1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
  27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
  28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
  38 #include "gc_implementation/shared/gcHeapSummary.hpp"
  39 #include "gc_implementation/shared/gcWhen.hpp"
  40 #include "memory/gcLocker.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/vmThread.hpp"
  45 #include "services/memTracker.hpp"
  46 #include "utilities/vmError.hpp"
  47 
  48 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  49 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  50 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  51 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  52 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
  53 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  54 
  55 jint ParallelScavengeHeap::initialize() {
  56   CollectedHeap::pre_initialize();
  57 
  58   // Initialize collector policy
  59   _collector_policy = new GenerationSizer();
  60   _collector_policy->initialize_all();
  61 
  62   const size_t heap_size = _collector_policy->max_heap_byte_size();
  63 
  64   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  65   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
  66 
  67   os::trace_page_sizes("ps main", _collector_policy->min_heap_byte_size(),
  68                        heap_size, generation_alignment(),
  69                        heap_rs.base(),
  70                        heap_rs.size());
  71   if (!heap_rs.is_reserved()) {
  72     vm_shutdown_during_initialization(
  73       "Could not reserve enough space for object heap");
  74     return JNI_ENOMEM;
  75   }
  76 
  77   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  78 
  79   CardTableExtension* const barrier_set = new CardTableExtension(reserved_region());
  80   barrier_set->initialize();
  81   _barrier_set = barrier_set;
  82   oopDesc::set_bs(_barrier_set);
  83   if (_barrier_set == NULL) {
  84     vm_shutdown_during_initialization(
  85       "Could not reserve enough space for barrier set");
  86     return JNI_ENOMEM;
  87   }
  88 
  89   // Make up the generations
  90   // Calculate the maximum size that a generation can grow.  This
  91   // includes growth into the other generation.  Note that the
  92   // parameter _max_gen_size is kept as the maximum
  93   // size of the generation as the boundaries currently stand.
  94   // _max_gen_size is still used as that value.
  95   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  96   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  97 
  98   _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
  99 
 100   _old_gen = _gens->old_gen();
 101   _young_gen = _gens->young_gen();
 102 
 103   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 104   const size_t old_capacity = _old_gen->capacity_in_bytes();
 105   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 106   _size_policy =
 107     new PSAdaptiveSizePolicy(eden_capacity,
 108                              initial_promo_size,
 109                              young_gen()->to_space()->capacity_in_bytes(),
 110                              _collector_policy->gen_alignment(),
 111                              max_gc_pause_sec,
 112                              max_gc_minor_pause_sec,
 113                              GCTimeRatio
 114                              );
 115 
 116   assert(!UseAdaptiveGCBoundary ||
 117     (old_gen()->virtual_space()->high_boundary() ==
 118      young_gen()->virtual_space()->low_boundary()),
 119     "Boundaries must meet");
 120   // initialize the policy counters - 2 collectors, 3 generations
 121   _gc_policy_counters =
 122     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 123   _psh = this;
 124 
 125   // Set up the GCTaskManager
 126   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 127 
 128   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 129     return JNI_ENOMEM;
 130   }
 131 
 132   return JNI_OK;
 133 }
 134 
 135 void ParallelScavengeHeap::post_initialize() {
 136   // Need to init the tenuring threshold
 137   PSScavenge::initialize();
 138   if (UseParallelOldGC) {
 139     PSParallelCompact::post_initialize();
 140   } else {
 141     PSMarkSweep::initialize();
 142   }
 143   PSPromotionManager::initialize();
 144 }
 145 
 146 void ParallelScavengeHeap::update_counters() {
 147   young_gen()->update_counters();
 148   old_gen()->update_counters();
 149   MetaspaceCounters::update_performance_counters();
 150   CompressedClassSpaceCounters::update_performance_counters();
 151 }
 152 
 153 size_t ParallelScavengeHeap::capacity() const {
 154   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 155   return value;
 156 }
 157 
 158 size_t ParallelScavengeHeap::used() const {
 159   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 160   return value;
 161 }
 162 
 163 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 164   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 165 }
 166 
 167 
 168 size_t ParallelScavengeHeap::max_capacity() const {
 169   size_t estimated = reserved_region().byte_size();
 170   if (UseAdaptiveSizePolicy) {
 171     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 172   } else {
 173     estimated -= young_gen()->to_space()->capacity_in_bytes();
 174   }
 175   return MAX2(estimated, capacity());
 176 }
 177 
 178 bool ParallelScavengeHeap::is_in(const void* p) const {
 179   if (young_gen()->is_in(p)) {
 180     return true;
 181   }
 182 
 183   if (old_gen()->is_in(p)) {
 184     return true;
 185   }
 186 
 187   return false;
 188 }
 189 
 190 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 191   if (young_gen()->is_in_reserved(p)) {
 192     return true;
 193   }
 194 
 195   if (old_gen()->is_in_reserved(p)) {
 196     return true;
 197   }
 198 
 199   return false;
 200 }
 201 
 202 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
 203   return is_in_young((oop)addr);
 204 }
 205 
 206 // There are two levels of allocation policy here.
