1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "utilities/globalDefinitions.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  74 
  75 // turn it on so that the contents of the young list (scan-only /
  76 // to-be-collected) are printed at "strategic" points before / during
  77 // / after the collection --- this is useful for debugging
  78 #define YOUNG_LIST_VERBOSE 0
  79 // CURRENT STATUS
  80 // This file is under construction.  Search for "FIXME".
  81 
  82 // INVARIANTS/NOTES
  83 //
  84 // All allocation activity covered by the G1CollectedHeap interface is
  85 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  86 // and allocate_new_tlab, which are the "entry" points to the
  87 // allocation code from the rest of the JVM.  (Note that this does not
  88 // apply to TLAB allocation, which is not part of this interface: it
  89 // is done by clients of this interface.)
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   bool _concurrent;
  95 public:
  96   RefineCardTableEntryClosure() : _concurrent(true) { }
  97 
  98   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  99     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112 
 113   void set_concurrent(bool b) { _concurrent = b; }
 114 };
 115 
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 118  private:
 119   size_t _num_processed;
 120 
 121  public:
 122   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 123 
 124   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 125     *card_ptr = CardTableModRefBS::dirty_card_val();
 126     _num_processed++;
 127     return true;
 128   }
 129 
 130   size_t num_processed() const { return _num_processed; }
 131 };
 132 
 133 YoungList::YoungList(G1CollectedHeap* g1h) :
 134     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 135     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 136   guarantee(check_list_empty(false), "just making sure...");
 137 }
 138 
 139 void YoungList::push_region(HeapRegion *hr) {
 140   assert(!hr->is_young(), "should not already be young");
 141   assert(hr->get_next_young_region() == NULL, "cause it should!");
 142 
 143   hr->set_next_young_region(_head);
 144   _head = hr;
 145 
 146   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 147   ++_length;
 148 }
 149 
 150 void YoungList::add_survivor_region(HeapRegion* hr) {
 151   assert(hr->is_survivor(), "should be flagged as survivor region");
 152   assert(hr->get_next_young_region() == NULL, "cause it should!");
 153 
 154   hr->set_next_young_region(_survivor_head);
 155   if (_survivor_head == NULL) {
 156     _survivor_tail = hr;
 157   }
 158   _survivor_head = hr;
 159   ++_survivor_length;
 160 }
 161 
 162 void YoungList::empty_list(HeapRegion* list) {
 163   while (list != NULL) {
 164     HeapRegion* next = list->get_next_young_region();
 165     list->set_next_young_region(NULL);
 166     list->uninstall_surv_rate_group();
 167     // This is called before a Full GC and all the non-empty /
 168     // non-humongous regions at the end of the Full GC will end up as
 169     // old anyway.
 170     list->set_old();
 171     list = next;
 172   }
 173 }
 174 
 175 void YoungList::empty_list() {
 176   assert(check_list_well_formed(), "young list should be well formed");
 177 
 178   empty_list(_head);
 179   _head = NULL;
 180   _length = 0;
 181 
 182   empty_list(_survivor_head);
 183   _survivor_head = NULL;
 184   _survivor_tail = NULL;
 185   _survivor_length = 0;
 186 
 187   _last_sampled_rs_lengths = 0;
 188 
 189   assert(check_list_empty(false), "just making sure...");
 190 }
 191 
 192 bool YoungList::check_list_well_formed() {
 193   bool ret = true;
 194 
 195   uint length = 0;
 196   HeapRegion* curr = _head;
 197   HeapRegion* last = NULL;
 198   while (curr != NULL) {
 199     if (!curr->is_young()) {
 200       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 201                              "incorrectly tagged (y: %d, surv: %d)",
 202                              p2i(curr->bottom()), p2i(curr->end()),
 203                              curr->is_young(), curr->is_survivor());
 204       ret = false;
 205     }
 206     ++length;
 207     last = curr;
 208     curr = curr->get_next_young_region();
 209   }
 210   ret = ret && (length == _length);
 211 
 212   if (!ret) {
 213     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 214     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 215                            length, _length);
 216   }
 217 
 218   return ret;
 219 }
 220 
 221 bool YoungList::check_list_empty(bool check_sample) {
 222   bool ret = true;
 223 
 224   if (_length != 0) {
 225     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 226                   _length);
 227     ret = false;
 228   }
 229   if (check_sample && _last_sampled_rs_lengths != 0) {
 230     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 231     ret = false;
 232   }
 233   if (_head != NULL) {
 234     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 235     ret = false;
 236   }
 237   if (!ret) {
 238     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 239   }
 240 
 241   return ret;
 242 }
 243 
 244 void
 245 YoungList::rs_length_sampling_init() {
 246   _sampled_rs_lengths = 0;
 247   _curr               = _head;
 248 }
 249 
 250 bool
 251 YoungList::rs_length_sampling_more() {
 252   return _curr != NULL;
 253 }
 254 
 255 void
 256 YoungList::rs_length_sampling_next() {
 257   assert( _curr != NULL, "invariant" );
 258   size_t rs_length = _curr->rem_set()->occupied();
 259 
 260   _sampled_rs_lengths += rs_length;
 261 
 262   // The current region may not yet have been added to the
 263   // incremental collection set (it gets added when it is
 264   // retired as the current allocation region).
 265   if (_curr->in_collection_set()) {
 266     // Update the collection set policy information for this region
 267     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 268   }
 269 
 270   _curr = _curr->get_next_young_region();
 271   if (_curr == NULL) {
 272     _last_sampled_rs_lengths = _sampled_rs_lengths;
 273     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 274   }
 275 }
 276 
 277 void
 278 YoungList::reset_auxilary_lists() {
 279   guarantee( is_empty(), "young list should be empty" );
 280   assert(check_list_well_formed(), "young list should be well formed");
 281 
 282   // Add survivor regions to SurvRateGroup.
 283   _g1h->g1_policy()->note_start_adding_survivor_regions();
 284   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 285 
 286   int young_index_in_cset = 0;
 287   for (HeapRegion* curr = _survivor_head;
 288        curr != NULL;
 289        curr = curr->get_next_young_region()) {
 290     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 291 
 292     // The region is a non-empty survivor so let's add it to
 293     // the incremental collection set for the next evacuation
 294     // pause.
 295     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 296     young_index_in_cset += 1;
 297   }
 298   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 299   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 300 
 301   _head   = _survivor_head;
 302   _length = _survivor_length;
 303   if (_survivor_head != NULL) {
 304     assert(_survivor_tail != NULL, "cause it shouldn't be");
 305     assert(_survivor_length > 0, "invariant");
 306     _survivor_tail->set_next_young_region(NULL);
 307   }
 308 
 309   // Don't clear the survivor list handles until the start of
 310   // the next evacuation pause - we need it in order to re-tag
 311   // the survivor regions from this evacuation pause as 'young'
 312   // at the start of the next.
 313 
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 315 
 316   assert(check_list_well_formed(), "young list should be well formed");
 317 }
 318 
 319 void YoungList::print() {
 320   HeapRegion* lists[] = {_head,   _survivor_head};
 321   const char* names[] = {"YOUNG", "SURVIVOR"};
 322 
 323   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 324     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 325     HeapRegion *curr = lists[list];
 326     if (curr == NULL)
 327       gclog_or_tty->print_cr("  empty");
 328     while (curr != NULL) {
 329       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 330                              HR_FORMAT_PARAMS(curr),
 331                              p2i(curr->prev_top_at_mark_start()),
 332                              p2i(curr->next_top_at_mark_start()),
 333                              curr->age_in_surv_rate_group_cond());
 334       curr = curr->get_next_young_region();
 335     }
 336   }
 337 
 338   gclog_or_tty->cr();
 339 }
 340 
 341 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 342   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 343 }
 344 
 345 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 346   // The from card cache is not the memory that is actually committed. So we cannot
 347   // take advantage of the zero_filled parameter.
 348   reset_from_card_cache(start_idx, num_regions);
 349 }
 350 
 351 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 352 {
 353   // Claim the right to put the region on the dirty cards region list
 354   // by installing a self pointer.
 355   HeapRegion* next = hr->get_next_dirty_cards_region();
 356   if (next == NULL) {
 357     HeapRegion* res = (HeapRegion*)
 358       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 359                           NULL);
 360     if (res == NULL) {
 361       HeapRegion* head;
 362       do {
 363         // Put the region to the dirty cards region list.
 364         head = _dirty_cards_region_list;
 365         next = (HeapRegion*)
 366           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 367         if (next == head) {
 368           assert(hr->get_next_dirty_cards_region() == hr,
 369                  "hr->get_next_dirty_cards_region() != hr");
 370           if (next == NULL) {
 371             // The last region in the list points to itself.
