1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc_implementation/shared/collectorCounters.hpp"
  32 #include "gc_implementation/shared/gcTrace.hpp"
  33 #include "gc_implementation/shared/gcTraceTime.hpp"
  34 #include "gc_implementation/shared/vmGCOperations.hpp"
  35 #include "gc_interface/collectedHeap.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/genCollectedHeap.hpp"
  39 #include "memory/genOopClosures.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "memory/space.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/fprofiler.hpp"
  47 #include "runtime/handles.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/vmThread.hpp"
  51 #include "services/management.hpp"
  52 #include "services/memoryService.hpp"
  53 #include "utilities/vmError.hpp"
  54 #include "utilities/workgroup.hpp"
  55 #include "utilities/macros.hpp"
  56 #if INCLUDE_ALL_GCS
  57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  59 #endif // INCLUDE_ALL_GCS
  60 
  61 GenCollectedHeap* GenCollectedHeap::_gch;
  62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  63 
  64 // The set of potentially parallel tasks in root scanning.
  65 enum GCH_strong_roots_tasks {
  66   GCH_PS_Universe_oops_do,
  67   GCH_PS_JNIHandles_oops_do,
  68   GCH_PS_ObjectSynchronizer_oops_do,
  69   GCH_PS_FlatProfiler_oops_do,
  70   GCH_PS_Management_oops_do,
  71   GCH_PS_SystemDictionary_oops_do,
  72   GCH_PS_ClassLoaderDataGraph_oops_do,
  73   GCH_PS_jvmti_oops_do,
  74   GCH_PS_CodeCache_oops_do,
  75   GCH_PS_younger_gens,
  76   // Leave this one last.
  77   GCH_PS_NumElements
  78 };
  79 
  80 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  81   SharedHeap(),
  82   _rem_set(NULL),
  83   _gen_policy(policy),
  84   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  85   _full_collections_completed(0)
  86 {
  87   assert(policy != NULL, "Sanity check");
  88 }
  89 
  90 jint GenCollectedHeap::initialize() {
  91   CollectedHeap::pre_initialize();
  92 
  93   _n_gens = gen_policy()->number_of_generations();
  94   assert(_n_gens == 2, "There is no support for more than two generations");
  95 
  96   // While there are no constraints in the GC code that HeapWordSize
  97   // be any particular value, there are multiple other areas in the
  98   // system which believe this to be true (e.g. oop->object_size in some
  99   // cases incorrectly returns the size in wordSize units rather than
 100   // HeapWordSize).
 101   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 102 
 103   // Allocate space for the heap.
 104 
 105   char* heap_address;
 106   ReservedSpace heap_rs;
 107 
 108   size_t heap_alignment = collector_policy()->heap_alignment();
 109 
 110   heap_address = allocate(heap_alignment, &heap_rs);
 111 
 112   if (!heap_rs.is_reserved()) {
 113     vm_shutdown_during_initialization(
 114       "Could not reserve enough space for object heap");
 115     return JNI_ENOMEM;
 116   }
 117 
 118   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 119 
 120   _rem_set = collector_policy()->create_rem_set(reserved_region());
 121   _barrier_set = rem_set()->bs();
 122   oopDesc::set_bs(_barrier_set);
 123 
 124   _gch = this;
 125 
 126   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 127   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, 0, rem_set());
 128   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 129 
 130   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 131   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, 1, rem_set());
 132   clear_incremental_collection_failed();
 133 
 134 #if INCLUDE_ALL_GCS
 135   // If we are running CMS, create the collector responsible
 136   // for collecting the CMS generations.
 137   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 138     bool success = create_cms_collector();
 139     if (!success) return JNI_ENOMEM;
 140   }
 141 #endif // INCLUDE_ALL_GCS
 142 
 143   return JNI_OK;
 144 }
 145 
 146 char* GenCollectedHeap::allocate(size_t alignment,
 147                                  ReservedSpace* heap_rs){
 148   // Now figure out the total size.
 149   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 150   assert(alignment % pageSize == 0, "Must be");
 151 
 152   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 153   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 154 
 155   // Check for overflow.
 156   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 157   if (total_reserved < young_spec->max_size()) {
 158     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 159                                   "the maximum representable size");
 160   }
 161   assert(total_reserved % alignment == 0,
 162          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 163                  SIZE_FORMAT, total_reserved, alignment));
 164 
 165   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 166   return heap_rs->base();
 167 }
 168 
 169 void GenCollectedHeap::post_initialize() {
 170   CollectedHeap::post_initialize();
 171   ref_processing_init();
 172   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 173   guarantee(policy->is_generation_policy(), "Illegal policy type");
 174   assert((_young_gen->kind() == Generation::DefNew) ||
 175          (_young_gen->kind() == Generation::ParNew),
 176     "Wrong youngest generation type");
 177   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 178 
 179   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 180          _old_gen->kind() == Generation::MarkSweepCompact,
 181     "Wrong generation kind");
 182 
 183   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 184                                  _old_gen->capacity(),
 185                                  def_new_gen->from()->capacity());
 186   policy->initialize_gc_policy_counters();
 187 }
 188 
 189 void GenCollectedHeap::ref_processing_init() {
 190   _young_gen->ref_processor_init();
 191   _old_gen->ref_processor_init();
 192 }
 193 
 194 size_t GenCollectedHeap::capacity() const {
 195   return _young_gen->capacity() + _old_gen->capacity();
 196 }
 197 
 198 size_t GenCollectedHeap::used() const {
 199   return _young_gen->used() + _old_gen->used();
 200 }
 201 
 202 // Save the "used_region" for generations level and lower.
