1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 class FlexibleWorkGang;
  35 
  36 // A "GenCollectedHeap" is a SharedHeap that uses generational
  37 // collection.  It has two generations, young and old.
  38 class GenCollectedHeap : public SharedHeap {
  39   friend class GenCollectorPolicy;
  40   friend class Generation;
  41   friend class DefNewGeneration;
  42   friend class TenuredGeneration;
  43   friend class ConcurrentMarkSweepGeneration;
  44   friend class CMSCollector;
  45   friend class GenMarkSweep;
  46   friend class VM_GenCollectForAllocation;
  47   friend class VM_GenCollectFull;
  48   friend class VM_GenCollectFullConcurrent;
  49   friend class VM_GC_HeapInspection;
  50   friend class VM_HeapDumper;
  51   friend class HeapInspection;
  52   friend class GCCauseSetter;
  53   friend class VMStructs;
  54 public:
  55   enum SomeConstants {
  56     max_gens = 10
  57   };
  58 
  59   friend class VM_PopulateDumpSharedSpace;
  60 
  61  protected:
  62   // Fields:
  63   static GenCollectedHeap* _gch;
  64 
  65  private:
  66   int _n_gens;
  67 
  68   Generation* _young_gen;
  69   Generation* _old_gen;
  70 
  71   // The singleton Gen Remembered Set.
  72   GenRemSet* _rem_set;
  73 
  74   // The generational collector policy.
  75   GenCollectorPolicy* _gen_policy;
  76 
  77   // Indicates that the most recent previous incremental collection failed.
  78   // The flag is cleared when an action is taken that might clear the
  79   // condition that caused that incremental collection to fail.
  80   bool _incremental_collection_failed;
  81 
  82   // In support of ExplicitGCInvokesConcurrent functionality
  83   unsigned int _full_collections_completed;
  84 
  85   // Data structure for claiming the (potentially) parallel tasks in
  86   // (gen-specific) roots processing.
  87   SubTasksDone* _process_strong_tasks;
  88 
  89   // Collects the given generation.
  90   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  91                           bool run_verification, bool clear_soft_refs,
  92                           bool restore_marks_for_biased_locking);
  93 
  94   // In block contents verification, the number of header words to skip
  95   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  96 
  97   FlexibleWorkGang* _workers;
  98 
  99 protected:
 100   // Helper functions for allocation
 101   HeapWord* attempt_allocation(size_t size,
 102                                bool   is_tlab,
 103                                bool   first_only);
 104 
 105   // Helper function for two callbacks below.
 106   // Considers collection of the first max_level+1 generations.
 107   void do_collection(bool   full,
 108                      bool   clear_all_soft_refs,
 109                      size_t size,
 110                      bool   is_tlab,
 111                      int    max_level);
 112 
 113   // Callback from VM_GenCollectForAllocation operation.
 114   // This function does everything necessary/possible to satisfy an
 115   // allocation request that failed in the youngest generation that should
 116   // have handled it (including collection, expansion, etc.)
 117   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 118 
 119   // Callback from VM_GenCollectFull operation.
 120   // Perform a full collection of the first max_level+1 generations.
 121   virtual void do_full_collection(bool clear_all_soft_refs);
 122   void do_full_collection(bool clear_all_soft_refs, int max_level);
 123 
 124   // Does the "cause" of GC indicate that
 125   // we absolutely __must__ clear soft refs?
 126   bool must_clear_all_soft_refs();
 127 
 128 public:
 129   GenCollectedHeap(GenCollectorPolicy *policy);
 130 
 131   FlexibleWorkGang* workers() const { return _workers; }
 132 
 133   GCStats* gc_stats(int level) const;
 134 
 135   // Returns JNI_OK on success
 136   virtual jint initialize();
 137 
 138   // Reserve aligned space for the heap as needed by the contained generations.
 139   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 140 
 141   // Does operations required after initialization has been done.
 142   void post_initialize();
 143 
 144   // Initialize ("weak") refs processing support
 145   virtual void ref_processing_init();
 146 
 147   virtual CollectedHeap::Name kind() const {
 148     return CollectedHeap::GenCollectedHeap;
 149   }
 150 
 151   Generation* young_gen() const { return _young_gen; }
 152   Generation* old_gen()   const { return _old_gen; }
 153 
 154   // The generational collector policy.
 155   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 156 
 157   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 158 
 159   // Adaptive size policy
 160   virtual AdaptiveSizePolicy* size_policy() {
 161     return gen_policy()->size_policy();
 162   }
 163 
 164   // Return the (conservative) maximum heap alignment
 165   static size_t conservative_max_heap_alignment() {
 166     return Generation::GenGrain;
 167   }
 168 
 169   size_t capacity() const;
 170   size_t used() const;
 171 
 172   // Save the "used_region" for generations level and lower.
