1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   bool _concurrent;
  96 public:
  97   RefineCardTableEntryClosure() : _concurrent(true) { }
  98 
  99   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 100     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 101     // This path is executed by the concurrent refine or mutator threads,
 102     // concurrently, and so we do not care if card_ptr contains references
 103     // that point into the collection set.
 104     assert(!oops_into_cset, "should be");
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_processed;
 121 
 122  public:
 123   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     *card_ptr = CardTableModRefBS::dirty_card_val();
 127     _num_processed++;
 128     return true;
 129   }
 130 
 131   size_t num_processed() const { return _num_processed; }
 132 };
 133 
 134 YoungList::YoungList(G1CollectedHeap* g1h) :
 135     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 136     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 137   guarantee(check_list_empty(false), "just making sure...");
 138 }
 139 
 140 void YoungList::push_region(HeapRegion *hr) {
 141   assert(!hr->is_young(), "should not already be young");
 142   assert(hr->get_next_young_region() == NULL, "cause it should!");
 143 
 144   hr->set_next_young_region(_head);
 145   _head = hr;
 146 
 147   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 148   ++_length;
 149 }
 150 
 151 void YoungList::add_survivor_region(HeapRegion* hr) {
 152   assert(hr->is_survivor(), "should be flagged as survivor region");
 153   assert(hr->get_next_young_region() == NULL, "cause it should!");
 154 
 155   hr->set_next_young_region(_survivor_head);
 156   if (_survivor_head == NULL) {
 157     _survivor_tail = hr;
 158   }
 159   _survivor_head = hr;
 160   ++_survivor_length;
 161 }
 162 
 163 void YoungList::empty_list(HeapRegion* list) {
 164   while (list != NULL) {
 165     HeapRegion* next = list->get_next_young_region();
 166     list->set_next_young_region(NULL);
 167     list->uninstall_surv_rate_group();
 168     // This is called before a Full GC and all the non-empty /
 169     // non-humongous regions at the end of the Full GC will end up as
 170     // old anyway.
 171     list->set_old();
 172     list = next;
 173   }
 174 }
 175 
 176 void YoungList::empty_list() {
 177   assert(check_list_well_formed(), "young list should be well formed");
 178 
 179   empty_list(_head);
 180   _head = NULL;
 181   _length = 0;
 182 
 183   empty_list(_survivor_head);
 184   _survivor_head = NULL;
 185   _survivor_tail = NULL;
 186   _survivor_length = 0;
 187 
 188   _last_sampled_rs_lengths = 0;
 189 
 190   assert(check_list_empty(false), "just making sure...");
 191 }
 192 
 193 bool YoungList::check_list_well_formed() {
 194   bool ret = true;
 195 
 196   uint length = 0;
 197   HeapRegion* curr = _head;
 198   HeapRegion* last = NULL;
 199   while (curr != NULL) {
 200     if (!curr->is_young()) {
 201       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 202                              "incorrectly tagged (y: %d, surv: %d)",
 203                              curr->bottom(), curr->end(),
 204                              curr->is_young(), curr->is_survivor());
 205       ret = false;
 206     }
 207     ++length;
 208     last = curr;
 209     curr = curr->get_next_young_region();
 210   }
 211   ret = ret && (length == _length);
 212 
 213   if (!ret) {
 214     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 215     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 216                            length, _length);
 217   }
 218 
 219   return ret;
 220 }
 221 
 222 bool YoungList::check_list_empty(bool check_sample) {
 223   bool ret = true;
 224 
 225   if (_length != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 227                   _length);
 228     ret = false;
 229   }
 230   if (check_sample && _last_sampled_rs_lengths != 0) {
 231     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 232     ret = false;
 233   }
 234   if (_head != NULL) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 236     ret = false;
 237   }
 238   if (!ret) {
 239     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 240   }
 241 
 242   return ret;
 243 }
 244 
 245 void
 246 YoungList::rs_length_sampling_init() {
 247   _sampled_rs_lengths = 0;
 248   _curr               = _head;
 249 }
 250 
 251 bool
 252 YoungList::rs_length_sampling_more() {
 253   return _curr != NULL;
 254 }
 255 
 256 void
 257 YoungList::rs_length_sampling_next() {
 258   assert( _curr != NULL, "invariant" );
 259   size_t rs_length = _curr->rem_set()->occupied();
 260 
 261   _sampled_rs_lengths += rs_length;
 262 
 263   // The current region may not yet have been added to the
 264   // incremental collection set (it gets added when it is
 265   // retired as the current allocation region).
 266   if (_curr->in_collection_set()) {
 267     // Update the collection set policy information for this region
 268     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 269   }
 270 
 271   _curr = _curr->get_next_young_region();
 272   if (_curr == NULL) {
 273     _last_sampled_rs_lengths = _sampled_rs_lengths;
 274     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 275   }
 276 }
 277 
 278 void
 279 YoungList::reset_auxilary_lists() {
 280   guarantee( is_empty(), "young list should be empty" );
 281   assert(check_list_well_formed(), "young list should be well formed");
 282 
 283   // Add survivor regions to SurvRateGroup.
 284   _g1h->g1_policy()->note_start_adding_survivor_regions();
 285   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 286 
 287   int young_index_in_cset = 0;
 288   for (HeapRegion* curr = _survivor_head;
 289        curr != NULL;
 290        curr = curr->get_next_young_region()) {
 291     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 292 
 293     // The region is a non-empty survivor so let's add it to
 294     // the incremental collection set for the next evacuation
 295     // pause.
 296     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 297     young_index_in_cset += 1;
 298   }
 299   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 300   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 301 
 302   _head   = _survivor_head;
 303   _length = _survivor_length;
 304   if (_survivor_head != NULL) {
 305     assert(_survivor_tail != NULL, "cause it shouldn't be");
 306     assert(_survivor_length > 0, "invariant");
 307     _survivor_tail->set_next_young_region(NULL);
 308   }
 309 
 310   // Don't clear the survivor list handles until the start of
 311   // the next evacuation pause - we need it in order to re-tag
 312   // the survivor regions from this evacuation pause as 'young'
 313   // at the start of the next.
 314 
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 316 
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 }
 319 
 320 void YoungList::print() {
 321   HeapRegion* lists[] = {_head,   _survivor_head};
 322   const char* names[] = {"YOUNG", "SURVIVOR"};
 323 
 324   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 325     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 326     HeapRegion *curr = lists[list];
 327     if (curr == NULL)
 328       gclog_or_tty->print_cr("  empty");
 329     while (curr != NULL) {
 330       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 331                              HR_FORMAT_PARAMS(curr),
 332                              curr->prev_top_at_mark_start(),
 333                              curr->next_top_at_mark_start(),
 334                              curr->age_in_surv_rate_group_cond());
 335       curr = curr->get_next_young_region();
 336     }
 337   }
 338 
 339   gclog_or_tty->cr();
 340 }
 341 
 342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 343   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 344 }
 345 
 346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 347   // The from card cache is not the memory that is actually committed. So we cannot
 348   // take advantage of the zero_filled parameter.
 349   reset_from_card_cache(start_idx, num_regions);
 350 }
 351 
 352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 353 {
 354   // Claim the right to put the region on the dirty cards region list
 355   // by installing a self pointer.
 356   HeapRegion* next = hr->get_next_dirty_cards_region();
 357   if (next == NULL) {
 358     HeapRegion* res = (HeapRegion*)
 359       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 360                           NULL);
 361     if (res == NULL) {
 362       HeapRegion* head;
 363       do {
 364         // Put the region to the dirty cards region list.
 365         head = _dirty_cards_region_list;
 366         next = (HeapRegion*)
 367           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 368         if (next == head) {
 369           assert(hr->get_next_dirty_cards_region() == hr,
 370                  "hr->get_next_dirty_cards_region() != hr");
 371           if (next == NULL) {
 372             // The last region in the list points to itself.
 373             hr->set_next_dirty_cards_region(hr);
 374           } else {
 375             hr->set_next_dirty_cards_region(next);
 376           }
 377         }
 378       } while (next != head);
 379     }
 380   }
 381 }
 382 
 383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 384 {
 385   HeapRegion* head;
 386   HeapRegion* hr;
 387   do {
 388     head = _dirty_cards_region_list;
 389     if (head == NULL) {
 390       return NULL;
 391     }
 392     HeapRegion* new_head = head->get_next_dirty_cards_region();
 393     if (head == new_head) {
 394       // The last region.
 395       new_head = NULL;
 396     }
 397     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 398                                           head);
 399   } while (hr != head);
 400   assert(hr != NULL, "invariant");
 401   hr->set_next_dirty_cards_region(NULL);
 402   return hr;
 403 }
 404 
 405 // Returns true if the reference points to an object that
 406 // can move in an incremental collection.
 407 bool G1CollectedHeap::is_scavengable(const void* p) {
 408   HeapRegion* hr = heap_region_containing(p);
 409   return !hr->is_humongous();
 410 }
 411 
 412 // Private class members.
 413 
 414 G1CollectedHeap* G1CollectedHeap::_g1h;
 415 
 416 // Private methods.
 417 
 418 HeapRegion*
 419 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 420   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 421   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 422     if (!_secondary_free_list.is_empty()) {
 423       if (G1ConcRegionFreeingVerbose) {
 424         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 425                                "secondary_free_list has %u entries",
 426                                _secondary_free_list.length());
 427       }
 428       // It looks as if there are free regions available on the
 429       // secondary_free_list. Let's move them to the free_list and try
 430       // again to allocate from it.
 431       append_secondary_free_list();
 432 
 433       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 434              "empty we should have moved at least one entry to the free_list");
 435       HeapRegion* res = _hrm.allocate_free_region(is_old);
 436       if (G1ConcRegionFreeingVerbose) {
 437         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 438                                "allocated "HR_FORMAT" from secondary_free_list",
 439                                HR_FORMAT_PARAMS(res));
 440       }
 441       return res;
 442     }
 443 
 444     // Wait here until we get notified either when (a) there are no
 445     // more free regions coming or (b) some regions have been moved on
 446     // the secondary_free_list.
 447     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 448   }
 449 
 450   if (G1ConcRegionFreeingVerbose) {
 451     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 452                            "could not allocate from secondary_free_list");
 453   }
 454   return NULL;
 455 }
 456 
 457 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 458   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 459          "the only time we use this to allocate a humongous region is "
 460          "when we are allocating a single humongous region");
 461 
 462   HeapRegion* res;
 463   if (G1StressConcRegionFreeing) {
 464     if (!_secondary_free_list.is_empty()) {
 465       if (G1ConcRegionFreeingVerbose) {
 466         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 467                                "forced to look at the secondary_free_list");
 468       }
 469       res = new_region_try_secondary_free_list(is_old);
 470       if (res != NULL) {
 471         return res;
 472       }
 473     }
 474   }
 475 
 476   res = _hrm.allocate_free_region(is_old);
 477 
 478   if (res == NULL) {
 479     if (G1ConcRegionFreeingVerbose) {
 480       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 481                              "res == NULL, trying the secondary_free_list");
 482     }
 483     res = new_region_try_secondary_free_list(is_old);
 484   }
 485   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 486     // Currently, only attempts to allocate GC alloc regions set
 487     // do_expand to true. So, we should only reach here during a
 488     // safepoint. If this assumption changes we might have to
 489     // reconsider the use of _expand_heap_after_alloc_failure.
 490     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 491 
 492     ergo_verbose1(ErgoHeapSizing,
 493                   "attempt heap expansion",
 494                   ergo_format_reason("region allocation request failed")
 495                   ergo_format_byte("allocation request"),
 496                   word_size * HeapWordSize);
 497     if (expand(word_size * HeapWordSize)) {
 498       // Given that expand() succeeded in expanding the heap, and we
 499       // always expand the heap by an amount aligned to the heap
 500       // region size, the free list should in theory not be empty.
 501       // In either case allocate_free_region() will check for NULL.
 502       res = _hrm.allocate_free_region(is_old);
 503     } else {
 504       _expand_heap_after_alloc_failure = false;
 505     }
 506   }
 507   return res;
 508 }
 509 
 510 HeapWord*
 511 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 512                                                            uint num_regions,
 513                                                            size_t word_size,
 514                                                            AllocationContext_t context) {
 515   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 516   assert(is_humongous(word_size), "word_size should be humongous");
 517   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 518 
 519   // Index of last region in the series + 1.
 520   uint last = first + num_regions;
 521 
 522   // We need to initialize the region(s) we just discovered. This is
 523   // a bit tricky given that it can happen concurrently with
 524   // refinement threads refining cards on these regions and
 525   // potentially wanting to refine the BOT as they are scanning
 526   // those cards (this can happen shortly after a cleanup; see CR
 527   // 6991377). So we have to set up the region(s) carefully and in
 528   // a specific order.
 529 
 530   // The word size sum of all the regions we will allocate.
 531   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 532   assert(word_size <= word_size_sum, "sanity");
 533 
 534   // This will be the "starts humongous" region.
 535   HeapRegion* first_hr = region_at(first);
 536   // The header of the new object will be placed at the bottom of
 537   // the first region.
 538   HeapWord* new_obj = first_hr->bottom();
 539   // This will be the new end of the first region in the series that
 540   // should also match the end of the last region in the series.
 541   HeapWord* new_end = new_obj + word_size_sum;
 542   // This will be the new top of the first region that will reflect
 543   // this allocation.
 544   HeapWord* new_top = new_obj + word_size;
 545 
 546   // First, we need to zero the header of the space that we will be
 547   // allocating. When we update top further down, some refinement
 548   // threads might try to scan the region. By zeroing the header we
 549   // ensure that any thread that will try to scan the region will
 550   // come across the zero klass word and bail out.
 551   //
 552   // NOTE: It would not have been correct to have used
 553   // CollectedHeap::fill_with_object() and make the space look like
 554   // an int array. The thread that is doing the allocation will
 555   // later update the object header to a potentially different array
 556   // type and, for a very short period of time, the klass and length
 557   // fields will be inconsistent. This could cause a refinement
 558   // thread to calculate the object size incorrectly.
 559   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 560 
 561   // We will set up the first region as "starts humongous". This
 562   // will also update the BOT covering all the regions to reflect
 563   // that there is a single object that starts at the bottom of the
 564   // first region.
 565   first_hr->set_starts_humongous(new_top, new_end);
 566   first_hr->set_allocation_context(context);
 567   // Then, if there are any, we will set up the "continues
 568   // humongous" regions.
 569   HeapRegion* hr = NULL;
 570   for (uint i = first + 1; i < last; ++i) {
 571     hr = region_at(i);
 572     hr->set_continues_humongous(first_hr);
 573     hr->set_allocation_context(context);
 574   }
 575   // If we have "continues humongous" regions (hr != NULL), then the
 576   // end of the last one should match new_end.
 577   assert(hr == NULL || hr->end() == new_end, "sanity");
 578 
 579   // Up to this point no concurrent thread would have been able to
 580   // do any scanning on any region in this series. All the top
 581   // fields still point to bottom, so the intersection between
 582   // [bottom,top] and [card_start,card_end] will be empty. Before we
 583   // update the top fields, we'll do a storestore to make sure that
 584   // no thread sees the update to top before the zeroing of the
 585   // object header and the BOT initialization.
 586   OrderAccess::storestore();
 587 
 588   // Now that the BOT and the object header have been initialized,
 589   // we can update top of the "starts humongous" region.
 590   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 591          "new_top should be in this region");
 592   first_hr->set_top(new_top);
 593   if (_hr_printer.is_active()) {
 594     HeapWord* bottom = first_hr->bottom();
 595     HeapWord* end = first_hr->orig_end();
 596     if ((first + 1) == last) {
 597       // the series has a single humongous region
 598       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 599     } else {
 600       // the series has more than one humongous regions
 601       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 602     }
 603   }
 604 
 605   // Now, we will update the top fields of the "continues humongous"
 606   // regions. The reason we need to do this is that, otherwise,
 607   // these regions would look empty and this will confuse parts of
 608   // G1. For example, the code that looks for a consecutive number
 609   // of empty regions will consider them empty and try to
 610   // re-allocate them. We can extend is_empty() to also include
 611   // !is_continues_humongous(), but it is easier to just update the top
 612   // fields here. The way we set top for all regions (i.e., top ==
 613   // end for all regions but the last one, top == new_top for the
 614   // last one) is actually used when we will free up the humongous
 615   // region in free_humongous_region().
 616   hr = NULL;
 617   for (uint i = first + 1; i < last; ++i) {
 618     hr = region_at(i);
 619     if ((i + 1) == last) {
 620       // last continues humongous region
 621       assert(hr->bottom() < new_top && new_top <= hr->end(),
 622              "new_top should fall on this region");
 623       hr->set_top(new_top);
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 625     } else {
 626       // not last one
 627       assert(new_top > hr->end(), "new_top should be above this region");
 628       hr->set_top(hr->end());
 629       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 630     }
 631   }
 632   // If we have continues humongous regions (hr != NULL), then the
 633   // end of the last one should match new_end and its top should
 634   // match new_top.
 635   assert(hr == NULL ||
 636          (hr->end() == new_end && hr->top() == new_top), "sanity");
 637   check_bitmaps("Humongous Region Allocation", first_hr);
 638 
 639   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 640   _allocator->increase_used(first_hr->used());
 641   _humongous_set.add(first_hr);
 642 
 643   return new_obj;
 644 }
 645 
 646 // If could fit into free regions w/o expansion, try.
 647 // Otherwise, if can expand, do so.
 648 // Otherwise, if using ex regions might help, try with ex given back.
 649 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 650   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 651 
 652   verify_region_sets_optional();
 653 
 654   uint first = G1_NO_HRM_INDEX;
 655   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 656 
 657   if (obj_regions == 1) {
 658     // Only one region to allocate, try to use a fast path by directly allocating
 659     // from the free lists. Do not try to expand here, we will potentially do that
 660     // later.
 661     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 662     if (hr != NULL) {
 663       first = hr->hrm_index();
 664     }
 665   } else {
 666     // We can't allocate humongous regions spanning more than one region while
 667     // cleanupComplete() is running, since some of the regions we find to be
 668     // empty might not yet be added to the free list. It is not straightforward
 669     // to know in which list they are on so that we can remove them. We only
 670     // need to do this if we need to allocate more than one region to satisfy the
 671     // current humongous allocation request. If we are only allocating one region
 672     // we use the one-region region allocation code (see above), that already
 673     // potentially waits for regions from the secondary free list.
 674     wait_while_free_regions_coming();
 675     append_secondary_free_list_if_not_empty_with_lock();
 676 
 677     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 678     // are lucky enough to find some.
 679     first = _hrm.find_contiguous_only_empty(obj_regions);
 680     if (first != G1_NO_HRM_INDEX) {
 681       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 682     }
 683   }
 684 
 685   if (first == G1_NO_HRM_INDEX) {
 686     // Policy: We could not find enough regions for the humongous object in the
 687     // free list. Look through the heap to find a mix of free and uncommitted regions.
 688     // If so, try expansion.
 689     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 690     if (first != G1_NO_HRM_INDEX) {
 691       // We found something. Make sure these regions are committed, i.e. expand
 692       // the heap. Alternatively we could do a defragmentation GC.
 693       ergo_verbose1(ErgoHeapSizing,
 694                     "attempt heap expansion",
 695                     ergo_format_reason("humongous allocation request failed")
 696                     ergo_format_byte("allocation request"),
 697                     word_size * HeapWordSize);
 698 
 699       _hrm.expand_at(first, obj_regions);
 700       g1_policy()->record_new_heap_size(num_regions());
 701 
 702 #ifdef ASSERT
 703       for (uint i = first; i < first + obj_regions; ++i) {
 704         HeapRegion* hr = region_at(i);
 705         assert(hr->is_free(), "sanity");
 706         assert(hr->is_empty(), "sanity");
 707         assert(is_on_master_free_list(hr), "sanity");
 708       }
 709 #endif
 710       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 711     } else {
 712       // Policy: Potentially trigger a defragmentation GC.
 713     }
 714   }
 715 
 716   HeapWord* result = NULL;
 717   if (first != G1_NO_HRM_INDEX) {
 718     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 719                                                        word_size, context);
 720     assert(result != NULL, "it should always return a valid result");
 721 
 722     // A successful humongous object allocation changes the used space
 723     // information of the old generation so we need to recalculate the
 724     // sizes and update the jstat counters here.
 725     g1mm()->update_sizes();
 726   }
 727 
 728   verify_region_sets_optional();
 729 
 730   return result;
 731 }
 732 
 733 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 736 
 737   uint dummy_gc_count_before;
 738   uint dummy_gclocker_retry_count = 0;
 739   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 740 }
 741 
 742 HeapWord*
 743 G1CollectedHeap::mem_allocate(size_t word_size,
 744                               bool*  gc_overhead_limit_was_exceeded) {
 745   assert_heap_not_locked_and_not_at_safepoint();
 746 
 747   // Loop until the allocation is satisfied, or unsatisfied after GC.
 748   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 749     uint gc_count_before;
 750 
 751     HeapWord* result = NULL;
 752     if (!is_humongous(word_size)) {
 753       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 754     } else {
 755       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 756     }
 757     if (result != NULL) {
 758       return result;
 759     }
 760 
 761     // Create the garbage collection operation...
 762     VM_G1CollectForAllocation op(gc_count_before, word_size);
 763     op.set_allocation_context(AllocationContext::current());
 764 
 765     // ...and get the VM thread to execute it.
 766     VMThread::execute(&op);
 767 
 768     if (op.prologue_succeeded() && op.pause_succeeded()) {
 769       // If the operation was successful we'll return the result even
 770       // if it is NULL. If the allocation attempt failed immediately
 771       // after a Full GC, it's unlikely we'll be able to allocate now.
 772       HeapWord* result = op.result();
 773       if (result != NULL && !is_humongous(word_size)) {
 774         // Allocations that take place on VM operations do not do any
 775         // card dirtying and we have to do it here. We only have to do
 776         // this for non-humongous allocations, though.
 777         dirty_young_block(result, word_size);
 778       }
 779       return result;
 780     } else {
 781       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 782         return NULL;
 783       }
 784       assert(op.result() == NULL,
 785              "the result should be NULL if the VM op did not succeed");
 786     }
 787 
 788     // Give a warning if we seem to be looping forever.
 789     if ((QueuedAllocationWarningCount > 0) &&
 790         (try_count % QueuedAllocationWarningCount == 0)) {
 791       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 792     }
 793   }
 794 
 795   ShouldNotReachHere();
 796   return NULL;
 797 }
 798 
 799 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 800                                                    AllocationContext_t context,
 801                                                    uint* gc_count_before_ret,
 802                                                    uint* gclocker_retry_count_ret) {
 803   // Make sure you read the note in attempt_allocation_humongous().
 804 
 805   assert_heap_not_locked_and_not_at_safepoint();
 806   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 807          "be called for humongous allocation requests");
 808 
 809   // We should only get here after the first-level allocation attempt
 810   // (attempt_allocation()) failed to allocate.
 811 
 812   // We will loop until a) we manage to successfully perform the
 813   // allocation or b) we successfully schedule a collection which
 814   // fails to perform the allocation. b) is the only case when we'll
 815   // return NULL.
 816   HeapWord* result = NULL;
 817   for (int try_count = 1; /* we'll return */; try_count += 1) {
 818     bool should_try_gc;
 819     uint gc_count_before;
 820 
 821     {
 822       MutexLockerEx x(Heap_lock);
 823       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 824                                                                                     false /* bot_updates */);
 825       if (result != NULL) {
 826         return result;
 827       }
 828 
 829       // If we reach here, attempt_allocation_locked() above failed to
 830       // allocate a new region. So the mutator alloc region should be NULL.
 831       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 832 
 833       if (GC_locker::is_active_and_needs_gc()) {
 834         if (g1_policy()->can_expand_young_list()) {
 835           // No need for an ergo verbose message here,
 836           // can_expand_young_list() does this when it returns true.
 837           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 838                                                                                        false /* bot_updates */);
 839           if (result != NULL) {
 840             return result;
 841           }
 842         }
 843         should_try_gc = false;
 844       } else {
 845         // The GCLocker may not be active but the GCLocker initiated
 846         // GC may not yet have been performed (GCLocker::needs_gc()
 847         // returns true). In this case we do not try this GC and
 848         // wait until the GCLocker initiated GC is performed, and
 849         // then retry the allocation.
 850         if (GC_locker::needs_gc()) {
 851           should_try_gc = false;
 852         } else {
 853           // Read the GC count while still holding the Heap_lock.
 854           gc_count_before = total_collections();
 855           should_try_gc = true;
 856         }
 857       }
 858     }
 859 
 860     if (should_try_gc) {
 861       bool succeeded;
 862       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 863                                    GCCause::_g1_inc_collection_pause);
 864       if (result != NULL) {
 865         assert(succeeded, "only way to get back a non-NULL result");
 866         return result;
 867       }
 868 
 869       if (succeeded) {
 870         // If we get here we successfully scheduled a collection which
 871         // failed to allocate. No point in trying to allocate
 872         // further. We'll just return NULL.
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877     } else {
 878       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 879         MutexLockerEx x(Heap_lock);
 880         *gc_count_before_ret = total_collections();
 881         return NULL;
 882       }
 883       // The GCLocker is either active or the GCLocker initiated
 884       // GC has not yet been performed. Stall until it is and
 885       // then retry the allocation.
 886       GC_locker::stall_until_clear();
 887       (*gclocker_retry_count_ret) += 1;
 888     }
 889 
 890     // We can reach here if we were unsuccessful in scheduling a
 891     // collection (because another thread beat us to it) or if we were
 892     // stalled due to the GC locker. In either can we should retry the
 893     // allocation attempt in case another thread successfully
 894     // performed a collection and reclaimed enough space. We do the
 895     // first attempt (without holding the Heap_lock) here and the
 896     // follow-on attempt will be at the start of the next loop
 897     // iteration (after taking the Heap_lock).