 203 void GenCollectedHeap::save_used_regions(int level) {
 204   assert(level >= 0, "Illegal level parameter");
 205   assert(level < _n_gens, "Illegal level parameter");
 206   if (level == 1) {
 207     _old_gen->save_used_region();
 208   }
 209   _young_gen->save_used_region();
 210 }
 211 
 212 size_t GenCollectedHeap::max_capacity() const {
 213   return _young_gen->max_capacity() + _old_gen->max_capacity();
 214 }
 215 
 216 // Update the _full_collections_completed counter
 217 // at the end of a stop-world full GC.
 218 unsigned int GenCollectedHeap::update_full_collections_completed() {
 219   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 220   assert(_full_collections_completed <= _total_full_collections,
 221          "Can't complete more collections than were started");
 222   _full_collections_completed = _total_full_collections;
 223   ml.notify_all();
 224   return _full_collections_completed;
 225 }
 226 
 227 // Update the _full_collections_completed counter, as appropriate,
 228 // at the end of a concurrent GC cycle. Note the conditional update
 229 // below to allow this method to be called by a concurrent collector
 230 // without synchronizing in any manner with the VM thread (which
 231 // may already have initiated a STW full collection "concurrently").
 232 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 233   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 234   assert((_full_collections_completed <= _total_full_collections) &&
 235          (count <= _total_full_collections),
 236          "Can't complete more collections than were started");
 237   if (count > _full_collections_completed) {
 238     _full_collections_completed = count;
 239     ml.notify_all();
 240   }
 241   return _full_collections_completed;
 242 }
 243 
 244 
 245 #ifndef PRODUCT
 246 // Override of memory state checking method in CollectedHeap:
 247 // Some collectors (CMS for example) can't have badHeapWordVal written
 248 // in the first two words of an object. (For instance , in the case of
 249 // CMS these words hold state used to synchronize between certain
 250 // (concurrent) GC steps and direct allocating mutators.)
 251 // The skip_header_HeapWords() method below, allows us to skip
 252 // over the requisite number of HeapWord's. Note that (for
 253 // generational collectors) this means that those many words are
 254 // skipped in each object, irrespective of the generation in which
 255 // that object lives. The resultant loss of precision seems to be
 256 // harmless and the pain of avoiding that imprecision appears somewhat
 257 // higher than we are prepared to pay for such rudimentary debugging
 258 // support.
 259 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 260                                                          size_t size) {
 261   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 262     // We are asked to check a size in HeapWords,
 263     // but the memory is mangled in juint words.
 264     juint* start = (juint*) (addr + skip_header_HeapWords());
 265     juint* end   = (juint*) (addr + size);
 266     for (juint* slot = start; slot < end; slot += 1) {
 267       assert(*slot == badHeapWordVal,
 268              "Found non badHeapWordValue in pre-allocation check");
 269     }
 270   }
 271 }
 272 #endif
 273 
 274 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 275                                                bool is_tlab,
 276                                                bool first_only) {
 277   HeapWord* res = NULL;
 278 
 279   if (_young_gen->should_allocate(size, is_tlab)) {
 280     res = _young_gen->allocate(size, is_tlab);
 281     if (res != NULL || first_only) {
 282       return res;
 283     }
 284   }
 285 
 286   if (_old_gen->should_allocate(size, is_tlab)) {
 287     res = _old_gen->allocate(size, is_tlab);
 288   }
 289 
 290   return res;
 291 }
 292 
 293 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 294                                          bool* gc_overhead_limit_was_exceeded) {
 295   return collector_policy()->mem_allocate_work(size,
 296                                                false /* is_tlab */,
 297                                                gc_overhead_limit_was_exceeded);
 298 }
 299 
 300 bool GenCollectedHeap::must_clear_all_soft_refs() {
 301   return _gc_cause == GCCause::_last_ditch_collection;
 302 }
 303 
 304 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 305   return UseConcMarkSweepGC &&
 306          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 307           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 308 }
 309 
 310 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 311                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 312                                           bool restore_marks_for_biased_locking) {
 313   // Timer for individual generations. Last argument is false: no CR
 314   // FIXME: We should try to start the timing earlier to cover more of the GC pause
 315   // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 316   // so we can assume here that the next GC id is what we want.
 317   GCTraceTime t1(gen->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 318   TraceCollectorStats tcs(gen->counters());
 319   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 320 
 321   size_t prev_used = gen->used();
 322   gen->stat_record()->invocations++;
 323   gen->stat_record()->accumulated_time.start();
 324 
 325   // Must be done anew before each collection because
 326   // a previous collection will do mangling and will
 327   // change top of some spaces.