 372             hr->set_next_dirty_cards_region(hr);
 373           } else {
 374             hr->set_next_dirty_cards_region(next);
 375           }
 376         }
 377       } while (next != head);
 378     }
 379   }
 380 }
 381 
 382 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 383 {
 384   HeapRegion* head;
 385   HeapRegion* hr;
 386   do {
 387     head = _dirty_cards_region_list;
 388     if (head == NULL) {
 389       return NULL;
 390     }
 391     HeapRegion* new_head = head->get_next_dirty_cards_region();
 392     if (head == new_head) {
 393       // The last region.
 394       new_head = NULL;
 395     }
 396     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 397                                           head);
 398   } while (hr != head);
 399   assert(hr != NULL, "invariant");
 400   hr->set_next_dirty_cards_region(NULL);
 401   return hr;
 402 }
 403 
 404 // Returns true if the reference points to an object that
 405 // can move in an incremental collection.
 406 bool G1CollectedHeap::is_scavengable(const void* p) {
 407   HeapRegion* hr = heap_region_containing(p);
 408   return !hr->is_pinned();
 409 }
 410 
 411 // Private methods.
 412 
 413 HeapRegion*
 414 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 415   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 416   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 417     if (!_secondary_free_list.is_empty()) {
 418       if (G1ConcRegionFreeingVerbose) {
 419         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 420                                "secondary_free_list has %u entries",
 421                                _secondary_free_list.length());
 422       }
 423       // It looks as if there are free regions available on the
 424       // secondary_free_list. Let's move them to the free_list and try
 425       // again to allocate from it.
 426       append_secondary_free_list();
 427 
 428       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 429              "empty we should have moved at least one entry to the free_list");
 430       HeapRegion* res = _hrm.allocate_free_region(is_old);
 431       if (G1ConcRegionFreeingVerbose) {
 432         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 433                                "allocated "HR_FORMAT" from secondary_free_list",
 434                                HR_FORMAT_PARAMS(res));
 435       }
 436       return res;
 437     }
 438 
 439     // Wait here until we get notified either when (a) there are no
 440     // more free regions coming or (b) some regions have been moved on
 441     // the secondary_free_list.
 442     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 443   }
 444 
 445   if (G1ConcRegionFreeingVerbose) {
 446     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 447                            "could not allocate from secondary_free_list");
 448   }
 449   return NULL;
 450 }
 451 
 452 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 453   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 454          "the only time we use this to allocate a humongous region is "
 455          "when we are allocating a single humongous region");
 456 
 457   HeapRegion* res;
 458   if (G1StressConcRegionFreeing) {
 459     if (!_secondary_free_list.is_empty()) {
 460       if (G1ConcRegionFreeingVerbose) {
 461         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 462                                "forced to look at the secondary_free_list");
 463       }
 464       res = new_region_try_secondary_free_list(is_old);
 465       if (res != NULL) {
 466         return res;
 467       }
 468     }
 469   }
 470 
 471   res = _hrm.allocate_free_region(is_old);
 472 
 473   if (res == NULL) {
 474     if (G1ConcRegionFreeingVerbose) {
 475       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 476                              "res == NULL, trying the secondary_free_list");
 477     }
 478     res = new_region_try_secondary_free_list(is_old);
 479   }
 480   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 481     // Currently, only attempts to allocate GC alloc regions set
 482     // do_expand to true. So, we should only reach here during a
 483     // safepoint. If this assumption changes we might have to
 484     // reconsider the use of _expand_heap_after_alloc_failure.
 485     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 486 
 487     ergo_verbose1(ErgoHeapSizing,
 488                   "attempt heap expansion",
 489                   ergo_format_reason("region allocation request failed")
 490                   ergo_format_byte("allocation request"),
 491                   word_size * HeapWordSize);
 492     if (expand(word_size * HeapWordSize)) {
 493       // Given that expand() succeeded in expanding the heap, and we
 494       // always expand the heap by an amount aligned to the heap
 495       // region size, the free list should in theory not be empty.
 496       // In either case allocate_free_region() will check for NULL.
 497       res = _hrm.allocate_free_region(is_old);
 498     } else {
 499       _expand_heap_after_alloc_failure = false;
 500     }
 501   }
 502   return res;
 503 }
 504 
 505 HeapWord*
 506 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 507                                                            uint num_regions,
 508                                                            size_t word_size,
 509                                                            AllocationContext_t context) {
 510   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 511   assert(is_humongous(word_size), "word_size should be humongous");
 512   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 513 
 514   // Index of last region in the series + 1.
 515   uint last = first + num_regions;
 516 
 517   // We need to initialize the region(s) we just discovered. This is
 518   // a bit tricky given that it can happen concurrently with
 519   // refinement threads refining cards on these regions and
 520   // potentially wanting to refine the BOT as they are scanning
 521   // those cards (this can happen shortly after a cleanup; see CR
 522   // 6991377). So we have to set up the region(s) carefully and in
 523   // a specific order.
 524 
 525   // The word size sum of all the regions we will allocate.
 526   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 527   assert(word_size <= word_size_sum, "sanity");
 528 
 529   // This will be the "starts humongous" region.
 530   HeapRegion* first_hr = region_at(first);
 531   // The header of the new object will be placed at the bottom of
 532   // the first region.
 533   HeapWord* new_obj = first_hr->bottom();
 534   // This will be the new end of the first region in the series that
 535   // should also match the end of the last region in the series.
 536   HeapWord* new_end = new_obj + word_size_sum;
 537   // This will be the new top of the first region that will reflect
 538   // this allocation.
 539   HeapWord* new_top = new_obj + word_size;
 540 
 541   // First, we need to zero the header of the space that we will be
 542   // allocating. When we update top further down, some refinement
 543   // threads might try to scan the region. By zeroing the header we
 544   // ensure that any thread that will try to scan the region will
 545   // come across the zero klass word and bail out.
 546   //
 547   // NOTE: It would not have been correct to have used
 548   // CollectedHeap::fill_with_object() and make the space look like
 549   // an int array. The thread that is doing the allocation will
 550   // later update the object header to a potentially different array
 551   // type and, for a very short period of time, the klass and length
 552   // fields will be inconsistent. This could cause a refinement
 553   // thread to calculate the object size incorrectly.
 554   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 555 
 556   // We will set up the first region as "starts humongous". This
 557   // will also update the BOT covering all the regions to reflect
 558   // that there is a single object that starts at the bottom of the
 559   // first region.
 560   first_hr->set_starts_humongous(new_top, new_end);
 561   first_hr->set_allocation_context(context);
 562   // Then, if there are any, we will set up the "continues
 563   // humongous" regions.
 564   HeapRegion* hr = NULL;
 565   for (uint i = first + 1; i < last; ++i) {
 566     hr = region_at(i);
 567     hr->set_continues_humongous(first_hr);
 568     hr->set_allocation_context(context);
 569   }
 570   // If we have "continues humongous" regions (hr != NULL), then the
 571   // end of the last one should match new_end.
 572   assert(hr == NULL || hr->end() == new_end, "sanity");
 573 
 574   // Up to this point no concurrent thread would have been able to
 575   // do any scanning on any region in this series. All the top
 576   // fields still point to bottom, so the intersection between
 577   // [bottom,top] and [card_start,card_end] will be empty. Before we
 578   // update the top fields, we'll do a storestore to make sure that
 579   // no thread sees the update to top before the zeroing of the
 580   // object header and the BOT initialization.
 581   OrderAccess::storestore();
 582 
 583   // Now that the BOT and the object header have been initialized,
 584   // we can update top of the "starts humongous" region.
 585   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 586          "new_top should be in this region");
 587   first_hr->set_top(new_top);
 588   if (_hr_printer.is_active()) {
 589     HeapWord* bottom = first_hr->bottom();
 590     HeapWord* end = first_hr->orig_end();
 591     if ((first + 1) == last) {
 592       // the series has a single humongous region
 593       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 594     } else {
 595       // the series has more than one humongous regions
 596       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 597     }
 598   }
 599 
 600   // Now, we will update the top fields of the "continues humongous"
 601   // regions. The reason we need to do this is that, otherwise,
 602   // these regions would look empty and this will confuse parts of
 603   // G1. For example, the code that looks for a consecutive number
 604   // of empty regions will consider them empty and try to
 605   // re-allocate them. We can extend is_empty() to also include
 606   // !is_continues_humongous(), but it is easier to just update the top
 607   // fields here. The way we set top for all regions (i.e., top ==
 608   // end for all regions but the last one, top == new_top for the
 609   // last one) is actually used when we will free up the humongous
 610   // region in free_humongous_region().
 611   hr = NULL;
 612   for (uint i = first + 1; i < last; ++i) {
 613     hr = region_at(i);
 614     if ((i + 1) == last) {
 615       // last continues humongous region
 616       assert(hr->bottom() < new_top && new_top <= hr->end(),
 617              "new_top should fall on this region");
 618       hr->set_top(new_top);
 619       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 620     } else {
 621       // not last one
 622       assert(new_top > hr->end(), "new_top should be above this region");
 623       hr->set_top(hr->end());
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 625     }
 626   }
 627   // If we have continues humongous regions (hr != NULL), then the
 628   // end of the last one should match new_end and its top should
 629   // match new_top.
