the
 724     // sizes and update the jstat counters here.
 725     g1mm()->update_sizes();
 726   }
 727 
 728   verify_region_sets_optional();
 729 
 730   return result;
 731 }
 732 
 733 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 736 
 737   uint dummy_gc_count_before;
 738   uint dummy_gclocker_retry_count = 0;
 739   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 740 }
 741 
 742 HeapWord*
 743 G1CollectedHeap::mem_allocate(size_t word_size,
 744                               bool*  gc_overhead_limit_was_exceeded) {
 745   assert_heap_not_locked_and_not_at_safepoint();
 746 
 747   // Loop until the allocation is satisfied, or unsatisfied after GC.
 748   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 749     uint gc_count_before;
 750 
 751     HeapWord* result = NULL;
 752     if (!is_humongous(word_size)) {
 753       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 754     } else {
 755       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 756     }
 757     if (result != NULL) {
 758       return result;
 759     }
 760 
 761     // Create the garbage collection operation...
 762     VM_G1CollectForAllocation op(gc_count_before, word_size);
 763     op.set_allocation_context(AllocationContext::current());
 764 
 765     // ...and get the VM thread to execute it.
 766     VMThread::execute(&op);
 767 
 768     if (op.prologue_succeeded() && op.pause_succeeded()) {
 769       // If the operation was successful we'll return the result even
 770       // if it is NULL. If the allocation attempt failed immediately
 771       // after a Full GC, it's unlikely we'll be able to allocate now.
 772       HeapWord* result = op.result();
 773       if (result != NULL && !is_humongous(word_size)) {
 774         // Allocations that take place on VM operations do not do any
 775         // card dirtying and we have to do it here. We only have to do
 776         // this for non-humongous allocations, though.
 777         dirty_young_block(result, word_size);
 778       }
 779       return result;
 780     } else {
 781       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 782         return NULL;
 783       }
 784       assert(op.result() == NULL,
 785              "the result should be NULL if the VM op did not succeed");
 786     }
 787 
 788     // Give a warning if we seem to be looping forever.
 789     if ((QueuedAllocationWarningCount > 0) &&
 790         (try_count % QueuedAllocationWarningCount == 0)) {
 791       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 792     }
 793   }
 794 
 795   ShouldNotReachHere();
 796   return NULL;
 797 }
 798 
 799 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 800                                                    AllocationContext_t context,
 801                                                    uint* gc_count_before_ret,
 802                                                    uint* gclocker_retry_count_ret) {
 803   // Make sure you read the note in attempt_allocation_humongous().
 804 
 805   assert_heap_not_locked_and_not_at_safepoint();
 806   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 807          "be called for humongous allocation requests");
 808 
 809   // We should only get here after the first-level allocation attempt
 810   // (attempt_allocation()) failed to allocate.
 811 
 812   // We will loop until a) we manage to successfully perform the
 813   // allocation or b) we successfully schedule a collection which
 814   // fails to perform the allocation. b) is the only case when we'll
 815   // return NULL.
 816   HeapWord* result = NULL;
 817   for (int try_count = 1; /* we'll return */; try_count += 1) {
 818     bool should_try_gc;
 819     uint gc_count_before;
 820 
 821     {
 822       MutexLockerEx x(Heap_lock);
 823       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 824                                                                                     false /* bot_updates */);
 825       if (result != NULL) {
 826         return result;
 827       }
 828 
 829       // If we reach here, attempt_allocation_locked() above failed to
 830       // allocate a new region. So the mutator alloc region should be NULL.
 831       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 832 
 833       if (GC_locker::is_active_and_needs_gc()) {
 834         if (g1_policy()->can_expand_young_list()) {
 835           // No need for an ergo verbose message here,
 836           // can_expand_young_list() does this when it returns true.
 837           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 838                                                                                        false /* bot_updates */);
 839           if (result != NULL) {
 840             return result;
 841           }
 842         }
 843         should_try_gc = false;
 844       } else {
 845         // The GCLocker may not be active but the GCLocker initiated
 846         // GC may not yet have been performed (GCLocker::needs_gc()
 847         // returns true). In this case we do not try this GC and
 848         // wait until the GCLocker initiated GC is performed, and
 849         // then retry the allocation.
 850         if (GC_locker::needs_gc()) {
 851           should_try_gc = false;
 852         } else {
 853           // Read the GC count while still holding the Heap_lock.
 854           gc_count_before = total_collections();
 855           should_try_gc = true;
 856         }
 857       }
 858     }
 859 
 860     if (should_try_gc) {
 861       bool succeeded;
 862       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 863                                    GCCause::_g1_inc_collection_pause);
 864       if (result != NULL) {
 865         assert(succeeded, "only way to get back a non-NULL result");
 866         return result;
 867       }
 868 
 869       if (succeeded) {
 870         // If we get here we successfully scheduled a collection which
 871         // failed to allocate. No point in trying to allocate
 872         // further. We'll just return NULL.
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877     } else {
 878       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 879         MutexLockerEx x(Heap_lock);
 880         *gc_count_before_ret = total_collections();
 881         return NULL;
 882       }
 883       // The GCLocker is either active or the GCLocker initiated
 884       // GC has not yet been performed. Stall until it is and
 885       // then retry the allocation.
 886       GC_locker::stall_until_clear();
 887       (*gclocker_retry_count_ret) += 1;
 888     }
 889 
 890     // We can reach here if we were unsuccessful in scheduling a
 891     // collection (because another thread beat us to it) or if we were
 892     // stalled due to the GC locker. In either can we should retry the
 893     // allocation attempt in case another thread successfully
 894     // performed a collection and reclaimed enough space. We do the
 895     // first attempt (without holding the Heap_lock) here and the
 896     // follow-on attempt will be at the start of the next loop
 897     // iteration (after taking the Heap_lock).
 898     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 899                                                                            false /* bot_updates */);
 900     if (result != NULL) {
 901       return result;
 902     }
 903 
 904     // Give a warning if we seem to be looping forever.
 905     if ((QueuedAllocationWarningCount > 0) &&
 906         (try_count % QueuedAllocationWarningCount == 0)) {
 907       warning("G1CollectedHeap::attempt_allocation_slow() "
 908               "retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 917                                                         uint* gc_count_before_ret,
 918                                                         uint* gclocker_retry_count_ret) {
 919   // The structure of this method has a lot of similarities to
 920   // attempt_allocation_slow(). The reason these two were not merged
 921   // into a single one is that such a method would require several "if
 922   // allocation is not humongous do this, otherwise do that"
 923   // conditional paths which would obscure its flow. In fact, an early
 924   // version of this code did use a unified method which was harder to
 925   // follow and, as a result, it had subtle bugs that were hard to
 926   // track down. So keeping these two methods separate allows each to
 927   // be more readable. It will be good to keep these two in sync as
 928   // much as possible.
 929 
 930   assert_heap_not_locked_and_not_at_safepoint();
 931   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 932          "should only be called for humongous allocations");
 933 
 934   // Humongous objects can exhaust the heap quickly, so we should check if we
 935   // need to start a marking cycle at each humongous object allocation. We do
 936   // the check before we do the actual allocation. The reason for doing it
 937   // before the allocation is that we avoid having to keep track of the newly
 938   // allocated memory while we do a GC.
 939   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 940                                            word_size)) {
 941     collect(GCCause::_g1_humongous_allocation);
 942   }
 943 
 944   // We will loop until a) we manage to successfully perform the
 945   // allocation or b) we successfully schedule a collection which
 946   // fails to perform the allocation. b) is the only case when we'll
 947   // return NULL.
 948   HeapWord* result = NULL;
 949   for (int try_count = 1; /* we'll return */; try_count += 1) {
 950     bool should_try_gc;
 951     uint gc_count_before;
 952 
 953     {
 954       MutexLockerEx x(Heap_lock);
 955 
 956       // Given that humongous objects are not allocated in young
 957       // regions, we'll first try to do the allocation without doing a
 958       // collection hoping that there's enough space in the heap.
 959       result = humongous_obj_allocate(word_size, AllocationContext::current());
 960       if (result != NULL) {
 961         return result;
 962       }
 963 
 964       if (GC_locker::is_active_and_needs_gc()) {
 965         should_try_gc = false;
 966       } else {
 967          // The GCLocker may not be active but the GCLocker initiated
 968         // GC may not yet have been performed (GCLocker::needs_gc()
 969         // returns true). In this case we do not try this GC and
 970         // wait until the GCLocker initiated GC is performed, and
 971         // then retry the allocation.
 972         if (GC_locker::needs_gc()) {
 973           should_try_gc = false;
 974         } else {
 975           // Read the GC count while still holding the Heap_lock.
 976           gc_count_before = total_collections();
 977           should_try_gc = true;
 978         }
 979       }
 980     }
 981 
 982     if (should_try_gc) {
 983       // If we failed to allocate the humongous object, we should try to
 984       // do a collection pause (if we're allowed) in case it reclaims
 985       // enough space for the allocation to succeed after the pause.
 986 
 987       bool succeeded;
 988       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 989                                    GCCause::_g1_humongous_allocation);
 990       if (result != NULL) {
 991         assert(succeeded, "only way to get back a non-NULL result");
 992         return result;
 993       }
 994 
 995       if (succeeded) {
 996         // If we get here we successfully scheduled a collection which
 997         // failed to allocate. No point in trying to allocate
 998         // further. We'll just return NULL.
 999         MutexLockerEx x(Heap_lock);
1000         *gc_count_before_ret = total_collections();
1001         return NULL;
1002       }
1003     } else {
1004       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1005         MutexLockerEx x(Heap_lock);
1006         *gc_count_before_ret = total_collections();
1007         return NULL;
1008       }
1009       // The GCLocker is either active or the GCLocker initiated
1010       // GC has not yet been performed. Stall until it is and
1011       // then retry the allocation.
1012       GC_locker::stall_until_clear();
1013       (*gclocker_retry_count_ret) += 1;
1014     }
1015 
1016     // We can reach here if we were unsuccessful in scheduling a
1017     // collection (because another thread beat us to it) or if we were
1018     // stalled due to the GC locker. In either can we should retry the
1019     // allocation attempt in case another thread successfully
1020     // performed a collection and reclaimed enough space.  Give a
1021     // warning if we seem to be looping forever.
1022 
1023     if ((QueuedAllocationWarningCount > 0) &&
1024         (try_count % QueuedAllocationWarningCount == 0)) {
1025       warning("G1CollectedHeap::attempt_allocation_humongous() "
1026               "retries %d times", try_count);
1027     }
1028   }
1029 
1030   ShouldNotReachHere();
1031   return NULL;
1032 }
1033 
1034 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1035                                                            AllocationContext_t context,
1036                                                            bool expect_null_mutator_alloc_region) {
1037   assert_at_safepoint(true /* should_be_vm_thread */);
1038   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1039                                              !expect_null_mutator_alloc_region,
1040          "the current alloc region was unexpectedly found to be non-NULL");
1041 
1042   if (!is_humongous(word_size)) {
1043     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1044                                                       false /* bot_updates */);
1045   } else {
1046     HeapWord* result = humongous_obj_allocate(word_size, context);
1047     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1048       g1_policy()->set_initiate_conc_mark_if_possible();
1049     }
1050     return result;
1051   }
1052 
1053   ShouldNotReachHere();
1054 }
1055 
1056 class PostMCRemSetClearClosure: public HeapRegionClosure {
1057   G1CollectedHeap* _g1h;
1058   ModRefBarrierSet* _mr_bs;
1059 public:
1060   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1061     _g1h(g1h), _mr_bs(mr_bs) {}
1062 
1063   bool doHeapRegion(HeapRegion* r) {
1064     HeapRegionRemSet* hrrs = r->rem_set();
1065 
1066     if (r->is_continues_humongous()) {
1067       // We'll assert that the strong code root list and RSet is empty
1068       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1069       assert(hrrs->occupied() == 0, "RSet should be empty");
1070       return false;
1071     }
1072 
1073     _g1h->reset_gc_time_stamps(r);
1074     hrrs->clear();
1075     // You might think here that we could clear just the cards
1076     // corresponding to the used region.  But no: if we leave a dirty card
1077     // in a region we might allocate into, then it would prevent that card
1078     // from being enqueued, and cause it to be missed.
1079     // Re: the performance cost: we shouldn't be doing full GC anyway!
1080     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1081 
1082     return false;
1083   }
1084 };
1085 
1086 void G1CollectedHeap::clear_rsets_post_compaction() {
1087   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1088   heap_region_iterate(&rs_clear);
1089 }
1090 
1091 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1092   G1CollectedHeap*   _g1h;
1093   UpdateRSOopClosure _cl;
1094   int                _worker_i;
1095 public:
1096   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1097     _cl(g1->g1_rem_set(), worker_i),
1098     _worker_i(worker_i),
1099     _g1h(g1)
1100   { }
1101 
1102   bool doHeapRegion(HeapRegion* r) {
1103     if (!r->is_continues_humongous()) {
1104       _cl.set_from(r);
1105       r->oop_iterate(&_cl);
1106     }
1107     return false;
1108   }
1109 };
1110 
1111 class ParRebuildRSTask: public AbstractGangTask {
1112   G1CollectedHeap* _g1;
1113   HeapRegionClaimer _hrclaimer;
1114 
1115 public:
1116   ParRebuildRSTask(G1CollectedHeap* g1) :
1117       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1118 
1119   void work(uint worker_id) {
1120     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1121     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1122   }
1123 };
1124 
1125 class PostCompactionPrinterClosure: public HeapRegionClosure {
1126 private:
1127   G1HRPrinter* _hr_printer;
1128 public:
1129   bool doHeapRegion(HeapRegion* hr) {
1130     assert(!hr->is_young(), "not expecting to find young regions");
1131     if (hr->is_free()) {
1132       // We only generate output for non-empty regions.
1133     } else if (hr->is_starts_humongous()) {
1134       if (hr->region_num() == 1) {
1135         // single humongous region
1136         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1137       } else {
1138         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1139       }
1140     } else if (hr->is_continues_humongous()) {
1141       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1142     } else if (hr->is_old()) {
1143       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1144     } else {
1145       ShouldNotReachHere();
1146     }
1147     return false;
1148   }
1149 
1150   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1151     : _hr_printer(hr_printer) { }
1152 };
1153 
1154 void G1CollectedHeap::print_hrm_post_compaction() {
1155   PostCompactionPrinterClosure cl(hr_printer());
1156   heap_region_iterate(&cl);
1157 }
1158 
1159 bool G1CollectedHeap::do_collection(bool explicit_gc,
1160                                     bool clear_all_soft_refs,
1161                                     size_t word_size) {
1162   assert_at_safepoint(true /* should_be_vm_thread */);
1163 
1164   if (GC_locker::check_active_before_gc()) {
1165     return false;
1166   }
1167 
1168   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1169   gc_timer->register_gc_start();
1170 
1171   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1172   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1173 
1174   SvcGCMarker sgcm(SvcGCMarker::FULL);
1175   ResourceMark rm;
1176 
1177   print_heap_before_gc();
1178   trace_heap_before_gc(gc_tracer);
1179 
1180   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1181 
1182   verify_region_sets_optional();
1183 
1184   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1185                            collector_policy()->should_clear_all_soft_refs();
1186 
1187   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1188 
1189   {
1190     IsGCActiveMark x;
1191 
1192     // Timing
1193     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1194     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1195 
1196     {
1197       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1198       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1199       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1200 
1201       g1_policy()->record_full_collection_start();
1202 
1203       // Note: When we have a more flexible GC logging framework that
1204       // allows us to add optional attributes to a GC log record we
1205       // could consider timing and reporting how long we wait in the
1206       // following two methods.
1207       wait_while_free_regions_coming();
1208       // If we start the compaction before the CM threads finish
1209       // scanning the root regions we might trip them over as we'll
1210       // be moving objects / updating references. So let's wait until
1211       // they are done. By telling them to abort, they should complete
1212       // early.
1213       _cm->root_regions()->abort();
1214       _cm->root_regions()->wait_until_scan_finished();
1215       append_secondary_free_list_if_not_empty_with_lock();
1216 
1217       gc_prologue(true);
1218       increment_total_collections(true /* full gc */);
1219       increment_old_marking_cycles_started();
1220 
1221       assert(used() == recalculate_used(), "Should be equal");
1222 
1223       verify_before_gc();
1224 
1225       check_bitmaps("Full GC Start");
1226       pre_full_gc_dump(gc_timer);
1227 
1228       COMPILER2_PRESENT(DerivedPointerTable::clear());
1229 
1230       // Disable discovery and empty the discovered lists
1231       // for the CM ref processor.
1232       ref_processor_cm()->disable_discovery();
1233       ref_processor_cm()->abandon_partial_discovery();
1234       ref_processor_cm()->verify_no_references_recorded();
1235 
1236       // Abandon current iterations of concurrent marking and concurrent
1237       // refinement, if any are in progress. We have to do this before
1238       // wait_until_scan_finished() below.
1239       concurrent_mark()->abort();
1240 
1241       // Make sure we'll choose a new allocation region afterwards.
1242       _allocator->release_mutator_alloc_region();
1243       _allocator->abandon_gc_alloc_regions();
1244       g1_rem_set()->cleanupHRRS();
1245 
1246       // We should call this after we retire any currently active alloc
1247       // regions so that all the ALLOC / RETIRE events are generated
1248       // before the start GC event.
1249       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1250 
1251       // We may have added regions to the current incremental collection
1252       // set between the last GC or pause and now. We need to clear the
1253       // incremental collection set and then start rebuilding it afresh
1254       // after this full GC.
1255       abandon_collection_set(g1_policy()->inc_cset_head());
1256       g1_policy()->clear_incremental_cset();
1257       g1_policy()->stop_incremental_cset_building();
1258 
1259       tear_down_region_sets(false /* free_list_only */);
1260       g1_policy()->set_gcs_are_young(true);
1261 
1262       // See the comments in g1CollectedHeap.hpp and
1263       // G1CollectedHeap::ref_processing_init() about
1264       // how reference processing currently works in G1.
1265 
1266       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1267       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1268 
1269       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1270       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1271 
1272       ref_processor_stw()->enable_discovery();
1273       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1274 
1275       // Do collection work
1276       {
1277         HandleMark hm;  // Discard invalid handles created during gc
1278         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1279       }
1280 
1281       assert(num_free_regions() == 0, "we should not have added any free regions");
1282       rebuild_region_sets(false /* free_list_only */);
1283 
1284       // Enqueue any discovered reference objects that have
1285       // not been removed from the discovered lists.
1286       ref_processor_stw()->enqueue_discovered_references();
1287 
1288       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1289 
1290       MemoryService::track_memory_usage();
1291 
1292       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1293       ref_processor_stw()->verify_no_references_recorded();
1294 
1295       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1296       ClassLoaderDataGraph::purge();
1297       MetaspaceAux::verify_metrics();
1298 
1299       // Note: since we've just done a full GC, concurrent
1300       // marking is no longer active. Therefore we need not
1301       // re-enable reference discovery for the CM ref processor.
1302       // That will be done at the start of the next marking cycle.
1303       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1304       ref_processor_cm()->verify_no_references_recorded();
1305 
1306       reset_gc_time_stamp();
1307       // Since everything potentially moved, we will clear all remembered
1308       // sets, and clear all cards.  Later we will rebuild remembered
1309       // sets. We will also reset the GC time stamps of the regions.
1310       clear_rsets_post_compaction();
1311       check_gc_time_stamps();
1312 
1313       // Resize the heap if necessary.
1314       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1315 
1316       if (_hr_printer.is_active()) {
1317         // We should do this after we potentially resize the heap so
1318         // that all the COMMIT / UNCOMMIT events are generated before
1319         // the end GC event.
1320 
1321         print_hrm_post_compaction();
1322         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1323       }
1324 
1325       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1326       if (hot_card_cache->use_cache()) {
1327         hot_card_cache->reset_card_counts();
1328         hot_card_cache->reset_hot_cache();
1329       }
1330 
1331       // Rebuild remembered sets of all regions.
1332       uint n_workers =
1333         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1334                                                 workers()->active_workers(),
1335                                                 Threads::number_of_non_daemon_threads());
1336       assert(UseDynamicNumberOfGCThreads ||
1337              n_workers == workers()->total_workers(),
1338              "If not dynamic should be using all the  workers");
1339       workers()->set_active_workers(n_workers);
1340       // Set parallel threads in the heap (_n_par_threads) only
1341       // before a parallel phase and always reset it to 0 after
1342       // the phase so that the number of parallel threads does
1343       // no get carried forward to a serial phase where there
1344       // may be code that is "possibly_parallel".
1345       set_par_threads(n_workers);
1346 
1347       ParRebuildRSTask rebuild_rs_task(this);
1348       assert(UseDynamicNumberOfGCThreads ||
1349              workers()->active_workers() == workers()->total_workers(),
1350              "Unless dynamic should use total workers");
1351       // Use the most recent number of  active workers
1352       assert(workers()->active_workers() > 0,
1353              "Active workers not properly set");
1354       set_par_threads(workers()->active_workers());
1355       workers()->run_task(&rebuild_rs_task);
1356       set_par_threads(0);
1357 
1358       // Rebuild the strong code root lists for each region
1359       rebuild_strong_code_roots();
1360 
1361       if (true) { // FIXME
1362         MetaspaceGC::compute_new_size();
1363       }
1364 
1365 #ifdef TRACESPINNING
1366       ParallelTaskTerminator::print_termination_counts();
1367 #endif
1368 
1369       // Discard all rset updates
1370       JavaThread::dirty_card_queue_set().abandon_logs();
1371       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1372 
1373       _young_list->reset_sampled_info();
1374       // At this point there should be no regions in the
1375       // entire heap tagged as young.
1376       assert(check_young_list_empty(true /* check_heap */),
1377              "young list should be empty at this point");
1378 
1379       // Update the number of full collections that have been completed.
1380       increment_old_marking_cycles_completed(false /* concurrent */);
1381 
1382       _hrm.verify_optional();
1383       verify_region_sets_optional();
1384 
1385       verify_after_gc();
1386 
1387       // Clear the previous marking bitmap, if needed for bitmap verification.
1388       // Note we cannot do this when we clear the next marking bitmap in
1389       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1390       // objects marked during a full GC against the previous bitmap.
1391       // But we need to clear it before calling check_bitmaps below since
1392       // the full GC has compacted objects and updated TAMS but not updated
1393       // the prev bitmap.
1394       if (G1VerifyBitmaps) {
1395         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1396       }
1397       check_bitmaps("Full GC End");
1398 
1399       // Start a new incremental collection set for the next pause
1400       assert(g1_policy()->collection_set() == NULL, "must be");
1401       g1_policy()->start_incremental_cset_building();
1402 
1403       clear_cset_fast_test();
1404 
1405       _allocator->init_mutator_alloc_region();
1406 
1407       g1_policy()->record_full_collection_end();
1408 
1409       if (G1Log::fine()) {
1410         g1_policy()->print_heap_transition();
1411       }
1412 
1413       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1414       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1415       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1416       // before any GC notifications are raised.