 207 //
 208 // When an allocation request fails, the requesting thread must invoke a VM
 209 // operation, transfer control to the VM thread, and await the results of a
 210 // garbage collection. That is quite expensive, and we should avoid doing it
 211 // multiple times if possible.
 212 //
 213 // To accomplish this, we have a basic allocation policy, and also a
 214 // failed allocation policy.
 215 //
 216 // The basic allocation policy controls how you allocate memory without
 217 // attempting garbage collection. It is okay to grab locks and
 218 // expand the heap, if that can be done without coming to a safepoint.
 219 // It is likely that the basic allocation policy will not be very
 220 // aggressive.
 221 //
 222 // The failed allocation policy is invoked from the VM thread after
 223 // the basic allocation policy is unable to satisfy a mem_allocate
 224 // request. This policy needs to cover the entire range of collection,
 225 // heap expansion, and out-of-memory conditions. It should make every
 226 // attempt to allocate the requested memory.
 227 
 228 // Basic allocation policy. Should never be called at a safepoint, or
 229 // from the VM thread.
 230 //
 231 // This method must handle cases where many mem_allocate requests fail
 232 // simultaneously. When that happens, only one VM operation will succeed,
 233 // and the rest will not be executed. For that reason, this method loops
 234 // during failed allocation attempts. If the java heap becomes exhausted,
 235 // we rely on the size_policy object to force a bail out.
 236 HeapWord* ParallelScavengeHeap::mem_allocate(
 237                                      size_t size,
 238                                      bool* gc_overhead_limit_was_exceeded) {
 239   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 240   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 241   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 242 
 243   // In general gc_overhead_limit_was_exceeded should be false so
 244   // set it so here and reset it to true only if the gc time
 245   // limit is being exceeded as checked below.
 246   *gc_overhead_limit_was_exceeded = false;
 247 
 248   HeapWord* result = young_gen()->allocate(size);
 249 
 250   uint loop_count = 0;
 251   uint gc_count = 0;
 252   uint gclocker_stalled_count = 0;
 253 
 254   while (result == NULL) {
 255     // We don't want to have multiple collections for a single filled generation.
 256     // To prevent this, each thread tracks the total_collections() value, and if
 257     // the count has changed, does not do a new collection.
 258     //
 259     // The collection count must be read only while holding the heap lock. VM
 260     // operations also hold the heap lock during collections. There is a lock
 261     // contention case where thread A blocks waiting on the Heap_lock, while
 262     // thread B is holding it doing a collection. When thread A gets the lock,
 263     // the collection count has already changed. To prevent duplicate collections,
 264     // The policy MUST attempt allocations during the same period it reads the
 265     // total_collections() value!
 266     {
 267       MutexLocker ml(Heap_lock);
 268       gc_count = Universe::heap()->total_collections();
 269 
 270       result = young_gen()->allocate(size);
 271       if (result != NULL) {
 272         return result;
 273       }
 274 
 275       // If certain conditions hold, try allocating from the old gen.
 276       result = mem_allocate_old_gen(size);
 277       if (result != NULL) {
 278         return result;
 279       }
 280 
 281       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 282         return NULL;
 283       }
 284 
 285       // Failed to allocate without a gc.
 286       if (GC_locker::is_active_and_needs_gc()) {
 287         // If this thread is not in a jni critical section, we stall
 288         // the requestor until the critical section has cleared and
 289         // GC allowed. When the critical section clears, a GC is
 290         // initiated by the last thread exiting the critical section; so
 291         // we retry the allocation sequence from the beginning of the loop,
 292         // rather than causing more, now probably unnecessary, GC attempts.