 630   assert(hr == NULL ||
 631          (hr->end() == new_end && hr->top() == new_top), "sanity");
 632   check_bitmaps("Humongous Region Allocation", first_hr);
 633 
 634   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 635   _allocator->increase_used(first_hr->used());
 636   _humongous_set.add(first_hr);
 637 
 638   return new_obj;
 639 }
 640 
 641 // If could fit into free regions w/o expansion, try.
 642 // Otherwise, if can expand, do so.
 643 // Otherwise, if using ex regions might help, try with ex given back.
 644 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 645   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 646 
 647   verify_region_sets_optional();
 648 
 649   uint first = G1_NO_HRM_INDEX;
 650   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 651 
 652   if (obj_regions == 1) {
 653     // Only one region to allocate, try to use a fast path by directly allocating
 654     // from the free lists. Do not try to expand here, we will potentially do that
 655     // later.
 656     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 657     if (hr != NULL) {
 658       first = hr->hrm_index();
 659     }
 660   } else {
 661     // We can't allocate humongous regions spanning more than one region while
 662     // cleanupComplete() is running, since some of the regions we find to be
 663     // empty might not yet be added to the free list. It is not straightforward
 664     // to know in which list they are on so that we can remove them. We only
 665     // need to do this if we need to allocate more than one region to satisfy the
 666     // current humongous allocation request. If we are only allocating one region
 667     // we use the one-region region allocation code (see above), that already
 668     // potentially waits for regions from the secondary free list.
 669     wait_while_free_regions_coming();
 670     append_secondary_free_list_if_not_empty_with_lock();
 671 
 672     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 673     // are lucky enough to find some.
 674     first = _hrm.find_contiguous_only_empty(obj_regions);
 675     if (first != G1_NO_HRM_INDEX) {
 676       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 677     }
 678   }
 679 
 680   if (first == G1_NO_HRM_INDEX) {
 681     // Policy: We could not find enough regions for the humongous object in the
 682     // free list. Look through the heap to find a mix of free and uncommitted regions.
 683     // If so, try expansion.
 684     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 685     if (first != G1_NO_HRM_INDEX) {
 686       // We found something. Make sure these regions are committed, i.e. expand
 687       // the heap. Alternatively we could do a defragmentation GC.
 688       ergo_verbose1(ErgoHeapSizing,
 689                     "attempt heap expansion",
 690                     ergo_format_reason("humongous allocation request failed")
 691                     ergo_format_byte("allocation request"),
 692                     word_size * HeapWordSize);
 693 
 694       _hrm.expand_at(first, obj_regions);
 695       g1_policy()->record_new_heap_size(num_regions());
 696 
 697 #ifdef ASSERT
 698       for (uint i = first; i < first + obj_regions; ++i) {
 699         HeapRegion* hr = region_at(i);
 700         assert(hr->is_free(), "sanity");
 701         assert(hr->is_empty(), "sanity");
 702         assert(is_on_master_free_list(hr), "sanity");
 703       }
 704 #endif
 705       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 706     } else {
 707       // Policy: Potentially trigger a defragmentation GC.
 708     }
 709   }
 710 
 711   HeapWord* result = NULL;
 712   if (first != G1_NO_HRM_INDEX) {
 713     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 714                                                        word_size, context);
 715     assert(result != NULL, "it should always return a valid result");
 716 
 717     // A successful humongous object allocation changes the used space
 718     // information of the old generation so we need to recalculate the
 719     // sizes and update the jstat counters here.
 720     g1mm()->update_sizes();
 721   }
 722 
 723   verify_region_sets_optional();
 724 
 725   return result;
 726 }
 727 
 728 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 729   assert_heap_not_locked_and_not_at_safepoint();
 730   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 731 
 732   uint dummy_gc_count_before;
 733   uint dummy_gclocker_retry_count = 0;
 734   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 735 }
 736 
 737 HeapWord*
 738 G1CollectedHeap::mem_allocate(size_t word_size,
 739                               bool*  gc_overhead_limit_was_exceeded) {
 740   assert_heap_not_locked_and_not_at_safepoint();
 741 
 742   // Loop until the allocation is satisfied, or unsatisfied after GC.
 743   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 744     uint gc_count_before;
 745 
 746     HeapWord* result = NULL;
 747     if (!is_humongous(word_size)) {
 748       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 749     } else {
 750       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 751     }
 752     if (result != NULL) {
 753       return result;
 754     }
 755 
 756     // Create the garbage collection operation...
 757     VM_G1CollectForAllocation op(gc_count_before, word_size);
 758     op.set_allocation_context(AllocationContext::current());
 759 
 760     // ...and get the VM thread to execute it.
 761     VMThread::execute(&op);
 762 
 763     if (op.prologue_succeeded() && op.pause_succeeded()) {
 764       // If the operation was successful we'll return the result even
 765       // if it is NULL. If the allocation attempt failed immediately
 766       // after a Full GC, it's unlikely we'll be able to allocate now.
 767       HeapWord* result = op.result();
 768       if (result != NULL && !is_humongous(word_size)) {
 769         // Allocations that take place on VM operations do not do any
 770         // card dirtying and we have to do it here. We only have to do
 771         // this for non-humongous allocations, though.
 772         dirty_young_block(result, word_size);
 773       }
 774       return result;
 775     } else {
 776       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 777         return NULL;
 778       }
 779       assert(op.result() == NULL,
 780              "the result should be NULL if the VM op did not succeed");
 781     }
 782 
 783     // Give a warning if we seem to be looping forever.
 784     if ((QueuedAllocationWarningCount > 0) &&
 785         (try_count % QueuedAllocationWarningCount == 0)) {
 786       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 787     }
 788   }
 789 
 790   ShouldNotReachHere();
 791   return NULL;
 792 }
 793 
 794 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 795                                                    AllocationContext_t context,
 796                                                    uint* gc_count_before_ret,
 797                                                    uint* gclocker_retry_count_ret) {
 798   // Make sure you read the note in attempt_allocation_humongous().
 799 
 800   assert_heap_not_locked_and_not_at_safepoint();
 801   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 802          "be called for humongous allocation requests");
 803 
 804   // We should only get here after the first-level allocation attempt
 805   // (attempt_allocation()) failed to allocate.
 806 
 807   // We will loop until a) we manage to successfully perform the
 808   // allocation or b) we successfully schedule a collection which
 809   // fails to perform the allocation. b) is the only case when we'll
 810   // return NULL.
 811   HeapWord* result = NULL;
 812   for (int try_count = 1; /* we'll return */; try_count += 1) {
 813     bool should_try_gc;
 814     uint gc_count_before;
 815 
 816     {
 817       MutexLockerEx x(Heap_lock);
 818       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 819                                                                                     false /* bot_updates */);
 820       if (result != NULL) {
 821         return result;
 822       }
 823 
 824       // If we reach here, attempt_allocation_locked() above failed to
 825       // allocate a new region. So the mutator alloc region should be NULL.
 826       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 827 
 828       if (GC_locker::is_active_and_needs_gc()) {
 829         if (g1_policy()->can_expand_young_list()) {
 830           // No need for an ergo verbose message here,
 831           // can_expand_young_list() does this when it returns true.
 832           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 833                                                                                        false /* bot_updates */);
 834           if (result != NULL) {
 835             return result;
 836           }
 837         }
 838         should_try_gc = false;
 839       } else {
 840         // The GCLocker may not be active but the GCLocker initiated
 841         // GC may not yet have been performed (GCLocker::needs_gc()
 842         // returns true). In this case we do not try this GC and
 843         // wait until the GCLocker initiated GC is performed, and
 844         // then retry the allocation.
 845         if (GC_locker::needs_gc()) {
 846           should_try_gc = false;
 847         } else {
 848           // Read the GC count while still holding the Heap_lock.
 849           gc_count_before = total_collections();
 850           should_try_gc = true;
 851         }
 852       }
 853     }
 854 
 855     if (should_try_gc) {
 856       bool succeeded;
 857       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 858                                    GCCause::_g1_inc_collection_pause);
 859       if (result != NULL) {
 860         assert(succeeded, "only way to get back a non-NULL result");
 861         return result;
 862       }
 863 
 864       if (succeeded) {
 865         // If we get here we successfully scheduled a collection which
 866         // failed to allocate. No point in trying to allocate
 867         // further. We'll just return NULL.
 868         MutexLockerEx x(Heap_lock);
 869         *gc_count_before_ret = total_collections();
 870         return NULL;
 871       }
 872     } else {
 873       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 874         MutexLockerEx x(Heap_lock);
 875         *gc_count_before_ret = total_collections();
 876         return NULL;
 877       }
 878       // The GCLocker is either active or the GCLocker initiated
 879       // GC has not yet been performed. Stall until it is and
 880       // then retry the allocation.