1417       g1mm()->update_sizes();
1418 
1419       gc_epilogue(true);
1420     }
1421 
1422     if (G1Log::finer()) {
1423       g1_policy()->print_detailed_heap_transition(true /* full */);
1424     }
1425 
1426     print_heap_after_gc();
1427     trace_heap_after_gc(gc_tracer);
1428 
1429     post_full_gc_dump(gc_timer);
1430 
1431     gc_timer->register_gc_end();
1432     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1433   }
1434 
1435   return true;
1436 }
1437 
1438 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1439   // do_collection() will return whether it succeeded in performing
1440   // the GC. Currently, there is no facility on the
1441   // do_full_collection() API to notify the caller than the collection
1442   // did not succeed (e.g., because it was locked out by the GC
1443   // locker). So, right now, we'll ignore the return value.
1444   bool dummy = do_collection(true,                /* explicit_gc */
1445                              clear_all_soft_refs,
1446                              0                    /* word_size */);
1447 }
1448 
1449 // This code is mostly copied from TenuredGeneration.
1450 void
1451 G1CollectedHeap::
1452 resize_if_necessary_after_full_collection(size_t word_size) {
1453   // Include the current allocation, if any, and bytes that will be
1454   // pre-allocated to support collections, as "used".
1455   const size_t used_after_gc = used();
1456   const size_t capacity_after_gc = capacity();
1457   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1458 
1459   // This is enforced in arguments.cpp.
1460   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1461          "otherwise the code below doesn't make sense");
1462 
1463   // We don't have floating point command-line arguments
1464   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1465   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1466   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1467   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1468 
1469   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1470   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1471 
1472   // We have to be careful here as these two calculations can overflow
1473   // 32-bit size_t's.
1474   double used_after_gc_d = (double) used_after_gc;
1475   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1476   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1477 
1478   // Let's make sure that they are both under the max heap size, which
1479   // by default will make them fit into a size_t.
1480   double desired_capacity_upper_bound = (double) max_heap_size;
1481   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1482                                     desired_capacity_upper_bound);
1483   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1484                                     desired_capacity_upper_bound);
1485 
1486   // We can now safely turn them into size_t's.
1487   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1488   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1489 
1490   // This assert only makes sense here, before we adjust them
1491   // with respect to the min and max heap size.
1492   assert(minimum_desired_capacity <= maximum_desired_capacity,
1493          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1494                  "maximum_desired_capacity = "SIZE_FORMAT,
1495                  minimum_desired_capacity, maximum_desired_capacity));
1496 
1497   // Should not be greater than the heap max size. No need to adjust
1498   // it with respect to the heap min size as it's a lower bound (i.e.,
1499   // we'll try to make the capacity larger than it, not smaller).
1500   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1501   // Should not be less than the heap min size. No need to adjust it
1502   // with respect to the heap max size as it's an upper bound (i.e.,
1503   // we'll try to make the capacity smaller than it, not greater).
1504   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1505 
1506   if (capacity_after_gc < minimum_desired_capacity) {
1507     // Don't expand unless it's significant
1508     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1509     ergo_verbose4(ErgoHeapSizing,
1510                   "attempt heap expansion",
1511                   ergo_format_reason("capacity lower than "
1512                                      "min desired capacity after Full GC")
1513                   ergo_format_byte("capacity")
1514                   ergo_format_byte("occupancy")
1515                   ergo_format_byte_perc("min desired capacity"),
1516                   capacity_after_gc, used_after_gc,
1517                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1518     expand(expand_bytes);
1519 
1520     // No expansion, now see if we want to shrink
1521   } else if (capacity_after_gc > maximum_desired_capacity) {
1522     // Capacity too large, compute shrinking size
1523     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1524     ergo_verbose4(ErgoHeapSizing,
1525                   "attempt heap shrinking",
1526                   ergo_format_reason("capacity higher than "
1527                                      "max desired capacity after Full GC")
1528                   ergo_format_byte("capacity")
1529                   ergo_format_byte("occupancy")
1530                   ergo_format_byte_perc("max desired capacity"),
1531                   capacity_after_gc, used_after_gc,
1532                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1533     shrink(shrink_bytes);
1534   }
1535 }
1536 
1537 
1538 HeapWord*
1539 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1540                                            AllocationContext_t context,
1541                                            bool* succeeded) {
1542   assert_at_safepoint(true /* should_be_vm_thread */);
1543 
1544   *succeeded = true;
1545   // Let's attempt the allocation first.
1546   HeapWord* result =
1547     attempt_allocation_at_safepoint(word_size,
1548                                     context,
1549                                     false /* expect_null_mutator_alloc_region */);
1550   if (result != NULL) {
1551     assert(*succeeded, "sanity");
1552     return result;
1553   }
1554 
1555   // In a G1 heap, we're supposed to keep allocation from failing by
1556   // incremental pauses.  Therefore, at least for now, we'll favor
1557   // expansion over collection.  (This might change in the future if we can
1558   // do something smarter than full collection to satisfy a failed alloc.)
1559   result = expand_and_allocate(word_size, context);
1560   if (result != NULL) {
1561     assert(*succeeded, "sanity");
1562     return result;
1563   }
1564 
1565   // Expansion didn't work, we'll try to do a Full GC.
1566   bool gc_succeeded = do_collection(false, /* explicit_gc */
1567                                     false, /* clear_all_soft_refs */
1568                                     word_size);
1569   if (!gc_succeeded) {
1570     *succeeded = false;
1571     return NULL;
1572   }
1573 
1574   // Retry the allocation
1575   result = attempt_allocation_at_safepoint(word_size,
1576                                            context,
1577                                            true /* expect_null_mutator_alloc_region */);
1578   if (result != NULL) {
1579     assert(*succeeded, "sanity");
1580     return result;
1581   }
1582 
1583   // Then, try a Full GC that will collect all soft references.
1584   gc_succeeded = do_collection(false, /* explicit_gc */
1585                                true,  /* clear_all_soft_refs */
1586                                word_size);
1587   if (!gc_succeeded) {
1588     *succeeded = false;
1589     return NULL;
1590   }
1591 
1592   // Retry the allocation once more
1593   result = attempt_allocation_at_safepoint(word_size,
1594                                            context,
1595                                            true /* expect_null_mutator_alloc_region */);
1596   if (result != NULL) {
1597     assert(*succeeded, "sanity");
1598     return result;
1599   }
1600 
1601   assert(!collector_policy()->should_clear_all_soft_refs(),
1602          "Flag should have been handled and cleared prior to this point");
1603 
1604   // What else?  We might try synchronous finalization later.  If the total
1605   // space available is large enough for the allocation, then a more
1606   // complete compaction phase than we've tried so far might be
1607   // appropriate.
1608   assert(*succeeded, "sanity");
1609   return NULL;
1610 }
1611 
1612 // Attempting to expand the heap sufficiently
1613 // to support an allocation of the given "word_size".  If
1614 // successful, perform the allocation and return the address of the
1615 // allocated block, or else "NULL".
1616 
1617 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1618   assert_at_safepoint(true /* should_be_vm_thread */);
1619 
1620   verify_region_sets_optional();
1621 
1622   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1623   ergo_verbose1(ErgoHeapSizing,
1624                 "attempt heap expansion",
1625                 ergo_format_reason("allocation request failed")
1626                 ergo_format_byte("allocation request"),
1627                 word_size * HeapWordSize);
1628   if (expand(expand_bytes)) {
1629     _hrm.verify_optional();
1630     verify_region_sets_optional();
1631     return attempt_allocation_at_safepoint(word_size,
1632                                            context,
1633                                            false /* expect_null_mutator_alloc_region */);
1634   }
1635   return NULL;
1636 }
1637 
1638 bool G1CollectedHeap::expand(size_t expand_bytes) {
1639   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1640   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1641                                        HeapRegion::GrainBytes);
1642   ergo_verbose2(ErgoHeapSizing,
1643                 "expand the heap",
1644                 ergo_format_byte("requested expansion amount")
1645                 ergo_format_byte("attempted expansion amount"),
1646                 expand_bytes, aligned_expand_bytes);
1647 
1648   if (is_maximal_no_gc()) {
1649     ergo_verbose0(ErgoHeapSizing,
1650                       "did not expand the heap",
1651                       ergo_format_reason("heap already fully expanded"));
1652     return false;
1653   }
1654 
1655   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1656   assert(regions_to_expand > 0, "Must expand by at least one region");
1657 
1658   uint expanded_by = _hrm.expand_by(regions_to_expand);
1659 
1660   if (expanded_by > 0) {
1661     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1662     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1663     g1_policy()->record_new_heap_size(num_regions());
1664   } else {
1665     ergo_verbose0(ErgoHeapSizing,
1666                   "did not expand the heap",
1667                   ergo_format_reason("heap expansion operation failed"));
1668     // The expansion of the virtual storage space was unsuccessful.
1669     // Let's see if it was because we ran out of swap.
1670     if (G1ExitOnExpansionFailure &&
1671         _hrm.available() >= regions_to_expand) {
1672       // We had head room...
1673       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1674     }
1675   }
1676   return regions_to_expand > 0;
1677 }
1678 
1679 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1680   size_t aligned_shrink_bytes =
1681     ReservedSpace::page_align_size_down(shrink_bytes);
1682   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1683                                          HeapRegion::GrainBytes);
1684   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1685 
1686   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1687   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1688 
1689   ergo_verbose3(ErgoHeapSizing,
1690                 "shrink the heap",
1691                 ergo_format_byte("requested shrinking amount")
1692                 ergo_format_byte("aligned shrinking amount")
1693                 ergo_format_byte("attempted shrinking amount"),
1694                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1695   if (num_regions_removed > 0) {
1696     g1_policy()->record_new_heap_size(num_regions());
1697   } else {
1698     ergo_verbose0(ErgoHeapSizing,
1699                   "did not shrink the heap",
1700                   ergo_format_reason("heap shrinking operation failed"));
1701   }
1702 }
1703 
1704 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1705   verify_region_sets_optional();
1706 
1707   // We should only reach here at the end of a Full GC which means we
1708   // should not not be holding to any GC alloc regions. The method
1709   // below will make sure of that and do any remaining clean up.
1710   _allocator->abandon_gc_alloc_regions();
1711 
1712   // Instead of tearing down / rebuilding the free lists here, we
1713   // could instead use the remove_all_pending() method on free_list to
1714   // remove only the ones that we need to remove.
1715   tear_down_region_sets(true /* free_list_only */);
1716   shrink_helper(shrink_bytes);
1717   rebuild_region_sets(true /* free_list_only */);
1718 
1719   _hrm.verify_optional();
1720   verify_region_sets_optional();
1721 }
1722 
1723 // Public methods.
1724 
1725 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1726 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1727 #endif // _MSC_VER
1728 
1729 
1730 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1731   SharedHeap(),
1732   _g1_policy(policy_),
1733   _dirty_card_queue_set(false),
1734   _into_cset_dirty_card_queue_set(false),
1735   _is_alive_closure_cm(this),
1736   _is_alive_closure_stw(this),
1737   _ref_processor_cm(NULL),
1738   _ref_processor_stw(NULL),
1739   _bot_shared(NULL),
1740   _evac_failure_scan_stack(NULL),
1741   _mark_in_progress(false),
1742   _cg1r(NULL),
1743   _g1mm(NULL),
1744   _refine_cte_cl(NULL),
1745   _full_collection(false),
1746   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1747   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1748   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1749   _humongous_is_live(),
1750   _has_humongous_reclaim_candidates(false),
1751   _free_regions_coming(false),
1752   _young_list(new YoungList(this)),
1753   _gc_time_stamp(0),
1754   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1755   _old_plab_stats(OldPLABSize, PLABWeight),
1756   _expand_heap_after_alloc_failure(true),
1757   _surviving_young_words(NULL),
1758   _old_marking_cycles_started(0),
1759   _old_marking_cycles_completed(0),
1760   _concurrent_cycle_started(false),
1761   _heap_summary_sent(false),
1762   _in_cset_fast_test(),
1763   _dirty_cards_region_list(NULL),
1764   _worker_cset_start_region(NULL),
1765   _worker_cset_start_region_time_stamp(NULL),
1766   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1767   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1768   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1769   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1770 
1771   _g1h = this;
1772 
1773   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1774                           /* are_GC_task_threads */true,
1775                           /* are_ConcurrentGC_threads */false);
1776   _workers->initialize_workers();
1777 
1778   _allocator = G1Allocator::create_allocator(_g1h);
1779   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1780 
1781   int n_queues = MAX2((int)ParallelGCThreads, 1);
1782   _task_queues = new RefToScanQueueSet(n_queues);
1783 
1784   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1785   assert(n_rem_sets > 0, "Invariant.");
1786 
1787   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1788   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1789   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1790 
1791   for (int i = 0; i < n_queues; i++) {
1792     RefToScanQueue* q = new RefToScanQueue();
1793     q->initialize();
1794     _task_queues->register_queue(i, q);
1795     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1796   }
1797   clear_cset_start_regions();
1798 
1799   // Initialize the G1EvacuationFailureALot counters and flags.
1800   NOT_PRODUCT(reset_evacuation_should_fail();)
1801 
1802   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1803 }
1804 
1805 jint G1CollectedHeap::initialize() {
1806   CollectedHeap::pre_initialize();
1807   os::enable_vtime();
1808 
1809   G1Log::init();
1810 
1811   // Necessary to satisfy locking discipline assertions.
1812 
1813   MutexLocker x(Heap_lock);
1814 
1815   // We have to initialize the printer before committing the heap, as
1816   // it will be used then.
1817   _hr_printer.set_active(G1PrintHeapRegions);
1818 
1819   // While there are no constraints in the GC code that HeapWordSize
1820   // be any particular value, there are multiple other areas in the
1821   // system which believe this to be true (e.g. oop->object_size in some
1822   // cases incorrectly returns the size in wordSize units rather than
1823   // HeapWordSize).
1824   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1825 
1826   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1827   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1828   size_t heap_alignment = collector_policy()->heap_alignment();
1829 
1830   // Ensure that the sizes are properly aligned.
1831   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1832   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1833   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1834 
1835   _refine_cte_cl = new RefineCardTableEntryClosure();
1836 
1837   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1838 
1839   // Reserve the maximum.
1840 
1841   // When compressed oops are enabled, the preferred heap base
1842   // is calculated by subtracting the requested size from the
1843   // 32Gb boundary and using the result as the base address for
1844   // heap reservation. If the requested size is not aligned to
1845   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1846   // into the ReservedHeapSpace constructor) then the actual
1847   // base of the reserved heap may end up differing from the
1848   // address that was requested (i.e. the preferred heap base).
1849   // If this happens then we could end up using a non-optimal
1850   // compressed oops mode.
1851 
1852   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1853                                                  heap_alignment);
1854 
1855   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1856 
1857   // Create the barrier set for the entire reserved region.
1858   G1SATBCardTableLoggingModRefBS* bs
1859     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1860   bs->initialize();
1861   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1862   set_barrier_set(bs);
1863 
1864   // Also create a G1 rem set.
1865   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1866 
1867   // Carve out the G1 part of the heap.
1868 
1869   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1870   G1RegionToSpaceMapper* heap_storage =
1871     G1RegionToSpaceMapper::create_mapper(g1_rs,
1872                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1873                                          HeapRegion::GrainBytes,
1874                                          1,
1875                                          mtJavaHeap);
1876   heap_storage->set_mapping_changed_listener(&_listener);
1877 
1878   // Reserve space for the block offset table. We do not support automatic uncommit
1879   // for the card table at this time. BOT only.
1880   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1881   G1RegionToSpaceMapper* bot_storage =
1882     G1RegionToSpaceMapper::create_mapper(bot_rs,
1883                                          os::vm_page_size(),
1884                                          HeapRegion::GrainBytes,
1885                                          G1BlockOffsetSharedArray::N_bytes,
1886                                          mtGC);
1887 
1888   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1889   G1RegionToSpaceMapper* cardtable_storage =
1890     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1891                                          os::vm_page_size(),
1892                                          HeapRegion::GrainBytes,
1893                                          G1BlockOffsetSharedArray::N_bytes,
1894                                          mtGC);
1895 
1896   // Reserve space for the card counts table.
1897   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1898   G1RegionToSpaceMapper* card_counts_storage =
1899     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1900                                          os::vm_page_size(),
1901                                          HeapRegion::GrainBytes,
1902                                          G1BlockOffsetSharedArray::N_bytes,
1903                                          mtGC);
1904 
1905   // Reserve space for prev and next bitmap.
1906   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1907 
1908   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1909   G1RegionToSpaceMapper* prev_bitmap_storage =
1910     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1911                                          os::vm_page_size(),
1912                                          HeapRegion::GrainBytes,
1913                                          CMBitMap::mark_distance(),
1914                                          mtGC);
1915 
1916   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1917   G1RegionToSpaceMapper* next_bitmap_storage =
1918     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1919                                          os::vm_page_size(),
1920                                          HeapRegion::GrainBytes,
1921                                          CMBitMap::mark_distance(),
1922                                          mtGC);
1923 
1924   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1925   g1_barrier_set()->initialize(cardtable_storage);
1926    // Do later initialization work for concurrent refinement.
1927   _cg1r->init(card_counts_storage);
1928 
1929   // 6843694 - ensure that the maximum region index can fit
1930   // in the remembered set structures.
1931   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1932   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1933 
1934   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1935   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1936   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1937             "too many cards per region");
1938 
1939   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1940 
1941   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1942 
1943   _g1h = this;
1944 
1945   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1946   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1947 
1948   // Create the ConcurrentMark data structure and thread.
1949   // (Must do this late, so that "max_regions" is defined.)
1950   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1951   if (_cm == NULL || !_cm->completed_initialization()) {
1952     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1953     return JNI_ENOMEM;
1954   }
1955   _cmThread = _cm->cmThread();
1956 
1957   // Initialize the from_card cache structure of HeapRegionRemSet.
1958   HeapRegionRemSet::init_heap(max_regions());
1959 
1960   // Now expand into the initial heap size.
1961   if (!expand(init_byte_size)) {
1962     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1963     return JNI_ENOMEM;
1964   }
1965 
1966   // Perform any initialization actions delegated to the policy.
1967   g1_policy()->init();
1968 
1969   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1970                                                SATB_Q_FL_lock,
1971                                                G1SATBProcessCompletedThreshold,
1972                                                Shared_SATB_Q_lock);
1973 
1974   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1975                                                 DirtyCardQ_CBL_mon,
1976                                                 DirtyCardQ_FL_lock,
1977                                                 concurrent_g1_refine()->yellow_zone(),
1978                                                 concurrent_g1_refine()->red_zone(),
1979                                                 Shared_DirtyCardQ_lock);
1980 
1981   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1982                                     DirtyCardQ_CBL_mon,
1983                                     DirtyCardQ_FL_lock,
1984                                     -1, // never trigger processing
1985                                     -1, // no limit on length
1986                                     Shared_DirtyCardQ_lock,
1987                                     &JavaThread::dirty_card_queue_set());
1988 
1989   // Initialize the card queue set used to hold cards containing
1990   // references into the collection set.
1991   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1992                                              DirtyCardQ_CBL_mon,
1993                                              DirtyCardQ_FL_lock,
1994                                              -1, // never trigger processing
1995                                              -1, // no limit on length
1996                                              Shared_DirtyCardQ_lock,
1997                                              &JavaThread::dirty_card_queue_set());
1998 
1999   // Here we allocate the dummy HeapRegion that is required by the
2000   // G1AllocRegion class.
2001   HeapRegion* dummy_region = _hrm.get_dummy_region();
2002 
2003   // We'll re-use the same region whether the alloc region will
2004   // require BOT updates or not and, if it doesn't, then a non-young
2005   // region will complain that it cannot support allocations without
2006   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2007   dummy_region->set_eden();
2008   // Make sure it's full.
2009   dummy_region->set_top(dummy_region->end());
2010   G1AllocRegion::setup(this, dummy_region);
2011 
2012   _allocator->init_mutator_alloc_region();
2013 
2014   // Do create of the monitoring and management support so that
2015   // values in the heap have been properly initialized.
2016   _g1mm = new G1MonitoringSupport(this);
2017 
2018   G1StringDedup::initialize();
2019 
2020   return JNI_OK;
2021 }
2022 
2023 void G1CollectedHeap::stop() {
2024   // Stop all concurrent threads. We do this to make sure these threads
2025   // do not continue to execute and access resources (e.g. gclog_or_tty)
2026   // that are destroyed during shutdown.
2027   _cg1r->stop();
2028   _cmThread->stop();
2029   if (G1StringDedup::is_enabled()) {
2030     G1StringDedup::stop();
2031   }
2032 }
2033 
2034 void G1CollectedHeap::clear_humongous_is_live_table() {
2035   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2036   _humongous_is_live.clear();
2037 }
2038 
2039 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2040   return HeapRegion::max_region_size();
2041 }
2042 
2043 void G1CollectedHeap::post_initialize() {
2044   CollectedHeap::post_initialize();
2045   ref_processing_init();
2046 }
2047 
2048 void G1CollectedHeap::ref_processing_init() {
2049   // Reference processing in G1 currently works as follows:
2050   //
2051   // * There are two reference processor instances. One is
2052   //   used to record and process discovered references
2053   //   during concurrent marking; the other is used to
2054   //   record and process references during STW pauses
2055   //   (both full and incremental).
2056   // * Both ref processors need to 'span' the entire heap as
2057   //   the regions in the collection set may be dotted around.
2058   //
2059   // * For the concurrent marking ref processor:
2060   //   * Reference discovery is enabled at initial marking.
2061   //   * Reference discovery is disabled and the discovered
2062   //     references processed etc during remarking.
2063   //   * Reference discovery is MT (see below).
2064   //   * Reference discovery requires a barrier (see below).
2065   //   * Reference processing may or may not be MT
2066   //     (depending on the value of ParallelRefProcEnabled
2067   //     and ParallelGCThreads).
2068   //   * A full GC disables reference discovery by the CM
2069   //     ref processor and abandons any entries on it's
2070   //     discovered lists.
2071   //
2072   // * For the STW processor:
2073   //   * Non MT discovery is enabled at the start of a full GC.
2074   //   * Processing and enqueueing during a full GC is non-MT.
2075   //   * During a full GC, references are processed after marking.
2076   //
2077   //   * Discovery (may or may not be MT) is enabled at the start
2078   //     of an incremental evacuation pause.
2079   //   * References are processed near the end of a STW evacuation pause.
2080   //   * For both types of GC:
2081   //     * Discovery is atomic - i.e. not concurrent.
2082   //     * Reference discovery will not need a barrier.
