1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMark.inline.hpp"
  30 #include "gc/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc/g1/g1CollectorPolicy.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1ErgoVerbose.hpp"
  35 #include "gc/g1/g1Log.hpp"
  36 #include "gc/g1/g1OopClosures.inline.hpp"
  37 #include "gc/g1/g1RemSet.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionManager.inline.hpp"
  41 #include "gc/g1/heapRegionRemSet.hpp"
  42 #include "gc/g1/heapRegionSet.inline.hpp"
  43 #include "gc/g1/suspendibleThreadSet.hpp"
  44 #include "gc/shared/gcTimer.hpp"
  45 #include "gc/shared/gcTrace.hpp"
  46 #include "gc/shared/gcTraceTime.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/referencePolicy.hpp"
  49 #include "gc/shared/strongRootsScope.hpp"
  50 #include "gc/shared/taskqueue.inline.hpp"
  51 #include "gc/shared/vmGCOperations.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 
  61 // Concurrent marking bit map wrapper
  62 
  63 CMBitMapRO::CMBitMapRO(int shifter) :
  64   _bm(),
  65   _shifter(shifter) {
  66   _bmStartWord = 0;
  67   _bmWordSize = 0;
  68 }
  69 
  70 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  71                                                const HeapWord* limit) const {
  72   // First we must round addr *up* to a possible object boundary.
  73   addr = (HeapWord*)align_size_up((intptr_t)addr,
  74                                   HeapWordSize << _shifter);
  75   size_t addrOffset = heapWordToOffset(addr);
  76   if (limit == NULL) {
  77     limit = _bmStartWord + _bmWordSize;
  78   }
  79   size_t limitOffset = heapWordToOffset(limit);
  80   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  81   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  82   assert(nextAddr >= addr, "get_next_one postcondition");
  83   assert(nextAddr == limit || isMarked(nextAddr),
  84          "get_next_one postcondition");
  85   return nextAddr;
  86 }
  87 
  88 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  89                                                  const HeapWord* limit) const {
  90   size_t addrOffset = heapWordToOffset(addr);
  91   if (limit == NULL) {
  92     limit = _bmStartWord + _bmWordSize;
  93   }
  94   size_t limitOffset = heapWordToOffset(limit);
  95   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  96   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  97   assert(nextAddr >= addr, "get_next_one postcondition");
  98   assert(nextAddr == limit || !isMarked(nextAddr),
  99          "get_next_one postcondition");
 100   return nextAddr;
 101 }
 102 
 103 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
 104   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 105   return (int) (diff >> _shifter);
 106 }
 107 
 108 #ifndef PRODUCT
 109 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 110   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 111   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 112          "size inconsistency");
 113   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 114          _bmWordSize  == heap_rs.word_size();
 115 }
 116 #endif
 117 
 118 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 119   _bm.print_on_error(st, prefix);
 120 }
 121 
 122 size_t CMBitMap::compute_size(size_t heap_size) {
 123   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 124 }
 125 
 126 size_t CMBitMap::mark_distance() {
 127   return MinObjAlignmentInBytes * BitsPerByte;
 128 }
 129 
 130 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 131   _bmStartWord = heap.start();
 132   _bmWordSize = heap.word_size();
 133 
 134   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 135   _bm.set_size(_bmWordSize >> _shifter);
 136 
 137   storage->set_mapping_changed_listener(&_listener);
 138 }
 139 
 140 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 141   if (zero_filled) {
 142     return;
 143   }
 144   // We need to clear the bitmap on commit, removing any existing information.
 145   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 146   _bm->clearRange(mr);
 147 }
 148 
 149 // Closure used for clearing the given mark bitmap.
 150 class ClearBitmapHRClosure : public HeapRegionClosure {
 151  private:
 152   ConcurrentMark* _cm;
 153   CMBitMap* _bitmap;
 154   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 155  public:
 156   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 157     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 158   }
 159 
 160   virtual bool doHeapRegion(HeapRegion* r) {
 161     size_t const chunk_size_in_words = M / HeapWordSize;
 162 
 163     HeapWord* cur = r->bottom();
 164     HeapWord* const end = r->end();
 165 
 166     while (cur < end) {
 167       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 168       _bitmap->clearRange(mr);
 169 
 170       cur += chunk_size_in_words;
 171 
 172       // Abort iteration if after yielding the marking has been aborted.
 173       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 174         return true;
 175       }
 176       // Repeat the asserts from before the start of the closure. We will do them
 177       // as asserts here to minimize their overhead on the product. However, we
 178       // will have them as guarantees at the beginning / end of the bitmap
 179       // clearing to get some checking in the product.
 180       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 181       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 182     }
 183 
 184     return false;
 185   }
 186 };
 187 
 188 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 189   ClearBitmapHRClosure* _cl;
 190   HeapRegionClaimer     _hrclaimer;
 191   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 192 
 193 public:
 194   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 195       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 196 
 197   void work(uint worker_id) {
 198     SuspendibleThreadSetJoiner sts_join(_suspendible);
 199     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 200   }
 201 };
 202 
 203 void CMBitMap::clearAll() {
 204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 205   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 206   uint n_workers = g1h->workers()->active_workers();
 207   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 208   g1h->workers()->run_task(&task);
 209   guarantee(cl.complete(), "Must have completed iteration.");
 210   return;
 211 }
 212 
 213 void CMBitMap::markRange(MemRegion mr) {
 214   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 215   assert(!mr.is_empty(), "unexpected empty region");
 216   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 217           ((HeapWord *) mr.end())),
 218          "markRange memory region end is not card aligned");
 219   // convert address range into offset range
 220   _bm.at_put_range(heapWordToOffset(mr.start()),
 221                    heapWordToOffset(mr.end()), true);
 222 }
 223 
 224 void CMBitMap::clearRange(MemRegion mr) {
 225   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 226   assert(!mr.is_empty(), "unexpected empty region");
 227   // convert address range into offset range
 228   _bm.at_put_range(heapWordToOffset(mr.start()),
 229                    heapWordToOffset(mr.end()), false);
 230 }
 231 
 232 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 233                                             HeapWord* end_addr) {
 234   HeapWord* start = getNextMarkedWordAddress(addr);
 235   start = MIN2(start, end_addr);
 236   HeapWord* end   = getNextUnmarkedWordAddress(start);
 237   end = MIN2(end, end_addr);
 238   assert(start <= end, "Consistency check");
 239   MemRegion mr(start, end);
 240   if (!mr.is_empty()) {
 241     clearRange(mr);
 242   }
 243   return mr;
 244 }
 245 
 246 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 247   _base(NULL), _cm(cm)
 248 #ifdef ASSERT
 249   , _drain_in_progress(false)
 250   , _drain_in_progress_yields(false)
 251 #endif
 252 {}
 253 
 254 bool CMMarkStack::allocate(size_t capacity) {
 255   // allocate a stack of the requisite depth
 256   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 257   if (!rs.is_reserved()) {
 258     warning("ConcurrentMark MarkStack allocation failure");
 259     return false;
 260   }
 261   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 262   if (!_virtual_space.initialize(rs, rs.size())) {
 263     warning("ConcurrentMark MarkStack backing store failure");
 264     // Release the virtual memory reserved for the marking stack
 265     rs.release();
 266     return false;
 267   }
 268   assert(_virtual_space.committed_size() == rs.size(),
 269          "Didn't reserve backing store for all of ConcurrentMark stack?");
 270   _base = (oop*) _virtual_space.low();
 271   setEmpty();
 272   _capacity = (jint) capacity;
 273   _saved_index = -1;
 274   _should_expand = false;
 275   return true;
 276 }
 277 
 278 void CMMarkStack::expand() {
 279   // Called, during remark, if we've overflown the marking stack during marking.
 280   assert(isEmpty(), "stack should been emptied while handling overflow");
 281   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 282   // Clear expansion flag
 283   _should_expand = false;
 284   if (_capacity == (jint) MarkStackSizeMax) {
 285     if (PrintGCDetails && Verbose) {
 286       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 287     }
 288     return;
 289   }
 290   // Double capacity if possible
 291   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 292   // Do not give up existing stack until we have managed to
 293   // get the double capacity that we desired.
 294   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 295                                                            sizeof(oop)));
 296   if (rs.is_reserved()) {
 297     // Release the backing store associated with old stack
 298     _virtual_space.release();
 299     // Reinitialize virtual space for new stack
 300     if (!_virtual_space.initialize(rs, rs.size())) {
 301       fatal("Not enough swap for expanded marking stack capacity");
 302     }
 303     _base = (oop*)(_virtual_space.low());
 304     _index = 0;
 305     _capacity = new_capacity;
 306   } else {
 307     if (PrintGCDetails && Verbose) {
 308       // Failed to double capacity, continue;
 309       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 310                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 311                           _capacity / K, new_capacity / K);
 312     }
 313   }
 314 }
 315 
 316 void CMMarkStack::set_should_expand() {
 317   // If we're resetting the marking state because of an
 318   // marking stack overflow, record that we should, if
 319   // possible, expand the stack.
 320   _should_expand = _cm->has_overflown();
 321 }
 322 
 323 CMMarkStack::~CMMarkStack() {
 324   if (_base != NULL) {
 325     _base = NULL;
 326     _virtual_space.release();
 327   }
 328 }
 329 
 330 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 331   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 332   jint start = _index;
 333   jint next_index = start + n;
 334   if (next_index > _capacity) {
 335     _overflow = true;
 336     return;
 337   }
 338   // Otherwise.
 339   _index = next_index;
 340   for (int i = 0; i < n; i++) {
 341     int ind = start + i;
 342     assert(ind < _capacity, "By overflow test above.");
 343     _base[ind] = ptr_arr[i];
 344   }
 345 }
 346 
 347 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 348   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 349   jint index = _index;
 350   if (index == 0) {
 351     *n = 0;
 352     return false;
 353   } else {
 354     int k = MIN2(max, index);
 355     jint  new_ind = index - k;
 356     for (int j = 0; j < k; j++) {
 357       ptr_arr[j] = _base[new_ind + j];
 358     }
 359     _index = new_ind;
 360     *n = k;
 361     return true;
 362   }
 363 }
 364 
 365 template<class OopClosureClass>
 366 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 367   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 368          || SafepointSynchronize::is_at_safepoint(),
 369          "Drain recursion must be yield-safe.");
 370   bool res = true;
 371   debug_only(_drain_in_progress = true);
 372   debug_only(_drain_in_progress_yields = yield_after);
 373   while (!isEmpty()) {
 374     oop newOop = pop();
 375     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 376     assert(newOop->is_oop(), "Expected an oop");
 377     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 378            "only grey objects on this stack");
 379     newOop->oop_iterate(cl);
 380     if (yield_after && _cm->do_yield_check()) {
 381       res = false;
 382       break;
 383     }
 384   }
 385   debug_only(_drain_in_progress = false);
 386   return res;
 387 }
 388 
 389 void CMMarkStack::note_start_of_gc() {
 390   assert(_saved_index == -1,
 391          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 392   _saved_index = _index;
 393 }
 394 
 395 void CMMarkStack::note_end_of_gc() {
 396   // This is intentionally a guarantee, instead of an assert. If we
 397   // accidentally add something to the mark stack during GC, it
 398   // will be a correctness issue so it's better if we crash. we'll
 399   // only check this once per GC anyway, so it won't be a performance
 400   // issue in any way.
 401   guarantee(_saved_index == _index,
 402             err_msg("saved index: %d index: %d", _saved_index, _index));
 403   _saved_index = -1;
 404 }
 405 
 406 void CMMarkStack::oops_do(OopClosure* f) {
 407   assert(_saved_index == _index,
 408          err_msg("saved index: %d index: %d", _saved_index, _index));
 409   for (int i = 0; i < _index; i += 1) {
 410     f->do_oop(&_base[i]);
 411   }
 412 }
 413 
 414 CMRootRegions::CMRootRegions() :
 415   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 416   _should_abort(false),  _next_survivor(NULL) { }
 417 
 418 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 419   _young_list = g1h->young_list();
 420   _cm = cm;
 421 }
 422 
 423 void CMRootRegions::prepare_for_scan() {
 424   assert(!scan_in_progress(), "pre-condition");
 425 
 426   // Currently, only survivors can be root regions.
 427   assert(_next_survivor == NULL, "pre-condition");
 428   _next_survivor = _young_list->first_survivor_region();
 429   _scan_in_progress = (_next_survivor != NULL);
 430   _should_abort = false;
 431 }
 432 
 433 HeapRegion* CMRootRegions::claim_next() {
 434   if (_should_abort) {
 435     // If someone has set the should_abort flag, we return NULL to
 436     // force the caller to bail out of their loop.
 437     return NULL;
 438   }
 439 
 440   // Currently, only survivors can be root regions.
 441   HeapRegion* res = _next_survivor;
 442   if (res != NULL) {
 443     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 444     // Read it again in case it changed while we were waiting for the lock.
 445     res = _next_survivor;
 446     if (res != NULL) {
 447       if (res == _young_list->last_survivor_region()) {
 448         // We just claimed the last survivor so store NULL to indicate
 449         // that we're done.
 450         _next_survivor = NULL;
 451       } else {
 452         _next_survivor = res->get_next_young_region();
 453       }
 454     } else {
 455       // Someone else claimed the last survivor while we were trying
 456       // to take the lock so nothing else to do.
 457     }
 458   }
 459   assert(res == NULL || res->is_survivor(), "post-condition");
 460 
 461   return res;
 462 }
 463 
 464 void CMRootRegions::scan_finished() {
 465   assert(scan_in_progress(), "pre-condition");
 466 
 467   // Currently, only survivors can be root regions.
 468   if (!_should_abort) {
 469     assert(_next_survivor == NULL, "we should have claimed all survivors");
 470   }
 471   _next_survivor = NULL;
 472 
 473   {
 474     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 475     _scan_in_progress = false;
 476     RootRegionScan_lock->notify_all();
 477   }
 478 }
 479 
 480 bool CMRootRegions::wait_until_scan_finished() {
 481   if (!scan_in_progress()) return false;
 482 
 483   {
 484     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 485     while (scan_in_progress()) {
 486       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 487     }
 488   }
 489   return true;
 490 }
 491 
 492 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 493 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 494 #endif // _MSC_VER
 495 
 496 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 497   return MAX2((n_par_threads + 2) / 4, 1U);
 498 }
 499 
 500 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 501   _g1h(g1h),
 502   _markBitMap1(),
 503   _markBitMap2(),
 504   _parallel_marking_threads(0),
 505   _max_parallel_marking_threads(0),
 506   _sleep_factor(0.0),
 507   _marking_task_overhead(1.0),
 508   _cleanup_sleep_factor(0.0),
 509   _cleanup_task_overhead(1.0),
 510   _cleanup_list("Cleanup List"),
 511   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 512   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 513             CardTableModRefBS::card_shift,
 514             false /* in_resource_area*/),
 515 
 516   _prevMarkBitMap(&_markBitMap1),
 517   _nextMarkBitMap(&_markBitMap2),
 518 
 519   _markStack(this),
 520   // _finger set in set_non_marking_state
 521 
 522   _max_worker_id(ParallelGCThreads),
 523   // _active_tasks set in set_non_marking_state
 524   // _tasks set inside the constructor
 525   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 526   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 527 
 528   _has_overflown(false),
 529   _concurrent(false),
 530   _has_aborted(false),
 531   _aborted_gc_id(GCId::undefined()),
 532   _restart_for_overflow(false),
 533   _concurrent_marking_in_progress(false),
 534 
 535   // _verbose_level set below
 536 
 537   _init_times(),
 538   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 539   _cleanup_times(),
 540   _total_counting_time(0.0),
 541   _total_rs_scrub_time(0.0),
 542 
 543   _parallel_workers(NULL),
 544 
 545   _count_card_bitmaps(NULL),
 546   _count_marked_bytes(NULL),
 547   _completed_initialization(false) {
 548   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 549   if (verbose_level < no_verbose) {
 550     verbose_level = no_verbose;
 551   }
 552   if (verbose_level > high_verbose) {
 553     verbose_level = high_verbose;
 554   }
 555   _verbose_level = verbose_level;
 556 
 557   if (verbose_low()) {
 558     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 559                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 560   }
 561 
 562   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 563   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 564 
 565   // Create & start a ConcurrentMark thread.
 566   _cmThread = new ConcurrentMarkThread(this);
 567   assert(cmThread() != NULL, "CM Thread should have been created");
 568   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 569   if (_cmThread->osthread() == NULL) {
 570       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 571   }
 572 
 573   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 574   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 575   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 576 
 577   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 578   satb_qs.set_buffer_size(G1SATBBufferSize);
 579 
 580   _root_regions.init(_g1h, this);
 581 
 582   if (ConcGCThreads > ParallelGCThreads) {
 583     warning("Can't have more ConcGCThreads (%u) "
 584             "than ParallelGCThreads (%u).",
 585             ConcGCThreads, ParallelGCThreads);
 586     return;
 587   }
 588   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 589     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 590     // if both are set
 591     _sleep_factor             = 0.0;
 592     _marking_task_overhead    = 1.0;
 593   } else if (G1MarkingOverheadPercent > 0) {
 594     // We will calculate the number of parallel marking threads based
 595     // on a target overhead with respect to the soft real-time goal
 596     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 597     double overall_cm_overhead =
 598       (double) MaxGCPauseMillis * marking_overhead /
 599       (double) GCPauseIntervalMillis;
 600     double cpu_ratio = 1.0 / (double) os::processor_count();
 601     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 602     double marking_task_overhead =
 603       overall_cm_overhead / marking_thread_num *
 604                                               (double) os::processor_count();
 605     double sleep_factor =
 606                        (1.0 - marking_task_overhead) / marking_task_overhead;
 607 
 608     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 609     _sleep_factor             = sleep_factor;
 610     _marking_task_overhead    = marking_task_overhead;
 611   } else {
 612     // Calculate the number of parallel marking threads by scaling
 613     // the number of parallel GC threads.