 881       GC_locker::stall_until_clear();
 882       (*gclocker_retry_count_ret) += 1;
 883     }
 884 
 885     // We can reach here if we were unsuccessful in scheduling a
 886     // collection (because another thread beat us to it) or if we were
 887     // stalled due to the GC locker. In either can we should retry the
 888     // allocation attempt in case another thread successfully
 889     // performed a collection and reclaimed enough space. We do the
 890     // first attempt (without holding the Heap_lock) here and the
 891     // follow-on attempt will be at the start of the next loop
 892     // iteration (after taking the Heap_lock).
 893     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 894                                                                            false /* bot_updates */);
 895     if (result != NULL) {
 896       return result;
 897     }
 898 
 899     // Give a warning if we seem to be looping forever.
 900     if ((QueuedAllocationWarningCount > 0) &&
 901         (try_count % QueuedAllocationWarningCount == 0)) {
 902       warning("G1CollectedHeap::attempt_allocation_slow() "
 903               "retries %d times", try_count);
 904     }
 905   }
 906 
 907   ShouldNotReachHere();
 908   return NULL;
 909 }
 910 
 911 void G1CollectedHeap::begin_archive_alloc_range() {
 912   assert_at_safepoint(true /* should_be_vm_thread */);
 913   if (_archive_allocator == NULL) {
 914     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 915   }
 916 }
 917 
 918 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 919   // Allocations in archive regions cannot be of a size that would be considered
 920   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 921   // may be different at archive-restore time.
 922   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 923 }
 924 
 925 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 926   assert_at_safepoint(true /* should_be_vm_thread */);
 927   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 928   if (is_archive_alloc_too_large(word_size)) {
 929     return NULL;
 930   }
 931   return _archive_allocator->archive_mem_allocate(word_size);
 932 }
 933 
 934 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 935                                               size_t end_alignment_in_bytes) {
 936   assert_at_safepoint(true /* should_be_vm_thread */);
 937   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 938 
 939   // Call complete_archive to do the real work, filling in the MemRegion
 940   // array with the archive regions.
 941   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 942   delete _archive_allocator;
 943   _archive_allocator = NULL;
 944 }
 945 
 946 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 947   assert(ranges != NULL, "MemRegion array NULL");
 948   assert(count != 0, "No MemRegions provided");
 949   MemRegion reserved = _hrm.reserved();
 950   for (size_t i = 0; i < count; i++) {
 951     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 952       return false;
 953     }
 954   }
 955   return true;
 956 }
 957 
 958 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 959   assert(ranges != NULL, "MemRegion array NULL");
 960   assert(count != 0, "No MemRegions provided");
 961   MutexLockerEx x(Heap_lock);
 962 
 963   MemRegion reserved = _hrm.reserved();
 964   HeapWord* prev_last_addr = NULL;
 965   HeapRegion* prev_last_region = NULL;
 966 
 967   // Temporarily disable pretouching of heap pages. This interface is used
 968   // when mmap'ing archived heap data in, so pre-touching is wasted.
 969   FlagSetting fs(AlwaysPreTouch, false);
 970 
 971   // Enable archive object checking in G1MarkSweep. We have to let it know
 972   // about each archive range, so that objects in those ranges aren't marked.
 973   G1MarkSweep::enable_archive_object_check();
 974 
 975   // For each specified MemRegion range, allocate the corresponding G1
 976   // regions and mark them as archive regions. We expect the ranges in
 977   // ascending starting address order, without overlap.
 978   for (size_t i = 0; i < count; i++) {
 979     MemRegion curr_range = ranges[i];
 980     HeapWord* start_address = curr_range.start();
 981     size_t word_size = curr_range.word_size();
 982     HeapWord* last_address = curr_range.last();
 983     size_t commits = 0;
 984 
 985     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 986               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 987               p2i(start_address), p2i(last_address)));
 988     guarantee(start_address > prev_last_addr,
 989               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 990               p2i(start_address), p2i(prev_last_addr)));
 991     prev_last_addr = last_address;
 992 
 993     // Check for ranges that start in the same G1 region in which the previous
 994     // range ended, and adjust the start address so we don't try to allocate
 995     // the same region again. If the current range is entirely within that
 996     // region, skip it, just adjusting the recorded top.
 997     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 998     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 999       start_address = start_region->end();
1000       if (start_address > last_address) {
1001         _allocator->increase_used(word_size * HeapWordSize);
1002         start_region->set_top(last_address + 1);
1003         continue;
1004       }
1005       start_region->set_top(start_address);
1006       curr_range = MemRegion(start_address, last_address + 1);
1007       start_region = _hrm.addr_to_region(start_address);
1008     }
1009 
1010     // Perform the actual region allocation, exiting if it fails.
1011     // Then note how much new space we have allocated.
1012     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1013       return false;
1014     }
1015     _allocator->increase_used(word_size * HeapWordSize);
1016     if (commits != 0) {
1017       ergo_verbose1(ErgoHeapSizing,
1018                     "attempt heap expansion",
1019                     ergo_format_reason("allocate archive regions")
1020                     ergo_format_byte("total size"),
1021                     HeapRegion::GrainWords * HeapWordSize * commits);
1022     }
1023 
1024     // Mark each G1 region touched by the range as archive, add it to the old set,
1025     // and set the allocation context and top.
1026     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1027     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1028     prev_last_region = last_region;
1029 
1030     while (curr_region != NULL) {
1031       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1032              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1033       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1034       curr_region->set_allocation_context(AllocationContext::system());
1035       curr_region->set_archive();
1036       _old_set.add(curr_region);
1037       if (curr_region != last_region) {
1038         curr_region->set_top(curr_region->end());
1039         curr_region = _hrm.next_region_in_heap(curr_region);
1040       } else {
1041         curr_region->set_top(last_address + 1);
1042         curr_region = NULL;
1043       }
1044     }
1045 
1046     // Notify mark-sweep of the archive range.
1047     G1MarkSweep::mark_range_archive(curr_range);
1048   }
1049   return true;
1050 }
1051 
1052 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1053   assert(ranges != NULL, "MemRegion array NULL");
1054   assert(count != 0, "No MemRegions provided");
1055   MemRegion reserved = _hrm.reserved();
1056   HeapWord *prev_last_addr = NULL;
1057   HeapRegion* prev_last_region = NULL;
1058 
1059   // For each MemRegion, create filler objects, if needed, in the G1 regions
1060   // that contain the address range. The address range actually within the
1061   // MemRegion will not be modified. That is assumed to have been initialized
1062   // elsewhere, probably via an mmap of archived heap data.
1063   MutexLockerEx x(Heap_lock);
1064   for (size_t i = 0; i < count; i++) {
1065     HeapWord* start_address = ranges[i].start();
1066     HeapWord* last_address = ranges[i].last();
1067 
1068     assert(reserved.contains(start_address) && reserved.contains(last_address),
1069            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1070                    p2i(start_address), p2i(last_address)));
1071     assert(start_address > prev_last_addr,
1072            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1073                    p2i(start_address), p2i(prev_last_addr)));
1074 
1075     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1076     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1077     HeapWord* bottom_address = start_region->bottom();
1078 
1079     // Check for a range beginning in the same region in which the
1080     // previous one ended.
1081     if (start_region == prev_last_region) {
1082       bottom_address = prev_last_addr + 1;
1083     }
1084 
1085     // Verify that the regions were all marked as archive regions by
1086     // alloc_archive_regions.
1087     HeapRegion* curr_region = start_region;
1088     while (curr_region != NULL) {
1089       guarantee(curr_region->is_archive(),
1090                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1091       if (curr_region != last_region) {
1092         curr_region = _hrm.next_region_in_heap(curr_region);
1093       } else {
1094         curr_region = NULL;
1095       }
1096     }
1097 
1098     prev_last_addr = last_address;
1099     prev_last_region = last_region;
1100 
1101     // Fill the memory below the allocated range with dummy object(s),
1102     // if the region bottom does not match the range start, or if the previous
1103     // range ended within the same G1 region, and there is a gap.
1104     if (start_address != bottom_address) {
1105       size_t fill_size = pointer_delta(start_address, bottom_address);
1106       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1107       _allocator->increase_used(fill_size * HeapWordSize);
1108     }
1109   }
1110 }
1111 
1112 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1113                                                         uint* gc_count_before_ret,
1114                                                         uint* gclocker_retry_count_ret) {
1115   // The structure of this method has a lot of similarities to
1116   // attempt_allocation_slow(). The reason these two were not merged
1117   // into a single one is that such a method would require several "if
1118   // allocation is not humongous do this, otherwise do that"
1119   // conditional paths which would obscure its flow. In fact, an early
1120   // version of this code did use a unified method which was harder to
1121   // follow and, as a result, it had subtle bugs that were hard to
1122   // track down. So keeping these two methods separate allows each to
1123   // be more readable. It will be good to keep these two in sync as
1124   // much as possible.
1125 
1126   assert_heap_not_locked_and_not_at_safepoint();
1127   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1128          "should only be called for humongous allocations");
1129 
1130   // Humongous objects can exhaust the heap quickly, so we should check if we
1131   // need to start a marking cycle at each humongous object allocation. We do
1132   // the check before we do the actual allocation. The reason for doing it
1133   // before the allocation is that we avoid having to keep track of the newly
1134   // allocated memory while we do a GC.
