1  /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentMarkThread.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectorPolicy.hpp"
  29 #include "gc/g1/g1Log.hpp"
  30 #include "gc/g1/g1MMUTracker.hpp"
  31 #include "gc/g1/suspendibleThreadSet.hpp"
  32 #include "gc/g1/vm_operations_g1.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "runtime/vmThread.hpp"
  36 
  37 // ======= Concurrent Mark Thread ========
  38 
  39 // The CM thread is created when the G1 garbage collector is used
  40 
  41 SurrogateLockerThread*
  42      ConcurrentMarkThread::_slt = NULL;
  43 
  44 ConcurrentMarkThread::ConcurrentMarkThread(ConcurrentMark* cm) :
  45   ConcurrentGCThread(),
  46   _cm(cm),
  47   _started(false),
  48   _in_progress(false),
  49   _vtime_accum(0.0),
  50   _vtime_mark_accum(0.0) {
  51 
  52   set_name("G1 Main Marker");
  53   create_and_start();
  54 }
  55 
  56 class CMCheckpointRootsFinalClosure: public VoidClosure {
  57 
  58   ConcurrentMark* _cm;
  59 public:
  60 
  61   CMCheckpointRootsFinalClosure(ConcurrentMark* cm) :
  62     _cm(cm) {}
  63 
  64   void do_void(){
  65     _cm->checkpointRootsFinal(false); // !clear_all_soft_refs
  66   }
  67 };
  68 
  69 class CMCleanUp: public VoidClosure {
  70   ConcurrentMark* _cm;
  71 public:
  72 
  73   CMCleanUp(ConcurrentMark* cm) :
  74     _cm(cm) {}
  75 
  76   void do_void(){
  77     _cm->cleanup();
  78   }
  79 };
  80 
  81 // We want to avoid that the logging from the concurrent thread is mixed
  82 // with the logging from a STW GC. So, if necessary join the STS to ensure
  83 // that the logging is done either before or after the STW logging.
  84 void ConcurrentMarkThread::cm_log(bool doit, bool join_sts, const char* fmt, ...) {
  85   if (doit) {
  86     SuspendibleThreadSetJoiner sts_joiner(join_sts);
  87     va_list args;
  88     va_start(args, fmt);
  89     gclog_or_tty->gclog_stamp(cm()->concurrent_gc_id());
  90     gclog_or_tty->vprint_cr(fmt, args);
  91     va_end(args);
  92   }
  93 }
  94 
  95 void ConcurrentMarkThread::run() {
  96   initialize_in_thread();
  97   _vtime_start = os::elapsedVTime();
  98   wait_for_universe_init();
  99 
 100   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 101   G1CollectorPolicy* g1_policy = g1h->g1_policy();
 102   G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker();
 103   Thread *current_thread = Thread::current();
 104 
 105   while (!_should_terminate) {
 106     // wait until started is set.
 107     sleepBeforeNextCycle();
 108     if (_should_terminate) {
 109       break;
 110     }
 111 
 112     {
 113       ResourceMark rm;
 114       HandleMark   hm;
 115       double cycle_start = os::elapsedVTime();
 116 
 117       // We have to ensure that we finish scanning the root regions
 118       // before the next GC takes place. To ensure this we have to
 119       // make sure that we do not join the STS until the root regions
 120       // have been scanned. If we did then it's possible that a
 121       // subsequent GC could block us from joining the STS and proceed
 122       // without the root regions have been scanned which would be a
 123       // correctness issue.