 293         JavaThread* jthr = JavaThread::current();
 294         if (!jthr->in_critical()) {
 295           MutexUnlocker mul(Heap_lock);
 296           GC_locker::stall_until_clear();
 297           gclocker_stalled_count += 1;
 298           continue;
 299         } else {
 300           if (CheckJNICalls) {
 301             fatal("Possible deadlock due to allocating while"
 302                   " in jni critical section");
 303           }
 304           return NULL;
 305         }
 306       }
 307     }
 308 
 309     if (result == NULL) {
 310       // Generate a VM operation
 311       VM_ParallelGCFailedAllocation op(size, gc_count);
 312       VMThread::execute(&op);
 313 
 314       // Did the VM operation execute? If so, return the result directly.
 315       // This prevents us from looping until time out on requests that can
 316       // not be satisfied.
 317       if (op.prologue_succeeded()) {
 318         assert(Universe::heap()->is_in_or_null(op.result()),
 319           "result not in heap");
 320 
 321         // If GC was locked out during VM operation then retry allocation
 322         // and/or stall as necessary.
 323         if (op.gc_locked()) {
 324           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 325           continue;  // retry and/or stall as necessary
 326         }
 327 
 328         // Exit the loop if the gc time limit has been exceeded.
 329         // The allocation must have failed above ("result" guarding
 330         // this path is NULL) and the most recent collection has exceeded the
 331         // gc overhead limit (although enough may have been collected to
 332         // satisfy the allocation).  Exit the loop so that an out-of-memory
 333         // will be thrown (return a NULL ignoring the contents of
 334         // op.result()),
 335         // but clear gc_overhead_limit_exceeded so that the next collection
 336         // starts with a clean slate (i.e., forgets about previous overhead
 337         // excesses).  Fill op.result() with a filler object so that the
 338         // heap remains parsable.
 339         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 340         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 341 
 342         if (limit_exceeded && softrefs_clear) {
 343           *gc_overhead_limit_was_exceeded = true;
 344           size_policy()->set_gc_overhead_limit_exceeded(false);
 345           if (PrintGCDetails && Verbose) {
 346             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
 347               "return NULL because gc_overhead_limit_exceeded is set");
 348           }
 349           if (op.result() != NULL) {
 350             CollectedHeap::fill_with_object(op.result(), size);
 351           }
 352           return NULL;
 353         }
 354 
 355         return op.result();
 356       }
 357     }
 358 
 359     // The policy object will prevent us from looping forever. If the
 360     // time spent in gc crosses a threshold, we will bail out.
 361     loop_count++;
 362     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 363         (loop_count % QueuedAllocationWarningCount == 0)) {
 364       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
 365               " size=" SIZE_FORMAT, loop_count, size);
 366     }
 367   }
 368 
 369   return result;
 370 }
 371 
 372 // A "death march" is a series of ultra-slow allocations in which a full gc is
 373 // done before each allocation, and after the full gc the allocation still
 374 // cannot be satisfied from the young gen.  This routine detects that condition;
 375 // it should be called after a full gc has been done and the allocation
 376 // attempted from the young gen. The parameter 'addr' should be the result of
 377 // that young gen allocation attempt.
 378 void
 379 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 380   if (addr != NULL) {
 381     _death_march_count = 0;  // death march has ended
 382   } else if (_death_march_count == 0) {
 383     if (should_alloc_in_eden(size)) {
 384       _death_march_count = 1;    // death march has started
 385     }
 386   }
 387 }
 388 
 389 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 390   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
 391     // Size is too big for eden, or gc is locked out.
 392     return old_gen()->allocate(size);
 393   }
 394 
 395   // If a "death march" is in progress, allocate from the old gen a limited
 396   // number of times before doing a GC.
 397   if (_death_march_count > 0) {
 398     if (_death_march_count < 64) {
 399       ++_death_march_count;
 400       return old_gen()->allocate(size);
 401     } else {
 402       _death_march_count = 0;
 403     }
 404   }
 405   return NULL;
 406 }
 407 
 408 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 409   if (UseParallelOldGC) {
 410     // The do_full_collection() parameter clear_all_soft_refs
 411     // is interpreted here as maximum_compaction which will
 412     // cause SoftRefs to be cleared.
 413     bool maximum_compaction = clear_all_soft_refs;
 414     PSParallelCompact::invoke(maximum_compaction);
 415   } else {
 416     PSMarkSweep::invoke(clear_all_soft_refs);
 417   }
 418 }
 419 
 420 // Failed allocation policy. Must be called from the VM thread, and
 421 // only at a safepoint! Note that this method has policy for allocation
 422 // flow, and NOT collection policy. So we do not check for gc collection
 423 // time over limit here, that is the responsibility of the heap specific
 424 // collection methods. This method decides where to attempt allocations,
 425 // and when to attempt collections, but no collection specific policy.