 898     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 899                                                                            false /* bot_updates */);
 900     if (result != NULL) {
 901       return result;
 902     }
 903 
 904     // Give a warning if we seem to be looping forever.
 905     if ((QueuedAllocationWarningCount > 0) &&
 906         (try_count % QueuedAllocationWarningCount == 0)) {
 907       warning("G1CollectedHeap::attempt_allocation_slow() "
 908               "retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 917                                                         uint* gc_count_before_ret,
 918                                                         uint* gclocker_retry_count_ret) {
 919   // The structure of this method has a lot of similarities to
 920   // attempt_allocation_slow(). The reason these two were not merged
 921   // into a single one is that such a method would require several "if
 922   // allocation is not humongous do this, otherwise do that"
 923   // conditional paths which would obscure its flow. In fact, an early
 924   // version of this code did use a unified method which was harder to
 925   // follow and, as a result, it had subtle bugs that were hard to
 926   // track down. So keeping these two methods separate allows each to
 927   // be more readable. It will be good to keep these two in sync as
 928   // much as possible.
 929 
 930   assert_heap_not_locked_and_not_at_safepoint();
 931   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 932          "should only be called for humongous allocations");
 933 
 934   // Humongous objects can exhaust the heap quickly, so we should check if we
 935   // need to start a marking cycle at each humongous object allocation. We do
 936   // the check before we do the actual allocation. The reason for doing it
 937   // before the allocation is that we avoid having to keep track of the newly
 938   // allocated memory while we do a GC.
 939   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 940                                            word_size)) {
 941     collect(GCCause::_g1_humongous_allocation);
 942   }
 943 
 944   // We will loop until a) we manage to successfully perform the
 945   // allocation or b) we successfully schedule a collection which
 946   // fails to perform the allocation. b) is the only case when we'll
 947   // return NULL.
 948   HeapWord* result = NULL;
 949   for (int try_count = 1; /* we'll return */; try_count += 1) {
 950     bool should_try_gc;
 951     uint gc_count_before;
 952 
 953     {
 954       MutexLockerEx x(Heap_lock);
 955 
 956       // Given that humongous objects are not allocated in young
 957       // regions, we'll first try to do the allocation without doing a
 958       // collection hoping that there's enough space in the heap.
 959       result = humongous_obj_allocate(word_size, AllocationContext::current());
 960       if (result != NULL) {
 961         return result;
 962       }
 963 
 964       if (GC_locker::is_active_and_needs_gc()) {
 965         should_try_gc = false;
 966       } else {
 967          // The GCLocker may not be active but the GCLocker initiated
 968         // GC may not yet have been performed (GCLocker::needs_gc()
 969         // returns true). In this case we do not try this GC and
 970         // wait until the GCLocker initiated GC is performed, and
 971         // then retry the allocation.
 972         if (GC_locker::needs_gc()) {
 973           should_try_gc = false;
 974         } else {
 975           // Read the GC count while still holding the Heap_lock.
 976           gc_count_before = total_collections();
 977           should_try_gc = true;
 978         }
 979       }
 980     }
 981 
 982     if (should_try_gc) {
 983       // If we failed to allocate the humongous object, we should try to
 984       // do a collection pause (if we're allowed) in case it reclaims
 985       // enough space for the allocation to succeed after the pause.
 986 
 987       bool succeeded;
 988       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 989                                    GCCause::_g1_humongous_allocation);
 990       if (result != NULL) {
 991         assert(succeeded, "only way to get back a non-NULL result");
 992         return result;
 993       }
 994 
 995       if (succeeded) {
 996         // If we get here we successfully scheduled a collection which
 997         // failed to allocate. No point in trying to allocate
 998         // further. We'll just return NULL.
 999         MutexLockerEx x(Heap_lock);
1000         *gc_count_before_ret = total_collections();
1001         return NULL;
1002       }
1003     } else {
1004       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1005         MutexLockerEx x(Heap_lock);
1006         *gc_count_before_ret = total_collections();
1007         return NULL;
1008       }
1009       // The GCLocker is either active or the GCLocker initiated
1010       // GC has not yet been performed. Stall until it is and
1011       // then retry the allocation.
1012       GC_locker::stall_until_clear();
1013       (*gclocker_retry_count_ret) += 1;
1014     }
1015 
1016     // We can reach here if we were unsuccessful in scheduling a
1017     // collection (because another thread beat us to it) or if we were
1018     // stalled due to the GC locker. In either can we should retry the
1019     // allocation attempt in case another thread successfully
1020     // performed a collection and reclaimed enough space.  Give a
1021     // warning if we seem to be looping forever.
1022 
1023     if ((QueuedAllocationWarningCount > 0) &&
1024         (try_count % QueuedAllocationWarningCount == 0)) {
1025       warning("G1CollectedHeap::attempt_allocation_humongous() "
1026               "retries %d times", try_count);
1027     }
1028   }
1029 
1030   ShouldNotReachHere();
1031   return NULL;
1032 }
1033 
1034 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1035                                                            AllocationContext_t context,
1036                                                            bool expect_null_mutator_alloc_region) {
1037   assert_at_safepoint(true /* should_be_vm_thread */);
1038   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1039                                              !expect_null_mutator_alloc_region,
1040          "the current alloc region was unexpectedly found to be non-NULL");
1041 
1042   if (!is_humongous(word_size)) {
1043     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1044                                                       false /* bot_updates */);
1045   } else {
1046     HeapWord* result = humongous_obj_allocate(word_size, context);
1047     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1048       g1_policy()->set_initiate_conc_mark_if_possible();
1049     }
1050     return result;
1051   }
1052 
1053   ShouldNotReachHere();
1054 }
1055 
1056 class PostMCRemSetClearClosure: public HeapRegionClosure {
1057   G1CollectedHeap* _g1h;
1058   ModRefBarrierSet* _mr_bs;
1059 public:
1060   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1061     _g1h(g1h), _mr_bs(mr_bs) {}
1062 
1063   bool doHeapRegion(HeapRegion* r) {
1064     HeapRegionRemSet* hrrs = r->rem_set();
1065 
1066     if (r->is_continues_humongous()) {
1067       // We'll assert that the strong code root list and RSet is empty
1068       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1069       assert(hrrs->occupied() == 0, "RSet should be empty");
1070       return false;
1071     }
1072 
1073     _g1h->reset_gc_time_stamps(r);
1074     hrrs->clear();
1075     // You might think here that we could clear just the cards
1076     // corresponding to the used region.  But no: if we leave a dirty card
1077     // in a region we might allocate into, then it would prevent that card
1078     // from being enqueued, and cause it to be missed.
1079     // Re: the performance cost: we shouldn't be doing full GC anyway!
1080     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1081 
1082     return false;
1083   }
1084 };
1085 
1086 void G1CollectedHeap::clear_rsets_post_compaction() {
1087   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1088   heap_region_iterate(&rs_clear);
1089 }
1090 
1091 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1092   G1CollectedHeap*   _g1h;
1093   UpdateRSOopClosure _cl;
1094   int                _worker_i;
1095 public:
1096   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1097     _cl(g1->g1_rem_set(), worker_i),
1098     _worker_i(worker_i),
1099     _g1h(g1)
1100   { }
1101 
1102   bool doHeapRegion(HeapRegion* r) {
1103     if (!r->is_continues_humongous()) {
1104       _cl.set_from(r);
1105       r->oop_iterate(&_cl);
1106     }
1107     return false;
1108   }
1109 };
1110 
1111 class ParRebuildRSTask: public AbstractGangTask {
1112   G1CollectedHeap* _g1;
1113   HeapRegionClaimer _hrclaimer;
1114 
1115 public:
1116   ParRebuildRSTask(G1CollectedHeap* g1) :
1117       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1118 
1119   void work(uint worker_id) {
1120     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1121     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1122   }
1123 };
1124 
1125 class PostCompactionPrinterClosure: public HeapRegionClosure {
1126 private:
1127   G1HRPrinter* _hr_printer;
1128 public:
1129   bool doHeapRegion(HeapRegion* hr) {
1130     assert(!hr->is_young(), "not expecting to find young regions");
1131     if (hr->is_free()) {
1132       // We only generate output for non-empty regions.
1133     } else if (hr->is_starts_humongous()) {
1134       if (hr->region_num() == 1) {
1135         // single humongous region
1136         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1137       } else {
1138         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1139       }
1140     } else if (hr->is_continues_humongous()) {
1141       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1142     } else if (hr->is_old()) {
1143       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1144     } else {
1145       ShouldNotReachHere();
1146     }
1147     return false;
1148   }
1149 
1150   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1151     : _hr_printer(hr_printer) { }
1152 };
1153 
1154 void G1CollectedHeap::print_hrm_post_compaction() {
1155   PostCompactionPrinterClosure cl(hr_printer());
1156   heap_region_iterate(&cl);
1157 }
1158 
1159 bool G1CollectedHeap::do_collection(bool explicit_gc,
1160                                     bool clear_all_soft_refs,
1161                                     size_t word_size) {
1162   assert_at_safepoint(true /* should_be_vm_thread */);
1163 
1164   if (GC_locker::check_active_before_gc()) {
1165     return false;
1166   }
1167 
1168   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1169   gc_timer->register_gc_start();
1170 
1171   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1172   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1173 
1174   SvcGCMarker sgcm(SvcGCMarker::FULL);
1175   ResourceMark rm;
1176 
1177   print_heap_before_gc();
1178   trace_heap_before_gc(gc_tracer);
1179 
1180   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1181 
1182   verify_region_sets_optional();
1183 
1184   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1185                            collector_policy()->should_clear_all_soft_refs();
1186 
1187   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1188 
1189   {
1190     IsGCActiveMark x;
1191 
1192     // Timing
1193     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1194     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1195 
1196     {
1197       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1198       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1199       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1200 
1201       g1_policy()->record_full_collection_start();
1202 
1203       // Note: When we have a more flexible GC logging framework that
1204       // allows us to add optional attributes to a GC log record we
1205       // could consider timing and reporting how long we wait in the
1206       // following two methods.
1207       wait_while_free_regions_coming();
1208       // If we start the compaction before the CM threads finish
1209       // scanning the root regions we might trip them over as we'll
1210       // be moving objects / updating references. So let's wait until
1211       // they are done. By telling them to abort, they should complete
1212       // early.
1213       _cm->root_regions()->abort();
1214       _cm->root_regions()->wait_until_scan_finished();
1215       append_secondary_free_list_if_not_empty_with_lock();
1216 
1217       gc_prologue(true);
1218       increment_total_collections(true /* full gc */);
1219       increment_old_marking_cycles_started();
1220 
1221       assert(used() == recalculate_used(), "Should be equal");
1222 
1223       verify_before_gc();
1224 
1225       check_bitmaps("Full GC Start");
1226       pre_full_gc_dump(gc_timer);
1227 
1228       COMPILER2_PRESENT(DerivedPointerTable::clear());
1229 
1230       // Disable discovery and empty the discovered lists
1231       // for the CM ref processor.
1232       ref_processor_cm()->disable_discovery();
1233       ref_processor_cm()->abandon_partial_discovery();
1234       ref_processor_cm()->verify_no_references_recorded();
1235 
1236       // Abandon current iterations of concurrent marking and concurrent
1237       // refinement, if any are in progress. We have to do this before
1238       // wait_until_scan_finished() below.
1239       concurrent_mark()->abort();
1240 
1241       // Make sure we'll choose a new allocation region afterwards.
1242       _allocator->release_mutator_alloc_region();
1243       _allocator->abandon_gc_alloc_regions();
1244       g1_rem_set()->cleanupHRRS();
1245 
1246       // We should call this after we retire any currently active alloc
1247       // regions so that all the ALLOC / RETIRE events are generated
1248       // before the start GC event.
1249       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1250 
1251       // We may have added regions to the current incremental collection
1252       // set between the last GC or pause and now. We need to clear the
1253       // incremental collection set and then start rebuilding it afresh
1254       // after this full GC.
1255       abandon_collection_set(g1_policy()->inc_cset_head());
1256       g1_policy()->clear_incremental_cset();
1257       g1_policy()->stop_incremental_cset_building();
1258 
1259       tear_down_region_sets(false /* free_list_only */);
1260       g1_policy()->set_gcs_are_young(true);
1261 
1262       // See the comments in g1CollectedHeap.hpp and
1263       // G1CollectedHeap::ref_processing_init() about
1264       // how reference processing currently works in G1.
1265 
1266       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1267       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1268 
1269       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1270       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1271 
1272       ref_processor_stw()->enable_discovery();
1273       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1274 
1275       // Do collection work
1276       {
1277         HandleMark hm;  // Discard invalid handles created during gc
1278         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1279       }
1280 
1281       assert(num_free_regions() == 0, "we should not have added any free regions");
1282       rebuild_region_sets(false /* free_list_only */);
1283 
1284       // Enqueue any discovered reference objects that have
1285       // not been removed from the discovered lists.
1286       ref_processor_stw()->enqueue_discovered_references();
1287 
1288       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1289 
1290       MemoryService::track_memory_usage();
1291 
1292       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1293       ref_processor_stw()->verify_no_references_recorded();
1294 
1295       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1296       ClassLoaderDataGraph::purge();
1297       MetaspaceAux::verify_metrics();
1298 
1299       // Note: since we've just done a full GC, concurrent
1300       // marking is no longer active. Therefore we need not
1301       // re-enable reference discovery for the CM ref processor.
1302       // That will be done at the start of the next marking cycle.
1303       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1304       ref_processor_cm()->verify_no_references_recorded();
1305 
1306       reset_gc_time_stamp();
1307       // Since everything potentially moved, we will clear all remembered
1308       // sets, and clear all cards.  Later we will rebuild remembered
1309       // sets. We will also reset the GC time stamps of the regions.
1310       clear_rsets_post_compaction();
1311       check_gc_time_stamps();
1312 
1313       // Resize the heap if necessary.
1314       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1315 
1316       if (_hr_printer.is_active()) {
1317         // We should do this after we potentially resize the heap so
1318         // that all the COMMIT / UNCOMMIT events are generated before
1319         // the end GC event.
1320 
1321         print_hrm_post_compaction();
1322         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1323       }
1324 
1325       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1326       if (hot_card_cache->use_cache()) {
1327         hot_card_cache->reset_card_counts();
1328         hot_card_cache->reset_hot_cache();
1329       }
1330 
1331       // Rebuild remembered sets of all regions.
1332       uint n_workers =
1333         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1334                                                 workers()->active_workers(),
1335                                                 Threads::number_of_non_daemon_threads());
1336       assert(UseDynamicNumberOfGCThreads ||
1337              n_workers == workers()->total_workers(),
1338              "If not dynamic should be using all the  workers");
1339       workers()->set_active_workers(n_workers);
1340       // Set parallel threads in the heap (_n_par_threads) only
1341       // before a parallel phase and always reset it to 0 after
1342       // the phase so that the number of parallel threads does
1343       // no get carried forward to a serial phase where there
1344       // may be code that is "possibly_parallel".
1345       set_par_threads(n_workers);
1346 
1347       ParRebuildRSTask rebuild_rs_task(this);
1348       assert(UseDynamicNumberOfGCThreads ||
1349              workers()->active_workers() == workers()->total_workers(),
1350              "Unless dynamic should use total workers");
1351       // Use the most recent number of  active workers
1352       assert(workers()->active_workers() > 0,
1353              "Active workers not properly set");
1354       set_par_threads(workers()->active_workers());
1355       workers()->run_task(&rebuild_rs_task);
1356       set_par_threads(0);
1357 
1358       // Rebuild the strong code root lists for each region
1359       rebuild_strong_code_roots();
1360 
1361       if (true) { // FIXME
1362         MetaspaceGC::compute_new_size();
1363       }
1364 
1365 #ifdef TRACESPINNING
1366       ParallelTaskTerminator::print_termination_counts();
1367 #endif
1368 
1369       // Discard all rset updates
1370       JavaThread::dirty_card_queue_set().abandon_logs();
1371       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1372 
1373       _young_list->reset_sampled_info();
1374       // At this point there should be no regions in the
1375       // entire heap tagged as young.
1376       assert(check_young_list_empty(true /* check_heap */),
1377              "young list should be empty at this point");
1378 
1379       // Update the number of full collections that have been completed.
1380       increment_old_marking_cycles_completed(false /* concurrent */);
1381 
1382       _hrm.verify_optional();
1383       verify_region_sets_optional();
1384 
1385       verify_after_gc();
1386 
1387       // Clear the previous marking bitmap, if needed for bitmap verification.
1388       // Note we cannot do this when we clear the next marking bitmap in
1389       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1390       // objects marked during a full GC against the previous bitmap.
1391       // But we need to clear it before calling check_bitmaps below since
1392       // the full GC has compacted objects and updated TAMS but not updated
1393       // the prev bitmap.
1394       if (G1VerifyBitmaps) {
1395         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1396       }
1397       check_bitmaps("Full GC End");
1398 
1399       // Start a new incremental collection set for the next pause
1400       assert(g1_policy()->collection_set() == NULL, "must be");
1401       g1_policy()->start_incremental_cset_building();
1402 
1403       clear_cset_fast_test();
1404 
1405       _allocator->init_mutator_alloc_region();
1406 
1407       g1_policy()->record_full_collection_end();
1408 
1409       if (G1Log::fine()) {
1410         g1_policy()->print_heap_transition();
1411       }
1412 
1413       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1414       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1415       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1416       // before any GC notifications are raised.
1417       g1mm()->update_sizes();
1418 
1419       gc_epilogue(true);
1420     }
1421 
1422     if (G1Log::finer()) {
1423       g1_policy()->print_detailed_heap_transition(true /* full */);
1424     }
1425 
1426     print_heap_after_gc();
1427     trace_heap_after_gc(gc_tracer);
1428 
1429     post_full_gc_dump(gc_timer);
1430 
1431     gc_timer->register_gc_end();
1432     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1433   }
1434 
1435   return true;
1436 }
1437 
1438 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1439   // do_collection() will return whether it succeeded in performing
1440   // the GC. Currently, there is no facility on the
1441   // do_full_collection() API to notify the caller than the collection
1442   // did not succeed (e.g., because it was locked out by the GC
1443   // locker). So, right now, we'll ignore the return value.
1444   bool dummy = do_collection(true,                /* explicit_gc */
1445                              clear_all_soft_refs,
1446                              0                    /* word_size */);
1447 }
1448 
1449 // This code is mostly copied from TenuredGeneration.
1450 void
1451 G1CollectedHeap::
1452 resize_if_necessary_after_full_collection(size_t word_size) {
1453   // Include the current allocation, if any, and bytes that will be
1454   // pre-allocated to support collections, as "used".
1455   const size_t used_after_gc = used();
1456   const size_t capacity_after_gc = capacity();
1457   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1458 
1459   // This is enforced in arguments.cpp.
1460   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1461          "otherwise the code below doesn't make sense");
1462 
1463   // We don't have floating point command-line arguments
1464   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1465   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1466   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1467   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1468 
1469   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1470   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1471 
1472   // We have to be careful here as these two calculations can overflow
1473   // 32-bit size_t's.
1474   double used_after_gc_d = (double) used_after_gc;
1475   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1476   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1477 
1478   // Let's make sure that they are both under the max heap size, which
1479   // by default will make them fit into a size_t.
1480   double desired_capacity_upper_bound = (double) max_heap_size;
1481   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1482                                     desired_capacity_upper_bound);
1483   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1484                                     desired_capacity_upper_bound);
1485 
1486   // We can now safely turn them into size_t's.
1487   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1488   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1489 
1490   // This assert only makes sense here, before we adjust them
1491   // with respect to the min and max heap size.
1492   assert(minimum_desired_capacity <= maximum_desired_capacity,
1493          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1494                  "maximum_desired_capacity = "SIZE_FORMAT,
1495                  minimum_desired_capacity, maximum_desired_capacity));
1496 
1497   // Should not be greater than the heap max size. No need to adjust
1498   // it with respect to the heap min size as it's a lower bound (i.e.,
1499   // we'll try to make the capacity larger than it, not smaller).
1500   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1501   // Should not be less than the heap min size. No need to adjust it
1502   // with respect to the heap max size as it's an upper bound (i.e.,
1503   // we'll try to make the capacity smaller than it, not greater).
1504   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1505 
1506   if (capacity_after_gc < minimum_desired_capacity) {
1507     // Don't expand unless it's significant
1508     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1509     ergo_verbose4(ErgoHeapSizing,
1510                   "attempt heap expansion",
1511                   ergo_format_reason("capacity lower than "
1512                                      "min desired capacity after Full GC")
1513                   ergo_format_byte("capacity")
1514                   ergo_format_byte("occupancy")
1515                   ergo_format_byte_perc("min desired capacity"),
1516                   capacity_after_gc, used_after_gc,
1517                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1518     expand(expand_bytes);
1519 
1520     // No expansion, now see if we want to shrink
1521   } else if (capacity_after_gc > maximum_desired_capacity) {
1522     // Capacity too large, compute shrinking size
1523     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1524     ergo_verbose4(ErgoHeapSizing,
1525                   "attempt heap shrinking",
1526                   ergo_format_reason("capacity higher than "
1527                                      "max desired capacity after Full GC")
1528                   ergo_format_byte("capacity")
1529                   ergo_format_byte("occupancy")
1530                   ergo_format_byte_perc("max desired capacity"),
1531                   capacity_after_gc, used_after_gc,
1532                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1533     shrink(shrink_bytes);
1534   }
1535 }
1536 
1537 
1538 HeapWord*
1539 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1540                                            AllocationContext_t context,
1541                                            bool* succeeded) {
1542   assert_at_safepoint(true /* should_be_vm_thread */);
1543 
1544   *succeeded = true;
1545   // Let's attempt the allocation first.
1546   HeapWord* result =
1547     attempt_allocation_at_safepoint(word_size,
1548                                     context,
1549                                     false /* expect_null_mutator_alloc_region */);
1550   if (result != NULL) {
1551     assert(*succeeded, "sanity");
1552     return result;
1553   }
1554 
1555   // In a G1 heap, we're supposed to keep allocation from failing by
1556   // incremental pauses.  Therefore, at least for now, we'll favor
1557   // expansion over collection.  (This might change in the future if we can
1558   // do something smarter than full collection to satisfy a failed alloc.)
1559   result = expand_and_allocate(word_size, context);
1560   if (result != NULL) {
1561     assert(*succeeded, "sanity");
1562     return result;
1563   }
1564 
1565   // Expansion didn't work, we'll try to do a Full GC.
1566   bool gc_succeeded = do_collection(false, /* explicit_gc */
1567                                     false, /* clear_all_soft_refs */
1568                                     word_size);
1569   if (!gc_succeeded) {
1570     *succeeded = false;
1571     return NULL;
1572   }
1573 
1574   // Retry the allocation
1575   result = attempt_allocation_at_safepoint(word_size,
1576                                            context,
1577                                            true /* expect_null_mutator_alloc_region */);
1578   if (result != NULL) {
1579     assert(*succeeded, "sanity");
1580     return result;
1581   }
1582 
1583   // Then, try a Full GC that will collect all soft references.
1584   gc_succeeded = do_collection(false, /* explicit_gc */
1585                                true,  /* clear_all_soft_refs */
1586                                word_size);
1587   if (!gc_succeeded) {
1588     *succeeded = false;
1589     return NULL;
1590   }
1591 
1592   // Retry the allocation once more
1593   result = attempt_allocation_at_safepoint(word_size,
1594                                            context,
1595                                            true /* expect_null_mutator_alloc_region */);
1596   if (result != NULL) {
1597     assert(*succeeded, "sanity");
1598     return result;
1599   }
1600 
1601   assert(!collector_policy()->should_clear_all_soft_refs(),
1602          "Flag should have been handled and cleared prior to this point");
1603 
1604   // What else?  We might try synchronous finalization later.  If the total
1605   // space available is large enough for the allocation, then a more
1606   // complete compaction phase than we've tried so far might be
1607   // appropriate.
1608   assert(*succeeded, "sanity");
1609   return NULL;
1610 }
1611 
1612 // Attempting to expand the heap sufficiently
1613 // to support an allocation of the given "word_size".  If
1614 // successful, perform the allocation and return the address of the
1615 // allocated block, or else "NULL".
1616 
1617 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1618   assert_at_safepoint(true /* should_be_vm_thread */);
1619 
1620   verify_region_sets_optional();
1621 
1622   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1623   ergo_verbose1(ErgoHeapSizing,
1624                 "attempt heap expansion",
1625                 ergo_format_reason("allocation request failed")
1626                 ergo_format_byte("allocation request"),
1627                 word_size * HeapWordSize);
1628   if (expand(expand_bytes)) {
1629     _hrm.verify_optional();
1630     verify_region_sets_optional();
1631     return attempt_allocation_at_safepoint(word_size,
1632                                            context,
1633                                            false /* expect_null_mutator_alloc_region */);
1634   }
1635   return NULL;
1636 }
1637 
1638 bool G1CollectedHeap::expand(size_t expand_bytes) {
1639   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1640   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1641                                        HeapRegion::GrainBytes);
1642   ergo_verbose2(ErgoHeapSizing,
1643                 "expand the heap",
1644                 ergo_format_byte("requested expansion amount")
1645                 ergo_format_byte("attempted expansion amount"),
1646                 expand_bytes, aligned_expand_bytes);
1647 
1648   if (is_maximal_no_gc()) {
1649     ergo_verbose0(ErgoHeapSizing,
1650                       "did not expand the heap",
1651                       ergo_format_reason("heap already fully expanded"));
1652     return false;
1653   }
1654 
1655   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1656   assert(regions_to_expand > 0, "Must expand by at least one region");
1657 
1658   uint expanded_by = _hrm.expand_by(regions_to_expand);
1659 
1660   if (expanded_by > 0) {
1661     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1662     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1663     g1_policy()->record_new_heap_size(num_regions());
1664   } else {
1665     ergo_verbose0(ErgoHeapSizing,
1666                   "did not expand the heap",
1667                   ergo_format_reason("heap expansion operation failed"));
1668     // The expansion of the virtual storage space was unsuccessful.