2083 
2084   MemRegion mr = reserved_region();
2085 
2086   // Concurrent Mark ref processor
2087   _ref_processor_cm =
2088     new ReferenceProcessor(mr,    // span
2089                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2090                                 // mt processing
2091                            (int) ParallelGCThreads,
2092                                 // degree of mt processing
2093                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2094                                 // mt discovery
2095                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2096                                 // degree of mt discovery
2097                            false,
2098                                 // Reference discovery is not atomic
2099                            &_is_alive_closure_cm);
2100                                 // is alive closure
2101                                 // (for efficiency/performance)
2102 
2103   // STW ref processor
2104   _ref_processor_stw =
2105     new ReferenceProcessor(mr,    // span
2106                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2107                                 // mt processing
2108                            MAX2((int)ParallelGCThreads, 1),
2109                                 // degree of mt processing
2110                            (ParallelGCThreads > 1),
2111                                 // mt discovery
2112                            MAX2((int)ParallelGCThreads, 1),
2113                                 // degree of mt discovery
2114                            true,
2115                                 // Reference discovery is atomic
2116                            &_is_alive_closure_stw);
2117                                 // is alive closure
2118                                 // (for efficiency/performance)
2119 }
2120 
2121 size_t G1CollectedHeap::capacity() const {
2122   return _hrm.length() * HeapRegion::GrainBytes;
2123 }
2124 
2125 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2126   assert(!hr->is_continues_humongous(), "pre-condition");
2127   hr->reset_gc_time_stamp();
2128   if (hr->is_starts_humongous()) {
2129     uint first_index = hr->hrm_index() + 1;
2130     uint last_index = hr->last_hc_index();
2131     for (uint i = first_index; i < last_index; i += 1) {
2132       HeapRegion* chr = region_at(i);
2133       assert(chr->is_continues_humongous(), "sanity");
2134       chr->reset_gc_time_stamp();
2135     }
2136   }
2137 }
2138 
2139 #ifndef PRODUCT
2140 
2141 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2142 private:
2143   unsigned _gc_time_stamp;
2144   bool _failures;
2145 
2146 public:
2147   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2148     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2149 
2150   virtual bool doHeapRegion(HeapRegion* hr) {
2151     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2152     if (_gc_time_stamp != region_gc_time_stamp) {
2153       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2154                              "expected %d", HR_FORMAT_PARAMS(hr),
2155                              region_gc_time_stamp, _gc_time_stamp);
2156       _failures = true;
2157     }
2158     return false;
2159   }
2160 
2161   bool failures() { return _failures; }
2162 };
2163 
2164 void G1CollectedHeap::check_gc_time_stamps() {
2165   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2166   heap_region_iterate(&cl);
2167   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2168 }
2169 #endif // PRODUCT
2170 
2171 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2172                                                  DirtyCardQueue* into_cset_dcq,
2173                                                  bool concurrent,
2174                                                  uint worker_i) {
2175   // Clean cards in the hot card cache
2176   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2177   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2178 
2179   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2180   size_t n_completed_buffers = 0;
2181   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2182     n_completed_buffers++;
2183   }
2184   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2185   dcqs.clear_n_completed_buffers();
2186   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2187 }
2188 
2189 
2190 // Computes the sum of the storage used by the various regions.
2191 size_t G1CollectedHeap::used() const {
2192   return _allocator->used();
2193 }
2194 
2195 size_t G1CollectedHeap::used_unlocked() const {
2196   return _allocator->used_unlocked();
2197 }
2198 
2199 class SumUsedClosure: public HeapRegionClosure {
2200   size_t _used;
2201 public:
2202   SumUsedClosure() : _used(0) {}
2203   bool doHeapRegion(HeapRegion* r) {
2204     if (!r->is_continues_humongous()) {
2205       _used += r->used();
2206     }
2207     return false;
2208   }
2209   size_t result() { return _used; }
2210 };
2211 
2212 size_t G1CollectedHeap::recalculate_used() const {
2213   double recalculate_used_start = os::elapsedTime();
2214 
2215   SumUsedClosure blk;
2216   heap_region_iterate(&blk);
2217 
2218   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2219   return blk.result();
2220 }
2221 
2222 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2223   switch (cause) {
2224     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2225     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2226     case GCCause::_g1_humongous_allocation: return true;
2227     case GCCause::_update_allocation_context_stats_inc: return true;
2228     case GCCause::_wb_conc_mark:            return true;
2229     default:                                return false;
2230   }
2231 }
2232 
2233 #ifndef PRODUCT
2234 void G1CollectedHeap::allocate_dummy_regions() {
2235   // Let's fill up most of the region
2236   size_t word_size = HeapRegion::GrainWords - 1024;
2237   // And as a result the region we'll allocate will be humongous.
2238   guarantee(is_humongous(word_size), "sanity");
2239 
2240   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2241     // Let's use the existing mechanism for the allocation
2242     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2243                                                  AllocationContext::system());
2244     if (dummy_obj != NULL) {
2245       MemRegion mr(dummy_obj, word_size);
2246       CollectedHeap::fill_with_object(mr);
2247     } else {
2248       // If we can't allocate once, we probably cannot allocate
2249       // again. Let's get out of the loop.
2250       break;
2251     }
2252   }
2253 }
2254 #endif // !PRODUCT
2255 
2256 void G1CollectedHeap::increment_old_marking_cycles_started() {
2257   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2258     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2259     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2260     _old_marking_cycles_started, _old_marking_cycles_completed));
2261 
2262   _old_marking_cycles_started++;
2263 }
2264 
2265 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2266   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2267 
2268   // We assume that if concurrent == true, then the caller is a
2269   // concurrent thread that was joined the Suspendible Thread
2270   // Set. If there's ever a cheap way to check this, we should add an
2271   // assert here.
2272 
2273   // Given that this method is called at the end of a Full GC or of a
2274   // concurrent cycle, and those can be nested (i.e., a Full GC can
2275   // interrupt a concurrent cycle), the number of full collections
2276   // completed should be either one (in the case where there was no
2277   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2278   // behind the number of full collections started.
2279 
2280   // This is the case for the inner caller, i.e. a Full GC.
2281   assert(concurrent ||
2282          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2283          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2284          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2285                  "is inconsistent with _old_marking_cycles_completed = %u",
2286                  _old_marking_cycles_started, _old_marking_cycles_completed));
2287 
2288   // This is the case for the outer caller, i.e. the concurrent cycle.
2289   assert(!concurrent ||
2290          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2291          err_msg("for outer caller (concurrent cycle): "
2292                  "_old_marking_cycles_started = %u "
2293                  "is inconsistent with _old_marking_cycles_completed = %u",
2294                  _old_marking_cycles_started, _old_marking_cycles_completed));
2295 
2296   _old_marking_cycles_completed += 1;
2297 
2298   // We need to clear the "in_progress" flag in the CM thread before
2299   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2300   // is set) so that if a waiter requests another System.gc() it doesn't
2301   // incorrectly see that a marking cycle is still in progress.
2302   if (concurrent) {
2303     _cmThread->clear_in_progress();
2304   }
2305 
2306   // This notify_all() will ensure that a thread that called
2307   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2308   // and it's waiting for a full GC to finish will be woken up. It is
2309   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2310   FullGCCount_lock->notify_all();
2311 }
2312 
2313 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2314   _concurrent_cycle_started = true;
2315   _gc_timer_cm->register_gc_start(start_time);
2316 
2317   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2318   trace_heap_before_gc(_gc_tracer_cm);
2319 }
2320 
2321 void G1CollectedHeap::register_concurrent_cycle_end() {
2322   if (_concurrent_cycle_started) {
2323     if (_cm->has_aborted()) {
2324       _gc_tracer_cm->report_concurrent_mode_failure();
2325     }
2326 
2327     _gc_timer_cm->register_gc_end();
2328     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2329 
2330     // Clear state variables to prepare for the next concurrent cycle.
2331     _concurrent_cycle_started = false;
2332     _heap_summary_sent = false;
2333   }
2334 }
2335 
2336 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2337   if (_concurrent_cycle_started) {
2338     // This function can be called when:
2339     //  the cleanup pause is run
2340     //  the concurrent cycle is aborted before the cleanup pause.
2341     //  the concurrent cycle is aborted after the cleanup pause,
2342     //   but before the concurrent cycle end has been registered.
2343     // Make sure that we only send the heap information once.
2344     if (!_heap_summary_sent) {
2345       trace_heap_after_gc(_gc_tracer_cm);
2346       _heap_summary_sent = true;
2347     }
2348   }
2349 }
2350 
2351 G1YCType G1CollectedHeap::yc_type() {
2352   bool is_young = g1_policy()->gcs_are_young();
2353   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2354   bool is_during_mark = mark_in_progress();
2355 
2356   if (is_initial_mark) {
2357     return InitialMark;
2358   } else if (is_during_mark) {
2359     return DuringMark;
2360   } else if (is_young) {
2361     return Normal;
2362   } else {
2363     return Mixed;
2364   }
2365 }
2366 
2367 void G1CollectedHeap::collect(GCCause::Cause cause) {
2368   assert_heap_not_locked();
2369 
2370   uint gc_count_before;
2371   uint old_marking_count_before;
2372   uint full_gc_count_before;
2373   bool retry_gc;
2374 
2375   do {
2376     retry_gc = false;
2377 
2378     {
2379       MutexLocker ml(Heap_lock);
2380 
2381       // Read the GC count while holding the Heap_lock
2382       gc_count_before = total_collections();
2383       full_gc_count_before = total_full_collections();
2384       old_marking_count_before = _old_marking_cycles_started;
2385     }
2386 
2387     if (should_do_concurrent_full_gc(cause)) {
2388       // Schedule an initial-mark evacuation pause that will start a
2389       // concurrent cycle. We're setting word_size to 0 which means that
2390       // we are not requesting a post-GC allocation.
2391       VM_G1IncCollectionPause op(gc_count_before,
2392                                  0,     /* word_size */
2393                                  true,  /* should_initiate_conc_mark */
2394                                  g1_policy()->max_pause_time_ms(),
2395                                  cause);
2396       op.set_allocation_context(AllocationContext::current());
2397 
2398       VMThread::execute(&op);
2399       if (!op.pause_succeeded()) {
2400         if (old_marking_count_before == _old_marking_cycles_started) {
2401           retry_gc = op.should_retry_gc();
2402         } else {
2403           // A Full GC happened while we were trying to schedule the
2404           // initial-mark GC. No point in starting a new cycle given
2405           // that the whole heap was collected anyway.
2406         }
2407 
2408         if (retry_gc) {
2409           if (GC_locker::is_active_and_needs_gc()) {
2410             GC_locker::stall_until_clear();
2411           }
2412         }
2413       }
2414     } else {
2415       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2416           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2417 
2418         // Schedule a standard evacuation pause. We're setting word_size
2419         // to 0 which means that we are not requesting a post-GC allocation.
2420         VM_G1IncCollectionPause op(gc_count_before,
2421                                    0,     /* word_size */
2422                                    false, /* should_initiate_conc_mark */
2423                                    g1_policy()->max_pause_time_ms(),
2424                                    cause);
2425         VMThread::execute(&op);
2426       } else {
2427         // Schedule a Full GC.
2428         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2429         VMThread::execute(&op);
2430       }
2431     }
2432   } while (retry_gc);
2433 }
2434 
2435 bool G1CollectedHeap::is_in(const void* p) const {
2436   if (_hrm.reserved().contains(p)) {
2437     // Given that we know that p is in the reserved space,
2438     // heap_region_containing_raw() should successfully
2439     // return the containing region.
2440     HeapRegion* hr = heap_region_containing_raw(p);
2441     return hr->is_in(p);
2442   } else {
2443     return false;
2444   }
2445 }
2446 
2447 #ifdef ASSERT
2448 bool G1CollectedHeap::is_in_exact(const void* p) const {
2449   bool contains = reserved_region().contains(p);
2450   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2451   if (contains && available) {
2452     return true;
2453   } else {
2454     return false;
2455   }
2456 }
2457 #endif
2458 
2459 // Iteration functions.
2460 
2461 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2462 
2463 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2464   ExtendedOopClosure* _cl;
2465 public:
2466   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2467   bool doHeapRegion(HeapRegion* r) {
2468     if (!r->is_continues_humongous()) {
2469       r->oop_iterate(_cl);
2470     }
2471     return false;
2472   }
2473 };
2474 
2475 // Iterates an ObjectClosure over all objects within a HeapRegion.
2476 
2477 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2478   ObjectClosure* _cl;
2479 public:
2480   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2481   bool doHeapRegion(HeapRegion* r) {
2482     if (!r->is_continues_humongous()) {
2483       r->object_iterate(_cl);
2484     }
2485     return false;
2486   }
2487 };
2488 
2489 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2490   IterateObjectClosureRegionClosure blk(cl);
2491   heap_region_iterate(&blk);
2492 }
2493 
2494 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2495   _hrm.iterate(cl);
2496 }
2497 
2498 void
2499 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2500                                          uint worker_id,
2501                                          HeapRegionClaimer *hrclaimer,
2502                                          bool concurrent) const {
2503   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2504 }
2505 
2506 // Clear the cached CSet starting regions and (more importantly)
2507 // the time stamps. Called when we reset the GC time stamp.
2508 void G1CollectedHeap::clear_cset_start_regions() {
2509   assert(_worker_cset_start_region != NULL, "sanity");
2510   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2511 
2512   int n_queues = MAX2((int)ParallelGCThreads, 1);
2513   for (int i = 0; i < n_queues; i++) {
2514     _worker_cset_start_region[i] = NULL;
2515     _worker_cset_start_region_time_stamp[i] = 0;
2516   }
2517 }
2518 
2519 // Given the id of a worker, obtain or calculate a suitable
2520 // starting region for iterating over the current collection set.
2521 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2522   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2523 
2524   HeapRegion* result = NULL;
2525   unsigned gc_time_stamp = get_gc_time_stamp();
2526 
2527   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2528     // Cached starting region for current worker was set
2529     // during the current pause - so it's valid.
2530     // Note: the cached starting heap region may be NULL
2531     // (when the collection set is empty).
2532     result = _worker_cset_start_region[worker_i];
2533     assert(result == NULL || result->in_collection_set(), "sanity");
2534     return result;
2535   }
2536 
2537   // The cached entry was not valid so let's calculate
2538   // a suitable starting heap region for this worker.
2539 
2540   // We want the parallel threads to start their collection
2541   // set iteration at different collection set regions to
2542   // avoid contention.
2543   // If we have:
2544   //          n collection set regions
2545   //          p threads
2546   // Then thread t will start at region floor ((t * n) / p)
2547 
2548   result = g1_policy()->collection_set();
2549   uint cs_size = g1_policy()->cset_region_length();
2550   uint active_workers = workers()->active_workers();
2551   assert(UseDynamicNumberOfGCThreads ||
2552            active_workers == workers()->total_workers(),
2553            "Unless dynamic should use total workers");
2554 
2555   uint end_ind   = (cs_size * worker_i) / active_workers;
2556   uint start_ind = 0;
2557 
2558   if (worker_i > 0 &&
2559       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2560     // Previous workers starting region is valid
2561     // so let's iterate from there
2562     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2563     result = _worker_cset_start_region[worker_i - 1];
2564   }
2565 
2566   for (uint i = start_ind; i < end_ind; i++) {
2567     result = result->next_in_collection_set();
2568   }
2569 
2570   // Note: the calculated starting heap region may be NULL
2571   // (when the collection set is empty).
2572   assert(result == NULL || result->in_collection_set(), "sanity");
2573   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2574          "should be updated only once per pause");
2575   _worker_cset_start_region[worker_i] = result;
2576   OrderAccess::storestore();
2577   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2578   return result;
2579 }
2580 
2581 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2582   HeapRegion* r = g1_policy()->collection_set();
2583   while (r != NULL) {
2584     HeapRegion* next = r->next_in_collection_set();
2585     if (cl->doHeapRegion(r)) {
2586       cl->incomplete();
2587       return;
2588     }
2589     r = next;
2590   }
2591 }
2592 
2593 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2594                                                   HeapRegionClosure *cl) {
2595   if (r == NULL) {
2596     // The CSet is empty so there's nothing to do.
2597     return;
2598   }
2599 
2600   assert(r->in_collection_set(),
2601          "Start region must be a member of the collection set.");
2602   HeapRegion* cur = r;
2603   while (cur != NULL) {
2604     HeapRegion* next = cur->next_in_collection_set();
2605     if (cl->doHeapRegion(cur) && false) {
2606       cl->incomplete();
2607       return;
2608     }
2609     cur = next;
2610   }
2611   cur = g1_policy()->collection_set();
2612   while (cur != r) {
2613     HeapRegion* next = cur->next_in_collection_set();
2614     if (cl->doHeapRegion(cur) && false) {
2615       cl->incomplete();
2616       return;
2617     }
2618     cur = next;
2619   }
2620 }
2621 
2622 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2623   HeapRegion* result = _hrm.next_region_in_heap(from);
2624   while (result != NULL && result->is_humongous()) {
2625     result = _hrm.next_region_in_heap(result);
2626   }
2627   return result;
2628 }
2629 
2630 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2631   HeapRegion* hr = heap_region_containing(addr);
2632   return hr->block_start(addr);
2633 }
2634 
2635 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2636   HeapRegion* hr = heap_region_containing(addr);
2637   return hr->block_size(addr);
2638 }
2639 
2640 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2641   HeapRegion* hr = heap_region_containing(addr);
2642   return hr->block_is_obj(addr);
2643 }
2644 
2645 bool G1CollectedHeap::supports_tlab_allocation() const {
2646   return true;
2647 }
2648 
2649 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2650   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2651 }
2652 
2653 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2654   return young_list()->eden_used_bytes();
2655 }
2656 
2657 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2658 // must be smaller than the humongous object limit.
2659 size_t G1CollectedHeap::max_tlab_size() const {
2660   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2661 }
2662 
2663 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2664   // Return the remaining space in the cur alloc region, but not less than
2665   // the min TLAB size.
2666 
2667   // Also, this value can be at most the humongous object threshold,
2668   // since we can't allow tlabs to grow big enough to accommodate
2669   // humongous objects.
2670 
2671   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2672   size_t max_tlab = max_tlab_size() * wordSize;
2673   if (hr == NULL) {
2674     return max_tlab;
2675   } else {
2676     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2677   }
2678 }
2679 
2680 size_t G1CollectedHeap::max_capacity() const {
2681   return _hrm.reserved().byte_size();
2682 }
2683 
2684 jlong G1CollectedHeap::millis_since_last_gc() {
2685   // assert(false, "NYI");
2686   return 0;
2687 }
2688 
2689 void G1CollectedHeap::prepare_for_verify() {
2690   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2691     ensure_parsability(false);
2692   }
2693   g1_rem_set()->prepare_for_verify();
2694 }
2695 
2696 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2697                                               VerifyOption vo) {
2698   switch (vo) {
2699   case VerifyOption_G1UsePrevMarking:
2700     return hr->obj_allocated_since_prev_marking(obj);
2701   case VerifyOption_G1UseNextMarking:
2702     return hr->obj_allocated_since_next_marking(obj);
2703   case VerifyOption_G1UseMarkWord:
2704     return false;
2705   default:
2706     ShouldNotReachHere();
2707   }
2708   return false; // keep some compilers happy
2709 }
2710 
2711 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2712   switch (vo) {
2713   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2714   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2715   case VerifyOption_G1UseMarkWord:    return NULL;
2716   default:                            ShouldNotReachHere();
2717   }
2718   return NULL; // keep some compilers happy
2719 }
2720 
2721 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2722   switch (vo) {
2723   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2724   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2725   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2726   default:                            ShouldNotReachHere();
2727   }
2728   return false; // keep some compilers happy
2729 }
2730 
2731 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2732   switch (vo) {
2733   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2734   case VerifyOption_G1UseNextMarking: return "NTAMS";
2735   case VerifyOption_G1UseMarkWord:    return "NONE";
2736   default:                            ShouldNotReachHere();
2737   }
2738   return NULL; // keep some compilers happy
2739 }
2740 
2741 class VerifyRootsClosure: public OopClosure {
2742 private:
2743   G1CollectedHeap* _g1h;
2744   VerifyOption     _vo;
2745   bool             _failures;
2746 public:
2747   // _vo == UsePrevMarking -> use "prev" marking information,
2748   // _vo == UseNextMarking -> use "next" marking information,
2749   // _vo == UseMarkWord    -> use mark word from object header.
2750   VerifyRootsClosure(VerifyOption vo) :
2751     _g1h(G1CollectedHeap::heap()),
2752     _vo(vo),
2753     _failures(false) { }
2754 
2755   bool failures() { return _failures; }
2756 
2757   template <class T> void do_oop_nv(T* p) {
2758     T heap_oop = oopDesc::load_heap_oop(p);
2759     if (!oopDesc::is_null(heap_oop)) {
2760       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2761       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2762         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2763                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2764         if (_vo == VerifyOption_G1UseMarkWord) {
2765           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2766         }
2767         obj->print_on(gclog_or_tty);
2768         _failures = true;
2769       }
2770     }
2771   }
2772 
2773   void do_oop(oop* p)       { do_oop_nv(p); }
2774   void do_oop(narrowOop* p) { do_oop_nv(p); }
2775 };
2776 
2777 class G1VerifyCodeRootOopClosure: public OopClosure {
2778   G1CollectedHeap* _g1h;
2779   OopClosure* _root_cl;
2780   nmethod* _nm;
2781   VerifyOption _vo;
2782   bool _failures;
2783 
2784   template <class T> void do_oop_work(T* p) {
2785     // First verify that this root is live
2786     _root_cl->do_oop(p);
2787 
2788     if (!G1VerifyHeapRegionCodeRoots) {
2789       // We're not verifying the code roots attached to heap region.
2790       return;
2791     }
2792 
2793     // Don't check the code roots during marking verification in a full GC
2794     if (_vo == VerifyOption_G1UseMarkWord) {
2795       return;
2796     }
2797 
2798     // Now verify that the current nmethod (which contains p) is
2799     // in the code root list of the heap region containing the
2800     // object referenced by p.
2801 
2802     T heap_oop = oopDesc::load_heap_oop(p);
2803     if (!oopDesc::is_null(heap_oop)) {
2804       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2805 
2806       // Now fetch the region containing the object
2807       HeapRegion* hr = _g1h->heap_region_containing(obj);
2808       HeapRegionRemSet* hrrs = hr->rem_set();
2809       // Verify that the strong code root list for this region
2810       // contains the nmethod
2811       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2812         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2813                               "from nmethod "PTR_FORMAT" not in strong "
2814                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2815                               p, _nm, hr->bottom(), hr->end());
2816         _failures = true;
2817       }
2818     }
2819   }
2820 
2821 public:
2822   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2823     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2824 
2825   void do_oop(oop* p) { do_oop_work(p); }
2826   void do_oop(narrowOop* p) { do_oop_work(p); }
2827 
2828   void set_nmethod(nmethod* nm) { _nm = nm; }
2829   bool failures() { return _failures; }
2830 };
2831 
2832 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2833   G1VerifyCodeRootOopClosure* _oop_cl;
2834 
2835 public:
2836   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2837     _oop_cl(oop_cl) {}
2838 
2839   void do_code_blob(CodeBlob* cb) {
2840     nmethod* nm = cb->as_nmethod_or_null();
2841     if (nm != NULL) {
2842       _oop_cl->set_nmethod(nm);
2843       nm->oops_do(_oop_cl);
2844     }
2845   }
2846 };
2847 
2848 class YoungRefCounterClosure : public OopClosure {
2849   G1CollectedHeap* _g1h;
2850   int              _count;
2851  public:
2852   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2853   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2854   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2855 
2856   int count() { return _count; }
2857   void reset_count() { _count = 0; };
2858 };
2859 
2860 class VerifyKlassClosure: public KlassClosure {
2861   YoungRefCounterClosure _young_ref_counter_closure;
2862   OopClosure *_oop_closure;
2863  public:
2864   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2865   void do_klass(Klass* k) {
2866     k->oops_do(_oop_closure);
2867 
2868     _young_ref_counter_closure.reset_count();
2869     k->oops_do(&_young_ref_counter_closure);
2870     if (_young_ref_counter_closure.count() > 0) {
2871       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2872     }
2873   }
2874 };
2875 
2876 class VerifyLivenessOopClosure: public OopClosure {
2877   G1CollectedHeap* _g1h;
2878   VerifyOption _vo;
2879 public:
2880   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2881     _g1h(g1h), _vo(vo)
2882   { }
2883   void do_oop(narrowOop *p) { do_oop_work(p); }
2884   void do_oop(      oop *p) { do_oop_work(p); }
2885 
2886   template <class T> void do_oop_work(T *p) {
2887     oop obj = oopDesc::load_decode_heap_oop(p);
2888     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2889               "Dead object referenced by a not dead object");
2890   }
2891 };
2892 
2893 class VerifyObjsInRegionClosure: public ObjectClosure {
2894 private:
2895   G1CollectedHeap* _g1h;
2896   size_t _live_bytes;
2897   HeapRegion *_hr;
2898   VerifyOption _vo;
2899 public:
2900   // _vo == UsePrevMarking -> use "prev" marking information,
2901   // _vo == UseNextMarking -> use "next" marking information,
2902   // _vo == UseMarkWord    -> use mark word from object header.