 124 
 125       double scan_start = os::elapsedTime();
 126       if (!cm()->has_aborted()) {
 127         cm_log(G1Log::fine(), false, "[GC concurrent-root-region-scan-start]");
 128 
 129         _cm->scanRootRegions();
 130 
 131         cm_log(G1Log::fine(), false, "[GC concurrent-root-region-scan-end, %1.7lf secs]", os::elapsedTime() - scan_start);
 132       }
 133 
 134       double mark_start_sec = os::elapsedTime();
 135       cm_log(G1Log::fine(), true, "[GC concurrent-mark-start]");
 136 
 137       int iter = 0;
 138       do {
 139         iter++;
 140         if (!cm()->has_aborted()) {
 141           _cm->markFromRoots();
 142         }
 143 
 144         double mark_end_time = os::elapsedVTime();
 145         double mark_end_sec = os::elapsedTime();
 146         _vtime_mark_accum += (mark_end_time - cycle_start);
 147         if (!cm()->has_aborted()) {
 148           if (g1_policy->adaptive_young_list_length()) {
 149             double now = os::elapsedTime();
 150             double remark_prediction_ms = g1_policy->predict_remark_time_ms();
 151             jlong sleep_time_ms = mmu_tracker->when_ms(now, remark_prediction_ms);
 152             os::sleep(current_thread, sleep_time_ms, false);
 153           }
 154 
 155           cm_log(G1Log::fine(), true, "[GC concurrent-mark-end, %1.7lf secs]", mark_end_sec - mark_start_sec);
 156 
 157           CMCheckpointRootsFinalClosure final_cl(_cm);
 158           VM_CGC_Operation op(&final_cl, "GC remark", true /* needs_pll */);
 159           VMThread::execute(&op);
 160         }
 161         if (cm()->restart_for_overflow()) {
 162           cm_log(G1TraceMarkStackOverflow, true, "Restarting conc marking because of MS overflow in remark (restart #%d).", iter);
 163           cm_log(G1Log::fine(), true, "[GC concurrent-mark-restart-for-overflow]");
 164         }
 165       } while (cm()->restart_for_overflow());
 166 
 167       double end_time = os::elapsedVTime();
 168       // Update the total virtual time before doing this, since it will try
 169       // to measure it to get the vtime for this marking.  We purposely
 170       // neglect the presumably-short "completeCleanup" phase here.
 171       _vtime_accum = (end_time - _vtime_start);
 172 
 173       if (!cm()->has_aborted()) {
 174         if (g1_policy->adaptive_young_list_length()) {
 175           double now = os::elapsedTime();
 176           double cleanup_prediction_ms = g1_policy->predict_cleanup_time_ms();
 177           jlong sleep_time_ms = mmu_tracker->when_ms(now, cleanup_prediction_ms);
 178           os::sleep(current_thread, sleep_time_ms, false);
 179         }
 180 
 181         CMCleanUp cl_cl(_cm);
 182         VM_CGC_Operation op(&cl_cl, "GC cleanup", false /* needs_pll */);
 183         VMThread::execute(&op);
 184       } else {
 185         // We don't want to update the marking status if a GC pause
 186         // is already underway.
 187         SuspendibleThreadSetJoiner sts_join;
 188         g1h->collector_state()->set_mark_in_progress(false);
 189       }
 190 
 191       // Check if cleanup set the free_regions_coming flag. If it
 192       // hasn't, we can just skip the next step.
 193       if (g1h->free_regions_coming()) {
 194         // The following will finish freeing up any regions that we
 195         // found to be empty during cleanup. We'll do this part
 196         // without joining the suspendible set. If an evacuation pause
 197         // takes place, then we would carry on freeing regions in
 198         // case they are needed by the pause. If a Full GC takes
 199         // place, it would wait for us to process the regions
 200         // reclaimed by cleanup.
 201 
 202         double cleanup_start_sec = os::elapsedTime();
 203         cm_log(G1Log::fine(), true, "[GC concurrent-cleanup-start]");
 204 
 205         // Now do the concurrent cleanup operation.
 206         _cm->completeCleanup();
 207 
 208         // Notify anyone who's waiting that there are no more free
 209         // regions coming. We have to do this before we join the STS
 210         // (in fact, we should not attempt to join the STS in the
 211         // interval between finishing the cleanup pause and clearing
 212         // the free_regions_coming flag) otherwise we might deadlock:
 213         // a GC worker could be blocked waiting for the notification
 214         // whereas this thread will be blocked for the pause to finish
 215         // while it's trying to join the STS, which is conditional on
 216         // the GC workers finishing.