1669     // Let's see if it was because we ran out of swap.
1670     if (G1ExitOnExpansionFailure &&
1671         _hrm.available() >= regions_to_expand) {
1672       // We had head room...
1673       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1674     }
1675   }
1676   return regions_to_expand > 0;
1677 }
1678 
1679 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1680   size_t aligned_shrink_bytes =
1681     ReservedSpace::page_align_size_down(shrink_bytes);
1682   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1683                                          HeapRegion::GrainBytes);
1684   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1685 
1686   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1687   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1688 
1689   ergo_verbose3(ErgoHeapSizing,
1690                 "shrink the heap",
1691                 ergo_format_byte("requested shrinking amount")
1692                 ergo_format_byte("aligned shrinking amount")
1693                 ergo_format_byte("attempted shrinking amount"),
1694                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1695   if (num_regions_removed > 0) {
1696     g1_policy()->record_new_heap_size(num_regions());
1697   } else {
1698     ergo_verbose0(ErgoHeapSizing,
1699                   "did not shrink the heap",
1700                   ergo_format_reason("heap shrinking operation failed"));
1701   }
1702 }
1703 
1704 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1705   verify_region_sets_optional();
1706 
1707   // We should only reach here at the end of a Full GC which means we
1708   // should not not be holding to any GC alloc regions. The method
1709   // below will make sure of that and do any remaining clean up.
1710   _allocator->abandon_gc_alloc_regions();
1711 
1712   // Instead of tearing down / rebuilding the free lists here, we
1713   // could instead use the remove_all_pending() method on free_list to
1714   // remove only the ones that we need to remove.
1715   tear_down_region_sets(true /* free_list_only */);
1716   shrink_helper(shrink_bytes);
1717   rebuild_region_sets(true /* free_list_only */);
1718 
1719   _hrm.verify_optional();
1720   verify_region_sets_optional();
1721 }
1722 
1723 // Public methods.
1724 
1725 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1726 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1727 #endif // _MSC_VER
1728 
1729 
1730 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1731   SharedHeap(),
1732   _g1_policy(policy_),
1733   _dirty_card_queue_set(false),
1734   _into_cset_dirty_card_queue_set(false),
1735   _is_alive_closure_cm(this),
1736   _is_alive_closure_stw(this),
1737   _ref_processor_cm(NULL),
1738   _ref_processor_stw(NULL),
1739   _bot_shared(NULL),
1740   _evac_failure_scan_stack(NULL),
1741   _mark_in_progress(false),
1742   _cg1r(NULL),
1743   _g1mm(NULL),
1744   _refine_cte_cl(NULL),
1745   _full_collection(false),
1746   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1747   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1748   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1749   _humongous_is_live(),
1750   _has_humongous_reclaim_candidates(false),
1751   _free_regions_coming(false),
1752   _young_list(new YoungList(this)),
1753   _gc_time_stamp(0),
1754   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1755   _old_plab_stats(OldPLABSize, PLABWeight),
1756   _expand_heap_after_alloc_failure(true),
1757   _surviving_young_words(NULL),
1758   _old_marking_cycles_started(0),
1759   _old_marking_cycles_completed(0),
1760   _concurrent_cycle_started(false),
1761   _heap_summary_sent(false),
1762   _in_cset_fast_test(),
1763   _dirty_cards_region_list(NULL),
1764   _worker_cset_start_region(NULL),
1765   _worker_cset_start_region_time_stamp(NULL),
1766   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1767   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1768   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1769   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1770 
1771   _g1h = this;
1772 
1773   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1774                           /* are_GC_task_threads */true,
1775                           /* are_ConcurrentGC_threads */false);
1776   _workers->initialize_workers();
1777 
1778   _allocator = G1Allocator::create_allocator(_g1h);
1779   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1780 
1781   int n_queues = MAX2((int)ParallelGCThreads, 1);
1782   _task_queues = new RefToScanQueueSet(n_queues);
1783 
1784   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1785   assert(n_rem_sets > 0, "Invariant.");
1786 
1787   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1788   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1789   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1790 
1791   for (int i = 0; i < n_queues; i++) {
1792     RefToScanQueue* q = new RefToScanQueue();
1793     q->initialize();
1794     _task_queues->register_queue(i, q);
1795     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1796   }
1797   clear_cset_start_regions();
1798 
1799   // Initialize the G1EvacuationFailureALot counters and flags.
1800   NOT_PRODUCT(reset_evacuation_should_fail();)
1801 
1802   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1803 }
1804 
1805 jint G1CollectedHeap::initialize() {
1806   CollectedHeap::pre_initialize();
1807   os::enable_vtime();
1808 
1809   G1Log::init();
1810 
1811   // Necessary to satisfy locking discipline assertions.
1812 
1813   MutexLocker x(Heap_lock);
1814 
1815   // We have to initialize the printer before committing the heap, as
1816   // it will be used then.
1817   _hr_printer.set_active(G1PrintHeapRegions);
1818 
1819   // While there are no constraints in the GC code that HeapWordSize
1820   // be any particular value, there are multiple other areas in the
1821   // system which believe this to be true (e.g. oop->object_size in some
1822   // cases incorrectly returns the size in wordSize units rather than
1823   // HeapWordSize).
1824   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1825 
1826   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1827   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1828   size_t heap_alignment = collector_policy()->heap_alignment();
1829 
1830   // Ensure that the sizes are properly aligned.
1831   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1832   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1833   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1834 
1835   _refine_cte_cl = new RefineCardTableEntryClosure();
1836 
1837   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1838 
1839   // Reserve the maximum.
1840 
1841   // When compressed oops are enabled, the preferred heap base
1842   // is calculated by subtracting the requested size from the
1843   // 32Gb boundary and using the result as the base address for
1844   // heap reservation. If the requested size is not aligned to
1845   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1846   // into the ReservedHeapSpace constructor) then the actual
1847   // base of the reserved heap may end up differing from the
1848   // address that was requested (i.e. the preferred heap base).
1849   // If this happens then we could end up using a non-optimal
1850   // compressed oops mode.
1851 
1852   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1853                                                  heap_alignment);
1854 
1855   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1856 
1857   // Create the barrier set for the entire reserved region.
1858   G1SATBCardTableLoggingModRefBS* bs
1859     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1860   bs->initialize();
1861   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1862   _barrier_set = bs;
1863   oopDesc::set_bs(bs);
1864 
1865   // Also create a G1 rem set.
1866   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1867 
1868   // Carve out the G1 part of the heap.
1869 
1870   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1871   G1RegionToSpaceMapper* heap_storage =
1872     G1RegionToSpaceMapper::create_mapper(g1_rs,
1873                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1874                                          HeapRegion::GrainBytes,
1875                                          1,
1876                                          mtJavaHeap);
1877   heap_storage->set_mapping_changed_listener(&_listener);
1878 
1879   // Reserve space for the block offset table. We do not support automatic uncommit
1880   // for the card table at this time. BOT only.
1881   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1882   G1RegionToSpaceMapper* bot_storage =
1883     G1RegionToSpaceMapper::create_mapper(bot_rs,
1884                                          os::vm_page_size(),
1885                                          HeapRegion::GrainBytes,
1886                                          G1BlockOffsetSharedArray::N_bytes,
1887                                          mtGC);
1888 
1889   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1890   G1RegionToSpaceMapper* cardtable_storage =
1891     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1892                                          os::vm_page_size(),
1893                                          HeapRegion::GrainBytes,
1894                                          G1BlockOffsetSharedArray::N_bytes,
1895                                          mtGC);
1896 
1897   // Reserve space for the card counts table.
1898   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1899   G1RegionToSpaceMapper* card_counts_storage =
1900     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1901                                          os::vm_page_size(),
1902                                          HeapRegion::GrainBytes,
1903                                          G1BlockOffsetSharedArray::N_bytes,
1904                                          mtGC);
1905 
1906   // Reserve space for prev and next bitmap.
1907   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1908 
1909   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1910   G1RegionToSpaceMapper* prev_bitmap_storage =
1911     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1912                                          os::vm_page_size(),
1913                                          HeapRegion::GrainBytes,
1914                                          CMBitMap::mark_distance(),
1915                                          mtGC);
1916 
1917   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1918   G1RegionToSpaceMapper* next_bitmap_storage =
1919     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1920                                          os::vm_page_size(),
1921                                          HeapRegion::GrainBytes,
1922                                          CMBitMap::mark_distance(),
1923                                          mtGC);
1924 
1925   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1926   g1_barrier_set()->initialize(cardtable_storage);
1927    // Do later initialization work for concurrent refinement.
1928   _cg1r->init(card_counts_storage);
1929 
1930   // 6843694 - ensure that the maximum region index can fit
1931   // in the remembered set structures.
1932   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1933   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1934 
1935   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1936   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1937   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1938             "too many cards per region");
1939 
1940   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1941 
1942   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1943 
1944   _g1h = this;
1945 
1946   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1947   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1948 
1949   // Create the ConcurrentMark data structure and thread.
1950   // (Must do this late, so that "max_regions" is defined.)
1951   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1952   if (_cm == NULL || !_cm->completed_initialization()) {
1953     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1954     return JNI_ENOMEM;
1955   }
1956   _cmThread = _cm->cmThread();
1957 
1958   // Initialize the from_card cache structure of HeapRegionRemSet.
1959   HeapRegionRemSet::init_heap(max_regions());
1960 
1961   // Now expand into the initial heap size.
1962   if (!expand(init_byte_size)) {
1963     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1964     return JNI_ENOMEM;
1965   }
1966 
1967   // Perform any initialization actions delegated to the policy.
1968   g1_policy()->init();
1969 
1970   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1971                                                SATB_Q_FL_lock,
1972                                                G1SATBProcessCompletedThreshold,
1973                                                Shared_SATB_Q_lock);
1974 
1975   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1976                                                 DirtyCardQ_CBL_mon,
1977                                                 DirtyCardQ_FL_lock,
1978                                                 concurrent_g1_refine()->yellow_zone(),
1979                                                 concurrent_g1_refine()->red_zone(),
1980                                                 Shared_DirtyCardQ_lock);
1981 
1982   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1983                                     DirtyCardQ_CBL_mon,
1984                                     DirtyCardQ_FL_lock,
1985                                     -1, // never trigger processing
1986                                     -1, // no limit on length
1987                                     Shared_DirtyCardQ_lock,
1988                                     &JavaThread::dirty_card_queue_set());
1989 
1990   // Initialize the card queue set used to hold cards containing
1991   // references into the collection set.
1992   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1993                                              DirtyCardQ_CBL_mon,
1994                                              DirtyCardQ_FL_lock,
1995                                              -1, // never trigger processing
1996                                              -1, // no limit on length
1997                                              Shared_DirtyCardQ_lock,
1998                                              &JavaThread::dirty_card_queue_set());
1999 
2000   // Here we allocate the dummy HeapRegion that is required by the
2001   // G1AllocRegion class.
2002   HeapRegion* dummy_region = _hrm.get_dummy_region();
2003 
2004   // We'll re-use the same region whether the alloc region will
2005   // require BOT updates or not and, if it doesn't, then a non-young
2006   // region will complain that it cannot support allocations without
2007   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2008   dummy_region->set_eden();
2009   // Make sure it's full.
2010   dummy_region->set_top(dummy_region->end());
2011   G1AllocRegion::setup(this, dummy_region);
2012 
2013   _allocator->init_mutator_alloc_region();
2014 
2015   // Do create of the monitoring and management support so that
2016   // values in the heap have been properly initialized.
2017   _g1mm = new G1MonitoringSupport(this);
2018 
2019   G1StringDedup::initialize();
2020 
2021   return JNI_OK;
2022 }
2023 
2024 void G1CollectedHeap::stop() {
2025   // Stop all concurrent threads. We do this to make sure these threads
2026   // do not continue to execute and access resources (e.g. gclog_or_tty)
2027   // that are destroyed during shutdown.
2028   _cg1r->stop();
2029   _cmThread->stop();
2030   if (G1StringDedup::is_enabled()) {
2031     G1StringDedup::stop();
2032   }
2033 }
2034 
2035 void G1CollectedHeap::clear_humongous_is_live_table() {
2036   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2037   _humongous_is_live.clear();
2038 }
2039 
2040 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2041   return HeapRegion::max_region_size();
2042 }
2043 
2044 void G1CollectedHeap::post_initialize() {
2045   CollectedHeap::post_initialize();
2046   ref_processing_init();
2047 }
2048 
2049 void G1CollectedHeap::ref_processing_init() {
2050   // Reference processing in G1 currently works as follows:
2051   //
2052   // * There are two reference processor instances. One is
2053   //   used to record and process discovered references
2054   //   during concurrent marking; the other is used to
2055   //   record and process references during STW pauses
2056   //   (both full and incremental).
2057   // * Both ref processors need to 'span' the entire heap as
2058   //   the regions in the collection set may be dotted around.
2059   //
2060   // * For the concurrent marking ref processor:
2061   //   * Reference discovery is enabled at initial marking.
2062   //   * Reference discovery is disabled and the discovered
2063   //     references processed etc during remarking.
2064   //   * Reference discovery is MT (see below).
2065   //   * Reference discovery requires a barrier (see below).
2066   //   * Reference processing may or may not be MT
2067   //     (depending on the value of ParallelRefProcEnabled
2068   //     and ParallelGCThreads).
2069   //   * A full GC disables reference discovery by the CM
2070   //     ref processor and abandons any entries on it's
2071   //     discovered lists.
2072   //
2073   // * For the STW processor:
2074   //   * Non MT discovery is enabled at the start of a full GC.
2075   //   * Processing and enqueueing during a full GC is non-MT.
2076   //   * During a full GC, references are processed after marking.
2077   //
2078   //   * Discovery (may or may not be MT) is enabled at the start
2079   //     of an incremental evacuation pause.
2080   //   * References are processed near the end of a STW evacuation pause.
2081   //   * For both types of GC:
2082   //     * Discovery is atomic - i.e. not concurrent.
2083   //     * Reference discovery will not need a barrier.
2084 
2085   MemRegion mr = reserved_region();
2086 
2087   // Concurrent Mark ref processor
2088   _ref_processor_cm =
2089     new ReferenceProcessor(mr,    // span
2090                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2091                                 // mt processing
2092                            (int) ParallelGCThreads,
2093                                 // degree of mt processing
2094                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2095                                 // mt discovery
2096                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2097                                 // degree of mt discovery
2098                            false,
2099                                 // Reference discovery is not atomic
2100                            &_is_alive_closure_cm);
2101                                 // is alive closure
2102                                 // (for efficiency/performance)
2103 
2104   // STW ref processor
2105   _ref_processor_stw =
2106     new ReferenceProcessor(mr,    // span
2107                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2108                                 // mt processing
2109                            MAX2((int)ParallelGCThreads, 1),
2110                                 // degree of mt processing
2111                            (ParallelGCThreads > 1),
2112                                 // mt discovery
2113                            MAX2((int)ParallelGCThreads, 1),
2114                                 // degree of mt discovery
2115                            true,
2116                                 // Reference discovery is atomic
2117                            &_is_alive_closure_stw);
2118                                 // is alive closure
2119                                 // (for efficiency/performance)
2120 }
2121 
2122 size_t G1CollectedHeap::capacity() const {
2123   return _hrm.length() * HeapRegion::GrainBytes;
2124 }
2125 
2126 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2127   assert(!hr->is_continues_humongous(), "pre-condition");
2128   hr->reset_gc_time_stamp();
2129   if (hr->is_starts_humongous()) {
2130     uint first_index = hr->hrm_index() + 1;
2131     uint last_index = hr->last_hc_index();
2132     for (uint i = first_index; i < last_index; i += 1) {
2133       HeapRegion* chr = region_at(i);
2134       assert(chr->is_continues_humongous(), "sanity");
2135       chr->reset_gc_time_stamp();
2136     }
2137   }
2138 }
2139 
2140 #ifndef PRODUCT
2141 
2142 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2143 private:
2144   unsigned _gc_time_stamp;
2145   bool _failures;
2146 
2147 public:
2148   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2149     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2150 
2151   virtual bool doHeapRegion(HeapRegion* hr) {
2152     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2153     if (_gc_time_stamp != region_gc_time_stamp) {
2154       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2155                              "expected %d", HR_FORMAT_PARAMS(hr),
2156                              region_gc_time_stamp, _gc_time_stamp);
2157       _failures = true;
2158     }
2159     return false;
2160   }
2161 
2162   bool failures() { return _failures; }
2163 };
2164 
2165 void G1CollectedHeap::check_gc_time_stamps() {
2166   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2167   heap_region_iterate(&cl);
2168   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2169 }
2170 
2171 bool G1CollectedHeap::heap_lock_held_for_gc() {
2172   Thread* t = Thread::current();
2173   return    Heap_lock->owned_by_self()
2174          || (   (t->is_GC_task_thread() ||  t->is_VM_thread())
2175              && _thread_holds_heap_lock_for_gc);
2176 }
2177 
2178 #endif // PRODUCT
2179 
2180 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2181                                                  DirtyCardQueue* into_cset_dcq,
2182                                                  bool concurrent,
2183                                                  uint worker_i) {
2184   // Clean cards in the hot card cache
2185   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2186   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2187 
2188   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2189   size_t n_completed_buffers = 0;
2190   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2191     n_completed_buffers++;
2192   }
2193   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2194   dcqs.clear_n_completed_buffers();
2195   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2196 }
2197 
2198 
2199 // Computes the sum of the storage used by the various regions.
2200 size_t G1CollectedHeap::used() const {
2201   return _allocator->used();
2202 }
2203 
2204 size_t G1CollectedHeap::used_unlocked() const {
2205   return _allocator->used_unlocked();
2206 }
2207 
2208 class SumUsedClosure: public HeapRegionClosure {
2209   size_t _used;
2210 public:
2211   SumUsedClosure() : _used(0) {}
2212   bool doHeapRegion(HeapRegion* r) {
2213     if (!r->is_continues_humongous()) {
2214       _used += r->used();
2215     }
2216     return false;
2217   }
2218   size_t result() { return _used; }
2219 };
2220 
2221 size_t G1CollectedHeap::recalculate_used() const {
2222   double recalculate_used_start = os::elapsedTime();
2223 
2224   SumUsedClosure blk;
2225   heap_region_iterate(&blk);
2226 
2227   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2228   return blk.result();
2229 }
2230 
2231 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2232   switch (cause) {
2233     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2234     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2235     case GCCause::_g1_humongous_allocation: return true;
2236     case GCCause::_update_allocation_context_stats_inc: return true;
2237     case GCCause::_wb_conc_mark:            return true;
2238     default:                                return false;
2239   }
2240 }
2241 
2242 #ifndef PRODUCT
2243 void G1CollectedHeap::allocate_dummy_regions() {
2244   // Let's fill up most of the region
2245   size_t word_size = HeapRegion::GrainWords - 1024;
2246   // And as a result the region we'll allocate will be humongous.
2247   guarantee(is_humongous(word_size), "sanity");
2248 
2249   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2250     // Let's use the existing mechanism for the allocation
2251     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2252                                                  AllocationContext::system());
2253     if (dummy_obj != NULL) {
2254       MemRegion mr(dummy_obj, word_size);
2255       CollectedHeap::fill_with_object(mr);
2256     } else {
2257       // If we can't allocate once, we probably cannot allocate
2258       // again. Let's get out of the loop.
2259       break;
2260     }
2261   }
2262 }
2263 #endif // !PRODUCT
2264 
2265 void G1CollectedHeap::increment_old_marking_cycles_started() {
2266   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2267     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2268     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2269     _old_marking_cycles_started, _old_marking_cycles_completed));
2270 
2271   _old_marking_cycles_started++;
2272 }
2273 
2274 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2275   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2276 
2277   // We assume that if concurrent == true, then the caller is a
2278   // concurrent thread that was joined the Suspendible Thread
2279   // Set. If there's ever a cheap way to check this, we should add an
2280   // assert here.
2281 
2282   // Given that this method is called at the end of a Full GC or of a
2283   // concurrent cycle, and those can be nested (i.e., a Full GC can
2284   // interrupt a concurrent cycle), the number of full collections
2285   // completed should be either one (in the case where there was no
2286   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2287   // behind the number of full collections started.
2288 
2289   // This is the case for the inner caller, i.e. a Full GC.
2290   assert(concurrent ||
2291          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2292          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2293          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2294                  "is inconsistent with _old_marking_cycles_completed = %u",
2295                  _old_marking_cycles_started, _old_marking_cycles_completed));
2296 
2297   // This is the case for the outer caller, i.e. the concurrent cycle.
2298   assert(!concurrent ||
2299          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2300          err_msg("for outer caller (concurrent cycle): "
2301                  "_old_marking_cycles_started = %u "
2302                  "is inconsistent with _old_marking_cycles_completed = %u",
2303                  _old_marking_cycles_started, _old_marking_cycles_completed));
2304 
2305   _old_marking_cycles_completed += 1;
2306 
2307   // We need to clear the "in_progress" flag in the CM thread before
2308   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2309   // is set) so that if a waiter requests another System.gc() it doesn't
2310   // incorrectly see that a marking cycle is still in progress.
2311   if (concurrent) {
2312     _cmThread->clear_in_progress();
2313   }
2314 
2315   // This notify_all() will ensure that a thread that called
2316   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2317   // and it's waiting for a full GC to finish will be woken up. It is
2318   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2319   FullGCCount_lock->notify_all();
2320 }
2321 
2322 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2323   _concurrent_cycle_started = true;
2324   _gc_timer_cm->register_gc_start(start_time);
2325 
2326   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2327   trace_heap_before_gc(_gc_tracer_cm);
2328 }
2329 
2330 void G1CollectedHeap::register_concurrent_cycle_end() {
2331   if (_concurrent_cycle_started) {
2332     if (_cm->has_aborted()) {
2333       _gc_tracer_cm->report_concurrent_mode_failure();
2334     }
2335 
2336     _gc_timer_cm->register_gc_end();
2337     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2338 
2339     // Clear state variables to prepare for the next concurrent cycle.
2340     _concurrent_cycle_started = false;
2341     _heap_summary_sent = false;
2342   }
2343 }
2344 
2345 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2346   if (_concurrent_cycle_started) {
2347     // This function can be called when:
2348     //  the cleanup pause is run
2349     //  the concurrent cycle is aborted before the cleanup pause.
2350     //  the concurrent cycle is aborted after the cleanup pause,
2351     //   but before the concurrent cycle end has been registered.
2352     // Make sure that we only send the heap information once.
2353     if (!_heap_summary_sent) {
2354       trace_heap_after_gc(_gc_tracer_cm);
2355       _heap_summary_sent = true;
2356     }
2357   }
2358 }
2359 
2360 G1YCType G1CollectedHeap::yc_type() {
2361   bool is_young = g1_policy()->gcs_are_young();
2362   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2363   bool is_during_mark = mark_in_progress();
2364 
2365   if (is_initial_mark) {
2366     return InitialMark;
2367   } else if (is_during_mark) {
2368     return DuringMark;
2369   } else if (is_young) {
2370     return Normal;
2371   } else {
2372     return Mixed;
2373   }
2374 }
2375 
2376 void G1CollectedHeap::collect(GCCause::Cause cause) {
2377   assert_heap_not_locked();
2378 
2379   uint gc_count_before;
2380   uint old_marking_count_before;
2381   uint full_gc_count_before;
2382   bool retry_gc;
2383 
2384   do {
2385     retry_gc = false;
2386 
2387     {
2388       MutexLocker ml(Heap_lock);
2389 
2390       // Read the GC count while holding the Heap_lock
2391       gc_count_before = total_collections();
2392       full_gc_count_before = total_full_collections();
2393       old_marking_count_before = _old_marking_cycles_started;
2394     }
2395 
2396     if (should_do_concurrent_full_gc(cause)) {
2397       // Schedule an initial-mark evacuation pause that will start a
2398       // concurrent cycle. We're setting word_size to 0 which means that
2399       // we are not requesting a post-GC allocation.
2400       VM_G1IncCollectionPause op(gc_count_before,
2401                                  0,     /* word_size */
2402                                  true,  /* should_initiate_conc_mark */
2403                                  g1_policy()->max_pause_time_ms(),
2404                                  cause);
2405       op.set_allocation_context(AllocationContext::current());
2406 
2407       VMThread::execute(&op);
2408       if (!op.pause_succeeded()) {
2409         if (old_marking_count_before == _old_marking_cycles_started) {
2410           retry_gc = op.should_retry_gc();
2411         } else {
2412           // A Full GC happened while we were trying to schedule the
2413           // initial-mark GC. No point in starting a new cycle given
2414           // that the whole heap was collected anyway.
2415         }
2416 
2417         if (retry_gc) {
2418           if (GC_locker::is_active_and_needs_gc()) {
2419             GC_locker::stall_until_clear();
2420           }
2421         }
2422       }
2423     } else {
2424       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2425           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2426 
2427         // Schedule a standard evacuation pause. We're setting word_size
2428         // to 0 which means that we are not requesting a post-GC allocation.
2429         VM_G1IncCollectionPause op(gc_count_before,
2430                                    0,     /* word_size */
2431                                    false, /* should_initiate_conc_mark */
2432                                    g1_policy()->max_pause_time_ms(),
2433                                    cause);
2434         VMThread::execute(&op);
2435       } else {
2436         // Schedule a Full GC.
2437         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2438         VMThread::execute(&op);
2439       }
2440     }
2441   } while (retry_gc);
2442 }
2443 
2444 bool G1CollectedHeap::is_in(const void* p) const {
2445   if (_hrm.reserved().contains(p)) {
2446     // Given that we know that p is in the reserved space,
2447     // heap_region_containing_raw() should successfully
2448     // return the containing region.