2903   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2904     : _live_bytes(0), _hr(hr), _vo(vo) {
2905     _g1h = G1CollectedHeap::heap();
2906   }
2907   void do_object(oop o) {
2908     VerifyLivenessOopClosure isLive(_g1h, _vo);
2909     assert(o != NULL, "Huh?");
2910     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2911       // If the object is alive according to the mark word,
2912       // then verify that the marking information agrees.
2913       // Note we can't verify the contra-positive of the
2914       // above: if the object is dead (according to the mark
2915       // word), it may not be marked, or may have been marked
2916       // but has since became dead, or may have been allocated
2917       // since the last marking.
2918       if (_vo == VerifyOption_G1UseMarkWord) {
2919         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2920       }
2921 
2922       o->oop_iterate_no_header(&isLive);
2923       if (!_hr->obj_allocated_since_prev_marking(o)) {
2924         size_t obj_size = o->size();    // Make sure we don't overflow
2925         _live_bytes += (obj_size * HeapWordSize);
2926       }
2927     }
2928   }
2929   size_t live_bytes() { return _live_bytes; }
2930 };
2931 
2932 class PrintObjsInRegionClosure : public ObjectClosure {
2933   HeapRegion *_hr;
2934   G1CollectedHeap *_g1;
2935 public:
2936   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2937     _g1 = G1CollectedHeap::heap();
2938   };
2939 
2940   void do_object(oop o) {
2941     if (o != NULL) {
2942       HeapWord *start = (HeapWord *) o;
2943       size_t word_sz = o->size();
2944       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2945                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2946                           (void*) o, word_sz,
2947                           _g1->isMarkedPrev(o),
2948                           _g1->isMarkedNext(o),
2949                           _hr->obj_allocated_since_prev_marking(o));
2950       HeapWord *end = start + word_sz;
2951       HeapWord *cur;
2952       int *val;
2953       for (cur = start; cur < end; cur++) {
2954         val = (int *) cur;
2955         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
2956       }
2957     }
2958   }
2959 };
2960 
2961 class VerifyRegionClosure: public HeapRegionClosure {
2962 private:
2963   bool             _par;
2964   VerifyOption     _vo;
2965   bool             _failures;
2966 public:
2967   // _vo == UsePrevMarking -> use "prev" marking information,
2968   // _vo == UseNextMarking -> use "next" marking information,
2969   // _vo == UseMarkWord    -> use mark word from object header.
2970   VerifyRegionClosure(bool par, VerifyOption vo)
2971     : _par(par),
2972       _vo(vo),
2973       _failures(false) {}
2974 
2975   bool failures() {
2976     return _failures;
2977   }
2978 
2979   bool doHeapRegion(HeapRegion* r) {
2980     if (!r->is_continues_humongous()) {
2981       bool failures = false;
2982       r->verify(_vo, &failures);
2983       if (failures) {
2984         _failures = true;
2985       } else {
2986         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2987         r->object_iterate(&not_dead_yet_cl);
2988         if (_vo != VerifyOption_G1UseNextMarking) {
2989           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2990             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2991                                    "max_live_bytes "SIZE_FORMAT" "
2992                                    "< calculated "SIZE_FORMAT,
2993                                    r->bottom(), r->end(),
2994                                    r->max_live_bytes(),
2995                                  not_dead_yet_cl.live_bytes());
2996             _failures = true;
2997           }
2998         } else {
2999           // When vo == UseNextMarking we cannot currently do a sanity
3000           // check on the live bytes as the calculation has not been
3001           // finalized yet.
3002         }
3003       }
3004     }
3005     return false; // stop the region iteration if we hit a failure
3006   }
3007 };
3008 
3009 // This is the task used for parallel verification of the heap regions
3010 
3011 class G1ParVerifyTask: public AbstractGangTask {
3012 private:
3013   G1CollectedHeap*  _g1h;
3014   VerifyOption      _vo;
3015   bool              _failures;
3016   HeapRegionClaimer _hrclaimer;
3017 
3018 public:
3019   // _vo == UsePrevMarking -> use "prev" marking information,
3020   // _vo == UseNextMarking -> use "next" marking information,
3021   // _vo == UseMarkWord    -> use mark word from object header.
3022   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3023       AbstractGangTask("Parallel verify task"),
3024       _g1h(g1h),
3025       _vo(vo),
3026       _failures(false),
3027       _hrclaimer(g1h->workers()->active_workers()) {}
3028 
3029   bool failures() {
3030     return _failures;
3031   }
3032 
3033   void work(uint worker_id) {
3034     HandleMark hm;
3035     VerifyRegionClosure blk(true, _vo);
3036     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3037     if (blk.failures()) {
3038       _failures = true;
3039     }
3040   }
3041 };
3042 
3043 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3044   if (SafepointSynchronize::is_at_safepoint()) {
3045     assert(Thread::current()->is_VM_thread(),
3046            "Expected to be executed serially by the VM thread at this point");
3047 
3048     if (!silent) { gclog_or_tty->print("Roots "); }
3049     VerifyRootsClosure rootsCl(vo);
3050     VerifyKlassClosure klassCl(this, &rootsCl);
3051     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3052 
3053     // We apply the relevant closures to all the oops in the
3054     // system dictionary, class loader data graph, the string table
3055     // and the nmethods in the code cache.
3056     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3057     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3058 
3059     {
3060       G1RootProcessor root_processor(this);
3061       root_processor.process_all_roots(&rootsCl,
3062                                        &cldCl,
3063                                        &blobsCl);
3064     }
3065 
3066     bool failures = rootsCl.failures() || codeRootsCl.failures();
3067 
3068     if (vo != VerifyOption_G1UseMarkWord) {
3069       // If we're verifying during a full GC then the region sets
3070       // will have been torn down at the start of the GC. Therefore
3071       // verifying the region sets will fail. So we only verify
3072       // the region sets when not in a full GC.
3073       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3074       verify_region_sets();
3075     }
3076 
3077     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3078     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3079 
3080       G1ParVerifyTask task(this, vo);
3081       assert(UseDynamicNumberOfGCThreads ||
3082         workers()->active_workers() == workers()->total_workers(),
3083         "If not dynamic should be using all the workers");
3084       int n_workers = workers()->active_workers();
3085       set_par_threads(n_workers);
3086       workers()->run_task(&task);
3087       set_par_threads(0);
3088       if (task.failures()) {
3089         failures = true;
3090       }
3091 
3092     } else {
3093       VerifyRegionClosure blk(false, vo);
3094       heap_region_iterate(&blk);
3095       if (blk.failures()) {
3096         failures = true;
3097       }
3098     }
3099 
3100     if (G1StringDedup::is_enabled()) {
3101       if (!silent) gclog_or_tty->print("StrDedup ");
3102       G1StringDedup::verify();
3103     }
3104 
3105     if (failures) {
3106       gclog_or_tty->print_cr("Heap:");
3107       // It helps to have the per-region information in the output to
3108       // help us track down what went wrong. This is why we call
3109       // print_extended_on() instead of print_on().
3110       print_extended_on(gclog_or_tty);
3111       gclog_or_tty->cr();
3112 #ifndef PRODUCT
3113       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3114         concurrent_mark()->print_reachable("at-verification-failure",
3115                                            vo, false /* all */);
3116       }
3117 #endif
3118       gclog_or_tty->flush();
3119     }
3120     guarantee(!failures, "there should not have been any failures");
3121   } else {
3122     if (!silent) {
3123       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3124       if (G1StringDedup::is_enabled()) {
3125         gclog_or_tty->print(", StrDedup");
3126       }
3127       gclog_or_tty->print(") ");
3128     }
3129   }
3130 }
3131 
3132 void G1CollectedHeap::verify(bool silent) {
3133   verify(silent, VerifyOption_G1UsePrevMarking);
3134 }
3135 
3136 double G1CollectedHeap::verify(bool guard, const char* msg) {
3137   double verify_time_ms = 0.0;
3138 
3139   if (guard && total_collections() >= VerifyGCStartAt) {
3140     double verify_start = os::elapsedTime();
3141     HandleMark hm;  // Discard invalid handles created during verification
3142     prepare_for_verify();
3143     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3144     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3145   }
3146 
3147   return verify_time_ms;
3148 }
3149 
3150 void G1CollectedHeap::verify_before_gc() {
3151   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3152   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3153 }
3154 
3155 void G1CollectedHeap::verify_after_gc() {
3156   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3157   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3158 }
3159 
3160 class PrintRegionClosure: public HeapRegionClosure {
3161   outputStream* _st;
3162 public:
3163   PrintRegionClosure(outputStream* st) : _st(st) {}
3164   bool doHeapRegion(HeapRegion* r) {
3165     r->print_on(_st);
3166     return false;
3167   }
3168 };
3169 
3170 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3171                                        const HeapRegion* hr,
3172                                        const VerifyOption vo) const {
3173   switch (vo) {
3174   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3175   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3176   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3177   default:                            ShouldNotReachHere();
3178   }
3179   return false; // keep some compilers happy
3180 }
3181 
3182 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3183                                        const VerifyOption vo) const {
3184   switch (vo) {
3185   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3186   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3187   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3188   default:                            ShouldNotReachHere();
3189   }
3190   return false; // keep some compilers happy
3191 }
3192 
3193 void G1CollectedHeap::print_on(outputStream* st) const {
3194   st->print(" %-20s", "garbage-first heap");
3195   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3196             capacity()/K, used_unlocked()/K);
3197   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3198             _hrm.reserved().start(),
3199             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3200             _hrm.reserved().end());
3201   st->cr();
3202   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3203   uint young_regions = _young_list->length();
3204   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3205             (size_t) young_regions * HeapRegion::GrainBytes / K);
3206   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3207   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3208             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3209   st->cr();
3210   MetaspaceAux::print_on(st);
3211 }
3212 
3213 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3214   print_on(st);
3215 
3216   // Print the per-region information.
3217   st->cr();
3218   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3219                "HS=humongous(starts), HC=humongous(continues), "
3220                "CS=collection set, F=free, TS=gc time stamp, "
3221                "PTAMS=previous top-at-mark-start, "
3222                "NTAMS=next top-at-mark-start)");
3223   PrintRegionClosure blk(st);
3224   heap_region_iterate(&blk);
3225 }
3226 
3227 void G1CollectedHeap::print_on_error(outputStream* st) const {
3228   this->CollectedHeap::print_on_error(st);
3229 
3230   if (_cm != NULL) {
3231     st->cr();
3232     _cm->print_on_error(st);
3233   }
3234 }
3235 
3236 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3237   workers()->print_worker_threads_on(st);
3238   _cmThread->print_on(st);
3239   st->cr();
3240   _cm->print_worker_threads_on(st);
3241   _cg1r->print_worker_threads_on(st);
3242   if (G1StringDedup::is_enabled()) {
3243     G1StringDedup::print_worker_threads_on(st);
3244   }
3245 }
3246 
3247 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3248   workers()->threads_do(tc);
3249   tc->do_thread(_cmThread);
3250   _cg1r->threads_do(tc);
3251   if (G1StringDedup::is_enabled()) {
3252     G1StringDedup::threads_do(tc);
3253   }
3254 }
3255 
3256 void G1CollectedHeap::print_tracing_info() const {
3257   // We'll overload this to mean "trace GC pause statistics."
3258   if (TraceYoungGenTime || TraceOldGenTime) {
3259     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3260     // to that.
3261     g1_policy()->print_tracing_info();
3262   }
3263   if (G1SummarizeRSetStats) {
3264     g1_rem_set()->print_summary_info();
3265   }
3266   if (G1SummarizeConcMark) {
3267     concurrent_mark()->print_summary_info();
3268   }
3269   g1_policy()->print_yg_surv_rate_info();
3270 }
3271 
3272 #ifndef PRODUCT
3273 // Helpful for debugging RSet issues.
3274 
3275 class PrintRSetsClosure : public HeapRegionClosure {
3276 private:
3277   const char* _msg;
3278   size_t _occupied_sum;
3279 
3280 public:
3281   bool doHeapRegion(HeapRegion* r) {
3282     HeapRegionRemSet* hrrs = r->rem_set();
3283     size_t occupied = hrrs->occupied();
3284     _occupied_sum += occupied;
3285 
3286     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3287                            HR_FORMAT_PARAMS(r));
3288     if (occupied == 0) {
3289       gclog_or_tty->print_cr("  RSet is empty");
3290     } else {
3291       hrrs->print();
3292     }
3293     gclog_or_tty->print_cr("----------");
3294     return false;
3295   }
3296 
3297   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3298     gclog_or_tty->cr();
3299     gclog_or_tty->print_cr("========================================");
3300     gclog_or_tty->print_cr("%s", msg);
3301     gclog_or_tty->cr();
3302   }
3303 
3304   ~PrintRSetsClosure() {
3305     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3306     gclog_or_tty->print_cr("========================================");
3307     gclog_or_tty->cr();
3308   }
3309 };
3310 
3311 void G1CollectedHeap::print_cset_rsets() {
3312   PrintRSetsClosure cl("Printing CSet RSets");
3313   collection_set_iterate(&cl);
3314 }
3315 
3316 void G1CollectedHeap::print_all_rsets() {
3317   PrintRSetsClosure cl("Printing All RSets");;
3318   heap_region_iterate(&cl);
3319 }
3320 #endif // PRODUCT
3321 
3322 G1CollectedHeap* G1CollectedHeap::heap() {
3323   return _g1h;
3324 }
3325 
3326 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3327   // always_do_update_barrier = false;
3328   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3329   // Fill TLAB's and such
3330   accumulate_statistics_all_tlabs();
3331   ensure_parsability(true);
3332 
3333   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3334       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3335     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3336   }
3337 }
3338 
3339 void G1CollectedHeap::gc_epilogue(bool full) {
3340 
3341   if (G1SummarizeRSetStats &&
3342       (G1SummarizeRSetStatsPeriod > 0) &&
3343       // we are at the end of the GC. Total collections has already been increased.
3344       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3345     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3346   }
3347 
3348   // FIXME: what is this about?
3349   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3350   // is set.
3351   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3352                         "derived pointer present"));
3353   // always_do_update_barrier = true;
3354 
3355   resize_all_tlabs();
3356   allocation_context_stats().update(full);
3357 
3358   // We have just completed a GC. Update the soft reference
3359   // policy with the new heap occupancy
3360   Universe::update_heap_info_at_gc();
3361 }
3362 
3363 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3364                                                uint gc_count_before,
3365                                                bool* succeeded,
3366                                                GCCause::Cause gc_cause) {
3367   assert_heap_not_locked_and_not_at_safepoint();
3368   g1_policy()->record_stop_world_start();
3369   VM_G1IncCollectionPause op(gc_count_before,
3370                              word_size,
3371                              false, /* should_initiate_conc_mark */
3372                              g1_policy()->max_pause_time_ms(),
3373                              gc_cause);
3374 
3375   op.set_allocation_context(AllocationContext::current());
3376   VMThread::execute(&op);
3377 
3378   HeapWord* result = op.result();
3379   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3380   assert(result == NULL || ret_succeeded,
3381          "the result should be NULL if the VM did not succeed");
3382   *succeeded = ret_succeeded;
3383 
3384   assert_heap_not_locked();
3385   return result;
3386 }
3387 
3388 void
3389 G1CollectedHeap::doConcurrentMark() {
3390   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3391   if (!_cmThread->in_progress()) {
3392     _cmThread->set_started();
3393     CGC_lock->notify();
3394   }
3395 }
3396 
3397 size_t G1CollectedHeap::pending_card_num() {
3398   size_t extra_cards = 0;
3399   JavaThread *curr = Threads::first();
3400   while (curr != NULL) {
3401     DirtyCardQueue& dcq = curr->dirty_card_queue();
3402     extra_cards += dcq.size();
3403     curr = curr->next();
3404   }
3405   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3406   size_t buffer_size = dcqs.buffer_size();
3407   size_t buffer_num = dcqs.completed_buffers_num();
3408 
3409   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3410   // in bytes - not the number of 'entries'. We need to convert
3411   // into a number of cards.
3412   return (buffer_size * buffer_num + extra_cards) / oopSize;
3413 }
3414 
3415 size_t G1CollectedHeap::cards_scanned() {
3416   return g1_rem_set()->cardsScanned();
3417 }
3418 
3419 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3420   HeapRegion* region = region_at(index);
3421   assert(region->is_starts_humongous(), "Must start a humongous object");
3422   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3423 }
3424 
3425 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3426  private:
3427   size_t _total_humongous;
3428   size_t _candidate_humongous;
3429 
3430   DirtyCardQueue _dcq;
3431 
3432   bool humongous_region_is_candidate(uint index) {
3433     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3434     assert(region->is_starts_humongous(), "Must start a humongous object");
3435     HeapRegionRemSet* const rset = region->rem_set();
3436     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3437     return !oop(region->bottom())->is_objArray() &&
3438            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3439             (!allow_stale_refs && rset->is_empty()));
3440   }
3441 
3442  public:
3443   RegisterHumongousWithInCSetFastTestClosure()
3444   : _total_humongous(0),
3445     _candidate_humongous(0),
3446     _dcq(&JavaThread::dirty_card_queue_set()) {
3447   }
3448 
3449   virtual bool doHeapRegion(HeapRegion* r) {
3450     if (!r->is_starts_humongous()) {
3451       return false;
3452     }
3453     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3454 
3455     uint region_idx = r->hrm_index();
3456     bool is_candidate = humongous_region_is_candidate(region_idx);
3457     // Is_candidate already filters out humongous object with large remembered sets.
3458     // If we have a humongous object with a few remembered sets, we simply flush these
3459     // remembered set entries into the DCQS. That will result in automatic
3460     // re-evaluation of their remembered set entries during the following evacuation
3461     // phase.
3462     if (is_candidate) {
3463       if (!r->rem_set()->is_empty()) {
3464         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3465                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3466         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3467         HeapRegionRemSetIterator hrrs(r->rem_set());
3468         size_t card_index;
3469         while (hrrs.has_next(card_index)) {
3470           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3471           // The remembered set might contain references to already freed
3472           // regions. Filter out such entries to avoid failing card table
3473           // verification.
3474           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3475             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3476               *card_ptr = CardTableModRefBS::dirty_card_val();
3477               _dcq.enqueue(card_ptr);
3478             }
3479           }
3480         }
3481         r->rem_set()->clear_locked();
3482       }
3483       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3484       g1h->register_humongous_region_with_cset(region_idx);
3485       _candidate_humongous++;
3486     }
3487     _total_humongous++;
3488 
3489     return false;
3490   }
3491 
3492   size_t total_humongous() const { return _total_humongous; }
3493   size_t candidate_humongous() const { return _candidate_humongous; }
3494 
3495   void flush_rem_set_entries() { _dcq.flush(); }
3496 };
3497 
3498 void G1CollectedHeap::register_humongous_regions_with_cset() {
3499   if (!G1EagerReclaimHumongousObjects) {
3500     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3501     return;
3502   }
3503   double time = os::elapsed_counter();
3504 
3505   RegisterHumongousWithInCSetFastTestClosure cl;
3506   heap_region_iterate(&cl);
3507 
3508   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3509   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3510                                                                   cl.total_humongous(),
3511                                                                   cl.candidate_humongous());
3512   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3513 
3514   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3515     clear_humongous_is_live_table();
3516   }
3517 
3518   // Finally flush all remembered set entries to re-check into the global DCQS.
3519   cl.flush_rem_set_entries();
3520 }
3521 
3522 void
3523 G1CollectedHeap::setup_surviving_young_words() {
3524   assert(_surviving_young_words == NULL, "pre-condition");
3525   uint array_length = g1_policy()->young_cset_region_length();
3526   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3527   if (_surviving_young_words == NULL) {
3528     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3529                           "Not enough space for young surv words summary.");
3530   }
3531   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3532 #ifdef ASSERT
3533   for (uint i = 0;  i < array_length; ++i) {
3534     assert( _surviving_young_words[i] == 0, "memset above" );
3535   }
3536 #endif // !ASSERT
3537 }
3538 
3539 void
3540 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3541   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3542   uint array_length = g1_policy()->young_cset_region_length();
3543   for (uint i = 0; i < array_length; ++i) {
3544     _surviving_young_words[i] += surv_young_words[i];
3545   }
3546 }
3547 
3548 void
3549 G1CollectedHeap::cleanup_surviving_young_words() {
3550   guarantee( _surviving_young_words != NULL, "pre-condition" );
3551   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3552   _surviving_young_words = NULL;
3553 }
3554 
3555 #ifdef ASSERT
3556 class VerifyCSetClosure: public HeapRegionClosure {
3557 public:
3558   bool doHeapRegion(HeapRegion* hr) {
3559     // Here we check that the CSet region's RSet is ready for parallel
3560     // iteration. The fields that we'll verify are only manipulated
3561     // when the region is part of a CSet and is collected. Afterwards,
3562     // we reset these fields when we clear the region's RSet (when the
3563     // region is freed) so they are ready when the region is
3564     // re-allocated. The only exception to this is if there's an
3565     // evacuation failure and instead of freeing the region we leave
3566     // it in the heap. In that case, we reset these fields during
3567     // evacuation failure handling.
3568     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3569 
3570     // Here's a good place to add any other checks we'd like to
3571     // perform on CSet regions.