 328   record_gen_tops_before_GC();
 329 
 330   if (PrintGC && Verbose) {
 331     gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 332                         gen->level(),
 333                         gen->stat_record()->invocations,
 334                         size * HeapWordSize);
 335   }
 336 
 337   if (run_verification && VerifyBeforeGC) {
 338     HandleMark hm;  // Discard invalid handles created during verification
 339     Universe::verify(" VerifyBeforeGC:");
 340   }
 341   COMPILER2_PRESENT(DerivedPointerTable::clear());
 342 
 343   if (restore_marks_for_biased_locking) {
 344     // We perform this mark word preservation work lazily
 345     // because it's only at this point that we know whether we
 346     // absolutely have to do it; we want to avoid doing it for
 347     // scavenge-only collections where it's unnecessary
 348     BiasedLocking::preserve_marks();
 349   }
 350 
 351   // Do collection work
 352   {
 353     // Note on ref discovery: For what appear to be historical reasons,
 354     // GCH enables and disabled (by enqueing) refs discovery.
 355     // In the future this should be moved into the generation's
 356     // collect method so that ref discovery and enqueueing concerns
 357     // are local to a generation. The collect method could return
 358     // an appropriate indication in the case that notification on
 359     // the ref lock was needed. This will make the treatment of
 360     // weak refs more uniform (and indeed remove such concerns
 361     // from GCH). XXX
 362 
 363     HandleMark hm;  // Discard invalid handles created during gc
 364     save_marks();   // save marks for all gens
 365     // We want to discover references, but not process them yet.
 366     // This mode is disabled in process_discovered_references if the
 367     // generation does some collection work, or in
 368     // enqueue_discovered_references if the generation returns
 369     // without doing any work.
 370     ReferenceProcessor* rp = gen->ref_processor();
 371     // If the discovery of ("weak") refs in this generation is
 372     // atomic wrt other collectors in this configuration, we
 373     // are guaranteed to have empty discovered ref lists.
 374     if (rp->discovery_is_atomic()) {
 375       rp->enable_discovery();
 376       rp->setup_policy(clear_soft_refs);
 377     } else {
 378       // collect() below will enable discovery as appropriate
 379     }
 380     gen->collect(full, clear_soft_refs, size, is_tlab);
 381     if (!rp->enqueuing_is_done()) {
 382       rp->enqueue_discovered_references();
 383     } else {
 384       rp->set_enqueuing_is_done(false);
 385     }
 386     rp->verify_no_references_recorded();
 387   }
 388 
 389   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 390 
 391   gen->stat_record()->accumulated_time.stop();
 392 
 393   update_gc_stats(gen->level(), full);
 394 
 395   if (run_verification && VerifyAfterGC) {
 396     HandleMark hm;  // Discard invalid handles created during verification
 397     Universe::verify(" VerifyAfterGC:");
 398   }
 399 
 400   if (PrintGCDetails) {
 401     gclog_or_tty->print(":");
 402     gen->print_heap_change(prev_used);
 403   }
 404 }
 405 
 406 void GenCollectedHeap::do_collection(bool   full,
 407                                      bool   clear_all_soft_refs,
 408                                      size_t size,
 409                                      bool   is_tlab,
 410                                      int    max_level) {
 411   ResourceMark rm;
 412   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 413 
 414   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 415   assert(my_thread->is_VM_thread() ||
 416          my_thread->is_ConcurrentGC_thread(),
 417          "incorrect thread type capability");
 418   assert(Heap_lock->is_locked(),
 419          "the requesting thread should have the Heap_lock");
 420   guarantee(!is_gc_active(), "collection is not reentrant");
 421   assert(max_level < n_gens(), "sanity check");
 422 
 423   if (GC_locker::check_active_before_gc()) {
 424     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 425   }
 426 
 427   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 428                           collector_policy()->should_clear_all_soft_refs();
 429 
 430   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 431 
 432   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 433 
 434   print_heap_before_gc();
 435 
 436   {
 437     FlagSetting fl(_is_gc_active, true);
 438 
 439     bool complete = full && (max_level == (n_gens()-1));
 440     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 441     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 442     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 443     // so we can assume here that the next GC id is what we want.
 444     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 445 
 446     gc_prologue(complete);
 447     increment_total_collections(complete);
 448 
 449     size_t gch_prev_used = used();
 450     bool run_verification = total_collections() >= VerifyGCStartAt;
 451 
 452     bool prepared_for_verification = false;
 453     int max_level_collected = 0;
 454     bool old_collects_young = (max_level == 1) &&
 455                               full &&
 456                               _old_gen->full_collects_younger_generations();
 457     if (!old_collects_young &&
 458         _young_gen->should_collect(full, size, is_tlab)) {
 459       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 460         prepare_for_verify();
 461         prepared_for_verification = true;
 462       }
 463 
 464       assert(!_young_gen->performs_in_place_marking(), "No young generation do in place marking");
 465       collect_generation(_young_gen,
 466                          full,
 467                          size,
 468                          is_tlab,
 469                          run_verification && VerifyGCLevel <= 0,
 470                          do_clear_all_soft_refs,
 471                          false);
 472 
 473       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 474           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 475         // Allocation request was met by young GC.
 476         size = 0;
 477       }
 478     }
 479 
 480     bool must_restore_marks_for_biased_locking = false;
 481 
 482     if (max_level == 1 && _old_gen->should_collect(full, size, is_tlab)) {
 483       if (!complete) {
 484         // The full_collections increment was missed above.