 614     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 615     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 616     _sleep_factor             = 0.0;
 617     _marking_task_overhead    = 1.0;
 618   }
 619 
 620   assert(ConcGCThreads > 0, "Should have been set");
 621   _parallel_marking_threads = ConcGCThreads;
 622   _max_parallel_marking_threads = _parallel_marking_threads;
 623 
 624   if (parallel_marking_threads() > 1) {
 625     _cleanup_task_overhead = 1.0;
 626   } else {
 627     _cleanup_task_overhead = marking_task_overhead();
 628   }
 629   _cleanup_sleep_factor =
 630                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 631 
 632 #if 0
 633   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 634   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 635   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 636   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 637   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 638 #endif
 639 
 640   _parallel_workers = new FlexibleWorkGang("G1 Marker",
 641        _max_parallel_marking_threads, false, true);
 642   if (_parallel_workers == NULL) {
 643     vm_exit_during_initialization("Failed necessary allocation.");
 644   } else {
 645     _parallel_workers->initialize_workers();
 646   }
 647 
 648   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 649     size_t mark_stack_size =
 650       MIN2(MarkStackSizeMax,
 651           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 652     // Verify that the calculated value for MarkStackSize is in range.
 653     // It would be nice to use the private utility routine from Arguments.
 654     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 655       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 656               "must be between 1 and " SIZE_FORMAT,
 657               mark_stack_size, MarkStackSizeMax);
 658       return;
 659     }
 660     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 661   } else {
 662     // Verify MarkStackSize is in range.
 663     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 664       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 665         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 666           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 667                   "must be between 1 and " SIZE_FORMAT,
 668                   MarkStackSize, MarkStackSizeMax);
 669           return;
 670         }
 671       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 672         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 673           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 674                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 675                   MarkStackSize, MarkStackSizeMax);
 676           return;
 677         }
 678       }
 679     }
 680   }
 681 
 682   if (!_markStack.allocate(MarkStackSize)) {
 683     warning("Failed to allocate CM marking stack");
 684     return;
 685   }
 686 
 687   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 688   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 689 
 690   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 691   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 692 
 693   BitMap::idx_t card_bm_size = _card_bm.size();
 694 
 695   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 696   _active_tasks = _max_worker_id;
 697 
 698   uint max_regions = _g1h->max_regions();
 699   for (uint i = 0; i < _max_worker_id; ++i) {
 700     CMTaskQueue* task_queue = new CMTaskQueue();
 701     task_queue->initialize();
 702     _task_queues->register_queue(i, task_queue);
 703 
 704     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 705     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 706 
 707     _tasks[i] = new CMTask(i, this,
 708                            _count_marked_bytes[i],
 709                            &_count_card_bitmaps[i],
 710                            task_queue, _task_queues);
 711 
 712     _accum_task_vtime[i] = 0.0;
 713   }
 714 
 715   // Calculate the card number for the bottom of the heap. Used
 716   // in biasing indexes into the accounting card bitmaps.
 717   _heap_bottom_card_num =
 718     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 719                                 CardTableModRefBS::card_shift);
 720 
 721   // Clear all the liveness counting data
 722   clear_all_count_data();
 723 
 724   // so that the call below can read a sensible value
 725   _heap_start = g1h->reserved_region().start();
 726   set_non_marking_state();
 727   _completed_initialization = true;
 728 }
 729 
 730 void ConcurrentMark::reset() {
 731   // Starting values for these two. This should be called in a STW
 732   // phase.
 733   MemRegion reserved = _g1h->g1_reserved();
 734   _heap_start = reserved.start();
 735   _heap_end   = reserved.end();
 736 
 737   // Separated the asserts so that we know which one fires.
 738   assert(_heap_start != NULL, "heap bounds should look ok");
 739   assert(_heap_end != NULL, "heap bounds should look ok");
 740   assert(_heap_start < _heap_end, "heap bounds should look ok");
 741 
 742   // Reset all the marking data structures and any necessary flags
 743   reset_marking_state();
 744 
 745   if (verbose_low()) {
 746     gclog_or_tty->print_cr("[global] resetting");
 747   }
 748 
 749   // We do reset all of them, since different phases will use
 750   // different number of active threads. So, it's easiest to have all
 751   // of them ready.
 752   for (uint i = 0; i < _max_worker_id; ++i) {
 753     _tasks[i]->reset(_nextMarkBitMap);
 754   }
 755 
 756   // we need this to make sure that the flag is on during the evac
 757   // pause with initial mark piggy-backed
 758   set_concurrent_marking_in_progress();
 759 }
 760 
 761 
 762 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 763   _markStack.set_should_expand();
 764   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 765   if (clear_overflow) {
 766     clear_has_overflown();
 767   } else {
 768     assert(has_overflown(), "pre-condition");
 769   }
 770   _finger = _heap_start;
 771 
 772   for (uint i = 0; i < _max_worker_id; ++i) {
 773     CMTaskQueue* queue = _task_queues->queue(i);
 774     queue->set_empty();
 775   }
 776 }
 777 
 778 void ConcurrentMark::set_concurrency(uint active_tasks) {
 779   assert(active_tasks <= _max_worker_id, "we should not have more");
 780 
 781   _active_tasks = active_tasks;
 782   // Need to update the three data structures below according to the
 783   // number of active threads for this phase.
 784   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 785   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 786   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 787 }
 788 
 789 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 790   set_concurrency(active_tasks);
 791 
 792   _concurrent = concurrent;
 793   // We propagate this to all tasks, not just the active ones.
 794   for (uint i = 0; i < _max_worker_id; ++i)
 795     _tasks[i]->set_concurrent(concurrent);
 796 
 797   if (concurrent) {
 798     set_concurrent_marking_in_progress();
 799   } else {
 800     // We currently assume that the concurrent flag has been set to
 801     // false before we start remark. At this point we should also be
 802     // in a STW phase.
 803     assert(!concurrent_marking_in_progress(), "invariant");
 804     assert(out_of_regions(),
 805            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 806                    p2i(_finger), p2i(_heap_end)));
 807   }
 808 }
 809 
 810 void ConcurrentMark::set_non_marking_state() {
 811   // We set the global marking state to some default values when we're
 812   // not doing marking.
 813   reset_marking_state();
 814   _active_tasks = 0;
 815   clear_concurrent_marking_in_progress();
 816 }
 817 
 818 ConcurrentMark::~ConcurrentMark() {
 819   // The ConcurrentMark instance is never freed.
 820   ShouldNotReachHere();
 821 }
 822 
 823 void ConcurrentMark::clearNextBitmap() {
 824   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 825 
 826   // Make sure that the concurrent mark thread looks to still be in
 827   // the current cycle.
 828   guarantee(cmThread()->during_cycle(), "invariant");
 829 
 830   // We are finishing up the current cycle by clearing the next
 831   // marking bitmap and getting it ready for the next cycle. During
 832   // this time no other cycle can start. So, let's make sure that this
 833   // is the case.
 834   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 835 
 836   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 837   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 838   _parallel_workers->run_task(&task);
 839 
 840   // Clear the liveness counting data. If the marking has been aborted, the abort()
 841   // call already did that.
 842   if (cl.complete()) {
 843     clear_all_count_data();
 844   }
 845 
 846   // Repeat the asserts from above.
 847   guarantee(cmThread()->during_cycle(), "invariant");
 848   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 849 }
 850 
 851 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 852   CMBitMap* _bitmap;
 853   bool _error;
 854  public:
 855   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 856   }
 857 
 858   virtual bool doHeapRegion(HeapRegion* r) {
 859     // This closure can be called concurrently to the mutator, so we must make sure
 860     // that the result of the getNextMarkedWordAddress() call is compared to the
 861     // value passed to it as limit to detect any found bits.
 862     // We can use the region's orig_end() for the limit and the comparison value
 863     // as it always contains the "real" end of the region that never changes and
 864     // has no side effects.
 865     // Due to the latter, there can also be no problem with the compiler generating
 866     // reloads of the orig_end() call.
 867     HeapWord* end = r->orig_end();
 868     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 869   }
 870 };
 871 
 872 bool ConcurrentMark::nextMarkBitmapIsClear() {
 873   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 874   _g1h->heap_region_iterate(&cl);
 875   return cl.complete();
 876 }
 877 
 878 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 879 public:
 880   bool doHeapRegion(HeapRegion* r) {
 881     if (!r->is_continues_humongous()) {
 882       r->note_start_of_marking();
 883     }
 884     return false;
 885   }
 886 };
 887 
 888 void ConcurrentMark::checkpointRootsInitialPre() {
 889   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 890   G1CollectorPolicy* g1p = g1h->g1_policy();
 891 
 892   _has_aborted = false;
 893 
 894   // Initialize marking structures. This has to be done in a STW phase.
 895   reset();
 896 
 897   // For each region note start of marking.
 898   NoteStartOfMarkHRClosure startcl;
 899   g1h->heap_region_iterate(&startcl);
 900 }
 901 
 902 
 903 void ConcurrentMark::checkpointRootsInitialPost() {
 904   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 905 
 906   // If we force an overflow during remark, the remark operation will
 907   // actually abort and we'll restart concurrent marking. If we always
 908   // force an overflow during remark we'll never actually complete the
 909   // marking phase. So, we initialize this here, at the start of the
 910   // cycle, so that at the remaining overflow number will decrease at
 911   // every remark and we'll eventually not need to cause one.
 912   force_overflow_stw()->init();
 913 
 914   // Start Concurrent Marking weak-reference discovery.
 915   ReferenceProcessor* rp = g1h->ref_processor_cm();
 916   // enable ("weak") refs discovery
 917   rp->enable_discovery();
 918   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 919 
 920   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 921   // This is the start of  the marking cycle, we're expected all
 922   // threads to have SATB queues with active set to false.
 923   satb_mq_set.set_active_all_threads(true, /* new active value */
 924                                      false /* expected_active */);
 925 
 926   _root_regions.prepare_for_scan();
 927 
 928   // update_g1_committed() will be called at the end of an evac pause
 929   // when marking is on. So, it's also called at the end of the
 930   // initial-mark pause to update the heap end, if the heap expands
 931   // during it. No need to call it here.
 932 }
 933 
 934 /*
 935  * Notice that in the next two methods, we actually leave the STS
 936  * during the barrier sync and join it immediately afterwards. If we
 937  * do not do this, the following deadlock can occur: one thread could
 938  * be in the barrier sync code, waiting for the other thread to also
 939  * sync up, whereas another one could be trying to yield, while also
 940  * waiting for the other threads to sync up too.
 941  *
 942  * Note, however, that this code is also used during remark and in
 943  * this case we should not attempt to leave / enter the STS, otherwise
 944  * we'll either hit an assert (debug / fastdebug) or deadlock
 945  * (product). So we should only leave / enter the STS if we are
 946  * operating concurrently.
 947  *
 948  * Because the thread that does the sync barrier has left the STS, it
 949  * is possible to be suspended for a Full GC or an evacuation pause
 950  * could occur. This is actually safe, since the entering the sync
 951  * barrier is one of the last things do_marking_step() does, and it
 952  * doesn't manipulate any data structures afterwards.
 953  */
 954 
 955 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 956   bool barrier_aborted;
 957 
 958   if (verbose_low()) {
 959     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 960   }
 961 
 962   {
 963     SuspendibleThreadSetLeaver sts_leave(concurrent());
 964     barrier_aborted = !_first_overflow_barrier_sync.enter();
 965   }
 966 
 967   // at this point everyone should have synced up and not be doing any
 968   // more work
 969 
 970   if (verbose_low()) {
 971     if (barrier_aborted) {
 972       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
 973     } else {
 974       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
 975     }
 976   }
 977 
 978   if (barrier_aborted) {
 979     // If the barrier aborted we ignore the overflow condition and
 980     // just abort the whole marking phase as quickly as possible.
 981     return;
 982   }
 983 
 984   // If we're executing the concurrent phase of marking, reset the marking
 985   // state; otherwise the marking state is reset after reference processing,
 986   // during the remark pause.
 987   // If we reset here as a result of an overflow during the remark we will
 988   // see assertion failures from any subsequent set_concurrency_and_phase()
 989   // calls.
 990   if (concurrent()) {
 991     // let the task associated with with worker 0 do this
 992     if (worker_id == 0) {
 993       // task 0 is responsible for clearing the global data structures
 994       // We should be here because of an overflow. During STW we should
 995       // not clear the overflow flag since we rely on it being true when
 996       // we exit this method to abort the pause and restart concurrent
 997       // marking.
 998       reset_marking_state(true /* clear_overflow */);
 999       force_overflow()->update();
1000 
1001       if (G1Log::fine()) {
1002         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1003         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1004       }
1005     }
1006   }
1007 
1008   // after this, each task should reset its own data structures then
1009   // then go into the second barrier
1010 }
1011 
1012 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1013   bool barrier_aborted;
1014 
1015   if (verbose_low()) {
1016     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1017   }
1018 
1019   {
1020     SuspendibleThreadSetLeaver sts_leave(concurrent());
1021     barrier_aborted = !_second_overflow_barrier_sync.enter();
1022   }
1023 
1024   // at this point everything should be re-initialized and ready to go
1025 
1026   if (verbose_low()) {
1027     if (barrier_aborted) {
1028       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1029     } else {
1030       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1031     }
1032   }
1033 }
1034 
1035 #ifndef PRODUCT
1036 void ForceOverflowSettings::init() {
1037   _num_remaining = G1ConcMarkForceOverflow;
1038   _force = false;
1039   update();
1040 }
1041 
1042 void ForceOverflowSettings::update() {
1043   if (_num_remaining > 0) {
1044     _num_remaining -= 1;
1045     _force = true;
1046   } else {
1047     _force = false;
1048   }
1049 }
1050 
1051 bool ForceOverflowSettings::should_force() {
1052   if (_force) {
1053     _force = false;
1054     return true;
1055   } else {
1056     return false;
1057   }
1058 }
1059 #endif // !PRODUCT
1060 
1061 class CMConcurrentMarkingTask: public AbstractGangTask {
1062 private:
1063   ConcurrentMark*       _cm;
1064   ConcurrentMarkThread* _cmt;
1065 
1066 public:
1067   void work(uint worker_id) {
1068     assert(Thread::current()->is_ConcurrentGC_thread(),
1069            "this should only be done by a conc GC thread");
1070     ResourceMark rm;
1071 
1072     double start_vtime = os::elapsedVTime();
1073 
1074     {
1075       SuspendibleThreadSetJoiner sts_join;
1076 
1077       assert(worker_id < _cm->active_tasks(), "invariant");
1078       CMTask* the_task = _cm->task(worker_id);
1079       the_task->record_start_time();
1080       if (!_cm->has_aborted()) {
1081         do {
1082           double start_vtime_sec = os::elapsedVTime();
1083           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1084 
1085           the_task->do_marking_step(mark_step_duration_ms,
1086                                     true  /* do_termination */,
1087                                     false /* is_serial*/);
1088 
1089           double end_vtime_sec = os::elapsedVTime();
1090           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1091           _cm->clear_has_overflown();
1092 
1093           _cm->do_yield_check(worker_id);
1094 
1095           jlong sleep_time_ms;
1096           if (!_cm->has_aborted() && the_task->has_aborted()) {
1097             sleep_time_ms =
1098               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1099             {
1100               SuspendibleThreadSetLeaver sts_leave;
1101               os::sleep(Thread::current(), sleep_time_ms, false);
1102             }
1103           }
1104         } while (!_cm->has_aborted() && the_task->has_aborted());
1105       }
1106       the_task->record_end_time();
1107       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1108     }
1109 
1110     double end_vtime = os::elapsedVTime();
1111     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1112   }
1113 
1114   CMConcurrentMarkingTask(ConcurrentMark* cm,
1115                           ConcurrentMarkThread* cmt) :
1116       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1117 
1118   ~CMConcurrentMarkingTask() { }
1119 };
1120 
1121 // Calculates the number of active workers for a concurrent
1122 // phase.
1123 uint ConcurrentMark::calc_parallel_marking_threads() {
1124   uint n_conc_workers = 0;
1125   if (!UseDynamicNumberOfGCThreads ||
1126       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1127        !ForceDynamicNumberOfGCThreads)) {
1128     n_conc_workers = max_parallel_marking_threads();
1129   } else {
1130     n_conc_workers =
1131       AdaptiveSizePolicy::calc_default_active_workers(
1132                                    max_parallel_marking_threads(),
1133                                    1, /* Minimum workers */
1134                                    parallel_marking_threads(),
1135                                    Threads::number_of_non_daemon_threads());
1136     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1137     // that scaling has already gone into "_max_parallel_marking_threads".
1138   }
1139   assert(n_conc_workers > 0, "Always need at least 1");
1140   return n_conc_workers;
1141 }
1142 
1143 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1144   // Currently, only survivors can be root regions.
1145   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1146   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1147 
1148   const uintx interval = PrefetchScanIntervalInBytes;
1149   HeapWord* curr = hr->bottom();
1150   const HeapWord* end = hr->top();
1151   while (curr < end) {
1152     Prefetch::read(curr, interval);
1153     oop obj = oop(curr);
1154     int size = obj->oop_iterate(&cl);
1155     assert(size == obj->size(), "sanity");
1156     curr += size;
1157   }
1158 }
1159 
1160 class CMRootRegionScanTask : public AbstractGangTask {
1161 private:
1162   ConcurrentMark* _cm;
1163 
1164 public:
1165   CMRootRegionScanTask(ConcurrentMark* cm) :
1166     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1167 
1168   void work(uint worker_id) {
1169     assert(Thread::current()->is_ConcurrentGC_thread(),
1170            "this should only be done by a conc GC thread");
1171 
1172     CMRootRegions* root_regions = _cm->root_regions();
1173     HeapRegion* hr = root_regions->claim_next();
1174     while (hr != NULL) {
1175       _cm->scanRootRegion(hr, worker_id);
1176       hr = root_regions->claim_next();
1177     }
1178   }
1179 };
1180 
1181 void ConcurrentMark::scanRootRegions() {
1182   double scan_start = os::elapsedTime();
1183 
1184   // Start of concurrent marking.
1185   ClassLoaderDataGraph::clear_claimed_marks();
1186 
1187   // scan_in_progress() will have been set to true only if there was
1188   // at least one root region to scan. So, if it's false, we
1189   // should not attempt to do any further work.