1135   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1136                                            word_size)) {
1137     collect(GCCause::_g1_humongous_allocation);
1138   }
1139 
1140   // We will loop until a) we manage to successfully perform the
1141   // allocation or b) we successfully schedule a collection which
1142   // fails to perform the allocation. b) is the only case when we'll
1143   // return NULL.
1144   HeapWord* result = NULL;
1145   for (int try_count = 1; /* we'll return */; try_count += 1) {
1146     bool should_try_gc;
1147     uint gc_count_before;
1148 
1149     {
1150       MutexLockerEx x(Heap_lock);
1151 
1152       // Given that humongous objects are not allocated in young
1153       // regions, we'll first try to do the allocation without doing a
1154       // collection hoping that there's enough space in the heap.
1155       result = humongous_obj_allocate(word_size, AllocationContext::current());
1156       if (result != NULL) {
1157         return result;
1158       }
1159 
1160       if (GC_locker::is_active_and_needs_gc()) {
1161         should_try_gc = false;
1162       } else {
1163          // The GCLocker may not be active but the GCLocker initiated
1164         // GC may not yet have been performed (GCLocker::needs_gc()
1165         // returns true). In this case we do not try this GC and
1166         // wait until the GCLocker initiated GC is performed, and
1167         // then retry the allocation.
1168         if (GC_locker::needs_gc()) {
1169           should_try_gc = false;
1170         } else {
1171           // Read the GC count while still holding the Heap_lock.
1172           gc_count_before = total_collections();
1173           should_try_gc = true;
1174         }
1175       }
1176     }
1177 
1178     if (should_try_gc) {
1179       // If we failed to allocate the humongous object, we should try to
1180       // do a collection pause (if we're allowed) in case it reclaims
1181       // enough space for the allocation to succeed after the pause.
1182 
1183       bool succeeded;
1184       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1185                                    GCCause::_g1_humongous_allocation);
1186       if (result != NULL) {
1187         assert(succeeded, "only way to get back a non-NULL result");
1188         return result;
1189       }
1190 
1191       if (succeeded) {
1192         // If we get here we successfully scheduled a collection which
1193         // failed to allocate. No point in trying to allocate
1194         // further. We'll just return NULL.
1195         MutexLockerEx x(Heap_lock);
1196         *gc_count_before_ret = total_collections();
1197         return NULL;
1198       }
1199     } else {
1200       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1201         MutexLockerEx x(Heap_lock);
1202         *gc_count_before_ret = total_collections();
1203         return NULL;
1204       }
1205       // The GCLocker is either active or the GCLocker initiated
1206       // GC has not yet been performed. Stall until it is and
1207       // then retry the allocation.
1208       GC_locker::stall_until_clear();
1209       (*gclocker_retry_count_ret) += 1;
1210     }
1211 
1212     // We can reach here if we were unsuccessful in scheduling a
1213     // collection (because another thread beat us to it) or if we were
1214     // stalled due to the GC locker. In either can we should retry the
1215     // allocation attempt in case another thread successfully
1216     // performed a collection and reclaimed enough space.  Give a
1217     // warning if we seem to be looping forever.
1218 
1219     if ((QueuedAllocationWarningCount > 0) &&
1220         (try_count % QueuedAllocationWarningCount == 0)) {
1221       warning("G1CollectedHeap::attempt_allocation_humongous() "
1222               "retries %d times", try_count);
1223     }
1224   }
1225 
1226   ShouldNotReachHere();
1227   return NULL;
1228 }
1229 
1230 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1231                                                            AllocationContext_t context,
1232                                                            bool expect_null_mutator_alloc_region) {
1233   assert_at_safepoint(true /* should_be_vm_thread */);
1234   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1235                                              !expect_null_mutator_alloc_region,
1236          "the current alloc region was unexpectedly found to be non-NULL");
1237 
1238   if (!is_humongous(word_size)) {
1239     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1240                                                       false /* bot_updates */);
1241   } else {
1242     HeapWord* result = humongous_obj_allocate(word_size, context);
1243     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1244       collector_state()->set_initiate_conc_mark_if_possible(true);
1245     }
1246     return result;
1247   }
1248 
1249   ShouldNotReachHere();
1250 }
1251 
1252 class PostMCRemSetClearClosure: public HeapRegionClosure {
1253   G1CollectedHeap* _g1h;
1254   ModRefBarrierSet* _mr_bs;
1255 public:
1256   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1257     _g1h(g1h), _mr_bs(mr_bs) {}
1258 
1259   bool doHeapRegion(HeapRegion* r) {
1260     HeapRegionRemSet* hrrs = r->rem_set();
1261 
1262     if (r->is_continues_humongous()) {
1263       // We'll assert that the strong code root list and RSet is empty
1264       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1265       assert(hrrs->occupied() == 0, "RSet should be empty");
1266       return false;
1267     }
1268 
1269     _g1h->reset_gc_time_stamps(r);
1270     hrrs->clear();
1271     // You might think here that we could clear just the cards
1272     // corresponding to the used region.  But no: if we leave a dirty card
1273     // in a region we might allocate into, then it would prevent that card
1274     // from being enqueued, and cause it to be missed.
1275     // Re: the performance cost: we shouldn't be doing full GC anyway!
1276     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1277 
1278     return false;
1279   }
1280 };
1281 
1282 void G1CollectedHeap::clear_rsets_post_compaction() {
1283   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1284   heap_region_iterate(&rs_clear);
1285 }
1286 
1287 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1288   G1CollectedHeap*   _g1h;
1289   UpdateRSOopClosure _cl;
1290 public:
1291   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1292     _cl(g1->g1_rem_set(), worker_i),
1293     _g1h(g1)
1294   { }
1295 
1296   bool doHeapRegion(HeapRegion* r) {
1297     if (!r->is_continues_humongous()) {
1298       _cl.set_from(r);
1299       r->oop_iterate(&_cl);
1300     }
1301     return false;
1302   }
1303 };
1304 
1305 class ParRebuildRSTask: public AbstractGangTask {
1306   G1CollectedHeap* _g1;
1307   HeapRegionClaimer _hrclaimer;
1308 
1309 public:
1310   ParRebuildRSTask(G1CollectedHeap* g1) :
1311       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1312 
1313   void work(uint worker_id) {
1314     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1315     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1316   }
1317 };
1318 
1319 class PostCompactionPrinterClosure: public HeapRegionClosure {
1320 private:
1321   G1HRPrinter* _hr_printer;
1322 public:
1323   bool doHeapRegion(HeapRegion* hr) {
1324     assert(!hr->is_young(), "not expecting to find young regions");
1325     if (hr->is_free()) {
1326       // We only generate output for non-empty regions.
1327     } else if (hr->is_starts_humongous()) {
1328       if (hr->region_num() == 1) {
1329         // single humongous region
1330         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1331       } else {
1332         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1333       }
1334     } else if (hr->is_continues_humongous()) {
1335       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1336     } else if (hr->is_archive()) {
1337       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1338     } else if (hr->is_old()) {
1339       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1340     } else {
1341       ShouldNotReachHere();
1342     }
1343     return false;
1344   }
1345 
1346   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1347     : _hr_printer(hr_printer) { }
1348 };
1349 
1350 void G1CollectedHeap::print_hrm_post_compaction() {
1351   PostCompactionPrinterClosure cl(hr_printer());
1352   heap_region_iterate(&cl);
1353 }
1354 
1355 bool G1CollectedHeap::do_collection(bool explicit_gc,
1356                                     bool clear_all_soft_refs,
1357                                     size_t word_size) {
1358   assert_at_safepoint(true /* should_be_vm_thread */);
1359 
1360   if (GC_locker::check_active_before_gc()) {
1361     return false;
1362   }
1363 
1364   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1365   gc_timer->register_gc_start();
1366 
1367   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1368   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1369 
1370   SvcGCMarker sgcm(SvcGCMarker::FULL);
1371   ResourceMark rm;
1372 
1373   G1Log::update_level();
1374   print_heap_before_gc();
1375   trace_heap_before_gc(gc_tracer);
1376 
1377   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1378 
1379   verify_region_sets_optional();
1380 
1381   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1382                            collector_policy()->should_clear_all_soft_refs();
1383 
1384   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1385 
1386   {
1387     IsGCActiveMark x;
1388 
1389     // Timing
1390     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1391     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1392 
1393     {
1394       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1395       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1396       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1397 
1398       g1_policy()->record_full_collection_start();
1399 
1400       // Note: When we have a more flexible GC logging framework that
1401       // allows us to add optional attributes to a GC log record we
1402       // could consider timing and reporting how long we wait in the
1403       // following two methods.