 173   void save_used_regions(int level);
 174 
 175   size_t max_capacity() const;
 176 
 177   HeapWord* mem_allocate(size_t size,
 178                          bool*  gc_overhead_limit_was_exceeded);
 179 
 180   // We may support a shared contiguous allocation area, if the youngest
 181   // generation does.
 182   bool supports_inline_contig_alloc() const;
 183   HeapWord** top_addr() const;
 184   HeapWord** end_addr() const;
 185 
 186   // Does this heap support heap inspection? (+PrintClassHistogram)
 187   virtual bool supports_heap_inspection() const { return true; }
 188 
 189   // Perform a full collection of the heap; intended for use in implementing
 190   // "System.gc". This implies as full a collection as the CollectedHeap
 191   // supports. Caller does not hold the Heap_lock on entry.
 192   void collect(GCCause::Cause cause);
 193 
 194   // The same as above but assume that the caller holds the Heap_lock.
 195   void collect_locked(GCCause::Cause cause);
 196 
 197   // Perform a full collection of the first max_level+1 generations.
 198   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 199   void collect(GCCause::Cause cause, int max_level);
 200 
 201   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 202   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 203   // be expensive to compute in general, so, to prevent
 204   // their inadvertent use in product jvm's, we restrict their use to
 205   // assertion checking or verification only.
 206   bool is_in(const void* p) const;
 207 
 208   // override
 209   bool is_in_closed_subset(const void* p) const {
 210     if (UseConcMarkSweepGC) {
 211       return is_in_reserved(p);
 212     } else {
 213       return is_in(p);
 214     }
 215   }
 216 
 217   // Returns true if the reference is to an object in the reserved space
 218   // for the young generation.
 219   // Assumes the the young gen address range is less than that of the old gen.
 220   bool is_in_young(oop p);
 221 
 222 #ifdef ASSERT
 223   bool is_in_partial_collection(const void* p);
 224 #endif
 225 
 226   virtual bool is_scavengable(const void* addr) {
 227     return is_in_young((oop)addr);
 228   }
 229 
 230   // Iteration functions.
 231   void oop_iterate(ExtendedOopClosure* cl);
 232   void object_iterate(ObjectClosure* cl);
 233   void safe_object_iterate(ObjectClosure* cl);
 234   Space* space_containing(const void* addr) const;
 235 
 236   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 237   // each address in the (reserved) heap is a member of exactly
 238   // one block.  The defining characteristic of a block is that it is
 239   // possible to find its size, and thus to progress forward to the next
 240   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 241   // represent Java objects, or they might be free blocks in a
 242   // free-list-based heap (or subheap), as long as the two kinds are
 243   // distinguishable and the size of each is determinable.
 244 
 245   // Returns the address of the start of the "block" that contains the
 246   // address "addr".  We say "blocks" instead of "object" since some heaps
 247   // may not pack objects densely; a chunk may either be an object or a
 248   // non-object.
 249   virtual HeapWord* block_start(const void* addr) const;
 250 
 251   // Requires "addr" to be the start of a chunk, and returns its size.
 252   // "addr + size" is required to be the start of a new chunk, or the end
 253   // of the active area of the heap. Assumes (and verifies in non-product
 254   // builds) that addr is in the allocated part of the heap and is
 255   // the start of a chunk.
 256   virtual size_t block_size(const HeapWord* addr) const;
 257 
 258   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 259   // the block is an object. Assumes (and verifies in non-product
 260   // builds) that addr is in the allocated part of the heap and is
 261   // the start of a chunk.
 262   virtual bool block_is_obj(const HeapWord* addr) const;
 263 
 264   // Section on TLAB's.
 265   virtual bool supports_tlab_allocation() const;
 266   virtual size_t tlab_capacity(Thread* thr) const;
 267   virtual size_t tlab_used(Thread* thr) const;
 268   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 269   virtual HeapWord* allocate_new_tlab(size_t size);
 270 
 271   // Can a compiler initialize a new object without store barriers?
 272   // This permission only extends from the creation of a new object
 273   // via a TLAB up to the first subsequent safepoint.
 274   virtual bool can_elide_tlab_store_barriers() const {
 275     return true;
 276   }
 277 
 278   virtual bool card_mark_must_follow_store() const {
 279     return UseConcMarkSweepGC;
 280   }
 281 
 282   // We don't need barriers for stores to objects in the
 283   // young gen and, a fortiori, for initializing stores to
 284   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 285   // only and may need to be re-examined in case other
 286   // kinds of collectors are implemented in the future.