1190   if (root_regions()->scan_in_progress()) {
1191     if (G1Log::fine()) {
1192       gclog_or_tty->gclog_stamp(concurrent_gc_id());
1193       gclog_or_tty->print_cr("[GC concurrent-root-region-scan-start]");
1194     }
1195 
1196     _parallel_marking_threads = calc_parallel_marking_threads();
1197     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1198            "Maximum number of marking threads exceeded");
1199     uint active_workers = MAX2(1U, parallel_marking_threads());
1200 
1201     CMRootRegionScanTask task(this);
1202     _parallel_workers->set_active_workers(active_workers);
1203     _parallel_workers->run_task(&task);
1204 
1205     if (G1Log::fine()) {
1206       gclog_or_tty->gclog_stamp(concurrent_gc_id());
1207       gclog_or_tty->print_cr("[GC concurrent-root-region-scan-end, %1.7lf secs]", os::elapsedTime() - scan_start);
1208     }
1209 
1210     // It's possible that has_aborted() is true here without actually
1211     // aborting the survivor scan earlier. This is OK as it's
1212     // mainly used for sanity checking.
1213     root_regions()->scan_finished();
1214   }
1215 }
1216 
1217 void ConcurrentMark::markFromRoots() {
1218   // we might be tempted to assert that:
1219   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1220   //        "inconsistent argument?");
1221   // However that wouldn't be right, because it's possible that
1222   // a safepoint is indeed in progress as a younger generation
1223   // stop-the-world GC happens even as we mark in this generation.
1224 
1225   _restart_for_overflow = false;
1226   force_overflow_conc()->init();
1227 
1228   // _g1h has _n_par_threads
1229   _parallel_marking_threads = calc_parallel_marking_threads();
1230   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1231     "Maximum number of marking threads exceeded");
1232 
1233   uint active_workers = MAX2(1U, parallel_marking_threads());
1234   assert(active_workers > 0, "Should have been set");
1235 
1236   // Parallel task terminator is set in "set_concurrency_and_phase()"
1237   set_concurrency_and_phase(active_workers, true /* concurrent */);
1238 
1239   CMConcurrentMarkingTask markingTask(this, cmThread());
1240   _parallel_workers->set_active_workers(active_workers);
1241   _parallel_workers->run_task(&markingTask);
1242   print_stats();
1243 }
1244 
1245 // Helper class to get rid of some boilerplate code.
1246 class G1CMTraceTime : public GCTraceTime {
1247   static bool doit_and_prepend(bool doit) {
1248     if (doit) {
1249       gclog_or_tty->put(' ');
1250     }
1251     return doit;
1252   }
1253 
1254  public:
1255   G1CMTraceTime(const char* title, bool doit)
1256     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1257         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1258   }
1259 };
1260 
1261 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1262   // world is stopped at this checkpoint
1263   assert(SafepointSynchronize::is_at_safepoint(),
1264          "world should be stopped");
1265 
1266   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1267 
1268   // If a full collection has happened, we shouldn't do this.
1269   if (has_aborted()) {
1270     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1271     return;
1272   }
1273 
1274   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1275 
1276   if (VerifyDuringGC) {
1277     HandleMark hm;  // handle scope
1278     g1h->prepare_for_verify();
1279     Universe::verify(VerifyOption_G1UsePrevMarking,
1280                      " VerifyDuringGC:(before)");
1281   }
1282   g1h->check_bitmaps("Remark Start");
1283 
1284   G1CollectorPolicy* g1p = g1h->g1_policy();
1285   g1p->record_concurrent_mark_remark_start();
1286 
1287   double start = os::elapsedTime();
1288 
1289   checkpointRootsFinalWork();
1290 
1291   double mark_work_end = os::elapsedTime();
1292 
1293   weakRefsWork(clear_all_soft_refs);
1294 
1295   if (has_overflown()) {
1296     // Oops.  We overflowed.  Restart concurrent marking.
1297     _restart_for_overflow = true;
1298     if (G1TraceMarkStackOverflow) {
1299       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1300     }
1301 
1302     // Verify the heap w.r.t. the previous marking bitmap.
1303     if (VerifyDuringGC) {
1304       HandleMark hm;  // handle scope
1305       g1h->prepare_for_verify();
1306       Universe::verify(VerifyOption_G1UsePrevMarking,
1307                        " VerifyDuringGC:(overflow)");
1308     }
1309 
1310     // Clear the marking state because we will be restarting
1311     // marking due to overflowing the global mark stack.
1312     reset_marking_state();
1313   } else {
1314     {
1315       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1316 
1317       // Aggregate the per-task counting data that we have accumulated
1318       // while marking.
1319       aggregate_count_data();
1320     }
1321 
1322     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1323     // We're done with marking.
1324     // This is the end of  the marking cycle, we're expected all
1325     // threads to have SATB queues with active set to true.
1326     satb_mq_set.set_active_all_threads(false, /* new active value */
1327                                        true /* expected_active */);
1328 
1329     if (VerifyDuringGC) {
1330       HandleMark hm;  // handle scope
1331       g1h->prepare_for_verify();
1332       Universe::verify(VerifyOption_G1UseNextMarking,
1333                        " VerifyDuringGC:(after)");
1334     }
1335     g1h->check_bitmaps("Remark End");
1336     assert(!restart_for_overflow(), "sanity");
1337     // Completely reset the marking state since marking completed
1338     set_non_marking_state();
1339   }
1340 
1341   // Expand the marking stack, if we have to and if we can.
1342   if (_markStack.should_expand()) {
1343     _markStack.expand();
1344   }
1345 
1346   // Statistics
1347   double now = os::elapsedTime();
1348   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1349   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1350   _remark_times.add((now - start) * 1000.0);
1351 
1352   g1p->record_concurrent_mark_remark_end();
1353 
1354   G1CMIsAliveClosure is_alive(g1h);
1355   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1356 }
1357 
1358 // Base class of the closures that finalize and verify the
1359 // liveness counting data.
1360 class CMCountDataClosureBase: public HeapRegionClosure {
1361 protected:
1362   G1CollectedHeap* _g1h;
1363   ConcurrentMark* _cm;
1364   CardTableModRefBS* _ct_bs;
1365 
1366   BitMap* _region_bm;
1367   BitMap* _card_bm;
1368 
1369   // Takes a region that's not empty (i.e., it has at least one
1370   // live object in it and sets its corresponding bit on the region
1371   // bitmap to 1. If the region is "starts humongous" it will also set
1372   // to 1 the bits on the region bitmap that correspond to its
1373   // associated "continues humongous" regions.
1374   void set_bit_for_region(HeapRegion* hr) {
1375     assert(!hr->is_continues_humongous(), "should have filtered those out");
1376 
1377     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1378     if (!hr->is_starts_humongous()) {
1379       // Normal (non-humongous) case: just set the bit.
1380       _region_bm->par_at_put(index, true);
1381     } else {
1382       // Starts humongous case: calculate how many regions are part of
1383       // this humongous region and then set the bit range.
1384       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1385       _region_bm->par_at_put_range(index, end_index, true);
1386     }
1387   }
1388 
1389 public:
1390   CMCountDataClosureBase(G1CollectedHeap* g1h,
1391                          BitMap* region_bm, BitMap* card_bm):
1392     _g1h(g1h), _cm(g1h->concurrent_mark()),
1393     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1394     _region_bm(region_bm), _card_bm(card_bm) { }
1395 };
1396 
1397 // Closure that calculates the # live objects per region. Used
1398 // for verification purposes during the cleanup pause.
1399 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1400   CMBitMapRO* _bm;
1401   size_t _region_marked_bytes;
1402 
1403 public:
1404   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1405                          BitMap* region_bm, BitMap* card_bm) :
1406     CMCountDataClosureBase(g1h, region_bm, card_bm),
1407     _bm(bm), _region_marked_bytes(0) { }
1408 
1409   bool doHeapRegion(HeapRegion* hr) {
1410 
1411     if (hr->is_continues_humongous()) {
1412       // We will ignore these here and process them when their
1413       // associated "starts humongous" region is processed (see
1414       // set_bit_for_heap_region()). Note that we cannot rely on their
1415       // associated "starts humongous" region to have their bit set to
1416       // 1 since, due to the region chunking in the parallel region
1417       // iteration, a "continues humongous" region might be visited
1418       // before its associated "starts humongous".
1419       return false;
1420     }
1421 
1422     HeapWord* ntams = hr->next_top_at_mark_start();
1423     HeapWord* start = hr->bottom();
1424 
1425     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1426            err_msg("Preconditions not met - "
1427                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1428                    p2i(start), p2i(ntams), p2i(hr->end())));
1429 
1430     // Find the first marked object at or after "start".
1431     start = _bm->getNextMarkedWordAddress(start, ntams);
1432 
1433     size_t marked_bytes = 0;
1434 
1435     while (start < ntams) {
1436       oop obj = oop(start);
1437       int obj_sz = obj->size();
1438       HeapWord* obj_end = start + obj_sz;
1439 
1440       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1441       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1442 
1443       // Note: if we're looking at the last region in heap - obj_end
1444       // could be actually just beyond the end of the heap; end_idx
1445       // will then correspond to a (non-existent) card that is also
1446       // just beyond the heap.
1447       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1448         // end of object is not card aligned - increment to cover
1449         // all the cards spanned by the object
1450         end_idx += 1;
1451       }
1452 
1453       // Set the bits in the card BM for the cards spanned by this object.
1454       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1455 
1456       // Add the size of this object to the number of marked bytes.
1457       marked_bytes += (size_t)obj_sz * HeapWordSize;
1458 
1459       // Find the next marked object after this one.
1460       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1461     }
1462 
1463     // Mark the allocated-since-marking portion...
1464     HeapWord* top = hr->top();
1465     if (ntams < top) {
1466       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1467       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1468 
1469       // Note: if we're looking at the last region in heap - top
1470       // could be actually just beyond the end of the heap; end_idx
1471       // will then correspond to a (non-existent) card that is also
1472       // just beyond the heap.
1473       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1474         // end of object is not card aligned - increment to cover
1475         // all the cards spanned by the object
1476         end_idx += 1;
1477       }
1478       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1479 
1480       // This definitely means the region has live objects.
1481       set_bit_for_region(hr);
1482     }
1483 
1484     // Update the live region bitmap.
1485     if (marked_bytes > 0) {
1486       set_bit_for_region(hr);
1487     }
1488 
1489     // Set the marked bytes for the current region so that
1490     // it can be queried by a calling verification routine
1491     _region_marked_bytes = marked_bytes;
1492 
1493     return false;
1494   }
1495 
1496   size_t region_marked_bytes() const { return _region_marked_bytes; }
1497 };
1498 
1499 // Heap region closure used for verifying the counting data
1500 // that was accumulated concurrently and aggregated during
1501 // the remark pause. This closure is applied to the heap
1502 // regions during the STW cleanup pause.
1503 
1504 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1505   G1CollectedHeap* _g1h;
1506   ConcurrentMark* _cm;
1507   CalcLiveObjectsClosure _calc_cl;
1508   BitMap* _region_bm;   // Region BM to be verified
1509   BitMap* _card_bm;     // Card BM to be verified
1510   bool _verbose;        // verbose output?
1511 
1512   BitMap* _exp_region_bm; // Expected Region BM values
1513   BitMap* _exp_card_bm;   // Expected card BM values
1514 
1515   int _failures;
1516 
1517 public:
1518   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1519                                 BitMap* region_bm,
1520                                 BitMap* card_bm,
1521                                 BitMap* exp_region_bm,
1522                                 BitMap* exp_card_bm,
1523                                 bool verbose) :
1524     _g1h(g1h), _cm(g1h->concurrent_mark()),
1525     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1526     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1527     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1528     _failures(0) { }
1529 
1530   int failures() const { return _failures; }
1531 
1532   bool doHeapRegion(HeapRegion* hr) {
1533     if (hr->is_continues_humongous()) {
1534       // We will ignore these here and process them when their
1535       // associated "starts humongous" region is processed (see
1536       // set_bit_for_heap_region()). Note that we cannot rely on their
1537       // associated "starts humongous" region to have their bit set to
1538       // 1 since, due to the region chunking in the parallel region
1539       // iteration, a "continues humongous" region might be visited
1540       // before its associated "starts humongous".
1541       return false;
1542     }
1543 
1544     int failures = 0;
1545 
1546     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1547     // this region and set the corresponding bits in the expected region
1548     // and card bitmaps.
1549     bool res = _calc_cl.doHeapRegion(hr);
1550     assert(res == false, "should be continuing");
1551 
1552     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1553                     Mutex::_no_safepoint_check_flag);
1554 
1555     // Verify the marked bytes for this region.
1556     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1557     size_t act_marked_bytes = hr->next_marked_bytes();
1558 
1559     // We're not OK if expected marked bytes > actual marked bytes. It means
1560     // we have missed accounting some objects during the actual marking.
1561     if (exp_marked_bytes > act_marked_bytes) {
1562       if (_verbose) {
1563         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1564                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1565                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1566       }
1567       failures += 1;
1568     }
1569 
1570     // Verify the bit, for this region, in the actual and expected
1571     // (which was just calculated) region bit maps.
1572     // We're not OK if the bit in the calculated expected region
1573     // bitmap is set and the bit in the actual region bitmap is not.
1574     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1575 
1576     bool expected = _exp_region_bm->at(index);
1577     bool actual = _region_bm->at(index);
1578     if (expected && !actual) {
1579       if (_verbose) {
1580         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1581                                "expected: %s, actual: %s",
1582                                hr->hrm_index(),
1583                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1584       }
1585       failures += 1;
1586     }
1587 
1588     // Verify that the card bit maps for the cards spanned by the current
1589     // region match. We have an error if we have a set bit in the expected
1590     // bit map and the corresponding bit in the actual bitmap is not set.
1591 
1592     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1593     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1594 
1595     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1596       expected = _exp_card_bm->at(i);
1597       actual = _card_bm->at(i);
1598 
1599       if (expected && !actual) {
1600         if (_verbose) {
1601           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1602                                  "expected: %s, actual: %s",
1603                                  hr->hrm_index(), i,
1604                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1605         }
1606         failures += 1;
1607       }
1608     }
1609 
1610     if (failures > 0 && _verbose)  {
1611       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1612                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1613                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1614                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1615     }
1616 
1617     _failures += failures;
1618 
1619     // We could stop iteration over the heap when we
1620     // find the first violating region by returning true.
1621     return false;
1622   }
1623 };
1624 
1625 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1626 protected:
1627   G1CollectedHeap* _g1h;
1628   ConcurrentMark* _cm;
1629   BitMap* _actual_region_bm;
1630   BitMap* _actual_card_bm;
1631 
1632   uint    _n_workers;
1633 
1634   BitMap* _expected_region_bm;
1635   BitMap* _expected_card_bm;
1636 
1637   int  _failures;
1638   bool _verbose;
1639 
1640   HeapRegionClaimer _hrclaimer;
1641 
1642 public:
1643   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1644                             BitMap* region_bm, BitMap* card_bm,
1645                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1646     : AbstractGangTask("G1 verify final counting"),
1647       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1648       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1649       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1650       _failures(0), _verbose(false),
1651       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1652     assert(VerifyDuringGC, "don't call this otherwise");
1653     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1654     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1655 
1656     _verbose = _cm->verbose_medium();
1657   }
1658 
1659   void work(uint worker_id) {
1660     assert(worker_id < _n_workers, "invariant");
1661 
1662     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1663                                             _actual_region_bm, _actual_card_bm,
1664                                             _expected_region_bm,
1665                                             _expected_card_bm,
1666                                             _verbose);
1667 
1668     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1669 
1670     Atomic::add(verify_cl.failures(), &_failures);
1671   }
1672 
1673   int failures() const { return _failures; }
1674 };
1675 
1676 // Closure that finalizes the liveness counting data.
1677 // Used during the cleanup pause.
1678 // Sets the bits corresponding to the interval [NTAMS, top]
1679 // (which contains the implicitly live objects) in the
1680 // card liveness bitmap. Also sets the bit for each region,
1681 // containing live data, in the region liveness bitmap.
1682 
1683 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1684  public:
1685   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1686                               BitMap* region_bm,
1687                               BitMap* card_bm) :
1688     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1689 
1690   bool doHeapRegion(HeapRegion* hr) {
1691 
1692     if (hr->is_continues_humongous()) {
1693       // We will ignore these here and process them when their
1694       // associated "starts humongous" region is processed (see
1695       // set_bit_for_heap_region()). Note that we cannot rely on their
1696       // associated "starts humongous" region to have their bit set to
1697       // 1 since, due to the region chunking in the parallel region
1698       // iteration, a "continues humongous" region might be visited
1699       // before its associated "starts humongous".
1700       return false;
1701     }
1702 
1703     HeapWord* ntams = hr->next_top_at_mark_start();
1704     HeapWord* top   = hr->top();
1705 
1706     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1707 
1708     // Mark the allocated-since-marking portion...
1709     if (ntams < top) {
1710       // This definitely means the region has live objects.
1711       set_bit_for_region(hr);
1712 
1713       // Now set the bits in the card bitmap for [ntams, top)
1714       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1715       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1716 
1717       // Note: if we're looking at the last region in heap - top
1718       // could be actually just beyond the end of the heap; end_idx
1719       // will then correspond to a (non-existent) card that is also
1720       // just beyond the heap.
1721       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1722         // end of object is not card aligned - increment to cover
1723         // all the cards spanned by the object
1724         end_idx += 1;
1725       }
1726 
1727       assert(end_idx <= _card_bm->size(),
1728              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1729                      end_idx, _card_bm->size()));
1730       assert(start_idx < _card_bm->size(),
1731              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1732                      start_idx, _card_bm->size()));
1733 
1734       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1735     }
1736 
1737     // Set the bit for the region if it contains live data
1738     if (hr->next_marked_bytes() > 0) {
1739       set_bit_for_region(hr);
1740     }
1741 
1742     return false;
1743   }
1744 };
1745 
1746 class G1ParFinalCountTask: public AbstractGangTask {
1747 protected:
1748   G1CollectedHeap* _g1h;
1749   ConcurrentMark* _cm;
1750   BitMap* _actual_region_bm;
1751   BitMap* _actual_card_bm;
1752 
1753   uint    _n_workers;
1754   HeapRegionClaimer _hrclaimer;
1755 
1756 public:
1757   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1758     : AbstractGangTask("G1 final counting"),
1759       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1760       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1761       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1762   }
1763 
1764   void work(uint worker_id) {
1765     assert(worker_id < _n_workers, "invariant");
1766 
1767     FinalCountDataUpdateClosure final_update_cl(_g1h,
1768                                                 _actual_region_bm,
1769                                                 _actual_card_bm);
1770 
1771     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1772   }
1773 };
1774 
1775 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1776   G1CollectedHeap* _g1;
1777   size_t _freed_bytes;
1778   FreeRegionList* _local_cleanup_list;
1779   HeapRegionSetCount _old_regions_removed;
1780   HeapRegionSetCount _humongous_regions_removed;
1781   HRRSCleanupTask* _hrrs_cleanup_task;
1782 
1783 public:
1784   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1785                              FreeRegionList* local_cleanup_list,
1786                              HRRSCleanupTask* hrrs_cleanup_task) :
1787     _g1(g1),
1788     _freed_bytes(0),
1789     _local_cleanup_list(local_cleanup_list),
1790     _old_regions_removed(),
1791     _humongous_regions_removed(),
1792     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1793 
1794   size_t freed_bytes() { return _freed_bytes; }
1795   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1796   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1797 
1798   bool doHeapRegion(HeapRegion *hr) {
1799     if (hr->is_continues_humongous() || hr->is_archive()) {
1800       return false;
1801     }
1802     // We use a claim value of zero here because all regions
1803     // were claimed with value 1 in the FinalCount task.