2449     HeapRegion* hr = heap_region_containing_raw(p);
2450     return hr->is_in(p);
2451   } else {
2452     return false;
2453   }
2454 }
2455 
2456 #ifdef ASSERT
2457 bool G1CollectedHeap::is_in_exact(const void* p) const {
2458   bool contains = reserved_region().contains(p);
2459   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2460   if (contains && available) {
2461     return true;
2462   } else {
2463     return false;
2464   }
2465 }
2466 #endif
2467 
2468 // Iteration functions.
2469 
2470 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2471 
2472 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2473   ExtendedOopClosure* _cl;
2474 public:
2475   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2476   bool doHeapRegion(HeapRegion* r) {
2477     if (!r->is_continues_humongous()) {
2478       r->oop_iterate(_cl);
2479     }
2480     return false;
2481   }
2482 };
2483 
2484 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2485   IterateOopClosureRegionClosure blk(cl);
2486   heap_region_iterate(&blk);
2487 }
2488 
2489 // Iterates an ObjectClosure over all objects within a HeapRegion.
2490 
2491 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2492   ObjectClosure* _cl;
2493 public:
2494   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2495   bool doHeapRegion(HeapRegion* r) {
2496     if (!r->is_continues_humongous()) {
2497       r->object_iterate(_cl);
2498     }
2499     return false;
2500   }
2501 };
2502 
2503 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2504   IterateObjectClosureRegionClosure blk(cl);
2505   heap_region_iterate(&blk);
2506 }
2507 
2508 // Calls a SpaceClosure on a HeapRegion.
2509 
2510 class SpaceClosureRegionClosure: public HeapRegionClosure {
2511   SpaceClosure* _cl;
2512 public:
2513   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2514   bool doHeapRegion(HeapRegion* r) {
2515     _cl->do_space(r);
2516     return false;
2517   }
2518 };
2519 
2520 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2521   _hrm.iterate(cl);
2522 }
2523 
2524 void
2525 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2526                                          uint worker_id,
2527                                          HeapRegionClaimer *hrclaimer,
2528                                          bool concurrent) const {
2529   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2530 }
2531 
2532 // Clear the cached CSet starting regions and (more importantly)
2533 // the time stamps. Called when we reset the GC time stamp.
2534 void G1CollectedHeap::clear_cset_start_regions() {
2535   assert(_worker_cset_start_region != NULL, "sanity");
2536   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2537 
2538   int n_queues = MAX2((int)ParallelGCThreads, 1);
2539   for (int i = 0; i < n_queues; i++) {
2540     _worker_cset_start_region[i] = NULL;
2541     _worker_cset_start_region_time_stamp[i] = 0;
2542   }
2543 }
2544 
2545 // Given the id of a worker, obtain or calculate a suitable
2546 // starting region for iterating over the current collection set.
2547 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2548   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2549 
2550   HeapRegion* result = NULL;
2551   unsigned gc_time_stamp = get_gc_time_stamp();
2552 
2553   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2554     // Cached starting region for current worker was set
2555     // during the current pause - so it's valid.
2556     // Note: the cached starting heap region may be NULL
2557     // (when the collection set is empty).
2558     result = _worker_cset_start_region[worker_i];
2559     assert(result == NULL || result->in_collection_set(), "sanity");
2560     return result;
2561   }
2562 
2563   // The cached entry was not valid so let's calculate
2564   // a suitable starting heap region for this worker.
2565 
2566   // We want the parallel threads to start their collection
2567   // set iteration at different collection set regions to
2568   // avoid contention.
2569   // If we have:
2570   //          n collection set regions
2571   //          p threads
2572   // Then thread t will start at region floor ((t * n) / p)
2573 
2574   result = g1_policy()->collection_set();
2575   uint cs_size = g1_policy()->cset_region_length();
2576   uint active_workers = workers()->active_workers();
2577   assert(UseDynamicNumberOfGCThreads ||
2578            active_workers == workers()->total_workers(),
2579            "Unless dynamic should use total workers");
2580 
2581   uint end_ind   = (cs_size * worker_i) / active_workers;
2582   uint start_ind = 0;
2583 
2584   if (worker_i > 0 &&
2585       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2586     // Previous workers starting region is valid
2587     // so let's iterate from there
2588     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2589     result = _worker_cset_start_region[worker_i - 1];
2590   }
2591 
2592   for (uint i = start_ind; i < end_ind; i++) {
2593     result = result->next_in_collection_set();
2594   }
2595 
2596   // Note: the calculated starting heap region may be NULL
2597   // (when the collection set is empty).
2598   assert(result == NULL || result->in_collection_set(), "sanity");
2599   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2600          "should be updated only once per pause");
2601   _worker_cset_start_region[worker_i] = result;
2602   OrderAccess::storestore();
2603   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2604   return result;
2605 }
2606 
2607 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2608   HeapRegion* r = g1_policy()->collection_set();
2609   while (r != NULL) {
2610     HeapRegion* next = r->next_in_collection_set();
2611     if (cl->doHeapRegion(r)) {
2612       cl->incomplete();
2613       return;
2614     }
2615     r = next;
2616   }
2617 }
2618 
2619 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2620                                                   HeapRegionClosure *cl) {
2621   if (r == NULL) {
2622     // The CSet is empty so there's nothing to do.
2623     return;
2624   }
2625 
2626   assert(r->in_collection_set(),
2627          "Start region must be a member of the collection set.");
2628   HeapRegion* cur = r;
2629   while (cur != NULL) {
2630     HeapRegion* next = cur->next_in_collection_set();
2631     if (cl->doHeapRegion(cur) && false) {
2632       cl->incomplete();
2633       return;
2634     }
2635     cur = next;
2636   }
2637   cur = g1_policy()->collection_set();
2638   while (cur != r) {
2639     HeapRegion* next = cur->next_in_collection_set();
2640     if (cl->doHeapRegion(cur) && false) {
2641       cl->incomplete();
2642       return;
2643     }
2644     cur = next;
2645   }
2646 }
2647 
2648 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2649   HeapRegion* result = _hrm.next_region_in_heap(from);
2650   while (result != NULL && result->is_humongous()) {
2651     result = _hrm.next_region_in_heap(result);
2652   }
2653   return result;
2654 }
2655 
2656 Space* G1CollectedHeap::space_containing(const void* addr) const {
2657   return heap_region_containing(addr);
2658 }
2659 
2660 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2661   Space* sp = space_containing(addr);
2662   return sp->block_start(addr);
2663 }
2664 
2665 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2666   Space* sp = space_containing(addr);
2667   return sp->block_size(addr);
2668 }
2669 
2670 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2671   Space* sp = space_containing(addr);
2672   return sp->block_is_obj(addr);
2673 }
2674 
2675 bool G1CollectedHeap::supports_tlab_allocation() const {
2676   return true;
2677 }
2678 
2679 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2680   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2681 }
2682 
2683 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2684   return young_list()->eden_used_bytes();
2685 }
2686 
2687 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2688 // must be smaller than the humongous object limit.
2689 size_t G1CollectedHeap::max_tlab_size() const {
2690   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2691 }
2692 
2693 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2694   // Return the remaining space in the cur alloc region, but not less than
2695   // the min TLAB size.
2696 
2697   // Also, this value can be at most the humongous object threshold,
2698   // since we can't allow tlabs to grow big enough to accommodate
2699   // humongous objects.
2700 
2701   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2702   size_t max_tlab = max_tlab_size() * wordSize;
2703   if (hr == NULL) {
2704     return max_tlab;
2705   } else {
2706     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2707   }
2708 }
2709 
2710 size_t G1CollectedHeap::max_capacity() const {
2711   return _hrm.reserved().byte_size();
2712 }
2713 
2714 jlong G1CollectedHeap::millis_since_last_gc() {
2715   // assert(false, "NYI");
2716   return 0;
2717 }
2718 
2719 void G1CollectedHeap::prepare_for_verify() {
2720   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2721     ensure_parsability(false);
2722   }
2723   g1_rem_set()->prepare_for_verify();
2724 }
2725 
2726 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2727                                               VerifyOption vo) {
2728   switch (vo) {
2729   case VerifyOption_G1UsePrevMarking:
2730     return hr->obj_allocated_since_prev_marking(obj);
2731   case VerifyOption_G1UseNextMarking:
2732     return hr->obj_allocated_since_next_marking(obj);
2733   case VerifyOption_G1UseMarkWord:
2734     return false;
2735   default:
2736     ShouldNotReachHere();
2737   }
2738   return false; // keep some compilers happy
2739 }
2740 
2741 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2742   switch (vo) {
2743   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2744   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2745   case VerifyOption_G1UseMarkWord:    return NULL;
2746   default:                            ShouldNotReachHere();
2747   }
2748   return NULL; // keep some compilers happy
2749 }
2750 
2751 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2752   switch (vo) {
2753   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2754   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2755   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2756   default:                            ShouldNotReachHere();
2757   }
2758   return false; // keep some compilers happy
2759 }
2760 
2761 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2762   switch (vo) {
2763   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2764   case VerifyOption_G1UseNextMarking: return "NTAMS";
2765   case VerifyOption_G1UseMarkWord:    return "NONE";
2766   default:                            ShouldNotReachHere();
2767   }
2768   return NULL; // keep some compilers happy
2769 }
2770 
2771 class VerifyRootsClosure: public OopClosure {
2772 private:
2773   G1CollectedHeap* _g1h;
2774   VerifyOption     _vo;
2775   bool             _failures;
2776 public:
2777   // _vo == UsePrevMarking -> use "prev" marking information,
2778   // _vo == UseNextMarking -> use "next" marking information,
2779   // _vo == UseMarkWord    -> use mark word from object header.
2780   VerifyRootsClosure(VerifyOption vo) :
2781     _g1h(G1CollectedHeap::heap()),
2782     _vo(vo),
2783     _failures(false) { }
2784 
2785   bool failures() { return _failures; }
2786 
2787   template <class T> void do_oop_nv(T* p) {
2788     T heap_oop = oopDesc::load_heap_oop(p);
2789     if (!oopDesc::is_null(heap_oop)) {
2790       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2791       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2792         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2793                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2794         if (_vo == VerifyOption_G1UseMarkWord) {
2795           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2796         }
2797         obj->print_on(gclog_or_tty);
2798         _failures = true;
2799       }
2800     }
2801   }
2802 
2803   void do_oop(oop* p)       { do_oop_nv(p); }
2804   void do_oop(narrowOop* p) { do_oop_nv(p); }
2805 };
2806 
2807 class G1VerifyCodeRootOopClosure: public OopClosure {
2808   G1CollectedHeap* _g1h;
2809   OopClosure* _root_cl;
2810   nmethod* _nm;
2811   VerifyOption _vo;
2812   bool _failures;
2813 
2814   template <class T> void do_oop_work(T* p) {
2815     // First verify that this root is live
2816     _root_cl->do_oop(p);
2817 
2818     if (!G1VerifyHeapRegionCodeRoots) {
2819       // We're not verifying the code roots attached to heap region.
2820       return;
2821     }
2822 
2823     // Don't check the code roots during marking verification in a full GC
2824     if (_vo == VerifyOption_G1UseMarkWord) {
2825       return;
2826     }
2827 
2828     // Now verify that the current nmethod (which contains p) is
2829     // in the code root list of the heap region containing the
2830     // object referenced by p.
2831 
2832     T heap_oop = oopDesc::load_heap_oop(p);
2833     if (!oopDesc::is_null(heap_oop)) {
2834       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2835 
2836       // Now fetch the region containing the object
2837       HeapRegion* hr = _g1h->heap_region_containing(obj);
2838       HeapRegionRemSet* hrrs = hr->rem_set();
2839       // Verify that the strong code root list for this region
2840       // contains the nmethod
2841       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2842         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2843                               "from nmethod "PTR_FORMAT" not in strong "
2844                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2845                               p, _nm, hr->bottom(), hr->end());
2846         _failures = true;
2847       }
2848     }
2849   }
2850 
2851 public:
2852   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2853     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2854 
2855   void do_oop(oop* p) { do_oop_work(p); }
2856   void do_oop(narrowOop* p) { do_oop_work(p); }
2857 
2858   void set_nmethod(nmethod* nm) { _nm = nm; }
2859   bool failures() { return _failures; }
2860 };
2861 
2862 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2863   G1VerifyCodeRootOopClosure* _oop_cl;
2864 
2865 public:
2866   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2867     _oop_cl(oop_cl) {}
2868 
2869   void do_code_blob(CodeBlob* cb) {
2870     nmethod* nm = cb->as_nmethod_or_null();
2871     if (nm != NULL) {
2872       _oop_cl->set_nmethod(nm);
2873       nm->oops_do(_oop_cl);
2874     }
2875   }
2876 };
2877 
2878 class YoungRefCounterClosure : public OopClosure {
2879   G1CollectedHeap* _g1h;
2880   int              _count;
2881  public:
2882   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2883   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2884   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2885 
2886   int count() { return _count; }
2887   void reset_count() { _count = 0; };
2888 };
2889 
2890 class VerifyKlassClosure: public KlassClosure {
2891   YoungRefCounterClosure _young_ref_counter_closure;
2892   OopClosure *_oop_closure;
2893  public:
2894   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2895   void do_klass(Klass* k) {
2896     k->oops_do(_oop_closure);
2897 
2898     _young_ref_counter_closure.reset_count();
2899     k->oops_do(&_young_ref_counter_closure);
2900     if (_young_ref_counter_closure.count() > 0) {
2901       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2902     }
2903   }
2904 };
2905 
2906 class VerifyLivenessOopClosure: public OopClosure {
2907   G1CollectedHeap* _g1h;
2908   VerifyOption _vo;
2909 public:
2910   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2911     _g1h(g1h), _vo(vo)
2912   { }
2913   void do_oop(narrowOop *p) { do_oop_work(p); }
2914   void do_oop(      oop *p) { do_oop_work(p); }
2915 
2916   template <class T> void do_oop_work(T *p) {
2917     oop obj = oopDesc::load_decode_heap_oop(p);
2918     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2919               "Dead object referenced by a not dead object");
2920   }
2921 };
2922 
2923 class VerifyObjsInRegionClosure: public ObjectClosure {
2924 private:
2925   G1CollectedHeap* _g1h;
2926   size_t _live_bytes;
2927   HeapRegion *_hr;
2928   VerifyOption _vo;
2929 public:
2930   // _vo == UsePrevMarking -> use "prev" marking information,
2931   // _vo == UseNextMarking -> use "next" marking information,
2932   // _vo == UseMarkWord    -> use mark word from object header.
2933   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2934     : _live_bytes(0), _hr(hr), _vo(vo) {
2935     _g1h = G1CollectedHeap::heap();
2936   }
2937   void do_object(oop o) {
2938     VerifyLivenessOopClosure isLive(_g1h, _vo);
2939     assert(o != NULL, "Huh?");
2940     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2941       // If the object is alive according to the mark word,
2942       // then verify that the marking information agrees.
2943       // Note we can't verify the contra-positive of the
2944       // above: if the object is dead (according to the mark
2945       // word), it may not be marked, or may have been marked
2946       // but has since became dead, or may have been allocated
2947       // since the last marking.
2948       if (_vo == VerifyOption_G1UseMarkWord) {
2949         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2950       }
2951 
2952       o->oop_iterate_no_header(&isLive);
2953       if (!_hr->obj_allocated_since_prev_marking(o)) {
2954         size_t obj_size = o->size();    // Make sure we don't overflow
2955         _live_bytes += (obj_size * HeapWordSize);
2956       }
2957     }
2958   }
2959   size_t live_bytes() { return _live_bytes; }
2960 };
2961 
2962 class PrintObjsInRegionClosure : public ObjectClosure {
2963   HeapRegion *_hr;
2964   G1CollectedHeap *_g1;
2965 public:
2966   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2967     _g1 = G1CollectedHeap::heap();
2968   };
2969 
2970   void do_object(oop o) {
2971     if (o != NULL) {
2972       HeapWord *start = (HeapWord *) o;
2973       size_t word_sz = o->size();
2974       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2975                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2976                           (void*) o, word_sz,
2977                           _g1->isMarkedPrev(o),
2978                           _g1->isMarkedNext(o),
2979                           _hr->obj_allocated_since_prev_marking(o));
2980       HeapWord *end = start + word_sz;
2981       HeapWord *cur;
2982       int *val;
2983       for (cur = start; cur < end; cur++) {
2984         val = (int *) cur;
2985         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
2986       }
2987     }
2988   }
2989 };
2990 
2991 class VerifyRegionClosure: public HeapRegionClosure {
2992 private:
2993   bool             _par;
2994   VerifyOption     _vo;
2995   bool             _failures;
2996 public:
2997   // _vo == UsePrevMarking -> use "prev" marking information,
2998   // _vo == UseNextMarking -> use "next" marking information,
2999   // _vo == UseMarkWord    -> use mark word from object header.
3000   VerifyRegionClosure(bool par, VerifyOption vo)
3001     : _par(par),
3002       _vo(vo),
3003       _failures(false) {}
3004 
3005   bool failures() {
3006     return _failures;
3007   }
3008 
3009   bool doHeapRegion(HeapRegion* r) {
3010     if (!r->is_continues_humongous()) {
3011       bool failures = false;
3012       r->verify(_vo, &failures);
3013       if (failures) {
3014         _failures = true;
3015       } else {
3016         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3017         r->object_iterate(&not_dead_yet_cl);
3018         if (_vo != VerifyOption_G1UseNextMarking) {
3019           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3020             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3021                                    "max_live_bytes "SIZE_FORMAT" "
3022                                    "< calculated "SIZE_FORMAT,
3023                                    r->bottom(), r->end(),
3024                                    r->max_live_bytes(),
3025                                  not_dead_yet_cl.live_bytes());
3026             _failures = true;
3027           }
3028         } else {
3029           // When vo == UseNextMarking we cannot currently do a sanity
3030           // check on the live bytes as the calculation has not been
3031           // finalized yet.
3032         }
3033       }
3034     }
3035     return false; // stop the region iteration if we hit a failure
3036   }
3037 };
3038 
3039 // This is the task used for parallel verification of the heap regions
3040 
3041 class G1ParVerifyTask: public AbstractGangTask {
3042 private:
3043   G1CollectedHeap*  _g1h;
3044   VerifyOption      _vo;
3045   bool              _failures;
3046   HeapRegionClaimer _hrclaimer;
3047 
3048 public:
3049   // _vo == UsePrevMarking -> use "prev" marking information,
3050   // _vo == UseNextMarking -> use "next" marking information,
3051   // _vo == UseMarkWord    -> use mark word from object header.
3052   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3053       AbstractGangTask("Parallel verify task"),
3054       _g1h(g1h),
3055       _vo(vo),
3056       _failures(false),
3057       _hrclaimer(g1h->workers()->active_workers()) {}
3058 
3059   bool failures() {
3060     return _failures;
3061   }
3062 
3063   void work(uint worker_id) {
3064     HandleMark hm;
3065     VerifyRegionClosure blk(true, _vo);
3066     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3067     if (blk.failures()) {
3068       _failures = true;
3069     }
3070   }
3071 };
3072 
3073 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3074   if (SafepointSynchronize::is_at_safepoint()) {
3075     assert(Thread::current()->is_VM_thread(),
3076            "Expected to be executed serially by the VM thread at this point");
3077 
3078     if (!silent) { gclog_or_tty->print("Roots "); }
3079     VerifyRootsClosure rootsCl(vo);
3080     VerifyKlassClosure klassCl(this, &rootsCl);
3081     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3082 
3083     // We apply the relevant closures to all the oops in the
3084     // system dictionary, class loader data graph, the string table
3085     // and the nmethods in the code cache.
3086     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3087     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3088 
3089     {
3090       G1RootProcessor root_processor(this);
3091       root_processor.process_all_roots(&rootsCl,
3092                                        &cldCl,
3093                                        &blobsCl);
3094     }
3095 
3096     bool failures = rootsCl.failures() || codeRootsCl.failures();
3097 
3098     if (vo != VerifyOption_G1UseMarkWord) {
3099       // If we're verifying during a full GC then the region sets
3100       // will have been torn down at the start of the GC. Therefore
3101       // verifying the region sets will fail. So we only verify
3102       // the region sets when not in a full GC.
3103       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3104       verify_region_sets();
3105     }
3106 
3107     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3108     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3109 
3110       G1ParVerifyTask task(this, vo);
3111       assert(UseDynamicNumberOfGCThreads ||
3112         workers()->active_workers() == workers()->total_workers(),
3113         "If not dynamic should be using all the workers");
3114       int n_workers = workers()->active_workers();
3115       set_par_threads(n_workers);
3116       workers()->run_task(&task);
3117       set_par_threads(0);
3118       if (task.failures()) {
3119         failures = true;
3120       }
3121 
3122     } else {
3123       VerifyRegionClosure blk(false, vo);
3124       heap_region_iterate(&blk);
3125       if (blk.failures()) {
3126         failures = true;
3127       }
3128     }
3129 
3130     if (G1StringDedup::is_enabled()) {
3131       if (!silent) gclog_or_tty->print("StrDedup ");
3132       G1StringDedup::verify();
3133     }
3134 
3135     if (failures) {
3136       gclog_or_tty->print_cr("Heap:");
3137       // It helps to have the per-region information in the output to
3138       // help us track down what went wrong. This is why we call
3139       // print_extended_on() instead of print_on().
3140       print_extended_on(gclog_or_tty);
3141       gclog_or_tty->cr();
3142 #ifndef PRODUCT
3143       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3144         concurrent_mark()->print_reachable("at-verification-failure",
3145                                            vo, false /* all */);
3146       }
3147 #endif
3148       gclog_or_tty->flush();
3149     }
3150     guarantee(!failures, "there should not have been any failures");
3151   } else {
3152     if (!silent) {
3153       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3154       if (G1StringDedup::is_enabled()) {
3155         gclog_or_tty->print(", StrDedup");
3156       }
3157       gclog_or_tty->print(") ");
3158     }
3159   }
3160 }
3161 
3162 void G1CollectedHeap::verify(bool silent) {
3163   verify(silent, VerifyOption_G1UsePrevMarking);
3164 }
3165 
3166 double G1CollectedHeap::verify(bool guard, const char* msg) {
3167   double verify_time_ms = 0.0;
3168 
3169   if (guard && total_collections() >= VerifyGCStartAt) {
3170     double verify_start = os::elapsedTime();
3171     HandleMark hm;  // Discard invalid handles created during verification
3172     prepare_for_verify();
3173     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3174     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3175   }
3176 
3177   return verify_time_ms;
3178 }
3179 
3180 void G1CollectedHeap::verify_before_gc() {
3181   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3182   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3183 }
3184 
3185 void G1CollectedHeap::verify_after_gc() {
3186   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3187   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3188 }
3189 
3190 class PrintRegionClosure: public HeapRegionClosure {
3191   outputStream* _st;
3192 public:
3193   PrintRegionClosure(outputStream* st) : _st(st) {}
3194   bool doHeapRegion(HeapRegion* r) {
3195     r->print_on(_st);
3196     return false;
3197   }
3198 };
3199 
3200 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3201                                        const HeapRegion* hr,
3202                                        const VerifyOption vo) const {
3203   switch (vo) {
3204   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3205   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3206   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3207   default:                            ShouldNotReachHere();
3208   }
3209   return false; // keep some compilers happy
3210 }
3211 
3212 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3213                                        const VerifyOption vo) const {
3214   switch (vo) {
3215   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3216   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3217   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3218   default:                            ShouldNotReachHere();
3219   }
3220   return false; // keep some compilers happy
3221 }
3222 
3223 void G1CollectedHeap::print_on(outputStream* st) const {
3224   st->print(" %-20s", "garbage-first heap");
3225   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3226             capacity()/K, used_unlocked()/K);
3227   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3228             _hrm.reserved().start(),
3229             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3230             _hrm.reserved().end());
3231   st->cr();
3232   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3233   uint young_regions = _young_list->length();
3234   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3235             (size_t) young_regions * HeapRegion::GrainBytes / K);
3236   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3237   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3238             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3239   st->cr();
3240   MetaspaceAux::print_on(st);
3241 }
3242 
3243 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3244   print_on(st);
3245 
3246   // Print the per-region information.
3247   st->cr();
3248   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3249                "HS=humongous(starts), HC=humongous(continues), "
3250                "CS=collection set, F=free, TS=gc time stamp, "
3251                "PTAMS=previous top-at-mark-start, "
3252                "NTAMS=next top-at-mark-start)");
3253   PrintRegionClosure blk(st);
3254   heap_region_iterate(&blk);
3255 }
3256 
3257 void G1CollectedHeap::print_on_error(outputStream* st) const {
3258   this->CollectedHeap::print_on_error(st);
3259 
3260   if (_cm != NULL) {
3261     st->cr();
3262     _cm->print_on_error(st);
3263   }
3264 }
3265 
3266 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3267   workers()->print_worker_threads_on(st);
3268   _cmThread->print_on(st);
3269   st->cr();
3270   _cm->print_worker_threads_on(st);
3271   _cg1r->print_worker_threads_on(st);
3272   if (G1StringDedup::is_enabled()) {
3273     G1StringDedup::print_worker_threads_on(st);
3274   }
3275 }
3276 
3277 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3278   workers()->threads_do(tc);
3279   tc->do_thread(_cmThread);
3280   _cg1r->threads_do(tc);
3281   if (G1StringDedup::is_enabled()) {
3282     G1StringDedup::threads_do(tc);
3283   }
3284 }
3285 
3286 void G1CollectedHeap::print_tracing_info() const {
3287   // We'll overload this to mean "trace GC pause statistics."
3288   if (TraceYoungGenTime || TraceOldGenTime) {
3289     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3290     // to that.