 287   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 288     // We wanted to assert that:-
 289     // assert(UseSerialGC || UseConcMarkSweepGC,
 290     //       "Check can_elide_initializing_store_barrier() for this collector");
 291     // but unfortunately the flag UseSerialGC need not necessarily always
 292     // be set when DefNew+Tenured are being used.
 293     return is_in_young(new_obj);
 294   }
 295 
 296   // The "requestor" generation is performing some garbage collection
 297   // action for which it would be useful to have scratch space.  The
 298   // requestor promises to allocate no more than "max_alloc_words" in any
 299   // older generation (via promotion say.)   Any blocks of space that can
 300   // be provided are returned as a list of ScratchBlocks, sorted by
 301   // decreasing size.
 302   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 303   // Allow each generation to reset any scratch space that it has
 304   // contributed as it needs.
 305   void release_scratch();
 306 
 307   // Ensure parsability: override
 308   virtual void ensure_parsability(bool retire_tlabs);
 309 
 310   // Time in ms since the longest time a collector ran in
 311   // in any generation.
 312   virtual jlong millis_since_last_gc();
 313 
 314   // Total number of full collections completed.
 315   unsigned int total_full_collections_completed() {
 316     assert(_full_collections_completed <= _total_full_collections,
 317            "Can't complete more collections than were started");
 318     return _full_collections_completed;
 319   }
 320 
 321   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 322   unsigned int update_full_collections_completed();
 323   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 324   unsigned int update_full_collections_completed(unsigned int count);
 325 
 326   // Update "time of last gc" for all generations to "now".
 327   void update_time_of_last_gc(jlong now) {
 328     _young_gen->update_time_of_last_gc(now);
 329     _old_gen->update_time_of_last_gc(now);
 330   }
 331 
 332   // Update the gc statistics for each generation.
 333   // "level" is the level of the latest collection.
 334   void update_gc_stats(int current_level, bool full) {
 335     _young_gen->update_gc_stats(current_level, full);
 336     _old_gen->update_gc_stats(current_level, full);
 337   }
 338 
 339   bool no_gc_in_progress() { return !is_gc_active(); }
 340 
 341   // Override.
 342   void prepare_for_verify();
 343 
 344   // Override.
 345   void verify(bool silent, VerifyOption option);
 346 
 347   // Override.
 348   virtual void print_on(outputStream* st) const;
 349   virtual void print_gc_threads_on(outputStream* st) const;
 350   virtual void gc_threads_do(ThreadClosure* tc) const;
 351   virtual void print_tracing_info() const;
 352   virtual void print_on_error(outputStream* st) const;
 353 
 354   // PrintGC, PrintGCDetails support
 355   void print_heap_change(size_t prev_used) const;
 356 
 357   // The functions below are helper functions that a subclass of
 358   // "CollectedHeap" can use in the implementation of its virtual
 359   // functions.
 360 
 361   class GenClosure : public StackObj {
 362    public:
 363     virtual void do_generation(Generation* gen) = 0;
 364   };
 365 
 366   // Apply "cl.do_generation" to all generations in the heap
 367   // If "old_to_young" determines the order.
 368   void generation_iterate(GenClosure* cl, bool old_to_young);
 369 
 370   // Return "true" if all generations have reached the
 371   // maximal committed limit that they can reach, without a garbage
 372   // collection.
 373   virtual bool is_maximal_no_gc() const;
 374 
 375   int n_gens() const {
 376     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
 377     return _n_gens;
 378   }
 379 
 380   // This function returns the "GenRemSet" object that allows us to scan
 381   // generations in a fully generational heap.
 382   GenRemSet* rem_set() { return _rem_set; }
 383 
 384   // Convenience function to be used in situations where the heap type can be
 385   // asserted to be this type.
 386   static GenCollectedHeap* heap();
 387 
 388   void set_par_threads(uint t);
 389   void set_n_termination(uint t);
 390 
 391   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 392   // or "older_gens" on root locations for the generation at
 393   // "level".  (The "older_gens" closure is used for scanning references
 394   // from older generations; "not_older_gens" is used everywhere else.)
 395   // If "younger_gens_as_roots" is false, younger generations are
 396   // not scanned as roots; in this case, the caller must be arranging to
 397   // scan the younger generations itself.  (For example, a generation might
 398   // explicitly mark reachable objects in younger generations, to avoid
 399   // excess storage retention.)