1804     _g1->reset_gc_time_stamps(hr);
1805     hr->note_end_of_marking();
1806 
1807     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1808       _freed_bytes += hr->used();
1809       hr->set_containing_set(NULL);
1810       if (hr->is_humongous()) {
1811         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1812         _humongous_regions_removed.increment(1u, hr->capacity());
1813         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1814       } else {
1815         _old_regions_removed.increment(1u, hr->capacity());
1816         _g1->free_region(hr, _local_cleanup_list, true);
1817       }
1818     } else {
1819       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1820     }
1821 
1822     return false;
1823   }
1824 };
1825 
1826 class G1ParNoteEndTask: public AbstractGangTask {
1827   friend class G1NoteEndOfConcMarkClosure;
1828 
1829 protected:
1830   G1CollectedHeap* _g1h;
1831   FreeRegionList* _cleanup_list;
1832   HeapRegionClaimer _hrclaimer;
1833 
1834 public:
1835   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1836       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1837   }
1838 
1839   void work(uint worker_id) {
1840     FreeRegionList local_cleanup_list("Local Cleanup List");
1841     HRRSCleanupTask hrrs_cleanup_task;
1842     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1843                                            &hrrs_cleanup_task);
1844     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1845     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1846 
1847     // Now update the lists
1848     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1849     {
1850       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1851       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1852 
1853       // If we iterate over the global cleanup list at the end of
1854       // cleanup to do this printing we will not guarantee to only
1855       // generate output for the newly-reclaimed regions (the list
1856       // might not be empty at the beginning of cleanup; we might
1857       // still be working on its previous contents). So we do the
1858       // printing here, before we append the new regions to the global
1859       // cleanup list.
1860 
1861       G1HRPrinter* hr_printer = _g1h->hr_printer();
1862       if (hr_printer->is_active()) {
1863         FreeRegionListIterator iter(&local_cleanup_list);
1864         while (iter.more_available()) {
1865           HeapRegion* hr = iter.get_next();
1866           hr_printer->cleanup(hr);
1867         }
1868       }
1869 
1870       _cleanup_list->add_ordered(&local_cleanup_list);
1871       assert(local_cleanup_list.is_empty(), "post-condition");
1872 
1873       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1874     }
1875   }
1876 };
1877 
1878 class G1ParScrubRemSetTask: public AbstractGangTask {
1879 protected:
1880   G1RemSet* _g1rs;
1881   BitMap* _region_bm;
1882   BitMap* _card_bm;
1883   HeapRegionClaimer _hrclaimer;
1884 
1885 public:
1886   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1887       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1888   }
1889 
1890   void work(uint worker_id) {
1891     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1892   }
1893 
1894 };
1895 
1896 void ConcurrentMark::cleanup() {
1897   // world is stopped at this checkpoint
1898   assert(SafepointSynchronize::is_at_safepoint(),
1899          "world should be stopped");
1900   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1901 
1902   // If a full collection has happened, we shouldn't do this.
1903   if (has_aborted()) {
1904     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1905     return;
1906   }
1907 
1908   g1h->verify_region_sets_optional();
1909 
1910   if (VerifyDuringGC) {
1911     HandleMark hm;  // handle scope
1912     g1h->prepare_for_verify();
1913     Universe::verify(VerifyOption_G1UsePrevMarking,
1914                      " VerifyDuringGC:(before)");
1915   }
1916   g1h->check_bitmaps("Cleanup Start");
1917 
1918   G1CollectorPolicy* g1p = g1h->g1_policy();
1919   g1p->record_concurrent_mark_cleanup_start();
1920 
1921   double start = os::elapsedTime();
1922 
1923   HeapRegionRemSet::reset_for_cleanup_tasks();
1924 
1925   // Do counting once more with the world stopped for good measure.
1926   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1927 
1928   g1h->workers()->run_task(&g1_par_count_task);
1929 
1930   if (VerifyDuringGC) {
1931     // Verify that the counting data accumulated during marking matches
1932     // that calculated by walking the marking bitmap.
1933 
1934     // Bitmaps to hold expected values
1935     BitMap expected_region_bm(_region_bm.size(), true);
1936     BitMap expected_card_bm(_card_bm.size(), true);
1937 
1938     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1939                                                  &_region_bm,
1940                                                  &_card_bm,
1941                                                  &expected_region_bm,
1942                                                  &expected_card_bm);
1943 
1944     g1h->workers()->run_task(&g1_par_verify_task);
1945 
1946     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1947   }
1948 
1949   size_t start_used_bytes = g1h->used();
1950   g1h->collector_state()->set_mark_in_progress(false);
1951 
1952   double count_end = os::elapsedTime();
1953   double this_final_counting_time = (count_end - start);
1954   _total_counting_time += this_final_counting_time;
1955 
1956   if (G1PrintRegionLivenessInfo) {
1957     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
1958     _g1h->heap_region_iterate(&cl);
1959   }
1960 
1961   // Install newly created mark bitMap as "prev".
1962   swapMarkBitMaps();
1963 
1964   g1h->reset_gc_time_stamp();
1965 
1966   uint n_workers = _g1h->workers()->active_workers();
1967 
1968   // Note end of marking in all heap regions.
1969   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1970   g1h->workers()->run_task(&g1_par_note_end_task);
1971   g1h->check_gc_time_stamps();
1972 
1973   if (!cleanup_list_is_empty()) {
1974     // The cleanup list is not empty, so we'll have to process it
1975     // concurrently. Notify anyone else that might be wanting free
1976     // regions that there will be more free regions coming soon.
1977     g1h->set_free_regions_coming();
1978   }
1979 
1980   // call below, since it affects the metric by which we sort the heap
1981   // regions.
1982   if (G1ScrubRemSets) {
1983     double rs_scrub_start = os::elapsedTime();
1984     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
1985     g1h->workers()->run_task(&g1_par_scrub_rs_task);
1986 
1987     double rs_scrub_end = os::elapsedTime();
1988     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
1989     _total_rs_scrub_time += this_rs_scrub_time;
1990   }
1991 
1992   // this will also free any regions totally full of garbage objects,
1993   // and sort the regions.
1994   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1995 
1996   // Statistics.
1997   double end = os::elapsedTime();
1998   _cleanup_times.add((end - start) * 1000.0);
1999 
2000   if (G1Log::fine()) {
2001     g1h->g1_policy()->print_heap_transition(start_used_bytes);
2002   }
2003 
2004   // Clean up will have freed any regions completely full of garbage.
2005   // Update the soft reference policy with the new heap occupancy.
2006   Universe::update_heap_info_at_gc();
2007 
2008   if (VerifyDuringGC) {
2009     HandleMark hm;  // handle scope
2010     g1h->prepare_for_verify();
2011     Universe::verify(VerifyOption_G1UsePrevMarking,
2012                      " VerifyDuringGC:(after)");
2013   }
2014 
2015   g1h->check_bitmaps("Cleanup End");
2016 
2017   g1h->verify_region_sets_optional();
2018 
2019   // We need to make this be a "collection" so any collection pause that
2020   // races with it goes around and waits for completeCleanup to finish.
2021   g1h->increment_total_collections();
2022 
2023   // Clean out dead classes and update Metaspace sizes.
2024   if (ClassUnloadingWithConcurrentMark) {
2025     ClassLoaderDataGraph::purge();
2026   }
2027   MetaspaceGC::compute_new_size();
2028 
2029   // We reclaimed old regions so we should calculate the sizes to make
2030   // sure we update the old gen/space data.
2031   g1h->g1mm()->update_sizes();
2032   g1h->allocation_context_stats().update_after_mark();
2033 
2034   g1h->trace_heap_after_concurrent_cycle();
2035 }
2036 
2037 void ConcurrentMark::completeCleanup() {
2038   if (has_aborted()) return;
2039 
2040   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2041 
2042   _cleanup_list.verify_optional();
2043   FreeRegionList tmp_free_list("Tmp Free List");
2044 
2045   if (G1ConcRegionFreeingVerbose) {
2046     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2047                            "cleanup list has %u entries",
2048                            _cleanup_list.length());
2049   }
2050 
2051   // No one else should be accessing the _cleanup_list at this point,
2052   // so it is not necessary to take any locks
2053   while (!_cleanup_list.is_empty()) {
2054     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2055     assert(hr != NULL, "Got NULL from a non-empty list");
2056     hr->par_clear();
2057     tmp_free_list.add_ordered(hr);
2058 
2059     // Instead of adding one region at a time to the secondary_free_list,
2060     // we accumulate them in the local list and move them a few at a
2061     // time. This also cuts down on the number of notify_all() calls
2062     // we do during this process. We'll also append the local list when
2063     // _cleanup_list is empty (which means we just removed the last
2064     // region from the _cleanup_list).
2065     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2066         _cleanup_list.is_empty()) {
2067       if (G1ConcRegionFreeingVerbose) {
2068         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2069                                "appending %u entries to the secondary_free_list, "
2070                                "cleanup list still has %u entries",
2071                                tmp_free_list.length(),
2072                                _cleanup_list.length());
2073       }
2074 
2075       {
2076         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2077         g1h->secondary_free_list_add(&tmp_free_list);
2078         SecondaryFreeList_lock->notify_all();
2079       }
2080 #ifndef PRODUCT
2081       if (G1StressConcRegionFreeing) {
2082         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2083           os::sleep(Thread::current(), (jlong) 1, false);
2084         }
2085       }
2086 #endif
2087     }
2088   }
2089   assert(tmp_free_list.is_empty(), "post-condition");
2090 }
2091 
2092 // Supporting Object and Oop closures for reference discovery
2093 // and processing in during marking
2094 
2095 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2096   HeapWord* addr = (HeapWord*)obj;
2097   return addr != NULL &&
2098          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2099 }
2100 
2101 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2102 // Uses the CMTask associated with a worker thread (for serial reference
2103 // processing the CMTask for worker 0 is used) to preserve (mark) and
2104 // trace referent objects.
2105 //
2106 // Using the CMTask and embedded local queues avoids having the worker
2107 // threads operating on the global mark stack. This reduces the risk
2108 // of overflowing the stack - which we would rather avoid at this late
2109 // state. Also using the tasks' local queues removes the potential
2110 // of the workers interfering with each other that could occur if
2111 // operating on the global stack.
2112 
2113 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2114   ConcurrentMark* _cm;
2115   CMTask*         _task;
2116   int             _ref_counter_limit;
2117   int             _ref_counter;
2118   bool            _is_serial;
2119  public:
2120   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2121     _cm(cm), _task(task), _is_serial(is_serial),
2122     _ref_counter_limit(G1RefProcDrainInterval) {
2123     assert(_ref_counter_limit > 0, "sanity");
2124     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2125     _ref_counter = _ref_counter_limit;
2126   }
2127 
2128   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2129   virtual void do_oop(      oop* p) { do_oop_work(p); }
2130 
2131   template <class T> void do_oop_work(T* p) {
2132     if (!_cm->has_overflown()) {
2133       oop obj = oopDesc::load_decode_heap_oop(p);
2134       if (_cm->verbose_high()) {
2135         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2136                                "*"PTR_FORMAT" = "PTR_FORMAT,
2137                                _task->worker_id(), p2i(p), p2i((void*) obj));
2138       }
2139 
2140       _task->deal_with_reference(obj);
2141       _ref_counter--;
2142 
2143       if (_ref_counter == 0) {
2144         // We have dealt with _ref_counter_limit references, pushing them
2145         // and objects reachable from them on to the local stack (and
2146         // possibly the global stack). Call CMTask::do_marking_step() to
2147         // process these entries.
2148         //
2149         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2150         // there's nothing more to do (i.e. we're done with the entries that
2151         // were pushed as a result of the CMTask::deal_with_reference() calls
2152         // above) or we overflow.
2153         //
2154         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2155         // flag while there may still be some work to do. (See the comment at
2156         // the beginning of CMTask::do_marking_step() for those conditions -
2157         // one of which is reaching the specified time target.) It is only
2158         // when CMTask::do_marking_step() returns without setting the
2159         // has_aborted() flag that the marking step has completed.
2160         do {
2161           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2162           _task->do_marking_step(mark_step_duration_ms,
2163                                  false      /* do_termination */,
2164                                  _is_serial);
2165         } while (_task->has_aborted() && !_cm->has_overflown());
2166         _ref_counter = _ref_counter_limit;
2167       }
2168     } else {
2169       if (_cm->verbose_high()) {
2170          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2171       }
2172     }
2173   }
2174 };
2175 
2176 // 'Drain' oop closure used by both serial and parallel reference processing.
2177 // Uses the CMTask associated with a given worker thread (for serial
2178 // reference processing the CMtask for worker 0 is used). Calls the
2179 // do_marking_step routine, with an unbelievably large timeout value,
2180 // to drain the marking data structures of the remaining entries
2181 // added by the 'keep alive' oop closure above.
2182 
2183 class G1CMDrainMarkingStackClosure: public VoidClosure {
2184   ConcurrentMark* _cm;
2185   CMTask*         _task;
2186   bool            _is_serial;
2187  public:
2188   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2189     _cm(cm), _task(task), _is_serial(is_serial) {
2190     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2191   }
2192 
2193   void do_void() {
2194     do {
2195       if (_cm->verbose_high()) {
2196         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2197                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2198       }
2199 
2200       // We call CMTask::do_marking_step() to completely drain the local
2201       // and global marking stacks of entries pushed by the 'keep alive'
2202       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2203       //
2204       // CMTask::do_marking_step() is called in a loop, which we'll exit
2205       // if there's nothing more to do (i.e. we've completely drained the
2206       // entries that were pushed as a a result of applying the 'keep alive'
2207       // closure to the entries on the discovered ref lists) or we overflow
2208       // the global marking stack.
2209       //
2210       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2211       // flag while there may still be some work to do. (See the comment at
2212       // the beginning of CMTask::do_marking_step() for those conditions -
2213       // one of which is reaching the specified time target.) It is only
2214       // when CMTask::do_marking_step() returns without setting the
2215       // has_aborted() flag that the marking step has completed.
2216 
2217       _task->do_marking_step(1000000000.0 /* something very large */,
2218                              true         /* do_termination */,
2219                              _is_serial);
2220     } while (_task->has_aborted() && !_cm->has_overflown());
2221   }
2222 };
2223 
2224 // Implementation of AbstractRefProcTaskExecutor for parallel
2225 // reference processing at the end of G1 concurrent marking
2226 
2227 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2228 private:
2229   G1CollectedHeap* _g1h;
2230   ConcurrentMark*  _cm;
2231   WorkGang*        _workers;
2232   uint             _active_workers;
2233 
2234 public:
2235   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2236                           ConcurrentMark* cm,
2237                           WorkGang* workers,
2238                           uint n_workers) :
2239     _g1h(g1h), _cm(cm),
2240     _workers(workers), _active_workers(n_workers) { }
2241 
2242   // Executes the given task using concurrent marking worker threads.
2243   virtual void execute(ProcessTask& task);
2244   virtual void execute(EnqueueTask& task);
2245 };
2246 
2247 class G1CMRefProcTaskProxy: public AbstractGangTask {
2248   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2249   ProcessTask&     _proc_task;
2250   G1CollectedHeap* _g1h;
2251   ConcurrentMark*  _cm;
2252 
2253 public:
2254   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2255                      G1CollectedHeap* g1h,
2256                      ConcurrentMark* cm) :
2257     AbstractGangTask("Process reference objects in parallel"),
2258     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2259     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2260     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2261   }
2262 
2263   virtual void work(uint worker_id) {
2264     ResourceMark rm;
2265     HandleMark hm;
2266     CMTask* task = _cm->task(worker_id);
2267     G1CMIsAliveClosure g1_is_alive(_g1h);
2268     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2269     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2270 
2271     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2272   }
2273 };
2274 
2275 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2276   assert(_workers != NULL, "Need parallel worker threads.");
2277   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2278 
2279   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2280 
2281   // We need to reset the concurrency level before each
2282   // proxy task execution, so that the termination protocol
2283   // and overflow handling in CMTask::do_marking_step() knows
2284   // how many workers to wait for.
2285   _cm->set_concurrency(_active_workers);
2286   _workers->run_task(&proc_task_proxy);
2287 }
2288 
2289 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2290   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2291   EnqueueTask& _enq_task;
2292 
2293 public:
2294   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2295     AbstractGangTask("Enqueue reference objects in parallel"),
2296     _enq_task(enq_task) { }
2297 
2298   virtual void work(uint worker_id) {
2299     _enq_task.work(worker_id);
2300   }
2301 };
2302 
2303 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2304   assert(_workers != NULL, "Need parallel worker threads.");
2305   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2306 
2307   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2308 
2309   // Not strictly necessary but...
2310   //
2311   // We need to reset the concurrency level before each
2312   // proxy task execution, so that the termination protocol
2313   // and overflow handling in CMTask::do_marking_step() knows
2314   // how many workers to wait for.
2315   _cm->set_concurrency(_active_workers);
2316   _workers->run_task(&enq_task_proxy);
2317 }
2318 
2319 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2320   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2321 }
2322 
2323 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2324   if (has_overflown()) {
2325     // Skip processing the discovered references if we have
2326     // overflown the global marking stack. Reference objects
2327     // only get discovered once so it is OK to not
2328     // de-populate the discovered reference lists. We could have,
2329     // but the only benefit would be that, when marking restarts,
2330     // less reference objects are discovered.