 485         increment_total_full_collections();
 486       }
 487 
 488       pre_full_gc_dump(NULL);    // do any pre full gc dumps
 489 
 490       if (!prepared_for_verification && run_verification &&
 491           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 492         prepare_for_verify();
 493       }
 494 
 495       assert(_old_gen->performs_in_place_marking(), "All old generations do in place marking");
 496       collect_generation(_old_gen,
 497                          full,
 498                          size,
 499                          is_tlab,
 500                          run_verification && VerifyGCLevel <= 1,
 501                          do_clear_all_soft_refs,
 502                          true);
 503 
 504       must_restore_marks_for_biased_locking = true;
 505       max_level_collected = 1;
 506     }
 507 
 508     // Update "complete" boolean wrt what actually transpired --
 509     // for instance, a promotion failure could have led to
 510     // a whole heap collection.
 511     complete = complete || (max_level_collected == n_gens() - 1);
 512 
 513     if (complete) { // We did a "major" collection
 514       // FIXME: See comment at pre_full_gc_dump call
 515       post_full_gc_dump(NULL);   // do any post full gc dumps
 516     }
 517 
 518     if (PrintGCDetails) {
 519       print_heap_change(gch_prev_used);
 520 
 521       // Print metaspace info for full GC with PrintGCDetails flag.
 522       if (complete) {
 523         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 524       }
 525     }
 526 
 527     // Adjust generation sizes.
 528     if (max_level_collected == 1) {
 529       _old_gen->compute_new_size();
 530     }
 531     _young_gen->compute_new_size();
 532 
 533     if (complete) {
 534       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 535       ClassLoaderDataGraph::purge();
 536       MetaspaceAux::verify_metrics();
 537       // Resize the metaspace capacity after full collections
 538       MetaspaceGC::compute_new_size();
 539       update_full_collections_completed();
 540     }
 541 
 542     // Track memory usage and detect low memory after GC finishes
 543     MemoryService::track_memory_usage();
 544 
 545     gc_epilogue(complete);
 546 
 547     if (must_restore_marks_for_biased_locking) {
 548       BiasedLocking::restore_marks();
 549     }
 550   }
 551 
 552   print_heap_after_gc();
 553 
 554 #ifdef TRACESPINNING
 555   ParallelTaskTerminator::print_termination_counts();
 556 #endif
 557 }
 558 
 559 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 560   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 561 }
 562 
 563 void GenCollectedHeap::set_par_threads(uint t) {
 564   assert(t == 0 || !UseSerialGC, "Cannot have parallel threads");
 565   CollectedHeap::set_par_threads(t);
 566   set_n_termination(t);
 567 }
 568 
 569 void GenCollectedHeap::set_n_termination(uint t) {
 570   _process_strong_tasks->set_n_threads(t);
 571 }
 572 
 573 #ifdef ASSERT
 574 class AssertNonScavengableClosure: public OopClosure {
 575 public:
 576   virtual void do_oop(oop* p) {
 577     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 578       "Referent should not be scavengable.");  }
 579   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 580 };
 581 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 582 #endif
 583 
 584 void GenCollectedHeap::process_roots(bool activate_scope,
 585                                      ScanningOption so,
 586                                      OopClosure* strong_roots,
 587                                      OopClosure* weak_roots,
 588                                      CLDClosure* strong_cld_closure,
 589                                      CLDClosure* weak_cld_closure,
 590                                      CodeBlobClosure* code_roots) {
 591   StrongRootsScope srs(this, activate_scope);
 592 
 593   // General roots.
 594   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 595   assert(code_roots != NULL, "code root closure should always be set");
 596   // _n_termination for _process_strong_tasks should be set up stream
 597   // in a method not running in a GC worker.  Otherwise the GC worker
 598   // could be trying to change the termination condition while the task
 599   // is executing in another GC worker.
 600 
 601   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 602     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 603   }
 604 
 605   // Some CLDs contained in the thread frames should be considered strong.
 606   // Don't process them if they will be processed during the ClassLoaderDataGraph phase.
 607   CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
 608   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 609   CodeBlobClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 610 
 611   bool is_par =n_par_threads() > 0;
 612   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_clds_p, roots_from_code_p);
 613 
 614   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 615     Universe::oops_do(strong_roots);
 616   }
 617   // Global (strong) JNI handles
 618   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 619     JNIHandles::oops_do(strong_roots);
 620   }
 621 
 622   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 623     ObjectSynchronizer::oops_do(strong_roots);
 624   }
 625   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 626     FlatProfiler::oops_do(strong_roots);
 627   }
 628   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 629     Management::oops_do(strong_roots);
 630   }
 631   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 632     JvmtiExport::oops_do(strong_roots);
 633   }
 634 
 635   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 636     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 637   }
 638 
 639   // All threads execute the following. A specific chunk of buckets
 640   // from the StringTable are the individual tasks.
 641   if (weak_roots != NULL) {
 642     if (CollectedHeap::use_parallel_gc_threads()) {
 643       StringTable::possibly_parallel_oops_do(weak_roots);
 644     } else {
 645       StringTable::oops_do(weak_roots);
 646     }
 647   }
 648 
 649   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 650     if (so & SO_ScavengeCodeCache) {
 651       assert(code_roots != NULL, "must supply closure for code cache");
 652 
 653       // We only visit parts of the CodeCache when scavenging.
 654       CodeCache::scavenge_root_nmethods_do(code_roots);
 655     }
 656     if (so & SO_AllCodeCache) {
 657       assert(code_roots != NULL, "must supply closure for code cache");
 658 
 659       // CMSCollector uses this to do intermediate-strength collections.