1404       wait_while_free_regions_coming();
1405       // If we start the compaction before the CM threads finish
1406       // scanning the root regions we might trip them over as we'll
1407       // be moving objects / updating references. So let's wait until
1408       // they are done. By telling them to abort, they should complete
1409       // early.
1410       _cm->root_regions()->abort();
1411       _cm->root_regions()->wait_until_scan_finished();
1412       append_secondary_free_list_if_not_empty_with_lock();
1413 
1414       gc_prologue(true);
1415       increment_total_collections(true /* full gc */);
1416       increment_old_marking_cycles_started();
1417 
1418       assert(used() == recalculate_used(), "Should be equal");
1419 
1420       verify_before_gc();
1421 
1422       check_bitmaps("Full GC Start");
1423       pre_full_gc_dump(gc_timer);
1424 
1425       COMPILER2_PRESENT(DerivedPointerTable::clear());
1426 
1427       // Disable discovery and empty the discovered lists
1428       // for the CM ref processor.
1429       ref_processor_cm()->disable_discovery();
1430       ref_processor_cm()->abandon_partial_discovery();
1431       ref_processor_cm()->verify_no_references_recorded();
1432 
1433       // Abandon current iterations of concurrent marking and concurrent
1434       // refinement, if any are in progress. We have to do this before
1435       // wait_until_scan_finished() below.
1436       concurrent_mark()->abort();
1437 
1438       // Make sure we'll choose a new allocation region afterwards.
1439       _allocator->release_mutator_alloc_region();
1440       _allocator->abandon_gc_alloc_regions();
1441       g1_rem_set()->cleanupHRRS();
1442 
1443       // We should call this after we retire any currently active alloc
1444       // regions so that all the ALLOC / RETIRE events are generated
1445       // before the start GC event.
1446       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1447 
1448       // We may have added regions to the current incremental collection
1449       // set between the last GC or pause and now. We need to clear the
1450       // incremental collection set and then start rebuilding it afresh
1451       // after this full GC.
1452       abandon_collection_set(g1_policy()->inc_cset_head());
1453       g1_policy()->clear_incremental_cset();
1454       g1_policy()->stop_incremental_cset_building();
1455 
1456       tear_down_region_sets(false /* free_list_only */);
1457       collector_state()->set_gcs_are_young(true);
1458 
1459       // See the comments in g1CollectedHeap.hpp and
1460       // G1CollectedHeap::ref_processing_init() about
1461       // how reference processing currently works in G1.
1462 
1463       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1464       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1465 
1466       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1467       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1468 
1469       ref_processor_stw()->enable_discovery();
1470       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1471 
1472       // Do collection work
1473       {
1474         HandleMark hm;  // Discard invalid handles created during gc
1475         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1476       }
1477 
1478       assert(num_free_regions() == 0, "we should not have added any free regions");
1479       rebuild_region_sets(false /* free_list_only */);
1480 
1481       // Enqueue any discovered reference objects that have
1482       // not been removed from the discovered lists.
1483       ref_processor_stw()->enqueue_discovered_references();
1484 
1485       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1486 
1487       MemoryService::track_memory_usage();
1488 
1489       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1490       ref_processor_stw()->verify_no_references_recorded();
1491 
1492       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1493       ClassLoaderDataGraph::purge();
1494       MetaspaceAux::verify_metrics();
1495 
1496       // Note: since we've just done a full GC, concurrent
1497       // marking is no longer active. Therefore we need not
1498       // re-enable reference discovery for the CM ref processor.
1499       // That will be done at the start of the next marking cycle.
1500       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1501       ref_processor_cm()->verify_no_references_recorded();
1502 
1503       reset_gc_time_stamp();
1504       // Since everything potentially moved, we will clear all remembered
1505       // sets, and clear all cards.  Later we will rebuild remembered
1506       // sets. We will also reset the GC time stamps of the regions.
1507       clear_rsets_post_compaction();
1508       check_gc_time_stamps();
1509 
1510       // Resize the heap if necessary.
1511       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1512 
1513       if (_hr_printer.is_active()) {
1514         // We should do this after we potentially resize the heap so
1515         // that all the COMMIT / UNCOMMIT events are generated before
1516         // the end GC event.
1517 
1518         print_hrm_post_compaction();
1519         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1520       }
1521 
1522       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1523       if (hot_card_cache->use_cache()) {
1524         hot_card_cache->reset_card_counts();
1525         hot_card_cache->reset_hot_cache();
1526       }
1527 
1528       // Rebuild remembered sets of all regions.
1529       uint n_workers =
1530         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1531                                                 workers()->active_workers(),
1532                                                 Threads::number_of_non_daemon_threads());
1533       workers()->set_active_workers(n_workers);
1534 
1535       ParRebuildRSTask rebuild_rs_task(this);
1536       workers()->run_task(&rebuild_rs_task);
1537 
1538       // Rebuild the strong code root lists for each region
1539       rebuild_strong_code_roots();
1540 
1541       if (true) { // FIXME
1542         MetaspaceGC::compute_new_size();
1543       }
1544 
1545 #ifdef TRACESPINNING
1546       ParallelTaskTerminator::print_termination_counts();
1547 #endif
1548 
1549       // Discard all rset updates
1550       JavaThread::dirty_card_queue_set().abandon_logs();
1551       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1552 
1553       _young_list->reset_sampled_info();
1554       // At this point there should be no regions in the
1555       // entire heap tagged as young.
1556       assert(check_young_list_empty(true /* check_heap */),
1557              "young list should be empty at this point");
1558 
1559       // Update the number of full collections that have been completed.
1560       increment_old_marking_cycles_completed(false /* concurrent */);
1561 
1562       _hrm.verify_optional();
1563       verify_region_sets_optional();
1564 
1565       verify_after_gc();
1566 
1567       // Clear the previous marking bitmap, if needed for bitmap verification.
1568       // Note we cannot do this when we clear the next marking bitmap in
1569       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1570       // objects marked during a full GC against the previous bitmap.
1571       // But we need to clear it before calling check_bitmaps below since
1572       // the full GC has compacted objects and updated TAMS but not updated
1573       // the prev bitmap.
1574       if (G1VerifyBitmaps) {
1575         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1576       }
1577       check_bitmaps("Full GC End");
1578 
1579       // Start a new incremental collection set for the next pause
1580       assert(g1_policy()->collection_set() == NULL, "must be");
1581       g1_policy()->start_incremental_cset_building();
1582 
1583       clear_cset_fast_test();
1584 
1585       _allocator->init_mutator_alloc_region();
1586 
1587       g1_policy()->record_full_collection_end();
1588 
1589       if (G1Log::fine()) {
1590         g1_policy()->print_heap_transition();
1591       }
1592 
1593       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1594       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1595       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1596       // before any GC notifications are raised.
1597       g1mm()->update_sizes();
1598 
1599       gc_epilogue(true);
1600     }
1601 
1602     if (G1Log::finer()) {
1603       g1_policy()->print_detailed_heap_transition(true /* full */);
1604     }
1605 
1606     print_heap_after_gc();
1607     trace_heap_after_gc(gc_tracer);
1608 
1609     post_full_gc_dump(gc_timer);
1610 
1611     gc_timer->register_gc_end();
1612     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1613   }
1614 
1615   return true;
1616 }
1617 
1618 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1619   // do_collection() will return whether it succeeded in performing
1620   // the GC. Currently, there is no facility on the
1621   // do_full_collection() API to notify the caller than the collection
1622   // did not succeed (e.g., because it was locked out by the GC
1623   // locker). So, right now, we'll ignore the return value.
1624   bool dummy = do_collection(true,                /* explicit_gc */
1625                              clear_all_soft_refs,
1626                              0                    /* word_size */);
1627 }
1628 
1629 // This code is mostly copied from TenuredGeneration.
1630 void
1631 G1CollectedHeap::
1632 resize_if_necessary_after_full_collection(size_t word_size) {
1633   // Include the current allocation, if any, and bytes that will be
1634   // pre-allocated to support collections, as "used".
1635   const size_t used_after_gc = used();
1636   const size_t capacity_after_gc = capacity();
1637   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1638 
1639   // This is enforced in arguments.cpp.
1640   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1641          "otherwise the code below doesn't make sense");
1642 
1643   // We don't have floating point command-line arguments
1644   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1645   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1646   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1647   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1648 
1649   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1650   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1651 
1652   // We have to be careful here as these two calculations can overflow
1653   // 32-bit size_t's.
1654   double used_after_gc_d = (double) used_after_gc;
1655   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1656   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1657 
1658   // Let's make sure that they are both under the max heap size, which
1659   // by default will make them fit into a size_t.
1660   double desired_capacity_upper_bound = (double) max_heap_size;
1661   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1662                                     desired_capacity_upper_bound);
1663   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1664                                     desired_capacity_upper_bound);
1665 
1666   // We can now safely turn them into size_t's.
1667   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1668   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1669 
1670   // This assert only makes sense here, before we adjust them
1671   // with respect to the min and max heap size.