3572     return false;
3573   }
3574 };
3575 #endif // ASSERT
3576 
3577 #if TASKQUEUE_STATS
3578 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3579   st->print_raw_cr("GC Task Stats");
3580   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3581   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3582 }
3583 
3584 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3585   print_taskqueue_stats_hdr(st);
3586 
3587   TaskQueueStats totals;
3588   const int n = workers()->total_workers();
3589   for (int i = 0; i < n; ++i) {
3590     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3591     totals += task_queue(i)->stats;
3592   }
3593   st->print_raw("tot "); totals.print(st); st->cr();
3594 
3595   DEBUG_ONLY(totals.verify());
3596 }
3597 
3598 void G1CollectedHeap::reset_taskqueue_stats() {
3599   const int n = workers()->total_workers();
3600   for (int i = 0; i < n; ++i) {
3601     task_queue(i)->stats.reset();
3602   }
3603 }
3604 #endif // TASKQUEUE_STATS
3605 
3606 void G1CollectedHeap::log_gc_header() {
3607   if (!G1Log::fine()) {
3608     return;
3609   }
3610 
3611   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3612 
3613   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3614     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3615     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3616 
3617   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3618 }
3619 
3620 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3621   if (!G1Log::fine()) {
3622     return;
3623   }
3624 
3625   if (G1Log::finer()) {
3626     if (evacuation_failed()) {
3627       gclog_or_tty->print(" (to-space exhausted)");
3628     }
3629     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3630     g1_policy()->phase_times()->note_gc_end();
3631     g1_policy()->phase_times()->print(pause_time_sec);
3632     g1_policy()->print_detailed_heap_transition();
3633   } else {
3634     if (evacuation_failed()) {
3635       gclog_or_tty->print("--");
3636     }
3637     g1_policy()->print_heap_transition();
3638     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3639   }
3640   gclog_or_tty->flush();
3641 }
3642 
3643 bool
3644 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3645   assert_at_safepoint(true /* should_be_vm_thread */);
3646   guarantee(!is_gc_active(), "collection is not reentrant");
3647 
3648   if (GC_locker::check_active_before_gc()) {
3649     return false;
3650   }
3651 
3652   _gc_timer_stw->register_gc_start();
3653 
3654   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3655 
3656   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3657   ResourceMark rm;
3658 
3659   print_heap_before_gc();
3660   trace_heap_before_gc(_gc_tracer_stw);
3661 
3662   verify_region_sets_optional();
3663   verify_dirty_young_regions();
3664 
3665   // This call will decide whether this pause is an initial-mark
3666   // pause. If it is, during_initial_mark_pause() will return true
3667   // for the duration of this pause.
3668   g1_policy()->decide_on_conc_mark_initiation();
3669 
3670   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3671   assert(!g1_policy()->during_initial_mark_pause() ||
3672           g1_policy()->gcs_are_young(), "sanity");
3673 
3674   // We also do not allow mixed GCs during marking.
3675   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3676 
3677   // Record whether this pause is an initial mark. When the current
3678   // thread has completed its logging output and it's safe to signal
3679   // the CM thread, the flag's value in the policy has been reset.
3680   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3681 
3682   // Inner scope for scope based logging, timers, and stats collection
3683   {
3684     EvacuationInfo evacuation_info;
3685 
3686     if (g1_policy()->during_initial_mark_pause()) {
3687       // We are about to start a marking cycle, so we increment the
3688       // full collection counter.
3689       increment_old_marking_cycles_started();
3690       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3691     }
3692 
3693     _gc_tracer_stw->report_yc_type(yc_type());
3694 
3695     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3696 
3697     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3698                                                                   workers()->active_workers(),
3699                                                                   Threads::number_of_non_daemon_threads());
3700     assert(UseDynamicNumberOfGCThreads ||
3701            active_workers == workers()->total_workers(),
3702            "If not dynamic should be using all the  workers");
3703     workers()->set_active_workers(active_workers);
3704 
3705     double pause_start_sec = os::elapsedTime();
3706     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3707     log_gc_header();
3708 
3709     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3710     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3711 
3712     // If the secondary_free_list is not empty, append it to the
3713     // free_list. No need to wait for the cleanup operation to finish;
3714     // the region allocation code will check the secondary_free_list
3715     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3716     // set, skip this step so that the region allocation code has to
3717     // get entries from the secondary_free_list.
3718     if (!G1StressConcRegionFreeing) {
3719       append_secondary_free_list_if_not_empty_with_lock();
3720     }
3721 
3722     assert(check_young_list_well_formed(), "young list should be well formed");
3723 
3724     // Don't dynamically change the number of GC threads this early.  A value of
3725     // 0 is used to indicate serial work.  When parallel work is done,
3726     // it will be set.
3727 
3728     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3729       IsGCActiveMark x;
3730 
3731       gc_prologue(false);
3732       increment_total_collections(false /* full gc */);
3733       increment_gc_time_stamp();
3734 
3735       verify_before_gc();
3736 
3737       check_bitmaps("GC Start");
3738 
3739       COMPILER2_PRESENT(DerivedPointerTable::clear());
3740 
3741       // Please see comment in g1CollectedHeap.hpp and
3742       // G1CollectedHeap::ref_processing_init() to see how
3743       // reference processing currently works in G1.
3744 
3745       // Enable discovery in the STW reference processor
3746       ref_processor_stw()->enable_discovery();
3747 
3748       {
3749         // We want to temporarily turn off discovery by the
3750         // CM ref processor, if necessary, and turn it back on
3751         // on again later if we do. Using a scoped
3752         // NoRefDiscovery object will do this.
3753         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3754 
3755         // Forget the current alloc region (we might even choose it to be part
3756         // of the collection set!).
3757         _allocator->release_mutator_alloc_region();
3758 
3759         // We should call this after we retire the mutator alloc
3760         // region(s) so that all the ALLOC / RETIRE events are generated
3761         // before the start GC event.
3762         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3763 
3764         // This timing is only used by the ergonomics to handle our pause target.
3765         // It is unclear why this should not include the full pause. We will
3766         // investigate this in CR 7178365.
3767         //
3768         // Preserving the old comment here if that helps the investigation:
3769         //
3770         // The elapsed time induced by the start time below deliberately elides
3771         // the possible verification above.
3772         double sample_start_time_sec = os::elapsedTime();
3773 
3774 #if YOUNG_LIST_VERBOSE
3775         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3776         _young_list->print();
3777         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3778 #endif // YOUNG_LIST_VERBOSE
3779 
3780         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3781 
3782         double scan_wait_start = os::elapsedTime();
3783         // We have to wait until the CM threads finish scanning the
3784         // root regions as it's the only way to ensure that all the
3785         // objects on them have been correctly scanned before we start
3786         // moving them during the GC.
3787         bool waited = _cm->root_regions()->wait_until_scan_finished();
3788         double wait_time_ms = 0.0;
3789         if (waited) {
3790           double scan_wait_end = os::elapsedTime();
3791           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3792         }
3793         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3794 
3795 #if YOUNG_LIST_VERBOSE
3796         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3797         _young_list->print();
3798 #endif // YOUNG_LIST_VERBOSE
3799 
3800         if (g1_policy()->during_initial_mark_pause()) {
3801           concurrent_mark()->checkpointRootsInitialPre();
3802         }
3803 
3804 #if YOUNG_LIST_VERBOSE
3805         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3806         _young_list->print();
3807         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3808 #endif // YOUNG_LIST_VERBOSE
3809 
3810         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3811 
3812         register_humongous_regions_with_cset();
3813 
3814         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3815 
3816         _cm->note_start_of_gc();
3817         // We should not verify the per-thread SATB buffers given that
3818         // we have not filtered them yet (we'll do so during the
3819         // GC). We also call this after finalize_cset() to
3820         // ensure that the CSet has been finalized.
3821         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3822                                  true  /* verify_enqueued_buffers */,
3823                                  false /* verify_thread_buffers */,
3824                                  true  /* verify_fingers */);
3825 
3826         if (_hr_printer.is_active()) {
3827           HeapRegion* hr = g1_policy()->collection_set();
3828           while (hr != NULL) {
3829             _hr_printer.cset(hr);
3830             hr = hr->next_in_collection_set();
3831           }
3832         }
3833 
3834 #ifdef ASSERT
3835         VerifyCSetClosure cl;
3836         collection_set_iterate(&cl);
3837 #endif // ASSERT
3838 
3839         setup_surviving_young_words();
3840 
3841         // Initialize the GC alloc regions.
3842         _allocator->init_gc_alloc_regions(evacuation_info);
3843 
3844         // Actually do the work...
3845         evacuate_collection_set(evacuation_info);
3846 
3847         // We do this to mainly verify the per-thread SATB buffers
3848         // (which have been filtered by now) since we didn't verify
3849         // them earlier. No point in re-checking the stacks / enqueued
3850         // buffers given that the CSet has not changed since last time
3851         // we checked.
3852         _cm->verify_no_cset_oops(false /* verify_stacks */,
3853                                  false /* verify_enqueued_buffers */,
3854                                  true  /* verify_thread_buffers */,
3855                                  true  /* verify_fingers */);
3856 
3857         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3858 
3859         eagerly_reclaim_humongous_regions();
3860 
3861         g1_policy()->clear_collection_set();
3862 
3863         cleanup_surviving_young_words();
3864 
3865         // Start a new incremental collection set for the next pause.
3866         g1_policy()->start_incremental_cset_building();
3867 
3868         clear_cset_fast_test();
3869 
3870         _young_list->reset_sampled_info();
3871 
3872         // Don't check the whole heap at this point as the
3873         // GC alloc regions from this pause have been tagged
3874         // as survivors and moved on to the survivor list.
3875         // Survivor regions will fail the !is_young() check.
3876         assert(check_young_list_empty(false /* check_heap */),
3877           "young list should be empty");
3878 
3879 #if YOUNG_LIST_VERBOSE
3880         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3881         _young_list->print();
3882 #endif // YOUNG_LIST_VERBOSE
3883 
3884         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3885                                              _young_list->first_survivor_region(),
3886                                              _young_list->last_survivor_region());
3887 
3888         _young_list->reset_auxilary_lists();
3889 
3890         if (evacuation_failed()) {
3891           _allocator->set_used(recalculate_used());
3892           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3893           for (uint i = 0; i < n_queues; i++) {
3894             if (_evacuation_failed_info_array[i].has_failed()) {
3895               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3896             }
3897           }
3898         } else {
3899           // The "used" of the the collection set have already been subtracted
3900           // when they were freed.  Add in the bytes evacuated.
3901           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3902         }
3903 
3904         if (g1_policy()->during_initial_mark_pause()) {
3905           // We have to do this before we notify the CM threads that
3906           // they can start working to make sure that all the
3907           // appropriate initialization is done on the CM object.
3908           concurrent_mark()->checkpointRootsInitialPost();
3909           set_marking_started();
3910           // Note that we don't actually trigger the CM thread at
3911           // this point. We do that later when we're sure that
3912           // the current thread has completed its logging output.
3913         }
3914 
3915         allocate_dummy_regions();
3916 
3917 #if YOUNG_LIST_VERBOSE
3918         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3919         _young_list->print();
3920         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3921 #endif // YOUNG_LIST_VERBOSE
3922 
3923         _allocator->init_mutator_alloc_region();
3924 
3925         {
3926           size_t expand_bytes = g1_policy()->expansion_amount();
3927           if (expand_bytes > 0) {
3928             size_t bytes_before = capacity();
3929             // No need for an ergo verbose message here,
3930             // expansion_amount() does this when it returns a value > 0.
3931             if (!expand(expand_bytes)) {
3932               // We failed to expand the heap. Cannot do anything about it.
3933             }
3934           }
3935         }
3936 
3937         // We redo the verification but now wrt to the new CSet which
3938         // has just got initialized after the previous CSet was freed.
3939         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3940                                  true  /* verify_enqueued_buffers */,
3941                                  true  /* verify_thread_buffers */,
3942                                  true  /* verify_fingers */);
3943         _cm->note_end_of_gc();
3944 
3945         // This timing is only used by the ergonomics to handle our pause target.
3946         // It is unclear why this should not include the full pause. We will
3947         // investigate this in CR 7178365.
3948         double sample_end_time_sec = os::elapsedTime();
3949         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3950         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3951 
3952         MemoryService::track_memory_usage();
3953 
3954         // In prepare_for_verify() below we'll need to scan the deferred
3955         // update buffers to bring the RSets up-to-date if
3956         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3957         // the update buffers we'll probably need to scan cards on the
3958         // regions we just allocated to (i.e., the GC alloc
3959         // regions). However, during the last GC we called
3960         // set_saved_mark() on all the GC alloc regions, so card
3961         // scanning might skip the [saved_mark_word()...top()] area of
3962         // those regions (i.e., the area we allocated objects into
3963         // during the last GC). But it shouldn't. Given that
3964         // saved_mark_word() is conditional on whether the GC time stamp
3965         // on the region is current or not, by incrementing the GC time
3966         // stamp here we invalidate all the GC time stamps on all the
3967         // regions and saved_mark_word() will simply return top() for
3968         // all the regions. This is a nicer way of ensuring this rather
3969         // than iterating over the regions and fixing them. In fact, the
3970         // GC time stamp increment here also ensures that
3971         // saved_mark_word() will return top() between pauses, i.e.,
3972         // during concurrent refinement. So we don't need the
3973         // is_gc_active() check to decided which top to use when
3974         // scanning cards (see CR 7039627).
3975         increment_gc_time_stamp();
3976 
3977         verify_after_gc();
3978         check_bitmaps("GC End");
3979 
3980         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3981         ref_processor_stw()->verify_no_references_recorded();
3982 
3983         // CM reference discovery will be re-enabled if necessary.
3984       }
3985 
3986       // We should do this after we potentially expand the heap so
3987       // that all the COMMIT events are generated before the end GC
3988       // event, and after we retire the GC alloc regions so that all
3989       // RETIRE events are generated before the end GC event.
3990       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3991 
3992 #ifdef TRACESPINNING
3993       ParallelTaskTerminator::print_termination_counts();
3994 #endif
3995 
3996       gc_epilogue(false);
3997     }
3998 
3999     // Print the remainder of the GC log output.
4000     log_gc_footer(os::elapsedTime() - pause_start_sec);
4001 
4002     // It is not yet to safe to tell the concurrent mark to
4003     // start as we have some optional output below. We don't want the
4004     // output from the concurrent mark thread interfering with this
4005     // logging output either.
4006 
4007     _hrm.verify_optional();
4008     verify_region_sets_optional();
4009 
4010     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4011     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4012 
4013     print_heap_after_gc();
4014     trace_heap_after_gc(_gc_tracer_stw);
4015 
4016     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4017     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4018     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4019     // before any GC notifications are raised.
4020     g1mm()->update_sizes();
4021 
4022     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4023     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4024     _gc_timer_stw->register_gc_end();
4025     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4026   }
4027   // It should now be safe to tell the concurrent mark thread to start
4028   // without its logging output interfering with the logging output
4029   // that came from the pause.
4030 
4031   if (should_start_conc_mark) {
4032     // CAUTION: after the doConcurrentMark() call below,
4033     // the concurrent marking thread(s) could be running
4034     // concurrently with us. Make sure that anything after
4035     // this point does not assume that we are the only GC thread
4036     // running. Note: of course, the actual marking work will
4037     // not start until the safepoint itself is released in
4038     // SuspendibleThreadSet::desynchronize().
4039     doConcurrentMark();
4040   }
4041 
4042   return true;
4043 }
4044 
4045 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4046   _drain_in_progress = false;
4047   set_evac_failure_closure(cl);
4048   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4049 }
4050 
4051 void G1CollectedHeap::finalize_for_evac_failure() {
4052   assert(_evac_failure_scan_stack != NULL &&
4053          _evac_failure_scan_stack->length() == 0,
4054          "Postcondition");
4055   assert(!_drain_in_progress, "Postcondition");
4056   delete _evac_failure_scan_stack;
4057   _evac_failure_scan_stack = NULL;
4058 }
4059 
4060 void G1CollectedHeap::remove_self_forwarding_pointers() {
4061   double remove_self_forwards_start = os::elapsedTime();
4062 
4063   set_par_threads();
4064   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4065   workers()->run_task(&rsfp_task);
4066   set_par_threads(0);
4067 
4068   // Now restore saved marks, if any.
4069   assert(_objs_with_preserved_marks.size() ==
4070             _preserved_marks_of_objs.size(), "Both or none.");
4071   while (!_objs_with_preserved_marks.is_empty()) {
4072     oop obj = _objs_with_preserved_marks.pop();
4073     markOop m = _preserved_marks_of_objs.pop();
4074     obj->set_mark(m);
4075   }
4076   _objs_with_preserved_marks.clear(true);
4077   _preserved_marks_of_objs.clear(true);
4078 
4079   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4080 }
4081 
4082 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4083   _evac_failure_scan_stack->push(obj);
4084 }
4085 
4086 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4087   assert(_evac_failure_scan_stack != NULL, "precondition");
4088 
4089   while (_evac_failure_scan_stack->length() > 0) {
4090      oop obj = _evac_failure_scan_stack->pop();
4091      _evac_failure_closure->set_region(heap_region_containing(obj));
4092      obj->oop_iterate_backwards(_evac_failure_closure);
4093   }
4094 }
4095 
4096 oop
4097 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4098                                                oop old) {
4099   assert(obj_in_cs(old),
4100          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4101                  (HeapWord*) old));
4102   markOop m = old->mark();
4103   oop forward_ptr = old->forward_to_atomic(old);
4104   if (forward_ptr == NULL) {
4105     // Forward-to-self succeeded.
4106     assert(_par_scan_state != NULL, "par scan state");
4107     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4108     uint queue_num = _par_scan_state->queue_num();
4109 
4110     _evacuation_failed = true;
4111     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4112     if (_evac_failure_closure != cl) {
4113       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4114       assert(!_drain_in_progress,
4115              "Should only be true while someone holds the lock.");
4116       // Set the global evac-failure closure to the current thread's.
4117       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4118       set_evac_failure_closure(cl);
4119       // Now do the common part.
4120       handle_evacuation_failure_common(old, m);
4121       // Reset to NULL.
4122       set_evac_failure_closure(NULL);
4123     } else {
4124       // The lock is already held, and this is recursive.
4125       assert(_drain_in_progress, "This should only be the recursive case.");
4126       handle_evacuation_failure_common(old, m);
4127     }
4128     return old;
4129   } else {
4130     // Forward-to-self failed. Either someone else managed to allocate
4131     // space for this object (old != forward_ptr) or they beat us in
4132     // self-forwarding it (old == forward_ptr).
4133     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4134            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4135                    "should not be in the CSet",
4136                    (HeapWord*) old, (HeapWord*) forward_ptr));
4137     return forward_ptr;
4138   }
4139 }
4140 
4141 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4142   preserve_mark_if_necessary(old, m);
4143 
4144   HeapRegion* r = heap_region_containing(old);
4145   if (!r->evacuation_failed()) {
4146     r->set_evacuation_failed(true);
4147     _hr_printer.evac_failure(r);
4148   }
4149 
4150   push_on_evac_failure_scan_stack(old);
4151 
4152   if (!_drain_in_progress) {
4153     // prevent recursion in copy_to_survivor_space()
4154     _drain_in_progress = true;
4155     drain_evac_failure_scan_stack();
4156     _drain_in_progress = false;
4157   }
4158 }
4159 
4160 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4161   assert(evacuation_failed(), "Oversaving!");
4162   // We want to call the "for_promotion_failure" version only in the
4163   // case of a promotion failure.
4164   if (m->must_be_preserved_for_promotion_failure(obj)) {
4165     _objs_with_preserved_marks.push(obj);
4166     _preserved_marks_of_objs.push(m);
4167   }
4168 }
4169 
4170 void G1ParCopyHelper::mark_object(oop obj) {
4171   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4172 
4173   // We know that the object is not moving so it's safe to read its size.
4174   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4175 }
4176 
4177 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4178   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4179   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4180   assert(from_obj != to_obj, "should not be self-forwarded");
4181 
4182   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4183   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4184 
4185   // The object might be in the process of being copied by another
4186   // worker so we cannot trust that its to-space image is
4187   // well-formed. So we have to read its size from its from-space
4188   // image which we know should not be changing.
4189   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4190 }
4191 
4192 template <class T>
4193 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4194   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4195     _scanned_klass->record_modified_oops();
4196   }
4197 }
4198 
4199 template <G1Barrier barrier, G1Mark do_mark_object>
4200 template <class T>
4201 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4202   T heap_oop = oopDesc::load_heap_oop(p);
4203 
4204   if (oopDesc::is_null(heap_oop)) {
4205     return;
4206   }
4207 
4208   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4209 
4210   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4211 
4212   const InCSetState state = _g1->in_cset_state(obj);
4213   if (state.is_in_cset()) {
4214     oop forwardee;
4215     markOop m = obj->mark();
4216     if (m->is_marked()) {
4217       forwardee = (oop) m->decode_pointer();
4218     } else {
4219       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4220     }
4221     assert(forwardee != NULL, "forwardee should not be NULL");
4222     oopDesc::encode_store_heap_oop(p, forwardee);
4223     if (do_mark_object != G1MarkNone && forwardee != obj) {
4224       // If the object is self-forwarded we don't need to explicitly
4225       // mark it, the evacuation failure protocol will do so.
4226       mark_forwarded_object(obj, forwardee);
4227     }
4228 
4229     if (barrier == G1BarrierKlass) {
4230       do_klass_barrier(p, forwardee);
4231     }
4232   } else {
4233     if (state.is_humongous()) {
4234       _g1->set_humongous_is_live(obj);
4235     }
4236     // The object is not in collection set. If we're a root scanning
4237     // closure during an initial mark pause then attempt to mark the object.
4238     if (do_mark_object == G1MarkFromRoot) {
4239       mark_object(obj);
4240     }
4241   }
4242 
4243   if (barrier == G1BarrierEvac) {
4244     _par_scan_state->update_rs(_from, p, _worker_id);
4245   }
4246 }
4247 
4248 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4249 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4250 
4251 class G1ParEvacuateFollowersClosure : public VoidClosure {
4252 protected:
4253   G1CollectedHeap*              _g1h;
4254   G1ParScanThreadState*         _par_scan_state;
4255   RefToScanQueueSet*            _queues;
4256   ParallelTaskTerminator*       _terminator;
4257 
4258   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4259   RefToScanQueueSet*      queues()         { return _queues; }
4260   ParallelTaskTerminator* terminator()     { return _terminator; }
4261 
4262 public:
4263   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4264                                 G1ParScanThreadState* par_scan_state,
4265                                 RefToScanQueueSet* queues,
4266                                 ParallelTaskTerminator* terminator)
4267     : _g1h(g1h), _par_scan_state(par_scan_state),
4268       _queues(queues), _terminator(terminator) {}
4269 
4270   void do_void();
4271 
4272 private:
4273   inline bool offer_termination();
4274 };
4275 
4276 bool G1ParEvacuateFollowersClosure::offer_termination() {
4277   G1ParScanThreadState* const pss = par_scan_state();
4278   pss->start_term_time();
4279   const bool res = terminator()->offer_termination();
4280   pss->end_term_time();
4281   return res;
4282 }
4283 
4284 void G1ParEvacuateFollowersClosure::do_void() {
4285   G1ParScanThreadState* const pss = par_scan_state();
4286   pss->trim_queue();
4287   do {
4288     pss->steal_and_trim_queue(queues());
4289   } while (!offer_termination());
4290 }
4291 
4292 class G1KlassScanClosure : public KlassClosure {
4293  G1ParCopyHelper* _closure;
4294  bool             _process_only_dirty;
4295  int              _count;
4296  public:
4297   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4298       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4299   void do_klass(Klass* klass) {
4300     // If the klass has not been dirtied we know that there's
4301     // no references into  the young gen and we can skip it.
4302    if (!_process_only_dirty || klass->has_modified_oops()) {
4303       // Clean the klass since we're going to scavenge all the metadata.
4304       klass->clear_modified_oops();
4305 
4306       // Tell the closure that this klass is the Klass to scavenge
4307       // and is the one to dirty if oops are left pointing into the young gen.