 660       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 661       CodeCache::blobs_do(code_roots);
 662     }
 663     // Verify that the code cache contents are not subject to
 664     // movement by a scavenging collection.
 665     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 666     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 667   }
 668 
 669 }
 670 
 671 void GenCollectedHeap::gen_process_roots(int level,
 672                                          bool younger_gens_as_roots,
 673                                          bool activate_scope,
 674                                          ScanningOption so,
 675                                          bool only_strong_roots,
 676                                          OopsInGenClosure* not_older_gens,
 677                                          OopsInGenClosure* older_gens,
 678                                          CLDClosure* cld_closure) {
 679   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
 680 
 681   bool is_moving_collection = false;
 682   if (level == 0 || is_adjust_phase) {
 683     // young collections are always moving
 684     is_moving_collection = true;
 685   }
 686 
 687   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 688   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
 689   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 690 
 691   process_roots(activate_scope, so,
 692                 not_older_gens, weak_roots,
 693                 cld_closure, weak_cld_closure,
 694                 &mark_code_closure);
 695 
 696   if (younger_gens_as_roots) {
 697     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 698       if (level == 1) {
 699         not_older_gens->set_generation(_young_gen);
 700         _young_gen->oop_iterate(not_older_gens);
 701       }
 702       not_older_gens->reset_generation();
 703     }
 704   }
 705   // When collection is parallel, all threads get to cooperate to do
 706   // older-gen scanning.
 707   if (level == 0) {
 708     older_gens->set_generation(_old_gen);
 709     rem_set()->younger_refs_iterate(_old_gen, older_gens);
 710     older_gens->reset_generation();
 711   }
 712 
 713   _process_strong_tasks->all_tasks_completed();
 714 }
 715 
 716 
 717 class AlwaysTrueClosure: public BoolObjectClosure {
 718 public:
 719   bool do_object_b(oop p) { return true; }
 720 };
 721 static AlwaysTrueClosure always_true;
 722 
 723 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 724   JNIHandles::weak_oops_do(&always_true, root_closure);
 725   _young_gen->ref_processor()->weak_oops_do(root_closure);
 726   _old_gen->ref_processor()->weak_oops_do(root_closure);
 727 }
 728 
 729 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 730 void GenCollectedHeap::                                                 \
 731 oop_since_save_marks_iterate(int level,                                 \
 732                              OopClosureType* cur,                       \
 733                              OopClosureType* older) {                   \
 734   if (level == 0) {                                                     \
 735     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 736     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 737   } else {                                                              \
 738     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 739   }                                                                     \
 740 }
 741 
 742 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 743 
 744 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 745 
 746 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 747   if (level == 0 && !_young_gen->no_allocs_since_save_marks()) {
 748     return false;
 749   }
 750   return _old_gen->no_allocs_since_save_marks();
 751 }
 752 
 753 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 754   return _young_gen->supports_inline_contig_alloc();
 755 }
 756 
 757 HeapWord** GenCollectedHeap::top_addr() const {
 758   return _young_gen->top_addr();
 759 }
 760 
 761 HeapWord** GenCollectedHeap::end_addr() const {
 762   return _young_gen->end_addr();
 763 }
 764 
 765 // public collection interfaces
 766 
 767 void GenCollectedHeap::collect(GCCause::Cause cause) {
 768   if (should_do_concurrent_full_gc(cause)) {
 769 #if INCLUDE_ALL_GCS
 770     // mostly concurrent full collection
 771     collect_mostly_concurrent(cause);
 772 #else  // INCLUDE_ALL_GCS
 773     ShouldNotReachHere();
 774 #endif // INCLUDE_ALL_GCS
 775   } else if (cause == GCCause::_wb_young_gc) {
 776     // minor collection for WhiteBox API
 777     collect(cause, 0);
 778   } else {
 779 #ifdef ASSERT
 780   if (cause == GCCause::_scavenge_alot) {
 781     // minor collection only
 782     collect(cause, 0);
 783   } else {
 784     // Stop-the-world full collection
 785     collect(cause, n_gens() - 1);
 786   }
 787 #else
 788     // Stop-the-world full collection
 789     collect(cause, n_gens() - 1);
 790 #endif
 791   }
 792 }
 793 
 794 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 795   // The caller doesn't have the Heap_lock
 796   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 797   MutexLocker ml(Heap_lock);
 798   collect_locked(cause, max_level);
 799 }
 800 
 801 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 802   // The caller has the Heap_lock
 803   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 804   collect_locked(cause, n_gens() - 1);
 805 }
 806 
 807 // this is the private collection interface
 808 // The Heap_lock is expected to be held on entry.