1672   assert(minimum_desired_capacity <= maximum_desired_capacity,
1673          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1674                  "maximum_desired_capacity = "SIZE_FORMAT,
1675                  minimum_desired_capacity, maximum_desired_capacity));
1676 
1677   // Should not be greater than the heap max size. No need to adjust
1678   // it with respect to the heap min size as it's a lower bound (i.e.,
1679   // we'll try to make the capacity larger than it, not smaller).
1680   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1681   // Should not be less than the heap min size. No need to adjust it
1682   // with respect to the heap max size as it's an upper bound (i.e.,
1683   // we'll try to make the capacity smaller than it, not greater).
1684   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1685 
1686   if (capacity_after_gc < minimum_desired_capacity) {
1687     // Don't expand unless it's significant
1688     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1689     ergo_verbose4(ErgoHeapSizing,
1690                   "attempt heap expansion",
1691                   ergo_format_reason("capacity lower than "
1692                                      "min desired capacity after Full GC")
1693                   ergo_format_byte("capacity")
1694                   ergo_format_byte("occupancy")
1695                   ergo_format_byte_perc("min desired capacity"),
1696                   capacity_after_gc, used_after_gc,
1697                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1698     expand(expand_bytes);
1699 
1700     // No expansion, now see if we want to shrink
1701   } else if (capacity_after_gc > maximum_desired_capacity) {
1702     // Capacity too large, compute shrinking size
1703     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1704     ergo_verbose4(ErgoHeapSizing,
1705                   "attempt heap shrinking",
1706                   ergo_format_reason("capacity higher than "
1707                                      "max desired capacity after Full GC")
1708                   ergo_format_byte("capacity")
1709                   ergo_format_byte("occupancy")
1710                   ergo_format_byte_perc("max desired capacity"),
1711                   capacity_after_gc, used_after_gc,
1712                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1713     shrink(shrink_bytes);
1714   }
1715 }
1716 
1717 
1718 HeapWord*
1719 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1720                                            AllocationContext_t context,
1721                                            bool* succeeded) {
1722   assert_at_safepoint(true /* should_be_vm_thread */);
1723 
1724   *succeeded = true;
1725   // Let's attempt the allocation first.
1726   HeapWord* result =
1727     attempt_allocation_at_safepoint(word_size,
1728                                     context,
1729                                     false /* expect_null_mutator_alloc_region */);
1730   if (result != NULL) {
1731     assert(*succeeded, "sanity");
1732     return result;
1733   }
1734 
1735   // In a G1 heap, we're supposed to keep allocation from failing by
1736   // incremental pauses.  Therefore, at least for now, we'll favor
1737   // expansion over collection.  (This might change in the future if we can
1738   // do something smarter than full collection to satisfy a failed alloc.)
1739   result = expand_and_allocate(word_size, context);
1740   if (result != NULL) {
1741     assert(*succeeded, "sanity");
1742     return result;
1743   }
1744 
1745   // Expansion didn't work, we'll try to do a Full GC.
1746   bool gc_succeeded = do_collection(false, /* explicit_gc */
1747                                     false, /* clear_all_soft_refs */
1748                                     word_size);
1749   if (!gc_succeeded) {
1750     *succeeded = false;
1751     return NULL;
1752   }
1753 
1754   // Retry the allocation
1755   result = attempt_allocation_at_safepoint(word_size,
1756                                            context,
1757                                            true /* expect_null_mutator_alloc_region */);
1758   if (result != NULL) {
1759     assert(*succeeded, "sanity");
1760     return result;
1761   }
1762 
1763   // Then, try a Full GC that will collect all soft references.
1764   gc_succeeded = do_collection(false, /* explicit_gc */
1765                                true,  /* clear_all_soft_refs */
1766                                word_size);
1767   if (!gc_succeeded) {
1768     *succeeded = false;
1769     return NULL;
1770   }
1771 
1772   // Retry the allocation once more
1773   result = attempt_allocation_at_safepoint(word_size,
1774                                            context,
1775                                            true /* expect_null_mutator_alloc_region */);
1776   if (result != NULL) {
1777     assert(*succeeded, "sanity");
1778     return result;
1779   }
1780 
1781   assert(!collector_policy()->should_clear_all_soft_refs(),
1782          "Flag should have been handled and cleared prior to this point");
1783 
1784   // What else?  We might try synchronous finalization later.  If the total
1785   // space available is large enough for the allocation, then a more
1786   // complete compaction phase than we've tried so far might be
1787   // appropriate.
1788   assert(*succeeded, "sanity");
1789   return NULL;
1790 }
1791 
1792 // Attempting to expand the heap sufficiently
1793 // to support an allocation of the given "word_size".  If
1794 // successful, perform the allocation and return the address of the
1795 // allocated block, or else "NULL".
1796 
1797 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1798   assert_at_safepoint(true /* should_be_vm_thread */);
1799 
1800   verify_region_sets_optional();
1801 
1802   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1803   ergo_verbose1(ErgoHeapSizing,
1804                 "attempt heap expansion",
1805                 ergo_format_reason("allocation request failed")
1806                 ergo_format_byte("allocation request"),
1807                 word_size * HeapWordSize);
1808   if (expand(expand_bytes)) {
1809     _hrm.verify_optional();
1810     verify_region_sets_optional();
1811     return attempt_allocation_at_safepoint(word_size,
1812                                            context,
1813                                            false /* expect_null_mutator_alloc_region */);
1814   }
1815   return NULL;
1816 }
1817 
1818 bool G1CollectedHeap::expand(size_t expand_bytes) {
1819   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1820   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1821                                        HeapRegion::GrainBytes);
1822   ergo_verbose2(ErgoHeapSizing,
1823                 "expand the heap",
1824                 ergo_format_byte("requested expansion amount")
1825                 ergo_format_byte("attempted expansion amount"),
1826                 expand_bytes, aligned_expand_bytes);
1827 
1828   if (is_maximal_no_gc()) {
1829     ergo_verbose0(ErgoHeapSizing,
1830                       "did not expand the heap",
1831                       ergo_format_reason("heap already fully expanded"));
1832     return false;
1833   }
1834 
1835   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1836   assert(regions_to_expand > 0, "Must expand by at least one region");
1837 
1838   uint expanded_by = _hrm.expand_by(regions_to_expand);
1839 
1840   if (expanded_by > 0) {
1841     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1842     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1843     g1_policy()->record_new_heap_size(num_regions());
1844   } else {
1845     ergo_verbose0(ErgoHeapSizing,
1846                   "did not expand the heap",
1847                   ergo_format_reason("heap expansion operation failed"));
1848     // The expansion of the virtual storage space was unsuccessful.
1849     // Let's see if it was because we ran out of swap.
1850     if (G1ExitOnExpansionFailure &&
1851         _hrm.available() >= regions_to_expand) {
1852       // We had head room...
1853       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1854     }
1855   }
1856   return regions_to_expand > 0;
1857 }
1858 
1859 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1860   size_t aligned_shrink_bytes =
1861     ReservedSpace::page_align_size_down(shrink_bytes);
1862   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1863                                          HeapRegion::GrainBytes);
1864   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1865 
1866   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1867   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1868 
1869   ergo_verbose3(ErgoHeapSizing,
1870                 "shrink the heap",
1871                 ergo_format_byte("requested shrinking amount")
1872                 ergo_format_byte("aligned shrinking amount")
1873                 ergo_format_byte("attempted shrinking amount"),
1874                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1875   if (num_regions_removed > 0) {
1876     g1_policy()->record_new_heap_size(num_regions());
1877   } else {
1878     ergo_verbose0(ErgoHeapSizing,
1879                   "did not shrink the heap",
1880                   ergo_format_reason("heap shrinking operation failed"));
1881   }
1882 }
1883 
1884 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1885   verify_region_sets_optional();
1886 
1887   // We should only reach here at the end of a Full GC which means we
1888   // should not not be holding to any GC alloc regions. The method
1889   // below will make sure of that and do any remaining clean up.
1890   _allocator->abandon_gc_alloc_regions();
1891 
1892   // Instead of tearing down / rebuilding the free lists here, we
1893   // could instead use the remove_all_pending() method on free_list to
1894   // remove only the ones that we need to remove.
1895   tear_down_region_sets(true /* free_list_only */);
1896   shrink_helper(shrink_bytes);
1897   rebuild_region_sets(true /* free_list_only */);
1898 
1899   _hrm.verify_optional();
1900   verify_region_sets_optional();
1901 }
1902 
1903 // Public methods.