2331     return;
2332   }
2333 
2334   ResourceMark rm;
2335   HandleMark   hm;
2336 
2337   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2338 
2339   // Is alive closure.
2340   G1CMIsAliveClosure g1_is_alive(g1h);
2341 
2342   // Inner scope to exclude the cleaning of the string and symbol
2343   // tables from the displayed time.
2344   {
2345     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2346 
2347     ReferenceProcessor* rp = g1h->ref_processor_cm();
2348 
2349     // See the comment in G1CollectedHeap::ref_processing_init()
2350     // about how reference processing currently works in G1.
2351 
2352     // Set the soft reference policy
2353     rp->setup_policy(clear_all_soft_refs);
2354     assert(_markStack.isEmpty(), "mark stack should be empty");
2355 
2356     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2357     // in serial reference processing. Note these closures are also
2358     // used for serially processing (by the the current thread) the
2359     // JNI references during parallel reference processing.
2360     //
2361     // These closures do not need to synchronize with the worker
2362     // threads involved in parallel reference processing as these
2363     // instances are executed serially by the current thread (e.g.
2364     // reference processing is not multi-threaded and is thus
2365     // performed by the current thread instead of a gang worker).
2366     //
2367     // The gang tasks involved in parallel reference processing create
2368     // their own instances of these closures, which do their own
2369     // synchronization among themselves.
2370     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2371     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2372 
2373     // We need at least one active thread. If reference processing
2374     // is not multi-threaded we use the current (VMThread) thread,
2375     // otherwise we use the work gang from the G1CollectedHeap and
2376     // we utilize all the worker threads we can.
2377     bool processing_is_mt = rp->processing_is_mt();
2378     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2379     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2380 
2381     // Parallel processing task executor.
2382     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2383                                               g1h->workers(), active_workers);
2384     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2385 
2386     // Set the concurrency level. The phase was already set prior to
2387     // executing the remark task.
2388     set_concurrency(active_workers);
2389 
2390     // Set the degree of MT processing here.  If the discovery was done MT,
2391     // the number of threads involved during discovery could differ from
2392     // the number of active workers.  This is OK as long as the discovered
2393     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2394     rp->set_active_mt_degree(active_workers);
2395 
2396     // Process the weak references.
2397     const ReferenceProcessorStats& stats =
2398         rp->process_discovered_references(&g1_is_alive,
2399                                           &g1_keep_alive,
2400                                           &g1_drain_mark_stack,
2401                                           executor,
2402                                           g1h->gc_timer_cm(),
2403                                           concurrent_gc_id());
2404     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2405 
2406     // The do_oop work routines of the keep_alive and drain_marking_stack
2407     // oop closures will set the has_overflown flag if we overflow the
2408     // global marking stack.
2409 
2410     assert(_markStack.overflow() || _markStack.isEmpty(),
2411             "mark stack should be empty (unless it overflowed)");
2412 
2413     if (_markStack.overflow()) {
2414       // This should have been done already when we tried to push an
2415       // entry on to the global mark stack. But let's do it again.
2416       set_has_overflown();
2417     }
2418 
2419     assert(rp->num_q() == active_workers, "why not");
2420 
2421     rp->enqueue_discovered_references(executor);
2422 
2423     rp->verify_no_references_recorded();
2424     assert(!rp->discovery_enabled(), "Post condition");
2425   }
2426 
2427   if (has_overflown()) {
2428     // We can not trust g1_is_alive if the marking stack overflowed
2429     return;
2430   }
2431 
2432   assert(_markStack.isEmpty(), "Marking should have completed");
2433 
2434   // Unload Klasses, String, Symbols, Code Cache, etc.
2435   {
2436     G1CMTraceTime trace("Unloading", G1Log::finer());
2437 
2438     if (ClassUnloadingWithConcurrentMark) {
2439       bool purged_classes;
2440 
2441       {
2442         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2443         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2444       }
2445 
2446       {
2447         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2448         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2449       }
2450     }
2451 
2452     if (G1StringDedup::is_enabled()) {
2453       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2454       G1StringDedup::unlink(&g1_is_alive);
2455     }
2456   }
2457 }
2458 
2459 void ConcurrentMark::swapMarkBitMaps() {
2460   CMBitMapRO* temp = _prevMarkBitMap;
2461   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2462   _nextMarkBitMap  = (CMBitMap*)  temp;
2463 }
2464 
2465 // Closure for marking entries in SATB buffers.
2466 class CMSATBBufferClosure : public SATBBufferClosure {
2467 private:
2468   CMTask* _task;
2469   G1CollectedHeap* _g1h;
2470 
2471   // This is very similar to CMTask::deal_with_reference, but with
2472   // more relaxed requirements for the argument, so this must be more
2473   // circumspect about treating the argument as an object.
2474   void do_entry(void* entry) const {
2475     _task->increment_refs_reached();
2476     HeapRegion* hr = _g1h->heap_region_containing_raw(entry);
2477     if (entry < hr->next_top_at_mark_start()) {
2478       // Until we get here, we don't know whether entry refers to a valid
2479       // object; it could instead have been a stale reference.
2480       oop obj = static_cast<oop>(entry);
2481       assert(obj->is_oop(true /* ignore mark word */),
2482              err_msg("Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj)));
2483       _task->make_reference_grey(obj, hr);
2484     }
2485   }
2486 
2487 public:
2488   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
2489     : _task(task), _g1h(g1h) { }
2490 
2491   virtual void do_buffer(void** buffer, size_t size) {
2492     for (size_t i = 0; i < size; ++i) {
2493       do_entry(buffer[i]);
2494     }
2495   }
2496 };
2497 
2498 class G1RemarkThreadsClosure : public ThreadClosure {
2499   CMSATBBufferClosure _cm_satb_cl;
2500   G1CMOopClosure _cm_cl;
2501   MarkingCodeBlobClosure _code_cl;
2502   int _thread_parity;
2503 
2504  public:
2505   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2506     _cm_satb_cl(task, g1h),
2507     _cm_cl(g1h, g1h->concurrent_mark(), task),
2508     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2509     _thread_parity(Threads::thread_claim_parity()) {}
2510 
2511   void do_thread(Thread* thread) {
2512     if (thread->is_Java_thread()) {
2513       if (thread->claim_oops_do(true, _thread_parity)) {
2514         JavaThread* jt = (JavaThread*)thread;
2515 
2516         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2517         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2518         // * Alive if on the stack of an executing method
2519         // * Weakly reachable otherwise
2520         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2521         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2522         jt->nmethods_do(&_code_cl);
2523 
2524         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2525       }
2526     } else if (thread->is_VM_thread()) {
2527       if (thread->claim_oops_do(true, _thread_parity)) {
2528         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2529       }
2530     }
2531   }
2532 };
2533 
2534 class CMRemarkTask: public AbstractGangTask {
2535 private:
2536   ConcurrentMark* _cm;
2537 public:
2538   void work(uint worker_id) {
2539     // Since all available tasks are actually started, we should
2540     // only proceed if we're supposed to be active.
2541     if (worker_id < _cm->active_tasks()) {
2542       CMTask* task = _cm->task(worker_id);
2543       task->record_start_time();
2544       {
2545         ResourceMark rm;
2546         HandleMark hm;
2547 
2548         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2549         Threads::threads_do(&threads_f);
2550       }
2551 
2552       do {
2553         task->do_marking_step(1000000000.0 /* something very large */,
2554                               true         /* do_termination       */,
2555                               false        /* is_serial            */);
2556       } while (task->has_aborted() && !_cm->has_overflown());
2557       // If we overflow, then we do not want to restart. We instead
2558       // want to abort remark and do concurrent marking again.
2559       task->record_end_time();
2560     }
2561   }
2562 
2563   CMRemarkTask(ConcurrentMark* cm, uint active_workers) :
2564     AbstractGangTask("Par Remark"), _cm(cm) {
2565     _cm->terminator()->reset_for_reuse(active_workers);
2566   }
2567 };
2568 
2569 void ConcurrentMark::checkpointRootsFinalWork() {
2570   ResourceMark rm;
2571   HandleMark   hm;
2572   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2573 
2574   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2575 
2576   g1h->ensure_parsability(false);
2577 
2578   // this is remark, so we'll use up all active threads
2579   uint active_workers = g1h->workers()->active_workers();
2580   set_concurrency_and_phase(active_workers, false /* concurrent */);
2581   // Leave _parallel_marking_threads at it's
2582   // value originally calculated in the ConcurrentMark
2583   // constructor and pass values of the active workers
2584   // through the gang in the task.
2585 
2586   {
2587     StrongRootsScope srs(active_workers);
2588 
2589     CMRemarkTask remarkTask(this, active_workers);
2590     // We will start all available threads, even if we decide that the
2591     // active_workers will be fewer. The extra ones will just bail out
2592     // immediately.
2593     g1h->workers()->run_task(&remarkTask);
2594   }
2595 
2596   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2597   guarantee(has_overflown() ||
2598             satb_mq_set.completed_buffers_num() == 0,
2599             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2600                     BOOL_TO_STR(has_overflown()),
2601                     satb_mq_set.completed_buffers_num()));
2602 
2603   print_stats();
2604 }
2605 
2606 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2607   // Note we are overriding the read-only view of the prev map here, via
2608   // the cast.
2609   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2610 }
2611 
2612 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2613   _nextMarkBitMap->clearRange(mr);
2614 }
2615 
2616 HeapRegion*
2617 ConcurrentMark::claim_region(uint worker_id) {
2618   // "checkpoint" the finger
2619   HeapWord* finger = _finger;
2620 
2621   // _heap_end will not change underneath our feet; it only changes at
2622   // yield points.
2623   while (finger < _heap_end) {
2624     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2625 
2626     // Note on how this code handles humongous regions. In the
2627     // normal case the finger will reach the start of a "starts
2628     // humongous" (SH) region. Its end will either be the end of the
2629     // last "continues humongous" (CH) region in the sequence, or the
2630     // standard end of the SH region (if the SH is the only region in
2631     // the sequence). That way claim_region() will skip over the CH
2632     // regions. However, there is a subtle race between a CM thread
2633     // executing this method and a mutator thread doing a humongous
2634     // object allocation. The two are not mutually exclusive as the CM
2635     // thread does not need to hold the Heap_lock when it gets
2636     // here. So there is a chance that claim_region() will come across
2637     // a free region that's in the progress of becoming a SH or a CH
2638     // region. In the former case, it will either
2639     //   a) Miss the update to the region's end, in which case it will
2640     //      visit every subsequent CH region, will find their bitmaps
2641     //      empty, and do nothing, or
2642     //   b) Will observe the update of the region's end (in which case
2643     //      it will skip the subsequent CH regions).
2644     // If it comes across a region that suddenly becomes CH, the
2645     // scenario will be similar to b). So, the race between
2646     // claim_region() and a humongous object allocation might force us
2647     // to do a bit of unnecessary work (due to some unnecessary bitmap
2648     // iterations) but it should not introduce and correctness issues.
2649     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2650 
2651     // Above heap_region_containing_raw may return NULL as we always scan claim
2652     // until the end of the heap. In this case, just jump to the next region.
2653     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2654 
2655     // Is the gap between reading the finger and doing the CAS too long?
2656     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2657     if (res == finger && curr_region != NULL) {
2658       // we succeeded
2659       HeapWord*   bottom        = curr_region->bottom();
2660       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2661 
2662       if (verbose_low()) {
2663         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2664                                "["PTR_FORMAT", "PTR_FORMAT"), "
2665                                "limit = "PTR_FORMAT,
2666                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2667       }
2668 
2669       // notice that _finger == end cannot be guaranteed here since,
2670       // someone else might have moved the finger even further
2671       assert(_finger >= end, "the finger should have moved forward");
2672 
2673       if (verbose_low()) {
2674         gclog_or_tty->print_cr("[%u] we were successful with region = "
2675                                PTR_FORMAT, worker_id, p2i(curr_region));
2676       }
2677 
2678       if (limit > bottom) {
2679         if (verbose_low()) {
2680           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2681                                  "returning it ", worker_id, p2i(curr_region));
2682         }
2683         return curr_region;
2684       } else {
2685         assert(limit == bottom,
2686                "the region limit should be at bottom");
2687         if (verbose_low()) {
2688           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2689                                  "returning NULL", worker_id, p2i(curr_region));
2690         }
2691         // we return NULL and the caller should try calling
2692         // claim_region() again.
2693         return NULL;
2694       }
2695     } else {
2696       assert(_finger > finger, "the finger should have moved forward");
2697       if (verbose_low()) {
2698         if (curr_region == NULL) {
2699           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2700                                  "global finger = "PTR_FORMAT", "
2701                                  "our finger = "PTR_FORMAT,
2702                                  worker_id, p2i(_finger), p2i(finger));
2703         } else {
2704           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2705                                  "global finger = "PTR_FORMAT", "
2706                                  "our finger = "PTR_FORMAT,
2707                                  worker_id, p2i(_finger), p2i(finger));
2708         }
2709       }
2710 
2711       // read it again
2712       finger = _finger;
2713     }
2714   }
2715 
2716   return NULL;
2717 }
2718 
2719 #ifndef PRODUCT
2720 enum VerifyNoCSetOopsPhase {
2721   VerifyNoCSetOopsStack,
2722   VerifyNoCSetOopsQueues
2723 };
2724 
2725 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2726 private:
2727   G1CollectedHeap* _g1h;
2728   VerifyNoCSetOopsPhase _phase;
2729   int _info;
2730 
2731   const char* phase_str() {
2732     switch (_phase) {
2733     case VerifyNoCSetOopsStack:         return "Stack";
2734     case VerifyNoCSetOopsQueues:        return "Queue";
2735     default:                            ShouldNotReachHere();
2736     }
2737     return NULL;
2738   }
2739 
2740   void do_object_work(oop obj) {
2741     guarantee(!_g1h->obj_in_cs(obj),
2742               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2743                       p2i((void*) obj), phase_str(), _info));
2744   }
2745 
2746 public:
2747   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2748 
2749   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2750     _phase = phase;
2751     _info = info;
2752   }
2753 
2754   virtual void do_oop(oop* p) {
2755     oop obj = oopDesc::load_decode_heap_oop(p);
2756     do_object_work(obj);
2757   }
2758 
2759   virtual void do_oop(narrowOop* p) {
2760     // We should not come across narrow oops while scanning marking
2761     // stacks
2762     ShouldNotReachHere();
2763   }
2764 
2765   virtual void do_object(oop obj) {
2766     do_object_work(obj);
2767   }
2768 };
2769 
2770 void ConcurrentMark::verify_no_cset_oops() {
2771   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2772   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2773     return;
2774   }
2775 
2776   VerifyNoCSetOopsClosure cl;
2777 
2778   // Verify entries on the global mark stack
2779   cl.set_phase(VerifyNoCSetOopsStack);
2780   _markStack.oops_do(&cl);
2781 
2782   // Verify entries on the task queues
2783   for (uint i = 0; i < _max_worker_id; i += 1) {
2784     cl.set_phase(VerifyNoCSetOopsQueues, i);
2785     CMTaskQueue* queue = _task_queues->queue(i);
2786     queue->oops_do(&cl);
2787   }
2788 
2789   // Verify the global finger
2790   HeapWord* global_finger = finger();
2791   if (global_finger != NULL && global_finger < _heap_end) {
2792     // The global finger always points to a heap region boundary. We
2793     // use heap_region_containing_raw() to get the containing region
2794     // given that the global finger could be pointing to a free region
2795     // which subsequently becomes continues humongous. If that
2796     // happens, heap_region_containing() will return the bottom of the
2797     // corresponding starts humongous region and the check below will
2798     // not hold any more.
2799     // Since we always iterate over all regions, we might get a NULL HeapRegion
2800     // here.
2801     HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
2802     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2803               err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
2804                       p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
2805   }
2806 
2807   // Verify the task fingers
2808   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2809   for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
2810     CMTask* task = _tasks[i];
2811     HeapWord* task_finger = task->finger();
2812     if (task_finger != NULL && task_finger < _heap_end) {
2813       // See above note on the global finger verification.
2814       HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
2815       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2816                 !task_hr->in_collection_set(),
2817                 err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
2818                         p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
2819     }
2820   }
2821 }
2822 #endif // PRODUCT
2823 
2824 // Aggregate the counting data that was constructed concurrently
2825 // with marking.
2826 class AggregateCountDataHRClosure: public HeapRegionClosure {
2827   G1CollectedHeap* _g1h;
2828   ConcurrentMark* _cm;
2829   CardTableModRefBS* _ct_bs;
2830   BitMap* _cm_card_bm;
2831   uint _max_worker_id;
2832 
2833  public:
2834   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2835                               BitMap* cm_card_bm,
2836                               uint max_worker_id) :
2837     _g1h(g1h), _cm(g1h->concurrent_mark()),
2838     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2839     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2840 
2841   bool doHeapRegion(HeapRegion* hr) {
2842     if (hr->is_continues_humongous()) {
2843       // We will ignore these here and process them when their
2844       // associated "starts humongous" region is processed.
2845       // Note that we cannot rely on their associated
2846       // "starts humongous" region to have their bit set to 1
2847       // since, due to the region chunking in the parallel region
2848       // iteration, a "continues humongous" region might be visited
2849       // before its associated "starts humongous".
2850       return false;
2851     }
2852 
2853     HeapWord* start = hr->bottom();
2854     HeapWord* limit = hr->next_top_at_mark_start();
2855     HeapWord* end = hr->end();
2856 
2857     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2858            err_msg("Preconditions not met - "
2859                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
2860                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
2861                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
2862 
2863     assert(hr->next_marked_bytes() == 0, "Precondition");
2864 
2865     if (start == limit) {
2866       // NTAMS of this region has not been set so nothing to do.
2867       return false;
2868     }
2869 
2870     // 'start' should be in the heap.
2871     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2872     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2873     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2874 
2875     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2876     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2877     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2878 
2879     // If ntams is not card aligned then we bump card bitmap index
2880     // for limit so that we get the all the cards spanned by
2881     // the object ending at ntams.
2882     // Note: if this is the last region in the heap then ntams
2883     // could be actually just beyond the end of the the heap;
2884     // limit_idx will then  correspond to a (non-existent) card
2885     // that is also outside the heap.
2886     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2887       limit_idx += 1;
2888     }
2889 
2890     assert(limit_idx <= end_idx, "or else use atomics");
2891 
2892     // Aggregate the "stripe" in the count data associated with hr.