 809 
 810 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 811   // Read the GC count while holding the Heap_lock
 812   unsigned int gc_count_before      = total_collections();
 813   unsigned int full_gc_count_before = total_full_collections();
 814   {
 815     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 816     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 817                          cause, max_level);
 818     VMThread::execute(&op);
 819   }
 820 }
 821 
 822 #if INCLUDE_ALL_GCS
 823 bool GenCollectedHeap::create_cms_collector() {
 824 
 825   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 826          "Unexpected generation kinds");
 827   // Skip two header words in the block content verification
 828   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 829   CMSCollector* collector = new CMSCollector(
 830     (ConcurrentMarkSweepGeneration*)_old_gen,
 831     _rem_set->as_CardTableRS(),
 832     (ConcurrentMarkSweepPolicy*) collector_policy());
 833 
 834   if (collector == NULL || !collector->completed_initialization()) {
 835     if (collector) {
 836       delete collector;  // Be nice in embedded situation
 837     }
 838     vm_shutdown_during_initialization("Could not create CMS collector");
 839     return false;
 840   }
 841   return true;  // success
 842 }
 843 
 844 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 845   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 846 
 847   MutexLocker ml(Heap_lock);
 848   // Read the GC counts while holding the Heap_lock
 849   unsigned int full_gc_count_before = total_full_collections();
 850   unsigned int gc_count_before      = total_collections();
 851   {
 852     MutexUnlocker mu(Heap_lock);
 853     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 854     VMThread::execute(&op);
 855   }
 856 }
 857 #endif // INCLUDE_ALL_GCS
 858 
 859 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 860    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 861 }
 862 
 863 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 864                                           int max_level) {
 865   int local_max_level;
 866   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 867       gc_cause() == GCCause::_gc_locker) {
 868     local_max_level = 0;
 869   } else {
 870     local_max_level = max_level;
 871   }
 872 
 873   do_collection(true                 /* full */,
 874                 clear_all_soft_refs  /* clear_all_soft_refs */,
 875                 0                    /* size */,
 876                 false                /* is_tlab */,
 877                 local_max_level      /* max_level */);
 878   // Hack XXX FIX ME !!!
 879   // A scavenge may not have been attempted, or may have
 880   // been attempted and failed, because the old gen was too full
 881   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 882       incremental_collection_will_fail(false /* don't consult_young */)) {
 883     if (PrintGCDetails) {
 884       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 885                              "because scavenge failed");
 886     }
 887     // This time allow the old gen to be collected as well
 888     do_collection(true                 /* full */,
 889                   clear_all_soft_refs  /* clear_all_soft_refs */,
 890                   0                    /* size */,
 891                   false                /* is_tlab */,
 892                   n_gens() - 1         /* max_level */);
 893   }
 894 }
 895 
 896 bool GenCollectedHeap::is_in_young(oop p) {
 897   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 898   assert(result == _young_gen->is_in_reserved(p),
 899          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 900   return result;
 901 }
 902 
 903 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 904 bool GenCollectedHeap::is_in(const void* p) const {
 905   #ifndef ASSERT
 906   guarantee(VerifyBeforeGC      ||
 907             VerifyDuringGC      ||
 908             VerifyBeforeExit    ||
 909             VerifyDuringStartup ||
 910             PrintAssembly       ||
 911             tty->count() != 0   ||   // already printing
 912             VerifyAfterGC       ||
 913     VMError::fatal_error_in_progress(), "too expensive");
 914 
 915   #endif
 916   return _young_gen->is_in(p) || _old_gen->is_in(p);
 917 }
 918 
 919 #ifdef ASSERT
 920 // Don't implement this by using is_in_young().  This method is used
 921 // in some cases to check that is_in_young() is correct.
 922 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 923   assert(is_in_reserved(p) || p == NULL,
 924     "Does not work if address is non-null and outside of the heap");
 925   return p < _young_gen->reserved().end() && p != NULL;
 926 }
 927 #endif
 928 
 929 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 930   _young_gen->oop_iterate(cl);
 931   _old_gen->oop_iterate(cl);
 932 }
 933 
 934 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 935   _young_gen->object_iterate(cl);
 936   _old_gen->object_iterate(cl);
 937 }
 938 
 939 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 940   _young_gen->safe_object_iterate(cl);
 941   _old_gen->safe_object_iterate(cl);
 942 }
 943 
 944 Space* GenCollectedHeap::space_containing(const void* addr) const {
 945   Space* res = _young_gen->space_containing(addr);
 946   if (res != NULL) {
 947     return res;
 948   }
 949   res = _old_gen->space_containing(addr);
 950   assert(res != NULL, "Could not find containing space");
 951   return res;
 952 }
 953 
 954 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 955   assert(is_in_reserved(addr), "block_start of address outside of heap");
 956   if (_young_gen->is_in_reserved(addr)) {
 957     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 958     return _young_gen->block_start(addr);
 959   }
 960 
 961   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 962   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 963   return _old_gen->block_start(addr);
 964 }
 965 
 966 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 967   assert(is_in_reserved(addr), "block_size of address outside of heap");
 968   if (_young_gen->is_in_reserved(addr)) {
 969     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 970     return _young_gen->block_size(addr);
 971   }
 972 
 973   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 974   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 975   return _old_gen->block_size(addr);
 976 }
 977 
 978 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 979   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 980   assert(block_start(addr) == addr, "addr must be a block start");
 981   if (_young_gen->is_in_reserved(addr)) {
 982     return _young_gen->block_is_obj(addr);
 983   }
 984 
 985   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 986   return _old_gen->block_is_obj(addr);
 987 }
 988 
 989 bool GenCollectedHeap::supports_tlab_allocation() const {
 990   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 991   return _young_gen->supports_tlab_allocation();
 992 }
 993 
 994 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 995   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 996   if (_young_gen->supports_tlab_allocation()) {
 997     return _young_gen->tlab_capacity();
 998   }
 999   return 0;
1000 }
1001 
1002 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1003   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1004   if (_young_gen->supports_tlab_allocation()) {
1005     return _young_gen->tlab_used();
1006   }
1007   return 0;
1008 }
1009 
1010 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1011   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1012   if (_young_gen->supports_tlab_allocation()) {
1013     return _young_gen->unsafe_max_tlab_alloc();
1014   }
1015   return 0;
1016 }
1017 
1018 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1019   bool gc_overhead_limit_was_exceeded;
1020   return collector_policy()->mem_allocate_work(size /* size */,
1021                                                true /* is_tlab */,
1022                                                &gc_overhead_limit_was_exceeded);
1023 }
1024 
1025 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1026 // from the list headed by "*prev_ptr".