3291     g1_policy()->print_tracing_info();
3292   }
3293   if (G1SummarizeRSetStats) {
3294     g1_rem_set()->print_summary_info();
3295   }
3296   if (G1SummarizeConcMark) {
3297     concurrent_mark()->print_summary_info();
3298   }
3299   g1_policy()->print_yg_surv_rate_info();
3300 }
3301 
3302 #ifndef PRODUCT
3303 // Helpful for debugging RSet issues.
3304 
3305 class PrintRSetsClosure : public HeapRegionClosure {
3306 private:
3307   const char* _msg;
3308   size_t _occupied_sum;
3309 
3310 public:
3311   bool doHeapRegion(HeapRegion* r) {
3312     HeapRegionRemSet* hrrs = r->rem_set();
3313     size_t occupied = hrrs->occupied();
3314     _occupied_sum += occupied;
3315 
3316     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3317                            HR_FORMAT_PARAMS(r));
3318     if (occupied == 0) {
3319       gclog_or_tty->print_cr("  RSet is empty");
3320     } else {
3321       hrrs->print();
3322     }
3323     gclog_or_tty->print_cr("----------");
3324     return false;
3325   }
3326 
3327   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3328     gclog_or_tty->cr();
3329     gclog_or_tty->print_cr("========================================");
3330     gclog_or_tty->print_cr("%s", msg);
3331     gclog_or_tty->cr();
3332   }
3333 
3334   ~PrintRSetsClosure() {
3335     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3336     gclog_or_tty->print_cr("========================================");
3337     gclog_or_tty->cr();
3338   }
3339 };
3340 
3341 void G1CollectedHeap::print_cset_rsets() {
3342   PrintRSetsClosure cl("Printing CSet RSets");
3343   collection_set_iterate(&cl);
3344 }
3345 
3346 void G1CollectedHeap::print_all_rsets() {
3347   PrintRSetsClosure cl("Printing All RSets");;
3348   heap_region_iterate(&cl);
3349 }
3350 #endif // PRODUCT
3351 
3352 G1CollectedHeap* G1CollectedHeap::heap() {
3353   return _g1h;
3354 }
3355 
3356 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3357   // always_do_update_barrier = false;
3358   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3359   // Fill TLAB's and such
3360   accumulate_statistics_all_tlabs();
3361   ensure_parsability(true);
3362 
3363   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3364       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3365     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3366   }
3367 }
3368 
3369 void G1CollectedHeap::gc_epilogue(bool full) {
3370 
3371   if (G1SummarizeRSetStats &&
3372       (G1SummarizeRSetStatsPeriod > 0) &&
3373       // we are at the end of the GC. Total collections has already been increased.
3374       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3375     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3376   }
3377 
3378   // FIXME: what is this about?
3379   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3380   // is set.
3381   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3382                         "derived pointer present"));
3383   // always_do_update_barrier = true;
3384 
3385   resize_all_tlabs();
3386   allocation_context_stats().update(full);
3387 
3388   // We have just completed a GC. Update the soft reference
3389   // policy with the new heap occupancy
3390   Universe::update_heap_info_at_gc();
3391 }
3392 
3393 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3394                                                uint gc_count_before,
3395                                                bool* succeeded,
3396                                                GCCause::Cause gc_cause) {
3397   assert_heap_not_locked_and_not_at_safepoint();
3398   g1_policy()->record_stop_world_start();
3399   VM_G1IncCollectionPause op(gc_count_before,
3400                              word_size,
3401                              false, /* should_initiate_conc_mark */
3402                              g1_policy()->max_pause_time_ms(),
3403                              gc_cause);
3404 
3405   op.set_allocation_context(AllocationContext::current());
3406   VMThread::execute(&op);
3407 
3408   HeapWord* result = op.result();
3409   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3410   assert(result == NULL || ret_succeeded,
3411          "the result should be NULL if the VM did not succeed");
3412   *succeeded = ret_succeeded;
3413 
3414   assert_heap_not_locked();
3415   return result;
3416 }
3417 
3418 void
3419 G1CollectedHeap::doConcurrentMark() {
3420   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3421   if (!_cmThread->in_progress()) {
3422     _cmThread->set_started();
3423     CGC_lock->notify();
3424   }
3425 }
3426 
3427 size_t G1CollectedHeap::pending_card_num() {
3428   size_t extra_cards = 0;
3429   JavaThread *curr = Threads::first();
3430   while (curr != NULL) {
3431     DirtyCardQueue& dcq = curr->dirty_card_queue();
3432     extra_cards += dcq.size();
3433     curr = curr->next();
3434   }
3435   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3436   size_t buffer_size = dcqs.buffer_size();
3437   size_t buffer_num = dcqs.completed_buffers_num();
3438 
3439   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3440   // in bytes - not the number of 'entries'. We need to convert
3441   // into a number of cards.
3442   return (buffer_size * buffer_num + extra_cards) / oopSize;
3443 }
3444 
3445 size_t G1CollectedHeap::cards_scanned() {
3446   return g1_rem_set()->cardsScanned();
3447 }
3448 
3449 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3450   HeapRegion* region = region_at(index);
3451   assert(region->is_starts_humongous(), "Must start a humongous object");
3452   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3453 }
3454 
3455 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3456  private:
3457   size_t _total_humongous;
3458   size_t _candidate_humongous;
3459 
3460   DirtyCardQueue _dcq;
3461 
3462   bool humongous_region_is_candidate(uint index) {
3463     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3464     assert(region->is_starts_humongous(), "Must start a humongous object");
3465     HeapRegionRemSet* const rset = region->rem_set();
3466     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3467     return !oop(region->bottom())->is_objArray() &&
3468            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3469             (!allow_stale_refs && rset->is_empty()));
3470   }
3471 
3472  public:
3473   RegisterHumongousWithInCSetFastTestClosure()
3474   : _total_humongous(0),
3475     _candidate_humongous(0),
3476     _dcq(&JavaThread::dirty_card_queue_set()) {
3477   }
3478 
3479   virtual bool doHeapRegion(HeapRegion* r) {
3480     if (!r->is_starts_humongous()) {
3481       return false;
3482     }
3483     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3484 
3485     uint region_idx = r->hrm_index();
3486     bool is_candidate = humongous_region_is_candidate(region_idx);
3487     // Is_candidate already filters out humongous object with large remembered sets.
3488     // If we have a humongous object with a few remembered sets, we simply flush these
3489     // remembered set entries into the DCQS. That will result in automatic
3490     // re-evaluation of their remembered set entries during the following evacuation
3491     // phase.
3492     if (is_candidate) {
3493       if (!r->rem_set()->is_empty()) {
3494         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3495                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3496         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3497         HeapRegionRemSetIterator hrrs(r->rem_set());
3498         size_t card_index;
3499         while (hrrs.has_next(card_index)) {
3500           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3501           // The remembered set might contain references to already freed
3502           // regions. Filter out such entries to avoid failing card table
3503           // verification.
3504           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3505             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3506               *card_ptr = CardTableModRefBS::dirty_card_val();
3507               _dcq.enqueue(card_ptr);
3508             }
3509           }
3510         }
3511         r->rem_set()->clear_locked();
3512       }
3513       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3514       g1h->register_humongous_region_with_cset(region_idx);
3515       _candidate_humongous++;
3516     }
3517     _total_humongous++;
3518 
3519     return false;
3520   }
3521 
3522   size_t total_humongous() const { return _total_humongous; }
3523   size_t candidate_humongous() const { return _candidate_humongous; }
3524 
3525   void flush_rem_set_entries() { _dcq.flush(); }
3526 };
3527 
3528 void G1CollectedHeap::register_humongous_regions_with_cset() {
3529   if (!G1EagerReclaimHumongousObjects) {
3530     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3531     return;
3532   }
3533   double time = os::elapsed_counter();
3534 
3535   RegisterHumongousWithInCSetFastTestClosure cl;
3536   heap_region_iterate(&cl);
3537 
3538   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3539   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3540                                                                   cl.total_humongous(),
3541                                                                   cl.candidate_humongous());
3542   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3543 
3544   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3545     clear_humongous_is_live_table();
3546   }
3547 
3548   // Finally flush all remembered set entries to re-check into the global DCQS.
3549   cl.flush_rem_set_entries();
3550 }
3551 
3552 void
3553 G1CollectedHeap::setup_surviving_young_words() {
3554   assert(_surviving_young_words == NULL, "pre-condition");
3555   uint array_length = g1_policy()->young_cset_region_length();
3556   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3557   if (_surviving_young_words == NULL) {
3558     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3559                           "Not enough space for young surv words summary.");
3560   }
3561   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3562 #ifdef ASSERT
3563   for (uint i = 0;  i < array_length; ++i) {
3564     assert( _surviving_young_words[i] == 0, "memset above" );
3565   }
3566 #endif // !ASSERT
3567 }
3568 
3569 void
3570 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3571   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3572   uint array_length = g1_policy()->young_cset_region_length();
3573   for (uint i = 0; i < array_length; ++i) {
3574     _surviving_young_words[i] += surv_young_words[i];
3575   }
3576 }
3577 
3578 void
3579 G1CollectedHeap::cleanup_surviving_young_words() {
3580   guarantee( _surviving_young_words != NULL, "pre-condition" );
3581   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3582   _surviving_young_words = NULL;
3583 }
3584 
3585 #ifdef ASSERT
3586 class VerifyCSetClosure: public HeapRegionClosure {
3587 public:
3588   bool doHeapRegion(HeapRegion* hr) {
3589     // Here we check that the CSet region's RSet is ready for parallel
3590     // iteration. The fields that we'll verify are only manipulated
3591     // when the region is part of a CSet and is collected. Afterwards,
3592     // we reset these fields when we clear the region's RSet (when the
3593     // region is freed) so they are ready when the region is
3594     // re-allocated. The only exception to this is if there's an
3595     // evacuation failure and instead of freeing the region we leave
3596     // it in the heap. In that case, we reset these fields during
3597     // evacuation failure handling.
3598     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3599 
3600     // Here's a good place to add any other checks we'd like to
3601     // perform on CSet regions.
3602     return false;
3603   }
3604 };
3605 #endif // ASSERT
3606 
3607 #if TASKQUEUE_STATS
3608 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3609   st->print_raw_cr("GC Task Stats");
3610   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3611   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3612 }
3613 
3614 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3615   print_taskqueue_stats_hdr(st);
3616 
3617   TaskQueueStats totals;
3618   const int n = workers()->total_workers();
3619   for (int i = 0; i < n; ++i) {
3620     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3621     totals += task_queue(i)->stats;
3622   }
3623   st->print_raw("tot "); totals.print(st); st->cr();
3624 
3625   DEBUG_ONLY(totals.verify());
3626 }
3627 
3628 void G1CollectedHeap::reset_taskqueue_stats() {
3629   const int n = workers()->total_workers();
3630   for (int i = 0; i < n; ++i) {
3631     task_queue(i)->stats.reset();
3632   }
3633 }
3634 #endif // TASKQUEUE_STATS
3635 
3636 void G1CollectedHeap::log_gc_header() {
3637   if (!G1Log::fine()) {
3638     return;
3639   }
3640 
3641   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3642 
3643   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3644     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3645     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3646 
3647   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3648 }
3649 
3650 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3651   if (!G1Log::fine()) {
3652     return;
3653   }
3654 
3655   if (G1Log::finer()) {
3656     if (evacuation_failed()) {
3657       gclog_or_tty->print(" (to-space exhausted)");
3658     }
3659     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3660     g1_policy()->phase_times()->note_gc_end();
3661     g1_policy()->phase_times()->print(pause_time_sec);
3662     g1_policy()->print_detailed_heap_transition();
3663   } else {
3664     if (evacuation_failed()) {
3665       gclog_or_tty->print("--");
3666     }
3667     g1_policy()->print_heap_transition();
3668     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3669   }
3670   gclog_or_tty->flush();
3671 }
3672 
3673 bool
3674 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3675   assert_at_safepoint(true /* should_be_vm_thread */);
3676   guarantee(!is_gc_active(), "collection is not reentrant");
3677 
3678   if (GC_locker::check_active_before_gc()) {
3679     return false;
3680   }
3681 
3682   _gc_timer_stw->register_gc_start();
3683 
3684   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3685 
3686   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3687   ResourceMark rm;
3688 
3689   print_heap_before_gc();
3690   trace_heap_before_gc(_gc_tracer_stw);
3691 
3692   verify_region_sets_optional();
3693   verify_dirty_young_regions();
3694 
3695   // This call will decide whether this pause is an initial-mark
3696   // pause. If it is, during_initial_mark_pause() will return true
3697   // for the duration of this pause.
3698   g1_policy()->decide_on_conc_mark_initiation();
3699 
3700   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3701   assert(!g1_policy()->during_initial_mark_pause() ||
3702           g1_policy()->gcs_are_young(), "sanity");
3703 
3704   // We also do not allow mixed GCs during marking.
3705   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3706 
3707   // Record whether this pause is an initial mark. When the current
3708   // thread has completed its logging output and it's safe to signal
3709   // the CM thread, the flag's value in the policy has been reset.
3710   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3711 
3712   // Inner scope for scope based logging, timers, and stats collection
3713   {
3714     EvacuationInfo evacuation_info;
3715 
3716     if (g1_policy()->during_initial_mark_pause()) {
3717       // We are about to start a marking cycle, so we increment the
3718       // full collection counter.
3719       increment_old_marking_cycles_started();
3720       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3721     }
3722 
3723     _gc_tracer_stw->report_yc_type(yc_type());
3724 
3725     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3726 
3727     uint active_workers = workers()->active_workers();
3728     double pause_start_sec = os::elapsedTime();
3729     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3730     log_gc_header();
3731 
3732     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3733     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3734 
3735     // If the secondary_free_list is not empty, append it to the
3736     // free_list. No need to wait for the cleanup operation to finish;
3737     // the region allocation code will check the secondary_free_list
3738     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3739     // set, skip this step so that the region allocation code has to
3740     // get entries from the secondary_free_list.
3741     if (!G1StressConcRegionFreeing) {
3742       append_secondary_free_list_if_not_empty_with_lock();
3743     }
3744 
3745     assert(check_young_list_well_formed(), "young list should be well formed");
3746 
3747     // Don't dynamically change the number of GC threads this early.  A value of
3748     // 0 is used to indicate serial work.  When parallel work is done,
3749     // it will be set.
3750 
3751     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3752       IsGCActiveMark x;
3753 
3754       gc_prologue(false);
3755       increment_total_collections(false /* full gc */);
3756       increment_gc_time_stamp();
3757 
3758       verify_before_gc();
3759 
3760       check_bitmaps("GC Start");
3761 
3762       COMPILER2_PRESENT(DerivedPointerTable::clear());
3763 
3764       // Please see comment in g1CollectedHeap.hpp and
3765       // G1CollectedHeap::ref_processing_init() to see how
3766       // reference processing currently works in G1.
3767 
3768       // Enable discovery in the STW reference processor
3769       ref_processor_stw()->enable_discovery();
3770 
3771       {
3772         // We want to temporarily turn off discovery by the
3773         // CM ref processor, if necessary, and turn it back on
3774         // on again later if we do. Using a scoped
3775         // NoRefDiscovery object will do this.
3776         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3777 
3778         // Forget the current alloc region (we might even choose it to be part
3779         // of the collection set!).
3780         _allocator->release_mutator_alloc_region();
3781 
3782         // We should call this after we retire the mutator alloc
3783         // region(s) so that all the ALLOC / RETIRE events are generated
3784         // before the start GC event.
3785         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3786 
3787         // This timing is only used by the ergonomics to handle our pause target.
3788         // It is unclear why this should not include the full pause. We will
3789         // investigate this in CR 7178365.
3790         //
3791         // Preserving the old comment here if that helps the investigation:
3792         //
3793         // The elapsed time induced by the start time below deliberately elides
3794         // the possible verification above.
3795         double sample_start_time_sec = os::elapsedTime();
3796 
3797 #if YOUNG_LIST_VERBOSE
3798         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3799         _young_list->print();
3800         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3801 #endif // YOUNG_LIST_VERBOSE
3802 
3803         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3804 
3805         double scan_wait_start = os::elapsedTime();
3806         // We have to wait until the CM threads finish scanning the
3807         // root regions as it's the only way to ensure that all the
3808         // objects on them have been correctly scanned before we start
3809         // moving them during the GC.
3810         bool waited = _cm->root_regions()->wait_until_scan_finished();
3811         double wait_time_ms = 0.0;
3812         if (waited) {
3813           double scan_wait_end = os::elapsedTime();
3814           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3815         }
3816         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3817 
3818 #if YOUNG_LIST_VERBOSE
3819         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3820         _young_list->print();
3821 #endif // YOUNG_LIST_VERBOSE
3822 
3823         if (g1_policy()->during_initial_mark_pause()) {
3824           concurrent_mark()->checkpointRootsInitialPre();
3825         }
3826 
3827 #if YOUNG_LIST_VERBOSE
3828         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3829         _young_list->print();
3830         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3831 #endif // YOUNG_LIST_VERBOSE
3832 
3833         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3834 
3835         register_humongous_regions_with_cset();
3836 
3837         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3838 
3839         _cm->note_start_of_gc();
3840         // We should not verify the per-thread SATB buffers given that
3841         // we have not filtered them yet (we'll do so during the
3842         // GC). We also call this after finalize_cset() to
3843         // ensure that the CSet has been finalized.
3844         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3845                                  true  /* verify_enqueued_buffers */,
3846                                  false /* verify_thread_buffers */,
3847                                  true  /* verify_fingers */);
3848 
3849         if (_hr_printer.is_active()) {
3850           HeapRegion* hr = g1_policy()->collection_set();
3851           while (hr != NULL) {
3852             _hr_printer.cset(hr);
3853             hr = hr->next_in_collection_set();
3854           }
3855         }
3856 
3857 #ifdef ASSERT
3858         VerifyCSetClosure cl;
3859         collection_set_iterate(&cl);
3860 #endif // ASSERT
3861 
3862         setup_surviving_young_words();
3863 
3864         // Initialize the GC alloc regions.
3865         _allocator->init_gc_alloc_regions(evacuation_info);
3866 
3867         // Actually do the work...
3868         evacuate_collection_set(evacuation_info);
3869 
3870         // We do this to mainly verify the per-thread SATB buffers
3871         // (which have been filtered by now) since we didn't verify
3872         // them earlier. No point in re-checking the stacks / enqueued
3873         // buffers given that the CSet has not changed since last time
3874         // we checked.
3875         _cm->verify_no_cset_oops(false /* verify_stacks */,
3876                                  false /* verify_enqueued_buffers */,
3877                                  true  /* verify_thread_buffers */,
3878                                  true  /* verify_fingers */);
3879 
3880         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3881 
3882         eagerly_reclaim_humongous_regions();
3883 
3884         g1_policy()->clear_collection_set();
3885 
3886         cleanup_surviving_young_words();
3887 
3888         // Start a new incremental collection set for the next pause.
3889         g1_policy()->start_incremental_cset_building();
3890 
3891         clear_cset_fast_test();
3892 
3893         _young_list->reset_sampled_info();
3894 
3895         // Don't check the whole heap at this point as the
3896         // GC alloc regions from this pause have been tagged
3897         // as survivors and moved on to the survivor list.
3898         // Survivor regions will fail the !is_young() check.
3899         assert(check_young_list_empty(false /* check_heap */),
3900           "young list should be empty");
3901 
3902 #if YOUNG_LIST_VERBOSE
3903         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3904         _young_list->print();
3905 #endif // YOUNG_LIST_VERBOSE
3906 
3907         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3908                                              _young_list->first_survivor_region(),
3909                                              _young_list->last_survivor_region());
3910 
3911         _young_list->reset_auxilary_lists();
3912 
3913         if (evacuation_failed()) {
3914           _allocator->set_used(recalculate_used());
3915           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3916           for (uint i = 0; i < n_queues; i++) {
3917             if (_evacuation_failed_info_array[i].has_failed()) {
3918               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3919             }
3920           }
3921         } else {
3922           // The "used" of the the collection set have already been subtracted
3923           // when they were freed.  Add in the bytes evacuated.
3924           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3925         }
3926 
3927         if (g1_policy()->during_initial_mark_pause()) {
3928           // We have to do this before we notify the CM threads that
3929           // they can start working to make sure that all the
3930           // appropriate initialization is done on the CM object.
3931           concurrent_mark()->checkpointRootsInitialPost();
3932           set_marking_started();
3933           // Note that we don't actually trigger the CM thread at
3934           // this point. We do that later when we're sure that
3935           // the current thread has completed its logging output.
3936         }
3937 
3938         allocate_dummy_regions();
3939 
3940 #if YOUNG_LIST_VERBOSE
3941         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3942         _young_list->print();
3943         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3944 #endif // YOUNG_LIST_VERBOSE
3945 
3946         _allocator->init_mutator_alloc_region();
3947 
3948         {
3949           size_t expand_bytes = g1_policy()->expansion_amount();
3950           if (expand_bytes > 0) {
3951             size_t bytes_before = capacity();
3952             // No need for an ergo verbose message here,
3953             // expansion_amount() does this when it returns a value > 0.
3954             if (!expand(expand_bytes)) {
3955               // We failed to expand the heap. Cannot do anything about it.
3956             }
3957           }
3958         }
3959 
3960         // We redo the verification but now wrt to the new CSet which
3961         // has just got initialized after the previous CSet was freed.
3962         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3963                                  true  /* verify_enqueued_buffers */,
3964                                  true  /* verify_thread_buffers */,
3965                                  true  /* verify_fingers */);
3966         _cm->note_end_of_gc();
3967 
3968         // This timing is only used by the ergonomics to handle our pause target.
3969         // It is unclear why this should not include the full pause. We will
3970         // investigate this in CR 7178365.
3971         double sample_end_time_sec = os::elapsedTime();
3972         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3973         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3974 
3975         MemoryService::track_memory_usage();
3976 
3977         // In prepare_for_verify() below we'll need to scan the deferred
3978         // update buffers to bring the RSets up-to-date if
3979         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3980         // the update buffers we'll probably need to scan cards on the
3981         // regions we just allocated to (i.e., the GC alloc
3982         // regions). However, during the last GC we called
3983         // set_saved_mark() on all the GC alloc regions, so card
3984         // scanning might skip the [saved_mark_word()...top()] area of
3985         // those regions (i.e., the area we allocated objects into
3986         // during the last GC). But it shouldn't. Given that
3987         // saved_mark_word() is conditional on whether the GC time stamp
3988         // on the region is current or not, by incrementing the GC time
3989         // stamp here we invalidate all the GC time stamps on all the
3990         // regions and saved_mark_word() will simply return top() for
3991         // all the regions. This is a nicer way of ensuring this rather
3992         // than iterating over the regions and fixing them. In fact, the
3993         // GC time stamp increment here also ensures that
3994         // saved_mark_word() will return top() between pauses, i.e.,
3995         // during concurrent refinement. So we don't need the
3996         // is_gc_active() check to decided which top to use when
3997         // scanning cards (see CR 7039627).
3998         increment_gc_time_stamp();
3999 
4000         verify_after_gc();
4001         check_bitmaps("GC End");
4002 
4003         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4004         ref_processor_stw()->verify_no_references_recorded();
4005 
4006         // CM reference discovery will be re-enabled if necessary.
4007       }
4008 
4009       // We should do this after we potentially expand the heap so
4010       // that all the COMMIT events are generated before the end GC
4011       // event, and after we retire the GC alloc regions so that all
4012       // RETIRE events are generated before the end GC event.
4013       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4014 
4015 #ifdef TRACESPINNING
4016       ParallelTaskTerminator::print_termination_counts();
4017 #endif
4018 
4019       gc_epilogue(false);
4020     }
4021 
4022     // Print the remainder of the GC log output.
4023     log_gc_footer(os::elapsedTime() - pause_start_sec);
4024 
4025     // It is not yet to safe to tell the concurrent mark to
4026     // start as we have some optional output below. We don't want the
4027     // output from the concurrent mark thread interfering with this
4028     // logging output either.
4029 
4030     _hrm.verify_optional();
4031     verify_region_sets_optional();
4032 
4033     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4034     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4035 
4036     print_heap_after_gc();
4037     trace_heap_after_gc(_gc_tracer_stw);
4038 
4039     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4040     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4041     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4042     // before any GC notifications are raised.
4043     g1mm()->update_sizes();
4044 
4045     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4046     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4047     _gc_timer_stw->register_gc_end();
4048     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4049   }
4050   // It should now be safe to tell the concurrent mark thread to start
4051   // without its logging output interfering with the logging output
4052   // that came from the pause.
4053 
4054   if (should_start_conc_mark) {
4055     // CAUTION: after the doConcurrentMark() call below,
4056     // the concurrent marking thread(s) could be running
4057     // concurrently with us. Make sure that anything after
4058     // this point does not assume that we are the only GC thread
4059     // running. Note: of course, the actual marking work will
4060     // not start until the safepoint itself is released in
4061     // SuspendibleThreadSet::desynchronize().
4062     doConcurrentMark();
4063   }
4064 
4065   return true;
4066 }
4067 
4068 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4069   _drain_in_progress = false;
4070   set_evac_failure_closure(cl);
4071   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4072 }
4073 
4074 void G1CollectedHeap::finalize_for_evac_failure() {
4075   assert(_evac_failure_scan_stack != NULL &&
4076          _evac_failure_scan_stack->length() == 0,
4077          "Postcondition");
4078   assert(!_drain_in_progress, "Postcondition");
4079   delete _evac_failure_scan_stack;
4080   _evac_failure_scan_stack = NULL;
4081 }
4082 
4083 void G1CollectedHeap::remove_self_forwarding_pointers() {
4084   double remove_self_forwards_start = os::elapsedTime();
4085 
4086   set_par_threads();
4087   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4088   workers()->run_task(&rsfp_task);
4089   set_par_threads(0);
4090 
4091   // Now restore saved marks, if any.