2893     uint hrm_index = hr->hrm_index();
2894     size_t marked_bytes = 0;
2895 
2896     for (uint i = 0; i < _max_worker_id; i += 1) {
2897       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2898       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2899 
2900       // Fetch the marked_bytes in this region for task i and
2901       // add it to the running total for this region.
2902       marked_bytes += marked_bytes_array[hrm_index];
2903 
2904       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2905       // into the global card bitmap.
2906       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2907 
2908       while (scan_idx < limit_idx) {
2909         assert(task_card_bm->at(scan_idx) == true, "should be");
2910         _cm_card_bm->set_bit(scan_idx);
2911         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2912 
2913         // BitMap::get_next_one_offset() can handle the case when
2914         // its left_offset parameter is greater than its right_offset
2915         // parameter. It does, however, have an early exit if
2916         // left_offset == right_offset. So let's limit the value
2917         // passed in for left offset here.
2918         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2919         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2920       }
2921     }
2922 
2923     // Update the marked bytes for this region.
2924     hr->add_to_marked_bytes(marked_bytes);
2925 
2926     // Next heap region
2927     return false;
2928   }
2929 };
2930 
2931 class G1AggregateCountDataTask: public AbstractGangTask {
2932 protected:
2933   G1CollectedHeap* _g1h;
2934   ConcurrentMark* _cm;
2935   BitMap* _cm_card_bm;
2936   uint _max_worker_id;
2937   uint _active_workers;
2938   HeapRegionClaimer _hrclaimer;
2939 
2940 public:
2941   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2942                            ConcurrentMark* cm,
2943                            BitMap* cm_card_bm,
2944                            uint max_worker_id,
2945                            uint n_workers) :
2946       AbstractGangTask("Count Aggregation"),
2947       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2948       _max_worker_id(max_worker_id),
2949       _active_workers(n_workers),
2950       _hrclaimer(_active_workers) {
2951   }
2952 
2953   void work(uint worker_id) {
2954     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2955 
2956     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2957   }
2958 };
2959 
2960 
2961 void ConcurrentMark::aggregate_count_data() {
2962   uint n_workers = _g1h->workers()->active_workers();
2963 
2964   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2965                                            _max_worker_id, n_workers);
2966 
2967   _g1h->workers()->run_task(&g1_par_agg_task);
2968 }
2969 
2970 // Clear the per-worker arrays used to store the per-region counting data
2971 void ConcurrentMark::clear_all_count_data() {
2972   // Clear the global card bitmap - it will be filled during
2973   // liveness count aggregation (during remark) and the
2974   // final counting task.
2975   _card_bm.clear();
2976 
2977   // Clear the global region bitmap - it will be filled as part
2978   // of the final counting task.
2979   _region_bm.clear();
2980 
2981   uint max_regions = _g1h->max_regions();
2982   assert(_max_worker_id > 0, "uninitialized");
2983 
2984   for (uint i = 0; i < _max_worker_id; i += 1) {
2985     BitMap* task_card_bm = count_card_bitmap_for(i);
2986     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2987 
2988     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2989     assert(marked_bytes_array != NULL, "uninitialized");
2990 
2991     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2992     task_card_bm->clear();
2993   }
2994 }
2995 
2996 void ConcurrentMark::print_stats() {
2997   if (verbose_stats()) {
2998     gclog_or_tty->print_cr("---------------------------------------------------------------------");
2999     for (size_t i = 0; i < _active_tasks; ++i) {
3000       _tasks[i]->print_stats();
3001       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3002     }
3003   }
3004 }
3005 
3006 // abandon current marking iteration due to a Full GC
3007 void ConcurrentMark::abort() {
3008   if (!cmThread()->during_cycle() || _has_aborted) {
3009     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
3010     return;
3011   }
3012 
3013   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3014   // concurrent bitmap clearing.
3015   _nextMarkBitMap->clearAll();
3016 
3017   // Note we cannot clear the previous marking bitmap here
3018   // since VerifyDuringGC verifies the objects marked during
3019   // a full GC against the previous bitmap.
3020 
3021   // Clear the liveness counting data
3022   clear_all_count_data();
3023   // Empty mark stack
3024   reset_marking_state();
3025   for (uint i = 0; i < _max_worker_id; ++i) {
3026     _tasks[i]->clear_region_fields();
3027   }
3028   _first_overflow_barrier_sync.abort();
3029   _second_overflow_barrier_sync.abort();
3030   _aborted_gc_id = _g1h->gc_tracer_cm()->gc_id();
3031   assert(!_aborted_gc_id.is_undefined(), "ConcurrentMark::abort() executed more than once?");
3032   _has_aborted = true;
3033 
3034   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3035   satb_mq_set.abandon_partial_marking();
3036   // This can be called either during or outside marking, we'll read
3037   // the expected_active value from the SATB queue set.
3038   satb_mq_set.set_active_all_threads(
3039                                  false, /* new active value */
3040                                  satb_mq_set.is_active() /* expected_active */);
3041 
3042   _g1h->trace_heap_after_concurrent_cycle();
3043   _g1h->register_concurrent_cycle_end();
3044 }
3045 
3046 const GCId& ConcurrentMark::concurrent_gc_id() {
3047   if (has_aborted()) {
3048     return _aborted_gc_id;
3049   }
3050   return _g1h->gc_tracer_cm()->gc_id();
3051 }
3052 
3053 static void print_ms_time_info(const char* prefix, const char* name,
3054                                NumberSeq& ns) {
3055   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3056                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3057   if (ns.num() > 0) {
3058     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3059                            prefix, ns.sd(), ns.maximum());
3060   }
3061 }
3062 
3063 void ConcurrentMark::print_summary_info() {
3064   gclog_or_tty->print_cr(" Concurrent marking:");
3065   print_ms_time_info("  ", "init marks", _init_times);
3066   print_ms_time_info("  ", "remarks", _remark_times);
3067   {
3068     print_ms_time_info("     ", "final marks", _remark_mark_times);
3069     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3070 
3071   }
3072   print_ms_time_info("  ", "cleanups", _cleanup_times);
3073   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3074                          _total_counting_time,
3075                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3076                           (double)_cleanup_times.num()
3077                          : 0.0));
3078   if (G1ScrubRemSets) {
3079     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3080                            _total_rs_scrub_time,
3081                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3082                             (double)_cleanup_times.num()
3083                            : 0.0));
3084   }
3085   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3086                          (_init_times.sum() + _remark_times.sum() +
3087                           _cleanup_times.sum())/1000.0);
3088   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3089                 "(%8.2f s marking).",
3090                 cmThread()->vtime_accum(),
3091                 cmThread()->vtime_mark_accum());
3092 }
3093 
3094 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3095   _parallel_workers->print_worker_threads_on(st);
3096 }
3097 
3098 void ConcurrentMark::print_on_error(outputStream* st) const {
3099   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3100       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3101   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3102   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3103 }
3104 
3105 // We take a break if someone is trying to stop the world.
3106 bool ConcurrentMark::do_yield_check(uint worker_id) {
3107   if (SuspendibleThreadSet::should_yield()) {
3108     if (worker_id == 0) {
3109       _g1h->g1_policy()->record_concurrent_pause();
3110     }
3111     SuspendibleThreadSet::yield();
3112     return true;
3113   } else {
3114     return false;
3115   }
3116 }
3117 
3118 #ifndef PRODUCT
3119 // for debugging purposes
3120 void ConcurrentMark::print_finger() {
3121   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3122                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3123   for (uint i = 0; i < _max_worker_id; ++i) {
3124     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3125   }
3126   gclog_or_tty->cr();
3127 }
3128 #endif
3129 
3130 template<bool scan>
3131 inline void CMTask::process_grey_object(oop obj) {
3132   assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
3133   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3134 
3135   if (_cm->verbose_high()) {
3136     gclog_or_tty->print_cr("[%u] processing grey object " PTR_FORMAT,
3137                            _worker_id, p2i((void*) obj));
3138   }
3139 
3140   size_t obj_size = obj->size();
3141   _words_scanned += obj_size;
3142 
3143   if (scan) {
3144     obj->oop_iterate(_cm_oop_closure);
3145   }
3146   statsOnly( ++_objs_scanned );
3147   check_limits();
3148 }
3149 
3150 template void CMTask::process_grey_object<true>(oop);
3151 template void CMTask::process_grey_object<false>(oop);
3152 
3153 // Closure for iteration over bitmaps
3154 class CMBitMapClosure : public BitMapClosure {
3155 private:
3156   // the bitmap that is being iterated over
3157   CMBitMap*                   _nextMarkBitMap;
3158   ConcurrentMark*             _cm;
3159   CMTask*                     _task;
3160 
3161 public:
3162   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3163     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3164 
3165   bool do_bit(size_t offset) {
3166     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3167     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3168     assert( addr < _cm->finger(), "invariant");
3169 
3170     statsOnly( _task->increase_objs_found_on_bitmap() );
3171     assert(addr >= _task->finger(), "invariant");
3172 
3173     // We move that task's local finger along.
3174     _task->move_finger_to(addr);
3175 
3176     _task->scan_object(oop(addr));
3177     // we only partially drain the local queue and global stack
3178     _task->drain_local_queue(true);
3179     _task->drain_global_stack(true);
3180 
3181     // if the has_aborted flag has been raised, we need to bail out of
3182     // the iteration
3183     return !_task->has_aborted();
3184   }
3185 };
3186 
3187 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3188                                ConcurrentMark* cm,
3189                                CMTask* task)
3190   : _g1h(g1h), _cm(cm), _task(task) {
3191   assert(_ref_processor == NULL, "should be initialized to NULL");
3192 
3193   if (G1UseConcMarkReferenceProcessing) {
3194     _ref_processor = g1h->ref_processor_cm();
3195     assert(_ref_processor != NULL, "should not be NULL");
3196   }
3197 }
3198 
3199 void CMTask::setup_for_region(HeapRegion* hr) {
3200   assert(hr != NULL,
3201         "claim_region() should have filtered out NULL regions");
3202   assert(!hr->is_continues_humongous(),
3203         "claim_region() should have filtered out continues humongous regions");
3204 
3205   if (_cm->verbose_low()) {
3206     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3207                            _worker_id, p2i(hr));
3208   }
3209 
3210   _curr_region  = hr;
3211   _finger       = hr->bottom();
3212   update_region_limit();
3213 }
3214 
3215 void CMTask::update_region_limit() {
3216   HeapRegion* hr            = _curr_region;
3217   HeapWord* bottom          = hr->bottom();
3218   HeapWord* limit           = hr->next_top_at_mark_start();
3219 
3220   if (limit == bottom) {
3221     if (_cm->verbose_low()) {
3222       gclog_or_tty->print_cr("[%u] found an empty region "
3223                              "["PTR_FORMAT", "PTR_FORMAT")",
3224                              _worker_id, p2i(bottom), p2i(limit));
3225     }
3226     // The region was collected underneath our feet.
3227     // We set the finger to bottom to ensure that the bitmap
3228     // iteration that will follow this will not do anything.
3229     // (this is not a condition that holds when we set the region up,
3230     // as the region is not supposed to be empty in the first place)
3231     _finger = bottom;
3232   } else if (limit >= _region_limit) {
3233     assert(limit >= _finger, "peace of mind");
3234   } else {
3235     assert(limit < _region_limit, "only way to get here");
3236     // This can happen under some pretty unusual circumstances.  An
3237     // evacuation pause empties the region underneath our feet (NTAMS
3238     // at bottom). We then do some allocation in the region (NTAMS
3239     // stays at bottom), followed by the region being used as a GC
3240     // alloc region (NTAMS will move to top() and the objects
3241     // originally below it will be grayed). All objects now marked in
3242     // the region are explicitly grayed, if below the global finger,
3243     // and we do not need in fact to scan anything else. So, we simply
3244     // set _finger to be limit to ensure that the bitmap iteration
3245     // doesn't do anything.
3246     _finger = limit;
3247   }
3248 
3249   _region_limit = limit;
3250 }
3251 
3252 void CMTask::giveup_current_region() {
3253   assert(_curr_region != NULL, "invariant");
3254   if (_cm->verbose_low()) {
3255     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3256                            _worker_id, p2i(_curr_region));
3257   }
3258   clear_region_fields();
3259 }
3260 
3261 void CMTask::clear_region_fields() {
3262   // Values for these three fields that indicate that we're not
3263   // holding on to a region.
3264   _curr_region   = NULL;
3265   _finger        = NULL;
3266   _region_limit  = NULL;
3267 }
3268 
3269 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3270   if (cm_oop_closure == NULL) {
3271     assert(_cm_oop_closure != NULL, "invariant");
3272   } else {
3273     assert(_cm_oop_closure == NULL, "invariant");
3274   }
3275   _cm_oop_closure = cm_oop_closure;
3276 }
3277 
3278 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3279   guarantee(nextMarkBitMap != NULL, "invariant");
3280 
3281   if (_cm->verbose_low()) {
3282     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3283   }
3284 
3285   _nextMarkBitMap                = nextMarkBitMap;
3286   clear_region_fields();
3287 
3288   _calls                         = 0;
3289   _elapsed_time_ms               = 0.0;
3290   _termination_time_ms           = 0.0;
3291   _termination_start_time_ms     = 0.0;
3292 
3293 #if _MARKING_STATS_
3294   _aborted                       = 0;
3295   _aborted_overflow              = 0;
3296   _aborted_cm_aborted            = 0;
3297   _aborted_yield                 = 0;
3298   _aborted_timed_out             = 0;
3299   _aborted_satb                  = 0;
3300   _aborted_termination           = 0;
3301   _steal_attempts                = 0;
3302   _steals                        = 0;
3303   _local_pushes                  = 0;
3304   _local_pops                    = 0;
3305   _local_max_size                = 0;
3306   _objs_scanned                  = 0;
3307   _global_pushes                 = 0;
3308   _global_pops                   = 0;
3309   _global_max_size               = 0;
3310   _global_transfers_to           = 0;
3311   _global_transfers_from         = 0;
3312   _regions_claimed               = 0;
3313   _objs_found_on_bitmap          = 0;
3314   _satb_buffers_processed        = 0;
3315 #endif // _MARKING_STATS_
3316 }
3317 
3318 bool CMTask::should_exit_termination() {
3319   regular_clock_call();
3320   // This is called when we are in the termination protocol. We should
3321   // quit if, for some reason, this task wants to abort or the global
3322   // stack is not empty (this means that we can get work from it).
3323   return !_cm->mark_stack_empty() || has_aborted();
3324 }
3325 
3326 void CMTask::reached_limit() {
3327   assert(_words_scanned >= _words_scanned_limit ||
3328          _refs_reached >= _refs_reached_limit ,
3329          "shouldn't have been called otherwise");
3330   regular_clock_call();
3331 }
3332 
3333 void CMTask::regular_clock_call() {
3334   if (has_aborted()) return;
3335 
3336   // First, we need to recalculate the words scanned and refs reached
3337   // limits for the next clock call.
3338   recalculate_limits();
3339 
3340   // During the regular clock call we do the following
3341 
3342   // (1) If an overflow has been flagged, then we abort.
3343   if (_cm->has_overflown()) {
3344     set_has_aborted();
3345     return;
3346   }
3347 
3348   // If we are not concurrent (i.e. we're doing remark) we don't need
3349   // to check anything else. The other steps are only needed during
3350   // the concurrent marking phase.
3351   if (!concurrent()) return;
3352 
3353   // (2) If marking has been aborted for Full GC, then we also abort.
3354   if (_cm->has_aborted()) {
3355     set_has_aborted();
3356     statsOnly( ++_aborted_cm_aborted );
3357     return;
3358   }
3359 
3360   double curr_time_ms = os::elapsedVTime() * 1000.0;
3361 
3362   // (3) If marking stats are enabled, then we update the step history.
3363 #if _MARKING_STATS_
3364   if (_words_scanned >= _words_scanned_limit) {
3365     ++_clock_due_to_scanning;
3366   }
3367   if (_refs_reached >= _refs_reached_limit) {
3368     ++_clock_due_to_marking;
3369   }
3370 
3371   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3372   _interval_start_time_ms = curr_time_ms;
3373   _all_clock_intervals_ms.add(last_interval_ms);
3374 
3375   if (_cm->verbose_medium()) {
3376       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3377                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3378                         _worker_id, last_interval_ms,
3379                         _words_scanned,
3380                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3381                         _refs_reached,
3382                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3383   }
3384 #endif // _MARKING_STATS_
3385 
3386   // (4) We check whether we should yield. If we have to, then we abort.
3387   if (SuspendibleThreadSet::should_yield()) {
3388     // We should yield. To do this we abort the task. The caller is
3389     // responsible for yielding.
3390     set_has_aborted();
3391     statsOnly( ++_aborted_yield );
3392     return;
3393   }
3394 
3395   // (5) We check whether we've reached our time quota. If we have,
3396   // then we abort.
3397   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3398   if (elapsed_time_ms > _time_target_ms) {
3399     set_has_aborted();
3400     _has_timed_out = true;
3401     statsOnly( ++_aborted_timed_out );
3402     return;
3403   }
3404 
3405   // (6) Finally, we check whether there are enough completed STAB
3406   // buffers available for processing. If there are, we abort.
3407   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3408   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3409     if (_cm->verbose_low()) {
3410       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3411                              _worker_id);
3412     }
3413     // we do need to process SATB buffers, we'll abort and restart
3414     // the marking task to do so
3415     set_has_aborted();
3416     statsOnly( ++_aborted_satb );
3417     return;
3418   }
3419 }
3420 
3421 void CMTask::recalculate_limits() {
3422   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3423   _words_scanned_limit      = _real_words_scanned_limit;
3424 
3425   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3426   _refs_reached_limit       = _real_refs_reached_limit;
3427 }
3428 
3429 void CMTask::decrease_limits() {
3430   // This is called when we believe that we're going to do an infrequent
3431   // operation which will increase the per byte scanned cost (i.e. move
3432   // entries to/from the global stack). It basically tries to decrease the
3433   // scanning limit so that the clock is called earlier.