1027 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1028   bool first = true;
1029   size_t min_size = 0;   // "first" makes this conceptually infinite.
1030   ScratchBlock **smallest_ptr, *smallest;
1031   ScratchBlock  *cur = *prev_ptr;
1032   while (cur) {
1033     assert(*prev_ptr == cur, "just checking");
1034     if (first || cur->num_words < min_size) {
1035       smallest_ptr = prev_ptr;
1036       smallest     = cur;
1037       min_size     = smallest->num_words;
1038       first        = false;
1039     }
1040     prev_ptr = &cur->next;
1041     cur     =  cur->next;
1042   }
1043   smallest      = *smallest_ptr;
1044   *smallest_ptr = smallest->next;
1045   return smallest;
1046 }
1047 
1048 // Sort the scratch block list headed by res into decreasing size order,
1049 // and set "res" to the result.
1050 static void sort_scratch_list(ScratchBlock*& list) {
1051   ScratchBlock* sorted = NULL;
1052   ScratchBlock* unsorted = list;
1053   while (unsorted) {
1054     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1055     smallest->next  = sorted;
1056     sorted          = smallest;
1057   }
1058   list = sorted;
1059 }
1060 
1061 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1062                                                size_t max_alloc_words) {
1063   ScratchBlock* res = NULL;
1064   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1065   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1066   sort_scratch_list(res);
1067   return res;
1068 }
1069 
1070 void GenCollectedHeap::release_scratch() {
1071   _young_gen->reset_scratch();
1072   _old_gen->reset_scratch();
1073 }
1074 
1075 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1076   void do_generation(Generation* gen) {
1077     gen->prepare_for_verify();
1078   }
1079 };
1080 
1081 void GenCollectedHeap::prepare_for_verify() {
1082   ensure_parsability(false);        // no need to retire TLABs
1083   GenPrepareForVerifyClosure blk;
1084   generation_iterate(&blk, false);
1085 }
1086 
1087 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1088                                           bool old_to_young) {
1089   if (old_to_young) {
1090     cl->do_generation(_old_gen);
1091     cl->do_generation(_young_gen);
1092   } else {
1093     cl->do_generation(_young_gen);
1094     cl->do_generation(_old_gen);
1095   }
1096 }
1097 
1098 bool GenCollectedHeap::is_maximal_no_gc() const {
1099   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1100 }
1101 
1102 void GenCollectedHeap::save_marks() {
1103   _young_gen->save_marks();
1104   _old_gen->save_marks();
1105 }
1106 
1107 GenCollectedHeap* GenCollectedHeap::heap() {
1108   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1109   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1110   return _gch;
1111 }
1112 
1113 
1114 void GenCollectedHeap::prepare_for_compaction() {
1115   guarantee(_n_gens = 2, "Wrong number of generations");
1116   // Start by compacting into same gen.
1117   CompactPoint cp(_old_gen);
1118   _old_gen->prepare_for_compaction(&cp);
1119   _young_gen->prepare_for_compaction(&cp);
1120 }
1121 
1122 GCStats* GenCollectedHeap::gc_stats(int level) const {
1123   if (level == 0) {
1124     return _young_gen->gc_stats();
1125   } else {
1126     return _old_gen->gc_stats();
1127   }
1128 }
1129 
1130 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1131   if (!silent) {
1132     gclog_or_tty->print("%s", _old_gen->name());
1133     gclog_or_tty->print(" ");
1134   }
1135   _old_gen->verify();
1136 
1137   if (!silent) {
1138     gclog_or_tty->print("%s", _young_gen->name());
1139     gclog_or_tty->print(" ");
1140   }
1141   _young_gen->verify();
1142 
1143   if (!silent) {
1144     gclog_or_tty->print("remset ");
1145   }
1146   rem_set()->verify();
1147 }
1148 
1149 void GenCollectedHeap::print_on(outputStream* st) const {
1150   _young_gen->print_on(st);
1151   _old_gen->print_on(st);
1152   MetaspaceAux::print_on(st);
1153 }
1154 
1155 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1156   if (workers() != NULL) {
1157     workers()->threads_do(tc);
1158   }
1159 #if INCLUDE_ALL_GCS
1160   if (UseConcMarkSweepGC) {
1161     ConcurrentMarkSweepThread::threads_do(tc);
1162   }
1163 #endif // INCLUDE_ALL_GCS
1164 }
1165 
1166 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1167 #if INCLUDE_ALL_GCS
1168   if (UseConcMarkSweepGC) {
1169     workers()->print_worker_threads_on(st);
1170     ConcurrentMarkSweepThread::print_all_on(st);
1171   }
1172 #endif // INCLUDE_ALL_GCS
1173 }
1174 
1175 void GenCollectedHeap::print_on_error(outputStream* st) const {
1176   this->CollectedHeap::print_on_error(st);
1177 
1178 #if INCLUDE_ALL_GCS
1179   if (UseConcMarkSweepGC) {
1180     st->cr();
1181     CMSCollector::print_on_error(st);
1182   }
1183 #endif // INCLUDE_ALL_GCS
1184 }
1185 
1186 void GenCollectedHeap::print_tracing_info() const {
1187   if (TraceYoungGenTime) {
1188     _young_gen->print_summary_info();
1189   }