4092   assert(_objs_with_preserved_marks.size() ==
4093             _preserved_marks_of_objs.size(), "Both or none.");
4094   while (!_objs_with_preserved_marks.is_empty()) {
4095     oop obj = _objs_with_preserved_marks.pop();
4096     markOop m = _preserved_marks_of_objs.pop();
4097     obj->set_mark(m);
4098   }
4099   _objs_with_preserved_marks.clear(true);
4100   _preserved_marks_of_objs.clear(true);
4101 
4102   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4103 }
4104 
4105 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4106   _evac_failure_scan_stack->push(obj);
4107 }
4108 
4109 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4110   assert(_evac_failure_scan_stack != NULL, "precondition");
4111 
4112   while (_evac_failure_scan_stack->length() > 0) {
4113      oop obj = _evac_failure_scan_stack->pop();
4114      _evac_failure_closure->set_region(heap_region_containing(obj));
4115      obj->oop_iterate_backwards(_evac_failure_closure);
4116   }
4117 }
4118 
4119 oop
4120 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4121                                                oop old) {
4122   assert(obj_in_cs(old),
4123          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4124                  (HeapWord*) old));
4125   markOop m = old->mark();
4126   oop forward_ptr = old->forward_to_atomic(old);
4127   if (forward_ptr == NULL) {
4128     // Forward-to-self succeeded.
4129     assert(_par_scan_state != NULL, "par scan state");
4130     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4131     uint queue_num = _par_scan_state->queue_num();
4132 
4133     _evacuation_failed = true;
4134     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4135     if (_evac_failure_closure != cl) {
4136       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4137       assert(!_drain_in_progress,
4138              "Should only be true while someone holds the lock.");
4139       // Set the global evac-failure closure to the current thread's.
4140       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4141       set_evac_failure_closure(cl);
4142       // Now do the common part.
4143       handle_evacuation_failure_common(old, m);
4144       // Reset to NULL.
4145       set_evac_failure_closure(NULL);
4146     } else {
4147       // The lock is already held, and this is recursive.
4148       assert(_drain_in_progress, "This should only be the recursive case.");
4149       handle_evacuation_failure_common(old, m);
4150     }
4151     return old;
4152   } else {
4153     // Forward-to-self failed. Either someone else managed to allocate
4154     // space for this object (old != forward_ptr) or they beat us in
4155     // self-forwarding it (old == forward_ptr).
4156     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4157            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4158                    "should not be in the CSet",
4159                    (HeapWord*) old, (HeapWord*) forward_ptr));
4160     return forward_ptr;
4161   }
4162 }
4163 
4164 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4165   preserve_mark_if_necessary(old, m);
4166 
4167   HeapRegion* r = heap_region_containing(old);
4168   if (!r->evacuation_failed()) {
4169     r->set_evacuation_failed(true);
4170     _hr_printer.evac_failure(r);
4171   }
4172 
4173   push_on_evac_failure_scan_stack(old);
4174 
4175   if (!_drain_in_progress) {
4176     // prevent recursion in copy_to_survivor_space()
4177     _drain_in_progress = true;
4178     drain_evac_failure_scan_stack();
4179     _drain_in_progress = false;
4180   }
4181 }
4182 
4183 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4184   assert(evacuation_failed(), "Oversaving!");
4185   // We want to call the "for_promotion_failure" version only in the
4186   // case of a promotion failure.
4187   if (m->must_be_preserved_for_promotion_failure(obj)) {
4188     _objs_with_preserved_marks.push(obj);
4189     _preserved_marks_of_objs.push(m);
4190   }
4191 }
4192 
4193 void G1ParCopyHelper::mark_object(oop obj) {
4194   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4195 
4196   // We know that the object is not moving so it's safe to read its size.
4197   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4198 }
4199 
4200 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4201   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4202   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4203   assert(from_obj != to_obj, "should not be self-forwarded");
4204 
4205   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4206   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4207 
4208   // The object might be in the process of being copied by another
4209   // worker so we cannot trust that its to-space image is
4210   // well-formed. So we have to read its size from its from-space
4211   // image which we know should not be changing.
4212   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4213 }
4214 
4215 template <class T>
4216 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4217   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4218     _scanned_klass->record_modified_oops();
4219   }
4220 }
4221 
4222 template <G1Barrier barrier, G1Mark do_mark_object>
4223 template <class T>
4224 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4225   T heap_oop = oopDesc::load_heap_oop(p);
4226 
4227   if (oopDesc::is_null(heap_oop)) {
4228     return;
4229   }
4230 
4231   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4232 
4233   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4234 
4235   const InCSetState state = _g1->in_cset_state(obj);
4236   if (state.is_in_cset()) {
4237     oop forwardee;
4238     markOop m = obj->mark();
4239     if (m->is_marked()) {
4240       forwardee = (oop) m->decode_pointer();
4241     } else {
4242       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4243     }
4244     assert(forwardee != NULL, "forwardee should not be NULL");
4245     oopDesc::encode_store_heap_oop(p, forwardee);
4246     if (do_mark_object != G1MarkNone && forwardee != obj) {
4247       // If the object is self-forwarded we don't need to explicitly
4248       // mark it, the evacuation failure protocol will do so.
4249       mark_forwarded_object(obj, forwardee);
4250     }
4251 
4252     if (barrier == G1BarrierKlass) {
4253       do_klass_barrier(p, forwardee);
4254     }
4255   } else {
4256     if (state.is_humongous()) {
4257       _g1->set_humongous_is_live(obj);
4258     }
4259     // The object is not in collection set. If we're a root scanning
4260     // closure during an initial mark pause then attempt to mark the object.
4261     if (do_mark_object == G1MarkFromRoot) {
4262       mark_object(obj);
4263     }
4264   }
4265 
4266   if (barrier == G1BarrierEvac) {
4267     _par_scan_state->update_rs(_from, p, _worker_id);
4268   }
4269 }
4270 
4271 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4272 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4273 
4274 class G1ParEvacuateFollowersClosure : public VoidClosure {
4275 protected:
4276   G1CollectedHeap*              _g1h;
4277   G1ParScanThreadState*         _par_scan_state;
4278   RefToScanQueueSet*            _queues;
4279   ParallelTaskTerminator*       _terminator;
4280 
4281   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4282   RefToScanQueueSet*      queues()         { return _queues; }
4283   ParallelTaskTerminator* terminator()     { return _terminator; }
4284 
4285 public:
4286   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4287                                 G1ParScanThreadState* par_scan_state,
4288                                 RefToScanQueueSet* queues,
4289                                 ParallelTaskTerminator* terminator)
4290     : _g1h(g1h), _par_scan_state(par_scan_state),
4291       _queues(queues), _terminator(terminator) {}
4292 
4293   void do_void();
4294 
4295 private:
4296   inline bool offer_termination();
4297 };
4298 
4299 bool G1ParEvacuateFollowersClosure::offer_termination() {
4300   G1ParScanThreadState* const pss = par_scan_state();
4301   pss->start_term_time();
4302   const bool res = terminator()->offer_termination();
4303   pss->end_term_time();
4304   return res;
4305 }
4306 
4307 void G1ParEvacuateFollowersClosure::do_void() {
4308   G1ParScanThreadState* const pss = par_scan_state();
4309   pss->trim_queue();
4310   do {
4311     pss->steal_and_trim_queue(queues());
4312   } while (!offer_termination());
4313 }
4314 
4315 class G1KlassScanClosure : public KlassClosure {
4316  G1ParCopyHelper* _closure;
4317  bool             _process_only_dirty;
4318  int              _count;
4319  public:
4320   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4321       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4322   void do_klass(Klass* klass) {
4323     // If the klass has not been dirtied we know that there's
4324     // no references into  the young gen and we can skip it.
4325    if (!_process_only_dirty || klass->has_modified_oops()) {
4326       // Clean the klass since we're going to scavenge all the metadata.
4327       klass->clear_modified_oops();
4328 
4329       // Tell the closure that this klass is the Klass to scavenge
4330       // and is the one to dirty if oops are left pointing into the young gen.
4331       _closure->set_scanned_klass(klass);
4332 
4333       klass->oops_do(_closure);
4334 
4335       _closure->set_scanned_klass(NULL);
4336     }
4337     _count++;
4338   }
4339 };
4340 
4341 class G1ParTask : public AbstractGangTask {
4342 protected:
4343   G1CollectedHeap*       _g1h;
4344   RefToScanQueueSet      *_queues;
4345   G1RootProcessor*       _root_processor;
4346   ParallelTaskTerminator _terminator;
4347   uint _n_workers;
4348 
4349   Mutex _stats_lock;
4350   Mutex* stats_lock() { return &_stats_lock; }
4351 
4352 public:
4353   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4354     : AbstractGangTask("G1 collection"),
4355       _g1h(g1h),
4356       _queues(task_queues),
4357       _root_processor(root_processor),
4358       _terminator(0, _queues),
4359       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4360   {}
4361 
4362   RefToScanQueueSet* queues() { return _queues; }
4363 
4364   RefToScanQueue *work_queue(int i) {
4365     return queues()->queue(i);
4366   }
4367 
4368   ParallelTaskTerminator* terminator() { return &_terminator; }
4369 
4370   virtual void set_for_termination(int active_workers) {
4371     _root_processor->set_num_workers(active_workers);
4372     terminator()->reset_for_reuse(active_workers);
4373     _n_workers = active_workers;
4374   }
4375 
4376   // Helps out with CLD processing.
4377   //
4378   // During InitialMark we need to:
4379   // 1) Scavenge all CLDs for the young GC.
4380   // 2) Mark all objects directly reachable from strong CLDs.
4381   template <G1Mark do_mark_object>
4382   class G1CLDClosure : public CLDClosure {
4383     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4384     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4385     G1KlassScanClosure                                _klass_in_cld_closure;
4386     bool                                              _claim;
4387 
4388    public:
4389     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4390                  bool only_young, bool claim)
4391         : _oop_closure(oop_closure),
4392           _oop_in_klass_closure(oop_closure->g1(),
4393                                 oop_closure->pss(),
4394                                 oop_closure->rp()),
4395           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4396           _claim(claim) {
4397 
4398     }
4399 
4400     void do_cld(ClassLoaderData* cld) {
4401       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4402     }
4403   };
4404 
4405   void work(uint worker_id) {
4406     if (worker_id >= _n_workers) return;  // no work needed this round
4407 
4408     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4409 
4410     {
4411       ResourceMark rm;
4412       HandleMark   hm;
4413 
4414       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4415 
4416       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4417       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4418 
4419       pss.set_evac_failure_closure(&evac_failure_cl);
4420 
4421       bool only_young = _g1h->g1_policy()->gcs_are_young();
4422 
4423       // Non-IM young GC.
4424       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4425       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4426                                                                                only_young, // Only process dirty klasses.
4427                                                                                false);     // No need to claim CLDs.
4428       // IM young GC.
4429       //    Strong roots closures.
4430       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4431       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4432                                                                                false, // Process all klasses.
4433                                                                                true); // Need to claim CLDs.
4434       //    Weak roots closures.
4435       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4436       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4437                                                                                     false, // Process all klasses.
4438                                                                                     true); // Need to claim CLDs.
4439 
4440       OopClosure* strong_root_cl;
4441       OopClosure* weak_root_cl;
4442       CLDClosure* strong_cld_cl;
4443       CLDClosure* weak_cld_cl;
4444 
4445       bool trace_metadata = false;
4446 
4447       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4448         // We also need to mark copied objects.
4449         strong_root_cl = &scan_mark_root_cl;
4450         strong_cld_cl  = &scan_mark_cld_cl;
4451         if (ClassUnloadingWithConcurrentMark) {
4452           weak_root_cl = &scan_mark_weak_root_cl;
4453           weak_cld_cl  = &scan_mark_weak_cld_cl;
4454           trace_metadata = true;
4455         } else {
4456           weak_root_cl = &scan_mark_root_cl;
4457           weak_cld_cl  = &scan_mark_cld_cl;
4458         }
4459       } else {
4460         strong_root_cl = &scan_only_root_cl;
4461         weak_root_cl   = &scan_only_root_cl;
4462         strong_cld_cl  = &scan_only_cld_cl;
4463         weak_cld_cl    = &scan_only_cld_cl;
4464       }
4465 
4466       pss.start_strong_roots();
4467 
4468       _root_processor->evacuate_roots(strong_root_cl,
4469                                       weak_root_cl,
4470                                       strong_cld_cl,
4471                                       weak_cld_cl,
4472                                       trace_metadata,
4473                                       worker_id);
4474 
4475       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4476       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4477                                             weak_root_cl,
4478                                             worker_id);
4479       pss.end_strong_roots();
4480 
4481       {
4482         double start = os::elapsedTime();
4483         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4484         evac.do_void();
4485         double elapsed_sec = os::elapsedTime() - start;
4486         double term_sec = pss.term_time();
4487         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4488         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4489         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4490       }
4491       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4492       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4493 
4494       if (PrintTerminationStats) {
4495         MutexLocker x(stats_lock());
4496         pss.print_termination_stats(worker_id);
4497       }
4498 
4499       assert(pss.queue_is_empty(), "should be empty");
4500 
4501       // Close the inner scope so that the ResourceMark and HandleMark
4502       // destructors are executed here and are included as part of the
4503       // "GC Worker Time".
4504     }
4505     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4506   }
4507 };
4508 
4509 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4510 private:
4511   BoolObjectClosure* _is_alive;
4512   int _initial_string_table_size;
4513   int _initial_symbol_table_size;
4514 
4515   bool  _process_strings;
4516   int _strings_processed;
4517   int _strings_removed;
4518 
4519   bool  _process_symbols;
4520   int _symbols_processed;
4521   int _symbols_removed;
4522 
4523 public:
4524   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4525     AbstractGangTask("String/Symbol Unlinking"),
4526     _is_alive(is_alive),
4527     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4528     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4529 
4530     _initial_string_table_size = StringTable::the_table()->table_size();
4531     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4532     if (process_strings) {
4533       StringTable::clear_parallel_claimed_index();
4534     }
4535     if (process_symbols) {
4536       SymbolTable::clear_parallel_claimed_index();
4537     }
4538   }
4539 
4540   ~G1StringSymbolTableUnlinkTask() {
4541     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4542               err_msg("claim value %d after unlink less than initial string table size %d",
4543                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4544     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4545               err_msg("claim value %d after unlink less than initial symbol table size %d",
4546                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4547 
4548     if (G1TraceStringSymbolTableScrubbing) {
4549       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4550                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4551                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4552                              strings_processed(), strings_removed(),
4553                              symbols_processed(), symbols_removed());
4554     }
4555   }
4556 
4557   void work(uint worker_id) {
4558     int strings_processed = 0;
4559     int strings_removed = 0;
4560     int symbols_processed = 0;
4561     int symbols_removed = 0;
4562     if (_process_strings) {
4563       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4564       Atomic::add(strings_processed, &_strings_processed);
4565       Atomic::add(strings_removed, &_strings_removed);
4566     }
4567     if (_process_symbols) {
4568       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4569       Atomic::add(symbols_processed, &_symbols_processed);
4570       Atomic::add(symbols_removed, &_symbols_removed);
4571     }
4572   }
4573 
4574   size_t strings_processed() const { return (size_t)_strings_processed; }
4575   size_t strings_removed()   const { return (size_t)_strings_removed; }
4576 
4577   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4578   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4579 };
4580 
4581 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4582 private:
4583   static Monitor* _lock;
4584 
4585   BoolObjectClosure* const _is_alive;
4586   const bool               _unloading_occurred;
4587   const uint               _num_workers;
4588 
4589   // Variables used to claim nmethods.
4590   nmethod* _first_nmethod;
4591   volatile nmethod* _claimed_nmethod;
4592 
4593   // The list of nmethods that need to be processed by the second pass.
4594   volatile nmethod* _postponed_list;
4595   volatile uint     _num_entered_barrier;
4596 
4597  public:
4598   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4599       _is_alive(is_alive),
4600       _unloading_occurred(unloading_occurred),
4601       _num_workers(num_workers),
4602       _first_nmethod(NULL),
4603       _claimed_nmethod(NULL),
4604       _postponed_list(NULL),
4605       _num_entered_barrier(0)
4606   {
4607     nmethod::increase_unloading_clock();
4608     // Get first alive nmethod
4609     NMethodIterator iter = NMethodIterator();
4610     if(iter.next_alive()) {
4611       _first_nmethod = iter.method();
4612     }
4613     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4614   }
4615 
4616   ~G1CodeCacheUnloadingTask() {
4617     CodeCache::verify_clean_inline_caches();
4618 
4619     CodeCache::set_needs_cache_clean(false);
4620     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4621 
4622     CodeCache::verify_icholder_relocations();
4623   }
4624 
4625  private:
4626   void add_to_postponed_list(nmethod* nm) {
4627       nmethod* old;
4628       do {
4629         old = (nmethod*)_postponed_list;
4630         nm->set_unloading_next(old);
4631       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4632   }
4633 
4634   void clean_nmethod(nmethod* nm) {
4635     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4636 
4637     if (postponed) {
4638       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4639       add_to_postponed_list(nm);
4640     }
4641 
4642     // Mark that this thread has been cleaned/unloaded.
4643     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4644     nm->set_unloading_clock(nmethod::global_unloading_clock());
4645   }
4646 
4647   void clean_nmethod_postponed(nmethod* nm) {
4648     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4649   }
4650 
4651   static const int MaxClaimNmethods = 16;
4652 
4653   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4654     nmethod* first;
4655     NMethodIterator last;
4656 
4657     do {
4658       *num_claimed_nmethods = 0;
4659 
4660       first = (nmethod*)_claimed_nmethod;
4661       last = NMethodIterator(first);
4662 
4663       if (first != NULL) {
4664 
4665         for (int i = 0; i < MaxClaimNmethods; i++) {
4666           if (!last.next_alive()) {
4667             break;
4668           }
4669           claimed_nmethods[i] = last.method();
4670           (*num_claimed_nmethods)++;
4671         }
4672       }
4673 
4674     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4675   }
4676 
4677   nmethod* claim_postponed_nmethod() {
4678     nmethod* claim;
4679     nmethod* next;
4680 
4681     do {
4682       claim = (nmethod*)_postponed_list;
4683       if (claim == NULL) {
4684         return NULL;
4685       }
4686 
4687       next = claim->unloading_next();
4688 
4689     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4690 
4691     return claim;
4692   }
4693 
4694  public:
4695   // Mark that we're done with the first pass of nmethod cleaning.
4696   void barrier_mark(uint worker_id) {
4697     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4698     _num_entered_barrier++;
4699     if (_num_entered_barrier == _num_workers) {
4700       ml.notify_all();
4701     }
4702   }
4703 
4704   // See if we have to wait for the other workers to
4705   // finish their first-pass nmethod cleaning work.
4706   void barrier_wait(uint worker_id) {
4707     if (_num_entered_barrier < _num_workers) {
4708       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4709       while (_num_entered_barrier < _num_workers) {
4710           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4711       }
4712     }
4713   }
4714 
4715   // Cleaning and unloading of nmethods. Some work has to be postponed
4716   // to the second pass, when we know which nmethods survive.
4717   void work_first_pass(uint worker_id) {
4718     // The first nmethods is claimed by the first worker.
4719     if (worker_id == 0 && _first_nmethod != NULL) {
4720       clean_nmethod(_first_nmethod);
4721       _first_nmethod = NULL;
4722     }
4723 
4724     int num_claimed_nmethods;
4725     nmethod* claimed_nmethods[MaxClaimNmethods];
4726 
4727     while (true) {
4728       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4729 
4730       if (num_claimed_nmethods == 0) {
4731         break;
4732       }
4733 
4734       for (int i = 0; i < num_claimed_nmethods; i++) {
4735         clean_nmethod(claimed_nmethods[i]);
4736       }
4737     }
4738   }
4739 
4740   void work_second_pass(uint worker_id) {
4741     nmethod* nm;
4742     // Take care of postponed nmethods.
4743     while ((nm = claim_postponed_nmethod()) != NULL) {
4744       clean_nmethod_postponed(nm);
4745     }
4746   }
4747 };
4748 
4749 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4750 
4751 class G1KlassCleaningTask : public StackObj {
4752   BoolObjectClosure*                      _is_alive;
4753   volatile jint                           _clean_klass_tree_claimed;
4754   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4755 
4756  public:
4757   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4758       _is_alive(is_alive),
4759       _clean_klass_tree_claimed(0),
4760       _klass_iterator() {
4761   }
4762 
4763  private:
4764   bool claim_clean_klass_tree_task() {
4765     if (_clean_klass_tree_claimed) {
4766       return false;
4767     }
4768 
4769     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4770   }
4771 
4772   InstanceKlass* claim_next_klass() {
4773     Klass* klass;
4774     do {
4775       klass =_klass_iterator.next_klass();
4776     } while (klass != NULL && !klass->oop_is_instance());
4777 
4778     return (InstanceKlass*)klass;
4779   }
4780 
4781 public:
4782 
4783   void clean_klass(InstanceKlass* ik) {
4784     ik->clean_implementors_list(_is_alive);
4785     ik->clean_method_data(_is_alive);
4786 
4787     // G1 specific cleanup work that has
4788     // been moved here to be done in parallel.
4789     ik->clean_dependent_nmethods();
4790   }
4791 
4792   void work() {
4793     ResourceMark rm;
4794 
4795     // One worker will clean the subklass/sibling klass tree.
4796     if (claim_clean_klass_tree_task()) {
4797       Klass::clean_subklass_tree(_is_alive);
4798     }
4799 
4800     // All workers will help cleaning the classes,
4801     InstanceKlass* klass;
4802     while ((klass = claim_next_klass()) != NULL) {
4803       clean_klass(klass);
4804     }
4805   }
4806 };
4807 
4808 // To minimize the remark pause times, the tasks below are done in parallel.
4809 class G1ParallelCleaningTask : public AbstractGangTask {
4810 private:
4811   G1StringSymbolTableUnlinkTask _string_symbol_task;
4812   G1CodeCacheUnloadingTask      _code_cache_task;
4813   G1KlassCleaningTask           _klass_cleaning_task;
4814 
4815 public:
4816   // The constructor is run in the VMThread.
4817   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4818       AbstractGangTask("Parallel Cleaning"),
4819       _string_symbol_task(is_alive, process_strings, process_symbols),
4820       _code_cache_task(num_workers, is_alive, unloading_occurred),
4821       _klass_cleaning_task(is_alive) {
4822   }
4823 
4824   // The parallel work done by all worker threads.
4825   void work(uint worker_id) {
4826     // Do first pass of code cache cleaning.
4827     _code_cache_task.work_first_pass(worker_id);
4828 
4829     // Let the threads mark that the first pass is done.
4830     _code_cache_task.barrier_mark(worker_id);
4831 
4832     // Clean the Strings and Symbols.
4833     _string_symbol_task.work(worker_id);
4834 
4835     // Wait for all workers to finish the first code cache cleaning pass.
4836     _code_cache_task.barrier_wait(worker_id);
4837 
4838     // Do the second code cache cleaning work, which realize on
4839     // the liveness information gathered during the first pass.
4840     _code_cache_task.work_second_pass(worker_id);
4841 
4842     // Clean all klasses that were not unloaded.
4843     _klass_cleaning_task.work();
4844   }
4845 };
4846 
4847 
4848 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4849                                         bool process_strings,
4850                                         bool process_symbols,
4851                                         bool class_unloading_occurred) {
4852   uint n_workers = workers()->active_workers();
4853 
4854   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4855                                         n_workers, class_unloading_occurred);
4856   set_par_threads(n_workers);
4857   workers()->run_task(&g1_unlink_task);
4858   set_par_threads(0);
4859 }
4860 
4861 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4862                                                      bool process_strings, bool process_symbols) {
4863   {
4864     uint n_workers = _g1h->workers()->active_workers();
4865     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4866     set_par_threads(n_workers);
4867     workers()->run_task(&g1_unlink_task);
4868     set_par_threads(0);
4869   }
4870 
4871   if (G1StringDedup::is_enabled()) {
4872     G1StringDedup::unlink(is_alive);
4873   }
4874 }
4875 
4876 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4877  private:
4878   DirtyCardQueueSet* _queue;
4879  public:
4880   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4881 
4882   virtual void work(uint worker_id) {
4883     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4884     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4885 
4886     RedirtyLoggedCardTableEntryClosure cl;
4887     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4888 
4889     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4890   }
4891 };
4892 
4893 void G1CollectedHeap::redirty_logged_cards() {
4894   double redirty_logged_cards_start = os::elapsedTime();
4895 
4896   uint n_workers = _g1h->workers()->active_workers();
4897 
4898   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4899   dirty_card_queue_set().reset_for_par_iteration();
4900   set_par_threads(n_workers);
4901   workers()->run_task(&redirty_task);
4902   set_par_threads(0);
4903 
4904   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4905   dcq.merge_bufferlists(&dirty_card_queue_set());
4906   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4907 
4908   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4909 }
4910 
4911 // Weak Reference Processing support
4912 
4913 // An always "is_alive" closure that is used to preserve referents.
4914 // If the object is non-null then it's alive.  Used in the preservation
4915 // of referent objects that are pointed to by reference objects
4916 // discovered by the CM ref processor.
4917 class G1AlwaysAliveClosure: public BoolObjectClosure {
4918   G1CollectedHeap* _g1;
4919 public:
4920   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4921   bool do_object_b(oop p) {
4922     if (p != NULL) {
4923       return true;
4924     }
4925     return false;
4926   }
4927 };
4928 
4929 bool G1STWIsAliveClosure::do_object_b(oop p) {
4930   // An object is reachable if it is outside the collection set,
4931   // or is inside and copied.