 426 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 427   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 428   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 429   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 430   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 431 
 432   // We assume that allocation in eden will fail unless we collect.
 433 
 434   // First level allocation failure, scavenge and allocate in young gen.
 435   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 436   const bool invoked_full_gc = PSScavenge::invoke();
 437   HeapWord* result = young_gen()->allocate(size);
 438 
 439   // Second level allocation failure.
 440   //   Mark sweep and allocate in young generation.
 441   if (result == NULL && !invoked_full_gc) {
 442     do_full_collection(false);
 443     result = young_gen()->allocate(size);
 444   }
 445 
 446   death_march_check(result, size);
 447 
 448   // Third level allocation failure.
 449   //   After mark sweep and young generation allocation failure,
 450   //   allocate in old generation.
 451   if (result == NULL) {
 452     result = old_gen()->allocate(size);
 453   }
 454 
 455   // Fourth level allocation failure. We're running out of memory.
 456   //   More complete mark sweep and allocate in young generation.
 457   if (result == NULL) {
 458     do_full_collection(true);
 459     result = young_gen()->allocate(size);
 460   }
 461 
 462   // Fifth level allocation failure.
 463   //   After more complete mark sweep, allocate in old generation.
 464   if (result == NULL) {
 465     result = old_gen()->allocate(size);
 466   }
 467 
 468   return result;
 469 }
 470 
 471 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 472   CollectedHeap::ensure_parsability(retire_tlabs);
 473   young_gen()->eden_space()->ensure_parsability();
 474 }
 475 
 476 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 477   return young_gen()->eden_space()->tlab_capacity(thr);
 478 }
 479 
 480 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 481   return young_gen()->eden_space()->tlab_used(thr);
 482 }
 483 
 484 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 485   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 486 }
 487 
 488 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 489   return young_gen()->allocate(size);
 490 }
 491 
 492 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 493   CollectedHeap::accumulate_statistics_all_tlabs();
 494 }
 495 
 496 void ParallelScavengeHeap::resize_all_tlabs() {
 497   CollectedHeap::resize_all_tlabs();
 498 }
 499 
 500 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 501   // We don't need barriers for stores to objects in the
 502   // young gen and, a fortiori, for initializing stores to
 503   // objects therein.
 504   return is_in_young(new_obj);
 505 }
 506 
 507 // This method is used by System.gc() and JVMTI.
 508 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 509   assert(!Heap_lock->owned_by_self(),
 510     "this thread should not own the Heap_lock");
 511 
 512   uint gc_count      = 0;
 513   uint full_gc_count = 0;
 514   {
 515     MutexLocker ml(Heap_lock);
 516     // This value is guarded by the Heap_lock
 517     gc_count      = Universe::heap()->total_collections();
 518     full_gc_count = Universe::heap()->total_full_collections();
 519   }
 520 
 521   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 522   VMThread::execute(&op);
 523 }
 524 
 525 void ParallelScavengeHeap::oop_iterate(ExtendedOopClosure* cl) {
 526   Unimplemented();
 527 }
 528 
 529 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 530   young_gen()->object_iterate(cl);
 531   old_gen()->object_iterate(cl);
 532 }
 533 
 534 
 535 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 536   if (young_gen()->is_in_reserved(addr)) {
 537     assert(young_gen()->is_in(addr),
 538            "addr should be in allocated part of young gen");
 539     // called from os::print_location by find or VMError
 540     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 541     Unimplemented();
 542   } else if (old_gen()->is_in_reserved(addr)) {
 543     assert(old_gen()->is_in(addr),
 544            "addr should be in allocated part of old gen");
 545     return old_gen()->start_array()->object_start((HeapWord*)addr);
 546   }
 547   return 0;
 548 }
 549 
 550 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 551   return oop(addr)->size();
 552 }
 553 
 554 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 555   return block_start(addr) == addr;
 556 }
 557 
 558 jlong ParallelScavengeHeap::millis_since_last_gc() {
 559   return UseParallelOldGC ?