1190   if (TraceOldGenTime) {
1191     _old_gen->print_summary_info();
1192   }
1193 }
1194 
1195 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1196   if (PrintGCDetails && Verbose) {
1197     gclog_or_tty->print(" "  SIZE_FORMAT
1198                         "->" SIZE_FORMAT
1199                         "("  SIZE_FORMAT ")",
1200                         prev_used, used(), capacity());
1201   } else {
1202     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1203                         "->" SIZE_FORMAT "K"
1204                         "("  SIZE_FORMAT "K)",
1205                         prev_used / K, used() / K, capacity() / K);
1206   }
1207 }
1208 
1209 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1210  private:
1211   bool _full;
1212  public:
1213   void do_generation(Generation* gen) {
1214     gen->gc_prologue(_full);
1215   }
1216   GenGCPrologueClosure(bool full) : _full(full) {};
1217 };
1218 
1219 void GenCollectedHeap::gc_prologue(bool full) {
1220   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1221 
1222   always_do_update_barrier = false;
1223   // Fill TLAB's and such
1224   CollectedHeap::accumulate_statistics_all_tlabs();
1225   ensure_parsability(true);   // retire TLABs
1226 
1227   // Walk generations
1228   GenGCPrologueClosure blk(full);
1229   generation_iterate(&blk, false);  // not old-to-young.
1230 };
1231 
1232 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1233  private:
1234   bool _full;
1235  public:
1236   void do_generation(Generation* gen) {
1237     gen->gc_epilogue(_full);
1238   }
1239   GenGCEpilogueClosure(bool full) : _full(full) {};
1240 };
1241 
1242 void GenCollectedHeap::gc_epilogue(bool full) {
1243 #ifdef COMPILER2
1244   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1245   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1246   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1247 #endif /* COMPILER2 */
1248 
1249   resize_all_tlabs();
1250 
1251   GenGCEpilogueClosure blk(full);
1252   generation_iterate(&blk, false);  // not old-to-young.
1253 
1254   if (!CleanChunkPoolAsync) {
1255     Chunk::clean_chunk_pool();
1256   }
1257 
1258   MetaspaceCounters::update_performance_counters();
1259   CompressedClassSpaceCounters::update_performance_counters();
1260 
1261   always_do_update_barrier = UseConcMarkSweepGC;
1262 };
1263 
1264 #ifndef PRODUCT
1265 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1266  private:
1267  public:
1268   void do_generation(Generation* gen) {
1269     gen->record_spaces_top();
1270   }
1271 };
1272 
1273 void GenCollectedHeap::record_gen_tops_before_GC() {
1274   if (ZapUnusedHeapArea) {
1275     GenGCSaveTopsBeforeGCClosure blk;
1276     generation_iterate(&blk, false);  // not old-to-young.
1277   }
1278 }
1279 #endif  // not PRODUCT
1280 
1281 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1282  public:
1283   void do_generation(Generation* gen) {
1284     gen->ensure_parsability();
1285   }
1286 };
1287 
1288 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1289   CollectedHeap::ensure_parsability(retire_tlabs);
1290   GenEnsureParsabilityClosure ep_cl;
1291   generation_iterate(&ep_cl, false);
1292 }
1293 
1294 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1295                                               oop obj,
1296                                               size_t obj_size) {
1297   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1298   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1299   HeapWord* result = NULL;
1300 
1301   result = old_gen->expand_and_allocate(obj_size, false);
1302 
1303   if (result != NULL) {
1304     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1305   }
1306   return oop(result);
1307 }
1308 
1309 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1310   jlong _time;   // in ms
1311   jlong _now;    // in ms
1312 
1313  public:
1314   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1315 
1316   jlong time() { return _time; }
1317 
1318   void do_generation(Generation* gen) {
1319     _time = MIN2(_time, gen->time_of_last_gc(_now));
1320   }
1321 };
1322 
1323 jlong GenCollectedHeap::millis_since_last_gc() {
1324   // We need a monotonically non-decreasing time in ms but
1325   // os::javaTimeMillis() does not guarantee monotonicity.
1326   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1327   GenTimeOfLastGCClosure tolgc_cl(now);
1328   // iterate over generations getting the oldest
1329   // time that a generation was collected
1330   generation_iterate(&tolgc_cl, false);
1331 
1332   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1333   // provided the underlying platform provides such a time source
1334   // (and it is bug free). So we still have to guard against getting
1335   // back a time later than 'now'.
1336   jlong retVal = now - tolgc_cl.time();
1337   if (retVal < 0) {
1338     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, retVal);)
1339     return 0;
1340   }
1341   return retVal;
1342 }