 217         g1h->reset_free_regions_coming();
 218 
 219         double cleanup_end_sec = os::elapsedTime();
 220         cm_log(G1Log::fine(), true, "[GC concurrent-cleanup-end, %1.7lf secs]", cleanup_end_sec - cleanup_start_sec);
 221       }
 222       guarantee(cm()->cleanup_list_is_empty(),
 223                 "at this point there should be no regions on the cleanup list");
 224 
 225       // There is a tricky race before recording that the concurrent
 226       // cleanup has completed and a potential Full GC starting around
 227       // the same time. We want to make sure that the Full GC calls
 228       // abort() on concurrent mark after
 229       // record_concurrent_mark_cleanup_completed(), since abort() is
 230       // the method that will reset the concurrent mark state. If we
 231       // end up calling record_concurrent_mark_cleanup_completed()
 232       // after abort() then we might incorrectly undo some of the work
 233       // abort() did. Checking the has_aborted() flag after joining
 234       // the STS allows the correct ordering of the two methods. There
 235       // are two scenarios:
 236       //
 237       // a) If we reach here before the Full GC, the fact that we have
 238       // joined the STS means that the Full GC cannot start until we
 239       // leave the STS, so record_concurrent_mark_cleanup_completed()
 240       // will complete before abort() is called.
 241       //
 242       // b) If we reach here during the Full GC, we'll be held up from
 243       // joining the STS until the Full GC is done, which means that
 244       // abort() will have completed and has_aborted() will return
 245       // true to prevent us from calling
 246       // record_concurrent_mark_cleanup_completed() (and, in fact, it's
 247       // not needed any more as the concurrent mark state has been
 248       // already reset).
 249       {
 250         SuspendibleThreadSetJoiner sts_join;
 251         if (!cm()->has_aborted()) {
 252           g1_policy->record_concurrent_mark_cleanup_completed();
 253         } else {
 254           cm_log(G1Log::fine(), false, "[GC concurrent-mark-abort]");
 255         }
 256       }
 257 
 258       // We now want to allow clearing of the marking bitmap to be
 259       // suspended by a collection pause.
 260       // We may have aborted just before the remark. Do not bother clearing the
 261       // bitmap then, as it has been done during mark abort.
 262       if (!cm()->has_aborted()) {
 263         _cm->clearNextBitmap();
 264       } else {
 265         assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear");
 266       }
 267     }
 268 
 269     // Update the number of full collections that have been
 270     // completed. This will also notify the FullGCCount_lock in case a
 271     // Java thread is waiting for a full GC to happen (e.g., it
 272     // called System.gc() with +ExplicitGCInvokesConcurrent).
 273     {
 274       SuspendibleThreadSetJoiner sts_join;
 275       g1h->increment_old_marking_cycles_completed(true /* concurrent */);
 276       g1h->register_concurrent_cycle_end();
 277     }
 278   }
 279   assert(_should_terminate, "just checking");
 280 
 281   terminate();
 282 }
 283 
 284 void ConcurrentMarkThread::stop() {
 285   {
 286     MutexLockerEx ml(Terminator_lock);
 287     _should_terminate = true;
 288   }
 289 
 290   {
 291     MutexLockerEx ml(CGC_lock, Mutex::_no_safepoint_check_flag);
 292     CGC_lock->notify_all();
 293   }
 294 
 295   {
 296     MutexLockerEx ml(Terminator_lock);
 297     while (!_has_terminated) {
 298       Terminator_lock->wait();
 299     }
 300   }
 301 }
 302 
 303 void ConcurrentMarkThread::sleepBeforeNextCycle() {
 304   // We join here because we don't want to do the "shouldConcurrentMark()"
 305   // below while the world is otherwise stopped.
 306   assert(!in_progress(), "should have been cleared");
 307 
 308   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
 309   while (!started() && !_should_terminate) {
 310     CGC_lock->wait(Mutex::_no_safepoint_check_flag);
 311   }
 312 
 313   if (started()) {
 314     set_in_progress();
 315     clear_started();
 316   }
 317 }
 318 
 319 // Note: As is the case with CMS - this method, although exported
 320 // by the ConcurrentMarkThread, which is a non-JavaThread, can only
 321 // be called by a JavaThread. Currently this is done at vm creation
 322 // time (post-vm-init) by the main/Primordial (Java)Thread.
 323 // XXX Consider changing this in the future to allow the CM thread
 324 // itself to create this thread?
 325 void ConcurrentMarkThread::makeSurrogateLockerThread(TRAPS) {
 326   assert(UseG1GC, "SLT thread needed only for concurrent GC");
 327   assert(THREAD->is_Java_thread(), "must be a Java thread");
 328   assert(_slt == NULL, "SLT already created");
 329   _slt = SurrogateLockerThread::make(THREAD);
 330 }