4932   return !_g1->obj_in_cs(p) || p->is_forwarded();
4933 }
4934 
4935 // Non Copying Keep Alive closure
4936 class G1KeepAliveClosure: public OopClosure {
4937   G1CollectedHeap* _g1;
4938 public:
4939   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4940   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4941   void do_oop(oop* p) {
4942     oop obj = *p;
4943     assert(obj != NULL, "the caller should have filtered out NULL values");
4944 
4945     const InCSetState cset_state = _g1->in_cset_state(obj);
4946     if (!cset_state.is_in_cset_or_humongous()) {
4947       return;
4948     }
4949     if (cset_state.is_in_cset()) {
4950       assert( obj->is_forwarded(), "invariant" );
4951       *p = obj->forwardee();
4952     } else {
4953       assert(!obj->is_forwarded(), "invariant" );
4954       assert(cset_state.is_humongous(),
4955              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4956       _g1->set_humongous_is_live(obj);
4957     }
4958   }
4959 };
4960 
4961 // Copying Keep Alive closure - can be called from both
4962 // serial and parallel code as long as different worker
4963 // threads utilize different G1ParScanThreadState instances
4964 // and different queues.
4965 
4966 class G1CopyingKeepAliveClosure: public OopClosure {
4967   G1CollectedHeap*         _g1h;
4968   OopClosure*              _copy_non_heap_obj_cl;
4969   G1ParScanThreadState*    _par_scan_state;
4970 
4971 public:
4972   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4973                             OopClosure* non_heap_obj_cl,
4974                             G1ParScanThreadState* pss):
4975     _g1h(g1h),
4976     _copy_non_heap_obj_cl(non_heap_obj_cl),
4977     _par_scan_state(pss)
4978   {}
4979 
4980   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4981   virtual void do_oop(      oop* p) { do_oop_work(p); }
4982 
4983   template <class T> void do_oop_work(T* p) {
4984     oop obj = oopDesc::load_decode_heap_oop(p);
4985 
4986     if (_g1h->is_in_cset_or_humongous(obj)) {
4987       // If the referent object has been forwarded (either copied
4988       // to a new location or to itself in the event of an
4989       // evacuation failure) then we need to update the reference
4990       // field and, if both reference and referent are in the G1
4991       // heap, update the RSet for the referent.
4992       //
4993       // If the referent has not been forwarded then we have to keep
4994       // it alive by policy. Therefore we have copy the referent.
4995       //
4996       // If the reference field is in the G1 heap then we can push
4997       // on the PSS queue. When the queue is drained (after each
4998       // phase of reference processing) the object and it's followers
4999       // will be copied, the reference field set to point to the
5000       // new location, and the RSet updated. Otherwise we need to
5001       // use the the non-heap or metadata closures directly to copy
5002       // the referent object and update the pointer, while avoiding
5003       // updating the RSet.
5004 
5005       if (_g1h->is_in_g1_reserved(p)) {
5006         _par_scan_state->push_on_queue(p);
5007       } else {
5008         assert(!Metaspace::contains((const void*)p),
5009                err_msg("Unexpectedly found a pointer from metadata: "
5010                               PTR_FORMAT, p));
5011         _copy_non_heap_obj_cl->do_oop(p);
5012       }
5013     }
5014   }
5015 };
5016 
5017 // Serial drain queue closure. Called as the 'complete_gc'
5018 // closure for each discovered list in some of the
5019 // reference processing phases.
5020 
5021 class G1STWDrainQueueClosure: public VoidClosure {
5022 protected:
5023   G1CollectedHeap* _g1h;
5024   G1ParScanThreadState* _par_scan_state;
5025 
5026   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5027 
5028 public:
5029   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5030     _g1h(g1h),
5031     _par_scan_state(pss)
5032   { }
5033 
5034   void do_void() {
5035     G1ParScanThreadState* const pss = par_scan_state();
5036     pss->trim_queue();
5037   }
5038 };
5039 
5040 // Parallel Reference Processing closures
5041 
5042 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5043 // processing during G1 evacuation pauses.
5044 
5045 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5046 private:
5047   G1CollectedHeap*   _g1h;
5048   RefToScanQueueSet* _queues;
5049   FlexibleWorkGang*  _workers;
5050   int                _active_workers;
5051 
5052 public:
5053   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5054                         FlexibleWorkGang* workers,
5055                         RefToScanQueueSet *task_queues,
5056                         int n_workers) :
5057     _g1h(g1h),
5058     _queues(task_queues),
5059     _workers(workers),
5060     _active_workers(n_workers)
5061   {
5062     assert(n_workers > 0, "shouldn't call this otherwise");
5063   }
5064 
5065   // Executes the given task using concurrent marking worker threads.
5066   virtual void execute(ProcessTask& task);
5067   virtual void execute(EnqueueTask& task);
5068 };
5069 
5070 // Gang task for possibly parallel reference processing
5071 
5072 class G1STWRefProcTaskProxy: public AbstractGangTask {
5073   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5074   ProcessTask&     _proc_task;
5075   G1CollectedHeap* _g1h;
5076   RefToScanQueueSet *_task_queues;
5077   ParallelTaskTerminator* _terminator;
5078 
5079 public:
5080   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5081                      G1CollectedHeap* g1h,
5082                      RefToScanQueueSet *task_queues,
5083                      ParallelTaskTerminator* terminator) :
5084     AbstractGangTask("Process reference objects in parallel"),
5085     _proc_task(proc_task),
5086     _g1h(g1h),
5087     _task_queues(task_queues),
5088     _terminator(terminator)
5089   {}
5090 
5091   virtual void work(uint worker_id) {
5092     // The reference processing task executed by a single worker.
5093     ResourceMark rm;
5094     HandleMark   hm;
5095 
5096     G1STWIsAliveClosure is_alive(_g1h);
5097 
5098     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5099     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5100 
5101     pss.set_evac_failure_closure(&evac_failure_cl);
5102 
5103     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5104 
5105     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5106 
5107     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5108 
5109     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5110       // We also need to mark copied objects.
5111       copy_non_heap_cl = &copy_mark_non_heap_cl;
5112     }
5113 
5114     // Keep alive closure.
5115     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5116 
5117     // Complete GC closure
5118     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5119 
5120     // Call the reference processing task's work routine.
5121     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5122 
5123     // Note we cannot assert that the refs array is empty here as not all
5124     // of the processing tasks (specifically phase2 - pp2_work) execute
5125     // the complete_gc closure (which ordinarily would drain the queue) so
5126     // the queue may not be empty.
5127   }
5128 };
5129 
5130 // Driver routine for parallel reference processing.
5131 // Creates an instance of the ref processing gang
5132 // task and has the worker threads execute it.
5133 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5134   assert(_workers != NULL, "Need parallel worker threads.");
5135 
5136   ParallelTaskTerminator terminator(_active_workers, _queues);
5137   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5138 
5139   _g1h->set_par_threads(_active_workers);
5140   _workers->run_task(&proc_task_proxy);
5141   _g1h->set_par_threads(0);
5142 }
5143 
5144 // Gang task for parallel reference enqueueing.
5145 
5146 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5147   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5148   EnqueueTask& _enq_task;
5149 
5150 public:
5151   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5152     AbstractGangTask("Enqueue reference objects in parallel"),
5153     _enq_task(enq_task)
5154   { }
5155 
5156   virtual void work(uint worker_id) {
5157     _enq_task.work(worker_id);
5158   }
5159 };
5160 
5161 // Driver routine for parallel reference enqueueing.
5162 // Creates an instance of the ref enqueueing gang
5163 // task and has the worker threads execute it.
5164 
5165 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5166   assert(_workers != NULL, "Need parallel worker threads.");
5167 
5168   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5169 
5170   _g1h->set_par_threads(_active_workers);
5171   _workers->run_task(&enq_task_proxy);
5172   _g1h->set_par_threads(0);
5173 }
5174 
5175 // End of weak reference support closures
5176 
5177 // Abstract task used to preserve (i.e. copy) any referent objects
5178 // that are in the collection set and are pointed to by reference
5179 // objects discovered by the CM ref processor.
5180 
5181 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5182 protected:
5183   G1CollectedHeap* _g1h;
5184   RefToScanQueueSet      *_queues;
5185   ParallelTaskTerminator _terminator;
5186   uint _n_workers;
5187 
5188 public:
5189   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5190     AbstractGangTask("ParPreserveCMReferents"),
5191     _g1h(g1h),
5192     _queues(task_queues),
5193     _terminator(workers, _queues),
5194     _n_workers(workers)
5195   { }
5196 
5197   void work(uint worker_id) {
5198     ResourceMark rm;
5199     HandleMark   hm;
5200 
5201     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5202     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5203 
5204     pss.set_evac_failure_closure(&evac_failure_cl);
5205 
5206     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5207 
5208     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5209 
5210     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5211 
5212     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5213 
5214     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5215       // We also need to mark copied objects.
5216       copy_non_heap_cl = &copy_mark_non_heap_cl;
5217     }
5218 
5219     // Is alive closure
5220     G1AlwaysAliveClosure always_alive(_g1h);
5221 
5222     // Copying keep alive closure. Applied to referent objects that need
5223     // to be copied.
5224     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5225 
5226     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5227 
5228     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5229     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5230 
5231     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5232     // So this must be true - but assert just in case someone decides to
5233     // change the worker ids.
5234     assert(worker_id < limit, "sanity");
5235     assert(!rp->discovery_is_atomic(), "check this code");
5236 
5237     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5238     for (uint idx = worker_id; idx < limit; idx += stride) {
5239       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5240 
5241       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5242       while (iter.has_next()) {
5243         // Since discovery is not atomic for the CM ref processor, we
5244         // can see some null referent objects.
5245         iter.load_ptrs(DEBUG_ONLY(true));
5246         oop ref = iter.obj();
5247 
5248         // This will filter nulls.
5249         if (iter.is_referent_alive()) {
5250           iter.make_referent_alive();
5251         }
5252         iter.move_to_next();
5253       }
5254     }
5255 
5256     // Drain the queue - which may cause stealing
5257     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5258     drain_queue.do_void();
5259     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5260     assert(pss.queue_is_empty(), "should be");
5261   }
5262 };
5263 
5264 // Weak Reference processing during an evacuation pause (part 1).
5265 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5266   double ref_proc_start = os::elapsedTime();
5267 
5268   ReferenceProcessor* rp = _ref_processor_stw;
5269   assert(rp->discovery_enabled(), "should have been enabled");
5270 
5271   // Any reference objects, in the collection set, that were 'discovered'
5272   // by the CM ref processor should have already been copied (either by
5273   // applying the external root copy closure to the discovered lists, or
5274   // by following an RSet entry).
5275   //
5276   // But some of the referents, that are in the collection set, that these
5277   // reference objects point to may not have been copied: the STW ref
5278   // processor would have seen that the reference object had already
5279   // been 'discovered' and would have skipped discovering the reference,
5280   // but would not have treated the reference object as a regular oop.
5281   // As a result the copy closure would not have been applied to the
5282   // referent object.
5283   //
5284   // We need to explicitly copy these referent objects - the references
5285   // will be processed at the end of remarking.
5286   //
5287   // We also need to do this copying before we process the reference
5288   // objects discovered by the STW ref processor in case one of these
5289   // referents points to another object which is also referenced by an
5290   // object discovered by the STW ref processor.
5291 
5292   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5293 
5294   set_par_threads(no_of_gc_workers);
5295   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5296                                                  no_of_gc_workers,
5297                                                  _task_queues);
5298 
5299   workers()->run_task(&keep_cm_referents);
5300 
5301   set_par_threads(0);
5302 
5303   // Closure to test whether a referent is alive.
5304   G1STWIsAliveClosure is_alive(this);
5305 
5306   // Even when parallel reference processing is enabled, the processing
5307   // of JNI refs is serial and performed serially by the current thread
5308   // rather than by a worker. The following PSS will be used for processing
5309   // JNI refs.
5310 
5311   // Use only a single queue for this PSS.
5312   G1ParScanThreadState            pss(this, 0, NULL);
5313 
5314   // We do not embed a reference processor in the copying/scanning
5315   // closures while we're actually processing the discovered
5316   // reference objects.
5317   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5318 
5319   pss.set_evac_failure_closure(&evac_failure_cl);
5320 
5321   assert(pss.queue_is_empty(), "pre-condition");
5322 
5323   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5324 
5325   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5326 
5327   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5328 
5329   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5330     // We also need to mark copied objects.
5331     copy_non_heap_cl = &copy_mark_non_heap_cl;
5332   }
5333 
5334   // Keep alive closure.
5335   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5336 
5337   // Serial Complete GC closure
5338   G1STWDrainQueueClosure drain_queue(this, &pss);
5339 
5340   // Setup the soft refs policy...
5341   rp->setup_policy(false);
5342 
5343   ReferenceProcessorStats stats;
5344   if (!rp->processing_is_mt()) {
5345     // Serial reference processing...
5346     stats = rp->process_discovered_references(&is_alive,
5347                                               &keep_alive,
5348                                               &drain_queue,
5349                                               NULL,
5350                                               _gc_timer_stw,
5351                                               _gc_tracer_stw->gc_id());
5352   } else {
5353     // Parallel reference processing
5354     assert(rp->num_q() == no_of_gc_workers, "sanity");
5355     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5356 
5357     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5358     stats = rp->process_discovered_references(&is_alive,
5359                                               &keep_alive,
5360                                               &drain_queue,
5361                                               &par_task_executor,
5362                                               _gc_timer_stw,
5363                                               _gc_tracer_stw->gc_id());
5364   }
5365 
5366   _gc_tracer_stw->report_gc_reference_stats(stats);
5367 
5368   // We have completed copying any necessary live referent objects.
5369   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5370 
5371   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5372   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5373 }
5374 
5375 // Weak Reference processing during an evacuation pause (part 2).
5376 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5377   double ref_enq_start = os::elapsedTime();
5378 
5379   ReferenceProcessor* rp = _ref_processor_stw;
5380   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5381 
5382   // Now enqueue any remaining on the discovered lists on to
5383   // the pending list.
5384   if (!rp->processing_is_mt()) {
5385     // Serial reference processing...
5386     rp->enqueue_discovered_references();
5387   } else {
5388     // Parallel reference enqueueing
5389 
5390     assert(no_of_gc_workers == workers()->active_workers(),
5391            "Need to reset active workers");
5392     assert(rp->num_q() == no_of_gc_workers, "sanity");
5393     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5394 
5395     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5396     rp->enqueue_discovered_references(&par_task_executor);
5397   }
5398 
5399   rp->verify_no_references_recorded();
5400   assert(!rp->discovery_enabled(), "should have been disabled");
5401 
5402   // FIXME
5403   // CM's reference processing also cleans up the string and symbol tables.
5404   // Should we do that here also? We could, but it is a serial operation
5405   // and could significantly increase the pause time.
5406 
5407   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5408   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5409 }
5410 
5411 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5412   _expand_heap_after_alloc_failure = true;
5413   _evacuation_failed = false;
5414 
5415   // Should G1EvacuationFailureALot be in effect for this GC?
5416   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5417 
5418   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5419 
5420   // Disable the hot card cache.
5421   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5422   hot_card_cache->reset_hot_cache_claimed_index();
5423   hot_card_cache->set_use_cache(false);
5424 
5425   uint n_workers;
5426   n_workers =
5427     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5428                                    workers()->active_workers(),
5429                                    Threads::number_of_non_daemon_threads());
5430   assert(UseDynamicNumberOfGCThreads ||
5431          n_workers == workers()->total_workers(),
5432          "If not dynamic should be using all the  workers");
5433   workers()->set_active_workers(n_workers);
5434   set_par_threads(n_workers);
5435 
5436 
5437   init_for_evac_failure(NULL);
5438 
5439   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5440   double start_par_time_sec = os::elapsedTime();
5441   double end_par_time_sec;
5442 
5443   {
5444     G1RootProcessor root_processor(this);
5445     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5446     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5447     if (g1_policy()->during_initial_mark_pause()) {
5448       ClassLoaderDataGraph::clear_claimed_marks();
5449     }
5450 
5451      // The individual threads will set their evac-failure closures.
5452      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5453      // These tasks use ShareHeap::_process_strong_tasks
5454      assert(UseDynamicNumberOfGCThreads ||
5455             workers()->active_workers() == workers()->total_workers(),
5456             "If not dynamic should be using all the  workers");
5457     workers()->run_task(&g1_par_task);
5458     end_par_time_sec = os::elapsedTime();
5459 
5460     // Closing the inner scope will execute the destructor
5461     // for the G1RootProcessor object. We record the current
5462     // elapsed time before closing the scope so that time
5463     // taken for the destructor is NOT included in the
5464     // reported parallel time.
5465   }
5466 
5467   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5468 
5469   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5470   phase_times->record_par_time(par_time_ms);
5471 
5472   double code_root_fixup_time_ms =
5473         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5474   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5475 
5476   set_par_threads(0);
5477 
5478   // Process any discovered reference objects - we have
5479   // to do this _before_ we retire the GC alloc regions
5480   // as we may have to copy some 'reachable' referent
5481   // objects (and their reachable sub-graphs) that were
5482   // not copied during the pause.
5483   process_discovered_references(n_workers);
5484 
5485   if (G1StringDedup::is_enabled()) {
5486     double fixup_start = os::elapsedTime();
5487 
5488     G1STWIsAliveClosure is_alive(this);
5489     G1KeepAliveClosure keep_alive(this);
5490     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5491 
5492     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5493     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5494   }
5495 
5496   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5497   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5498 
5499   // Reset and re-enable the hot card cache.
5500   // Note the counts for the cards in the regions in the
5501   // collection set are reset when the collection set is freed.
5502   hot_card_cache->reset_hot_cache();
5503   hot_card_cache->set_use_cache(true);
5504 
5505   purge_code_root_memory();
5506 
5507   finalize_for_evac_failure();
5508 
5509   if (evacuation_failed()) {
5510     remove_self_forwarding_pointers();
5511 
5512     // Reset the G1EvacuationFailureALot counters and flags
5513     // Note: the values are reset only when an actual
5514     // evacuation failure occurs.
5515     NOT_PRODUCT(reset_evacuation_should_fail();)
5516   }
5517 
5518   // Enqueue any remaining references remaining on the STW
5519   // reference processor's discovered lists. We need to do
5520   // this after the card table is cleaned (and verified) as
5521   // the act of enqueueing entries on to the pending list
5522   // will log these updates (and dirty their associated
5523   // cards). We need these updates logged to update any
5524   // RSets.
5525   enqueue_discovered_references(n_workers);
5526 
5527   redirty_logged_cards();
5528   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5529 }
5530 
5531 void G1CollectedHeap::free_region(HeapRegion* hr,
5532                                   FreeRegionList* free_list,
5533                                   bool par,
5534                                   bool locked) {
5535   assert(!hr->is_free(), "the region should not be free");
5536   assert(!hr->is_empty(), "the region should not be empty");
5537   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5538   assert(free_list != NULL, "pre-condition");
5539 
5540   if (G1VerifyBitmaps) {
5541     MemRegion mr(hr->bottom(), hr->end());
5542     concurrent_mark()->clearRangePrevBitmap(mr);
5543   }
5544 
5545   // Clear the card counts for this region.
5546   // Note: we only need to do this if the region is not young
5547   // (since we don't refine cards in young regions).
5548   if (!hr->is_young()) {
5549     _cg1r->hot_card_cache()->reset_card_counts(hr);
5550   }
5551   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5552   free_list->add_ordered(hr);
5553 }
5554 
5555 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5556                                      FreeRegionList* free_list,
5557                                      bool par) {
5558   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5559   assert(free_list != NULL, "pre-condition");
5560 
5561   size_t hr_capacity = hr->capacity();
5562   // We need to read this before we make the region non-humongous,
5563   // otherwise the information will be gone.
5564   uint last_index = hr->last_hc_index();
5565   hr->clear_humongous();
5566   free_region(hr, free_list, par);
5567 
5568   uint i = hr->hrm_index() + 1;
5569   while (i < last_index) {
5570     HeapRegion* curr_hr = region_at(i);
5571     assert(curr_hr->is_continues_humongous(), "invariant");
5572     curr_hr->clear_humongous();
5573     free_region(curr_hr, free_list, par);
5574     i += 1;
5575   }
5576 }
5577 
5578 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5579                                        const HeapRegionSetCount& humongous_regions_removed) {
5580   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5581     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5582     _old_set.bulk_remove(old_regions_removed);
5583     _humongous_set.bulk_remove(humongous_regions_removed);
5584   }
5585 
5586 }
5587 
5588 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5589   assert(list != NULL, "list can't be null");
5590   if (!list->is_empty()) {
5591     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5592     _hrm.insert_list_into_free_list(list);
5593   }
5594 }
5595 
5596 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5597   _allocator->decrease_used(bytes);
5598 }
5599 
5600 class G1ParCleanupCTTask : public AbstractGangTask {
5601   G1SATBCardTableModRefBS* _ct_bs;
5602   G1CollectedHeap* _g1h;
5603   HeapRegion* volatile _su_head;
5604 public:
5605   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5606                      G1CollectedHeap* g1h) :
5607     AbstractGangTask("G1 Par Cleanup CT Task"),
5608     _ct_bs(ct_bs), _g1h(g1h) { }
5609 
5610   void work(uint worker_id) {
5611     HeapRegion* r;
5612     while (r = _g1h->pop_dirty_cards_region()) {
5613       clear_cards(r);
5614     }
5615   }
5616 
5617   void clear_cards(HeapRegion* r) {
5618     // Cards of the survivors should have already been dirtied.
5619     if (!r->is_survivor()) {
5620       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5621     }
5622   }
5623 };
5624 
5625 #ifndef PRODUCT
5626 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5627   G1CollectedHeap* _g1h;
5628   G1SATBCardTableModRefBS* _ct_bs;
5629 public:
5630   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5631     : _g1h(g1h), _ct_bs(ct_bs) { }
5632   virtual bool doHeapRegion(HeapRegion* r) {
5633     if (r->is_survivor()) {
5634       _g1h->verify_dirty_region(r);
5635     } else {
5636       _g1h->verify_not_dirty_region(r);
5637     }
5638     return false;
5639   }
5640 };
5641 
5642 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5643   // All of the region should be clean.
5644   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5645   MemRegion mr(hr->bottom(), hr->end());
5646   ct_bs->verify_not_dirty_region(mr);
5647 }
5648 
5649 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5650   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5651   // dirty allocated blocks as they allocate them. The thread that
5652   // retires each region and replaces it with a new one will do a
5653   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5654   // not dirty that area (one less thing to have to do while holding
5655   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5656   // is dirty.
5657   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5658   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5659   if (hr->is_young()) {
5660     ct_bs->verify_g1_young_region(mr);
5661   } else {
5662     ct_bs->verify_dirty_region(mr);
5663   }
5664 }
5665 
5666 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5667   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5668   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5669     verify_dirty_region(hr);
5670   }
5671 }
5672 
5673 void G1CollectedHeap::verify_dirty_young_regions() {
5674   verify_dirty_young_list(_young_list->first_region());
5675 }
5676 
5677 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5678                                                HeapWord* tams, HeapWord* end) {
5679   guarantee(tams <= end,
5680             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5681   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5682   if (result < end) {
5683     gclog_or_tty->cr();
5684     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5685                            bitmap_name, result);
5686     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5687                            bitmap_name, tams, end);
5688     return false;
5689   }
5690   return true;
5691 }
5692 
5693 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5694   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5695   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5696 
5697   HeapWord* bottom = hr->bottom();
5698   HeapWord* ptams  = hr->prev_top_at_mark_start();
5699   HeapWord* ntams  = hr->next_top_at_mark_start();
5700   HeapWord* end    = hr->end();
5701 
5702   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5703 
5704   bool res_n = true;
5705   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5706   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5707   // if we happen to be in that state.
5708   if (mark_in_progress() || !_cmThread->in_progress()) {
5709     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5710   }
5711   if (!res_p || !res_n) {
5712     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5713                            HR_FORMAT_PARAMS(hr));
5714     gclog_or_tty->print_cr("#### Caller: %s", caller);
5715     return false;
5716   }
5717   return true;
5718 }
5719 
5720 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5721   if (!G1VerifyBitmaps) return;
5722 
5723   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5724 }
5725 
5726 class G1VerifyBitmapClosure : public HeapRegionClosure {
5727 private:
5728   const char* _caller;
5729   G1CollectedHeap* _g1h;
5730   bool _failures;
5731 
5732 public:
5733   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5734     _caller(caller), _g1h(g1h), _failures(false) { }
5735 
5736   bool failures() { return _failures; }
5737 
5738   virtual bool doHeapRegion(HeapRegion* hr) {
5739     if (hr->is_continues_humongous()) return false;
5740 
5741     bool result = _g1h->verify_bitmaps(_caller, hr);
5742     if (!result) {
5743       _failures = true;
5744     }
5745     return false;
5746   }
5747 };
5748 
5749 void G1CollectedHeap::check_bitmaps(const char* caller) {
5750   if (!G1VerifyBitmaps) return;
5751 
5752   G1VerifyBitmapClosure cl(caller, this);
5753   heap_region_iterate(&cl);
5754   guarantee(!cl.failures(), "bitmap verification");
5755 }
5756 
5757 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5758  private:
5759   bool _failures;
5760  public:
5761   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5762 
5763   virtual bool doHeapRegion(HeapRegion* hr) {
5764     uint i = hr->hrm_index();
5765     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5766     if (hr->is_humongous()) {
5767       if (hr->in_collection_set()) {
5768         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5769         _failures = true;
5770         return true;
5771       }
5772       if (cset_state.is_in_cset()) {
5773         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5774         _failures = true;
5775         return true;
5776       }
5777       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5778         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5779         _failures = true;
5780         return true;
5781       }
5782     } else {
5783       if (cset_state.is_humongous()) {
5784         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5785         _failures = true;
5786         return true;
5787       }
5788       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5789         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5790                                hr->in_collection_set(), cset_state.value(), i);
5791         _failures = true;
5792         return true;
5793       }
5794       if (cset_state.is_in_cset()) {
5795         if (hr->is_young() != (cset_state.is_young())) {
5796           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5797                                  hr->is_young(), cset_state.value(), i);
5798           _failures = true;
5799           return true;
5800         }
5801         if (hr->is_old() != (cset_state.is_old())) {
5802           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5803                                  hr->is_old(), cset_state.value(), i);
5804           _failures = true;
5805           return true;
5806         }
5807       }
5808     }
5809     return false;
5810   }
5811 
5812   bool failures() const { return _failures; }
5813 };
5814 
5815 bool G1CollectedHeap::check_cset_fast_test() {
5816   G1CheckCSetFastTableClosure cl;
5817   _hrm.iterate(&cl);
5818   return !cl.failures();
5819 }
5820 #endif // PRODUCT
5821 
5822 void G1CollectedHeap::cleanUpCardTable() {
5823   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5824   double start = os::elapsedTime();
5825 
5826   {
5827     // Iterate over the dirty cards region list.