 400   // The "so" argument determines which of the roots
 401   // the closure is applied to:
 402   // "SO_None" does none;
 403   enum ScanningOption {
 404     SO_None                =  0x0,
 405     SO_AllCodeCache        =  0x8,
 406     SO_ScavengeCodeCache   = 0x10
 407   };
 408 
 409  private:
 410   void process_roots(bool activate_scope,
 411                      ScanningOption so,
 412                      OopClosure* strong_roots,
 413                      OopClosure* weak_roots,
 414                      CLDClosure* strong_cld_closure,
 415                      CLDClosure* weak_cld_closure,
 416                      CodeBlobClosure* code_roots);
 417 
 418   void gen_process_roots(int level,
 419                          bool younger_gens_as_roots,
 420                          bool activate_scope,
 421                          ScanningOption so,
 422                          OopsInGenClosure* not_older_gens,
 423                          OopsInGenClosure* weak_roots,
 424                          OopsInGenClosure* older_gens,
 425                          CLDClosure* cld_closure,
 426                          CLDClosure* weak_cld_closure,
 427                          CodeBlobClosure* code_closure);
 428 
 429  public:
 430   static const bool StrongAndWeakRoots = false;
 431   static const bool StrongRootsOnly    = true;
 432 
 433   void gen_process_roots(int level,
 434                          bool younger_gens_as_roots,
 435                          bool activate_scope,
 436                          ScanningOption so,
 437                          bool only_strong_roots,
 438                          OopsInGenClosure* not_older_gens,
 439                          OopsInGenClosure* older_gens,
 440                          CLDClosure* cld_closure);
 441 
 442   // Apply "root_closure" to all the weak roots of the system.
 443   // These include JNI weak roots, string table,
 444   // and referents of reachable weak refs.
 445   void gen_process_weak_roots(OopClosure* root_closure);
 446 
 447   // Set the saved marks of generations, if that makes sense.
 448   // In particular, if any generation might iterate over the oops
 449   // in other generations, it should call this method.
 450   void save_marks();
 451 
 452   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 453   // allocated since the last call to save_marks in generations at or above
 454   // "level".  The "cur" closure is
 455   // applied to references in the generation at "level", and the "older"
 456   // closure to older generations.
 457 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 458   void oop_since_save_marks_iterate(int level,                          \
 459                                     OopClosureType* cur,                \
 460                                     OopClosureType* older);
 461 
 462   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 463 
 464 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 465 
 466   // Returns "true" iff no allocations have occurred in any generation at
 467   // "level" or above since the last
 468   // call to "save_marks".
 469   bool no_allocs_since_save_marks(int level);
 470 
 471   // Returns true if an incremental collection is likely to fail.
 472   // We optionally consult the young gen, if asked to do so;
 473   // otherwise we base our answer on whether the previous incremental
 474   // collection attempt failed with no corrective action as of yet.
 475   bool incremental_collection_will_fail(bool consult_young) {
 476     // Assumes a 2-generation system; the first disjunct remembers if an
 477     // incremental collection failed, even when we thought (second disjunct)
 478     // that it would not.
 479     assert(heap()->collector_policy()->is_generation_policy(),
 480            "the following definition may not be suitable for an n(>2)-generation system");
 481     return incremental_collection_failed() ||
 482            (consult_young && !_young_gen->collection_attempt_is_safe());
 483   }
 484 
 485   // If a generation bails out of an incremental collection,
 486   // it sets this flag.
 487   bool incremental_collection_failed() const {
 488     return _incremental_collection_failed;
 489   }
 490   void set_incremental_collection_failed() {
 491     _incremental_collection_failed = true;
 492   }
 493   void clear_incremental_collection_failed() {
 494     _incremental_collection_failed = false;
 495   }
 496 
 497   // Promotion of obj into gen failed.  Try to promote obj to higher
 498   // gens in ascending order; return the new location of obj if successful.
 499   // Otherwise, try expand-and-allocate for obj in both the young and old
 500   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 501   oop handle_failed_promotion(Generation* old_gen,
 502                               oop obj,
 503                               size_t obj_size);
 504 
 505 private:
 506   // Accessor for memory state verification support
 507   NOT_PRODUCT(
 508     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 509   )
 510 
 511   // Override
 512   void check_for_non_bad_heap_word_value(HeapWord* addr,
 513     size_t size) PRODUCT_RETURN;
 514 
 515   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 516   // in an essential way: compaction is performed across generations, by
 517   // iterating over spaces.
 518   void prepare_for_compaction();
 519 
 520   // Perform a full collection of the first max_level+1 generations.
 521   // This is the low level interface used by the public versions of
 522   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 523   void collect_locked(GCCause::Cause cause, int max_level);
 524 
 525   // Returns success or failure.
 526   bool create_cms_collector();
 527 
 528   // In support of ExplicitGCInvokesConcurrent functionality
 529   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 530   void collect_mostly_concurrent(GCCause::Cause cause);
 531 
 532   // Save the tops of the spaces in all generations
 533   void record_gen_tops_before_GC() PRODUCT_RETURN;
 534 
 535 protected:
 536   void gc_prologue(bool full);
 537   void gc_epilogue(bool full);
 538 };
 539 
 540 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP