1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   bool _concurrent;
  96 public:
  97   RefineCardTableEntryClosure() : _concurrent(true) { }
  98 
  99   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 100     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 101     // This path is executed by the concurrent refine or mutator threads,
 102     // concurrently, and so we do not care if card_ptr contains references
 103     // that point into the collection set.
 104     assert(!oops_into_cset, "should be");
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_processed;
 121 
 122  public:
 123   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     *card_ptr = CardTableModRefBS::dirty_card_val();
 127     _num_processed++;
 128     return true;
 129   }
 130 
 131   size_t num_processed() const { return _num_processed; }
 132 };
 133 
 134 YoungList::YoungList(G1CollectedHeap* g1h) :
 135     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 136     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 137   guarantee(check_list_empty(false), "just making sure...");
 138 }
 139 
 140 void YoungList::push_region(HeapRegion *hr) {
 141   assert(!hr->is_young(), "should not already be young");
 142   assert(hr->get_next_young_region() == NULL, "cause it should!");
 143 
 144   hr->set_next_young_region(_head);
 145   _head = hr;
 146 
 147   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 148   ++_length;
 149 }
 150 
 151 void YoungList::add_survivor_region(HeapRegion* hr) {
 152   assert(hr->is_survivor(), "should be flagged as survivor region");
 153   assert(hr->get_next_young_region() == NULL, "cause it should!");
 154 
 155   hr->set_next_young_region(_survivor_head);
 156   if (_survivor_head == NULL) {
 157     _survivor_tail = hr;
 158   }
 159   _survivor_head = hr;
 160   ++_survivor_length;
 161 }
 162 
 163 void YoungList::empty_list(HeapRegion* list) {
 164   while (list != NULL) {
 165     HeapRegion* next = list->get_next_young_region();
 166     list->set_next_young_region(NULL);
 167     list->uninstall_surv_rate_group();
 168     // This is called before a Full GC and all the non-empty /
 169     // non-humongous regions at the end of the Full GC will end up as
 170     // old anyway.
 171     list->set_old();
 172     list = next;
 173   }
 174 }
 175 
 176 void YoungList::empty_list() {
 177   assert(check_list_well_formed(), "young list should be well formed");
 178 
 179   empty_list(_head);
 180   _head = NULL;
 181   _length = 0;
 182 
 183   empty_list(_survivor_head);
 184   _survivor_head = NULL;
 185   _survivor_tail = NULL;
 186   _survivor_length = 0;
 187 
 188   _last_sampled_rs_lengths = 0;
 189 
 190   assert(check_list_empty(false), "just making sure...");
 191 }
 192 
 193 bool YoungList::check_list_well_formed() {
 194   bool ret = true;
 195 
 196   uint length = 0;
 197   HeapRegion* curr = _head;
 198   HeapRegion* last = NULL;
 199   while (curr != NULL) {
 200     if (!curr->is_young()) {
 201       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 202                              "incorrectly tagged (y: %d, surv: %d)",
 203                              curr->bottom(), curr->end(),
 204                              curr->is_young(), curr->is_survivor());
 205       ret = false;
 206     }
 207     ++length;
 208     last = curr;
 209     curr = curr->get_next_young_region();
 210   }
 211   ret = ret && (length == _length);
 212 
 213   if (!ret) {
 214     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 215     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 216                            length, _length);
 217   }
 218 
 219   return ret;
 220 }
 221 
 222 bool YoungList::check_list_empty(bool check_sample) {
 223   bool ret = true;
 224 
 225   if (_length != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 227                   _length);
 228     ret = false;
 229   }
 230   if (check_sample && _last_sampled_rs_lengths != 0) {
 231     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 232     ret = false;
 233   }
 234   if (_head != NULL) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 236     ret = false;
 237   }
 238   if (!ret) {
 239     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 240   }
 241 
 242   return ret;
 243 }
 244 
 245 void
 246 YoungList::rs_length_sampling_init() {
 247   _sampled_rs_lengths = 0;
 248   _curr               = _head;
 249 }
 250 
 251 bool
 252 YoungList::rs_length_sampling_more() {
 253   return _curr != NULL;
 254 }
 255 
 256 void
 257 YoungList::rs_length_sampling_next() {
 258   assert( _curr != NULL, "invariant" );
 259   size_t rs_length = _curr->rem_set()->occupied();
 260 
 261   _sampled_rs_lengths += rs_length;
 262 
 263   // The current region may not yet have been added to the
 264   // incremental collection set (it gets added when it is
 265   // retired as the current allocation region).
 266   if (_curr->in_collection_set()) {
 267     // Update the collection set policy information for this region
 268     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 269   }
 270 
 271   _curr = _curr->get_next_young_region();
 272   if (_curr == NULL) {
 273     _last_sampled_rs_lengths = _sampled_rs_lengths;
 274     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 275   }
 276 }
 277 
 278 void
 279 YoungList::reset_auxilary_lists() {
 280   guarantee( is_empty(), "young list should be empty" );
 281   assert(check_list_well_formed(), "young list should be well formed");
 282 
 283   // Add survivor regions to SurvRateGroup.
 284   _g1h->g1_policy()->note_start_adding_survivor_regions();
 285   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 286 
 287   int young_index_in_cset = 0;
 288   for (HeapRegion* curr = _survivor_head;
 289        curr != NULL;
 290        curr = curr->get_next_young_region()) {
 291     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 292 
 293     // The region is a non-empty survivor so let's add it to
 294     // the incremental collection set for the next evacuation
 295     // pause.
 296     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 297     young_index_in_cset += 1;
 298   }
 299   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 300   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 301 
 302   _head   = _survivor_head;
 303   _length = _survivor_length;
 304   if (_survivor_head != NULL) {
 305     assert(_survivor_tail != NULL, "cause it shouldn't be");
 306     assert(_survivor_length > 0, "invariant");
 307     _survivor_tail->set_next_young_region(NULL);
 308   }
 309 
 310   // Don't clear the survivor list handles until the start of
 311   // the next evacuation pause - we need it in order to re-tag
 312   // the survivor regions from this evacuation pause as 'young'
 313   // at the start of the next.
 314 
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 316 
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 }
 319 
 320 void YoungList::print() {
 321   HeapRegion* lists[] = {_head,   _survivor_head};
 322   const char* names[] = {"YOUNG", "SURVIVOR"};
 323 
 324   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 325     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 326     HeapRegion *curr = lists[list];
 327     if (curr == NULL)
 328       gclog_or_tty->print_cr("  empty");
 329     while (curr != NULL) {
 330       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 331                              HR_FORMAT_PARAMS(curr),
 332                              curr->prev_top_at_mark_start(),
 333                              curr->next_top_at_mark_start(),
 334                              curr->age_in_surv_rate_group_cond());
 335       curr = curr->get_next_young_region();
 336     }
 337   }
 338 
 339   gclog_or_tty->cr();
 340 }
 341 
 342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 343   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 344 }
 345 
 346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 347   // The from card cache is not the memory that is actually committed. So we cannot
 348   // take advantage of the zero_filled parameter.
 349   reset_from_card_cache(start_idx, num_regions);
 350 }
 351 
 352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 353 {
 354   // Claim the right to put the region on the dirty cards region list
 355   // by installing a self pointer.
 356   HeapRegion* next = hr->get_next_dirty_cards_region();
 357   if (next == NULL) {
 358     HeapRegion* res = (HeapRegion*)
 359       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 360                           NULL);
 361     if (res == NULL) {
 362       HeapRegion* head;
 363       do {
 364         // Put the region to the dirty cards region list.
 365         head = _dirty_cards_region_list;
 366         next = (HeapRegion*)
 367           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 368         if (next == head) {
 369           assert(hr->get_next_dirty_cards_region() == hr,
 370                  "hr->get_next_dirty_cards_region() != hr");
 371           if (next == NULL) {
 372             // The last region in the list points to itself.
 373             hr->set_next_dirty_cards_region(hr);
 374           } else {
 375             hr->set_next_dirty_cards_region(next);
 376           }
 377         }
 378       } while (next != head);
 379     }
 380   }
 381 }
 382 
 383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 384 {
 385   HeapRegion* head;
 386   HeapRegion* hr;
 387   do {
 388     head = _dirty_cards_region_list;
 389     if (head == NULL) {
 390       return NULL;
 391     }
 392     HeapRegion* new_head = head->get_next_dirty_cards_region();
 393     if (head == new_head) {
 394       // The last region.
 395       new_head = NULL;
 396     }
 397     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 398                                           head);
 399   } while (hr != head);
 400   assert(hr != NULL, "invariant");
 401   hr->set_next_dirty_cards_region(NULL);
 402   return hr;
 403 }
 404 
 405 // Returns true if the reference points to an object that
 406 // can move in an incremental collection.
 407 bool G1CollectedHeap::is_scavengable(const void* p) {
 408   HeapRegion* hr = heap_region_containing(p);
 409   return !hr->is_humongous();
 410 }
 411 
 412 // Private class members.
 413 
 414 G1CollectedHeap* G1CollectedHeap::_g1h;
 415 
 416 // Private methods.
 417 
 418 HeapRegion*
 419 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 420   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 421   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 422     if (!_secondary_free_list.is_empty()) {
 423       if (G1ConcRegionFreeingVerbose) {
 424         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 425                                "secondary_free_list has %u entries",
 426                                _secondary_free_list.length());
 427       }
 428       // It looks as if there are free regions available on the
 429       // secondary_free_list. Let's move them to the free_list and try
 430       // again to allocate from it.
 431       append_secondary_free_list();
 432 
 433       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 434              "empty we should have moved at least one entry to the free_list");
 435       HeapRegion* res = _hrm.allocate_free_region(is_old);
 436       if (G1ConcRegionFreeingVerbose) {
 437         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 438                                "allocated "HR_FORMAT" from secondary_free_list",
 439                                HR_FORMAT_PARAMS(res));
 440       }
 441       return res;
 442     }
 443 
 444     // Wait here until we get notified either when (a) there are no
 445     // more free regions coming or (b) some regions have been moved on
 446     // the secondary_free_list.
 447     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 448   }
 449 
 450   if (G1ConcRegionFreeingVerbose) {
 451     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 452                            "could not allocate from secondary_free_list");
 453   }
 454   return NULL;
 455 }
 456 
 457 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 458   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 459          "the only time we use this to allocate a humongous region is "
 460          "when we are allocating a single humongous region");
 461 
 462   HeapRegion* res;
 463   if (G1StressConcRegionFreeing) {
 464     if (!_secondary_free_list.is_empty()) {
 465       if (G1ConcRegionFreeingVerbose) {
 466         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 467                                "forced to look at the secondary_free_list");
 468       }
 469       res = new_region_try_secondary_free_list(is_old);
 470       if (res != NULL) {
 471         return res;
 472       }
 473     }
 474   }
 475 
 476   res = _hrm.allocate_free_region(is_old);
 477 
 478   if (res == NULL) {
 479     if (G1ConcRegionFreeingVerbose) {
 480       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 481                              "res == NULL, trying the secondary_free_list");
 482     }
 483     res = new_region_try_secondary_free_list(is_old);
 484   }
 485   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 486     // Currently, only attempts to allocate GC alloc regions set
 487     // do_expand to true. So, we should only reach here during a
 488     // safepoint. If this assumption changes we might have to
 489     // reconsider the use of _expand_heap_after_alloc_failure.
 490     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 491 
 492     ergo_verbose1(ErgoHeapSizing,
 493                   "attempt heap expansion",
 494                   ergo_format_reason("region allocation request failed")
 495                   ergo_format_byte("allocation request"),
 496                   word_size * HeapWordSize);
 497     if (expand(word_size * HeapWordSize)) {
 498       // Given that expand() succeeded in expanding the heap, and we
 499       // always expand the heap by an amount aligned to the heap
 500       // region size, the free list should in theory not be empty.
 501       // In either case allocate_free_region() will check for NULL.
 502       res = _hrm.allocate_free_region(is_old);
 503     } else {
 504       _expand_heap_after_alloc_failure = false;
 505     }
 506   }
 507   return res;
 508 }
 509 
 510 HeapWord*
 511 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 512                                                            uint num_regions,
 513                                                            size_t word_size,
 514                                                            AllocationContext_t context) {
 515   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 516   assert(is_humongous(word_size), "word_size should be humongous");
 517   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 518 
 519   // Index of last region in the series + 1.
 520   uint last = first + num_regions;
 521 
 522   // We need to initialize the region(s) we just discovered. This is
 523   // a bit tricky given that it can happen concurrently with
 524   // refinement threads refining cards on these regions and
 525   // potentially wanting to refine the BOT as they are scanning
 526   // those cards (this can happen shortly after a cleanup; see CR
 527   // 6991377). So we have to set up the region(s) carefully and in
 528   // a specific order.
 529 
 530   // The word size sum of all the regions we will allocate.
 531   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 532   assert(word_size <= word_size_sum, "sanity");
 533 
 534   // This will be the "starts humongous" region.
 535   HeapRegion* first_hr = region_at(first);
 536   // The header of the new object will be placed at the bottom of
 537   // the first region.
 538   HeapWord* new_obj = first_hr->bottom();
 539   // This will be the new end of the first region in the series that
 540   // should also match the end of the last region in the series.
 541   HeapWord* new_end = new_obj + word_size_sum;
 542   // This will be the new top of the first region that will reflect
 543   // this allocation.
 544   HeapWord* new_top = new_obj + word_size;
 545 
 546   // First, we need to zero the header of the space that we will be
 547   // allocating. When we update top further down, some refinement
 548   // threads might try to scan the region. By zeroing the header we
 549   // ensure that any thread that will try to scan the region will
 550   // come across the zero klass word and bail out.
 551   //
 552   // NOTE: It would not have been correct to have used
 553   // CollectedHeap::fill_with_object() and make the space look like
 554   // an int array. The thread that is doing the allocation will
 555   // later update the object header to a potentially different array
 556   // type and, for a very short period of time, the klass and length
 557   // fields will be inconsistent. This could cause a refinement
 558   // thread to calculate the object size incorrectly.
 559   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 560 
 561   // We will set up the first region as "starts humongous". This
 562   // will also update the BOT covering all the regions to reflect
 563   // that there is a single object that starts at the bottom of the
 564   // first region.
 565   first_hr->set_starts_humongous(new_top, new_end);
 566   first_hr->set_allocation_context(context);
 567   // Then, if there are any, we will set up the "continues
 568   // humongous" regions.
 569   HeapRegion* hr = NULL;
 570   for (uint i = first + 1; i < last; ++i) {
 571     hr = region_at(i);
 572     hr->set_continues_humongous(first_hr);
 573     hr->set_allocation_context(context);
 574   }
 575   // If we have "continues humongous" regions (hr != NULL), then the
 576   // end of the last one should match new_end.
 577   assert(hr == NULL || hr->end() == new_end, "sanity");
 578 
 579   // Up to this point no concurrent thread would have been able to
 580   // do any scanning on any region in this series. All the top
 581   // fields still point to bottom, so the intersection between
 582   // [bottom,top] and [card_start,card_end] will be empty. Before we
 583   // update the top fields, we'll do a storestore to make sure that
 584   // no thread sees the update to top before the zeroing of the
 585   // object header and the BOT initialization.
 586   OrderAccess::storestore();
 587 
 588   // Now that the BOT and the object header have been initialized,
 589   // we can update top of the "starts humongous" region.
 590   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 591          "new_top should be in this region");
 592   first_hr->set_top(new_top);
 593   if (_hr_printer.is_active()) {
 594     HeapWord* bottom = first_hr->bottom();
 595     HeapWord* end = first_hr->orig_end();
 596     if ((first + 1) == last) {
 597       // the series has a single humongous region
 598       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 599     } else {
 600       // the series has more than one humongous regions
 601       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 602     }
 603   }
 604 
 605   // Now, we will update the top fields of the "continues humongous"
 606   // regions. The reason we need to do this is that, otherwise,
 607   // these regions would look empty and this will confuse parts of
 608   // G1. For example, the code that looks for a consecutive number
 609   // of empty regions will consider them empty and try to
 610   // re-allocate them. We can extend is_empty() to also include
 611   // !is_continues_humongous(), but it is easier to just update the top
 612   // fields here. The way we set top for all regions (i.e., top ==
 613   // end for all regions but the last one, top == new_top for the
 614   // last one) is actually used when we will free up the humongous
 615   // region in free_humongous_region().
 616   hr = NULL;
 617   for (uint i = first + 1; i < last; ++i) {
 618     hr = region_at(i);
 619     if ((i + 1) == last) {
 620       // last continues humongous region
 621       assert(hr->bottom() < new_top && new_top <= hr->end(),
 622              "new_top should fall on this region");
 623       hr->set_top(new_top);
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 625     } else {
 626       // not last one
 627       assert(new_top > hr->end(), "new_top should be above this region");
 628       hr->set_top(hr->end());
 629       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 630     }
 631   }
 632   // If we have continues humongous regions (hr != NULL), then the
 633   // end of the last one should match new_end and its top should
 634   // match new_top.
 635   assert(hr == NULL ||
 636          (hr->end() == new_end && hr->top() == new_top), "sanity");
 637   check_bitmaps("Humongous Region Allocation", first_hr);
 638 
 639   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 640   _allocator->increase_used(first_hr->used());
 641   _humongous_set.add(first_hr);
 642 
 643   return new_obj;
 644 }
 645 
 646 // If could fit into free regions w/o expansion, try.
 647 // Otherwise, if can expand, do so.
 648 // Otherwise, if using ex regions might help, try with ex given back.
 649 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 650   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 651 
 652   verify_region_sets_optional();
 653 
 654   uint first = G1_NO_HRM_INDEX;
 655   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 656 
 657   if (obj_regions == 1) {
 658     // Only one region to allocate, try to use a fast path by directly allocating
 659     // from the free lists. Do not try to expand here, we will potentially do that
 660     // later.
 661     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 662     if (hr != NULL) {
 663       first = hr->hrm_index();
 664     }
 665   } else {
 666     // We can't allocate humongous regions spanning more than one region while
 667     // cleanupComplete() is running, since some of the regions we find to be
 668     // empty might not yet be added to the free list. It is not straightforward
 669     // to know in which list they are on so that we can remove them. We only
 670     // need to do this if we need to allocate more than one region to satisfy the
 671     // current humongous allocation request. If we are only allocating one region
 672     // we use the one-region region allocation code (see above), that already
 673     // potentially waits for regions from the secondary free list.
 674     wait_while_free_regions_coming();
 675     append_secondary_free_list_if_not_empty_with_lock();
 676 
 677     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 678     // are lucky enough to find some.
 679     first = _hrm.find_contiguous_only_empty(obj_regions);
 680     if (first != G1_NO_HRM_INDEX) {
 681       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 682     }
 683   }
 684 
 685   if (first == G1_NO_HRM_INDEX) {
 686     // Policy: We could not find enough regions for the humongous object in the
 687     // free list. Look through the heap to find a mix of free and uncommitted regions.
 688     // If so, try expansion.
 689     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 690     if (first != G1_NO_HRM_INDEX) {
 691       // We found something. Make sure these regions are committed, i.e. expand
 692       // the heap. Alternatively we could do a defragmentation GC.
 693       ergo_verbose1(ErgoHeapSizing,
 694                     "attempt heap expansion",
 695                     ergo_format_reason("humongous allocation request failed")
 696                     ergo_format_byte("allocation request"),
 697                     word_size * HeapWordSize);
 698 
 699       _hrm.expand_at(first, obj_regions);
 700       g1_policy()->record_new_heap_size(num_regions());
 701 
 702 #ifdef ASSERT
 703       for (uint i = first; i < first + obj_regions; ++i) {
 704         HeapRegion* hr = region_at(i);
 705         assert(hr->is_free(), "sanity");
 706         assert(hr->is_empty(), "sanity");
 707         assert(is_on_master_free_list(hr), "sanity");
 708       }
 709 #endif
 710       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 711     } else {
 712       // Policy: Potentially trigger a defragmentation GC.
 713     }
 714   }
 715 
 716   HeapWord* result = NULL;
 717   if (first != G1_NO_HRM_INDEX) {
 718     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 719                                                        word_size, context);
 720     assert(result != NULL, "it should always return a valid result");
 721 
 722     // A successful humongous object allocation changes the used space
 723     // information of the old generation so we need to recalculate the
 724     // sizes and update the jstat counters here.
 725     g1mm()->update_sizes();
 726   }
 727 
 728   verify_region_sets_optional();
 729 
 730   return result;
 731 }
 732 
 733 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 736 
 737   uint dummy_gc_count_before;
 738   uint dummy_gclocker_retry_count = 0;
 739   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 740 }
 741 
 742 HeapWord*
 743 G1CollectedHeap::mem_allocate(size_t word_size,
 744                               bool*  gc_overhead_limit_was_exceeded) {
 745   assert_heap_not_locked_and_not_at_safepoint();
 746 
 747   // Loop until the allocation is satisfied, or unsatisfied after GC.
 748   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 749     uint gc_count_before;
 750 
 751     HeapWord* result = NULL;
 752     if (!is_humongous(word_size)) {
 753       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 754     } else {
 755       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 756     }
 757     if (result != NULL) {
 758       return result;
 759     }
 760 
 761     // Create the garbage collection operation...
 762     VM_G1CollectForAllocation op(gc_count_before, word_size);
 763     op.set_allocation_context(AllocationContext::current());
 764 
 765     // ...and get the VM thread to execute it.
 766     VMThread::execute(&op);
 767 
 768     if (op.prologue_succeeded() && op.pause_succeeded()) {
 769       // If the operation was successful we'll return the result even
 770       // if it is NULL. If the allocation attempt failed immediately
 771       // after a Full GC, it's unlikely we'll be able to allocate now.
 772       HeapWord* result = op.result();
 773       if (result != NULL && !is_humongous(word_size)) {
 774         // Allocations that take place on VM operations do not do any
 775         // card dirtying and we have to do it here. We only have to do
 776         // this for non-humongous allocations, though.
 777         dirty_young_block(result, word_size);
 778       }
 779       return result;
 780     } else {
 781       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 782         return NULL;
 783       }
 784       assert(op.result() == NULL,
 785              "the result should be NULL if the VM op did not succeed");
 786     }
 787 
 788     // Give a warning if we seem to be looping forever.
 789     if ((QueuedAllocationWarningCount > 0) &&
 790         (try_count % QueuedAllocationWarningCount == 0)) {
 791       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 792     }
 793   }
 794 
 795   ShouldNotReachHere();
 796   return NULL;
 797 }
 798 
 799 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 800                                                    AllocationContext_t context,
 801                                                    uint* gc_count_before_ret,
 802                                                    uint* gclocker_retry_count_ret) {
 803   // Make sure you read the note in attempt_allocation_humongous().
 804 
 805   assert_heap_not_locked_and_not_at_safepoint();
 806   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 807          "be called for humongous allocation requests");
 808 
 809   // We should only get here after the first-level allocation attempt
 810   // (attempt_allocation()) failed to allocate.
 811 
 812   // We will loop until a) we manage to successfully perform the
 813   // allocation or b) we successfully schedule a collection which
 814   // fails to perform the allocation. b) is the only case when we'll
 815   // return NULL.
 816   HeapWord* result = NULL;
 817   for (int try_count = 1; /* we'll return */; try_count += 1) {
 818     bool should_try_gc;
 819     uint gc_count_before;
 820 
 821     {
 822       MutexLockerEx x(Heap_lock);
 823       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 824                                                                                     false /* bot_updates */);
 825       if (result != NULL) {
 826         return result;
 827       }
 828 
 829       // If we reach here, attempt_allocation_locked() above failed to
 830       // allocate a new region. So the mutator alloc region should be NULL.
 831       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 832 
 833       if (GC_locker::is_active_and_needs_gc()) {
 834         if (g1_policy()->can_expand_young_list()) {
 835           // No need for an ergo verbose message here,
 836           // can_expand_young_list() does this when it returns true.
 837           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 838                                                                                        false /* bot_updates */);
 839           if (result != NULL) {
 840             return result;
 841           }
 842         }
 843         should_try_gc = false;
 844       } else {
 845         // The GCLocker may not be active but the GCLocker initiated
 846         // GC may not yet have been performed (GCLocker::needs_gc()
 847         // returns true). In this case we do not try this GC and
 848         // wait until the GCLocker initiated GC is performed, and
 849         // then retry the allocation.
 850         if (GC_locker::needs_gc()) {
 851           should_try_gc = false;
 852         } else {
 853           // Read the GC count while still holding the Heap_lock.
 854           gc_count_before = total_collections();
 855           should_try_gc = true;
 856         }
 857       }
 858     }
 859 
 860     if (should_try_gc) {
 861       bool succeeded;
 862       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 863                                    GCCause::_g1_inc_collection_pause);
 864       if (result != NULL) {
 865         assert(succeeded, "only way to get back a non-NULL result");
 866         return result;
 867       }
 868 
 869       if (succeeded) {
 870         // If we get here we successfully scheduled a collection which
 871         // failed to allocate. No point in trying to allocate
 872         // further. We'll just return NULL.
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877     } else {
 878       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 879         MutexLockerEx x(Heap_lock);
 880         *gc_count_before_ret = total_collections();
 881         return NULL;
 882       }
 883       // The GCLocker is either active or the GCLocker initiated
 884       // GC has not yet been performed. Stall until it is and
 885       // then retry the allocation.
 886       GC_locker::stall_until_clear();
 887       (*gclocker_retry_count_ret) += 1;
 888     }
 889 
 890     // We can reach here if we were unsuccessful in scheduling a
 891     // collection (because another thread beat us to it) or if we were
 892     // stalled due to the GC locker. In either can we should retry the
 893     // allocation attempt in case another thread successfully
 894     // performed a collection and reclaimed enough space. We do the
 895     // first attempt (without holding the Heap_lock) here and the
 896     // follow-on attempt will be at the start of the next loop
 897     // iteration (after taking the Heap_lock).
 898     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 899                                                                            false /* bot_updates */);
 900     if (result != NULL) {
 901       return result;
 902     }
 903 
 904     // Give a warning if we seem to be looping forever.
 905     if ((QueuedAllocationWarningCount > 0) &&
 906         (try_count % QueuedAllocationWarningCount == 0)) {
 907       warning("G1CollectedHeap::attempt_allocation_slow() "
 908               "retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 917                                                         uint* gc_count_before_ret,
 918                                                         uint* gclocker_retry_count_ret) {
 919   // The structure of this method has a lot of similarities to
 920   // attempt_allocation_slow(). The reason these two were not merged
 921   // into a single one is that such a method would require several "if
 922   // allocation is not humongous do this, otherwise do that"
 923   // conditional paths which would obscure its flow. In fact, an early
 924   // version of this code did use a unified method which was harder to
 925   // follow and, as a result, it had subtle bugs that were hard to
 926   // track down. So keeping these two methods separate allows each to
 927   // be more readable. It will be good to keep these two in sync as
 928   // much as possible.
 929 
 930   assert_heap_not_locked_and_not_at_safepoint();
 931   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 932          "should only be called for humongous allocations");
 933 
 934   // Humongous objects can exhaust the heap quickly, so we should check if we
 935   // need to start a marking cycle at each humongous object allocation. We do
 936   // the check before we do the actual allocation. The reason for doing it
 937   // before the allocation is that we avoid having to keep track of the newly
 938   // allocated memory while we do a GC.
 939   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 940                                            word_size)) {
 941     collect(GCCause::_g1_humongous_allocation);
 942   }
 943 
 944   // We will loop until a) we manage to successfully perform the
 945   // allocation or b) we successfully schedule a collection which
 946   // fails to perform the allocation. b) is the only case when we'll
 947   // return NULL.
 948   HeapWord* result = NULL;
 949   for (int try_count = 1; /* we'll return */; try_count += 1) {
 950     bool should_try_gc;
 951     uint gc_count_before;
 952 
 953     {
 954       MutexLockerEx x(Heap_lock);
 955 
 956       // Given that humongous objects are not allocated in young
 957       // regions, we'll first try to do the allocation without doing a
 958       // collection hoping that there's enough space in the heap.
 959       result = humongous_obj_allocate(word_size, AllocationContext::current());
 960       if (result != NULL) {
 961         return result;
 962       }
 963 
 964       if (GC_locker::is_active_and_needs_gc()) {
 965         should_try_gc = false;
 966       } else {
 967          // The GCLocker may not be active but the GCLocker initiated
 968         // GC may not yet have been performed (GCLocker::needs_gc()
 969         // returns true). In this case we do not try this GC and
 970         // wait until the GCLocker initiated GC is performed, and
 971         // then retry the allocation.
 972         if (GC_locker::needs_gc()) {
 973           should_try_gc = false;
 974         } else {
 975           // Read the GC count while still holding the Heap_lock.
 976           gc_count_before = total_collections();
 977           should_try_gc = true;
 978         }
 979       }
 980     }
 981 
 982     if (should_try_gc) {
 983       // If we failed to allocate the humongous object, we should try to
 984       // do a collection pause (if we're allowed) in case it reclaims
 985       // enough space for the allocation to succeed after the pause.
 986 
 987       bool succeeded;
 988       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 989                                    GCCause::_g1_humongous_allocation);
 990       if (result != NULL) {
 991         assert(succeeded, "only way to get back a non-NULL result");
 992         return result;
 993       }
 994 
 995       if (succeeded) {
 996         // If we get here we successfully scheduled a collection which
 997         // failed to allocate. No point in trying to allocate
 998         // further. We'll just return NULL.
 999         MutexLockerEx x(Heap_lock);
1000         *gc_count_before_ret = total_collections();
1001         return NULL;
1002       }
1003     } else {
1004       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1005         MutexLockerEx x(Heap_lock);
1006         *gc_count_before_ret = total_collections();
1007         return NULL;
1008       }
1009       // The GCLocker is either active or the GCLocker initiated
1010       // GC has not yet been performed. Stall until it is and
1011       // then retry the allocation.
1012       GC_locker::stall_until_clear();
1013       (*gclocker_retry_count_ret) += 1;
1014     }
1015 
1016     // We can reach here if we were unsuccessful in scheduling a
1017     // collection (because another thread beat us to it) or if we were
1018     // stalled due to the GC locker. In either can we should retry the
1019     // allocation attempt in case another thread successfully
1020     // performed a collection and reclaimed enough space.  Give a
1021     // warning if we seem to be looping forever.
1022 
1023     if ((QueuedAllocationWarningCount > 0) &&
1024         (try_count % QueuedAllocationWarningCount == 0)) {
1025       warning("G1CollectedHeap::attempt_allocation_humongous() "
1026               "retries %d times", try_count);
1027     }
1028   }
1029 
1030   ShouldNotReachHere();
1031   return NULL;
1032 }
1033 
1034 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1035                                                            AllocationContext_t context,
1036                                                            bool expect_null_mutator_alloc_region) {
1037   assert_at_safepoint(true /* should_be_vm_thread */);
1038   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1039                                              !expect_null_mutator_alloc_region,
1040          "the current alloc region was unexpectedly found to be non-NULL");
1041 
1042   if (!is_humongous(word_size)) {
1043     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1044                                                       false /* bot_updates */);
1045   } else {
1046     HeapWord* result = humongous_obj_allocate(word_size, context);
1047     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1048       g1_policy()->set_initiate_conc_mark_if_possible();
1049     }
1050     return result;
1051   }
1052 
1053   ShouldNotReachHere();
1054 }
1055 
1056 class PostMCRemSetClearClosure: public HeapRegionClosure {
1057   G1CollectedHeap* _g1h;
1058   ModRefBarrierSet* _mr_bs;
1059 public:
1060   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1061     _g1h(g1h), _mr_bs(mr_bs) {}
1062 
1063   bool doHeapRegion(HeapRegion* r) {
1064     HeapRegionRemSet* hrrs = r->rem_set();
1065 
1066     if (r->is_continues_humongous()) {
1067       // We'll assert that the strong code root list and RSet is empty
1068       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1069       assert(hrrs->occupied() == 0, "RSet should be empty");
1070       return false;
1071     }
1072 
1073     _g1h->reset_gc_time_stamps(r);
1074     hrrs->clear();
1075     // You might think here that we could clear just the cards
1076     // corresponding to the used region.  But no: if we leave a dirty card
1077     // in a region we might allocate into, then it would prevent that card
1078     // from being enqueued, and cause it to be missed.
1079     // Re: the performance cost: we shouldn't be doing full GC anyway!
1080     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1081 
1082     return false;
1083   }
1084 };
1085 
1086 void G1CollectedHeap::clear_rsets_post_compaction() {
1087   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1088   heap_region_iterate(&rs_clear);
1089 }
1090 
1091 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1092   G1CollectedHeap*   _g1h;
1093   UpdateRSOopClosure _cl;
1094   int                _worker_i;
1095 public:
1096   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1097     _cl(g1->g1_rem_set(), worker_i),
1098     _worker_i(worker_i),
1099     _g1h(g1)
1100   { }
1101 
1102   bool doHeapRegion(HeapRegion* r) {
1103     if (!r->is_continues_humongous()) {
1104       _cl.set_from(r);
1105       r->oop_iterate(&_cl);
1106     }
1107     return false;
1108   }
1109 };
1110 
1111 class ParRebuildRSTask: public AbstractGangTask {
1112   G1CollectedHeap* _g1;
1113   HeapRegionClaimer _hrclaimer;
1114 
1115 public:
1116   ParRebuildRSTask(G1CollectedHeap* g1) :
1117       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1118 
1119   void work(uint worker_id) {
1120     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1121     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1122   }
1123 };
1124 
1125 class PostCompactionPrinterClosure: public HeapRegionClosure {
1126 private:
1127   G1HRPrinter* _hr_printer;
1128 public:
1129   bool doHeapRegion(HeapRegion* hr) {
1130     assert(!hr->is_young(), "not expecting to find young regions");
1131     if (hr->is_free()) {
1132       // We only generate output for non-empty regions.
1133     } else if (hr->is_starts_humongous()) {
1134       if (hr->region_num() == 1) {
1135         // single humongous region
1136         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1137       } else {
1138         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1139       }
1140     } else if (hr->is_continues_humongous()) {
1141       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1142     } else if (hr->is_old()) {
1143       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1144     } else {
1145       ShouldNotReachHere();
1146     }
1147     return false;
1148   }
1149 
1150   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1151     : _hr_printer(hr_printer) { }
1152 };
1153 
1154 void G1CollectedHeap::print_hrm_post_compaction() {
1155   PostCompactionPrinterClosure cl(hr_printer());
1156   heap_region_iterate(&cl);
1157 }
1158 
1159 bool G1CollectedHeap::do_collection(bool explicit_gc,
1160                                     bool clear_all_soft_refs,
1161                                     size_t word_size) {
1162   assert_at_safepoint(true /* should_be_vm_thread */);
1163 
1164   if (GC_locker::check_active_before_gc()) {
1165     return false;
1166   }
1167 
1168   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1169   gc_timer->register_gc_start();
1170 
1171   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1172   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1173 
1174   SvcGCMarker sgcm(SvcGCMarker::FULL);
1175   ResourceMark rm;
1176 
1177   print_heap_before_gc();
1178   trace_heap_before_gc(gc_tracer);
1179 
1180   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1181 
1182   verify_region_sets_optional();
1183 
1184   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1185                            collector_policy()->should_clear_all_soft_refs();
1186 
1187   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1188 
1189   {
1190     IsGCActiveMark x;
1191 
1192     // Timing
1193     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1194     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1195 
1196     {
1197       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1198       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1199       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1200 
1201       g1_policy()->record_full_collection_start();
1202 
1203       // Note: When we have a more flexible GC logging framework that
1204       // allows us to add optional attributes to a GC log record we
1205       // could consider timing and reporting how long we wait in the
1206       // following two methods.
1207       wait_while_free_regions_coming();
1208       // If we start the compaction before the CM threads finish
1209       // scanning the root regions we might trip them over as we'll
1210       // be moving objects / updating references. So let's wait until
1211       // they are done. By telling them to abort, they should complete
1212       // early.
1213       _cm->root_regions()->abort();
1214       _cm->root_regions()->wait_until_scan_finished();
1215       append_secondary_free_list_if_not_empty_with_lock();
1216 
1217       gc_prologue(true);
1218       increment_total_collections(true /* full gc */);
1219       increment_old_marking_cycles_started();
1220 
1221       assert(used() == recalculate_used(), "Should be equal");
1222 
1223       verify_before_gc();
1224 
1225       check_bitmaps("Full GC Start");
1226       pre_full_gc_dump(gc_timer);
1227 
1228       COMPILER2_PRESENT(DerivedPointerTable::clear());
1229 
1230       // Disable discovery and empty the discovered lists
1231       // for the CM ref processor.
1232       ref_processor_cm()->disable_discovery();
1233       ref_processor_cm()->abandon_partial_discovery();
1234       ref_processor_cm()->verify_no_references_recorded();
1235 
1236       // Abandon current iterations of concurrent marking and concurrent
1237       // refinement, if any are in progress. We have to do this before
1238       // wait_until_scan_finished() below.
1239       concurrent_mark()->abort();
1240 
1241       // Make sure we'll choose a new allocation region afterwards.
1242       _allocator->release_mutator_alloc_region();
1243       _allocator->abandon_gc_alloc_regions();
1244       g1_rem_set()->cleanupHRRS();
1245 
1246       // We should call this after we retire any currently active alloc
1247       // regions so that all the ALLOC / RETIRE events are generated
1248       // before the start GC event.
1249       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1250 
1251       // We may have added regions to the current incremental collection
1252       // set between the last GC or pause and now. We need to clear the
1253       // incremental collection set and then start rebuilding it afresh
1254       // after this full GC.
1255       abandon_collection_set(g1_policy()->inc_cset_head());
1256       g1_policy()->clear_incremental_cset();
1257       g1_policy()->stop_incremental_cset_building();
1258 
1259       tear_down_region_sets(false /* free_list_only */);
1260       g1_policy()->set_gcs_are_young(true);
1261 
1262       // See the comments in g1CollectedHeap.hpp and
1263       // G1CollectedHeap::ref_processing_init() about
1264       // how reference processing currently works in G1.
1265 
1266       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1267       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1268 
1269       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1270       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1271 
1272       ref_processor_stw()->enable_discovery();
1273       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1274 
1275       // Do collection work
1276       {
1277         HandleMark hm;  // Discard invalid handles created during gc
1278         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1279       }
1280 
1281       assert(num_free_regions() == 0, "we should not have added any free regions");
1282       rebuild_region_sets(false /* free_list_only */);
1283 
1284       // Enqueue any discovered reference objects that have
1285       // not been removed from the discovered lists.
1286       ref_processor_stw()->enqueue_discovered_references();
1287 
1288       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1289 
1290       MemoryService::track_memory_usage();
1291 
1292       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1293       ref_processor_stw()->verify_no_references_recorded();
1294 
1295       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1296       ClassLoaderDataGraph::purge();
1297       MetaspaceAux::verify_metrics();
1298 
1299       // Note: since we've just done a full GC, concurrent
1300       // marking is no longer active. Therefore we need not
1301       // re-enable reference discovery for the CM ref processor.
1302       // That will be done at the start of the next marking cycle.
1303       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1304       ref_processor_cm()->verify_no_references_recorded();
1305 
1306       reset_gc_time_stamp();
1307       // Since everything potentially moved, we will clear all remembered
1308       // sets, and clear all cards.  Later we will rebuild remembered
1309       // sets. We will also reset the GC time stamps of the regions.
1310       clear_rsets_post_compaction();
1311       check_gc_time_stamps();
1312 
1313       // Resize the heap if necessary.
1314       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1315 
1316       if (_hr_printer.is_active()) {
1317         // We should do this after we potentially resize the heap so
1318         // that all the COMMIT / UNCOMMIT events are generated before
1319         // the end GC event.
1320 
1321         print_hrm_post_compaction();
1322         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1323       }
1324 
1325       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1326       if (hot_card_cache->use_cache()) {
1327         hot_card_cache->reset_card_counts();
1328         hot_card_cache->reset_hot_cache();
1329       }
1330 
1331       // Rebuild remembered sets of all regions.
1332       uint n_workers =
1333         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1334                                                 workers()->active_workers(),
1335                                                 Threads::number_of_non_daemon_threads());
1336       assert(UseDynamicNumberOfGCThreads ||
1337              n_workers == workers()->total_workers(),
1338              "If not dynamic should be using all the  workers");
1339       workers()->set_active_workers(n_workers);
1340       // Set parallel threads in the heap (_n_par_threads) only
1341       // before a parallel phase and always reset it to 0 after
1342       // the phase so that the number of parallel threads does
1343       // no get carried forward to a serial phase where there
1344       // may be code that is "possibly_parallel".
1345       set_par_threads(n_workers);
1346 
1347       ParRebuildRSTask rebuild_rs_task(this);
1348       assert(UseDynamicNumberOfGCThreads ||
1349              workers()->active_workers() == workers()->total_workers(),
1350              "Unless dynamic should use total workers");
1351       // Use the most recent number of  active workers
1352       assert(workers()->active_workers() > 0,
1353              "Active workers not properly set");
1354       set_par_threads(workers()->active_workers());
1355       workers()->run_task(&rebuild_rs_task);
1356       set_par_threads(0);
1357 
1358       // Rebuild the strong code root lists for each region
1359       rebuild_strong_code_roots();
1360 
1361       if (true) { // FIXME
1362         MetaspaceGC::compute_new_size();
1363       }
1364 
1365 #ifdef TRACESPINNING
1366       ParallelTaskTerminator::print_termination_counts();
1367 #endif
1368 
1369       // Discard all rset updates
1370       JavaThread::dirty_card_queue_set().abandon_logs();
1371       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1372 
1373       _young_list->reset_sampled_info();
1374       // At this point there should be no regions in the
1375       // entire heap tagged as young.
1376       assert(check_young_list_empty(true /* check_heap */),
1377              "young list should be empty at this point");
1378 
1379       // Update the number of full collections that have been completed.
1380       increment_old_marking_cycles_completed(false /* concurrent */);
1381 
1382       _hrm.verify_optional();
1383       verify_region_sets_optional();
1384 
1385       verify_after_gc();
1386 
1387       // Clear the previous marking bitmap, if needed for bitmap verification.
1388       // Note we cannot do this when we clear the next marking bitmap in
1389       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1390       // objects marked during a full GC against the previous bitmap.
1391       // But we need to clear it before calling check_bitmaps below since
1392       // the full GC has compacted objects and updated TAMS but not updated
1393       // the prev bitmap.
1394       if (G1VerifyBitmaps) {
1395         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1396       }
1397       check_bitmaps("Full GC End");
1398 
1399       // Start a new incremental collection set for the next pause
1400       assert(g1_policy()->collection_set() == NULL, "must be");
1401       g1_policy()->start_incremental_cset_building();
1402 
1403       clear_cset_fast_test();
1404 
1405       _allocator->init_mutator_alloc_region();
1406 
1407       g1_policy()->record_full_collection_end();
1408 
1409       if (G1Log::fine()) {
1410         g1_policy()->print_heap_transition();
1411       }
1412 
1413       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1414       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1415       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1416       // before any GC notifications are raised.
1417       g1mm()->update_sizes();
1418 
1419       gc_epilogue(true);
1420     }
1421 
1422     if (G1Log::finer()) {
1423       g1_policy()->print_detailed_heap_transition(true /* full */);
1424     }
1425 
1426     print_heap_after_gc();
1427     trace_heap_after_gc(gc_tracer);
1428 
1429     post_full_gc_dump(gc_timer);
1430 
1431     gc_timer->register_gc_end();
1432     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1433   }
1434 
1435   return true;
1436 }
1437 
1438 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1439   // do_collection() will return whether it succeeded in performing
1440   // the GC. Currently, there is no facility on the
1441   // do_full_collection() API to notify the caller than the collection
1442   // did not succeed (e.g., because it was locked out by the GC
1443   // locker). So, right now, we'll ignore the return value.
1444   bool dummy = do_collection(true,                /* explicit_gc */
1445                              clear_all_soft_refs,
1446                              0                    /* word_size */);
1447 }
1448 
1449 // This code is mostly copied from TenuredGeneration.
1450 void
1451 G1CollectedHeap::
1452 resize_if_necessary_after_full_collection(size_t word_size) {
1453   // Include the current allocation, if any, and bytes that will be
1454   // pre-allocated to support collections, as "used".
1455   const size_t used_after_gc = used();
1456   const size_t capacity_after_gc = capacity();
1457   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1458 
1459   // This is enforced in arguments.cpp.
1460   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1461          "otherwise the code below doesn't make sense");
1462 
1463   // We don't have floating point command-line arguments
1464   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1465   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1466   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1467   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1468 
1469   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1470   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1471 
1472   // We have to be careful here as these two calculations can overflow
1473   // 32-bit size_t's.
1474   double used_after_gc_d = (double) used_after_gc;
1475   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1476   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1477 
1478   // Let's make sure that they are both under the max heap size, which
1479   // by default will make them fit into a size_t.
1480   double desired_capacity_upper_bound = (double) max_heap_size;
1481   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1482                                     desired_capacity_upper_bound);
1483   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1484                                     desired_capacity_upper_bound);
1485 
1486   // We can now safely turn them into size_t's.
1487   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1488   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1489 
1490   // This assert only makes sense here, before we adjust them
1491   // with respect to the min and max heap size.
1492   assert(minimum_desired_capacity <= maximum_desired_capacity,
1493          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1494                  "maximum_desired_capacity = "SIZE_FORMAT,
1495                  minimum_desired_capacity, maximum_desired_capacity));
1496 
1497   // Should not be greater than the heap max size. No need to adjust
1498   // it with respect to the heap min size as it's a lower bound (i.e.,
1499   // we'll try to make the capacity larger than it, not smaller).
1500   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1501   // Should not be less than the heap min size. No need to adjust it
1502   // with respect to the heap max size as it's an upper bound (i.e.,
1503   // we'll try to make the capacity smaller than it, not greater).
1504   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1505 
1506   if (capacity_after_gc < minimum_desired_capacity) {
1507     // Don't expand unless it's significant
1508     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1509     ergo_verbose4(ErgoHeapSizing,
1510                   "attempt heap expansion",
1511                   ergo_format_reason("capacity lower than "
1512                                      "min desired capacity after Full GC")
1513                   ergo_format_byte("capacity")
1514                   ergo_format_byte("occupancy")
1515                   ergo_format_byte_perc("min desired capacity"),
1516                   capacity_after_gc, used_after_gc,
1517                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1518     expand(expand_bytes);
1519 
1520     // No expansion, now see if we want to shrink
1521   } else if (capacity_after_gc > maximum_desired_capacity) {
1522     // Capacity too large, compute shrinking size
1523     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1524     ergo_verbose4(ErgoHeapSizing,
1525                   "attempt heap shrinking",
1526                   ergo_format_reason("capacity higher than "
1527                                      "max desired capacity after Full GC")
1528                   ergo_format_byte("capacity")
1529                   ergo_format_byte("occupancy")
1530                   ergo_format_byte_perc("max desired capacity"),
1531                   capacity_after_gc, used_after_gc,
1532                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1533     shrink(shrink_bytes);
1534   }
1535 }
1536 
1537 
1538 HeapWord*
1539 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1540                                            AllocationContext_t context,
1541                                            bool* succeeded) {
1542   assert_at_safepoint(true /* should_be_vm_thread */);
1543 
1544   *succeeded = true;
1545   // Let's attempt the allocation first.
1546   HeapWord* result =
1547     attempt_allocation_at_safepoint(word_size,
1548                                     context,
1549                                     false /* expect_null_mutator_alloc_region */);
1550   if (result != NULL) {
1551     assert(*succeeded, "sanity");
1552     return result;
1553   }
1554 
1555   // In a G1 heap, we're supposed to keep allocation from failing by
1556   // incremental pauses.  Therefore, at least for now, we'll favor
1557   // expansion over collection.  (This might change in the future if we can
1558   // do something smarter than full collection to satisfy a failed alloc.)
1559   result = expand_and_allocate(word_size, context);
1560   if (result != NULL) {
1561     assert(*succeeded, "sanity");
1562     return result;
1563   }
1564 
1565   // Expansion didn't work, we'll try to do a Full GC.
1566   bool gc_succeeded = do_collection(false, /* explicit_gc */
1567                                     false, /* clear_all_soft_refs */
1568                                     word_size);
1569   if (!gc_succeeded) {
1570     *succeeded = false;
1571     return NULL;
1572   }
1573 
1574   // Retry the allocation
1575   result = attempt_allocation_at_safepoint(word_size,
1576                                            context,
1577                                            true /* expect_null_mutator_alloc_region */);
1578   if (result != NULL) {
1579     assert(*succeeded, "sanity");
1580     return result;
1581   }
1582 
1583   // Then, try a Full GC that will collect all soft references.
1584   gc_succeeded = do_collection(false, /* explicit_gc */
1585                                true,  /* clear_all_soft_refs */
1586                                word_size);
1587   if (!gc_succeeded) {
1588     *succeeded = false;
1589     return NULL;
1590   }
1591 
1592   // Retry the allocation once more
1593   result = attempt_allocation_at_safepoint(word_size,
1594                                            context,
1595                                            true /* expect_null_mutator_alloc_region */);
1596   if (result != NULL) {
1597     assert(*succeeded, "sanity");
1598     return result;
1599   }
1600 
1601   assert(!collector_policy()->should_clear_all_soft_refs(),
1602          "Flag should have been handled and cleared prior to this point");
1603 
1604   // What else?  We might try synchronous finalization later.  If the total
1605   // space available is large enough for the allocation, then a more
1606   // complete compaction phase than we've tried so far might be
1607   // appropriate.
1608   assert(*succeeded, "sanity");
1609   return NULL;
1610 }
1611 
1612 // Attempting to expand the heap sufficiently
1613 // to support an allocation of the given "word_size".  If
1614 // successful, perform the allocation and return the address of the
1615 // allocated block, or else "NULL".
1616 
1617 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1618   assert_at_safepoint(true /* should_be_vm_thread */);
1619 
1620   verify_region_sets_optional();
1621 
1622   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1623   ergo_verbose1(ErgoHeapSizing,
1624                 "attempt heap expansion",
1625                 ergo_format_reason("allocation request failed")
1626                 ergo_format_byte("allocation request"),
1627                 word_size * HeapWordSize);
1628   if (expand(expand_bytes)) {
1629     _hrm.verify_optional();
1630     verify_region_sets_optional();
1631     return attempt_allocation_at_safepoint(word_size,
1632                                            context,
1633                                            false /* expect_null_mutator_alloc_region */);
1634   }
1635   return NULL;
1636 }
1637 
1638 bool G1CollectedHeap::expand(size_t expand_bytes) {
1639   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1640   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1641                                        HeapRegion::GrainBytes);
1642   ergo_verbose2(ErgoHeapSizing,
1643                 "expand the heap",
1644                 ergo_format_byte("requested expansion amount")
1645                 ergo_format_byte("attempted expansion amount"),
1646                 expand_bytes, aligned_expand_bytes);
1647 
1648   if (is_maximal_no_gc()) {
1649     ergo_verbose0(ErgoHeapSizing,
1650                       "did not expand the heap",
1651                       ergo_format_reason("heap already fully expanded"));
1652     return false;
1653   }
1654 
1655   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1656   assert(regions_to_expand > 0, "Must expand by at least one region");
1657 
1658   uint expanded_by = _hrm.expand_by(regions_to_expand);
1659 
1660   if (expanded_by > 0) {
1661     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1662     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1663     g1_policy()->record_new_heap_size(num_regions());
1664   } else {
1665     ergo_verbose0(ErgoHeapSizing,
1666                   "did not expand the heap",
1667                   ergo_format_reason("heap expansion operation failed"));
1668     // The expansion of the virtual storage space was unsuccessful.
1669     // Let's see if it was because we ran out of swap.
1670     if (G1ExitOnExpansionFailure &&
1671         _hrm.available() >= regions_to_expand) {
1672       // We had head room...
1673       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1674     }
1675   }
1676   return regions_to_expand > 0;
1677 }
1678 
1679 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1680   size_t aligned_shrink_bytes =
1681     ReservedSpace::page_align_size_down(shrink_bytes);
1682   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1683                                          HeapRegion::GrainBytes);
1684   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1685 
1686   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1687   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1688 
1689   ergo_verbose3(ErgoHeapSizing,
1690                 "shrink the heap",
1691                 ergo_format_byte("requested shrinking amount")
1692                 ergo_format_byte("aligned shrinking amount")
1693                 ergo_format_byte("attempted shrinking amount"),
1694                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1695   if (num_regions_removed > 0) {
1696     g1_policy()->record_new_heap_size(num_regions());
1697   } else {
1698     ergo_verbose0(ErgoHeapSizing,
1699                   "did not shrink the heap",
1700                   ergo_format_reason("heap shrinking operation failed"));
1701   }
1702 }
1703 
1704 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1705   verify_region_sets_optional();
1706 
1707   // We should only reach here at the end of a Full GC which means we
1708   // should not not be holding to any GC alloc regions. The method
1709   // below will make sure of that and do any remaining clean up.
1710   _allocator->abandon_gc_alloc_regions();
1711 
1712   // Instead of tearing down / rebuilding the free lists here, we
1713   // could instead use the remove_all_pending() method on free_list to
1714   // remove only the ones that we need to remove.
1715   tear_down_region_sets(true /* free_list_only */);
1716   shrink_helper(shrink_bytes);
1717   rebuild_region_sets(true /* free_list_only */);
1718 
1719   _hrm.verify_optional();
1720   verify_region_sets_optional();
1721 }
1722 
1723 // Public methods.
1724 
1725 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1726 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1727 #endif // _MSC_VER
1728 
1729 
1730 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1731   SharedHeap(),
1732   _g1_policy(policy_),
1733   _dirty_card_queue_set(false),
1734   _into_cset_dirty_card_queue_set(false),
1735   _is_alive_closure_cm(this),
1736   _is_alive_closure_stw(this),
1737   _ref_processor_cm(NULL),
1738   _ref_processor_stw(NULL),
1739   _bot_shared(NULL),
1740   _evac_failure_scan_stack(NULL),
1741   _mark_in_progress(false),
1742   _cg1r(NULL),
1743   _g1mm(NULL),
1744   _refine_cte_cl(NULL),
1745   _full_collection(false),
1746   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1747   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1748   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1749   _humongous_is_live(),
1750   _has_humongous_reclaim_candidates(false),
1751   _free_regions_coming(false),
1752   _young_list(new YoungList(this)),
1753   _gc_time_stamp(0),
1754   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1755   _old_plab_stats(OldPLABSize, PLABWeight),
1756   _expand_heap_after_alloc_failure(true),
1757   _surviving_young_words(NULL),
1758   _old_marking_cycles_started(0),
1759   _old_marking_cycles_completed(0),
1760   _concurrent_cycle_started(false),
1761   _heap_summary_sent(false),
1762   _in_cset_fast_test(),
1763   _dirty_cards_region_list(NULL),
1764   _worker_cset_start_region(NULL),
1765   _worker_cset_start_region_time_stamp(NULL),
1766   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1767   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1768   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1769   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1770 
1771   _g1h = this;
1772 
1773   _allocator = G1Allocator::create_allocator(_g1h);
1774   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1775 
1776   int n_queues = MAX2((int)ParallelGCThreads, 1);
1777   _task_queues = new RefToScanQueueSet(n_queues);
1778 
1779   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1780   assert(n_rem_sets > 0, "Invariant.");
1781 
1782   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1783   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1784   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1785 
1786   for (int i = 0; i < n_queues; i++) {
1787     RefToScanQueue* q = new RefToScanQueue();
1788     q->initialize();
1789     _task_queues->register_queue(i, q);
1790     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1791   }
1792   clear_cset_start_regions();
1793 
1794   // Initialize the G1EvacuationFailureALot counters and flags.
1795   NOT_PRODUCT(reset_evacuation_should_fail();)
1796 
1797   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1798 }
1799 
1800 jint G1CollectedHeap::initialize() {
1801   CollectedHeap::pre_initialize();
1802   os::enable_vtime();
1803 
1804   G1Log::init();
1805 
1806   // Necessary to satisfy locking discipline assertions.
1807 
1808   MutexLocker x(Heap_lock);
1809 
1810   // We have to initialize the printer before committing the heap, as
1811   // it will be used then.
1812   _hr_printer.set_active(G1PrintHeapRegions);
1813 
1814   // While there are no constraints in the GC code that HeapWordSize
1815   // be any particular value, there are multiple other areas in the
1816   // system which believe this to be true (e.g. oop->object_size in some
1817   // cases incorrectly returns the size in wordSize units rather than
1818   // HeapWordSize).
1819   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1820 
1821   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1822   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1823   size_t heap_alignment = collector_policy()->heap_alignment();
1824 
1825   // Ensure that the sizes are properly aligned.
1826   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1827   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1828   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1829 
1830   _refine_cte_cl = new RefineCardTableEntryClosure();
1831 
1832   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1833 
1834   // Reserve the maximum.
1835 
1836   // When compressed oops are enabled, the preferred heap base
1837   // is calculated by subtracting the requested size from the
1838   // 32Gb boundary and using the result as the base address for
1839   // heap reservation. If the requested size is not aligned to
1840   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1841   // into the ReservedHeapSpace constructor) then the actual
1842   // base of the reserved heap may end up differing from the
1843   // address that was requested (i.e. the preferred heap base).
1844   // If this happens then we could end up using a non-optimal
1845   // compressed oops mode.
1846 
1847   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1848                                                  heap_alignment);
1849 
1850   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1851 
1852   // Create the barrier set for the entire reserved region.
1853   G1SATBCardTableLoggingModRefBS* bs
1854     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1855   bs->initialize();
1856   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1857   _barrier_set = bs;
1858   oopDesc::set_bs(bs);
1859 
1860   // Also create a G1 rem set.
1861   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1862 
1863   // Carve out the G1 part of the heap.
1864 
1865   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1866   G1RegionToSpaceMapper* heap_storage =
1867     G1RegionToSpaceMapper::create_mapper(g1_rs,
1868                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1869                                          HeapRegion::GrainBytes,
1870                                          1,
1871                                          mtJavaHeap);
1872   heap_storage->set_mapping_changed_listener(&_listener);
1873 
1874   // Reserve space for the block offset table. We do not support automatic uncommit
1875   // for the card table at this time. BOT only.
1876   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1877   G1RegionToSpaceMapper* bot_storage =
1878     G1RegionToSpaceMapper::create_mapper(bot_rs,
1879                                          os::vm_page_size(),
1880                                          HeapRegion::GrainBytes,
1881                                          G1BlockOffsetSharedArray::N_bytes,
1882                                          mtGC);
1883 
1884   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1885   G1RegionToSpaceMapper* cardtable_storage =
1886     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1887                                          os::vm_page_size(),
1888                                          HeapRegion::GrainBytes,
1889                                          G1BlockOffsetSharedArray::N_bytes,
1890                                          mtGC);
1891 
1892   // Reserve space for the card counts table.
1893   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1894   G1RegionToSpaceMapper* card_counts_storage =
1895     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1896                                          os::vm_page_size(),
1897                                          HeapRegion::GrainBytes,
1898                                          G1BlockOffsetSharedArray::N_bytes,
1899                                          mtGC);
1900 
1901   // Reserve space for prev and next bitmap.
1902   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1903 
1904   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1905   G1RegionToSpaceMapper* prev_bitmap_storage =
1906     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1907                                          os::vm_page_size(),
1908                                          HeapRegion::GrainBytes,
1909                                          CMBitMap::mark_distance(),
1910                                          mtGC);
1911 
1912   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1913   G1RegionToSpaceMapper* next_bitmap_storage =
1914     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1915                                          os::vm_page_size(),
1916                                          HeapRegion::GrainBytes,
1917                                          CMBitMap::mark_distance(),
1918                                          mtGC);
1919 
1920   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1921   g1_barrier_set()->initialize(cardtable_storage);
1922    // Do later initialization work for concurrent refinement.
1923   _cg1r->init(card_counts_storage);
1924 
1925   // 6843694 - ensure that the maximum region index can fit
1926   // in the remembered set structures.
1927   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1928   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1929 
1930   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1931   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1932   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1933             "too many cards per region");
1934 
1935   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1936 
1937   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1938 
1939   _g1h = this;
1940 
1941   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1942   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1943 
1944   // Create the ConcurrentMark data structure and thread.
1945   // (Must do this late, so that "max_regions" is defined.)
1946   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1947   if (_cm == NULL || !_cm->completed_initialization()) {
1948     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1949     return JNI_ENOMEM;
1950   }
1951   _cmThread = _cm->cmThread();
1952 
1953   // Initialize the from_card cache structure of HeapRegionRemSet.
1954   HeapRegionRemSet::init_heap(max_regions());
1955 
1956   // Now expand into the initial heap size.
1957   if (!expand(init_byte_size)) {
1958     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1959     return JNI_ENOMEM;
1960   }
1961 
1962   // Perform any initialization actions delegated to the policy.
1963   g1_policy()->init();
1964 
1965   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1966                                                SATB_Q_FL_lock,
1967                                                G1SATBProcessCompletedThreshold,
1968                                                Shared_SATB_Q_lock);
1969 
1970   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1971                                                 DirtyCardQ_CBL_mon,
1972                                                 DirtyCardQ_FL_lock,
1973                                                 concurrent_g1_refine()->yellow_zone(),
1974                                                 concurrent_g1_refine()->red_zone(),
1975                                                 Shared_DirtyCardQ_lock);
1976 
1977   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1978                                     DirtyCardQ_CBL_mon,
1979                                     DirtyCardQ_FL_lock,
1980                                     -1, // never trigger processing
1981                                     -1, // no limit on length
1982                                     Shared_DirtyCardQ_lock,
1983                                     &JavaThread::dirty_card_queue_set());
1984 
1985   // Initialize the card queue set used to hold cards containing
1986   // references into the collection set.
1987   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1988                                              DirtyCardQ_CBL_mon,
1989                                              DirtyCardQ_FL_lock,
1990                                              -1, // never trigger processing
1991                                              -1, // no limit on length
1992                                              Shared_DirtyCardQ_lock,
1993                                              &JavaThread::dirty_card_queue_set());
1994 
1995   // Here we allocate the dummy HeapRegion that is required by the
1996   // G1AllocRegion class.
1997   HeapRegion* dummy_region = _hrm.get_dummy_region();
1998 
1999   // We'll re-use the same region whether the alloc region will
2000   // require BOT updates or not and, if it doesn't, then a non-young
2001   // region will complain that it cannot support allocations without
2002   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2003   dummy_region->set_eden();
2004   // Make sure it's full.
2005   dummy_region->set_top(dummy_region->end());
2006   G1AllocRegion::setup(this, dummy_region);
2007 
2008   _allocator->init_mutator_alloc_region();
2009 
2010   // Do create of the monitoring and management support so that
2011   // values in the heap have been properly initialized.
2012   _g1mm = new G1MonitoringSupport(this);
2013 
2014   G1StringDedup::initialize();
2015 
2016   return JNI_OK;
2017 }
2018 
2019 void G1CollectedHeap::stop() {
2020   // Stop all concurrent threads. We do this to make sure these threads
2021   // do not continue to execute and access resources (e.g. gclog_or_tty)
2022   // that are destroyed during shutdown.
2023   _cg1r->stop();
2024   _cmThread->stop();
2025   if (G1StringDedup::is_enabled()) {
2026     G1StringDedup::stop();
2027   }
2028 }
2029 
2030 void G1CollectedHeap::clear_humongous_is_live_table() {
2031   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2032   _humongous_is_live.clear();
2033 }
2034 
2035 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2036   return HeapRegion::max_region_size();
2037 }
2038 
2039 void G1CollectedHeap::post_initialize() {
2040   CollectedHeap::post_initialize();
2041   ref_processing_init();
2042 }
2043 
2044 void G1CollectedHeap::ref_processing_init() {
2045   // Reference processing in G1 currently works as follows:
2046   //
2047   // * There are two reference processor instances. One is
2048   //   used to record and process discovered references
2049   //   during concurrent marking; the other is used to
2050   //   record and process references during STW pauses
2051   //   (both full and incremental).
2052   // * Both ref processors need to 'span' the entire heap as
2053   //   the regions in the collection set may be dotted around.
2054   //
2055   // * For the concurrent marking ref processor:
2056   //   * Reference discovery is enabled at initial marking.
2057   //   * Reference discovery is disabled and the discovered
2058   //     references processed etc during remarking.
2059   //   * Reference discovery is MT (see below).
2060   //   * Reference discovery requires a barrier (see below).
2061   //   * Reference processing may or may not be MT
2062   //     (depending on the value of ParallelRefProcEnabled
2063   //     and ParallelGCThreads).
2064   //   * A full GC disables reference discovery by the CM
2065   //     ref processor and abandons any entries on it's
2066   //     discovered lists.
2067   //
2068   // * For the STW processor:
2069   //   * Non MT discovery is enabled at the start of a full GC.
2070   //   * Processing and enqueueing during a full GC is non-MT.
2071   //   * During a full GC, references are processed after marking.
2072   //
2073   //   * Discovery (may or may not be MT) is enabled at the start
2074   //     of an incremental evacuation pause.
2075   //   * References are processed near the end of a STW evacuation pause.
2076   //   * For both types of GC:
2077   //     * Discovery is atomic - i.e. not concurrent.
2078   //     * Reference discovery will not need a barrier.
2079 
2080   MemRegion mr = reserved_region();
2081 
2082   // Concurrent Mark ref processor
2083   _ref_processor_cm =
2084     new ReferenceProcessor(mr,    // span
2085                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2086                                 // mt processing
2087                            (int) ParallelGCThreads,
2088                                 // degree of mt processing
2089                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2090                                 // mt discovery
2091                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2092                                 // degree of mt discovery
2093                            false,
2094                                 // Reference discovery is not atomic
2095                            &_is_alive_closure_cm);
2096                                 // is alive closure
2097                                 // (for efficiency/performance)
2098 
2099   // STW ref processor
2100   _ref_processor_stw =
2101     new ReferenceProcessor(mr,    // span
2102                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2103                                 // mt processing
2104                            MAX2((int)ParallelGCThreads, 1),
2105                                 // degree of mt processing
2106                            (ParallelGCThreads > 1),
2107                                 // mt discovery
2108                            MAX2((int)ParallelGCThreads, 1),
2109                                 // degree of mt discovery
2110                            true,
2111                                 // Reference discovery is atomic
2112                            &_is_alive_closure_stw);
2113                                 // is alive closure
2114                                 // (for efficiency/performance)
2115 }
2116 
2117 size_t G1CollectedHeap::capacity() const {
2118   return _hrm.length() * HeapRegion::GrainBytes;
2119 }
2120 
2121 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2122   assert(!hr->is_continues_humongous(), "pre-condition");
2123   hr->reset_gc_time_stamp();
2124   if (hr->is_starts_humongous()) {
2125     uint first_index = hr->hrm_index() + 1;
2126     uint last_index = hr->last_hc_index();
2127     for (uint i = first_index; i < last_index; i += 1) {
2128       HeapRegion* chr = region_at(i);
2129       assert(chr->is_continues_humongous(), "sanity");
2130       chr->reset_gc_time_stamp();
2131     }
2132   }
2133 }
2134 
2135 #ifndef PRODUCT
2136 
2137 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2138 private:
2139   unsigned _gc_time_stamp;
2140   bool _failures;
2141 
2142 public:
2143   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2144     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2145 
2146   virtual bool doHeapRegion(HeapRegion* hr) {
2147     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2148     if (_gc_time_stamp != region_gc_time_stamp) {
2149       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2150                              "expected %d", HR_FORMAT_PARAMS(hr),
2151                              region_gc_time_stamp, _gc_time_stamp);
2152       _failures = true;
2153     }
2154     return false;
2155   }
2156 
2157   bool failures() { return _failures; }
2158 };
2159 
2160 void G1CollectedHeap::check_gc_time_stamps() {
2161   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2162   heap_region_iterate(&cl);
2163   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2164 }
2165 
2166 bool G1CollectedHeap::heap_lock_held_for_gc() {
2167   Thread* t = Thread::current();
2168   return    Heap_lock->owned_by_self()
2169          || (   (t->is_GC_task_thread() ||  t->is_VM_thread())
2170              && _thread_holds_heap_lock_for_gc);
2171 }
2172 
2173 #endif // PRODUCT
2174 
2175 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2176                                                  DirtyCardQueue* into_cset_dcq,
2177                                                  bool concurrent,
2178                                                  uint worker_i) {
2179   // Clean cards in the hot card cache
2180   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2181   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2182 
2183   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2184   size_t n_completed_buffers = 0;
2185   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2186     n_completed_buffers++;
2187   }
2188   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2189   dcqs.clear_n_completed_buffers();
2190   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2191 }
2192 
2193 
2194 // Computes the sum of the storage used by the various regions.
2195 size_t G1CollectedHeap::used() const {
2196   return _allocator->used();
2197 }
2198 
2199 size_t G1CollectedHeap::used_unlocked() const {
2200   return _allocator->used_unlocked();
2201 }
2202 
2203 class SumUsedClosure: public HeapRegionClosure {
2204   size_t _used;
2205 public:
2206   SumUsedClosure() : _used(0) {}
2207   bool doHeapRegion(HeapRegion* r) {
2208     if (!r->is_continues_humongous()) {
2209       _used += r->used();
2210     }
2211     return false;
2212   }
2213   size_t result() { return _used; }
2214 };
2215 
2216 size_t G1CollectedHeap::recalculate_used() const {
2217   double recalculate_used_start = os::elapsedTime();
2218 
2219   SumUsedClosure blk;
2220   heap_region_iterate(&blk);
2221 
2222   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2223   return blk.result();
2224 }
2225 
2226 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2227   switch (cause) {
2228     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2229     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2230     case GCCause::_g1_humongous_allocation: return true;
2231     case GCCause::_update_allocation_context_stats_inc: return true;
2232     case GCCause::_wb_conc_mark:            return true;
2233     default:                                return false;
2234   }
2235 }
2236 
2237 #ifndef PRODUCT
2238 void G1CollectedHeap::allocate_dummy_regions() {
2239   // Let's fill up most of the region
2240   size_t word_size = HeapRegion::GrainWords - 1024;
2241   // And as a result the region we'll allocate will be humongous.
2242   guarantee(is_humongous(word_size), "sanity");
2243 
2244   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2245     // Let's use the existing mechanism for the allocation
2246     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2247                                                  AllocationContext::system());
2248     if (dummy_obj != NULL) {
2249       MemRegion mr(dummy_obj, word_size);
2250       CollectedHeap::fill_with_object(mr);
2251     } else {
2252       // If we can't allocate once, we probably cannot allocate
2253       // again. Let's get out of the loop.
2254       break;
2255     }
2256   }
2257 }
2258 #endif // !PRODUCT
2259 
2260 void G1CollectedHeap::increment_old_marking_cycles_started() {
2261   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2262     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2263     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2264     _old_marking_cycles_started, _old_marking_cycles_completed));
2265 
2266   _old_marking_cycles_started++;
2267 }
2268 
2269 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2270   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2271 
2272   // We assume that if concurrent == true, then the caller is a
2273   // concurrent thread that was joined the Suspendible Thread
2274   // Set. If there's ever a cheap way to check this, we should add an
2275   // assert here.
2276 
2277   // Given that this method is called at the end of a Full GC or of a
2278   // concurrent cycle, and those can be nested (i.e., a Full GC can
2279   // interrupt a concurrent cycle), the number of full collections
2280   // completed should be either one (in the case where there was no
2281   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2282   // behind the number of full collections started.
2283 
2284   // This is the case for the inner caller, i.e. a Full GC.
2285   assert(concurrent ||
2286          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2287          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2288          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2289                  "is inconsistent with _old_marking_cycles_completed = %u",
2290                  _old_marking_cycles_started, _old_marking_cycles_completed));
2291 
2292   // This is the case for the outer caller, i.e. the concurrent cycle.
2293   assert(!concurrent ||
2294          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2295          err_msg("for outer caller (concurrent cycle): "
2296                  "_old_marking_cycles_started = %u "
2297                  "is inconsistent with _old_marking_cycles_completed = %u",
2298                  _old_marking_cycles_started, _old_marking_cycles_completed));
2299 
2300   _old_marking_cycles_completed += 1;
2301 
2302   // We need to clear the "in_progress" flag in the CM thread before
2303   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2304   // is set) so that if a waiter requests another System.gc() it doesn't
2305   // incorrectly see that a marking cycle is still in progress.
2306   if (concurrent) {
2307     _cmThread->clear_in_progress();
2308   }
2309 
2310   // This notify_all() will ensure that a thread that called
2311   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2312   // and it's waiting for a full GC to finish will be woken up. It is
2313   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2314   FullGCCount_lock->notify_all();
2315 }
2316 
2317 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2318   _concurrent_cycle_started = true;
2319   _gc_timer_cm->register_gc_start(start_time);
2320 
2321   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2322   trace_heap_before_gc(_gc_tracer_cm);
2323 }
2324 
2325 void G1CollectedHeap::register_concurrent_cycle_end() {
2326   if (_concurrent_cycle_started) {
2327     if (_cm->has_aborted()) {
2328       _gc_tracer_cm->report_concurrent_mode_failure();
2329     }
2330 
2331     _gc_timer_cm->register_gc_end();
2332     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2333 
2334     // Clear state variables to prepare for the next concurrent cycle.
2335     _concurrent_cycle_started = false;
2336     _heap_summary_sent = false;
2337   }
2338 }
2339 
2340 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2341   if (_concurrent_cycle_started) {
2342     // This function can be called when:
2343     //  the cleanup pause is run
2344     //  the concurrent cycle is aborted before the cleanup pause.
2345     //  the concurrent cycle is aborted after the cleanup pause,
2346     //   but before the concurrent cycle end has been registered.
2347     // Make sure that we only send the heap information once.
2348     if (!_heap_summary_sent) {
2349       trace_heap_after_gc(_gc_tracer_cm);
2350       _heap_summary_sent = true;
2351     }
2352   }
2353 }
2354 
2355 G1YCType G1CollectedHeap::yc_type() {
2356   bool is_young = g1_policy()->gcs_are_young();
2357   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2358   bool is_during_mark = mark_in_progress();
2359 
2360   if (is_initial_mark) {
2361     return InitialMark;
2362   } else if (is_during_mark) {
2363     return DuringMark;
2364   } else if (is_young) {
2365     return Normal;
2366   } else {
2367     return Mixed;
2368   }
2369 }
2370 
2371 void G1CollectedHeap::collect(GCCause::Cause cause) {
2372   assert_heap_not_locked();
2373 
2374   uint gc_count_before;
2375   uint old_marking_count_before;
2376   uint full_gc_count_before;
2377   bool retry_gc;
2378 
2379   do {
2380     retry_gc = false;
2381 
2382     {
2383       MutexLocker ml(Heap_lock);
2384 
2385       // Read the GC count while holding the Heap_lock
2386       gc_count_before = total_collections();
2387       full_gc_count_before = total_full_collections();
2388       old_marking_count_before = _old_marking_cycles_started;
2389     }
2390 
2391     if (should_do_concurrent_full_gc(cause)) {
2392       // Schedule an initial-mark evacuation pause that will start a
2393       // concurrent cycle. We're setting word_size to 0 which means that
2394       // we are not requesting a post-GC allocation.
2395       VM_G1IncCollectionPause op(gc_count_before,
2396                                  0,     /* word_size */
2397                                  true,  /* should_initiate_conc_mark */
2398                                  g1_policy()->max_pause_time_ms(),
2399                                  cause);
2400       op.set_allocation_context(AllocationContext::current());
2401 
2402       VMThread::execute(&op);
2403       if (!op.pause_succeeded()) {
2404         if (old_marking_count_before == _old_marking_cycles_started) {
2405           retry_gc = op.should_retry_gc();
2406         } else {
2407           // A Full GC happened while we were trying to schedule the
2408           // initial-mark GC. No point in starting a new cycle given
2409           // that the whole heap was collected anyway.
2410         }
2411 
2412         if (retry_gc) {
2413           if (GC_locker::is_active_and_needs_gc()) {
2414             GC_locker::stall_until_clear();
2415           }
2416         }
2417       }
2418     } else {
2419       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2420           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2421 
2422         // Schedule a standard evacuation pause. We're setting word_size
2423         // to 0 which means that we are not requesting a post-GC allocation.
2424         VM_G1IncCollectionPause op(gc_count_before,
2425                                    0,     /* word_size */
2426                                    false, /* should_initiate_conc_mark */
2427                                    g1_policy()->max_pause_time_ms(),
2428                                    cause);
2429         VMThread::execute(&op);
2430       } else {
2431         // Schedule a Full GC.
2432         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2433         VMThread::execute(&op);
2434       }
2435     }
2436   } while (retry_gc);
2437 }
2438 
2439 bool G1CollectedHeap::is_in(const void* p) const {
2440   if (_hrm.reserved().contains(p)) {
2441     // Given that we know that p is in the reserved space,
2442     // heap_region_containing_raw() should successfully
2443     // return the containing region.
2444     HeapRegion* hr = heap_region_containing_raw(p);
2445     return hr->is_in(p);
2446   } else {
2447     return false;
2448   }
2449 }
2450 
2451 #ifdef ASSERT
2452 bool G1CollectedHeap::is_in_exact(const void* p) const {
2453   bool contains = reserved_region().contains(p);
2454   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2455   if (contains && available) {
2456     return true;
2457   } else {
2458     return false;
2459   }
2460 }
2461 #endif
2462 
2463 // Iteration functions.
2464 
2465 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2466 
2467 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2468   ExtendedOopClosure* _cl;
2469 public:
2470   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2471   bool doHeapRegion(HeapRegion* r) {
2472     if (!r->is_continues_humongous()) {
2473       r->oop_iterate(_cl);
2474     }
2475     return false;
2476   }
2477 };
2478 
2479 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2480   IterateOopClosureRegionClosure blk(cl);
2481   heap_region_iterate(&blk);
2482 }
2483 
2484 // Iterates an ObjectClosure over all objects within a HeapRegion.
2485 
2486 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2487   ObjectClosure* _cl;
2488 public:
2489   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2490   bool doHeapRegion(HeapRegion* r) {
2491     if (!r->is_continues_humongous()) {
2492       r->object_iterate(_cl);
2493     }
2494     return false;
2495   }
2496 };
2497 
2498 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2499   IterateObjectClosureRegionClosure blk(cl);
2500   heap_region_iterate(&blk);
2501 }
2502 
2503 // Calls a SpaceClosure on a HeapRegion.
2504 
2505 class SpaceClosureRegionClosure: public HeapRegionClosure {
2506   SpaceClosure* _cl;
2507 public:
2508   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2509   bool doHeapRegion(HeapRegion* r) {
2510     _cl->do_space(r);
2511     return false;
2512   }
2513 };
2514 
2515 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2516   _hrm.iterate(cl);
2517 }
2518 
2519 void
2520 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2521                                          uint worker_id,
2522                                          HeapRegionClaimer *hrclaimer,
2523                                          bool concurrent) const {
2524   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2525 }
2526 
2527 // Clear the cached CSet starting regions and (more importantly)
2528 // the time stamps. Called when we reset the GC time stamp.
2529 void G1CollectedHeap::clear_cset_start_regions() {
2530   assert(_worker_cset_start_region != NULL, "sanity");
2531   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2532 
2533   int n_queues = MAX2((int)ParallelGCThreads, 1);
2534   for (int i = 0; i < n_queues; i++) {
2535     _worker_cset_start_region[i] = NULL;
2536     _worker_cset_start_region_time_stamp[i] = 0;
2537   }
2538 }
2539 
2540 // Given the id of a worker, obtain or calculate a suitable
2541 // starting region for iterating over the current collection set.
2542 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2543   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2544 
2545   HeapRegion* result = NULL;
2546   unsigned gc_time_stamp = get_gc_time_stamp();
2547 
2548   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2549     // Cached starting region for current worker was set
2550     // during the current pause - so it's valid.
2551     // Note: the cached starting heap region may be NULL
2552     // (when the collection set is empty).
2553     result = _worker_cset_start_region[worker_i];
2554     assert(result == NULL || result->in_collection_set(), "sanity");
2555     return result;
2556   }
2557 
2558   // The cached entry was not valid so let's calculate
2559   // a suitable starting heap region for this worker.
2560 
2561   // We want the parallel threads to start their collection
2562   // set iteration at different collection set regions to
2563   // avoid contention.
2564   // If we have:
2565   //          n collection set regions
2566   //          p threads
2567   // Then thread t will start at region floor ((t * n) / p)
2568 
2569   result = g1_policy()->collection_set();
2570   uint cs_size = g1_policy()->cset_region_length();
2571   uint active_workers = workers()->active_workers();
2572   assert(UseDynamicNumberOfGCThreads ||
2573            active_workers == workers()->total_workers(),
2574            "Unless dynamic should use total workers");
2575 
2576   uint end_ind   = (cs_size * worker_i) / active_workers;
2577   uint start_ind = 0;
2578 
2579   if (worker_i > 0 &&
2580       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2581     // Previous workers starting region is valid
2582     // so let's iterate from there
2583     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2584     result = _worker_cset_start_region[worker_i - 1];
2585   }
2586 
2587   for (uint i = start_ind; i < end_ind; i++) {
2588     result = result->next_in_collection_set();
2589   }
2590 
2591   // Note: the calculated starting heap region may be NULL
2592   // (when the collection set is empty).
2593   assert(result == NULL || result->in_collection_set(), "sanity");
2594   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2595          "should be updated only once per pause");
2596   _worker_cset_start_region[worker_i] = result;
2597   OrderAccess::storestore();
2598   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2599   return result;
2600 }
2601 
2602 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2603   HeapRegion* r = g1_policy()->collection_set();
2604   while (r != NULL) {
2605     HeapRegion* next = r->next_in_collection_set();
2606     if (cl->doHeapRegion(r)) {
2607       cl->incomplete();
2608       return;
2609     }
2610     r = next;
2611   }
2612 }
2613 
2614 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2615                                                   HeapRegionClosure *cl) {
2616   if (r == NULL) {
2617     // The CSet is empty so there's nothing to do.
2618     return;
2619   }
2620 
2621   assert(r->in_collection_set(),
2622          "Start region must be a member of the collection set.");
2623   HeapRegion* cur = r;
2624   while (cur != NULL) {
2625     HeapRegion* next = cur->next_in_collection_set();
2626     if (cl->doHeapRegion(cur) && false) {
2627       cl->incomplete();
2628       return;
2629     }
2630     cur = next;
2631   }
2632   cur = g1_policy()->collection_set();
2633   while (cur != r) {
2634     HeapRegion* next = cur->next_in_collection_set();
2635     if (cl->doHeapRegion(cur) && false) {
2636       cl->incomplete();
2637       return;
2638     }
2639     cur = next;
2640   }
2641 }
2642 
2643 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2644   HeapRegion* result = _hrm.next_region_in_heap(from);
2645   while (result != NULL && result->is_humongous()) {
2646     result = _hrm.next_region_in_heap(result);
2647   }
2648   return result;
2649 }
2650 
2651 Space* G1CollectedHeap::space_containing(const void* addr) const {
2652   return heap_region_containing(addr);
2653 }
2654 
2655 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2656   Space* sp = space_containing(addr);
2657   return sp->block_start(addr);
2658 }
2659 
2660 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2661   Space* sp = space_containing(addr);
2662   return sp->block_size(addr);
2663 }
2664 
2665 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2666   Space* sp = space_containing(addr);
2667   return sp->block_is_obj(addr);
2668 }
2669 
2670 bool G1CollectedHeap::supports_tlab_allocation() const {
2671   return true;
2672 }
2673 
2674 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2675   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2676 }
2677 
2678 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2679   return young_list()->eden_used_bytes();
2680 }
2681 
2682 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2683 // must be smaller than the humongous object limit.
2684 size_t G1CollectedHeap::max_tlab_size() const {
2685   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2686 }
2687 
2688 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2689   // Return the remaining space in the cur alloc region, but not less than
2690   // the min TLAB size.
2691 
2692   // Also, this value can be at most the humongous object threshold,
2693   // since we can't allow tlabs to grow big enough to accommodate
2694   // humongous objects.
2695 
2696   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2697   size_t max_tlab = max_tlab_size() * wordSize;
2698   if (hr == NULL) {
2699     return max_tlab;
2700   } else {
2701     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2702   }
2703 }
2704 
2705 size_t G1CollectedHeap::max_capacity() const {
2706   return _hrm.reserved().byte_size();
2707 }
2708 
2709 jlong G1CollectedHeap::millis_since_last_gc() {
2710   // assert(false, "NYI");
2711   return 0;
2712 }
2713 
2714 void G1CollectedHeap::prepare_for_verify() {
2715   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2716     ensure_parsability(false);
2717   }
2718   g1_rem_set()->prepare_for_verify();
2719 }
2720 
2721 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2722                                               VerifyOption vo) {
2723   switch (vo) {
2724   case VerifyOption_G1UsePrevMarking:
2725     return hr->obj_allocated_since_prev_marking(obj);
2726   case VerifyOption_G1UseNextMarking:
2727     return hr->obj_allocated_since_next_marking(obj);
2728   case VerifyOption_G1UseMarkWord:
2729     return false;
2730   default:
2731     ShouldNotReachHere();
2732   }
2733   return false; // keep some compilers happy
2734 }
2735 
2736 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2737   switch (vo) {
2738   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2739   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2740   case VerifyOption_G1UseMarkWord:    return NULL;
2741   default:                            ShouldNotReachHere();
2742   }
2743   return NULL; // keep some compilers happy
2744 }
2745 
2746 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2747   switch (vo) {
2748   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2749   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2750   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2751   default:                            ShouldNotReachHere();
2752   }
2753   return false; // keep some compilers happy
2754 }
2755 
2756 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2757   switch (vo) {
2758   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2759   case VerifyOption_G1UseNextMarking: return "NTAMS";
2760   case VerifyOption_G1UseMarkWord:    return "NONE";
2761   default:                            ShouldNotReachHere();
2762   }
2763   return NULL; // keep some compilers happy
2764 }
2765 
2766 class VerifyRootsClosure: public OopClosure {
2767 private:
2768   G1CollectedHeap* _g1h;
2769   VerifyOption     _vo;
2770   bool             _failures;
2771 public:
2772   // _vo == UsePrevMarking -> use "prev" marking information,
2773   // _vo == UseNextMarking -> use "next" marking information,
2774   // _vo == UseMarkWord    -> use mark word from object header.
2775   VerifyRootsClosure(VerifyOption vo) :
2776     _g1h(G1CollectedHeap::heap()),
2777     _vo(vo),
2778     _failures(false) { }
2779 
2780   bool failures() { return _failures; }
2781 
2782   template <class T> void do_oop_nv(T* p) {
2783     T heap_oop = oopDesc::load_heap_oop(p);
2784     if (!oopDesc::is_null(heap_oop)) {
2785       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2786       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2787         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2788                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2789         if (_vo == VerifyOption_G1UseMarkWord) {
2790           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2791         }
2792         obj->print_on(gclog_or_tty);
2793         _failures = true;
2794       }
2795     }
2796   }
2797 
2798   void do_oop(oop* p)       { do_oop_nv(p); }
2799   void do_oop(narrowOop* p) { do_oop_nv(p); }
2800 };
2801 
2802 class G1VerifyCodeRootOopClosure: public OopClosure {
2803   G1CollectedHeap* _g1h;
2804   OopClosure* _root_cl;
2805   nmethod* _nm;
2806   VerifyOption _vo;
2807   bool _failures;
2808 
2809   template <class T> void do_oop_work(T* p) {
2810     // First verify that this root is live
2811     _root_cl->do_oop(p);
2812 
2813     if (!G1VerifyHeapRegionCodeRoots) {
2814       // We're not verifying the code roots attached to heap region.
2815       return;
2816     }
2817 
2818     // Don't check the code roots during marking verification in a full GC
2819     if (_vo == VerifyOption_G1UseMarkWord) {
2820       return;
2821     }
2822 
2823     // Now verify that the current nmethod (which contains p) is
2824     // in the code root list of the heap region containing the
2825     // object referenced by p.
2826 
2827     T heap_oop = oopDesc::load_heap_oop(p);
2828     if (!oopDesc::is_null(heap_oop)) {
2829       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2830 
2831       // Now fetch the region containing the object
2832       HeapRegion* hr = _g1h->heap_region_containing(obj);
2833       HeapRegionRemSet* hrrs = hr->rem_set();
2834       // Verify that the strong code root list for this region
2835       // contains the nmethod
2836       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2837         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2838                               "from nmethod "PTR_FORMAT" not in strong "
2839                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2840                               p, _nm, hr->bottom(), hr->end());
2841         _failures = true;
2842       }
2843     }
2844   }
2845 
2846 public:
2847   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2848     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2849 
2850   void do_oop(oop* p) { do_oop_work(p); }
2851   void do_oop(narrowOop* p) { do_oop_work(p); }
2852 
2853   void set_nmethod(nmethod* nm) { _nm = nm; }
2854   bool failures() { return _failures; }
2855 };
2856 
2857 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2858   G1VerifyCodeRootOopClosure* _oop_cl;
2859 
2860 public:
2861   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2862     _oop_cl(oop_cl) {}
2863 
2864   void do_code_blob(CodeBlob* cb) {
2865     nmethod* nm = cb->as_nmethod_or_null();
2866     if (nm != NULL) {
2867       _oop_cl->set_nmethod(nm);
2868       nm->oops_do(_oop_cl);
2869     }
2870   }
2871 };
2872 
2873 class YoungRefCounterClosure : public OopClosure {
2874   G1CollectedHeap* _g1h;
2875   int              _count;
2876  public:
2877   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2878   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2879   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2880 
2881   int count() { return _count; }
2882   void reset_count() { _count = 0; };
2883 };
2884 
2885 class VerifyKlassClosure: public KlassClosure {
2886   YoungRefCounterClosure _young_ref_counter_closure;
2887   OopClosure *_oop_closure;
2888  public:
2889   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2890   void do_klass(Klass* k) {
2891     k->oops_do(_oop_closure);
2892 
2893     _young_ref_counter_closure.reset_count();
2894     k->oops_do(&_young_ref_counter_closure);
2895     if (_young_ref_counter_closure.count() > 0) {
2896       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2897     }
2898   }
2899 };
2900 
2901 class VerifyLivenessOopClosure: public OopClosure {
2902   G1CollectedHeap* _g1h;
2903   VerifyOption _vo;
2904 public:
2905   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2906     _g1h(g1h), _vo(vo)
2907   { }
2908   void do_oop(narrowOop *p) { do_oop_work(p); }
2909   void do_oop(      oop *p) { do_oop_work(p); }
2910 
2911   template <class T> void do_oop_work(T *p) {
2912     oop obj = oopDesc::load_decode_heap_oop(p);
2913     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2914               "Dead object referenced by a not dead object");
2915   }
2916 };
2917 
2918 class VerifyObjsInRegionClosure: public ObjectClosure {
2919 private:
2920   G1CollectedHeap* _g1h;
2921   size_t _live_bytes;
2922   HeapRegion *_hr;
2923   VerifyOption _vo;
2924 public:
2925   // _vo == UsePrevMarking -> use "prev" marking information,
2926   // _vo == UseNextMarking -> use "next" marking information,
2927   // _vo == UseMarkWord    -> use mark word from object header.
2928   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2929     : _live_bytes(0), _hr(hr), _vo(vo) {
2930     _g1h = G1CollectedHeap::heap();
2931   }
2932   void do_object(oop o) {
2933     VerifyLivenessOopClosure isLive(_g1h, _vo);
2934     assert(o != NULL, "Huh?");
2935     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2936       // If the object is alive according to the mark word,
2937       // then verify that the marking information agrees.
2938       // Note we can't verify the contra-positive of the
2939       // above: if the object is dead (according to the mark
2940       // word), it may not be marked, or may have been marked
2941       // but has since became dead, or may have been allocated
2942       // since the last marking.
2943       if (_vo == VerifyOption_G1UseMarkWord) {
2944         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2945       }
2946 
2947       o->oop_iterate_no_header(&isLive);
2948       if (!_hr->obj_allocated_since_prev_marking(o)) {
2949         size_t obj_size = o->size();    // Make sure we don't overflow
2950         _live_bytes += (obj_size * HeapWordSize);
2951       }
2952     }
2953   }
2954   size_t live_bytes() { return _live_bytes; }
2955 };
2956 
2957 class PrintObjsInRegionClosure : public ObjectClosure {
2958   HeapRegion *_hr;
2959   G1CollectedHeap *_g1;
2960 public:
2961   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2962     _g1 = G1CollectedHeap::heap();
2963   };
2964 
2965   void do_object(oop o) {
2966     if (o != NULL) {
2967       HeapWord *start = (HeapWord *) o;
2968       size_t word_sz = o->size();
2969       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2970                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2971                           (void*) o, word_sz,
2972                           _g1->isMarkedPrev(o),
2973                           _g1->isMarkedNext(o),
2974                           _hr->obj_allocated_since_prev_marking(o));
2975       HeapWord *end = start + word_sz;
2976       HeapWord *cur;
2977       int *val;
2978       for (cur = start; cur < end; cur++) {
2979         val = (int *) cur;
2980         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
2981       }
2982     }
2983   }
2984 };
2985 
2986 class VerifyRegionClosure: public HeapRegionClosure {
2987 private:
2988   bool             _par;
2989   VerifyOption     _vo;
2990   bool             _failures;
2991 public:
2992   // _vo == UsePrevMarking -> use "prev" marking information,
2993   // _vo == UseNextMarking -> use "next" marking information,
2994   // _vo == UseMarkWord    -> use mark word from object header.
2995   VerifyRegionClosure(bool par, VerifyOption vo)
2996     : _par(par),
2997       _vo(vo),
2998       _failures(false) {}
2999 
3000   bool failures() {
3001     return _failures;
3002   }
3003 
3004   bool doHeapRegion(HeapRegion* r) {
3005     if (!r->is_continues_humongous()) {
3006       bool failures = false;
3007       r->verify(_vo, &failures);
3008       if (failures) {
3009         _failures = true;
3010       } else {
3011         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3012         r->object_iterate(&not_dead_yet_cl);
3013         if (_vo != VerifyOption_G1UseNextMarking) {
3014           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3015             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3016                                    "max_live_bytes "SIZE_FORMAT" "
3017                                    "< calculated "SIZE_FORMAT,
3018                                    r->bottom(), r->end(),
3019                                    r->max_live_bytes(),
3020                                  not_dead_yet_cl.live_bytes());
3021             _failures = true;
3022           }
3023         } else {
3024           // When vo == UseNextMarking we cannot currently do a sanity
3025           // check on the live bytes as the calculation has not been
3026           // finalized yet.
3027         }
3028       }
3029     }
3030     return false; // stop the region iteration if we hit a failure
3031   }
3032 };
3033 
3034 // This is the task used for parallel verification of the heap regions
3035 
3036 class G1ParVerifyTask: public AbstractGangTask {
3037 private:
3038   G1CollectedHeap*  _g1h;
3039   VerifyOption      _vo;
3040   bool              _failures;
3041   HeapRegionClaimer _hrclaimer;
3042 
3043 public:
3044   // _vo == UsePrevMarking -> use "prev" marking information,
3045   // _vo == UseNextMarking -> use "next" marking information,
3046   // _vo == UseMarkWord    -> use mark word from object header.
3047   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3048       AbstractGangTask("Parallel verify task"),
3049       _g1h(g1h),
3050       _vo(vo),
3051       _failures(false),
3052       _hrclaimer(g1h->workers()->active_workers()) {}
3053 
3054   bool failures() {
3055     return _failures;
3056   }
3057 
3058   void work(uint worker_id) {
3059     HandleMark hm;
3060     VerifyRegionClosure blk(true, _vo);
3061     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3062     if (blk.failures()) {
3063       _failures = true;
3064     }
3065   }
3066 };
3067 
3068 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3069   if (SafepointSynchronize::is_at_safepoint()) {
3070     assert(Thread::current()->is_VM_thread(),
3071            "Expected to be executed serially by the VM thread at this point");
3072 
3073     if (!silent) { gclog_or_tty->print("Roots "); }
3074     VerifyRootsClosure rootsCl(vo);
3075     VerifyKlassClosure klassCl(this, &rootsCl);
3076     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3077 
3078     // We apply the relevant closures to all the oops in the
3079     // system dictionary, class loader data graph, the string table
3080     // and the nmethods in the code cache.
3081     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3082     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3083 
3084     {
3085       G1RootProcessor root_processor(this);
3086       root_processor.process_all_roots(&rootsCl,
3087                                        &cldCl,
3088                                        &blobsCl);
3089     }
3090 
3091     bool failures = rootsCl.failures() || codeRootsCl.failures();
3092 
3093     if (vo != VerifyOption_G1UseMarkWord) {
3094       // If we're verifying during a full GC then the region sets
3095       // will have been torn down at the start of the GC. Therefore
3096       // verifying the region sets will fail. So we only verify
3097       // the region sets when not in a full GC.
3098       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3099       verify_region_sets();
3100     }
3101 
3102     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3103     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3104 
3105       G1ParVerifyTask task(this, vo);
3106       assert(UseDynamicNumberOfGCThreads ||
3107         workers()->active_workers() == workers()->total_workers(),
3108         "If not dynamic should be using all the workers");
3109       int n_workers = workers()->active_workers();
3110       set_par_threads(n_workers);
3111       workers()->run_task(&task);
3112       set_par_threads(0);
3113       if (task.failures()) {
3114         failures = true;
3115       }
3116 
3117     } else {
3118       VerifyRegionClosure blk(false, vo);
3119       heap_region_iterate(&blk);
3120       if (blk.failures()) {
3121         failures = true;
3122       }
3123     }
3124 
3125     if (G1StringDedup::is_enabled()) {
3126       if (!silent) gclog_or_tty->print("StrDedup ");
3127       G1StringDedup::verify();
3128     }
3129 
3130     if (failures) {
3131       gclog_or_tty->print_cr("Heap:");
3132       // It helps to have the per-region information in the output to
3133       // help us track down what went wrong. This is why we call
3134       // print_extended_on() instead of print_on().
3135       print_extended_on(gclog_or_tty);
3136       gclog_or_tty->cr();
3137 #ifndef PRODUCT
3138       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3139         concurrent_mark()->print_reachable("at-verification-failure",
3140                                            vo, false /* all */);
3141       }
3142 #endif
3143       gclog_or_tty->flush();
3144     }
3145     guarantee(!failures, "there should not have been any failures");
3146   } else {
3147     if (!silent) {
3148       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3149       if (G1StringDedup::is_enabled()) {
3150         gclog_or_tty->print(", StrDedup");
3151       }
3152       gclog_or_tty->print(") ");
3153     }
3154   }
3155 }
3156 
3157 void G1CollectedHeap::verify(bool silent) {
3158   verify(silent, VerifyOption_G1UsePrevMarking);
3159 }
3160 
3161 double G1CollectedHeap::verify(bool guard, const char* msg) {
3162   double verify_time_ms = 0.0;
3163 
3164   if (guard && total_collections() >= VerifyGCStartAt) {
3165     double verify_start = os::elapsedTime();
3166     HandleMark hm;  // Discard invalid handles created during verification
3167     prepare_for_verify();
3168     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3169     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3170   }
3171 
3172   return verify_time_ms;
3173 }
3174 
3175 void G1CollectedHeap::verify_before_gc() {
3176   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3177   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3178 }
3179 
3180 void G1CollectedHeap::verify_after_gc() {
3181   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3182   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3183 }
3184 
3185 class PrintRegionClosure: public HeapRegionClosure {
3186   outputStream* _st;
3187 public:
3188   PrintRegionClosure(outputStream* st) : _st(st) {}
3189   bool doHeapRegion(HeapRegion* r) {
3190     r->print_on(_st);
3191     return false;
3192   }
3193 };
3194 
3195 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3196                                        const HeapRegion* hr,
3197                                        const VerifyOption vo) const {
3198   switch (vo) {
3199   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3200   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3201   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3202   default:                            ShouldNotReachHere();
3203   }
3204   return false; // keep some compilers happy
3205 }
3206 
3207 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3208                                        const VerifyOption vo) const {
3209   switch (vo) {
3210   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3211   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3212   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3213   default:                            ShouldNotReachHere();
3214   }
3215   return false; // keep some compilers happy
3216 }
3217 
3218 void G1CollectedHeap::print_on(outputStream* st) const {
3219   st->print(" %-20s", "garbage-first heap");
3220   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3221             capacity()/K, used_unlocked()/K);
3222   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3223             _hrm.reserved().start(),
3224             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3225             _hrm.reserved().end());
3226   st->cr();
3227   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3228   uint young_regions = _young_list->length();
3229   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3230             (size_t) young_regions * HeapRegion::GrainBytes / K);
3231   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3232   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3233             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3234   st->cr();
3235   MetaspaceAux::print_on(st);
3236 }
3237 
3238 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3239   print_on(st);
3240 
3241   // Print the per-region information.
3242   st->cr();
3243   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3244                "HS=humongous(starts), HC=humongous(continues), "
3245                "CS=collection set, F=free, TS=gc time stamp, "
3246                "PTAMS=previous top-at-mark-start, "
3247                "NTAMS=next top-at-mark-start)");
3248   PrintRegionClosure blk(st);
3249   heap_region_iterate(&blk);
3250 }
3251 
3252 void G1CollectedHeap::print_on_error(outputStream* st) const {
3253   this->CollectedHeap::print_on_error(st);
3254 
3255   if (_cm != NULL) {
3256     st->cr();
3257     _cm->print_on_error(st);
3258   }
3259 }
3260 
3261 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3262   workers()->print_worker_threads_on(st);
3263   _cmThread->print_on(st);
3264   st->cr();
3265   _cm->print_worker_threads_on(st);
3266   _cg1r->print_worker_threads_on(st);
3267   if (G1StringDedup::is_enabled()) {
3268     G1StringDedup::print_worker_threads_on(st);
3269   }
3270 }
3271 
3272 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3273   workers()->threads_do(tc);
3274   tc->do_thread(_cmThread);
3275   _cg1r->threads_do(tc);
3276   if (G1StringDedup::is_enabled()) {
3277     G1StringDedup::threads_do(tc);
3278   }
3279 }
3280 
3281 void G1CollectedHeap::print_tracing_info() const {
3282   // We'll overload this to mean "trace GC pause statistics."
3283   if (TraceYoungGenTime || TraceOldGenTime) {
3284     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3285     // to that.
3286     g1_policy()->print_tracing_info();
3287   }
3288   if (G1SummarizeRSetStats) {
3289     g1_rem_set()->print_summary_info();
3290   }
3291   if (G1SummarizeConcMark) {
3292     concurrent_mark()->print_summary_info();
3293   }
3294   g1_policy()->print_yg_surv_rate_info();
3295 }
3296 
3297 #ifndef PRODUCT
3298 // Helpful for debugging RSet issues.
3299 
3300 class PrintRSetsClosure : public HeapRegionClosure {
3301 private:
3302   const char* _msg;
3303   size_t _occupied_sum;
3304 
3305 public:
3306   bool doHeapRegion(HeapRegion* r) {
3307     HeapRegionRemSet* hrrs = r->rem_set();
3308     size_t occupied = hrrs->occupied();
3309     _occupied_sum += occupied;
3310 
3311     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3312                            HR_FORMAT_PARAMS(r));
3313     if (occupied == 0) {
3314       gclog_or_tty->print_cr("  RSet is empty");
3315     } else {
3316       hrrs->print();
3317     }
3318     gclog_or_tty->print_cr("----------");
3319     return false;
3320   }
3321 
3322   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3323     gclog_or_tty->cr();
3324     gclog_or_tty->print_cr("========================================");
3325     gclog_or_tty->print_cr("%s", msg);
3326     gclog_or_tty->cr();
3327   }
3328 
3329   ~PrintRSetsClosure() {
3330     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3331     gclog_or_tty->print_cr("========================================");
3332     gclog_or_tty->cr();
3333   }
3334 };
3335 
3336 void G1CollectedHeap::print_cset_rsets() {
3337   PrintRSetsClosure cl("Printing CSet RSets");
3338   collection_set_iterate(&cl);
3339 }
3340 
3341 void G1CollectedHeap::print_all_rsets() {
3342   PrintRSetsClosure cl("Printing All RSets");;
3343   heap_region_iterate(&cl);
3344 }
3345 #endif // PRODUCT
3346 
3347 G1CollectedHeap* G1CollectedHeap::heap() {
3348   return _g1h;
3349 }
3350 
3351 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3352   // always_do_update_barrier = false;
3353   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3354   // Fill TLAB's and such
3355   accumulate_statistics_all_tlabs();
3356   ensure_parsability(true);
3357 
3358   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3359       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3360     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3361   }
3362 }
3363 
3364 void G1CollectedHeap::gc_epilogue(bool full) {
3365 
3366   if (G1SummarizeRSetStats &&
3367       (G1SummarizeRSetStatsPeriod > 0) &&
3368       // we are at the end of the GC. Total collections has already been increased.
3369       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3370     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3371   }
3372 
3373   // FIXME: what is this about?
3374   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3375   // is set.
3376   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3377                         "derived pointer present"));
3378   // always_do_update_barrier = true;
3379 
3380   resize_all_tlabs();
3381   allocation_context_stats().update(full);
3382 
3383   // We have just completed a GC. Update the soft reference
3384   // policy with the new heap occupancy
3385   Universe::update_heap_info_at_gc();
3386 }
3387 
3388 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3389                                                uint gc_count_before,
3390                                                bool* succeeded,
3391                                                GCCause::Cause gc_cause) {
3392   assert_heap_not_locked_and_not_at_safepoint();
3393   g1_policy()->record_stop_world_start();
3394   VM_G1IncCollectionPause op(gc_count_before,
3395                              word_size,
3396                              false, /* should_initiate_conc_mark */
3397                              g1_policy()->max_pause_time_ms(),
3398                              gc_cause);
3399 
3400   op.set_allocation_context(AllocationContext::current());
3401   VMThread::execute(&op);
3402 
3403   HeapWord* result = op.result();
3404   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3405   assert(result == NULL || ret_succeeded,
3406          "the result should be NULL if the VM did not succeed");
3407   *succeeded = ret_succeeded;
3408 
3409   assert_heap_not_locked();
3410   return result;
3411 }
3412 
3413 void
3414 G1CollectedHeap::doConcurrentMark() {
3415   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3416   if (!_cmThread->in_progress()) {
3417     _cmThread->set_started();
3418     CGC_lock->notify();
3419   }
3420 }
3421 
3422 size_t G1CollectedHeap::pending_card_num() {
3423   size_t extra_cards = 0;
3424   JavaThread *curr = Threads::first();
3425   while (curr != NULL) {
3426     DirtyCardQueue& dcq = curr->dirty_card_queue();
3427     extra_cards += dcq.size();
3428     curr = curr->next();
3429   }
3430   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3431   size_t buffer_size = dcqs.buffer_size();
3432   size_t buffer_num = dcqs.completed_buffers_num();
3433 
3434   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3435   // in bytes - not the number of 'entries'. We need to convert
3436   // into a number of cards.
3437   return (buffer_size * buffer_num + extra_cards) / oopSize;
3438 }
3439 
3440 size_t G1CollectedHeap::cards_scanned() {
3441   return g1_rem_set()->cardsScanned();
3442 }
3443 
3444 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3445   HeapRegion* region = region_at(index);
3446   assert(region->is_starts_humongous(), "Must start a humongous object");
3447   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3448 }
3449 
3450 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3451  private:
3452   size_t _total_humongous;
3453   size_t _candidate_humongous;
3454 
3455   DirtyCardQueue _dcq;
3456 
3457   bool humongous_region_is_candidate(uint index) {
3458     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3459     assert(region->is_starts_humongous(), "Must start a humongous object");
3460     HeapRegionRemSet* const rset = region->rem_set();
3461     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3462     return !oop(region->bottom())->is_objArray() &&
3463            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3464             (!allow_stale_refs && rset->is_empty()));
3465   }
3466 
3467  public:
3468   RegisterHumongousWithInCSetFastTestClosure()
3469   : _total_humongous(0),
3470     _candidate_humongous(0),
3471     _dcq(&JavaThread::dirty_card_queue_set()) {
3472   }
3473 
3474   virtual bool doHeapRegion(HeapRegion* r) {
3475     if (!r->is_starts_humongous()) {
3476       return false;
3477     }
3478     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3479 
3480     uint region_idx = r->hrm_index();
3481     bool is_candidate = humongous_region_is_candidate(region_idx);
3482     // Is_candidate already filters out humongous object with large remembered sets.
3483     // If we have a humongous object with a few remembered sets, we simply flush these
3484     // remembered set entries into the DCQS. That will result in automatic
3485     // re-evaluation of their remembered set entries during the following evacuation
3486     // phase.
3487     if (is_candidate) {
3488       if (!r->rem_set()->is_empty()) {
3489         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3490                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3491         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3492         HeapRegionRemSetIterator hrrs(r->rem_set());
3493         size_t card_index;
3494         while (hrrs.has_next(card_index)) {
3495           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3496           // The remembered set might contain references to already freed
3497           // regions. Filter out such entries to avoid failing card table
3498           // verification.
3499           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3500             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3501               *card_ptr = CardTableModRefBS::dirty_card_val();
3502               _dcq.enqueue(card_ptr);
3503             }
3504           }
3505         }
3506         r->rem_set()->clear_locked();
3507       }
3508       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3509       g1h->register_humongous_region_with_cset(region_idx);
3510       _candidate_humongous++;
3511     }
3512     _total_humongous++;
3513 
3514     return false;
3515   }
3516 
3517   size_t total_humongous() const { return _total_humongous; }
3518   size_t candidate_humongous() const { return _candidate_humongous; }
3519 
3520   void flush_rem_set_entries() { _dcq.flush(); }
3521 };
3522 
3523 void G1CollectedHeap::register_humongous_regions_with_cset() {
3524   if (!G1EagerReclaimHumongousObjects) {
3525     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3526     return;
3527   }
3528   double time = os::elapsed_counter();
3529 
3530   RegisterHumongousWithInCSetFastTestClosure cl;
3531   heap_region_iterate(&cl);
3532 
3533   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3534   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3535                                                                   cl.total_humongous(),
3536                                                                   cl.candidate_humongous());
3537   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3538 
3539   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3540     clear_humongous_is_live_table();
3541   }
3542 
3543   // Finally flush all remembered set entries to re-check into the global DCQS.
3544   cl.flush_rem_set_entries();
3545 }
3546 
3547 void
3548 G1CollectedHeap::setup_surviving_young_words() {
3549   assert(_surviving_young_words == NULL, "pre-condition");
3550   uint array_length = g1_policy()->young_cset_region_length();
3551   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3552   if (_surviving_young_words == NULL) {
3553     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3554                           "Not enough space for young surv words summary.");
3555   }
3556   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3557 #ifdef ASSERT
3558   for (uint i = 0;  i < array_length; ++i) {
3559     assert( _surviving_young_words[i] == 0, "memset above" );
3560   }
3561 #endif // !ASSERT
3562 }
3563 
3564 void
3565 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3566   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3567   uint array_length = g1_policy()->young_cset_region_length();
3568   for (uint i = 0; i < array_length; ++i) {
3569     _surviving_young_words[i] += surv_young_words[i];
3570   }
3571 }
3572 
3573 void
3574 G1CollectedHeap::cleanup_surviving_young_words() {
3575   guarantee( _surviving_young_words != NULL, "pre-condition" );
3576   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3577   _surviving_young_words = NULL;
3578 }
3579 
3580 #ifdef ASSERT
3581 class VerifyCSetClosure: public HeapRegionClosure {
3582 public:
3583   bool doHeapRegion(HeapRegion* hr) {
3584     // Here we check that the CSet region's RSet is ready for parallel
3585     // iteration. The fields that we'll verify are only manipulated
3586     // when the region is part of a CSet and is collected. Afterwards,
3587     // we reset these fields when we clear the region's RSet (when the
3588     // region is freed) so they are ready when the region is
3589     // re-allocated. The only exception to this is if there's an
3590     // evacuation failure and instead of freeing the region we leave
3591     // it in the heap. In that case, we reset these fields during
3592     // evacuation failure handling.
3593     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3594 
3595     // Here's a good place to add any other checks we'd like to
3596     // perform on CSet regions.
3597     return false;
3598   }
3599 };
3600 #endif // ASSERT
3601 
3602 #if TASKQUEUE_STATS
3603 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3604   st->print_raw_cr("GC Task Stats");
3605   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3606   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3607 }
3608 
3609 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3610   print_taskqueue_stats_hdr(st);
3611 
3612   TaskQueueStats totals;
3613   const int n = workers()->total_workers();
3614   for (int i = 0; i < n; ++i) {
3615     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3616     totals += task_queue(i)->stats;
3617   }
3618   st->print_raw("tot "); totals.print(st); st->cr();
3619 
3620   DEBUG_ONLY(totals.verify());
3621 }
3622 
3623 void G1CollectedHeap::reset_taskqueue_stats() {
3624   const int n = workers()->total_workers();
3625   for (int i = 0; i < n; ++i) {
3626     task_queue(i)->stats.reset();
3627   }
3628 }
3629 #endif // TASKQUEUE_STATS
3630 
3631 void G1CollectedHeap::log_gc_header() {
3632   if (!G1Log::fine()) {
3633     return;
3634   }
3635 
3636   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3637 
3638   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3639     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3640     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3641 
3642   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3643 }
3644 
3645 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3646   if (!G1Log::fine()) {
3647     return;
3648   }
3649 
3650   if (G1Log::finer()) {
3651     if (evacuation_failed()) {
3652       gclog_or_tty->print(" (to-space exhausted)");
3653     }
3654     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3655     g1_policy()->phase_times()->note_gc_end();
3656     g1_policy()->phase_times()->print(pause_time_sec);
3657     g1_policy()->print_detailed_heap_transition();
3658   } else {
3659     if (evacuation_failed()) {
3660       gclog_or_tty->print("--");
3661     }
3662     g1_policy()->print_heap_transition();
3663     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3664   }
3665   gclog_or_tty->flush();
3666 }
3667 
3668 bool
3669 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3670   assert_at_safepoint(true /* should_be_vm_thread */);
3671   guarantee(!is_gc_active(), "collection is not reentrant");
3672 
3673   if (GC_locker::check_active_before_gc()) {
3674     return false;
3675   }
3676 
3677   _gc_timer_stw->register_gc_start();
3678 
3679   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3680 
3681   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3682   ResourceMark rm;
3683 
3684   print_heap_before_gc();
3685   trace_heap_before_gc(_gc_tracer_stw);
3686 
3687   verify_region_sets_optional();
3688   verify_dirty_young_regions();
3689 
3690   // This call will decide whether this pause is an initial-mark
3691   // pause. If it is, during_initial_mark_pause() will return true
3692   // for the duration of this pause.
3693   g1_policy()->decide_on_conc_mark_initiation();
3694 
3695   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3696   assert(!g1_policy()->during_initial_mark_pause() ||
3697           g1_policy()->gcs_are_young(), "sanity");
3698 
3699   // We also do not allow mixed GCs during marking.
3700   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3701 
3702   // Record whether this pause is an initial mark. When the current
3703   // thread has completed its logging output and it's safe to signal
3704   // the CM thread, the flag's value in the policy has been reset.
3705   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3706 
3707   // Inner scope for scope based logging, timers, and stats collection
3708   {
3709     EvacuationInfo evacuation_info;
3710 
3711     if (g1_policy()->during_initial_mark_pause()) {
3712       // We are about to start a marking cycle, so we increment the
3713       // full collection counter.
3714       increment_old_marking_cycles_started();
3715       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3716     }
3717 
3718     _gc_tracer_stw->report_yc_type(yc_type());
3719 
3720     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3721 
3722     uint active_workers = workers()->active_workers();
3723     double pause_start_sec = os::elapsedTime();
3724     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3725     log_gc_header();
3726 
3727     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3728     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3729 
3730     // If the secondary_free_list is not empty, append it to the
3731     // free_list. No need to wait for the cleanup operation to finish;
3732     // the region allocation code will check the secondary_free_list
3733     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3734     // set, skip this step so that the region allocation code has to
3735     // get entries from the secondary_free_list.
3736     if (!G1StressConcRegionFreeing) {
3737       append_secondary_free_list_if_not_empty_with_lock();
3738     }
3739 
3740     assert(check_young_list_well_formed(), "young list should be well formed");
3741 
3742     // Don't dynamically change the number of GC threads this early.  A value of
3743     // 0 is used to indicate serial work.  When parallel work is done,
3744     // it will be set.
3745 
3746     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3747       IsGCActiveMark x;
3748 
3749       gc_prologue(false);
3750       increment_total_collections(false /* full gc */);
3751       increment_gc_time_stamp();
3752 
3753       verify_before_gc();
3754 
3755       check_bitmaps("GC Start");
3756 
3757       COMPILER2_PRESENT(DerivedPointerTable::clear());
3758 
3759       // Please see comment in g1CollectedHeap.hpp and
3760       // G1CollectedHeap::ref_processing_init() to see how
3761       // reference processing currently works in G1.
3762 
3763       // Enable discovery in the STW reference processor
3764       ref_processor_stw()->enable_discovery();
3765 
3766       {
3767         // We want to temporarily turn off discovery by the
3768         // CM ref processor, if necessary, and turn it back on
3769         // on again later if we do. Using a scoped
3770         // NoRefDiscovery object will do this.
3771         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3772 
3773         // Forget the current alloc region (we might even choose it to be part
3774         // of the collection set!).
3775         _allocator->release_mutator_alloc_region();
3776 
3777         // We should call this after we retire the mutator alloc
3778         // region(s) so that all the ALLOC / RETIRE events are generated
3779         // before the start GC event.
3780         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3781 
3782         // This timing is only used by the ergonomics to handle our pause target.
3783         // It is unclear why this should not include the full pause. We will
3784         // investigate this in CR 7178365.
3785         //
3786         // Preserving the old comment here if that helps the investigation:
3787         //
3788         // The elapsed time induced by the start time below deliberately elides
3789         // the possible verification above.
3790         double sample_start_time_sec = os::elapsedTime();
3791 
3792 #if YOUNG_LIST_VERBOSE
3793         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3794         _young_list->print();
3795         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3796 #endif // YOUNG_LIST_VERBOSE
3797 
3798         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3799 
3800         double scan_wait_start = os::elapsedTime();
3801         // We have to wait until the CM threads finish scanning the
3802         // root regions as it's the only way to ensure that all the
3803         // objects on them have been correctly scanned before we start
3804         // moving them during the GC.
3805         bool waited = _cm->root_regions()->wait_until_scan_finished();
3806         double wait_time_ms = 0.0;
3807         if (waited) {
3808           double scan_wait_end = os::elapsedTime();
3809           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3810         }
3811         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3812 
3813 #if YOUNG_LIST_VERBOSE
3814         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3815         _young_list->print();
3816 #endif // YOUNG_LIST_VERBOSE
3817 
3818         if (g1_policy()->during_initial_mark_pause()) {
3819           concurrent_mark()->checkpointRootsInitialPre();
3820         }
3821 
3822 #if YOUNG_LIST_VERBOSE
3823         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3824         _young_list->print();
3825         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3826 #endif // YOUNG_LIST_VERBOSE
3827 
3828         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3829 
3830         register_humongous_regions_with_cset();
3831 
3832         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3833 
3834         _cm->note_start_of_gc();
3835         // We should not verify the per-thread SATB buffers given that
3836         // we have not filtered them yet (we'll do so during the
3837         // GC). We also call this after finalize_cset() to
3838         // ensure that the CSet has been finalized.
3839         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3840                                  true  /* verify_enqueued_buffers */,
3841                                  false /* verify_thread_buffers */,
3842                                  true  /* verify_fingers */);
3843 
3844         if (_hr_printer.is_active()) {
3845           HeapRegion* hr = g1_policy()->collection_set();
3846           while (hr != NULL) {
3847             _hr_printer.cset(hr);
3848             hr = hr->next_in_collection_set();
3849           }
3850         }
3851 
3852 #ifdef ASSERT
3853         VerifyCSetClosure cl;
3854         collection_set_iterate(&cl);
3855 #endif // ASSERT
3856 
3857         setup_surviving_young_words();
3858 
3859         // Initialize the GC alloc regions.
3860         _allocator->init_gc_alloc_regions(evacuation_info);
3861 
3862         // Actually do the work...
3863         evacuate_collection_set(evacuation_info);
3864 
3865         // We do this to mainly verify the per-thread SATB buffers
3866         // (which have been filtered by now) since we didn't verify
3867         // them earlier. No point in re-checking the stacks / enqueued
3868         // buffers given that the CSet has not changed since last time
3869         // we checked.
3870         _cm->verify_no_cset_oops(false /* verify_stacks */,
3871                                  false /* verify_enqueued_buffers */,
3872                                  true  /* verify_thread_buffers */,
3873                                  true  /* verify_fingers */);
3874 
3875         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3876 
3877         eagerly_reclaim_humongous_regions();
3878 
3879         g1_policy()->clear_collection_set();
3880 
3881         cleanup_surviving_young_words();
3882 
3883         // Start a new incremental collection set for the next pause.
3884         g1_policy()->start_incremental_cset_building();
3885 
3886         clear_cset_fast_test();
3887 
3888         _young_list->reset_sampled_info();
3889 
3890         // Don't check the whole heap at this point as the
3891         // GC alloc regions from this pause have been tagged
3892         // as survivors and moved on to the survivor list.
3893         // Survivor regions will fail the !is_young() check.
3894         assert(check_young_list_empty(false /* check_heap */),
3895           "young list should be empty");
3896 
3897 #if YOUNG_LIST_VERBOSE
3898         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3899         _young_list->print();
3900 #endif // YOUNG_LIST_VERBOSE
3901 
3902         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3903                                              _young_list->first_survivor_region(),
3904                                              _young_list->last_survivor_region());
3905 
3906         _young_list->reset_auxilary_lists();
3907 
3908         if (evacuation_failed()) {
3909           _allocator->set_used(recalculate_used());
3910           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3911           for (uint i = 0; i < n_queues; i++) {
3912             if (_evacuation_failed_info_array[i].has_failed()) {
3913               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3914             }
3915           }
3916         } else {
3917           // The "used" of the the collection set have already been subtracted
3918           // when they were freed.  Add in the bytes evacuated.
3919           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3920         }
3921 
3922         if (g1_policy()->during_initial_mark_pause()) {
3923           // We have to do this before we notify the CM threads that
3924           // they can start working to make sure that all the
3925           // appropriate initialization is done on the CM object.
3926           concurrent_mark()->checkpointRootsInitialPost();
3927           set_marking_started();
3928           // Note that we don't actually trigger the CM thread at
3929           // this point. We do that later when we're sure that
3930           // the current thread has completed its logging output.
3931         }
3932 
3933         allocate_dummy_regions();
3934 
3935 #if YOUNG_LIST_VERBOSE
3936         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3937         _young_list->print();
3938         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3939 #endif // YOUNG_LIST_VERBOSE
3940 
3941         _allocator->init_mutator_alloc_region();
3942 
3943         {
3944           size_t expand_bytes = g1_policy()->expansion_amount();
3945           if (expand_bytes > 0) {
3946             size_t bytes_before = capacity();
3947             // No need for an ergo verbose message here,
3948             // expansion_amount() does this when it returns a value > 0.
3949             if (!expand(expand_bytes)) {
3950               // We failed to expand the heap. Cannot do anything about it.
3951             }
3952           }
3953         }
3954 
3955         // We redo the verification but now wrt to the new CSet which
3956         // has just got initialized after the previous CSet was freed.
3957         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3958                                  true  /* verify_enqueued_buffers */,
3959                                  true  /* verify_thread_buffers */,
3960                                  true  /* verify_fingers */);
3961         _cm->note_end_of_gc();
3962 
3963         // This timing is only used by the ergonomics to handle our pause target.
3964         // It is unclear why this should not include the full pause. We will
3965         // investigate this in CR 7178365.
3966         double sample_end_time_sec = os::elapsedTime();
3967         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3968         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3969 
3970         MemoryService::track_memory_usage();
3971 
3972         // In prepare_for_verify() below we'll need to scan the deferred
3973         // update buffers to bring the RSets up-to-date if
3974         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3975         // the update buffers we'll probably need to scan cards on the
3976         // regions we just allocated to (i.e., the GC alloc
3977         // regions). However, during the last GC we called
3978         // set_saved_mark() on all the GC alloc regions, so card
3979         // scanning might skip the [saved_mark_word()...top()] area of
3980         // those regions (i.e., the area we allocated objects into
3981         // during the last GC). But it shouldn't. Given that
3982         // saved_mark_word() is conditional on whether the GC time stamp
3983         // on the region is current or not, by incrementing the GC time
3984         // stamp here we invalidate all the GC time stamps on all the
3985         // regions and saved_mark_word() will simply return top() for
3986         // all the regions. This is a nicer way of ensuring this rather
3987         // than iterating over the regions and fixing them. In fact, the
3988         // GC time stamp increment here also ensures that
3989         // saved_mark_word() will return top() between pauses, i.e.,
3990         // during concurrent refinement. So we don't need the
3991         // is_gc_active() check to decided which top to use when
3992         // scanning cards (see CR 7039627).
3993         increment_gc_time_stamp();
3994 
3995         verify_after_gc();
3996         check_bitmaps("GC End");
3997 
3998         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3999         ref_processor_stw()->verify_no_references_recorded();
4000 
4001         // CM reference discovery will be re-enabled if necessary.
4002       }
4003 
4004       // We should do this after we potentially expand the heap so
4005       // that all the COMMIT events are generated before the end GC
4006       // event, and after we retire the GC alloc regions so that all
4007       // RETIRE events are generated before the end GC event.
4008       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4009 
4010 #ifdef TRACESPINNING
4011       ParallelTaskTerminator::print_termination_counts();
4012 #endif
4013 
4014       gc_epilogue(false);
4015     }
4016 
4017     // Print the remainder of the GC log output.
4018     log_gc_footer(os::elapsedTime() - pause_start_sec);
4019 
4020     // It is not yet to safe to tell the concurrent mark to
4021     // start as we have some optional output below. We don't want the
4022     // output from the concurrent mark thread interfering with this
4023     // logging output either.
4024 
4025     _hrm.verify_optional();
4026     verify_region_sets_optional();
4027 
4028     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4029     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4030 
4031     print_heap_after_gc();
4032     trace_heap_after_gc(_gc_tracer_stw);
4033 
4034     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4035     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4036     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4037     // before any GC notifications are raised.
4038     g1mm()->update_sizes();
4039 
4040     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4041     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4042     _gc_timer_stw->register_gc_end();
4043     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4044   }
4045   // It should now be safe to tell the concurrent mark thread to start
4046   // without its logging output interfering with the logging output
4047   // that came from the pause.
4048 
4049   if (should_start_conc_mark) {
4050     // CAUTION: after the doConcurrentMark() call below,
4051     // the concurrent marking thread(s) could be running
4052     // concurrently with us. Make sure that anything after
4053     // this point does not assume that we are the only GC thread
4054     // running. Note: of course, the actual marking work will
4055     // not start until the safepoint itself is released in
4056     // SuspendibleThreadSet::desynchronize().
4057     doConcurrentMark();
4058   }
4059 
4060   return true;
4061 }
4062 
4063 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4064   _drain_in_progress = false;
4065   set_evac_failure_closure(cl);
4066   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4067 }
4068 
4069 void G1CollectedHeap::finalize_for_evac_failure() {
4070   assert(_evac_failure_scan_stack != NULL &&
4071          _evac_failure_scan_stack->length() == 0,
4072          "Postcondition");
4073   assert(!_drain_in_progress, "Postcondition");
4074   delete _evac_failure_scan_stack;
4075   _evac_failure_scan_stack = NULL;
4076 }
4077 
4078 void G1CollectedHeap::remove_self_forwarding_pointers() {
4079   double remove_self_forwards_start = os::elapsedTime();
4080 
4081   set_par_threads();
4082   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4083   workers()->run_task(&rsfp_task);
4084   set_par_threads(0);
4085 
4086   // Now restore saved marks, if any.
4087   assert(_objs_with_preserved_marks.size() ==
4088             _preserved_marks_of_objs.size(), "Both or none.");
4089   while (!_objs_with_preserved_marks.is_empty()) {
4090     oop obj = _objs_with_preserved_marks.pop();
4091     markOop m = _preserved_marks_of_objs.pop();
4092     obj->set_mark(m);
4093   }
4094   _objs_with_preserved_marks.clear(true);
4095   _preserved_marks_of_objs.clear(true);
4096 
4097   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4098 }
4099 
4100 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4101   _evac_failure_scan_stack->push(obj);
4102 }
4103 
4104 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4105   assert(_evac_failure_scan_stack != NULL, "precondition");
4106 
4107   while (_evac_failure_scan_stack->length() > 0) {
4108      oop obj = _evac_failure_scan_stack->pop();
4109      _evac_failure_closure->set_region(heap_region_containing(obj));
4110      obj->oop_iterate_backwards(_evac_failure_closure);
4111   }
4112 }
4113 
4114 oop
4115 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4116                                                oop old) {
4117   assert(obj_in_cs(old),
4118          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4119                  (HeapWord*) old));
4120   markOop m = old->mark();
4121   oop forward_ptr = old->forward_to_atomic(old);
4122   if (forward_ptr == NULL) {
4123     // Forward-to-self succeeded.
4124     assert(_par_scan_state != NULL, "par scan state");
4125     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4126     uint queue_num = _par_scan_state->queue_num();
4127 
4128     _evacuation_failed = true;
4129     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4130     if (_evac_failure_closure != cl) {
4131       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4132       assert(!_drain_in_progress,
4133              "Should only be true while someone holds the lock.");
4134       // Set the global evac-failure closure to the current thread's.
4135       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4136       set_evac_failure_closure(cl);
4137       // Now do the common part.
4138       handle_evacuation_failure_common(old, m);
4139       // Reset to NULL.
4140       set_evac_failure_closure(NULL);
4141     } else {
4142       // The lock is already held, and this is recursive.
4143       assert(_drain_in_progress, "This should only be the recursive case.");
4144       handle_evacuation_failure_common(old, m);
4145     }
4146     return old;
4147   } else {
4148     // Forward-to-self failed. Either someone else managed to allocate
4149     // space for this object (old != forward_ptr) or they beat us in
4150     // self-forwarding it (old == forward_ptr).
4151     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4152            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4153                    "should not be in the CSet",
4154                    (HeapWord*) old, (HeapWord*) forward_ptr));
4155     return forward_ptr;
4156   }
4157 }
4158 
4159 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4160   preserve_mark_if_necessary(old, m);
4161 
4162   HeapRegion* r = heap_region_containing(old);
4163   if (!r->evacuation_failed()) {
4164     r->set_evacuation_failed(true);
4165     _hr_printer.evac_failure(r);
4166   }
4167 
4168   push_on_evac_failure_scan_stack(old);
4169 
4170   if (!_drain_in_progress) {
4171     // prevent recursion in copy_to_survivor_space()
4172     _drain_in_progress = true;
4173     drain_evac_failure_scan_stack();
4174     _drain_in_progress = false;
4175   }
4176 }
4177 
4178 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4179   assert(evacuation_failed(), "Oversaving!");
4180   // We want to call the "for_promotion_failure" version only in the
4181   // case of a promotion failure.
4182   if (m->must_be_preserved_for_promotion_failure(obj)) {
4183     _objs_with_preserved_marks.push(obj);
4184     _preserved_marks_of_objs.push(m);
4185   }
4186 }
4187 
4188 void G1ParCopyHelper::mark_object(oop obj) {
4189   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4190 
4191   // We know that the object is not moving so it's safe to read its size.
4192   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4193 }
4194 
4195 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4196   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4197   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4198   assert(from_obj != to_obj, "should not be self-forwarded");
4199 
4200   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4201   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4202 
4203   // The object might be in the process of being copied by another
4204   // worker so we cannot trust that its to-space image is
4205   // well-formed. So we have to read its size from its from-space
4206   // image which we know should not be changing.
4207   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4208 }
4209 
4210 template <class T>
4211 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4212   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4213     _scanned_klass->record_modified_oops();
4214   }
4215 }
4216 
4217 template <G1Barrier barrier, G1Mark do_mark_object>
4218 template <class T>
4219 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4220   T heap_oop = oopDesc::load_heap_oop(p);
4221 
4222   if (oopDesc::is_null(heap_oop)) {
4223     return;
4224   }
4225 
4226   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4227 
4228   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4229 
4230   const InCSetState state = _g1->in_cset_state(obj);
4231   if (state.is_in_cset()) {
4232     oop forwardee;
4233     markOop m = obj->mark();
4234     if (m->is_marked()) {
4235       forwardee = (oop) m->decode_pointer();
4236     } else {
4237       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4238     }
4239     assert(forwardee != NULL, "forwardee should not be NULL");
4240     oopDesc::encode_store_heap_oop(p, forwardee);
4241     if (do_mark_object != G1MarkNone && forwardee != obj) {
4242       // If the object is self-forwarded we don't need to explicitly
4243       // mark it, the evacuation failure protocol will do so.
4244       mark_forwarded_object(obj, forwardee);
4245     }
4246 
4247     if (barrier == G1BarrierKlass) {
4248       do_klass_barrier(p, forwardee);
4249     }
4250   } else {
4251     if (state.is_humongous()) {
4252       _g1->set_humongous_is_live(obj);
4253     }
4254     // The object is not in collection set. If we're a root scanning
4255     // closure during an initial mark pause then attempt to mark the object.
4256     if (do_mark_object == G1MarkFromRoot) {
4257       mark_object(obj);
4258     }
4259   }
4260 
4261   if (barrier == G1BarrierEvac) {
4262     _par_scan_state->update_rs(_from, p, _worker_id);
4263   }
4264 }
4265 
4266 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4267 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4268 
4269 class G1ParEvacuateFollowersClosure : public VoidClosure {
4270 protected:
4271   G1CollectedHeap*              _g1h;
4272   G1ParScanThreadState*         _par_scan_state;
4273   RefToScanQueueSet*            _queues;
4274   ParallelTaskTerminator*       _terminator;
4275 
4276   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4277   RefToScanQueueSet*      queues()         { return _queues; }
4278   ParallelTaskTerminator* terminator()     { return _terminator; }
4279 
4280 public:
4281   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4282                                 G1ParScanThreadState* par_scan_state,
4283                                 RefToScanQueueSet* queues,
4284                                 ParallelTaskTerminator* terminator)
4285     : _g1h(g1h), _par_scan_state(par_scan_state),
4286       _queues(queues), _terminator(terminator) {}
4287 
4288   void do_void();
4289 
4290 private:
4291   inline bool offer_termination();
4292 };
4293 
4294 bool G1ParEvacuateFollowersClosure::offer_termination() {
4295   G1ParScanThreadState* const pss = par_scan_state();
4296   pss->start_term_time();
4297   const bool res = terminator()->offer_termination();
4298   pss->end_term_time();
4299   return res;
4300 }
4301 
4302 void G1ParEvacuateFollowersClosure::do_void() {
4303   G1ParScanThreadState* const pss = par_scan_state();
4304   pss->trim_queue();
4305   do {
4306     pss->steal_and_trim_queue(queues());
4307   } while (!offer_termination());
4308 }
4309 
4310 class G1KlassScanClosure : public KlassClosure {
4311  G1ParCopyHelper* _closure;
4312  bool             _process_only_dirty;
4313  int              _count;
4314  public:
4315   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4316       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4317   void do_klass(Klass* klass) {
4318     // If the klass has not been dirtied we know that there's
4319     // no references into  the young gen and we can skip it.
4320    if (!_process_only_dirty || klass->has_modified_oops()) {
4321       // Clean the klass since we're going to scavenge all the metadata.
4322       klass->clear_modified_oops();
4323 
4324       // Tell the closure that this klass is the Klass to scavenge
4325       // and is the one to dirty if oops are left pointing into the young gen.
4326       _closure->set_scanned_klass(klass);
4327 
4328       klass->oops_do(_closure);
4329 
4330       _closure->set_scanned_klass(NULL);
4331     }
4332     _count++;
4333   }
4334 };
4335 
4336 class G1ParTask : public AbstractGangTask {
4337 protected:
4338   G1CollectedHeap*       _g1h;
4339   RefToScanQueueSet      *_queues;
4340   G1RootProcessor*       _root_processor;
4341   ParallelTaskTerminator _terminator;
4342   uint _n_workers;
4343 
4344   Mutex _stats_lock;
4345   Mutex* stats_lock() { return &_stats_lock; }
4346 
4347 public:
4348   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4349     : AbstractGangTask("G1 collection"),
4350       _g1h(g1h),
4351       _queues(task_queues),
4352       _root_processor(root_processor),
4353       _terminator(0, _queues),
4354       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4355   {}
4356 
4357   RefToScanQueueSet* queues() { return _queues; }
4358 
4359   RefToScanQueue *work_queue(int i) {
4360     return queues()->queue(i);
4361   }
4362 
4363   ParallelTaskTerminator* terminator() { return &_terminator; }
4364 
4365   virtual void set_for_termination(int active_workers) {
4366     _root_processor->set_num_workers(active_workers);
4367     terminator()->reset_for_reuse(active_workers);
4368     _n_workers = active_workers;
4369   }
4370 
4371   // Helps out with CLD processing.
4372   //
4373   // During InitialMark we need to:
4374   // 1) Scavenge all CLDs for the young GC.
4375   // 2) Mark all objects directly reachable from strong CLDs.
4376   template <G1Mark do_mark_object>
4377   class G1CLDClosure : public CLDClosure {
4378     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4379     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4380     G1KlassScanClosure                                _klass_in_cld_closure;
4381     bool                                              _claim;
4382 
4383    public:
4384     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4385                  bool only_young, bool claim)
4386         : _oop_closure(oop_closure),
4387           _oop_in_klass_closure(oop_closure->g1(),
4388                                 oop_closure->pss(),
4389                                 oop_closure->rp()),
4390           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4391           _claim(claim) {
4392 
4393     }
4394 
4395     void do_cld(ClassLoaderData* cld) {
4396       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4397     }
4398   };
4399 
4400   void work(uint worker_id) {
4401     if (worker_id >= _n_workers) return;  // no work needed this round
4402 
4403     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4404 
4405     {
4406       ResourceMark rm;
4407       HandleMark   hm;
4408 
4409       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4410 
4411       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4412       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4413 
4414       pss.set_evac_failure_closure(&evac_failure_cl);
4415 
4416       bool only_young = _g1h->g1_policy()->gcs_are_young();
4417 
4418       // Non-IM young GC.
4419       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4420       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4421                                                                                only_young, // Only process dirty klasses.
4422                                                                                false);     // No need to claim CLDs.
4423       // IM young GC.
4424       //    Strong roots closures.
4425       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4426       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4427                                                                                false, // Process all klasses.
4428                                                                                true); // Need to claim CLDs.
4429       //    Weak roots closures.
4430       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4431       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4432                                                                                     false, // Process all klasses.
4433                                                                                     true); // Need to claim CLDs.
4434 
4435       OopClosure* strong_root_cl;
4436       OopClosure* weak_root_cl;
4437       CLDClosure* strong_cld_cl;
4438       CLDClosure* weak_cld_cl;
4439 
4440       bool trace_metadata = false;
4441 
4442       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4443         // We also need to mark copied objects.
4444         strong_root_cl = &scan_mark_root_cl;
4445         strong_cld_cl  = &scan_mark_cld_cl;
4446         if (ClassUnloadingWithConcurrentMark) {
4447           weak_root_cl = &scan_mark_weak_root_cl;
4448           weak_cld_cl  = &scan_mark_weak_cld_cl;
4449           trace_metadata = true;
4450         } else {
4451           weak_root_cl = &scan_mark_root_cl;
4452           weak_cld_cl  = &scan_mark_cld_cl;
4453         }
4454       } else {
4455         strong_root_cl = &scan_only_root_cl;
4456         weak_root_cl   = &scan_only_root_cl;
4457         strong_cld_cl  = &scan_only_cld_cl;
4458         weak_cld_cl    = &scan_only_cld_cl;
4459       }
4460 
4461       pss.start_strong_roots();
4462 
4463       _root_processor->evacuate_roots(strong_root_cl,
4464                                       weak_root_cl,
4465                                       strong_cld_cl,
4466                                       weak_cld_cl,
4467                                       trace_metadata,
4468                                       worker_id);
4469 
4470       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4471       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4472                                             weak_root_cl,
4473                                             worker_id);
4474       pss.end_strong_roots();
4475 
4476       {
4477         double start = os::elapsedTime();
4478         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4479         evac.do_void();
4480         double elapsed_sec = os::elapsedTime() - start;
4481         double term_sec = pss.term_time();
4482         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4483         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4484         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4485       }
4486       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4487       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4488 
4489       if (PrintTerminationStats) {
4490         MutexLocker x(stats_lock());
4491         pss.print_termination_stats(worker_id);
4492       }
4493 
4494       assert(pss.queue_is_empty(), "should be empty");
4495 
4496       // Close the inner scope so that the ResourceMark and HandleMark
4497       // destructors are executed here and are included as part of the
4498       // "GC Worker Time".
4499     }
4500     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4501   }
4502 };
4503 
4504 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4505 private:
4506   BoolObjectClosure* _is_alive;
4507   int _initial_string_table_size;
4508   int _initial_symbol_table_size;
4509 
4510   bool  _process_strings;
4511   int _strings_processed;
4512   int _strings_removed;
4513 
4514   bool  _process_symbols;
4515   int _symbols_processed;
4516   int _symbols_removed;
4517 
4518 public:
4519   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4520     AbstractGangTask("String/Symbol Unlinking"),
4521     _is_alive(is_alive),
4522     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4523     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4524 
4525     _initial_string_table_size = StringTable::the_table()->table_size();
4526     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4527     if (process_strings) {
4528       StringTable::clear_parallel_claimed_index();
4529     }
4530     if (process_symbols) {
4531       SymbolTable::clear_parallel_claimed_index();
4532     }
4533   }
4534 
4535   ~G1StringSymbolTableUnlinkTask() {
4536     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4537               err_msg("claim value %d after unlink less than initial string table size %d",
4538                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4539     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4540               err_msg("claim value %d after unlink less than initial symbol table size %d",
4541                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4542 
4543     if (G1TraceStringSymbolTableScrubbing) {
4544       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4545                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4546                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4547                              strings_processed(), strings_removed(),
4548                              symbols_processed(), symbols_removed());
4549     }
4550   }
4551 
4552   void work(uint worker_id) {
4553     int strings_processed = 0;
4554     int strings_removed = 0;
4555     int symbols_processed = 0;
4556     int symbols_removed = 0;
4557     if (_process_strings) {
4558       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4559       Atomic::add(strings_processed, &_strings_processed);
4560       Atomic::add(strings_removed, &_strings_removed);
4561     }
4562     if (_process_symbols) {
4563       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4564       Atomic::add(symbols_processed, &_symbols_processed);
4565       Atomic::add(symbols_removed, &_symbols_removed);
4566     }
4567   }
4568 
4569   size_t strings_processed() const { return (size_t)_strings_processed; }
4570   size_t strings_removed()   const { return (size_t)_strings_removed; }
4571 
4572   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4573   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4574 };
4575 
4576 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4577 private:
4578   static Monitor* _lock;
4579 
4580   BoolObjectClosure* const _is_alive;
4581   const bool               _unloading_occurred;
4582   const uint               _num_workers;
4583 
4584   // Variables used to claim nmethods.
4585   nmethod* _first_nmethod;
4586   volatile nmethod* _claimed_nmethod;
4587 
4588   // The list of nmethods that need to be processed by the second pass.
4589   volatile nmethod* _postponed_list;
4590   volatile uint     _num_entered_barrier;
4591 
4592  public:
4593   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4594       _is_alive(is_alive),
4595       _unloading_occurred(unloading_occurred),
4596       _num_workers(num_workers),
4597       _first_nmethod(NULL),
4598       _claimed_nmethod(NULL),
4599       _postponed_list(NULL),
4600       _num_entered_barrier(0)
4601   {
4602     nmethod::increase_unloading_clock();
4603     // Get first alive nmethod
4604     NMethodIterator iter = NMethodIterator();
4605     if(iter.next_alive()) {
4606       _first_nmethod = iter.method();
4607     }
4608     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4609   }
4610 
4611   ~G1CodeCacheUnloadingTask() {
4612     CodeCache::verify_clean_inline_caches();
4613 
4614     CodeCache::set_needs_cache_clean(false);
4615     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4616 
4617     CodeCache::verify_icholder_relocations();
4618   }
4619 
4620  private:
4621   void add_to_postponed_list(nmethod* nm) {
4622       nmethod* old;
4623       do {
4624         old = (nmethod*)_postponed_list;
4625         nm->set_unloading_next(old);
4626       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4627   }
4628 
4629   void clean_nmethod(nmethod* nm) {
4630     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4631 
4632     if (postponed) {
4633       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4634       add_to_postponed_list(nm);
4635     }
4636 
4637     // Mark that this thread has been cleaned/unloaded.
4638     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4639     nm->set_unloading_clock(nmethod::global_unloading_clock());
4640   }
4641 
4642   void clean_nmethod_postponed(nmethod* nm) {
4643     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4644   }
4645 
4646   static const int MaxClaimNmethods = 16;
4647 
4648   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4649     nmethod* first;
4650     NMethodIterator last;
4651 
4652     do {
4653       *num_claimed_nmethods = 0;
4654 
4655       first = (nmethod*)_claimed_nmethod;
4656       last = NMethodIterator(first);
4657 
4658       if (first != NULL) {
4659 
4660         for (int i = 0; i < MaxClaimNmethods; i++) {
4661           if (!last.next_alive()) {
4662             break;
4663           }
4664           claimed_nmethods[i] = last.method();
4665           (*num_claimed_nmethods)++;
4666         }
4667       }
4668 
4669     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4670   }
4671 
4672   nmethod* claim_postponed_nmethod() {
4673     nmethod* claim;
4674     nmethod* next;
4675 
4676     do {
4677       claim = (nmethod*)_postponed_list;
4678       if (claim == NULL) {
4679         return NULL;
4680       }
4681 
4682       next = claim->unloading_next();
4683 
4684     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4685 
4686     return claim;
4687   }
4688 
4689  public:
4690   // Mark that we're done with the first pass of nmethod cleaning.
4691   void barrier_mark(uint worker_id) {
4692     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4693     _num_entered_barrier++;
4694     if (_num_entered_barrier == _num_workers) {
4695       ml.notify_all();
4696     }
4697   }
4698 
4699   // See if we have to wait for the other workers to
4700   // finish their first-pass nmethod cleaning work.
4701   void barrier_wait(uint worker_id) {
4702     if (_num_entered_barrier < _num_workers) {
4703       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4704       while (_num_entered_barrier < _num_workers) {
4705           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4706       }
4707     }
4708   }
4709 
4710   // Cleaning and unloading of nmethods. Some work has to be postponed
4711   // to the second pass, when we know which nmethods survive.
4712   void work_first_pass(uint worker_id) {
4713     // The first nmethods is claimed by the first worker.
4714     if (worker_id == 0 && _first_nmethod != NULL) {
4715       clean_nmethod(_first_nmethod);
4716       _first_nmethod = NULL;
4717     }
4718 
4719     int num_claimed_nmethods;
4720     nmethod* claimed_nmethods[MaxClaimNmethods];
4721 
4722     while (true) {
4723       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4724 
4725       if (num_claimed_nmethods == 0) {
4726         break;
4727       }
4728 
4729       for (int i = 0; i < num_claimed_nmethods; i++) {
4730         clean_nmethod(claimed_nmethods[i]);
4731       }
4732     }
4733   }
4734 
4735   void work_second_pass(uint worker_id) {
4736     nmethod* nm;
4737     // Take care of postponed nmethods.
4738     while ((nm = claim_postponed_nmethod()) != NULL) {
4739       clean_nmethod_postponed(nm);
4740     }
4741   }
4742 };
4743 
4744 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4745 
4746 class G1KlassCleaningTask : public StackObj {
4747   BoolObjectClosure*                      _is_alive;
4748   volatile jint                           _clean_klass_tree_claimed;
4749   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4750 
4751  public:
4752   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4753       _is_alive(is_alive),
4754       _clean_klass_tree_claimed(0),
4755       _klass_iterator() {
4756   }
4757 
4758  private:
4759   bool claim_clean_klass_tree_task() {
4760     if (_clean_klass_tree_claimed) {
4761       return false;
4762     }
4763 
4764     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4765   }
4766 
4767   InstanceKlass* claim_next_klass() {
4768     Klass* klass;
4769     do {
4770       klass =_klass_iterator.next_klass();
4771     } while (klass != NULL && !klass->oop_is_instance());
4772 
4773     return (InstanceKlass*)klass;
4774   }
4775 
4776 public:
4777 
4778   void clean_klass(InstanceKlass* ik) {
4779     ik->clean_implementors_list(_is_alive);
4780     ik->clean_method_data(_is_alive);
4781 
4782     // G1 specific cleanup work that has
4783     // been moved here to be done in parallel.
4784     ik->clean_dependent_nmethods();
4785   }
4786 
4787   void work() {
4788     ResourceMark rm;
4789 
4790     // One worker will clean the subklass/sibling klass tree.
4791     if (claim_clean_klass_tree_task()) {
4792       Klass::clean_subklass_tree(_is_alive);
4793     }
4794 
4795     // All workers will help cleaning the classes,
4796     InstanceKlass* klass;
4797     while ((klass = claim_next_klass()) != NULL) {
4798       clean_klass(klass);
4799     }
4800   }
4801 };
4802 
4803 // To minimize the remark pause times, the tasks below are done in parallel.
4804 class G1ParallelCleaningTask : public AbstractGangTask {
4805 private:
4806   G1StringSymbolTableUnlinkTask _string_symbol_task;
4807   G1CodeCacheUnloadingTask      _code_cache_task;
4808   G1KlassCleaningTask           _klass_cleaning_task;
4809 
4810 public:
4811   // The constructor is run in the VMThread.
4812   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4813       AbstractGangTask("Parallel Cleaning"),
4814       _string_symbol_task(is_alive, process_strings, process_symbols),
4815       _code_cache_task(num_workers, is_alive, unloading_occurred),
4816       _klass_cleaning_task(is_alive) {
4817   }
4818 
4819   // The parallel work done by all worker threads.
4820   void work(uint worker_id) {
4821     // Do first pass of code cache cleaning.
4822     _code_cache_task.work_first_pass(worker_id);
4823 
4824     // Let the threads mark that the first pass is done.
4825     _code_cache_task.barrier_mark(worker_id);
4826 
4827     // Clean the Strings and Symbols.
4828     _string_symbol_task.work(worker_id);
4829 
4830     // Wait for all workers to finish the first code cache cleaning pass.
4831     _code_cache_task.barrier_wait(worker_id);
4832 
4833     // Do the second code cache cleaning work, which realize on
4834     // the liveness information gathered during the first pass.
4835     _code_cache_task.work_second_pass(worker_id);
4836 
4837     // Clean all klasses that were not unloaded.
4838     _klass_cleaning_task.work();
4839   }
4840 };
4841 
4842 
4843 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4844                                         bool process_strings,
4845                                         bool process_symbols,
4846                                         bool class_unloading_occurred) {
4847   uint n_workers = workers()->active_workers();
4848 
4849   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4850                                         n_workers, class_unloading_occurred);
4851   set_par_threads(n_workers);
4852   workers()->run_task(&g1_unlink_task);
4853   set_par_threads(0);
4854 }
4855 
4856 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4857                                                      bool process_strings, bool process_symbols) {
4858   {
4859     uint n_workers = _g1h->workers()->active_workers();
4860     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4861     set_par_threads(n_workers);
4862     workers()->run_task(&g1_unlink_task);
4863     set_par_threads(0);
4864   }
4865 
4866   if (G1StringDedup::is_enabled()) {
4867     G1StringDedup::unlink(is_alive);
4868   }
4869 }
4870 
4871 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4872  private:
4873   DirtyCardQueueSet* _queue;
4874  public:
4875   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4876 
4877   virtual void work(uint worker_id) {
4878     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4879     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4880 
4881     RedirtyLoggedCardTableEntryClosure cl;
4882     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4883 
4884     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4885   }
4886 };
4887 
4888 void G1CollectedHeap::redirty_logged_cards() {
4889   double redirty_logged_cards_start = os::elapsedTime();
4890 
4891   uint n_workers = _g1h->workers()->active_workers();
4892 
4893   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4894   dirty_card_queue_set().reset_for_par_iteration();
4895   set_par_threads(n_workers);
4896   workers()->run_task(&redirty_task);
4897   set_par_threads(0);
4898 
4899   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4900   dcq.merge_bufferlists(&dirty_card_queue_set());
4901   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4902 
4903   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4904 }
4905 
4906 // Weak Reference Processing support
4907 
4908 // An always "is_alive" closure that is used to preserve referents.
4909 // If the object is non-null then it's alive.  Used in the preservation
4910 // of referent objects that are pointed to by reference objects
4911 // discovered by the CM ref processor.
4912 class G1AlwaysAliveClosure: public BoolObjectClosure {
4913   G1CollectedHeap* _g1;
4914 public:
4915   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4916   bool do_object_b(oop p) {
4917     if (p != NULL) {
4918       return true;
4919     }
4920     return false;
4921   }
4922 };
4923 
4924 bool G1STWIsAliveClosure::do_object_b(oop p) {
4925   // An object is reachable if it is outside the collection set,
4926   // or is inside and copied.
4927   return !_g1->obj_in_cs(p) || p->is_forwarded();
4928 }
4929 
4930 // Non Copying Keep Alive closure
4931 class G1KeepAliveClosure: public OopClosure {
4932   G1CollectedHeap* _g1;
4933 public:
4934   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4935   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4936   void do_oop(oop* p) {
4937     oop obj = *p;
4938     assert(obj != NULL, "the caller should have filtered out NULL values");
4939 
4940     const InCSetState cset_state = _g1->in_cset_state(obj);
4941     if (!cset_state.is_in_cset_or_humongous()) {
4942       return;
4943     }
4944     if (cset_state.is_in_cset()) {
4945       assert( obj->is_forwarded(), "invariant" );
4946       *p = obj->forwardee();
4947     } else {
4948       assert(!obj->is_forwarded(), "invariant" );
4949       assert(cset_state.is_humongous(),
4950              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4951       _g1->set_humongous_is_live(obj);
4952     }
4953   }
4954 };
4955 
4956 // Copying Keep Alive closure - can be called from both
4957 // serial and parallel code as long as different worker
4958 // threads utilize different G1ParScanThreadState instances
4959 // and different queues.
4960 
4961 class G1CopyingKeepAliveClosure: public OopClosure {
4962   G1CollectedHeap*         _g1h;
4963   OopClosure*              _copy_non_heap_obj_cl;
4964   G1ParScanThreadState*    _par_scan_state;
4965 
4966 public:
4967   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4968                             OopClosure* non_heap_obj_cl,
4969                             G1ParScanThreadState* pss):
4970     _g1h(g1h),
4971     _copy_non_heap_obj_cl(non_heap_obj_cl),
4972     _par_scan_state(pss)
4973   {}
4974 
4975   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4976   virtual void do_oop(      oop* p) { do_oop_work(p); }
4977 
4978   template <class T> void do_oop_work(T* p) {
4979     oop obj = oopDesc::load_decode_heap_oop(p);
4980 
4981     if (_g1h->is_in_cset_or_humongous(obj)) {
4982       // If the referent object has been forwarded (either copied
4983       // to a new location or to itself in the event of an
4984       // evacuation failure) then we need to update the reference
4985       // field and, if both reference and referent are in the G1
4986       // heap, update the RSet for the referent.
4987       //
4988       // If the referent has not been forwarded then we have to keep
4989       // it alive by policy. Therefore we have copy the referent.
4990       //
4991       // If the reference field is in the G1 heap then we can push
4992       // on the PSS queue. When the queue is drained (after each
4993       // phase of reference processing) the object and it's followers
4994       // will be copied, the reference field set to point to the
4995       // new location, and the RSet updated. Otherwise we need to
4996       // use the the non-heap or metadata closures directly to copy
4997       // the referent object and update the pointer, while avoiding
4998       // updating the RSet.
4999 
5000       if (_g1h->is_in_g1_reserved(p)) {
5001         _par_scan_state->push_on_queue(p);
5002       } else {
5003         assert(!Metaspace::contains((const void*)p),
5004                err_msg("Unexpectedly found a pointer from metadata: "
5005                               PTR_FORMAT, p));
5006         _copy_non_heap_obj_cl->do_oop(p);
5007       }
5008     }
5009   }
5010 };
5011 
5012 // Serial drain queue closure. Called as the 'complete_gc'
5013 // closure for each discovered list in some of the
5014 // reference processing phases.
5015 
5016 class G1STWDrainQueueClosure: public VoidClosure {
5017 protected:
5018   G1CollectedHeap* _g1h;
5019   G1ParScanThreadState* _par_scan_state;
5020 
5021   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5022 
5023 public:
5024   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5025     _g1h(g1h),
5026     _par_scan_state(pss)
5027   { }
5028 
5029   void do_void() {
5030     G1ParScanThreadState* const pss = par_scan_state();
5031     pss->trim_queue();
5032   }
5033 };
5034 
5035 // Parallel Reference Processing closures
5036 
5037 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5038 // processing during G1 evacuation pauses.
5039 
5040 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5041 private:
5042   G1CollectedHeap*   _g1h;
5043   RefToScanQueueSet* _queues;
5044   FlexibleWorkGang*  _workers;
5045   int                _active_workers;
5046 
5047 public:
5048   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5049                         FlexibleWorkGang* workers,
5050                         RefToScanQueueSet *task_queues,
5051                         int n_workers) :
5052     _g1h(g1h),
5053     _queues(task_queues),
5054     _workers(workers),
5055     _active_workers(n_workers)
5056   {
5057     assert(n_workers > 0, "shouldn't call this otherwise");
5058   }
5059 
5060   // Executes the given task using concurrent marking worker threads.
5061   virtual void execute(ProcessTask& task);
5062   virtual void execute(EnqueueTask& task);
5063 };
5064 
5065 // Gang task for possibly parallel reference processing
5066 
5067 class G1STWRefProcTaskProxy: public AbstractGangTask {
5068   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5069   ProcessTask&     _proc_task;
5070   G1CollectedHeap* _g1h;
5071   RefToScanQueueSet *_task_queues;
5072   ParallelTaskTerminator* _terminator;
5073 
5074 public:
5075   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5076                      G1CollectedHeap* g1h,
5077                      RefToScanQueueSet *task_queues,
5078                      ParallelTaskTerminator* terminator) :
5079     AbstractGangTask("Process reference objects in parallel"),
5080     _proc_task(proc_task),
5081     _g1h(g1h),
5082     _task_queues(task_queues),
5083     _terminator(terminator)
5084   {}
5085 
5086   virtual void work(uint worker_id) {
5087     // The reference processing task executed by a single worker.
5088     ResourceMark rm;
5089     HandleMark   hm;
5090 
5091     G1STWIsAliveClosure is_alive(_g1h);
5092 
5093     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5094     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5095 
5096     pss.set_evac_failure_closure(&evac_failure_cl);
5097 
5098     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5099 
5100     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5101 
5102     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5103 
5104     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5105       // We also need to mark copied objects.
5106       copy_non_heap_cl = &copy_mark_non_heap_cl;
5107     }
5108 
5109     // Keep alive closure.
5110     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5111 
5112     // Complete GC closure
5113     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5114 
5115     // Call the reference processing task's work routine.
5116     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5117 
5118     // Note we cannot assert that the refs array is empty here as not all
5119     // of the processing tasks (specifically phase2 - pp2_work) execute
5120     // the complete_gc closure (which ordinarily would drain the queue) so
5121     // the queue may not be empty.
5122   }
5123 };
5124 
5125 // Driver routine for parallel reference processing.
5126 // Creates an instance of the ref processing gang
5127 // task and has the worker threads execute it.
5128 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5129   assert(_workers != NULL, "Need parallel worker threads.");
5130 
5131   ParallelTaskTerminator terminator(_active_workers, _queues);
5132   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5133 
5134   _g1h->set_par_threads(_active_workers);
5135   _workers->run_task(&proc_task_proxy);
5136   _g1h->set_par_threads(0);
5137 }
5138 
5139 // Gang task for parallel reference enqueueing.
5140 
5141 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5142   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5143   EnqueueTask& _enq_task;
5144 
5145 public:
5146   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5147     AbstractGangTask("Enqueue reference objects in parallel"),
5148     _enq_task(enq_task)
5149   { }
5150 
5151   virtual void work(uint worker_id) {
5152     _enq_task.work(worker_id);
5153   }
5154 };
5155 
5156 // Driver routine for parallel reference enqueueing.
5157 // Creates an instance of the ref enqueueing gang
5158 // task and has the worker threads execute it.
5159 
5160 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5161   assert(_workers != NULL, "Need parallel worker threads.");
5162 
5163   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5164 
5165   _g1h->set_par_threads(_active_workers);
5166   _workers->run_task(&enq_task_proxy);
5167   _g1h->set_par_threads(0);
5168 }
5169 
5170 // End of weak reference support closures
5171 
5172 // Abstract task used to preserve (i.e. copy) any referent objects
5173 // that are in the collection set and are pointed to by reference
5174 // objects discovered by the CM ref processor.
5175 
5176 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5177 protected:
5178   G1CollectedHeap* _g1h;
5179   RefToScanQueueSet      *_queues;
5180   ParallelTaskTerminator _terminator;
5181   uint _n_workers;
5182 
5183 public:
5184   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5185     AbstractGangTask("ParPreserveCMReferents"),
5186     _g1h(g1h),
5187     _queues(task_queues),
5188     _terminator(workers, _queues),
5189     _n_workers(workers)
5190   { }
5191 
5192   void work(uint worker_id) {
5193     ResourceMark rm;
5194     HandleMark   hm;
5195 
5196     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5197     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5198 
5199     pss.set_evac_failure_closure(&evac_failure_cl);
5200 
5201     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5202 
5203     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5204 
5205     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5206 
5207     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5208 
5209     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5210       // We also need to mark copied objects.
5211       copy_non_heap_cl = &copy_mark_non_heap_cl;
5212     }
5213 
5214     // Is alive closure
5215     G1AlwaysAliveClosure always_alive(_g1h);
5216 
5217     // Copying keep alive closure. Applied to referent objects that need
5218     // to be copied.
5219     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5220 
5221     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5222 
5223     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5224     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5225 
5226     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5227     // So this must be true - but assert just in case someone decides to
5228     // change the worker ids.
5229     assert(worker_id < limit, "sanity");
5230     assert(!rp->discovery_is_atomic(), "check this code");
5231 
5232     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5233     for (uint idx = worker_id; idx < limit; idx += stride) {
5234       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5235 
5236       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5237       while (iter.has_next()) {
5238         // Since discovery is not atomic for the CM ref processor, we
5239         // can see some null referent objects.
5240         iter.load_ptrs(DEBUG_ONLY(true));
5241         oop ref = iter.obj();
5242 
5243         // This will filter nulls.
5244         if (iter.is_referent_alive()) {
5245           iter.make_referent_alive();
5246         }
5247         iter.move_to_next();
5248       }
5249     }
5250 
5251     // Drain the queue - which may cause stealing
5252     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5253     drain_queue.do_void();
5254     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5255     assert(pss.queue_is_empty(), "should be");
5256   }
5257 };
5258 
5259 // Weak Reference processing during an evacuation pause (part 1).
5260 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5261   double ref_proc_start = os::elapsedTime();
5262 
5263   ReferenceProcessor* rp = _ref_processor_stw;
5264   assert(rp->discovery_enabled(), "should have been enabled");
5265 
5266   // Any reference objects, in the collection set, that were 'discovered'
5267   // by the CM ref processor should have already been copied (either by
5268   // applying the external root copy closure to the discovered lists, or
5269   // by following an RSet entry).
5270   //
5271   // But some of the referents, that are in the collection set, that these
5272   // reference objects point to may not have been copied: the STW ref
5273   // processor would have seen that the reference object had already
5274   // been 'discovered' and would have skipped discovering the reference,
5275   // but would not have treated the reference object as a regular oop.
5276   // As a result the copy closure would not have been applied to the
5277   // referent object.
5278   //
5279   // We need to explicitly copy these referent objects - the references
5280   // will be processed at the end of remarking.
5281   //
5282   // We also need to do this copying before we process the reference
5283   // objects discovered by the STW ref processor in case one of these
5284   // referents points to another object which is also referenced by an
5285   // object discovered by the STW ref processor.
5286 
5287   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5288 
5289   set_par_threads(no_of_gc_workers);
5290   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5291                                                  no_of_gc_workers,
5292                                                  _task_queues);
5293 
5294   workers()->run_task(&keep_cm_referents);
5295 
5296   set_par_threads(0);
5297 
5298   // Closure to test whether a referent is alive.
5299   G1STWIsAliveClosure is_alive(this);
5300 
5301   // Even when parallel reference processing is enabled, the processing
5302   // of JNI refs is serial and performed serially by the current thread
5303   // rather than by a worker. The following PSS will be used for processing
5304   // JNI refs.
5305 
5306   // Use only a single queue for this PSS.
5307   G1ParScanThreadState            pss(this, 0, NULL);
5308 
5309   // We do not embed a reference processor in the copying/scanning
5310   // closures while we're actually processing the discovered
5311   // reference objects.
5312   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5313 
5314   pss.set_evac_failure_closure(&evac_failure_cl);
5315 
5316   assert(pss.queue_is_empty(), "pre-condition");
5317 
5318   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5319 
5320   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5321 
5322   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5323 
5324   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5325     // We also need to mark copied objects.
5326     copy_non_heap_cl = &copy_mark_non_heap_cl;
5327   }
5328 
5329   // Keep alive closure.
5330   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5331 
5332   // Serial Complete GC closure
5333   G1STWDrainQueueClosure drain_queue(this, &pss);
5334 
5335   // Setup the soft refs policy...
5336   rp->setup_policy(false);
5337 
5338   ReferenceProcessorStats stats;
5339   if (!rp->processing_is_mt()) {
5340     // Serial reference processing...
5341     stats = rp->process_discovered_references(&is_alive,
5342                                               &keep_alive,
5343                                               &drain_queue,
5344                                               NULL,
5345                                               _gc_timer_stw,
5346                                               _gc_tracer_stw->gc_id());
5347   } else {
5348     // Parallel reference processing
5349     assert(rp->num_q() == no_of_gc_workers, "sanity");
5350     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5351 
5352     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5353     stats = rp->process_discovered_references(&is_alive,
5354                                               &keep_alive,
5355                                               &drain_queue,
5356                                               &par_task_executor,
5357                                               _gc_timer_stw,
5358                                               _gc_tracer_stw->gc_id());
5359   }
5360 
5361   _gc_tracer_stw->report_gc_reference_stats(stats);
5362 
5363   // We have completed copying any necessary live referent objects.
5364   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5365 
5366   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5367   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5368 }
5369 
5370 // Weak Reference processing during an evacuation pause (part 2).
5371 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5372   double ref_enq_start = os::elapsedTime();
5373 
5374   ReferenceProcessor* rp = _ref_processor_stw;
5375   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5376 
5377   // Now enqueue any remaining on the discovered lists on to
5378   // the pending list.
5379   if (!rp->processing_is_mt()) {
5380     // Serial reference processing...
5381     rp->enqueue_discovered_references();
5382   } else {
5383     // Parallel reference enqueueing
5384 
5385     assert(no_of_gc_workers == workers()->active_workers(),
5386            "Need to reset active workers");
5387     assert(rp->num_q() == no_of_gc_workers, "sanity");
5388     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5389 
5390     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5391     rp->enqueue_discovered_references(&par_task_executor);
5392   }
5393 
5394   rp->verify_no_references_recorded();
5395   assert(!rp->discovery_enabled(), "should have been disabled");
5396 
5397   // FIXME
5398   // CM's reference processing also cleans up the string and symbol tables.
5399   // Should we do that here also? We could, but it is a serial operation
5400   // and could significantly increase the pause time.
5401 
5402   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5403   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5404 }
5405 
5406 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5407   _expand_heap_after_alloc_failure = true;
5408   _evacuation_failed = false;
5409 
5410   // Should G1EvacuationFailureALot be in effect for this GC?
5411   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5412 
5413   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5414 
5415   // Disable the hot card cache.
5416   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5417   hot_card_cache->reset_hot_cache_claimed_index();
5418   hot_card_cache->set_use_cache(false);
5419 
5420   uint n_workers;
5421   n_workers =
5422     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5423                                    workers()->active_workers(),
5424                                    Threads::number_of_non_daemon_threads());
5425   assert(UseDynamicNumberOfGCThreads ||
5426          n_workers == workers()->total_workers(),
5427          "If not dynamic should be using all the  workers");
5428   workers()->set_active_workers(n_workers);
5429   set_par_threads(n_workers);
5430 
5431 
5432   init_for_evac_failure(NULL);
5433 
5434   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5435   double start_par_time_sec = os::elapsedTime();
5436   double end_par_time_sec;
5437 
5438   {
5439     G1RootProcessor root_processor(this);
5440     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5441     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5442     if (g1_policy()->during_initial_mark_pause()) {
5443       ClassLoaderDataGraph::clear_claimed_marks();
5444     }
5445 
5446      // The individual threads will set their evac-failure closures.
5447      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5448      // These tasks use ShareHeap::_process_strong_tasks
5449      assert(UseDynamicNumberOfGCThreads ||
5450             workers()->active_workers() == workers()->total_workers(),
5451             "If not dynamic should be using all the  workers");
5452     workers()->run_task(&g1_par_task);
5453     end_par_time_sec = os::elapsedTime();
5454 
5455     // Closing the inner scope will execute the destructor
5456     // for the G1RootProcessor object. We record the current
5457     // elapsed time before closing the scope so that time
5458     // taken for the destructor is NOT included in the
5459     // reported parallel time.
5460   }
5461 
5462   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5463 
5464   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5465   phase_times->record_par_time(par_time_ms);
5466 
5467   double code_root_fixup_time_ms =
5468         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5469   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5470 
5471   set_par_threads(0);
5472 
5473   // Process any discovered reference objects - we have
5474   // to do this _before_ we retire the GC alloc regions
5475   // as we may have to copy some 'reachable' referent
5476   // objects (and their reachable sub-graphs) that were
5477   // not copied during the pause.
5478   process_discovered_references(n_workers);
5479 
5480   if (G1StringDedup::is_enabled()) {
5481     double fixup_start = os::elapsedTime();
5482 
5483     G1STWIsAliveClosure is_alive(this);
5484     G1KeepAliveClosure keep_alive(this);
5485     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5486 
5487     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5488     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5489   }
5490 
5491   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5492   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5493 
5494   // Reset and re-enable the hot card cache.
5495   // Note the counts for the cards in the regions in the
5496   // collection set are reset when the collection set is freed.
5497   hot_card_cache->reset_hot_cache();
5498   hot_card_cache->set_use_cache(true);
5499 
5500   purge_code_root_memory();
5501 
5502   finalize_for_evac_failure();
5503 
5504   if (evacuation_failed()) {
5505     remove_self_forwarding_pointers();
5506 
5507     // Reset the G1EvacuationFailureALot counters and flags
5508     // Note: the values are reset only when an actual
5509     // evacuation failure occurs.
5510     NOT_PRODUCT(reset_evacuation_should_fail();)
5511   }
5512 
5513   // Enqueue any remaining references remaining on the STW
5514   // reference processor's discovered lists. We need to do
5515   // this after the card table is cleaned (and verified) as
5516   // the act of enqueueing entries on to the pending list
5517   // will log these updates (and dirty their associated
5518   // cards). We need these updates logged to update any
5519   // RSets.
5520   enqueue_discovered_references(n_workers);
5521 
5522   redirty_logged_cards();
5523   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5524 }
5525 
5526 void G1CollectedHeap::free_region(HeapRegion* hr,
5527                                   FreeRegionList* free_list,
5528                                   bool par,
5529                                   bool locked) {
5530   assert(!hr->is_free(), "the region should not be free");
5531   assert(!hr->is_empty(), "the region should not be empty");
5532   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5533   assert(free_list != NULL, "pre-condition");
5534 
5535   if (G1VerifyBitmaps) {
5536     MemRegion mr(hr->bottom(), hr->end());
5537     concurrent_mark()->clearRangePrevBitmap(mr);
5538   }
5539 
5540   // Clear the card counts for this region.
5541   // Note: we only need to do this if the region is not young
5542   // (since we don't refine cards in young regions).
5543   if (!hr->is_young()) {
5544     _cg1r->hot_card_cache()->reset_card_counts(hr);
5545   }
5546   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5547   free_list->add_ordered(hr);
5548 }
5549 
5550 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5551                                      FreeRegionList* free_list,
5552                                      bool par) {
5553   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5554   assert(free_list != NULL, "pre-condition");
5555 
5556   size_t hr_capacity = hr->capacity();
5557   // We need to read this before we make the region non-humongous,
5558   // otherwise the information will be gone.
5559   uint last_index = hr->last_hc_index();
5560   hr->clear_humongous();
5561   free_region(hr, free_list, par);
5562 
5563   uint i = hr->hrm_index() + 1;
5564   while (i < last_index) {
5565     HeapRegion* curr_hr = region_at(i);
5566     assert(curr_hr->is_continues_humongous(), "invariant");
5567     curr_hr->clear_humongous();
5568     free_region(curr_hr, free_list, par);
5569     i += 1;
5570   }
5571 }
5572 
5573 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5574                                        const HeapRegionSetCount& humongous_regions_removed) {
5575   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5576     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5577     _old_set.bulk_remove(old_regions_removed);
5578     _humongous_set.bulk_remove(humongous_regions_removed);
5579   }
5580 
5581 }
5582 
5583 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5584   assert(list != NULL, "list can't be null");
5585   if (!list->is_empty()) {
5586     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5587     _hrm.insert_list_into_free_list(list);
5588   }
5589 }
5590 
5591 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5592   _allocator->decrease_used(bytes);
5593 }
5594 
5595 class G1ParCleanupCTTask : public AbstractGangTask {
5596   G1SATBCardTableModRefBS* _ct_bs;
5597   G1CollectedHeap* _g1h;
5598   HeapRegion* volatile _su_head;
5599 public:
5600   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5601                      G1CollectedHeap* g1h) :
5602     AbstractGangTask("G1 Par Cleanup CT Task"),
5603     _ct_bs(ct_bs), _g1h(g1h) { }
5604 
5605   void work(uint worker_id) {
5606     HeapRegion* r;
5607     while (r = _g1h->pop_dirty_cards_region()) {
5608       clear_cards(r);
5609     }
5610   }
5611 
5612   void clear_cards(HeapRegion* r) {
5613     // Cards of the survivors should have already been dirtied.
5614     if (!r->is_survivor()) {
5615       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5616     }
5617   }
5618 };
5619 
5620 #ifndef PRODUCT
5621 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5622   G1CollectedHeap* _g1h;
5623   G1SATBCardTableModRefBS* _ct_bs;
5624 public:
5625   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5626     : _g1h(g1h), _ct_bs(ct_bs) { }
5627   virtual bool doHeapRegion(HeapRegion* r) {
5628     if (r->is_survivor()) {
5629       _g1h->verify_dirty_region(r);
5630     } else {
5631       _g1h->verify_not_dirty_region(r);
5632     }
5633     return false;
5634   }
5635 };
5636 
5637 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5638   // All of the region should be clean.
5639   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5640   MemRegion mr(hr->bottom(), hr->end());
5641   ct_bs->verify_not_dirty_region(mr);
5642 }
5643 
5644 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5645   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5646   // dirty allocated blocks as they allocate them. The thread that
5647   // retires each region and replaces it with a new one will do a
5648   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5649   // not dirty that area (one less thing to have to do while holding
5650   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5651   // is dirty.
5652   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5653   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5654   if (hr->is_young()) {
5655     ct_bs->verify_g1_young_region(mr);
5656   } else {
5657     ct_bs->verify_dirty_region(mr);
5658   }
5659 }
5660 
5661 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5662   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5663   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5664     verify_dirty_region(hr);
5665   }
5666 }
5667 
5668 void G1CollectedHeap::verify_dirty_young_regions() {
5669   verify_dirty_young_list(_young_list->first_region());
5670 }
5671 
5672 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5673                                                HeapWord* tams, HeapWord* end) {
5674   guarantee(tams <= end,
5675             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5676   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5677   if (result < end) {
5678     gclog_or_tty->cr();
5679     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5680                            bitmap_name, result);
5681     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5682                            bitmap_name, tams, end);
5683     return false;
5684   }
5685   return true;
5686 }
5687 
5688 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5689   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5690   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5691 
5692   HeapWord* bottom = hr->bottom();
5693   HeapWord* ptams  = hr->prev_top_at_mark_start();
5694   HeapWord* ntams  = hr->next_top_at_mark_start();
5695   HeapWord* end    = hr->end();
5696 
5697   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5698 
5699   bool res_n = true;
5700   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5701   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5702   // if we happen to be in that state.
5703   if (mark_in_progress() || !_cmThread->in_progress()) {
5704     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5705   }
5706   if (!res_p || !res_n) {
5707     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5708                            HR_FORMAT_PARAMS(hr));
5709     gclog_or_tty->print_cr("#### Caller: %s", caller);
5710     return false;
5711   }
5712   return true;
5713 }
5714 
5715 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5716   if (!G1VerifyBitmaps) return;
5717 
5718   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5719 }
5720 
5721 class G1VerifyBitmapClosure : public HeapRegionClosure {
5722 private:
5723   const char* _caller;
5724   G1CollectedHeap* _g1h;
5725   bool _failures;
5726 
5727 public:
5728   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5729     _caller(caller), _g1h(g1h), _failures(false) { }
5730 
5731   bool failures() { return _failures; }
5732 
5733   virtual bool doHeapRegion(HeapRegion* hr) {
5734     if (hr->is_continues_humongous()) return false;
5735 
5736     bool result = _g1h->verify_bitmaps(_caller, hr);
5737     if (!result) {
5738       _failures = true;
5739     }
5740     return false;
5741   }
5742 };
5743 
5744 void G1CollectedHeap::check_bitmaps(const char* caller) {
5745   if (!G1VerifyBitmaps) return;
5746 
5747   G1VerifyBitmapClosure cl(caller, this);
5748   heap_region_iterate(&cl);
5749   guarantee(!cl.failures(), "bitmap verification");
5750 }
5751 
5752 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5753  private:
5754   bool _failures;
5755  public:
5756   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5757 
5758   virtual bool doHeapRegion(HeapRegion* hr) {
5759     uint i = hr->hrm_index();
5760     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5761     if (hr->is_humongous()) {
5762       if (hr->in_collection_set()) {
5763         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5764         _failures = true;
5765         return true;
5766       }
5767       if (cset_state.is_in_cset()) {
5768         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5769         _failures = true;
5770         return true;
5771       }
5772       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5773         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5774         _failures = true;
5775         return true;
5776       }
5777     } else {
5778       if (cset_state.is_humongous()) {
5779         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5780         _failures = true;
5781         return true;
5782       }
5783       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5784         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5785                                hr->in_collection_set(), cset_state.value(), i);
5786         _failures = true;
5787         return true;
5788       }
5789       if (cset_state.is_in_cset()) {
5790         if (hr->is_young() != (cset_state.is_young())) {
5791           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5792                                  hr->is_young(), cset_state.value(), i);
5793           _failures = true;
5794           return true;
5795         }
5796         if (hr->is_old() != (cset_state.is_old())) {
5797           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5798                                  hr->is_old(), cset_state.value(), i);
5799           _failures = true;
5800           return true;
5801         }
5802       }
5803     }
5804     return false;
5805   }
5806 
5807   bool failures() const { return _failures; }
5808 };
5809 
5810 bool G1CollectedHeap::check_cset_fast_test() {
5811   G1CheckCSetFastTableClosure cl;
5812   _hrm.iterate(&cl);
5813   return !cl.failures();
5814 }
5815 #endif // PRODUCT
5816 
5817 void G1CollectedHeap::cleanUpCardTable() {
5818   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5819   double start = os::elapsedTime();
5820 
5821   {
5822     // Iterate over the dirty cards region list.