5828     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5829 
5830     set_par_threads();
5831     workers()->run_task(&cleanup_task);
5832     set_par_threads(0);
5833 #ifndef PRODUCT
5834     if (G1VerifyCTCleanup || VerifyAfterGC) {
5835       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5836       heap_region_iterate(&cleanup_verifier);
5837     }
5838 #endif
5839   }
5840 
5841   double elapsed = os::elapsedTime() - start;
5842   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5843 }
5844 
5845 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5846   size_t pre_used = 0;
5847   FreeRegionList local_free_list("Local List for CSet Freeing");
5848 
5849   double young_time_ms     = 0.0;
5850   double non_young_time_ms = 0.0;
5851 
5852   // Since the collection set is a superset of the the young list,
5853   // all we need to do to clear the young list is clear its
5854   // head and length, and unlink any young regions in the code below
5855   _young_list->clear();
5856 
5857   G1CollectorPolicy* policy = g1_policy();
5858 
5859   double start_sec = os::elapsedTime();
5860   bool non_young = true;
5861 
5862   HeapRegion* cur = cs_head;
5863   int age_bound = -1;
5864   size_t rs_lengths = 0;
5865 
5866   while (cur != NULL) {
5867     assert(!is_on_master_free_list(cur), "sanity");
5868     if (non_young) {
5869       if (cur->is_young()) {
5870         double end_sec = os::elapsedTime();
5871         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5872         non_young_time_ms += elapsed_ms;
5873 
5874         start_sec = os::elapsedTime();
5875         non_young = false;
5876       }
5877     } else {
5878       if (!cur->is_young()) {
5879         double end_sec = os::elapsedTime();
5880         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5881         young_time_ms += elapsed_ms;
5882 
5883         start_sec = os::elapsedTime();
5884         non_young = true;
5885       }
5886     }
5887 
5888     rs_lengths += cur->rem_set()->occupied_locked();
5889 
5890     HeapRegion* next = cur->next_in_collection_set();
5891     assert(cur->in_collection_set(), "bad CS");
5892     cur->set_next_in_collection_set(NULL);
5893     clear_in_cset(cur);
5894 
5895     if (cur->is_young()) {
5896       int index = cur->young_index_in_cset();
5897       assert(index != -1, "invariant");
5898       assert((uint) index < policy->young_cset_region_length(), "invariant");
5899       size_t words_survived = _surviving_young_words[index];
5900       cur->record_surv_words_in_group(words_survived);
5901 
5902       // At this point the we have 'popped' cur from the collection set
5903       // (linked via next_in_collection_set()) but it is still in the
5904       // young list (linked via next_young_region()). Clear the
5905       // _next_young_region field.
5906       cur->set_next_young_region(NULL);
5907     } else {
5908       int index = cur->young_index_in_cset();
5909       assert(index == -1, "invariant");
5910     }
5911 
5912     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5913             (!cur->is_young() && cur->young_index_in_cset() == -1),
5914             "invariant" );
5915 
5916     if (!cur->evacuation_failed()) {
5917       MemRegion used_mr = cur->used_region();
5918 
5919       // And the region is empty.
5920       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5921       pre_used += cur->used();
5922       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5923     } else {
5924       cur->uninstall_surv_rate_group();
5925       if (cur->is_young()) {
5926         cur->set_young_index_in_cset(-1);
5927       }
5928       cur->set_evacuation_failed(false);
5929       // The region is now considered to be old.
5930       cur->set_old();
5931       _old_set.add(cur);
5932       evacuation_info.increment_collectionset_used_after(cur->used());
5933     }
5934     cur = next;
5935   }
5936 
5937   evacuation_info.set_regions_freed(local_free_list.length());
5938   policy->record_max_rs_lengths(rs_lengths);
5939   policy->cset_regions_freed();
5940 
5941   double end_sec = os::elapsedTime();
5942   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5943 
5944   if (non_young) {
5945     non_young_time_ms += elapsed_ms;
5946   } else {
5947     young_time_ms += elapsed_ms;
5948   }
5949 
5950   prepend_to_freelist(&local_free_list);
5951   decrement_summary_bytes(pre_used);
5952   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5953   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5954 }
5955 
5956 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5957  private:
5958   FreeRegionList* _free_region_list;
5959   HeapRegionSet* _proxy_set;
5960   HeapRegionSetCount _humongous_regions_removed;
5961   size_t _freed_bytes;
5962  public:
5963 
5964   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5965     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5966   }
5967 
5968   virtual bool doHeapRegion(HeapRegion* r) {
5969     if (!r->is_starts_humongous()) {
5970       return false;
5971     }
5972 
5973     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5974 
5975     oop obj = (oop)r->bottom();
5976     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5977 
5978     // The following checks whether the humongous object is live are sufficient.
5979     // The main additional check (in addition to having a reference from the roots
5980     // or the young gen) is whether the humongous object has a remembered set entry.
5981     //
5982     // A humongous object cannot be live if there is no remembered set for it
5983     // because:
5984     // - there can be no references from within humongous starts regions referencing
5985     // the object because we never allocate other objects into them.
5986     // (I.e. there are no intra-region references that may be missed by the
5987     // remembered set)
5988     // - as soon there is a remembered set entry to the humongous starts region
5989     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5990     // until the end of a concurrent mark.
5991     //
5992     // It is not required to check whether the object has been found dead by marking
5993     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5994     // all objects allocated during that time are considered live.
5995     // SATB marking is even more conservative than the remembered set.
5996     // So if at this point in the collection there is no remembered set entry,
5997     // nobody has a reference to it.
5998     // At the start of collection we flush all refinement logs, and remembered sets
5999     // are completely up-to-date wrt to references to the humongous object.
6000     //
6001     // Other implementation considerations:
6002     // - never consider object arrays at this time because they would pose
6003     // considerable effort for cleaning up the the remembered sets. This is
6004     // required because stale remembered sets might reference locations that
6005     // are currently allocated into.
6006     uint region_idx = r->hrm_index();
6007     if (g1h->humongous_is_live(region_idx) ||
6008         g1h->humongous_region_is_always_live(region_idx)) {
6009 
6010       if (G1TraceEagerReclaimHumongousObjects) {
6011         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6012                                region_idx,
6013                                obj->size()*HeapWordSize,
6014                                r->bottom(),
6015                                r->region_num(),
6016                                r->rem_set()->occupied(),
6017                                r->rem_set()->strong_code_roots_list_length(),
6018                                next_bitmap->isMarked(r->bottom()),
6019                                g1h->humongous_is_live(region_idx),
6020                                obj->is_objArray()
6021                               );
6022       }
6023 
6024       return false;
6025     }
6026 
6027     guarantee(!obj->is_objArray(),
6028               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6029                       r->bottom()));
6030 
6031     if (G1TraceEagerReclaimHumongousObjects) {
6032       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6033                              region_idx,
6034                              obj->size()*HeapWordSize,
6035                              r->bottom(),
6036                              r->region_num(),
6037                              r->rem_set()->occupied(),
6038                              r->rem_set()->strong_code_roots_list_length(),
6039                              next_bitmap->isMarked(r->bottom()),
6040                              g1h->humongous_is_live(region_idx),
6041                              obj->is_objArray()
6042                             );
6043     }
6044     // Need to clear mark bit of the humongous object if already set.
6045     if (next_bitmap->isMarked(r->bottom())) {
6046       next_bitmap->clear(r->bottom());
6047     }
6048     _freed_bytes += r->used();
6049     r->set_containing_set(NULL);
6050     _humongous_regions_removed.increment(1u, r->capacity());
6051     g1h->free_humongous_region(r, _free_region_list, false);
6052 
6053     return false;
6054   }
6055 
6056   HeapRegionSetCount& humongous_free_count() {
6057     return _humongous_regions_removed;
6058   }
6059 
6060   size_t bytes_freed() const {
6061     return _freed_bytes;
6062   }
6063 
6064   size_t humongous_reclaimed() const {
6065     return _humongous_regions_removed.length();
6066   }
6067 };
6068 
6069 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6070   assert_at_safepoint(true);
6071 
6072   if (!G1EagerReclaimHumongousObjects ||
6073       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6074     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6075     return;
6076   }
6077 
6078   double start_time = os::elapsedTime();
6079 
6080   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6081 
6082   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6083   heap_region_iterate(&cl);
6084 
6085   HeapRegionSetCount empty_set;
6086   remove_from_old_sets(empty_set, cl.humongous_free_count());
6087 
6088   G1HRPrinter* hr_printer = _g1h->hr_printer();
6089   if (hr_printer->is_active()) {
6090     FreeRegionListIterator iter(&local_cleanup_list);
6091     while (iter.more_available()) {
6092       HeapRegion* hr = iter.get_next();
6093       hr_printer->cleanup(hr);
6094     }
6095   }
6096 
6097   prepend_to_freelist(&local_cleanup_list);
6098   decrement_summary_bytes(cl.bytes_freed());
6099 
6100   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6101                                                                     cl.humongous_reclaimed());
6102 }
6103 
6104 // This routine is similar to the above but does not record
6105 // any policy statistics or update free lists; we are abandoning
6106 // the current incremental collection set in preparation of a
6107 // full collection. After the full GC we will start to build up
6108 // the incremental collection set again.
6109 // This is only called when we're doing a full collection
6110 // and is immediately followed by the tearing down of the young list.
6111 
6112 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6113   HeapRegion* cur = cs_head;
6114 
6115   while (cur != NULL) {
6116     HeapRegion* next = cur->next_in_collection_set();
6117     assert(cur->in_collection_set(), "bad CS");
6118     cur->set_next_in_collection_set(NULL);
6119     clear_in_cset(cur);
6120     cur->set_young_index_in_cset(-1);
6121     cur = next;
6122   }
6123 }
6124 
6125 void G1CollectedHeap::set_free_regions_coming() {
6126   if (G1ConcRegionFreeingVerbose) {
6127     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6128                            "setting free regions coming");
6129   }
6130 
6131   assert(!free_regions_coming(), "pre-condition");
6132   _free_regions_coming = true;
6133 }
6134 
6135 void G1CollectedHeap::reset_free_regions_coming() {
6136   assert(free_regions_coming(), "pre-condition");
6137 
6138   {
6139     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6140     _free_regions_coming = false;
6141     SecondaryFreeList_lock->notify_all();
6142   }
6143 
6144   if (G1ConcRegionFreeingVerbose) {
6145     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6146                            "reset free regions coming");
6147   }
6148 }
6149 
6150 void G1CollectedHeap::wait_while_free_regions_coming() {
6151   // Most of the time we won't have to wait, so let's do a quick test
6152   // first before we take the lock.
6153   if (!free_regions_coming()) {
6154     return;
6155   }
6156 
6157   if (G1ConcRegionFreeingVerbose) {
6158     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6159                            "waiting for free regions");
6160   }
6161 
6162   {
6163     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6164     while (free_regions_coming()) {
6165       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6166     }
6167   }
6168 
6169   if (G1ConcRegionFreeingVerbose) {
6170     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6171                            "done waiting for free regions");
6172   }
6173 }
6174 
6175 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6176   assert(heap_lock_held_for_gc(),
6177               "the heap lock should already be held by or for this thread");
6178   _young_list->push_region(hr);
6179 }
6180 
6181 class NoYoungRegionsClosure: public HeapRegionClosure {
6182 private:
6183   bool _success;
6184 public:
6185   NoYoungRegionsClosure() : _success(true) { }
6186   bool doHeapRegion(HeapRegion* r) {
6187     if (r->is_young()) {
6188       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6189                              r->bottom(), r->end());
6190       _success = false;
6191     }
6192     return false;
6193   }
6194   bool success() { return _success; }
6195 };
6196 
6197 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6198   bool ret = _young_list->check_list_empty(check_sample);
6199 
6200   if (check_heap) {
6201     NoYoungRegionsClosure closure;
6202     heap_region_iterate(&closure);
6203     ret = ret && closure.success();
6204   }
6205 
6206   return ret;
6207 }
6208 
6209 class TearDownRegionSetsClosure : public HeapRegionClosure {
6210 private:
6211   HeapRegionSet *_old_set;
6212 
6213 public:
6214   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6215 
6216   bool doHeapRegion(HeapRegion* r) {
6217     if (r->is_old()) {
6218       _old_set->remove(r);
6219     } else {
6220       // We ignore free regions, we'll empty the free list afterwards.
6221       // We ignore young regions, we'll empty the young list afterwards.
6222       // We ignore humongous regions, we're not tearing down the
6223       // humongous regions set.
6224       assert(r->is_free() || r->is_young() || r->is_humongous(),
6225              "it cannot be another type");
6226     }
6227     return false;
6228   }
6229 
6230   ~TearDownRegionSetsClosure() {
6231     assert(_old_set->is_empty(), "post-condition");
6232   }
6233 };
6234 
6235 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6236   assert_at_safepoint(true /* should_be_vm_thread */);
6237 
6238   if (!free_list_only) {
6239     TearDownRegionSetsClosure cl(&_old_set);
6240     heap_region_iterate(&cl);
6241 
6242     // Note that emptying the _young_list is postponed and instead done as
6243     // the first step when rebuilding the regions sets again. The reason for
6244     // this is that during a full GC string deduplication needs to know if
6245     // a collected region was young or old when the full GC was initiated.
6246   }
6247   _hrm.remove_all_free_regions();
6248 }
6249 
6250 class RebuildRegionSetsClosure : public HeapRegionClosure {
6251 private:
6252   bool            _free_list_only;
6253   HeapRegionSet*   _old_set;
6254   HeapRegionManager*   _hrm;
6255   size_t          _total_used;
6256 
6257 public:
6258   RebuildRegionSetsClosure(bool free_list_only,
6259                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6260     _free_list_only(free_list_only),
6261     _old_set(old_set), _hrm(hrm), _total_used(0) {
6262     assert(_hrm->num_free_regions() == 0, "pre-condition");
6263     if (!free_list_only) {
6264       assert(_old_set->is_empty(), "pre-condition");
6265     }
6266   }
6267 
6268   bool doHeapRegion(HeapRegion* r) {
6269     if (r->is_continues_humongous()) {
6270       return false;
6271     }
6272 
6273     if (r->is_empty()) {
6274       // Add free regions to the free list
6275       r->set_free();
6276       r->set_allocation_context(AllocationContext::system());
6277       _hrm->insert_into_free_list(r);
6278     } else if (!_free_list_only) {
6279       assert(!r->is_young(), "we should not come across young regions");
6280 
6281       if (r->is_humongous()) {
6282         // We ignore humongous regions, we left the humongous set unchanged
6283       } else {
6284         // Objects that were compacted would have ended up on regions
6285         // that were previously old or free.
6286         assert(r->is_free() || r->is_old(), "invariant");
6287         // We now consider them old, so register as such.
6288         r->set_old();
6289         _old_set->add(r);
6290       }
6291       _total_used += r->used();
6292     }
6293 
6294     return false;
6295   }
6296 
6297   size_t total_used() {
6298     return _total_used;
6299   }
6300 };
6301 
6302 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6303   assert_at_safepoint(true /* should_be_vm_thread */);
6304 
6305   if (!free_list_only) {
6306     _young_list->empty_list();
6307   }
6308 
6309   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6310   heap_region_iterate(&cl);
6311 
6312   if (!free_list_only) {
6313     _allocator->set_used(cl.total_used());
6314   }
6315   assert(_allocator->used_unlocked() == recalculate_used(),
6316          err_msg("inconsistent _allocator->used_unlocked(), "
6317                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6318                  _allocator->used_unlocked(), recalculate_used()));
6319 }
6320 
6321 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6322   _refine_cte_cl->set_concurrent(concurrent);
6323 }
6324 
6325 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6326   HeapRegion* hr = heap_region_containing(p);
6327   return hr->is_in(p);
6328 }
6329 
6330 // Methods for the mutator alloc region
6331 
6332 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6333                                                       bool force) {
6334   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6335   assert(!force || g1_policy()->can_expand_young_list(),
6336          "if force is true we should be able to expand the young list");
6337   bool young_list_full = g1_policy()->is_young_list_full();
6338   if (force || !young_list_full) {
6339     HeapRegion* new_alloc_region = new_region(word_size,
6340                                               false /* is_old */,
6341                                               false /* do_expand */);
6342     if (new_alloc_region != NULL) {
6343       set_region_short_lived_locked(new_alloc_region);
6344       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6345       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6346       return new_alloc_region;
6347     }
6348   }
6349   return NULL;
6350 }
6351 
6352 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6353                                                   size_t allocated_bytes) {
6354   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6355   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6356 
6357   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6358   _allocator->increase_used(allocated_bytes);
6359   _hr_printer.retire(alloc_region);
6360   // We update the eden sizes here, when the region is retired,
6361   // instead of when it's allocated, since this is the point that its
6362   // used space has been recored in _summary_bytes_used.
6363   g1mm()->update_eden_size();
6364 }
6365 
6366 void G1CollectedHeap::set_par_threads() {
6367   // Don't change the number of workers.  Use the value previously set
6368   // in the workgroup.
6369   uint n_workers = workers()->active_workers();
6370   assert(UseDynamicNumberOfGCThreads ||
6371            n_workers == workers()->total_workers(),
6372       "Otherwise should be using the total number of workers");
6373   if (n_workers == 0) {
6374     assert(false, "Should have been set in prior evacuation pause.");
6375     n_workers = ParallelGCThreads;
6376     workers()->set_active_workers(n_workers);
6377   }
6378   set_par_threads(n_workers);
6379 }
6380 
6381 // Methods for the GC alloc regions
6382 
6383 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6384                                                  uint count,
6385                                                  InCSetState dest) {
6386   assert(FreeList_lock->owned_by_self(), "pre-condition");
6387 
6388   if (count < g1_policy()->max_regions(dest)) {
6389     const bool is_survivor = (dest.is_young());
6390     HeapRegion* new_alloc_region = new_region(word_size,
6391                                               !is_survivor,
6392                                               true /* do_expand */);
6393     if (new_alloc_region != NULL) {
6394       // We really only need to do this for old regions given that we
6395       // should never scan survivors. But it doesn't hurt to do it
6396       // for survivors too.
6397       new_alloc_region->record_timestamp();
6398       if (is_survivor) {
6399         new_alloc_region->set_survivor();
6400         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6401         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6402       } else {
6403         new_alloc_region->set_old();
6404         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6405         check_bitmaps("Old Region Allocation", new_alloc_region);
6406       }
6407       bool during_im = g1_policy()->during_initial_mark_pause();
6408       new_alloc_region->note_start_of_copying(during_im);
6409       return new_alloc_region;
6410     }
6411   }
6412   return NULL;
6413 }
6414 
6415 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6416                                              size_t allocated_bytes,
6417                                              InCSetState dest) {
6418   bool during_im = g1_policy()->during_initial_mark_pause();
6419   alloc_region->note_end_of_copying(during_im);
6420   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6421   if (dest.is_young()) {
6422     young_list()->add_survivor_region(alloc_region);
6423   } else {
6424     _old_set.add(alloc_region);
6425   }
6426   _hr_printer.retire(alloc_region);
6427 }
6428 
6429 // Heap region set verification
6430 
6431 class VerifyRegionListsClosure : public HeapRegionClosure {
6432 private:
6433   HeapRegionSet*   _old_set;
6434   HeapRegionSet*   _humongous_set;
6435   HeapRegionManager*   _hrm;
6436 
6437 public:
6438   HeapRegionSetCount _old_count;
6439   HeapRegionSetCount _humongous_count;
6440   HeapRegionSetCount _free_count;
6441 
6442   VerifyRegionListsClosure(HeapRegionSet* old_set,
6443                            HeapRegionSet* humongous_set,
6444                            HeapRegionManager* hrm) :
6445     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6446     _old_count(), _humongous_count(), _free_count(){ }
6447 
6448   bool doHeapRegion(HeapRegion* hr) {
6449     if (hr->is_continues_humongous()) {
6450       return false;
6451     }
6452 
6453     if (hr->is_young()) {
6454       // TODO
6455     } else if (hr->is_starts_humongous()) {
6456       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6457       _humongous_count.increment(1u, hr->capacity());
6458     } else if (hr->is_empty()) {
6459       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6460       _free_count.increment(1u, hr->capacity());
6461     } else if (hr->is_old()) {
6462       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6463       _old_count.increment(1u, hr->capacity());
6464     } else {
6465       ShouldNotReachHere();
6466     }
6467     return false;
6468   }
6469 
6470   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6471     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6472     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6473         old_set->total_capacity_bytes(), _old_count.capacity()));
6474 
6475     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6476     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6477         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6478 
6479     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6480     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6481         free_list->total_capacity_bytes(), _free_count.capacity()));
6482   }
6483 };
6484 
6485 void G1CollectedHeap::verify_region_sets() {
6486   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6487 
6488   // First, check the explicit lists.
6489   _hrm.verify();
6490   {
6491     // Given that a concurrent operation might be adding regions to
6492     // the secondary free list we have to take the lock before
6493     // verifying it.
6494     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6495     _secondary_free_list.verify_list();
6496   }
6497 
6498   // If a concurrent region freeing operation is in progress it will
6499   // be difficult to correctly attributed any free regions we come
6500   // across to the correct free list given that they might belong to
6501   // one of several (free_list, secondary_free_list, any local lists,
6502   // etc.). So, if that's the case we will skip the rest of the
6503   // verification operation. Alternatively, waiting for the concurrent
6504   // operation to complete will have a non-trivial effect on the GC's
6505   // operation (no concurrent operation will last longer than the
6506   // interval between two calls to verification) and it might hide
6507   // any issues that we would like to catch during testing.
6508   if (free_regions_coming()) {
6509     return;
6510   }
6511 
6512   // Make sure we append the secondary_free_list on the free_list so
6513   // that all free regions we will come across can be safely
6514   // attributed to the free_list.
6515   append_secondary_free_list_if_not_empty_with_lock();
6516 
6517   // Finally, make sure that the region accounting in the lists is
6518   // consistent with what we see in the heap.
6519 
6520   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6521   heap_region_iterate(&cl);
6522   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6523 }
6524 
6525 // Optimized nmethod scanning
6526 
6527 class RegisterNMethodOopClosure: public OopClosure {
6528   G1CollectedHeap* _g1h;
6529   nmethod* _nm;
6530 
6531   template <class T> void do_oop_work(T* p) {
6532     T heap_oop = oopDesc::load_heap_oop(p);
6533     if (!oopDesc::is_null(heap_oop)) {
6534       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6535       HeapRegion* hr = _g1h->heap_region_containing(obj);
6536       assert(!hr->is_continues_humongous(),
6537              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6538                      " starting at "HR_FORMAT,
6539                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6540 
6541       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6542       hr->add_strong_code_root_locked(_nm);
6543     }
6544   }
6545 
6546 public:
6547   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6548     _g1h(g1h), _nm(nm) {}
6549 
6550   void do_oop(oop* p)       { do_oop_work(p); }
6551   void do_oop(narrowOop* p) { do_oop_work(p); }
6552 };
6553 
6554 class UnregisterNMethodOopClosure: public OopClosure {
6555   G1CollectedHeap* _g1h;
6556   nmethod* _nm;
6557 
6558   template <class T> void do_oop_work(T* p) {
6559     T heap_oop = oopDesc::load_heap_oop(p);
6560     if (!oopDesc::is_null(heap_oop)) {
6561       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6562       HeapRegion* hr = _g1h->heap_region_containing(obj);
6563       assert(!hr->is_continues_humongous(),
6564              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6565                      " starting at "HR_FORMAT,
6566                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6567 
6568       hr->remove_strong_code_root(_nm);
6569     }
6570   }
6571 
6572 public:
6573   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6574     _g1h(g1h), _nm(nm) {}
6575 
6576   void do_oop(oop* p)       { do_oop_work(p); }
6577   void do_oop(narrowOop* p) { do_oop_work(p); }
6578 };
6579 
6580 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6581   CollectedHeap::register_nmethod(nm);
6582 
6583   guarantee(nm != NULL, "sanity");
6584   RegisterNMethodOopClosure reg_cl(this, nm);
6585   nm->oops_do(&reg_cl);
6586 }
6587 
6588 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6589   CollectedHeap::unregister_nmethod(nm);
6590 
6591   guarantee(nm != NULL, "sanity");
6592   UnregisterNMethodOopClosure reg_cl(this, nm);
6593   nm->oops_do(&reg_cl, true);
6594 }
6595 
6596 void G1CollectedHeap::purge_code_root_memory() {
6597   double purge_start = os::elapsedTime();
6598   G1CodeRootSet::purge();
6599   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6600   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6601 }
6602 
6603 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6604   G1CollectedHeap* _g1h;
6605 
6606 public:
6607   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6608     _g1h(g1h) {}
6609 
6610   void do_code_blob(CodeBlob* cb) {
6611     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6612     if (nm == NULL) {
6613       return;
6614     }
6615 
6616     if (ScavengeRootsInCode) {
6617       _g1h->register_nmethod(nm);
6618     }
6619   }
6620 };
6621 
6622 void G1CollectedHeap::rebuild_strong_code_roots() {
6623   RebuildStrongCodeRootClosure blob_cl(this);
6624   CodeCache::blobs_do(&blob_cl);
6625 }