 560     PSParallelCompact::millis_since_last_gc() :
 561     PSMarkSweep::millis_since_last_gc();
 562 }
 563 
 564 void ParallelScavengeHeap::prepare_for_verify() {
 565   ensure_parsability(false);  // no need to retire TLABs for verification
 566 }
 567 
 568 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 569   PSOldGen* old = old_gen();
 570   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 571   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 572   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 573 
 574   PSYoungGen* young = young_gen();
 575   VirtualSpaceSummary young_summary(young->reserved().start(),
 576     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 577 
 578   MutableSpace* eden = young_gen()->eden_space();
 579   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 580 
 581   MutableSpace* from = young_gen()->from_space();
 582   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 583 
 584   MutableSpace* to = young_gen()->to_space();
 585   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 586 
 587   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 588   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 589 }
 590 
 591 void ParallelScavengeHeap::print_on(outputStream* st) const {
 592   young_gen()->print_on(st);
 593   old_gen()->print_on(st);
 594   MetaspaceAux::print_on(st);
 595 }
 596 
 597 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 598   this->CollectedHeap::print_on_error(st);
 599 
 600   if (UseParallelOldGC) {
 601     st->cr();
 602     PSParallelCompact::print_on_error(st);
 603   }
 604 }
 605 
 606 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 607   PSScavenge::gc_task_manager()->threads_do(tc);
 608 }
 609 
 610 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 611   PSScavenge::gc_task_manager()->print_threads_on(st);
 612 }
 613 
 614 void ParallelScavengeHeap::print_tracing_info() const {
 615   if (TraceYoungGenTime) {
 616     double time = PSScavenge::accumulated_time()->seconds();
 617     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 618   }
 619   if (TraceOldGenTime) {
 620     double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
 621     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 622   }
 623 }
 624 
 625 
 626 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
 627   // Why do we need the total_collections()-filter below?
 628   if (total_collections() > 0) {
 629     if (!silent) {
 630       gclog_or_tty->print("tenured ");
 631     }
 632     old_gen()->verify();
 633 
 634     if (!silent) {
 635       gclog_or_tty->print("eden ");
 636     }
 637     young_gen()->verify();
 638   }
 639 }
 640 
 641 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
 642   if (PrintGCDetails && Verbose) {
 643     gclog_or_tty->print(" "  SIZE_FORMAT
 644                         "->" SIZE_FORMAT
 645                         "("  SIZE_FORMAT ")",
 646                         prev_used, used(), capacity());
 647   } else {
 648     gclog_or_tty->print(" "  SIZE_FORMAT "K"
 649                         "->" SIZE_FORMAT "K"
 650                         "("  SIZE_FORMAT "K)",
 651                         prev_used / K, used() / K, capacity() / K);
 652   }
 653 }
 654 
 655 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 656   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 657   gc_tracer->report_gc_heap_summary(when, heap_summary);
 658 
 659   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 660   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 661 }
 662 
 663 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 664   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 665   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
 666   return _psh;
 667 }
 668 
 669 // Before delegating the resize to the young generation,
 670 // the reserved space for the young and old generations
 671 // may be changed to accommodate the desired resize.
 672 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 673     size_t survivor_size) {
 674   if (UseAdaptiveGCBoundary) {
 675     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 676       size_policy()->reset_bytes_absorbed_from_eden();
 677       return;  // The generation changed size already.
 678     }
 679     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 680   }
 681 
 682   // Delegate the resize to the generation.
 683   _young_gen->resize(eden_size, survivor_size);
 684 }
 685 
 686 // Before delegating the resize to the old generation,
 687 // the reserved space for the young and old generations
 688 // may be changed to accommodate the desired resize.
 689 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 690   if (UseAdaptiveGCBoundary) {
 691     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 692       size_policy()->reset_bytes_absorbed_from_eden();
 693       return;  // The generation changed size already.
 694     }
 695     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 696   }
 697 
 698   // Delegate the resize to the generation.
 699   _old_gen->resize(desired_free_space);
 700 }
 701 
 702 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 703   // nothing particular
 704 }
 705 
 706 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 707   // nothing particular
 708 }
 709 
 710 #ifndef PRODUCT
 711 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 712   if (ZapUnusedHeapArea) {
 713     young_gen()->record_spaces_top();
 714     old_gen()->record_spaces_top();
 715   }
 716 }
 717 
 718 void ParallelScavengeHeap::gen_mangle_unused_area() {
 719   if (ZapUnusedHeapArea) {
 720     young_gen()->eden_space()->mangle_unused_area();
 721     young_gen()->to_space()->mangle_unused_area();
 722     young_gen()->from_space()->mangle_unused_area();
 723     old_gen()->object_space()->mangle_unused_area();
 724   }
 725 }
 726 #endif