3434 
3435   if (_cm->verbose_medium()) {
3436     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3437   }
3438 
3439   _words_scanned_limit = _real_words_scanned_limit -
3440     3 * words_scanned_period / 4;
3441   _refs_reached_limit  = _real_refs_reached_limit -
3442     3 * refs_reached_period / 4;
3443 }
3444 
3445 void CMTask::move_entries_to_global_stack() {
3446   // local array where we'll store the entries that will be popped
3447   // from the local queue
3448   oop buffer[global_stack_transfer_size];
3449 
3450   int n = 0;
3451   oop obj;
3452   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3453     buffer[n] = obj;
3454     ++n;
3455   }
3456 
3457   if (n > 0) {
3458     // we popped at least one entry from the local queue
3459 
3460     statsOnly( ++_global_transfers_to; _local_pops += n );
3461 
3462     if (!_cm->mark_stack_push(buffer, n)) {
3463       if (_cm->verbose_low()) {
3464         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3465                                _worker_id);
3466       }
3467       set_has_aborted();
3468     } else {
3469       // the transfer was successful
3470 
3471       if (_cm->verbose_medium()) {
3472         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3473                                _worker_id, n);
3474       }
3475       statsOnly( size_t tmp_size = _cm->mark_stack_size();
3476                  if (tmp_size > _global_max_size) {
3477                    _global_max_size = tmp_size;
3478                  }
3479                  _global_pushes += n );
3480     }
3481   }
3482 
3483   // this operation was quite expensive, so decrease the limits
3484   decrease_limits();
3485 }
3486 
3487 void CMTask::get_entries_from_global_stack() {
3488   // local array where we'll store the entries that will be popped
3489   // from the global stack.
3490   oop buffer[global_stack_transfer_size];
3491   int n;
3492   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3493   assert(n <= global_stack_transfer_size,
3494          "we should not pop more than the given limit");
3495   if (n > 0) {
3496     // yes, we did actually pop at least one entry
3497 
3498     statsOnly( ++_global_transfers_from; _global_pops += n );
3499     if (_cm->verbose_medium()) {
3500       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3501                              _worker_id, n);
3502     }
3503     for (int i = 0; i < n; ++i) {
3504       bool success = _task_queue->push(buffer[i]);
3505       // We only call this when the local queue is empty or under a
3506       // given target limit. So, we do not expect this push to fail.
3507       assert(success, "invariant");
3508     }
3509 
3510     statsOnly( size_t tmp_size = (size_t)_task_queue->size();
3511                if (tmp_size > _local_max_size) {
3512                  _local_max_size = tmp_size;
3513                }
3514                _local_pushes += n );
3515   }
3516 
3517   // this operation was quite expensive, so decrease the limits
3518   decrease_limits();
3519 }
3520 
3521 void CMTask::drain_local_queue(bool partially) {
3522   if (has_aborted()) return;
3523 
3524   // Decide what the target size is, depending whether we're going to
3525   // drain it partially (so that other tasks can steal if they run out
3526   // of things to do) or totally (at the very end).
3527   size_t target_size;
3528   if (partially) {
3529     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3530   } else {
3531     target_size = 0;
3532   }
3533 
3534   if (_task_queue->size() > target_size) {
3535     if (_cm->verbose_high()) {
3536       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3537                              _worker_id, target_size);
3538     }
3539 
3540     oop obj;
3541     bool ret = _task_queue->pop_local(obj);
3542     while (ret) {
3543       statsOnly( ++_local_pops );
3544 
3545       if (_cm->verbose_high()) {
3546         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3547                                p2i((void*) obj));
3548       }
3549 
3550       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3551       assert(!_g1h->is_on_master_free_list(
3552                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3553 
3554       scan_object(obj);
3555 
3556       if (_task_queue->size() <= target_size || has_aborted()) {
3557         ret = false;
3558       } else {
3559         ret = _task_queue->pop_local(obj);
3560       }
3561     }
3562 
3563     if (_cm->verbose_high()) {
3564       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3565                              _worker_id, _task_queue->size());
3566     }
3567   }
3568 }
3569 
3570 void CMTask::drain_global_stack(bool partially) {
3571   if (has_aborted()) return;
3572 
3573   // We have a policy to drain the local queue before we attempt to
3574   // drain the global stack.
3575   assert(partially || _task_queue->size() == 0, "invariant");
3576 
3577   // Decide what the target size is, depending whether we're going to
3578   // drain it partially (so that other tasks can steal if they run out
3579   // of things to do) or totally (at the very end).  Notice that,
3580   // because we move entries from the global stack in chunks or
3581   // because another task might be doing the same, we might in fact
3582   // drop below the target. But, this is not a problem.
3583   size_t target_size;
3584   if (partially) {
3585     target_size = _cm->partial_mark_stack_size_target();
3586   } else {
3587     target_size = 0;
3588   }
3589 
3590   if (_cm->mark_stack_size() > target_size) {
3591     if (_cm->verbose_low()) {
3592       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3593                              _worker_id, target_size);
3594     }
3595 
3596     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3597       get_entries_from_global_stack();
3598       drain_local_queue(partially);
3599     }
3600 
3601     if (_cm->verbose_low()) {
3602       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3603                              _worker_id, _cm->mark_stack_size());
3604     }
3605   }
3606 }
3607 
3608 // SATB Queue has several assumptions on whether to call the par or
3609 // non-par versions of the methods. this is why some of the code is
3610 // replicated. We should really get rid of the single-threaded version
3611 // of the code to simplify things.
3612 void CMTask::drain_satb_buffers() {
3613   if (has_aborted()) return;
3614 
3615   // We set this so that the regular clock knows that we're in the
3616   // middle of draining buffers and doesn't set the abort flag when it
3617   // notices that SATB buffers are available for draining. It'd be
3618   // very counter productive if it did that. :-)
3619   _draining_satb_buffers = true;
3620 
3621   CMSATBBufferClosure satb_cl(this, _g1h);
3622   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3623 
3624   // This keeps claiming and applying the closure to completed buffers
3625   // until we run out of buffers or we need to abort.
3626   while (!has_aborted() &&
3627          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3628     if (_cm->verbose_medium()) {
3629       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3630     }
3631     statsOnly( ++_satb_buffers_processed );
3632     regular_clock_call();
3633   }
3634 
3635   _draining_satb_buffers = false;
3636 
3637   assert(has_aborted() ||
3638          concurrent() ||
3639          satb_mq_set.completed_buffers_num() == 0, "invariant");
3640 
3641   // again, this was a potentially expensive operation, decrease the
3642   // limits to get the regular clock call early
3643   decrease_limits();
3644 }
3645 
3646 void CMTask::print_stats() {
3647   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3648                          _worker_id, _calls);
3649   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3650                          _elapsed_time_ms, _termination_time_ms);
3651   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3652                          _step_times_ms.num(), _step_times_ms.avg(),
3653                          _step_times_ms.sd());
3654   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3655                          _step_times_ms.maximum(), _step_times_ms.sum());
3656 
3657 #if _MARKING_STATS_
3658   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3659                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3660                          _all_clock_intervals_ms.sd());
3661   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3662                          _all_clock_intervals_ms.maximum(),
3663                          _all_clock_intervals_ms.sum());
3664   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = " SIZE_FORMAT ", marking = " SIZE_FORMAT,
3665                          _clock_due_to_scanning, _clock_due_to_marking);
3666   gclog_or_tty->print_cr("  Objects: scanned = " SIZE_FORMAT ", found on the bitmap = " SIZE_FORMAT,
3667                          _objs_scanned, _objs_found_on_bitmap);
3668   gclog_or_tty->print_cr("  Local Queue:  pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3669                          _local_pushes, _local_pops, _local_max_size);
3670   gclog_or_tty->print_cr("  Global Stack: pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3671                          _global_pushes, _global_pops, _global_max_size);
3672   gclog_or_tty->print_cr("                transfers to = " SIZE_FORMAT ", transfers from = " SIZE_FORMAT,
3673                          _global_transfers_to,_global_transfers_from);
3674   gclog_or_tty->print_cr("  Regions: claimed = " SIZE_FORMAT, _regions_claimed);
3675   gclog_or_tty->print_cr("  SATB buffers: processed = " SIZE_FORMAT, _satb_buffers_processed);
3676   gclog_or_tty->print_cr("  Steals: attempts = " SIZE_FORMAT ", successes = " SIZE_FORMAT,
3677                          _steal_attempts, _steals);
3678   gclog_or_tty->print_cr("  Aborted: " SIZE_FORMAT ", due to", _aborted);
3679   gclog_or_tty->print_cr("    overflow: " SIZE_FORMAT ", global abort: " SIZE_FORMAT ", yield: " SIZE_FORMAT,
3680                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3681   gclog_or_tty->print_cr("    time out: " SIZE_FORMAT ", SATB: " SIZE_FORMAT ", termination: " SIZE_FORMAT,
3682                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3683 #endif // _MARKING_STATS_
3684 }
3685 
3686 bool ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3687   return _task_queues->steal(worker_id, hash_seed, obj);
3688 }
3689 
3690 /*****************************************************************************
3691 
3692     The do_marking_step(time_target_ms, ...) method is the building
3693     block of the parallel marking framework. It can be called in parallel
3694     with other invocations of do_marking_step() on different tasks
3695     (but only one per task, obviously) and concurrently with the
3696     mutator threads, or during remark, hence it eliminates the need
3697     for two versions of the code. When called during remark, it will
3698     pick up from where the task left off during the concurrent marking
3699     phase. Interestingly, tasks are also claimable during evacuation
3700     pauses too, since do_marking_step() ensures that it aborts before
3701     it needs to yield.
3702 
3703     The data structures that it uses to do marking work are the
3704     following:
3705 
3706       (1) Marking Bitmap. If there are gray objects that appear only
3707       on the bitmap (this happens either when dealing with an overflow
3708       or when the initial marking phase has simply marked the roots
3709       and didn't push them on the stack), then tasks claim heap
3710       regions whose bitmap they then scan to find gray objects. A
3711       global finger indicates where the end of the last claimed region
3712       is. A local finger indicates how far into the region a task has
3713       scanned. The two fingers are used to determine how to gray an
3714       object (i.e. whether simply marking it is OK, as it will be
3715       visited by a task in the future, or whether it needs to be also
3716       pushed on a stack).
3717 
3718       (2) Local Queue. The local queue of the task which is accessed
3719       reasonably efficiently by the task. Other tasks can steal from
3720       it when they run out of work. Throughout the marking phase, a
3721       task attempts to keep its local queue short but not totally
3722       empty, so that entries are available for stealing by other
3723       tasks. Only when there is no more work, a task will totally
3724       drain its local queue.
3725 
3726       (3) Global Mark Stack. This handles local queue overflow. During
3727       marking only sets of entries are moved between it and the local
3728       queues, as access to it requires a mutex and more fine-grain
3729       interaction with it which might cause contention. If it
3730       overflows, then the marking phase should restart and iterate
3731       over the bitmap to identify gray objects. Throughout the marking
3732       phase, tasks attempt to keep the global mark stack at a small
3733       length but not totally empty, so that entries are available for
3734       popping by other tasks. Only when there is no more work, tasks
3735       will totally drain the global mark stack.
3736 
3737       (4) SATB Buffer Queue. This is where completed SATB buffers are
3738       made available. Buffers are regularly removed from this queue
3739       and scanned for roots, so that the queue doesn't get too
3740       long. During remark, all completed buffers are processed, as
3741       well as the filled in parts of any uncompleted buffers.
3742 
3743     The do_marking_step() method tries to abort when the time target
3744     has been reached. There are a few other cases when the
3745     do_marking_step() method also aborts:
3746 
3747       (1) When the marking phase has been aborted (after a Full GC).
3748 
3749       (2) When a global overflow (on the global stack) has been
3750       triggered. Before the task aborts, it will actually sync up with
3751       the other tasks to ensure that all the marking data structures
3752       (local queues, stacks, fingers etc.)  are re-initialized so that
3753       when do_marking_step() completes, the marking phase can
3754       immediately restart.
3755 
3756       (3) When enough completed SATB buffers are available. The
3757       do_marking_step() method only tries to drain SATB buffers right
3758       at the beginning. So, if enough buffers are available, the
3759       marking step aborts and the SATB buffers are processed at
3760       the beginning of the next invocation.
3761 
3762       (4) To yield. when we have to yield then we abort and yield
3763       right at the end of do_marking_step(). This saves us from a lot
3764       of hassle as, by yielding we might allow a Full GC. If this
3765       happens then objects will be compacted underneath our feet, the
3766       heap might shrink, etc. We save checking for this by just
3767       aborting and doing the yield right at the end.
3768 
3769     From the above it follows that the do_marking_step() method should
3770     be called in a loop (or, otherwise, regularly) until it completes.
3771 
3772     If a marking step completes without its has_aborted() flag being
3773     true, it means it has completed the current marking phase (and
3774     also all other marking tasks have done so and have all synced up).
3775 
3776     A method called regular_clock_call() is invoked "regularly" (in
3777     sub ms intervals) throughout marking. It is this clock method that
3778     checks all the abort conditions which were mentioned above and
3779     decides when the task should abort. A work-based scheme is used to
3780     trigger this clock method: when the number of object words the
3781     marking phase has scanned or the number of references the marking
3782     phase has visited reach a given limit. Additional invocations to
3783     the method clock have been planted in a few other strategic places
3784     too. The initial reason for the clock method was to avoid calling
3785     vtime too regularly, as it is quite expensive. So, once it was in
3786     place, it was natural to piggy-back all the other conditions on it
3787     too and not constantly check them throughout the code.
3788 
3789     If do_termination is true then do_marking_step will enter its
3790     termination protocol.
3791 
3792     The value of is_serial must be true when do_marking_step is being
3793     called serially (i.e. by the VMThread) and do_marking_step should
3794     skip any synchronization in the termination and overflow code.
3795     Examples include the serial remark code and the serial reference
3796     processing closures.
3797 
3798     The value of is_serial must be false when do_marking_step is
3799     being called by any of the worker threads in a work gang.
3800     Examples include the concurrent marking code (CMMarkingTask),
3801     the MT remark code, and the MT reference processing closures.
3802 
3803  *****************************************************************************/
3804 
3805 void CMTask::do_marking_step(double time_target_ms,
3806                              bool do_termination,
3807                              bool is_serial) {
3808   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3809   assert(concurrent() == _cm->concurrent(), "they should be the same");
3810 
3811   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3812   assert(_task_queues != NULL, "invariant");
3813   assert(_task_queue != NULL, "invariant");
3814   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3815 
3816   assert(!_claimed,
3817          "only one thread should claim this task at any one time");
3818 
3819   // OK, this doesn't safeguard again all possible scenarios, as it is
3820   // possible for two threads to set the _claimed flag at the same
3821   // time. But it is only for debugging purposes anyway and it will
3822   // catch most problems.
3823   _claimed = true;
3824 
3825   _start_time_ms = os::elapsedVTime() * 1000.0;
3826   statsOnly( _interval_start_time_ms = _start_time_ms );
3827 
3828   // If do_stealing is true then do_marking_step will attempt to
3829   // steal work from the other CMTasks. It only makes sense to
3830   // enable stealing when the termination protocol is enabled
3831   // and do_marking_step() is not being called serially.
3832   bool do_stealing = do_termination && !is_serial;
3833 
3834   double diff_prediction_ms =
3835     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
3836   _time_target_ms = time_target_ms - diff_prediction_ms;
3837 
3838   // set up the variables that are used in the work-based scheme to
3839   // call the regular clock method
3840   _words_scanned = 0;
3841   _refs_reached  = 0;
3842   recalculate_limits();
3843 
3844   // clear all flags
3845   clear_has_aborted();
3846   _has_timed_out = false;
3847   _draining_satb_buffers = false;
3848 
3849   ++_calls;
3850 
3851   if (_cm->verbose_low()) {
3852     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
3853                            "target = %1.2lfms >>>>>>>>>>",
3854                            _worker_id, _calls, _time_target_ms);
3855   }
3856 
3857   // Set up the bitmap and oop closures. Anything that uses them is
3858   // eventually called from this method, so it is OK to allocate these
3859   // statically.
3860   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3861   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3862   set_cm_oop_closure(&cm_oop_closure);
3863 
3864   if (_cm->has_overflown()) {
3865     // This can happen if the mark stack overflows during a GC pause
3866     // and this task, after a yield point, restarts. We have to abort
3867     // as we need to get into the overflow protocol which happens
3868     // right at the end of this task.
3869     set_has_aborted();
3870   }
3871 
3872   // First drain any available SATB buffers. After this, we will not
3873   // look at SATB buffers before the next invocation of this method.
3874   // If enough completed SATB buffers are queued up, the regular clock
3875   // will abort this task so that it restarts.
3876   drain_satb_buffers();
3877   // ...then partially drain the local queue and the global stack
3878   drain_local_queue(true);
3879   drain_global_stack(true);
3880 
3881   do {
3882     if (!has_aborted() && _curr_region != NULL) {
3883       // This means that we're already holding on to a region.
3884       assert(_finger != NULL, "if region is not NULL, then the finger "
3885              "should not be NULL either");
3886 
3887       // We might have restarted this task after an evacuation pause
3888       // which might have evacuated the region we're holding on to
3889       // underneath our feet. Let's read its limit again to make sure
3890       // that we do not iterate over a region of the heap that
3891       // contains garbage (update_region_limit() will also move
3892       // _finger to the start of the region if it is found empty).
3893       update_region_limit();
3894       // We will start from _finger not from the start of the region,
3895       // as we might be restarting this task after aborting half-way
3896       // through scanning this region. In this case, _finger points to
3897       // the address where we last found a marked object. If this is a
3898       // fresh region, _finger points to start().
3899       MemRegion mr = MemRegion(_finger, _region_limit);
3900 
3901       if (_cm->verbose_low()) {
3902         gclog_or_tty->print_cr("[%u] we're scanning part "
3903                                "["PTR_FORMAT", "PTR_FORMAT") "
3904                                "of region "HR_FORMAT,
3905                                _worker_id, p2i(_finger), p2i(_region_limit),
3906                                HR_FORMAT_PARAMS(_curr_region));
3907       }
3908 
3909       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3910              "humongous regions should go around loop once only");
3911 
3912       // Some special cases:
3913       // If the memory region is empty, we can just give up the region.
3914       // If the current region is humongous then we only need to check
3915       // the bitmap for the bit associated with the start of the object,
3916       // scan the object if it's live, and give up the region.
3917       // Otherwise, let's iterate over the bitmap of the part of the region
3918       // that is left.
3919       // If the iteration is successful, give up the region.