4308       _closure->set_scanned_klass(klass);
4309 
4310       klass->oops_do(_closure);
4311 
4312       _closure->set_scanned_klass(NULL);
4313     }
4314     _count++;
4315   }
4316 };
4317 
4318 class G1ParTask : public AbstractGangTask {
4319 protected:
4320   G1CollectedHeap*       _g1h;
4321   RefToScanQueueSet      *_queues;
4322   G1RootProcessor*       _root_processor;
4323   ParallelTaskTerminator _terminator;
4324   uint _n_workers;
4325 
4326   Mutex _stats_lock;
4327   Mutex* stats_lock() { return &_stats_lock; }
4328 
4329 public:
4330   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4331     : AbstractGangTask("G1 collection"),
4332       _g1h(g1h),
4333       _queues(task_queues),
4334       _root_processor(root_processor),
4335       _terminator(0, _queues),
4336       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4337   {}
4338 
4339   RefToScanQueueSet* queues() { return _queues; }
4340 
4341   RefToScanQueue *work_queue(int i) {
4342     return queues()->queue(i);
4343   }
4344 
4345   ParallelTaskTerminator* terminator() { return &_terminator; }
4346 
4347   virtual void set_for_termination(int active_workers) {
4348     _root_processor->set_num_workers(active_workers);
4349     terminator()->reset_for_reuse(active_workers);
4350     _n_workers = active_workers;
4351   }
4352 
4353   // Helps out with CLD processing.
4354   //
4355   // During InitialMark we need to:
4356   // 1) Scavenge all CLDs for the young GC.
4357   // 2) Mark all objects directly reachable from strong CLDs.
4358   template <G1Mark do_mark_object>
4359   class G1CLDClosure : public CLDClosure {
4360     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4361     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4362     G1KlassScanClosure                                _klass_in_cld_closure;
4363     bool                                              _claim;
4364 
4365    public:
4366     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4367                  bool only_young, bool claim)
4368         : _oop_closure(oop_closure),
4369           _oop_in_klass_closure(oop_closure->g1(),
4370                                 oop_closure->pss(),
4371                                 oop_closure->rp()),
4372           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4373           _claim(claim) {
4374 
4375     }
4376 
4377     void do_cld(ClassLoaderData* cld) {
4378       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4379     }
4380   };
4381 
4382   void work(uint worker_id) {
4383     if (worker_id >= _n_workers) return;  // no work needed this round
4384 
4385     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4386 
4387     {
4388       ResourceMark rm;
4389       HandleMark   hm;
4390 
4391       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4392 
4393       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4394       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4395 
4396       pss.set_evac_failure_closure(&evac_failure_cl);
4397 
4398       bool only_young = _g1h->g1_policy()->gcs_are_young();
4399 
4400       // Non-IM young GC.
4401       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4402       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4403                                                                                only_young, // Only process dirty klasses.
4404                                                                                false);     // No need to claim CLDs.
4405       // IM young GC.
4406       //    Strong roots closures.
4407       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4408       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4409                                                                                false, // Process all klasses.
4410                                                                                true); // Need to claim CLDs.
4411       //    Weak roots closures.
4412       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4413       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4414                                                                                     false, // Process all klasses.
4415                                                                                     true); // Need to claim CLDs.
4416 
4417       OopClosure* strong_root_cl;
4418       OopClosure* weak_root_cl;
4419       CLDClosure* strong_cld_cl;
4420       CLDClosure* weak_cld_cl;
4421 
4422       bool trace_metadata = false;
4423 
4424       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4425         // We also need to mark copied objects.
4426         strong_root_cl = &scan_mark_root_cl;
4427         strong_cld_cl  = &scan_mark_cld_cl;
4428         if (ClassUnloadingWithConcurrentMark) {
4429           weak_root_cl = &scan_mark_weak_root_cl;
4430           weak_cld_cl  = &scan_mark_weak_cld_cl;
4431           trace_metadata = true;
4432         } else {
4433           weak_root_cl = &scan_mark_root_cl;
4434           weak_cld_cl  = &scan_mark_cld_cl;
4435         }
4436       } else {
4437         strong_root_cl = &scan_only_root_cl;
4438         weak_root_cl   = &scan_only_root_cl;
4439         strong_cld_cl  = &scan_only_cld_cl;
4440         weak_cld_cl    = &scan_only_cld_cl;
4441       }
4442 
4443       pss.start_strong_roots();
4444 
4445       _root_processor->evacuate_roots(strong_root_cl,
4446                                       weak_root_cl,
4447                                       strong_cld_cl,
4448                                       weak_cld_cl,
4449                                       trace_metadata,
4450                                       worker_id);
4451 
4452       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4453       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4454                                             weak_root_cl,
4455                                             worker_id);
4456       pss.end_strong_roots();
4457 
4458       {
4459         double start = os::elapsedTime();
4460         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4461         evac.do_void();
4462         double elapsed_sec = os::elapsedTime() - start;
4463         double term_sec = pss.term_time();
4464         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4465         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4466         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4467       }
4468       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4469       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4470 
4471       if (PrintTerminationStats) {
4472         MutexLocker x(stats_lock());
4473         pss.print_termination_stats(worker_id);
4474       }
4475 
4476       assert(pss.queue_is_empty(), "should be empty");
4477 
4478       // Close the inner scope so that the ResourceMark and HandleMark
4479       // destructors are executed here and are included as part of the
4480       // "GC Worker Time".
4481     }
4482     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4483   }
4484 };
4485 
4486 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4487 private:
4488   BoolObjectClosure* _is_alive;
4489   int _initial_string_table_size;
4490   int _initial_symbol_table_size;
4491 
4492   bool  _process_strings;
4493   int _strings_processed;
4494   int _strings_removed;
4495 
4496   bool  _process_symbols;
4497   int _symbols_processed;
4498   int _symbols_removed;
4499 
4500 public:
4501   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4502     AbstractGangTask("String/Symbol Unlinking"),
4503     _is_alive(is_alive),
4504     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4505     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4506 
4507     _initial_string_table_size = StringTable::the_table()->table_size();
4508     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4509     if (process_strings) {
4510       StringTable::clear_parallel_claimed_index();
4511     }
4512     if (process_symbols) {
4513       SymbolTable::clear_parallel_claimed_index();
4514     }
4515   }
4516 
4517   ~G1StringSymbolTableUnlinkTask() {
4518     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4519               err_msg("claim value %d after unlink less than initial string table size %d",
4520                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4521     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4522               err_msg("claim value %d after unlink less than initial symbol table size %d",
4523                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4524 
4525     if (G1TraceStringSymbolTableScrubbing) {
4526       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4527                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4528                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4529                              strings_processed(), strings_removed(),
4530                              symbols_processed(), symbols_removed());
4531     }
4532   }
4533 
4534   void work(uint worker_id) {
4535     int strings_processed = 0;
4536     int strings_removed = 0;
4537     int symbols_processed = 0;
4538     int symbols_removed = 0;
4539     if (_process_strings) {
4540       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4541       Atomic::add(strings_processed, &_strings_processed);
4542       Atomic::add(strings_removed, &_strings_removed);
4543     }
4544     if (_process_symbols) {
4545       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4546       Atomic::add(symbols_processed, &_symbols_processed);
4547       Atomic::add(symbols_removed, &_symbols_removed);
4548     }
4549   }
4550 
4551   size_t strings_processed() const { return (size_t)_strings_processed; }
4552   size_t strings_removed()   const { return (size_t)_strings_removed; }
4553 
4554   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4555   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4556 };
4557 
4558 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4559 private:
4560   static Monitor* _lock;
4561 
4562   BoolObjectClosure* const _is_alive;
4563   const bool               _unloading_occurred;
4564   const uint               _num_workers;
4565 
4566   // Variables used to claim nmethods.
4567   nmethod* _first_nmethod;
4568   volatile nmethod* _claimed_nmethod;
4569 
4570   // The list of nmethods that need to be processed by the second pass.
4571   volatile nmethod* _postponed_list;
4572   volatile uint     _num_entered_barrier;
4573 
4574  public:
4575   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4576       _is_alive(is_alive),
4577       _unloading_occurred(unloading_occurred),
4578       _num_workers(num_workers),
4579       _first_nmethod(NULL),
4580       _claimed_nmethod(NULL),
4581       _postponed_list(NULL),
4582       _num_entered_barrier(0)
4583   {
4584     nmethod::increase_unloading_clock();
4585     // Get first alive nmethod
4586     NMethodIterator iter = NMethodIterator();
4587     if(iter.next_alive()) {
4588       _first_nmethod = iter.method();
4589     }
4590     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4591   }
4592 
4593   ~G1CodeCacheUnloadingTask() {
4594     CodeCache::verify_clean_inline_caches();
4595 
4596     CodeCache::set_needs_cache_clean(false);
4597     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4598 
4599     CodeCache::verify_icholder_relocations();
4600   }
4601 
4602  private:
4603   void add_to_postponed_list(nmethod* nm) {
4604       nmethod* old;
4605       do {
4606         old = (nmethod*)_postponed_list;
4607         nm->set_unloading_next(old);
4608       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4609   }
4610 
4611   void clean_nmethod(nmethod* nm) {
4612     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4613 
4614     if (postponed) {
4615       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4616       add_to_postponed_list(nm);
4617     }
4618 
4619     // Mark that this thread has been cleaned/unloaded.
4620     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4621     nm->set_unloading_clock(nmethod::global_unloading_clock());
4622   }
4623 
4624   void clean_nmethod_postponed(nmethod* nm) {
4625     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4626   }
4627 
4628   static const int MaxClaimNmethods = 16;
4629 
4630   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4631     nmethod* first;
4632     NMethodIterator last;
4633 
4634     do {
4635       *num_claimed_nmethods = 0;
4636 
4637       first = (nmethod*)_claimed_nmethod;
4638       last = NMethodIterator(first);
4639 
4640       if (first != NULL) {
4641 
4642         for (int i = 0; i < MaxClaimNmethods; i++) {
4643           if (!last.next_alive()) {
4644             break;
4645           }
4646           claimed_nmethods[i] = last.method();
4647           (*num_claimed_nmethods)++;
4648         }
4649       }
4650 
4651     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4652   }
4653 
4654   nmethod* claim_postponed_nmethod() {
4655     nmethod* claim;
4656     nmethod* next;
4657 
4658     do {
4659       claim = (nmethod*)_postponed_list;
4660       if (claim == NULL) {
4661         return NULL;
4662       }
4663 
4664       next = claim->unloading_next();
4665 
4666     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4667 
4668     return claim;
4669   }
4670 
4671  public:
4672   // Mark that we're done with the first pass of nmethod cleaning.
4673   void barrier_mark(uint worker_id) {
4674     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4675     _num_entered_barrier++;
4676     if (_num_entered_barrier == _num_workers) {
4677       ml.notify_all();
4678     }
4679   }
4680 
4681   // See if we have to wait for the other workers to
4682   // finish their first-pass nmethod cleaning work.
4683   void barrier_wait(uint worker_id) {
4684     if (_num_entered_barrier < _num_workers) {
4685       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4686       while (_num_entered_barrier < _num_workers) {
4687           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4688       }
4689     }
4690   }
4691 
4692   // Cleaning and unloading of nmethods. Some work has to be postponed
4693   // to the second pass, when we know which nmethods survive.
4694   void work_first_pass(uint worker_id) {
4695     // The first nmethods is claimed by the first worker.
4696     if (worker_id == 0 && _first_nmethod != NULL) {
4697       clean_nmethod(_first_nmethod);
4698       _first_nmethod = NULL;
4699     }
4700 
4701     int num_claimed_nmethods;
4702     nmethod* claimed_nmethods[MaxClaimNmethods];
4703 
4704     while (true) {
4705       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4706 
4707       if (num_claimed_nmethods == 0) {
4708         break;
4709       }
4710 
4711       for (int i = 0; i < num_claimed_nmethods; i++) {
4712         clean_nmethod(claimed_nmethods[i]);
4713       }
4714     }
4715   }
4716 
4717   void work_second_pass(uint worker_id) {
4718     nmethod* nm;
4719     // Take care of postponed nmethods.
4720     while ((nm = claim_postponed_nmethod()) != NULL) {
4721       clean_nmethod_postponed(nm);
4722     }
4723   }
4724 };
4725 
4726 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4727 
4728 class G1KlassCleaningTask : public StackObj {
4729   BoolObjectClosure*                      _is_alive;
4730   volatile jint                           _clean_klass_tree_claimed;
4731   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4732 
4733  public:
4734   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4735       _is_alive(is_alive),
4736       _clean_klass_tree_claimed(0),
4737       _klass_iterator() {
4738   }
4739 
4740  private:
4741   bool claim_clean_klass_tree_task() {
4742     if (_clean_klass_tree_claimed) {
4743       return false;
4744     }
4745 
4746     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4747   }
4748 
4749   InstanceKlass* claim_next_klass() {
4750     Klass* klass;
4751     do {
4752       klass =_klass_iterator.next_klass();
4753     } while (klass != NULL && !klass->oop_is_instance());
4754 
4755     return (InstanceKlass*)klass;
4756   }
4757 
4758 public:
4759 
4760   void clean_klass(InstanceKlass* ik) {
4761     ik->clean_implementors_list(_is_alive);
4762     ik->clean_method_data(_is_alive);
4763 
4764     // G1 specific cleanup work that has
4765     // been moved here to be done in parallel.
4766     ik->clean_dependent_nmethods();
4767   }
4768 
4769   void work() {
4770     ResourceMark rm;
4771 
4772     // One worker will clean the subklass/sibling klass tree.
4773     if (claim_clean_klass_tree_task()) {
4774       Klass::clean_subklass_tree(_is_alive);
4775     }
4776 
4777     // All workers will help cleaning the classes,
4778     InstanceKlass* klass;
4779     while ((klass = claim_next_klass()) != NULL) {
4780       clean_klass(klass);
4781     }
4782   }
4783 };
4784 
4785 // To minimize the remark pause times, the tasks below are done in parallel.
4786 class G1ParallelCleaningTask : public AbstractGangTask {
4787 private:
4788   G1StringSymbolTableUnlinkTask _string_symbol_task;
4789   G1CodeCacheUnloadingTask      _code_cache_task;
4790   G1KlassCleaningTask           _klass_cleaning_task;
4791 
4792 public:
4793   // The constructor is run in the VMThread.
4794   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4795       AbstractGangTask("Parallel Cleaning"),
4796       _string_symbol_task(is_alive, process_strings, process_symbols),
4797       _code_cache_task(num_workers, is_alive, unloading_occurred),
4798       _klass_cleaning_task(is_alive) {
4799   }
4800 
4801   // The parallel work done by all worker threads.
4802   void work(uint worker_id) {
4803     // Do first pass of code cache cleaning.
4804     _code_cache_task.work_first_pass(worker_id);
4805 
4806     // Let the threads mark that the first pass is done.
4807     _code_cache_task.barrier_mark(worker_id);
4808 
4809     // Clean the Strings and Symbols.
4810     _string_symbol_task.work(worker_id);
4811 
4812     // Wait for all workers to finish the first code cache cleaning pass.
4813     _code_cache_task.barrier_wait(worker_id);
4814 
4815     // Do the second code cache cleaning work, which realize on
4816     // the liveness information gathered during the first pass.
4817     _code_cache_task.work_second_pass(worker_id);
4818 
4819     // Clean all klasses that were not unloaded.
4820     _klass_cleaning_task.work();
4821   }
4822 };
4823 
4824 
4825 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4826                                         bool process_strings,
4827                                         bool process_symbols,
4828                                         bool class_unloading_occurred) {
4829   uint n_workers = workers()->active_workers();
4830 
4831   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4832                                         n_workers, class_unloading_occurred);
4833   set_par_threads(n_workers);
4834   workers()->run_task(&g1_unlink_task);
4835   set_par_threads(0);
4836 }
4837 
4838 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4839                                                      bool process_strings, bool process_symbols) {
4840   {
4841     uint n_workers = _g1h->workers()->active_workers();
4842     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4843     set_par_threads(n_workers);
4844     workers()->run_task(&g1_unlink_task);
4845     set_par_threads(0);
4846   }
4847 
4848   if (G1StringDedup::is_enabled()) {
4849     G1StringDedup::unlink(is_alive);
4850   }
4851 }
4852 
4853 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4854  private:
4855   DirtyCardQueueSet* _queue;
4856  public:
4857   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4858 
4859   virtual void work(uint worker_id) {
4860     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4861     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4862 
4863     RedirtyLoggedCardTableEntryClosure cl;
4864     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4865 
4866     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4867   }
4868 };
4869 
4870 void G1CollectedHeap::redirty_logged_cards() {
4871   double redirty_logged_cards_start = os::elapsedTime();
4872 
4873   uint n_workers = _g1h->workers()->active_workers();
4874 
4875   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4876   dirty_card_queue_set().reset_for_par_iteration();
4877   set_par_threads(n_workers);
4878   workers()->run_task(&redirty_task);
4879   set_par_threads(0);
4880 
4881   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4882   dcq.merge_bufferlists(&dirty_card_queue_set());
4883   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4884 
4885   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4886 }
4887 
4888 // Weak Reference Processing support
4889 
4890 // An always "is_alive" closure that is used to preserve referents.
4891 // If the object is non-null then it's alive.  Used in the preservation
4892 // of referent objects that are pointed to by reference objects
4893 // discovered by the CM ref processor.
4894 class G1AlwaysAliveClosure: public BoolObjectClosure {
4895   G1CollectedHeap* _g1;
4896 public:
4897   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4898   bool do_object_b(oop p) {
4899     if (p != NULL) {
4900       return true;
4901     }
4902     return false;
4903   }
4904 };
4905 
4906 bool G1STWIsAliveClosure::do_object_b(oop p) {
4907   // An object is reachable if it is outside the collection set,
4908   // or is inside and copied.
4909   return !_g1->obj_in_cs(p) || p->is_forwarded();
4910 }
4911 
4912 // Non Copying Keep Alive closure
4913 class G1KeepAliveClosure: public OopClosure {
4914   G1CollectedHeap* _g1;
4915 public:
4916   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4917   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4918   void do_oop(oop* p) {
4919     oop obj = *p;
4920     assert(obj != NULL, "the caller should have filtered out NULL values");
4921 
4922     const InCSetState cset_state = _g1->in_cset_state(obj);
4923     if (!cset_state.is_in_cset_or_humongous()) {
4924       return;
4925     }
4926     if (cset_state.is_in_cset()) {
4927       assert( obj->is_forwarded(), "invariant" );
4928       *p = obj->forwardee();
4929     } else {
4930       assert(!obj->is_forwarded(), "invariant" );
4931       assert(cset_state.is_humongous(),
4932              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4933       _g1->set_humongous_is_live(obj);
4934     }
4935   }
4936 };
4937 
4938 // Copying Keep Alive closure - can be called from both
4939 // serial and parallel code as long as different worker
4940 // threads utilize different G1ParScanThreadState instances
4941 // and different queues.
4942 
4943 class G1CopyingKeepAliveClosure: public OopClosure {
4944   G1CollectedHeap*         _g1h;
4945   OopClosure*              _copy_non_heap_obj_cl;
4946   G1ParScanThreadState*    _par_scan_state;
4947 
4948 public:
4949   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4950                             OopClosure* non_heap_obj_cl,
4951                             G1ParScanThreadState* pss):
4952     _g1h(g1h),
4953     _copy_non_heap_obj_cl(non_heap_obj_cl),
4954     _par_scan_state(pss)
4955   {}
4956 
4957   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4958   virtual void do_oop(      oop* p) { do_oop_work(p); }
4959 
4960   template <class T> void do_oop_work(T* p) {
4961     oop obj = oopDesc::load_decode_heap_oop(p);
4962 
4963     if (_g1h->is_in_cset_or_humongous(obj)) {
4964       // If the referent object has been forwarded (either copied
4965       // to a new location or to itself in the event of an
4966       // evacuation failure) then we need to update the reference
4967       // field and, if both reference and referent are in the G1
4968       // heap, update the RSet for the referent.
4969       //
4970       // If the referent has not been forwarded then we have to keep
4971       // it alive by policy. Therefore we have copy the referent.
4972       //
4973       // If the reference field is in the G1 heap then we can push
4974       // on the PSS queue. When the queue is drained (after each
4975       // phase of reference processing) the object and it's followers
4976       // will be copied, the reference field set to point to the
4977       // new location, and the RSet updated. Otherwise we need to
4978       // use the the non-heap or metadata closures directly to copy
4979       // the referent object and update the pointer, while avoiding
4980       // updating the RSet.
4981 
4982       if (_g1h->is_in_g1_reserved(p)) {
4983         _par_scan_state->push_on_queue(p);
4984       } else {
4985         assert(!Metaspace::contains((const void*)p),
4986                err_msg("Unexpectedly found a pointer from metadata: "
4987                               PTR_FORMAT, p));
4988         _copy_non_heap_obj_cl->do_oop(p);
4989       }
4990     }
4991   }
4992 };
4993 
4994 // Serial drain queue closure. Called as the 'complete_gc'
4995 // closure for each discovered list in some of the
4996 // reference processing phases.
4997 
4998 class G1STWDrainQueueClosure: public VoidClosure {
4999 protected:
5000   G1CollectedHeap* _g1h;
5001   G1ParScanThreadState* _par_scan_state;
5002 
5003   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5004 
5005 public:
5006   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5007     _g1h(g1h),
5008     _par_scan_state(pss)
5009   { }
5010 
5011   void do_void() {
5012     G1ParScanThreadState* const pss = par_scan_state();
5013     pss->trim_queue();
5014   }
5015 };
5016 
5017 // Parallel Reference Processing closures
5018 
5019 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5020 // processing during G1 evacuation pauses.
5021 
5022 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5023 private:
5024   G1CollectedHeap*   _g1h;
5025   RefToScanQueueSet* _queues;
5026   FlexibleWorkGang*  _workers;
5027   int                _active_workers;
5028 
5029 public:
5030   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5031                         FlexibleWorkGang* workers,
5032                         RefToScanQueueSet *task_queues,
5033                         int n_workers) :
5034     _g1h(g1h),
5035     _queues(task_queues),
5036     _workers(workers),
5037     _active_workers(n_workers)
5038   {
5039     assert(n_workers > 0, "shouldn't call this otherwise");
5040   }
5041 
5042   // Executes the given task using concurrent marking worker threads.
5043   virtual void execute(ProcessTask& task);
5044   virtual void execute(EnqueueTask& task);
5045 };
5046 
5047 // Gang task for possibly parallel reference processing
5048 
5049 class G1STWRefProcTaskProxy: public AbstractGangTask {
5050   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5051   ProcessTask&     _proc_task;
5052   G1CollectedHeap* _g1h;
5053   RefToScanQueueSet *_task_queues;
5054   ParallelTaskTerminator* _terminator;
5055 
5056 public:
5057   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5058                      G1CollectedHeap* g1h,
5059                      RefToScanQueueSet *task_queues,
5060                      ParallelTaskTerminator* terminator) :
5061     AbstractGangTask("Process reference objects in parallel"),
5062     _proc_task(proc_task),
5063     _g1h(g1h),
5064     _task_queues(task_queues),
5065     _terminator(terminator)
5066   {}
5067 
5068   virtual void work(uint worker_id) {
5069     // The reference processing task executed by a single worker.
5070     ResourceMark rm;
5071     HandleMark   hm;
5072 
5073     G1STWIsAliveClosure is_alive(_g1h);
5074 
5075     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5076     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5077 
5078     pss.set_evac_failure_closure(&evac_failure_cl);
5079 
5080     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5081 
5082     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5083 
5084     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5085 
5086     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5087       // We also need to mark copied objects.
5088       copy_non_heap_cl = &copy_mark_non_heap_cl;
5089     }
5090 
5091     // Keep alive closure.
5092     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5093 
5094     // Complete GC closure
5095     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5096 
5097     // Call the reference processing task's work routine.
5098     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5099 
5100     // Note we cannot assert that the refs array is empty here as not all
5101     // of the processing tasks (specifically phase2 - pp2_work) execute
5102     // the complete_gc closure (which ordinarily would drain the queue) so
5103     // the queue may not be empty.
5104   }
5105 };
5106 
5107 // Driver routine for parallel reference processing.
5108 // Creates an instance of the ref processing gang
5109 // task and has the worker threads execute it.
5110 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5111   assert(_workers != NULL, "Need parallel worker threads.");
5112 
5113   ParallelTaskTerminator terminator(_active_workers, _queues);
5114   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5115 
5116   _g1h->set_par_threads(_active_workers);
5117   _workers->run_task(&proc_task_proxy);
5118   _g1h->set_par_threads(0);
5119 }
5120 
5121 // Gang task for parallel reference enqueueing.
5122 
5123 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5124   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5125   EnqueueTask& _enq_task;
5126 
5127 public:
5128   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5129     AbstractGangTask("Enqueue reference objects in parallel"),
5130     _enq_task(enq_task)
5131   { }
5132 
5133   virtual void work(uint worker_id) {
5134     _enq_task.work(worker_id);
5135   }
5136 };
5137 
5138 // Driver routine for parallel reference enqueueing.
5139 // Creates an instance of the ref enqueueing gang
5140 // task and has the worker threads execute it.
5141 
5142 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5143   assert(_workers != NULL, "Need parallel worker threads.");
5144 
5145   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5146 
5147   _g1h->set_par_threads(_active_workers);
5148   _workers->run_task(&enq_task_proxy);
5149   _g1h->set_par_threads(0);
5150 }
5151 
5152 // End of weak reference support closures
5153 
5154 // Abstract task used to preserve (i.e. copy) any referent objects
5155 // that are in the collection set and are pointed to by reference
5156 // objects discovered by the CM ref processor.
5157 
5158 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5159 protected:
5160   G1CollectedHeap* _g1h;
5161   RefToScanQueueSet      *_queues;
5162   ParallelTaskTerminator _terminator;
5163   uint _n_workers;
5164 
5165 public:
5166   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5167     AbstractGangTask("ParPreserveCMReferents"),
5168     _g1h(g1h),
5169     _queues(task_queues),
5170     _terminator(workers, _queues),
5171     _n_workers(workers)
5172   { }
5173 
5174   void work(uint worker_id) {
5175     ResourceMark rm;
5176     HandleMark   hm;
5177 
5178     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5179     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5180 
5181     pss.set_evac_failure_closure(&evac_failure_cl);
5182 
5183     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5184 
5185     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5186 
5187     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5188 
5189     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5190 
5191     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5192       // We also need to mark copied objects.
5193       copy_non_heap_cl = &copy_mark_non_heap_cl;
5194     }
5195 
5196     // Is alive closure
5197     G1AlwaysAliveClosure always_alive(_g1h);
5198 
5199     // Copying keep alive closure. Applied to referent objects that need
5200     // to be copied.
5201     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5202 
5203     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5204 
5205     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5206     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5207 
5208     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5209     // So this must be true - but assert just in case someone decides to
5210     // change the worker ids.
5211     assert(worker_id < limit, "sanity");
5212     assert(!rp->discovery_is_atomic(), "check this code");
5213 
5214     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5215     for (uint idx = worker_id; idx < limit; idx += stride) {
5216       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5217 
5218       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5219       while (iter.has_next()) {
5220         // Since discovery is not atomic for the CM ref processor, we
5221         // can see some null referent objects.
5222         iter.load_ptrs(DEBUG_ONLY(true));
5223         oop ref = iter.obj();
5224 
5225         // This will filter nulls.
5226         if (iter.is_referent_alive()) {
5227           iter.make_referent_alive();
5228         }
5229         iter.move_to_next();
5230       }
5231     }
5232 
5233     // Drain the queue - which may cause stealing
5234     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5235     drain_queue.do_void();
5236     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5237     assert(pss.queue_is_empty(), "should be");
5238   }
5239 };
5240 
5241 // Weak Reference processing during an evacuation pause (part 1).
5242 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5243   double ref_proc_start = os::elapsedTime();
5244 
5245   ReferenceProcessor* rp = _ref_processor_stw;
5246   assert(rp->discovery_enabled(), "should have been enabled");
5247 
5248   // Any reference objects, in the collection set, that were 'discovered'
5249   // by the CM ref processor should have already been copied (either by
5250   // applying the external root copy closure to the discovered lists, or
5251   // by following an RSet entry).
5252   //
5253   // But some of the referents, that are in the collection set, that these
5254   // reference objects point to may not have been copied: the STW ref
5255   // processor would have seen that the reference object had already
5256   // been 'discovered' and would have skipped discovering the reference,
5257   // but would not have treated the reference object as a regular oop.
5258   // As a result the copy closure would not have been applied to the
5259   // referent object.
5260   //
5261   // We need to explicitly copy these referent objects - the references
5262   // will be processed at the end of remarking.
5263   //
5264   // We also need to do this copying before we process the reference
5265   // objects discovered by the STW ref processor in case one of these
5266   // referents points to another object which is also referenced by an
5267   // object discovered by the STW ref processor.
5268 
5269   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5270 
5271   set_par_threads(no_of_gc_workers);
5272   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5273                                                  no_of_gc_workers,
5274                                                  _task_queues);
5275 
5276   workers()->run_task(&keep_cm_referents);
5277 
5278   set_par_threads(0);
5279 
5280   // Closure to test whether a referent is alive.
5281   G1STWIsAliveClosure is_alive(this);
5282 
5283   // Even when parallel reference processing is enabled, the processing
5284   // of JNI refs is serial and performed serially by the current thread
5285   // rather than by a worker. The following PSS will be used for processing
5286   // JNI refs.
5287 
5288   // Use only a single queue for this PSS.
5289   G1ParScanThreadState            pss(this, 0, NULL);
5290 
5291   // We do not embed a reference processor in the copying/scanning
5292   // closures while we're actually processing the discovered
5293   // reference objects.
5294   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5295 
5296   pss.set_evac_failure_closure(&evac_failure_cl);
5297 
5298   assert(pss.queue_is_empty(), "pre-condition");
5299 
5300   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5301 
5302   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5303 
5304   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5305 
5306   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5307     // We also need to mark copied objects.
5308     copy_non_heap_cl = &copy_mark_non_heap_cl;
5309   }
5310 
5311   // Keep alive closure.
5312   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5313 
5314   // Serial Complete GC closure
5315   G1STWDrainQueueClosure drain_queue(this, &pss);
5316 
5317   // Setup the soft refs policy...
5318   rp->setup_policy(false);
5319 
5320   ReferenceProcessorStats stats;
5321   if (!rp->processing_is_mt()) {
5322     // Serial reference processing...
5323     stats = rp->process_discovered_references(&is_alive,
5324                                               &keep_alive,
5325                                               &drain_queue,
5326                                               NULL,
5327                                               _gc_timer_stw,
5328                                               _gc_tracer_stw->gc_id());
5329   } else {
5330     // Parallel reference processing
5331     assert(rp->num_q() == no_of_gc_workers, "sanity");
5332     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5333 
5334     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5335     stats = rp->process_discovered_references(&is_alive,
5336                                               &keep_alive,
5337                                               &drain_queue,
5338                                               &par_task_executor,
5339                                               _gc_timer_stw,
5340                                               _gc_tracer_stw->gc_id());
5341   }
5342 
5343   _gc_tracer_stw->report_gc_reference_stats(stats);
5344 
5345   // We have completed copying any necessary live referent objects.
5346   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5347 
5348   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5349   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5350 }
5351 
5352 // Weak Reference processing during an evacuation pause (part 2).
5353 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5354   double ref_enq_start = os::elapsedTime();
5355 
5356   ReferenceProcessor* rp = _ref_processor_stw;
5357   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5358 
5359   // Now enqueue any remaining on the discovered lists on to
5360   // the pending list.
5361   if (!rp->processing_is_mt()) {
5362     // Serial reference processing...
5363     rp->enqueue_discovered_references();
5364   } else {
5365     // Parallel reference enqueueing
5366 
5367     assert(no_of_gc_workers == workers()->active_workers(),
5368            "Need to reset active workers");
5369     assert(rp->num_q() == no_of_gc_workers, "sanity");
5370     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5371 
5372     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5373     rp->enqueue_discovered_references(&par_task_executor);
5374   }
5375 
5376   rp->verify_no_references_recorded();
5377   assert(!rp->discovery_enabled(), "should have been disabled");
5378 
5379   // FIXME
5380   // CM's reference processing also cleans up the string and symbol tables.
5381   // Should we do that here also? We could, but it is a serial operation
5382   // and could significantly increase the pause time.
5383 
5384   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5385   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5386 }
5387 
5388 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5389   _expand_heap_after_alloc_failure = true;
5390   _evacuation_failed = false;
5391 
5392   // Should G1EvacuationFailureALot be in effect for this GC?
5393   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5394 
5395   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5396 
5397   // Disable the hot card cache.
5398   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5399   hot_card_cache->reset_hot_cache_claimed_index();
5400   hot_card_cache->set_use_cache(false);
5401 
5402   const uint n_workers = workers()->active_workers();
5403   assert(UseDynamicNumberOfGCThreads ||
5404          n_workers == workers()->total_workers(),
5405          "If not dynamic should be using all the  workers");
5406   set_par_threads(n_workers);
5407 
5408 
5409   init_for_evac_failure(NULL);
5410 
5411   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5412   double start_par_time_sec = os::elapsedTime();
5413   double end_par_time_sec;
5414 
5415   {
5416     G1RootProcessor root_processor(this);
5417     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5418     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5419     if (g1_policy()->during_initial_mark_pause()) {
5420       ClassLoaderDataGraph::clear_claimed_marks();
5421     }
5422 
5423      // The individual threads will set their evac-failure closures.
5424      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5425      // These tasks use ShareHeap::_process_strong_tasks
5426      assert(UseDynamicNumberOfGCThreads ||
5427             workers()->active_workers() == workers()->total_workers(),
5428             "If not dynamic should be using all the  workers");
5429     workers()->run_task(&g1_par_task);
5430     end_par_time_sec = os::elapsedTime();
5431 
5432     // Closing the inner scope will execute the destructor
5433     // for the G1RootProcessor object. We record the current
5434     // elapsed time before closing the scope so that time
5435     // taken for the destructor is NOT included in the
5436     // reported parallel time.
5437   }
5438 
5439   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5440 
5441   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5442   phase_times->record_par_time(par_time_ms);
5443 
5444   double code_root_fixup_time_ms =
5445         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5446   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5447 
5448   set_par_threads(0);
5449 
5450   // Process any discovered reference objects - we have
5451   // to do this _before_ we retire the GC alloc regions
5452   // as we may have to copy some 'reachable' referent
5453   // objects (and their reachable sub-graphs) that were
5454   // not copied during the pause.
5455   process_discovered_references(n_workers);
5456 
5457   if (G1StringDedup::is_enabled()) {
5458     double fixup_start = os::elapsedTime();
5459 
5460     G1STWIsAliveClosure is_alive(this);
5461     G1KeepAliveClosure keep_alive(this);
5462     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5463 
5464     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5465     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5466   }
5467 
5468   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5469   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5470 
5471   // Reset and re-enable the hot card cache.
5472   // Note the counts for the cards in the regions in the
5473   // collection set are reset when the collection set is freed.
5474   hot_card_cache->reset_hot_cache();
5475   hot_card_cache->set_use_cache(true);
5476 
5477   purge_code_root_memory();
5478 
5479   finalize_for_evac_failure();
5480 
5481   if (evacuation_failed()) {
5482     remove_self_forwarding_pointers();
5483 
5484     // Reset the G1EvacuationFailureALot counters and flags
5485     // Note: the values are reset only when an actual
5486     // evacuation failure occurs.
5487     NOT_PRODUCT(reset_evacuation_should_fail();)
5488   }
5489 
5490   // Enqueue any remaining references remaining on the STW
5491   // reference processor's discovered lists. We need to do
5492   // this after the card table is cleaned (and verified) as
5493   // the act of enqueueing entries on to the pending list
5494   // will log these updates (and dirty their associated
5495   // cards). We need these updates logged to update any
5496   // RSets.
5497   enqueue_discovered_references(n_workers);
5498 
5499   redirty_logged_cards();
5500   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5501 }
5502 
5503 void G1CollectedHeap::free_region(HeapRegion* hr,
5504                                   FreeRegionList* free_list,
5505                                   bool par,
5506                                   bool locked) {
5507   assert(!hr->is_free(), "the region should not be free");
5508   assert(!hr->is_empty(), "the region should not be empty");
5509   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5510   assert(free_list != NULL, "pre-condition");
5511 
5512   if (G1VerifyBitmaps) {
5513     MemRegion mr(hr->bottom(), hr->end());
5514     concurrent_mark()->clearRangePrevBitmap(mr);
5515   }
5516 
5517   // Clear the card counts for this region.
5518   // Note: we only need to do this if the region is not young
5519   // (since we don't refine cards in young regions).
5520   if (!hr->is_young()) {
5521     _cg1r->hot_card_cache()->reset_card_counts(hr);
5522   }
5523   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5524   free_list->add_ordered(hr);
5525 }
5526 
5527 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5528                                      FreeRegionList* free_list,
5529                                      bool par) {
5530   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5531   assert(free_list != NULL, "pre-condition");
5532 
5533   size_t hr_capacity = hr->capacity();
5534   // We need to read this before we make the region non-humongous,
5535   // otherwise the information will be gone.
5536   uint last_index = hr->last_hc_index();
5537   hr->clear_humongous();
5538   free_region(hr, free_list, par);
5539 
5540   uint i = hr->hrm_index() + 1;
5541   while (i < last_index) {
5542     HeapRegion* curr_hr = region_at(i);
5543     assert(curr_hr->is_continues_humongous(), "invariant");
5544     curr_hr->clear_humongous();
5545     free_region(curr_hr, free_list, par);
5546     i += 1;
5547   }
5548 }
5549 
5550 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5551                                        const HeapRegionSetCount& humongous_regions_removed) {
5552   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5553     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5554     _old_set.bulk_remove(old_regions_removed);
5555     _humongous_set.bulk_remove(humongous_regions_removed);
5556   }
5557 
5558 }
5559 
5560 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5561   assert(list != NULL, "list can't be null");
5562   if (!list->is_empty()) {
5563     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5564     _hrm.insert_list_into_free_list(list);
5565   }
5566 }
5567 
5568 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5569   _allocator->decrease_used(bytes);
5570 }
5571 
5572 class G1ParCleanupCTTask : public AbstractGangTask {
5573   G1SATBCardTableModRefBS* _ct_bs;
5574   G1CollectedHeap* _g1h;
5575   HeapRegion* volatile _su_head;
5576 public:
5577   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5578                      G1CollectedHeap* g1h) :
5579     AbstractGangTask("G1 Par Cleanup CT Task"),
5580     _ct_bs(ct_bs), _g1h(g1h) { }
5581 
5582   void work(uint worker_id) {
5583     HeapRegion* r;
5584     while (r = _g1h->pop_dirty_cards_region()) {
5585       clear_cards(r);
5586     }
5587   }
5588 
5589   void clear_cards(HeapRegion* r) {
5590     // Cards of the survivors should have already been dirtied.
5591     if (!r->is_survivor()) {
5592       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5593     }
5594   }
5595 };
5596 
5597 #ifndef PRODUCT
5598 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5599   G1CollectedHeap* _g1h;
5600   G1SATBCardTableModRefBS* _ct_bs;
5601 public:
5602   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5603     : _g1h(g1h), _ct_bs(ct_bs) { }
5604   virtual bool doHeapRegion(HeapRegion* r) {
5605     if (r->is_survivor()) {
5606       _g1h->verify_dirty_region(r);
5607     } else {
5608       _g1h->verify_not_dirty_region(r);
5609     }
5610     return false;
5611   }
5612 };
5613 
5614 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5615   // All of the region should be clean.
5616   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5617   MemRegion mr(hr->bottom(), hr->end());
5618   ct_bs->verify_not_dirty_region(mr);
5619 }
5620 
5621 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5622   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5623   // dirty allocated blocks as they allocate them. The thread that
5624   // retires each region and replaces it with a new one will do a
5625   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5626   // not dirty that area (one less thing to have to do while holding
5627   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5628   // is dirty.
5629   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5630   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5631   if (hr->is_young()) {
5632     ct_bs->verify_g1_young_region(mr);
5633   } else {
5634     ct_bs->verify_dirty_region(mr);
5635   }
5636 }
5637 
5638 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5639   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5640   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5641     verify_dirty_region(hr);
5642   }
5643 }
5644 
5645 void G1CollectedHeap::verify_dirty_young_regions() {
5646   verify_dirty_young_list(_young_list->first_region());
5647 }
5648 
5649 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5650                                                HeapWord* tams, HeapWord* end) {
5651   guarantee(tams <= end,
5652             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5653   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5654   if (result < end) {
5655     gclog_or_tty->cr();
5656     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5657                            bitmap_name, result);
5658     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5659                            bitmap_name, tams, end);
5660     return false;
5661   }
5662   return true;
5663 }
5664 
5665 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5666   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5667   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5668 
5669   HeapWord* bottom = hr->bottom();
5670   HeapWord* ptams  = hr->prev_top_at_mark_start();
5671   HeapWord* ntams  = hr->next_top_at_mark_start();
5672   HeapWord* end    = hr->end();
5673 
5674   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5675 
5676   bool res_n = true;
5677   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5678   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5679   // if we happen to be in that state.
5680   if (mark_in_progress() || !_cmThread->in_progress()) {
5681     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5682   }
5683   if (!res_p || !res_n) {
5684     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5685                            HR_FORMAT_PARAMS(hr));
5686     gclog_or_tty->print_cr("#### Caller: %s", caller);
5687     return false;
5688   }
5689   return true;
5690 }
5691 
5692 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5693   if (!G1VerifyBitmaps) return;
5694 
5695   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5696 }
5697 
5698 class G1VerifyBitmapClosure : public HeapRegionClosure {
5699 private:
5700   const char* _caller;
5701   G1CollectedHeap* _g1h;
5702   bool _failures;
5703 
5704 public:
5705   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5706     _caller(caller), _g1h(g1h), _failures(false) { }
5707 
5708   bool failures() { return _failures; }
5709 
5710   virtual bool doHeapRegion(HeapRegion* hr) {
5711     if (hr->is_continues_humongous()) return false;
5712 
5713     bool result = _g1h->verify_bitmaps(_caller, hr);
5714     if (!result) {
5715       _failures = true;
5716     }
5717     return false;
5718   }
5719 };
5720 
5721 void G1CollectedHeap::check_bitmaps(const char* caller) {
5722   if (!G1VerifyBitmaps) return;
5723 
5724   G1VerifyBitmapClosure cl(caller, this);
5725   heap_region_iterate(&cl);
5726   guarantee(!cl.failures(), "bitmap verification");
5727 }
5728 
5729 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5730  private:
5731   bool _failures;
5732  public:
5733   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5734 
5735   virtual bool doHeapRegion(HeapRegion* hr) {
5736     uint i = hr->hrm_index();
5737     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5738     if (hr->is_humongous()) {
5739       if (hr->in_collection_set()) {
5740         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5741         _failures = true;
5742         return true;
5743       }
5744       if (cset_state.is_in_cset()) {
5745         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5746         _failures = true;
5747         return true;
5748       }
5749       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5750         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5751         _failures = true;
5752         return true;
5753       }
5754     } else {
5755       if (cset_state.is_humongous()) {
5756         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5757         _failures = true;
5758         return true;
5759       }
5760       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5761         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5762                                hr->in_collection_set(), cset_state.value(), i);
5763         _failures = true;
5764         return true;
5765       }
5766       if (cset_state.is_in_cset()) {
5767         if (hr->is_young() != (cset_state.is_young())) {
5768           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5769                                  hr->is_young(), cset_state.value(), i);
5770           _failures = true;
5771           return true;
5772         }
5773         if (hr->is_old() != (cset_state.is_old())) {
5774           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5775                                  hr->is_old(), cset_state.value(), i);
5776           _failures = true;
5777           return true;
5778         }
5779       }
5780     }
5781     return false;
5782   }
5783 
5784   bool failures() const { return _failures; }
5785 };
5786 
5787 bool G1CollectedHeap::check_cset_fast_test() {
5788   G1CheckCSetFastTableClosure cl;
5789   _hrm.iterate(&cl);
5790   return !cl.failures();
5791 }
5792 #endif // PRODUCT
5793 
5794 void G1CollectedHeap::cleanUpCardTable() {
5795   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5796   double start = os::elapsedTime();
5797 
5798   {
5799     // Iterate over the dirty cards region list.
5800     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5801 
5802     set_par_threads();
5803     workers()->run_task(&cleanup_task);
5804     set_par_threads(0);
5805 #ifndef PRODUCT
5806     if (G1VerifyCTCleanup || VerifyAfterGC) {
5807       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5808       heap_region_iterate(&cleanup_verifier);
5809     }
5810 #endif
5811   }
5812 
5813   double elapsed = os::elapsedTime() - start;
5814   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5815 }
5816 
5817 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5818   size_t pre_used = 0;
5819   FreeRegionList local_free_list("Local List for CSet Freeing");
5820 
5821   double young_time_ms     = 0.0;
5822   double non_young_time_ms = 0.0;
5823 
5824   // Since the collection set is a superset of the the young list,
5825   // all we need to do to clear the young list is clear its
5826   // head and length, and unlink any young regions in the code below
5827   _young_list->clear();
5828 
5829   G1CollectorPolicy* policy = g1_policy();
5830 
5831   double start_sec = os::elapsedTime();
5832   bool non_young = true;
5833 
5834   HeapRegion* cur = cs_head;
5835   int age_bound = -1;
5836   size_t rs_lengths = 0;
5837 
5838   while (cur != NULL) {
5839     assert(!is_on_master_free_list(cur), "sanity");
5840     if (non_young) {
5841       if (cur->is_young()) {
5842         double end_sec = os::elapsedTime();
5843         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5844         non_young_time_ms += elapsed_ms;
5845 
5846         start_sec = os::elapsedTime();
5847         non_young = false;
5848       }
5849     } else {
5850       if (!cur->is_young()) {
5851         double end_sec = os::elapsedTime();
5852         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5853         young_time_ms += elapsed_ms;
5854 
5855         start_sec = os::elapsedTime();
5856         non_young = true;
5857       }
5858     }
5859 
5860     rs_lengths += cur->rem_set()->occupied_locked();
5861 
5862     HeapRegion* next = cur->next_in_collection_set();
5863     assert(cur->in_collection_set(), "bad CS");
5864     cur->set_next_in_collection_set(NULL);
5865     clear_in_cset(cur);
5866 
5867     if (cur->is_young()) {
5868       int index = cur->young_index_in_cset();
5869       assert(index != -1, "invariant");
5870       assert((uint) index < policy->young_cset_region_length(), "invariant");
5871       size_t words_survived = _surviving_young_words[index];
5872       cur->record_surv_words_in_group(words_survived);
5873 
5874       // At this point the we have 'popped' cur from the collection set
5875       // (linked via next_in_collection_set()) but it is still in the
5876       // young list (linked via next_young_region()). Clear the
5877       // _next_young_region field.