5823     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5824 
5825     set_par_threads();
5826     workers()->run_task(&cleanup_task);
5827     set_par_threads(0);
5828 #ifndef PRODUCT
5829     if (G1VerifyCTCleanup || VerifyAfterGC) {
5830       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5831       heap_region_iterate(&cleanup_verifier);
5832     }
5833 #endif
5834   }
5835 
5836   double elapsed = os::elapsedTime() - start;
5837   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5838 }
5839 
5840 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5841   size_t pre_used = 0;
5842   FreeRegionList local_free_list("Local List for CSet Freeing");
5843 
5844   double young_time_ms     = 0.0;
5845   double non_young_time_ms = 0.0;
5846 
5847   // Since the collection set is a superset of the the young list,
5848   // all we need to do to clear the young list is clear its
5849   // head and length, and unlink any young regions in the code below
5850   _young_list->clear();
5851 
5852   G1CollectorPolicy* policy = g1_policy();
5853 
5854   double start_sec = os::elapsedTime();
5855   bool non_young = true;
5856 
5857   HeapRegion* cur = cs_head;
5858   int age_bound = -1;
5859   size_t rs_lengths = 0;
5860 
5861   while (cur != NULL) {
5862     assert(!is_on_master_free_list(cur), "sanity");
5863     if (non_young) {
5864       if (cur->is_young()) {
5865         double end_sec = os::elapsedTime();
5866         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5867         non_young_time_ms += elapsed_ms;
5868 
5869         start_sec = os::elapsedTime();
5870         non_young = false;
5871       }
5872     } else {
5873       if (!cur->is_young()) {
5874         double end_sec = os::elapsedTime();
5875         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5876         young_time_ms += elapsed_ms;
5877 
5878         start_sec = os::elapsedTime();
5879         non_young = true;
5880       }
5881     }
5882 
5883     rs_lengths += cur->rem_set()->occupied_locked();
5884 
5885     HeapRegion* next = cur->next_in_collection_set();
5886     assert(cur->in_collection_set(), "bad CS");
5887     cur->set_next_in_collection_set(NULL);
5888     clear_in_cset(cur);
5889 
5890     if (cur->is_young()) {
5891       int index = cur->young_index_in_cset();
5892       assert(index != -1, "invariant");
5893       assert((uint) index < policy->young_cset_region_length(), "invariant");
5894       size_t words_survived = _surviving_young_words[index];
5895       cur->record_surv_words_in_group(words_survived);
5896 
5897       // At this point the we have 'popped' cur from the collection set
5898       // (linked via next_in_collection_set()) but it is still in the
5899       // young list (linked via next_young_region()). Clear the
5900       // _next_young_region field.
5901       cur->set_next_young_region(NULL);
5902     } else {
5903       int index = cur->young_index_in_cset();
5904       assert(index == -1, "invariant");
5905     }
5906 
5907     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5908             (!cur->is_young() && cur->young_index_in_cset() == -1),
5909             "invariant" );
5910 
5911     if (!cur->evacuation_failed()) {
5912       MemRegion used_mr = cur->used_region();
5913 
5914       // And the region is empty.
5915       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5916       pre_used += cur->used();
5917       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5918     } else {
5919       cur->uninstall_surv_rate_group();
5920       if (cur->is_young()) {
5921         cur->set_young_index_in_cset(-1);
5922       }
5923       cur->set_evacuation_failed(false);
5924       // The region is now considered to be old.
5925       cur->set_old();
5926       _old_set.add(cur);
5927       evacuation_info.increment_collectionset_used_after(cur->used());
5928     }
5929     cur = next;
5930   }
5931 
5932   evacuation_info.set_regions_freed(local_free_list.length());
5933   policy->record_max_rs_lengths(rs_lengths);
5934   policy->cset_regions_freed();
5935 
5936   double end_sec = os::elapsedTime();
5937   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5938 
5939   if (non_young) {
5940     non_young_time_ms += elapsed_ms;
5941   } else {
5942     young_time_ms += elapsed_ms;
5943   }
5944 
5945   prepend_to_freelist(&local_free_list);
5946   decrement_summary_bytes(pre_used);
5947   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5948   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5949 }
5950 
5951 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5952  private:
5953   FreeRegionList* _free_region_list;
5954   HeapRegionSet* _proxy_set;
5955   HeapRegionSetCount _humongous_regions_removed;
5956   size_t _freed_bytes;
5957  public:
5958 
5959   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5960     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5961   }
5962 
5963   virtual bool doHeapRegion(HeapRegion* r) {
5964     if (!r->is_starts_humongous()) {
5965       return false;
5966     }
5967 
5968     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5969 
5970     oop obj = (oop)r->bottom();
5971     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5972 
5973     // The following checks whether the humongous object is live are sufficient.
5974     // The main additional check (in addition to having a reference from the roots
5975     // or the young gen) is whether the humongous object has a remembered set entry.
5976     //
5977     // A humongous object cannot be live if there is no remembered set for it
5978     // because:
5979     // - there can be no references from within humongous starts regions referencing
5980     // the object because we never allocate other objects into them.
5981     // (I.e. there are no intra-region references that may be missed by the
5982     // remembered set)
5983     // - as soon there is a remembered set entry to the humongous starts region
5984     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5985     // until the end of a concurrent mark.
5986     //
5987     // It is not required to check whether the object has been found dead by marking
5988     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5989     // all objects allocated during that time are considered live.
5990     // SATB marking is even more conservative than the remembered set.
5991     // So if at this point in the collection there is no remembered set entry,
5992     // nobody has a reference to it.
5993     // At the start of collection we flush all refinement logs, and remembered sets
5994     // are completely up-to-date wrt to references to the humongous object.
5995     //
5996     // Other implementation considerations:
5997     // - never consider object arrays at this time because they would pose
5998     // considerable effort for cleaning up the the remembered sets. This is
5999     // required because stale remembered sets might reference locations that
6000     // are currently allocated into.
6001     uint region_idx = r->hrm_index();
6002     if (g1h->humongous_is_live(region_idx) ||
6003         g1h->humongous_region_is_always_live(region_idx)) {
6004 
6005       if (G1TraceEagerReclaimHumongousObjects) {
6006         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6007                                region_idx,
6008                                obj->size()*HeapWordSize,
6009                                r->bottom(),
6010                                r->region_num(),
6011                                r->rem_set()->occupied(),
6012                                r->rem_set()->strong_code_roots_list_length(),
6013                                next_bitmap->isMarked(r->bottom()),
6014                                g1h->humongous_is_live(region_idx),
6015                                obj->is_objArray()
6016                               );
6017       }
6018 
6019       return false;
6020     }
6021 
6022     guarantee(!obj->is_objArray(),
6023               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6024                       r->bottom()));
6025 
6026     if (G1TraceEagerReclaimHumongousObjects) {
6027       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6028                              region_idx,
6029                              obj->size()*HeapWordSize,
6030                              r->bottom(),
6031                              r->region_num(),
6032                              r->rem_set()->occupied(),
6033                              r->rem_set()->strong_code_roots_list_length(),
6034                              next_bitmap->isMarked(r->bottom()),
6035                              g1h->humongous_is_live(region_idx),
6036                              obj->is_objArray()
6037                             );
6038     }
6039     // Need to clear mark bit of the humongous object if already set.
6040     if (next_bitmap->isMarked(r->bottom())) {
6041       next_bitmap->clear(r->bottom());
6042     }
6043     _freed_bytes += r->used();
6044     r->set_containing_set(NULL);
6045     _humongous_regions_removed.increment(1u, r->capacity());
6046     g1h->free_humongous_region(r, _free_region_list, false);
6047 
6048     return false;
6049   }
6050 
6051   HeapRegionSetCount& humongous_free_count() {
6052     return _humongous_regions_removed;
6053   }
6054 
6055   size_t bytes_freed() const {
6056     return _freed_bytes;
6057   }
6058 
6059   size_t humongous_reclaimed() const {
6060     return _humongous_regions_removed.length();
6061   }
6062 };
6063 
6064 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6065   assert_at_safepoint(true);
6066 
6067   if (!G1EagerReclaimHumongousObjects ||
6068       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6069     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6070     return;
6071   }
6072 
6073   double start_time = os::elapsedTime();
6074 
6075   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6076 
6077   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6078   heap_region_iterate(&cl);
6079 
6080   HeapRegionSetCount empty_set;
6081   remove_from_old_sets(empty_set, cl.humongous_free_count());
6082 
6083   G1HRPrinter* hr_printer = _g1h->hr_printer();
6084   if (hr_printer->is_active()) {
6085     FreeRegionListIterator iter(&local_cleanup_list);
6086     while (iter.more_available()) {
6087       HeapRegion* hr = iter.get_next();
6088       hr_printer->cleanup(hr);
6089     }
6090   }
6091 
6092   prepend_to_freelist(&local_cleanup_list);
6093   decrement_summary_bytes(cl.bytes_freed());
6094 
6095   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6096                                                                     cl.humongous_reclaimed());
6097 }
6098 
6099 // This routine is similar to the above but does not record
6100 // any policy statistics or update free lists; we are abandoning
6101 // the current incremental collection set in preparation of a
6102 // full collection. After the full GC we will start to build up
6103 // the incremental collection set again.
6104 // This is only called when we're doing a full collection
6105 // and is immediately followed by the tearing down of the young list.
6106 
6107 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6108   HeapRegion* cur = cs_head;
6109 
6110   while (cur != NULL) {
6111     HeapRegion* next = cur->next_in_collection_set();
6112     assert(cur->in_collection_set(), "bad CS");
6113     cur->set_next_in_collection_set(NULL);
6114     clear_in_cset(cur);
6115     cur->set_young_index_in_cset(-1);
6116     cur = next;
6117   }
6118 }
6119 
6120 void G1CollectedHeap::set_free_regions_coming() {
6121   if (G1ConcRegionFreeingVerbose) {
6122     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6123                            "setting free regions coming");
6124   }
6125 
6126   assert(!free_regions_coming(), "pre-condition");
6127   _free_regions_coming = true;
6128 }
6129 
6130 void G1CollectedHeap::reset_free_regions_coming() {
6131   assert(free_regions_coming(), "pre-condition");
6132 
6133   {
6134     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6135     _free_regions_coming = false;
6136     SecondaryFreeList_lock->notify_all();
6137   }
6138 
6139   if (G1ConcRegionFreeingVerbose) {
6140     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6141                            "reset free regions coming");
6142   }
6143 }
6144 
6145 void G1CollectedHeap::wait_while_free_regions_coming() {
6146   // Most of the time we won't have to wait, so let's do a quick test
6147   // first before we take the lock.
6148   if (!free_regions_coming()) {
6149     return;
6150   }
6151 
6152   if (G1ConcRegionFreeingVerbose) {
6153     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6154                            "waiting for free regions");
6155   }
6156 
6157   {
6158     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6159     while (free_regions_coming()) {
6160       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6161     }
6162   }
6163 
6164   if (G1ConcRegionFreeingVerbose) {
6165     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6166                            "done waiting for free regions");
6167   }
6168 }
6169 
6170 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6171   assert(heap_lock_held_for_gc(),
6172               "the heap lock should already be held by or for this thread");
6173   _young_list->push_region(hr);
6174 }
6175 
6176 class NoYoungRegionsClosure: public HeapRegionClosure {
6177 private:
6178   bool _success;
6179 public:
6180   NoYoungRegionsClosure() : _success(true) { }
6181   bool doHeapRegion(HeapRegion* r) {
6182     if (r->is_young()) {
6183       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6184                              r->bottom(), r->end());
6185       _success = false;
6186     }
6187     return false;
6188   }
6189   bool success() { return _success; }
6190 };
6191 
6192 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6193   bool ret = _young_list->check_list_empty(check_sample);
6194 
6195   if (check_heap) {
6196     NoYoungRegionsClosure closure;
6197     heap_region_iterate(&closure);
6198     ret = ret && closure.success();
6199   }
6200 
6201   return ret;
6202 }
6203 
6204 class TearDownRegionSetsClosure : public HeapRegionClosure {
6205 private:
6206   HeapRegionSet *_old_set;
6207 
6208 public:
6209   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6210 
6211   bool doHeapRegion(HeapRegion* r) {
6212     if (r->is_old()) {
6213       _old_set->remove(r);
6214     } else {
6215       // We ignore free regions, we'll empty the free list afterwards.
6216       // We ignore young regions, we'll empty the young list afterwards.
6217       // We ignore humongous regions, we're not tearing down the
6218       // humongous regions set.
6219       assert(r->is_free() || r->is_young() || r->is_humongous(),
6220              "it cannot be another type");
6221     }
6222     return false;
6223   }
6224 
6225   ~TearDownRegionSetsClosure() {
6226     assert(_old_set->is_empty(), "post-condition");
6227   }
6228 };
6229 
6230 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6231   assert_at_safepoint(true /* should_be_vm_thread */);
6232 
6233   if (!free_list_only) {
6234     TearDownRegionSetsClosure cl(&_old_set);
6235     heap_region_iterate(&cl);
6236 
6237     // Note that emptying the _young_list is postponed and instead done as
6238     // the first step when rebuilding the regions sets again. The reason for
6239     // this is that during a full GC string deduplication needs to know if
6240     // a collected region was young or old when the full GC was initiated.
6241   }
6242   _hrm.remove_all_free_regions();
6243 }
6244 
6245 class RebuildRegionSetsClosure : public HeapRegionClosure {
6246 private:
6247   bool            _free_list_only;
6248   HeapRegionSet*   _old_set;
6249   HeapRegionManager*   _hrm;
6250   size_t          _total_used;
6251 
6252 public:
6253   RebuildRegionSetsClosure(bool free_list_only,
6254                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6255     _free_list_only(free_list_only),
6256     _old_set(old_set), _hrm(hrm), _total_used(0) {
6257     assert(_hrm->num_free_regions() == 0, "pre-condition");
6258     if (!free_list_only) {
6259       assert(_old_set->is_empty(), "pre-condition");
6260     }
6261   }
6262 
6263   bool doHeapRegion(HeapRegion* r) {
6264     if (r->is_continues_humongous()) {
6265       return false;
6266     }
6267 
6268     if (r->is_empty()) {
6269       // Add free regions to the free list
6270       r->set_free();
6271       r->set_allocation_context(AllocationContext::system());
6272       _hrm->insert_into_free_list(r);
6273     } else if (!_free_list_only) {
6274       assert(!r->is_young(), "we should not come across young regions");
6275 
6276       if (r->is_humongous()) {
6277         // We ignore humongous regions, we left the humongous set unchanged
6278       } else {
6279         // Objects that were compacted would have ended up on regions
6280         // that were previously old or free.
6281         assert(r->is_free() || r->is_old(), "invariant");
6282         // We now consider them old, so register as such.
6283         r->set_old();
6284         _old_set->add(r);
6285       }
6286       _total_used += r->used();
6287     }
6288 
6289     return false;
6290   }
6291 
6292   size_t total_used() {
6293     return _total_used;
6294   }
6295 };
6296 
6297 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6298   assert_at_safepoint(true /* should_be_vm_thread */);
6299 
6300   if (!free_list_only) {
6301     _young_list->empty_list();
6302   }
6303 
6304   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6305   heap_region_iterate(&cl);
6306 
6307   if (!free_list_only) {
6308     _allocator->set_used(cl.total_used());
6309   }
6310   assert(_allocator->used_unlocked() == recalculate_used(),
6311          err_msg("inconsistent _allocator->used_unlocked(), "
6312                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6313                  _allocator->used_unlocked(), recalculate_used()));
6314 }
6315 
6316 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6317   _refine_cte_cl->set_concurrent(concurrent);
6318 }
6319 
6320 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6321   HeapRegion* hr = heap_region_containing(p);
6322   return hr->is_in(p);
6323 }
6324 
6325 // Methods for the mutator alloc region
6326 
6327 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6328                                                       bool force) {
6329   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6330   assert(!force || g1_policy()->can_expand_young_list(),
6331          "if force is true we should be able to expand the young list");
6332   bool young_list_full = g1_policy()->is_young_list_full();
6333   if (force || !young_list_full) {
6334     HeapRegion* new_alloc_region = new_region(word_size,
6335                                               false /* is_old */,
6336                                               false /* do_expand */);
6337     if (new_alloc_region != NULL) {
6338       set_region_short_lived_locked(new_alloc_region);
6339       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6340       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6341       return new_alloc_region;
6342     }
6343   }
6344   return NULL;
6345 }
6346 
6347 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6348                                                   size_t allocated_bytes) {
6349   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6350   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6351 
6352   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6353   _allocator->increase_used(allocated_bytes);
6354   _hr_printer.retire(alloc_region);
6355   // We update the eden sizes here, when the region is retired,
6356   // instead of when it's allocated, since this is the point that its
6357   // used space has been recored in _summary_bytes_used.
6358   g1mm()->update_eden_size();
6359 }
6360 
6361 void G1CollectedHeap::set_par_threads() {
6362   // Don't change the number of workers.  Use the value previously set
6363   // in the workgroup.
6364   uint n_workers = workers()->active_workers();
6365   assert(UseDynamicNumberOfGCThreads ||
6366            n_workers == workers()->total_workers(),
6367       "Otherwise should be using the total number of workers");
6368   if (n_workers == 0) {
6369     assert(false, "Should have been set in prior evacuation pause.");
6370     n_workers = ParallelGCThreads;
6371     workers()->set_active_workers(n_workers);
6372   }
6373   set_par_threads(n_workers);
6374 }
6375 
6376 // Methods for the GC alloc regions
6377 
6378 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6379                                                  uint count,
6380                                                  InCSetState dest) {
6381   assert(FreeList_lock->owned_by_self(), "pre-condition");
6382 
6383   if (count < g1_policy()->max_regions(dest)) {
6384     const bool is_survivor = (dest.is_young());
6385     HeapRegion* new_alloc_region = new_region(word_size,
6386                                               !is_survivor,
6387                                               true /* do_expand */);
6388     if (new_alloc_region != NULL) {
6389       // We really only need to do this for old regions given that we
6390       // should never scan survivors. But it doesn't hurt to do it
6391       // for survivors too.
6392       new_alloc_region->record_timestamp();
6393       if (is_survivor) {
6394         new_alloc_region->set_survivor();
6395         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6396         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6397       } else {
6398         new_alloc_region->set_old();
6399         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6400         check_bitmaps("Old Region Allocation", new_alloc_region);
6401       }
6402       bool during_im = g1_policy()->during_initial_mark_pause();
6403       new_alloc_region->note_start_of_copying(during_im);
6404       return new_alloc_region;
6405     }
6406   }
6407   return NULL;
6408 }
6409 
6410 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6411                                              size_t allocated_bytes,
6412                                              InCSetState dest) {
6413   bool during_im = g1_policy()->during_initial_mark_pause();
6414   alloc_region->note_end_of_copying(during_im);
6415   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6416   if (dest.is_young()) {
6417     young_list()->add_survivor_region(alloc_region);
6418   } else {
6419     _old_set.add(alloc_region);
6420   }
6421   _hr_printer.retire(alloc_region);
6422 }
6423 
6424 // Heap region set verification
6425 
6426 class VerifyRegionListsClosure : public HeapRegionClosure {
6427 private:
6428   HeapRegionSet*   _old_set;
6429   HeapRegionSet*   _humongous_set;
6430   HeapRegionManager*   _hrm;
6431 
6432 public:
6433   HeapRegionSetCount _old_count;
6434   HeapRegionSetCount _humongous_count;
6435   HeapRegionSetCount _free_count;
6436 
6437   VerifyRegionListsClosure(HeapRegionSet* old_set,
6438                            HeapRegionSet* humongous_set,
6439                            HeapRegionManager* hrm) :
6440     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6441     _old_count(), _humongous_count(), _free_count(){ }
6442 
6443   bool doHeapRegion(HeapRegion* hr) {
6444     if (hr->is_continues_humongous()) {
6445       return false;
6446     }
6447 
6448     if (hr->is_young()) {
6449       // TODO
6450     } else if (hr->is_starts_humongous()) {
6451       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6452       _humongous_count.increment(1u, hr->capacity());
6453     } else if (hr->is_empty()) {
6454       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6455       _free_count.increment(1u, hr->capacity());
6456     } else if (hr->is_old()) {
6457       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6458       _old_count.increment(1u, hr->capacity());
6459     } else {
6460       ShouldNotReachHere();
6461     }
6462     return false;
6463   }
6464 
6465   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6466     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6467     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6468         old_set->total_capacity_bytes(), _old_count.capacity()));
6469 
6470     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6471     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6472         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6473 
6474     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6475     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6476         free_list->total_capacity_bytes(), _free_count.capacity()));
6477   }
6478 };
6479 
6480 void G1CollectedHeap::verify_region_sets() {
6481   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6482 
6483   // First, check the explicit lists.
6484   _hrm.verify();
6485   {
6486     // Given that a concurrent operation might be adding regions to
6487     // the secondary free list we have to take the lock before
6488     // verifying it.
6489     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6490     _secondary_free_list.verify_list();
6491   }
6492 
6493   // If a concurrent region freeing operation is in progress it will
6494   // be difficult to correctly attributed any free regions we come
6495   // across to the correct free list given that they might belong to
6496   // one of several (free_list, secondary_free_list, any local lists,
6497   // etc.). So, if that's the case we will skip the rest of the
6498   // verification operation. Alternatively, waiting for the concurrent
6499   // operation to complete will have a non-trivial effect on the GC's
6500   // operation (no concurrent operation will last longer than the
6501   // interval between two calls to verification) and it might hide
6502   // any issues that we would like to catch during testing.
6503   if (free_regions_coming()) {
6504     return;
6505   }
6506 
6507   // Make sure we append the secondary_free_list on the free_list so
6508   // that all free regions we will come across can be safely
6509   // attributed to the free_list.
6510   append_secondary_free_list_if_not_empty_with_lock();
6511 
6512   // Finally, make sure that the region accounting in the lists is
6513   // consistent with what we see in the heap.
6514 
6515   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6516   heap_region_iterate(&cl);
6517   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6518 }
6519 
6520 // Optimized nmethod scanning
6521 
6522 class RegisterNMethodOopClosure: public OopClosure {
6523   G1CollectedHeap* _g1h;
6524   nmethod* _nm;
6525 
6526   template <class T> void do_oop_work(T* p) {
6527     T heap_oop = oopDesc::load_heap_oop(p);
6528     if (!oopDesc::is_null(heap_oop)) {
6529       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6530       HeapRegion* hr = _g1h->heap_region_containing(obj);
6531       assert(!hr->is_continues_humongous(),
6532              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6533                      " starting at "HR_FORMAT,
6534                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6535 
6536       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6537       hr->add_strong_code_root_locked(_nm);
6538     }
6539   }
6540 
6541 public:
6542   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6543     _g1h(g1h), _nm(nm) {}
6544 
6545   void do_oop(oop* p)       { do_oop_work(p); }
6546   void do_oop(narrowOop* p) { do_oop_work(p); }
6547 };
6548 
6549 class UnregisterNMethodOopClosure: public OopClosure {
6550   G1CollectedHeap* _g1h;
6551   nmethod* _nm;
6552 
6553   template <class T> void do_oop_work(T* p) {
6554     T heap_oop = oopDesc::load_heap_oop(p);
6555     if (!oopDesc::is_null(heap_oop)) {
6556       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6557       HeapRegion* hr = _g1h->heap_region_containing(obj);
6558       assert(!hr->is_continues_humongous(),
6559              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6560                      " starting at "HR_FORMAT,
6561                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6562 
6563       hr->remove_strong_code_root(_nm);
6564     }
6565   }
6566 
6567 public:
6568   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6569     _g1h(g1h), _nm(nm) {}
6570 
6571   void do_oop(oop* p)       { do_oop_work(p); }
6572   void do_oop(narrowOop* p) { do_oop_work(p); }
6573 };
6574 
6575 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6576   CollectedHeap::register_nmethod(nm);
6577 
6578   guarantee(nm != NULL, "sanity");
6579   RegisterNMethodOopClosure reg_cl(this, nm);
6580   nm->oops_do(&reg_cl);
6581 }
6582 
6583 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6584   CollectedHeap::unregister_nmethod(nm);
6585 
6586   guarantee(nm != NULL, "sanity");
6587   UnregisterNMethodOopClosure reg_cl(this, nm);
6588   nm->oops_do(&reg_cl, true);
6589 }
6590 
6591 void G1CollectedHeap::purge_code_root_memory() {
6592   double purge_start = os::elapsedTime();
6593   G1CodeRootSet::purge();
6594   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6595   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6596 }
6597 
6598 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6599   G1CollectedHeap* _g1h;
6600 
6601 public:
6602   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6603     _g1h(g1h) {}
6604 
6605   void do_code_blob(CodeBlob* cb) {
6606     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6607     if (nm == NULL) {
6608       return;
6609     }
6610 
6611     if (ScavengeRootsInCode) {
6612       _g1h->register_nmethod(nm);
6613     }
6614   }
6615 };
6616 
6617 void G1CollectedHeap::rebuild_strong_code_roots() {
6618   RebuildStrongCodeRootClosure blob_cl(this);
6619   CodeCache::blobs_do(&blob_cl);
6620 }