3920       if (mr.is_empty()) {
3921         giveup_current_region();
3922         regular_clock_call();
3923       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3924         if (_nextMarkBitMap->isMarked(mr.start())) {
3925           // The object is marked - apply the closure
3926           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3927           bitmap_closure.do_bit(offset);
3928         }
3929         // Even if this task aborted while scanning the humongous object
3930         // we can (and should) give up the current region.
3931         giveup_current_region();
3932         regular_clock_call();
3933       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3934         giveup_current_region();
3935         regular_clock_call();
3936       } else {
3937         assert(has_aborted(), "currently the only way to do so");
3938         // The only way to abort the bitmap iteration is to return
3939         // false from the do_bit() method. However, inside the
3940         // do_bit() method we move the _finger to point to the
3941         // object currently being looked at. So, if we bail out, we
3942         // have definitely set _finger to something non-null.
3943         assert(_finger != NULL, "invariant");
3944 
3945         // Region iteration was actually aborted. So now _finger
3946         // points to the address of the object we last scanned. If we
3947         // leave it there, when we restart this task, we will rescan
3948         // the object. It is easy to avoid this. We move the finger by
3949         // enough to point to the next possible object header (the
3950         // bitmap knows by how much we need to move it as it knows its
3951         // granularity).
3952         assert(_finger < _region_limit, "invariant");
3953         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3954         // Check if bitmap iteration was aborted while scanning the last object
3955         if (new_finger >= _region_limit) {
3956           giveup_current_region();
3957         } else {
3958           move_finger_to(new_finger);
3959         }
3960       }
3961     }
3962     // At this point we have either completed iterating over the
3963     // region we were holding on to, or we have aborted.
3964 
3965     // We then partially drain the local queue and the global stack.
3966     // (Do we really need this?)
3967     drain_local_queue(true);
3968     drain_global_stack(true);
3969 
3970     // Read the note on the claim_region() method on why it might
3971     // return NULL with potentially more regions available for
3972     // claiming and why we have to check out_of_regions() to determine
3973     // whether we're done or not.
3974     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3975       // We are going to try to claim a new region. We should have
3976       // given up on the previous one.
3977       // Separated the asserts so that we know which one fires.
3978       assert(_curr_region  == NULL, "invariant");
3979       assert(_finger       == NULL, "invariant");
3980       assert(_region_limit == NULL, "invariant");
3981       if (_cm->verbose_low()) {
3982         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
3983       }
3984       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3985       if (claimed_region != NULL) {
3986         // Yes, we managed to claim one
3987         statsOnly( ++_regions_claimed );
3988 
3989         if (_cm->verbose_low()) {
3990           gclog_or_tty->print_cr("[%u] we successfully claimed "
3991                                  "region "PTR_FORMAT,
3992                                  _worker_id, p2i(claimed_region));
3993         }
3994 
3995         setup_for_region(claimed_region);
3996         assert(_curr_region == claimed_region, "invariant");
3997       }
3998       // It is important to call the regular clock here. It might take
3999       // a while to claim a region if, for example, we hit a large
4000       // block of empty regions. So we need to call the regular clock
4001       // method once round the loop to make sure it's called
4002       // frequently enough.
4003       regular_clock_call();
4004     }
4005 
4006     if (!has_aborted() && _curr_region == NULL) {
4007       assert(_cm->out_of_regions(),
4008              "at this point we should be out of regions");
4009     }
4010   } while ( _curr_region != NULL && !has_aborted());
4011 
4012   if (!has_aborted()) {
4013     // We cannot check whether the global stack is empty, since other
4014     // tasks might be pushing objects to it concurrently.
4015     assert(_cm->out_of_regions(),
4016            "at this point we should be out of regions");
4017 
4018     if (_cm->verbose_low()) {
4019       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4020     }
4021 
4022     // Try to reduce the number of available SATB buffers so that
4023     // remark has less work to do.
4024     drain_satb_buffers();
4025   }
4026 
4027   // Since we've done everything else, we can now totally drain the
4028   // local queue and global stack.
4029   drain_local_queue(false);
4030   drain_global_stack(false);
4031 
4032   // Attempt at work stealing from other task's queues.
4033   if (do_stealing && !has_aborted()) {
4034     // We have not aborted. This means that we have finished all that
4035     // we could. Let's try to do some stealing...
4036 
4037     // We cannot check whether the global stack is empty, since other
4038     // tasks might be pushing objects to it concurrently.
4039     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4040            "only way to reach here");
4041 
4042     if (_cm->verbose_low()) {
4043       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4044     }
4045 
4046     while (!has_aborted()) {
4047       oop obj;
4048       statsOnly( ++_steal_attempts );
4049 
4050       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4051         if (_cm->verbose_medium()) {
4052           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4053                                  _worker_id, p2i((void*) obj));
4054         }
4055 
4056         statsOnly( ++_steals );
4057 
4058         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4059                "any stolen object should be marked");
4060         scan_object(obj);
4061 
4062         // And since we're towards the end, let's totally drain the
4063         // local queue and global stack.
4064         drain_local_queue(false);
4065         drain_global_stack(false);
4066       } else {
4067         break;
4068       }
4069     }
4070   }
4071 
4072   // If we are about to wrap up and go into termination, check if we
4073   // should raise the overflow flag.
4074   if (do_termination && !has_aborted()) {
4075     if (_cm->force_overflow()->should_force()) {
4076       _cm->set_has_overflown();
4077       regular_clock_call();
4078     }
4079   }
4080 
4081   // We still haven't aborted. Now, let's try to get into the
4082   // termination protocol.
4083   if (do_termination && !has_aborted()) {
4084     // We cannot check whether the global stack is empty, since other
4085     // tasks might be concurrently pushing objects on it.
4086     // Separated the asserts so that we know which one fires.
4087     assert(_cm->out_of_regions(), "only way to reach here");
4088     assert(_task_queue->size() == 0, "only way to reach here");
4089 
4090     if (_cm->verbose_low()) {
4091       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4092     }
4093 
4094     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4095 
4096     // The CMTask class also extends the TerminatorTerminator class,
4097     // hence its should_exit_termination() method will also decide
4098     // whether to exit the termination protocol or not.
4099     bool finished = (is_serial ||
4100                      _cm->terminator()->offer_termination(this));
4101     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4102     _termination_time_ms +=
4103       termination_end_time_ms - _termination_start_time_ms;
4104 
4105     if (finished) {
4106       // We're all done.
4107 
4108       if (_worker_id == 0) {
4109         // let's allow task 0 to do this
4110         if (concurrent()) {
4111           assert(_cm->concurrent_marking_in_progress(), "invariant");
4112           // we need to set this to false before the next
4113           // safepoint. This way we ensure that the marking phase
4114           // doesn't observe any more heap expansions.
4115           _cm->clear_concurrent_marking_in_progress();
4116         }
4117       }
4118 
4119       // We can now guarantee that the global stack is empty, since
4120       // all other tasks have finished. We separated the guarantees so
4121       // that, if a condition is false, we can immediately find out
4122       // which one.
4123       guarantee(_cm->out_of_regions(), "only way to reach here");
4124       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4125       guarantee(_task_queue->size() == 0, "only way to reach here");
4126       guarantee(!_cm->has_overflown(), "only way to reach here");
4127       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4128 
4129       if (_cm->verbose_low()) {
4130         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4131       }
4132     } else {
4133       // Apparently there's more work to do. Let's abort this task. It
4134       // will restart it and we can hopefully find more things to do.
4135 
4136       if (_cm->verbose_low()) {
4137         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4138                                _worker_id);
4139       }
4140 
4141       set_has_aborted();
4142       statsOnly( ++_aborted_termination );
4143     }
4144   }
4145 
4146   // Mainly for debugging purposes to make sure that a pointer to the
4147   // closure which was statically allocated in this frame doesn't
4148   // escape it by accident.
4149   set_cm_oop_closure(NULL);
4150   double end_time_ms = os::elapsedVTime() * 1000.0;
4151   double elapsed_time_ms = end_time_ms - _start_time_ms;
4152   // Update the step history.
4153   _step_times_ms.add(elapsed_time_ms);
4154 
4155   if (has_aborted()) {
4156     // The task was aborted for some reason.
4157 
4158     statsOnly( ++_aborted );
4159 
4160     if (_has_timed_out) {
4161       double diff_ms = elapsed_time_ms - _time_target_ms;
4162       // Keep statistics of how well we did with respect to hitting
4163       // our target only if we actually timed out (if we aborted for
4164       // other reasons, then the results might get skewed).
4165       _marking_step_diffs_ms.add(diff_ms);
4166     }
4167 
4168     if (_cm->has_overflown()) {
4169       // This is the interesting one. We aborted because a global
4170       // overflow was raised. This means we have to restart the
4171       // marking phase and start iterating over regions. However, in
4172       // order to do this we have to make sure that all tasks stop
4173       // what they are doing and re-initialize in a safe manner. We
4174       // will achieve this with the use of two barrier sync points.
4175 
4176       if (_cm->verbose_low()) {
4177         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4178       }
4179 
4180       if (!is_serial) {
4181         // We only need to enter the sync barrier if being called
4182         // from a parallel context
4183         _cm->enter_first_sync_barrier(_worker_id);
4184 
4185         // When we exit this sync barrier we know that all tasks have
4186         // stopped doing marking work. So, it's now safe to
4187         // re-initialize our data structures. At the end of this method,
4188         // task 0 will clear the global data structures.
4189       }
4190 
4191       statsOnly( ++_aborted_overflow );
4192 
4193       // We clear the local state of this task...
4194       clear_region_fields();
4195 
4196       if (!is_serial) {
4197         // ...and enter the second barrier.
4198         _cm->enter_second_sync_barrier(_worker_id);
4199       }
4200       // At this point, if we're during the concurrent phase of
4201       // marking, everything has been re-initialized and we're
4202       // ready to restart.
4203     }
4204 
4205     if (_cm->verbose_low()) {
4206       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4207                              "elapsed = %1.2lfms <<<<<<<<<<",
4208                              _worker_id, _time_target_ms, elapsed_time_ms);
4209       if (_cm->has_aborted()) {
4210         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4211                                _worker_id);
4212       }
4213     }
4214   } else {
4215     if (_cm->verbose_low()) {
4216       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4217                              "elapsed = %1.2lfms <<<<<<<<<<",
4218                              _worker_id, _time_target_ms, elapsed_time_ms);
4219     }
4220   }
4221 
4222   _claimed = false;
4223 }
4224 
4225 CMTask::CMTask(uint worker_id,
4226                ConcurrentMark* cm,
4227                size_t* marked_bytes,
4228                BitMap* card_bm,
4229                CMTaskQueue* task_queue,
4230                CMTaskQueueSet* task_queues)
4231   : _g1h(G1CollectedHeap::heap()),
4232     _worker_id(worker_id), _cm(cm),
4233     _claimed(false),
4234     _nextMarkBitMap(NULL), _hash_seed(17),
4235     _task_queue(task_queue),
4236     _task_queues(task_queues),
4237     _cm_oop_closure(NULL),
4238     _marked_bytes_array(marked_bytes),
4239     _card_bm(card_bm) {
4240   guarantee(task_queue != NULL, "invariant");
4241   guarantee(task_queues != NULL, "invariant");
4242 
4243   statsOnly( _clock_due_to_scanning = 0;
4244              _clock_due_to_marking  = 0 );
4245 
4246   _marking_step_diffs_ms.add(0.5);
4247 }
4248 
4249 // These are formatting macros that are used below to ensure
4250 // consistent formatting. The *_H_* versions are used to format the
4251 // header for a particular value and they should be kept consistent
4252 // with the corresponding macro. Also note that most of the macros add
4253 // the necessary white space (as a prefix) which makes them a bit
4254 // easier to compose.
4255 
4256 // All the output lines are prefixed with this string to be able to
4257 // identify them easily in a large log file.
4258 #define G1PPRL_LINE_PREFIX            "###"
4259 
4260 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4261 #ifdef _LP64
4262 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4263 #else // _LP64
4264 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4265 #endif // _LP64
4266 
4267 // For per-region info
4268 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4269 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4270 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4271 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4272 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4273 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4274 
4275 // For summary info
4276 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4277 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4278 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4279 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4280 
4281 G1PrintRegionLivenessInfoClosure::
4282 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4283   : _out(out),
4284     _total_used_bytes(0), _total_capacity_bytes(0),
4285     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4286     _hum_used_bytes(0), _hum_capacity_bytes(0),
4287     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4288     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4289   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4290   MemRegion g1_reserved = g1h->g1_reserved();
4291   double now = os::elapsedTime();
4292 
4293   // Print the header of the output.
4294   _out->cr();
4295   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4296   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4297                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4298                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4299                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4300                  HeapRegion::GrainBytes);
4301   _out->print_cr(G1PPRL_LINE_PREFIX);
4302   _out->print_cr(G1PPRL_LINE_PREFIX
4303                 G1PPRL_TYPE_H_FORMAT
4304                 G1PPRL_ADDR_BASE_H_FORMAT
4305                 G1PPRL_BYTE_H_FORMAT
4306                 G1PPRL_BYTE_H_FORMAT
4307                 G1PPRL_BYTE_H_FORMAT
4308                 G1PPRL_DOUBLE_H_FORMAT
4309                 G1PPRL_BYTE_H_FORMAT
4310                 G1PPRL_BYTE_H_FORMAT,
4311                 "type", "address-range",
4312                 "used", "prev-live", "next-live", "gc-eff",
4313                 "remset", "code-roots");
4314   _out->print_cr(G1PPRL_LINE_PREFIX
4315                 G1PPRL_TYPE_H_FORMAT
4316                 G1PPRL_ADDR_BASE_H_FORMAT
4317                 G1PPRL_BYTE_H_FORMAT
4318                 G1PPRL_BYTE_H_FORMAT
4319                 G1PPRL_BYTE_H_FORMAT
4320                 G1PPRL_DOUBLE_H_FORMAT
4321                 G1PPRL_BYTE_H_FORMAT
4322                 G1PPRL_BYTE_H_FORMAT,
4323                 "", "",
4324                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4325                 "(bytes)", "(bytes)");
4326 }
4327 
4328 // It takes as a parameter a reference to one of the _hum_* fields, it
4329 // deduces the corresponding value for a region in a humongous region
4330 // series (either the region size, or what's left if the _hum_* field
4331 // is < the region size), and updates the _hum_* field accordingly.
4332 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4333   size_t bytes = 0;
4334   // The > 0 check is to deal with the prev and next live bytes which
4335   // could be 0.
4336   if (*hum_bytes > 0) {
4337     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4338     *hum_bytes -= bytes;
4339   }
4340   return bytes;
4341 }
4342 
4343 // It deduces the values for a region in a humongous region series
4344 // from the _hum_* fields and updates those accordingly. It assumes
4345 // that that _hum_* fields have already been set up from the "starts
4346 // humongous" region and we visit the regions in address order.
4347 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4348                                                      size_t* capacity_bytes,
4349                                                      size_t* prev_live_bytes,
4350                                                      size_t* next_live_bytes) {
4351   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4352   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4353   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4354   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4355   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4356 }
4357 
4358 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4359   const char* type       = r->get_type_str();
4360   HeapWord* bottom       = r->bottom();
4361   HeapWord* end          = r->end();
4362   size_t capacity_bytes  = r->capacity();
4363   size_t used_bytes      = r->used();
4364   size_t prev_live_bytes = r->live_bytes();
4365   size_t next_live_bytes = r->next_live_bytes();
4366   double gc_eff          = r->gc_efficiency();
4367   size_t remset_bytes    = r->rem_set()->mem_size();
4368   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4369 
4370   if (r->is_starts_humongous()) {
4371     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4372            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4373            "they should have been zeroed after the last time we used them");
4374     // Set up the _hum_* fields.
4375     _hum_capacity_bytes  = capacity_bytes;
4376     _hum_used_bytes      = used_bytes;
4377     _hum_prev_live_bytes = prev_live_bytes;
4378     _hum_next_live_bytes = next_live_bytes;
4379     get_hum_bytes(&used_bytes, &capacity_bytes,
4380                   &prev_live_bytes, &next_live_bytes);
4381     end = bottom + HeapRegion::GrainWords;
4382   } else if (r->is_continues_humongous()) {
4383     get_hum_bytes(&used_bytes, &capacity_bytes,
4384                   &prev_live_bytes, &next_live_bytes);
4385     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4386   }
4387 
4388   _total_used_bytes      += used_bytes;
4389   _total_capacity_bytes  += capacity_bytes;
4390   _total_prev_live_bytes += prev_live_bytes;
4391   _total_next_live_bytes += next_live_bytes;
4392   _total_remset_bytes    += remset_bytes;
4393   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4394 
4395   // Print a line for this particular region.
4396   _out->print_cr(G1PPRL_LINE_PREFIX
4397                  G1PPRL_TYPE_FORMAT
4398                  G1PPRL_ADDR_BASE_FORMAT
4399                  G1PPRL_BYTE_FORMAT
4400                  G1PPRL_BYTE_FORMAT
4401                  G1PPRL_BYTE_FORMAT
4402                  G1PPRL_DOUBLE_FORMAT
4403                  G1PPRL_BYTE_FORMAT
4404                  G1PPRL_BYTE_FORMAT,
4405                  type, p2i(bottom), p2i(end),
4406                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4407                  remset_bytes, strong_code_roots_bytes);
4408 
4409   return false;
4410 }
4411 
4412 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4413   // add static memory usages to remembered set sizes
4414   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4415   // Print the footer of the output.
4416   _out->print_cr(G1PPRL_LINE_PREFIX);
4417   _out->print_cr(G1PPRL_LINE_PREFIX
4418                  " SUMMARY"
4419                  G1PPRL_SUM_MB_FORMAT("capacity")
4420                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4421                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4422                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4423                  G1PPRL_SUM_MB_FORMAT("remset")
4424                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4425                  bytes_to_mb(_total_capacity_bytes),
4426                  bytes_to_mb(_total_used_bytes),
4427                  perc(_total_used_bytes, _total_capacity_bytes),
4428                  bytes_to_mb(_total_prev_live_bytes),
4429                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4430                  bytes_to_mb(_total_next_live_bytes),
4431                  perc(_total_next_live_bytes, _total_capacity_bytes),
4432                  bytes_to_mb(_total_remset_bytes),
4433                  bytes_to_mb(_total_strong_code_roots_bytes));
4434   _out->cr();
4435 }