5878       cur->set_next_young_region(NULL);
5879     } else {
5880       int index = cur->young_index_in_cset();
5881       assert(index == -1, "invariant");
5882     }
5883 
5884     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5885             (!cur->is_young() && cur->young_index_in_cset() == -1),
5886             "invariant" );
5887 
5888     if (!cur->evacuation_failed()) {
5889       MemRegion used_mr = cur->used_region();
5890 
5891       // And the region is empty.
5892       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5893       pre_used += cur->used();
5894       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5895     } else {
5896       cur->uninstall_surv_rate_group();
5897       if (cur->is_young()) {
5898         cur->set_young_index_in_cset(-1);
5899       }
5900       cur->set_evacuation_failed(false);
5901       // The region is now considered to be old.
5902       cur->set_old();
5903       _old_set.add(cur);
5904       evacuation_info.increment_collectionset_used_after(cur->used());
5905     }
5906     cur = next;
5907   }
5908 
5909   evacuation_info.set_regions_freed(local_free_list.length());
5910   policy->record_max_rs_lengths(rs_lengths);
5911   policy->cset_regions_freed();
5912 
5913   double end_sec = os::elapsedTime();
5914   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5915 
5916   if (non_young) {
5917     non_young_time_ms += elapsed_ms;
5918   } else {
5919     young_time_ms += elapsed_ms;
5920   }
5921 
5922   prepend_to_freelist(&local_free_list);
5923   decrement_summary_bytes(pre_used);
5924   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5925   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5926 }
5927 
5928 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5929  private:
5930   FreeRegionList* _free_region_list;
5931   HeapRegionSet* _proxy_set;
5932   HeapRegionSetCount _humongous_regions_removed;
5933   size_t _freed_bytes;
5934  public:
5935 
5936   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5937     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5938   }
5939 
5940   virtual bool doHeapRegion(HeapRegion* r) {
5941     if (!r->is_starts_humongous()) {
5942       return false;
5943     }
5944 
5945     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5946 
5947     oop obj = (oop)r->bottom();
5948     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5949 
5950     // The following checks whether the humongous object is live are sufficient.
5951     // The main additional check (in addition to having a reference from the roots
5952     // or the young gen) is whether the humongous object has a remembered set entry.
5953     //
5954     // A humongous object cannot be live if there is no remembered set for it
5955     // because:
5956     // - there can be no references from within humongous starts regions referencing
5957     // the object because we never allocate other objects into them.
5958     // (I.e. there are no intra-region references that may be missed by the
5959     // remembered set)
5960     // - as soon there is a remembered set entry to the humongous starts region
5961     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5962     // until the end of a concurrent mark.
5963     //
5964     // It is not required to check whether the object has been found dead by marking
5965     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5966     // all objects allocated during that time are considered live.
5967     // SATB marking is even more conservative than the remembered set.
5968     // So if at this point in the collection there is no remembered set entry,
5969     // nobody has a reference to it.
5970     // At the start of collection we flush all refinement logs, and remembered sets
5971     // are completely up-to-date wrt to references to the humongous object.
5972     //
5973     // Other implementation considerations:
5974     // - never consider object arrays at this time because they would pose
5975     // considerable effort for cleaning up the the remembered sets. This is
5976     // required because stale remembered sets might reference locations that
5977     // are currently allocated into.
5978     uint region_idx = r->hrm_index();
5979     if (g1h->humongous_is_live(region_idx) ||
5980         g1h->humongous_region_is_always_live(region_idx)) {
5981 
5982       if (G1TraceEagerReclaimHumongousObjects) {
5983         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
5984                                region_idx,
5985                                obj->size()*HeapWordSize,
5986                                r->bottom(),
5987                                r->region_num(),
5988                                r->rem_set()->occupied(),
5989                                r->rem_set()->strong_code_roots_list_length(),
5990                                next_bitmap->isMarked(r->bottom()),
5991                                g1h->humongous_is_live(region_idx),
5992                                obj->is_objArray()
5993                               );
5994       }
5995 
5996       return false;
5997     }
5998 
5999     guarantee(!obj->is_objArray(),
6000               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6001                       r->bottom()));
6002 
6003     if (G1TraceEagerReclaimHumongousObjects) {
6004       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6005                              region_idx,
6006                              obj->size()*HeapWordSize,
6007                              r->bottom(),
6008                              r->region_num(),
6009                              r->rem_set()->occupied(),
6010                              r->rem_set()->strong_code_roots_list_length(),
6011                              next_bitmap->isMarked(r->bottom()),
6012                              g1h->humongous_is_live(region_idx),
6013                              obj->is_objArray()
6014                             );
6015     }
6016     // Need to clear mark bit of the humongous object if already set.
6017     if (next_bitmap->isMarked(r->bottom())) {
6018       next_bitmap->clear(r->bottom());
6019     }
6020     _freed_bytes += r->used();
6021     r->set_containing_set(NULL);
6022     _humongous_regions_removed.increment(1u, r->capacity());
6023     g1h->free_humongous_region(r, _free_region_list, false);
6024 
6025     return false;
6026   }
6027 
6028   HeapRegionSetCount& humongous_free_count() {
6029     return _humongous_regions_removed;
6030   }
6031 
6032   size_t bytes_freed() const {
6033     return _freed_bytes;
6034   }
6035 
6036   size_t humongous_reclaimed() const {
6037     return _humongous_regions_removed.length();
6038   }
6039 };
6040 
6041 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6042   assert_at_safepoint(true);
6043 
6044   if (!G1EagerReclaimHumongousObjects ||
6045       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6046     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6047     return;
6048   }
6049 
6050   double start_time = os::elapsedTime();
6051 
6052   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6053 
6054   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6055   heap_region_iterate(&cl);
6056 
6057   HeapRegionSetCount empty_set;
6058   remove_from_old_sets(empty_set, cl.humongous_free_count());
6059 
6060   G1HRPrinter* hr_printer = _g1h->hr_printer();
6061   if (hr_printer->is_active()) {
6062     FreeRegionListIterator iter(&local_cleanup_list);
6063     while (iter.more_available()) {
6064       HeapRegion* hr = iter.get_next();
6065       hr_printer->cleanup(hr);
6066     }
6067   }
6068 
6069   prepend_to_freelist(&local_cleanup_list);
6070   decrement_summary_bytes(cl.bytes_freed());
6071 
6072   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6073                                                                     cl.humongous_reclaimed());
6074 }
6075 
6076 // This routine is similar to the above but does not record
6077 // any policy statistics or update free lists; we are abandoning
6078 // the current incremental collection set in preparation of a
6079 // full collection. After the full GC we will start to build up
6080 // the incremental collection set again.
6081 // This is only called when we're doing a full collection
6082 // and is immediately followed by the tearing down of the young list.
6083 
6084 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6085   HeapRegion* cur = cs_head;
6086 
6087   while (cur != NULL) {
6088     HeapRegion* next = cur->next_in_collection_set();
6089     assert(cur->in_collection_set(), "bad CS");
6090     cur->set_next_in_collection_set(NULL);
6091     clear_in_cset(cur);
6092     cur->set_young_index_in_cset(-1);
6093     cur = next;
6094   }
6095 }
6096 
6097 void G1CollectedHeap::set_free_regions_coming() {
6098   if (G1ConcRegionFreeingVerbose) {
6099     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6100                            "setting free regions coming");
6101   }
6102 
6103   assert(!free_regions_coming(), "pre-condition");
6104   _free_regions_coming = true;
6105 }
6106 
6107 void G1CollectedHeap::reset_free_regions_coming() {
6108   assert(free_regions_coming(), "pre-condition");
6109 
6110   {
6111     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6112     _free_regions_coming = false;
6113     SecondaryFreeList_lock->notify_all();
6114   }
6115 
6116   if (G1ConcRegionFreeingVerbose) {
6117     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6118                            "reset free regions coming");
6119   }
6120 }
6121 
6122 void G1CollectedHeap::wait_while_free_regions_coming() {
6123   // Most of the time we won't have to wait, so let's do a quick test
6124   // first before we take the lock.
6125   if (!free_regions_coming()) {
6126     return;
6127   }
6128 
6129   if (G1ConcRegionFreeingVerbose) {
6130     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6131                            "waiting for free regions");
6132   }
6133 
6134   {
6135     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6136     while (free_regions_coming()) {
6137       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6138     }
6139   }
6140 
6141   if (G1ConcRegionFreeingVerbose) {
6142     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6143                            "done waiting for free regions");
6144   }
6145 }
6146 
6147 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6148   _young_list->push_region(hr);
6149 }
6150 
6151 class NoYoungRegionsClosure: public HeapRegionClosure {
6152 private:
6153   bool _success;
6154 public:
6155   NoYoungRegionsClosure() : _success(true) { }
6156   bool doHeapRegion(HeapRegion* r) {
6157     if (r->is_young()) {
6158       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6159                              r->bottom(), r->end());
6160       _success = false;
6161     }
6162     return false;
6163   }
6164   bool success() { return _success; }
6165 };
6166 
6167 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6168   bool ret = _young_list->check_list_empty(check_sample);
6169 
6170   if (check_heap) {
6171     NoYoungRegionsClosure closure;
6172     heap_region_iterate(&closure);
6173     ret = ret && closure.success();
6174   }
6175 
6176   return ret;
6177 }
6178 
6179 class TearDownRegionSetsClosure : public HeapRegionClosure {
6180 private:
6181   HeapRegionSet *_old_set;
6182 
6183 public:
6184   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6185 
6186   bool doHeapRegion(HeapRegion* r) {
6187     if (r->is_old()) {
6188       _old_set->remove(r);
6189     } else {
6190       // We ignore free regions, we'll empty the free list afterwards.
6191       // We ignore young regions, we'll empty the young list afterwards.
6192       // We ignore humongous regions, we're not tearing down the
6193       // humongous regions set.
6194       assert(r->is_free() || r->is_young() || r->is_humongous(),
6195              "it cannot be another type");
6196     }
6197     return false;
6198   }
6199 
6200   ~TearDownRegionSetsClosure() {
6201     assert(_old_set->is_empty(), "post-condition");
6202   }
6203 };
6204 
6205 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6206   assert_at_safepoint(true /* should_be_vm_thread */);
6207 
6208   if (!free_list_only) {
6209     TearDownRegionSetsClosure cl(&_old_set);
6210     heap_region_iterate(&cl);
6211 
6212     // Note that emptying the _young_list is postponed and instead done as
6213     // the first step when rebuilding the regions sets again. The reason for
6214     // this is that during a full GC string deduplication needs to know if
6215     // a collected region was young or old when the full GC was initiated.
6216   }
6217   _hrm.remove_all_free_regions();
6218 }
6219 
6220 class RebuildRegionSetsClosure : public HeapRegionClosure {
6221 private:
6222   bool            _free_list_only;
6223   HeapRegionSet*   _old_set;
6224   HeapRegionManager*   _hrm;
6225   size_t          _total_used;
6226 
6227 public:
6228   RebuildRegionSetsClosure(bool free_list_only,
6229                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6230     _free_list_only(free_list_only),
6231     _old_set(old_set), _hrm(hrm), _total_used(0) {
6232     assert(_hrm->num_free_regions() == 0, "pre-condition");
6233     if (!free_list_only) {
6234       assert(_old_set->is_empty(), "pre-condition");
6235     }
6236   }
6237 
6238   bool doHeapRegion(HeapRegion* r) {
6239     if (r->is_continues_humongous()) {
6240       return false;
6241     }
6242 
6243     if (r->is_empty()) {
6244       // Add free regions to the free list
6245       r->set_free();
6246       r->set_allocation_context(AllocationContext::system());
6247       _hrm->insert_into_free_list(r);
6248     } else if (!_free_list_only) {
6249       assert(!r->is_young(), "we should not come across young regions");
6250 
6251       if (r->is_humongous()) {
6252         // We ignore humongous regions, we left the humongous set unchanged
6253       } else {
6254         // Objects that were compacted would have ended up on regions
6255         // that were previously old or free.
6256         assert(r->is_free() || r->is_old(), "invariant");
6257         // We now consider them old, so register as such.
6258         r->set_old();
6259         _old_set->add(r);
6260       }
6261       _total_used += r->used();
6262     }
6263 
6264     return false;
6265   }
6266 
6267   size_t total_used() {
6268     return _total_used;
6269   }
6270 };
6271 
6272 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6273   assert_at_safepoint(true /* should_be_vm_thread */);
6274 
6275   if (!free_list_only) {
6276     _young_list->empty_list();
6277   }
6278 
6279   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6280   heap_region_iterate(&cl);
6281 
6282   if (!free_list_only) {
6283     _allocator->set_used(cl.total_used());
6284   }
6285   assert(_allocator->used_unlocked() == recalculate_used(),
6286          err_msg("inconsistent _allocator->used_unlocked(), "
6287                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6288                  _allocator->used_unlocked(), recalculate_used()));
6289 }
6290 
6291 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6292   _refine_cte_cl->set_concurrent(concurrent);
6293 }
6294 
6295 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6296   HeapRegion* hr = heap_region_containing(p);
6297   return hr->is_in(p);
6298 }
6299 
6300 // Methods for the mutator alloc region
6301 
6302 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6303                                                       bool force) {
6304   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6305   assert(!force || g1_policy()->can_expand_young_list(),
6306          "if force is true we should be able to expand the young list");
6307   bool young_list_full = g1_policy()->is_young_list_full();
6308   if (force || !young_list_full) {
6309     HeapRegion* new_alloc_region = new_region(word_size,
6310                                               false /* is_old */,
6311                                               false /* do_expand */);
6312     if (new_alloc_region != NULL) {
6313       set_region_short_lived_locked(new_alloc_region);
6314       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6315       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6316       return new_alloc_region;
6317     }
6318   }
6319   return NULL;
6320 }
6321 
6322 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6323                                                   size_t allocated_bytes) {
6324   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6325   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6326 
6327   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6328   _allocator->increase_used(allocated_bytes);
6329   _hr_printer.retire(alloc_region);
6330   // We update the eden sizes here, when the region is retired,
6331   // instead of when it's allocated, since this is the point that its
6332   // used space has been recored in _summary_bytes_used.
6333   g1mm()->update_eden_size();
6334 }
6335 
6336 void G1CollectedHeap::set_par_threads() {
6337   // Don't change the number of workers.  Use the value previously set
6338   // in the workgroup.
6339   uint n_workers = workers()->active_workers();
6340   assert(UseDynamicNumberOfGCThreads ||
6341            n_workers == workers()->total_workers(),
6342       "Otherwise should be using the total number of workers");
6343   if (n_workers == 0) {
6344     assert(false, "Should have been set in prior evacuation pause.");
6345     n_workers = ParallelGCThreads;
6346     workers()->set_active_workers(n_workers);
6347   }
6348   set_par_threads(n_workers);
6349 }
6350 
6351 // Methods for the GC alloc regions
6352 
6353 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6354                                                  uint count,
6355                                                  InCSetState dest) {
6356   assert(FreeList_lock->owned_by_self(), "pre-condition");
6357 
6358   if (count < g1_policy()->max_regions(dest)) {
6359     const bool is_survivor = (dest.is_young());
6360     HeapRegion* new_alloc_region = new_region(word_size,
6361                                               !is_survivor,
6362                                               true /* do_expand */);
6363     if (new_alloc_region != NULL) {
6364       // We really only need to do this for old regions given that we
6365       // should never scan survivors. But it doesn't hurt to do it
6366       // for survivors too.
6367       new_alloc_region->record_timestamp();
6368       if (is_survivor) {
6369         new_alloc_region->set_survivor();
6370         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6371         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6372       } else {
6373         new_alloc_region->set_old();
6374         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6375         check_bitmaps("Old Region Allocation", new_alloc_region);
6376       }
6377       bool during_im = g1_policy()->during_initial_mark_pause();
6378       new_alloc_region->note_start_of_copying(during_im);
6379       return new_alloc_region;
6380     }
6381   }
6382   return NULL;
6383 }
6384 
6385 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6386                                              size_t allocated_bytes,
6387                                              InCSetState dest) {
6388   bool during_im = g1_policy()->during_initial_mark_pause();
6389   alloc_region->note_end_of_copying(during_im);
6390   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6391   if (dest.is_young()) {
6392     young_list()->add_survivor_region(alloc_region);
6393   } else {
6394     _old_set.add(alloc_region);
6395   }
6396   _hr_printer.retire(alloc_region);
6397 }
6398 
6399 // Heap region set verification
6400 
6401 class VerifyRegionListsClosure : public HeapRegionClosure {
6402 private:
6403   HeapRegionSet*   _old_set;
6404   HeapRegionSet*   _humongous_set;
6405   HeapRegionManager*   _hrm;
6406 
6407 public:
6408   HeapRegionSetCount _old_count;
6409   HeapRegionSetCount _humongous_count;
6410   HeapRegionSetCount _free_count;
6411 
6412   VerifyRegionListsClosure(HeapRegionSet* old_set,
6413                            HeapRegionSet* humongous_set,
6414                            HeapRegionManager* hrm) :
6415     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6416     _old_count(), _humongous_count(), _free_count(){ }
6417 
6418   bool doHeapRegion(HeapRegion* hr) {
6419     if (hr->is_continues_humongous()) {
6420       return false;
6421     }
6422 
6423     if (hr->is_young()) {
6424       // TODO
6425     } else if (hr->is_starts_humongous()) {
6426       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6427       _humongous_count.increment(1u, hr->capacity());
6428     } else if (hr->is_empty()) {
6429       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6430       _free_count.increment(1u, hr->capacity());
6431     } else if (hr->is_old()) {
6432       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6433       _old_count.increment(1u, hr->capacity());
6434     } else {
6435       ShouldNotReachHere();
6436     }
6437     return false;
6438   }
6439 
6440   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6441     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6442     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6443         old_set->total_capacity_bytes(), _old_count.capacity()));
6444 
6445     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6446     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6447         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6448 
6449     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6450     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6451         free_list->total_capacity_bytes(), _free_count.capacity()));
6452   }
6453 };
6454 
6455 void G1CollectedHeap::verify_region_sets() {
6456   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6457 
6458   // First, check the explicit lists.
6459   _hrm.verify();
6460   {
6461     // Given that a concurrent operation might be adding regions to
6462     // the secondary free list we have to take the lock before
6463     // verifying it.
6464     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6465     _secondary_free_list.verify_list();
6466   }
6467 
6468   // If a concurrent region freeing operation is in progress it will
6469   // be difficult to correctly attributed any free regions we come
6470   // across to the correct free list given that they might belong to
6471   // one of several (free_list, secondary_free_list, any local lists,
6472   // etc.). So, if that's the case we will skip the rest of the
6473   // verification operation. Alternatively, waiting for the concurrent
6474   // operation to complete will have a non-trivial effect on the GC's
6475   // operation (no concurrent operation will last longer than the
6476   // interval between two calls to verification) and it might hide
6477   // any issues that we would like to catch during testing.
6478   if (free_regions_coming()) {
6479     return;
6480   }
6481 
6482   // Make sure we append the secondary_free_list on the free_list so
6483   // that all free regions we will come across can be safely
6484   // attributed to the free_list.
6485   append_secondary_free_list_if_not_empty_with_lock();
6486 
6487   // Finally, make sure that the region accounting in the lists is
6488   // consistent with what we see in the heap.
6489 
6490   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6491   heap_region_iterate(&cl);
6492   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6493 }
6494 
6495 // Optimized nmethod scanning
6496 
6497 class RegisterNMethodOopClosure: public OopClosure {
6498   G1CollectedHeap* _g1h;
6499   nmethod* _nm;
6500 
6501   template <class T> void do_oop_work(T* p) {
6502     T heap_oop = oopDesc::load_heap_oop(p);
6503     if (!oopDesc::is_null(heap_oop)) {
6504       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6505       HeapRegion* hr = _g1h->heap_region_containing(obj);
6506       assert(!hr->is_continues_humongous(),
6507              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6508                      " starting at "HR_FORMAT,
6509                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6510 
6511       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6512       hr->add_strong_code_root_locked(_nm);
6513     }
6514   }
6515 
6516 public:
6517   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6518     _g1h(g1h), _nm(nm) {}
6519 
6520   void do_oop(oop* p)       { do_oop_work(p); }
6521   void do_oop(narrowOop* p) { do_oop_work(p); }
6522 };
6523 
6524 class UnregisterNMethodOopClosure: public OopClosure {
6525   G1CollectedHeap* _g1h;
6526   nmethod* _nm;
6527 
6528   template <class T> void do_oop_work(T* p) {
6529     T heap_oop = oopDesc::load_heap_oop(p);
6530     if (!oopDesc::is_null(heap_oop)) {
6531       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6532       HeapRegion* hr = _g1h->heap_region_containing(obj);
6533       assert(!hr->is_continues_humongous(),
6534              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6535                      " starting at "HR_FORMAT,
6536                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6537 
6538       hr->remove_strong_code_root(_nm);
6539     }
6540   }
6541 
6542 public:
6543   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6544     _g1h(g1h), _nm(nm) {}
6545 
6546   void do_oop(oop* p)       { do_oop_work(p); }
6547   void do_oop(narrowOop* p) { do_oop_work(p); }
6548 };
6549 
6550 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6551   CollectedHeap::register_nmethod(nm);
6552 
6553   guarantee(nm != NULL, "sanity");
6554   RegisterNMethodOopClosure reg_cl(this, nm);
6555   nm->oops_do(&reg_cl);
6556 }
6557 
6558 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6559   CollectedHeap::unregister_nmethod(nm);
6560 
6561   guarantee(nm != NULL, "sanity");
6562   UnregisterNMethodOopClosure reg_cl(this, nm);
6563   nm->oops_do(&reg_cl, true);
6564 }
6565 
6566 void G1CollectedHeap::purge_code_root_memory() {
6567   double purge_start = os::elapsedTime();
6568   G1CodeRootSet::purge();
6569   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6570   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6571 }
6572 
6573 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6574   G1CollectedHeap* _g1h;
6575 
6576 public:
6577   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6578     _g1h(g1h) {}
6579 
6580   void do_code_blob(CodeBlob* cb) {
6581     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6582     if (nm == NULL) {
6583       return;
6584     }
6585 
6586     if (ScavengeRootsInCode) {
6587       _g1h->register_nmethod(nm);
6588     }
6589   }
6590 };
6591 
6592 void G1CollectedHeap::rebuild_strong_code_roots() {
6593   RebuildStrongCodeRootClosure blob_cl(this);
6594   CodeCache::blobs_do(&blob_cl);
6595 }