1904 
1905 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1906 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1907 #endif // _MSC_VER
1908 
1909 
1910 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1911   CollectedHeap(),
1912   _g1_policy(policy_),
1913   _dirty_card_queue_set(false),
1914   _into_cset_dirty_card_queue_set(false),
1915   _is_alive_closure_cm(this),
1916   _is_alive_closure_stw(this),
1917   _ref_processor_cm(NULL),
1918   _ref_processor_stw(NULL),
1919   _bot_shared(NULL),
1920   _evac_failure_scan_stack(NULL),
1921   _cg1r(NULL),
1922   _g1mm(NULL),
1923   _refine_cte_cl(NULL),
1924   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1925   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1926   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1927   _humongous_reclaim_candidates(),
1928   _has_humongous_reclaim_candidates(false),
1929   _archive_allocator(NULL),
1930   _free_regions_coming(false),
1931   _young_list(new YoungList(this)),
1932   _gc_time_stamp(0),
1933   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1934   _old_plab_stats(OldPLABSize, PLABWeight),
1935   _expand_heap_after_alloc_failure(true),
1936   _surviving_young_words(NULL),
1937   _old_marking_cycles_started(0),
1938   _old_marking_cycles_completed(0),
1939   _heap_summary_sent(false),
1940   _in_cset_fast_test(),
1941   _dirty_cards_region_list(NULL),
1942   _worker_cset_start_region(NULL),
1943   _worker_cset_start_region_time_stamp(NULL),
1944   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1945   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1946   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1947   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1948 
1949   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1950                           /* are_GC_task_threads */true,
1951                           /* are_ConcurrentGC_threads */false);
1952   _workers->initialize_workers();
1953 
1954   _allocator = G1Allocator::create_allocator(this);
1955   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1956 
1957   // Override the default _filler_array_max_size so that no humongous filler
1958   // objects are created.
1959   _filler_array_max_size = _humongous_object_threshold_in_words;
1960 
1961   uint n_queues = ParallelGCThreads;
1962   _task_queues = new RefToScanQueueSet(n_queues);
1963 
1964   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1965   assert(n_rem_sets > 0, "Invariant.");
1966 
1967   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1968   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1969   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1970 
1971   for (uint i = 0; i < n_queues; i++) {
1972     RefToScanQueue* q = new RefToScanQueue();
1973     q->initialize();
1974     _task_queues->register_queue(i, q);
1975     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1976   }
1977   clear_cset_start_regions();
1978 
1979   // Initialize the G1EvacuationFailureALot counters and flags.
1980   NOT_PRODUCT(reset_evacuation_should_fail();)
1981 
1982   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1983 }
1984 
1985 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1986                                                                  size_t size,
1987                                                                  size_t translation_factor) {
1988   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1989   // Allocate a new reserved space, preferring to use large pages.
1990   ReservedSpace rs(size, preferred_page_size);
1991   G1RegionToSpaceMapper* result  =
1992     G1RegionToSpaceMapper::create_mapper(rs,
1993                                          size,
1994                                          rs.alignment(),
1995                                          HeapRegion::GrainBytes,
1996                                          translation_factor,
1997                                          mtGC);
1998   if (TracePageSizes) {
1999     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2000                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2001   }
2002   return result;
2003 }
2004 
2005 jint G1CollectedHeap::initialize() {
2006   CollectedHeap::pre_initialize();
2007   os::enable_vtime();
2008 
2009   G1Log::init();
2010 
2011   // Necessary to satisfy locking discipline assertions.
2012 
2013   MutexLocker x(Heap_lock);
2014 
2015   // We have to initialize the printer before committing the heap, as
2016   // it will be used then.
2017   _hr_printer.set_active(G1PrintHeapRegions);
2018 
2019   // While there are no constraints in the GC code that HeapWordSize
2020   // be any particular value, there are multiple other areas in the
2021   // system which believe this to be true (e.g. oop->object_size in some
2022   // cases incorrectly returns the size in wordSize units rather than
2023   // HeapWordSize).
2024   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2025 
2026   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2027   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2028   size_t heap_alignment = collector_policy()->heap_alignment();
2029 
2030   // Ensure that the sizes are properly aligned.
2031   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2032   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2033   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2034 
2035   _refine_cte_cl = new RefineCardTableEntryClosure();
2036 
2037   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2038 
2039   // Reserve the maximum.
2040 
2041   // When compressed oops are enabled, the preferred heap base
2042   // is calculated by subtracting the requested size from the
2043   // 32Gb boundary and using the result as the base address for
2044   // heap reservation. If the requested size is not aligned to
2045   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2046   // into the ReservedHeapSpace constructor) then the actual
2047   // base of the reserved heap may end up differing from the
2048   // address that was requested (i.e. the preferred heap base).
2049   // If this happens then we could end up using a non-optimal
2050   // compressed oops mode.
2051 
2052   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2053                                                  heap_alignment);
2054 
2055   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2056 
2057   // Create the barrier set for the entire reserved region.
2058   G1SATBCardTableLoggingModRefBS* bs
2059     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2060   bs->initialize();
2061   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2062   set_barrier_set(bs);
2063 
2064   // Also create a G1 rem set.
2065   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2066 
2067   // Carve out the G1 part of the heap.
2068 
2069   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2070   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2071   G1RegionToSpaceMapper* heap_storage =
2072     G1RegionToSpaceMapper::create_mapper(g1_rs,
2073                                          g1_rs.size(),
2074                                          page_size,
2075                                          HeapRegion::GrainBytes,
2076                                          1,
2077                                          mtJavaHeap);
2078   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2079                        max_byte_size, page_size,
2080                        heap_rs.base(),
2081                        heap_rs.size());
2082   heap_storage->set_mapping_changed_listener(&_listener);
2083 
2084   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2085   G1RegionToSpaceMapper* bot_storage =
2086     create_aux_memory_mapper("Block offset table",
2087                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2088                              G1BlockOffsetSharedArray::heap_map_factor());
2089 
2090   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2091   G1RegionToSpaceMapper* cardtable_storage =
2092     create_aux_memory_mapper("Card table",
2093                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2094                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2095 
2096   G1RegionToSpaceMapper* card_counts_storage =
2097     create_aux_memory_mapper("Card counts table",
2098                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2099                              G1CardCounts::heap_map_factor());
2100 
2101   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2102   G1RegionToSpaceMapper* prev_bitmap_storage =
2103     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2104   G1RegionToSpaceMapper* next_bitmap_storage =
2105     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2106 
2107   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2108   g1_barrier_set()->initialize(cardtable_storage);
2109    // Do later initialization work for concurrent refinement.
2110   _cg1r->init(card_counts_storage);
2111 
2112   // 6843694 - ensure that the maximum region index can fit
2113   // in the remembered set structures.
2114   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2115   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2116 
2117   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2118   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2119   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2120             "too many cards per region");
2121 
2122   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2123 
2124   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2125 
2126   {
2127     HeapWord* start = _hrm.reserved().start();
2128     HeapWord* end = _hrm.reserved().end();
2129     size_t granularity = HeapRegion::GrainBytes;
2130 
2131     _in_cset_fast_test.initialize(start, end, granularity);
2132     _humongous_reclaim_candidates.initialize(start, end, granularity);
2133   }
2134 
2135   // Create the ConcurrentMark data structure and thread.
2136   // (Must do this late, so that "max_regions" is defined.)
2137   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2138   if (_cm == NULL || !_cm->completed_initialization()) {
2139     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2140     return JNI_ENOMEM;
2141   }
2142   _cmThread = _cm->cmThread();
2143 
2144   // Initialize the from_card cache structure of HeapRegionRemSet.
2145   HeapRegionRemSet::init_heap(max_regions());
2146 
2147   // Now expand into the initial heap size.
2148   if (!expand(init_byte_size)) {
2149     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2150     return JNI_ENOMEM;
2151   }
2152 
2153   // Perform any initialization actions delegated to the policy.
2154   g1_policy()->init();
2155 
2156   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2157                                                SATB_Q_FL_lock,
2158                                                G1SATBProcessCompletedThreshold,
2159                                                Shared_SATB_Q_lock);
2160 
2161   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2162                                                 DirtyCardQ_CBL_mon,
2163                                                 DirtyCardQ_FL_lock,
2164                                                 concurrent_g1_refine()->yellow_zone(),
2165                                                 concurrent_g1_refine()->red_zone(),
2166                                                 Shared_DirtyCardQ_lock);
2167 
2168   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2169                                     DirtyCardQ_CBL_mon,
2170                                     DirtyCardQ_FL_lock,
2171                                     -1, // never trigger processing
2172                                     -1, // no limit on length
2173                                     Shared_DirtyCardQ_lock,
2174                                     &JavaThread::dirty_card_queue_set());
2175 
2176   // Initialize the card queue set used to hold cards containing
2177   // references into the collection set.
2178   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2179                                              DirtyCardQ_CBL_mon,
2180                                              DirtyCardQ_FL_lock,
2181                                              -1, // never trigger processing
2182                                              -1, // no limit on length
2183                                              Shared_DirtyCardQ_lock,
2184                                              &JavaThread::dirty_card_queue_set());
2185 
2186   // Here we allocate the dummy HeapRegion that is required by the
2187   // G1AllocRegion class.
2188   HeapRegion* dummy_region = _hrm.get_dummy_region();
2189 
2190   // We'll re-use the same region whether the alloc region will
2191   // require BOT updates or not and, if it doesn't, then a non-young
2192   // region will complain that it cannot support allocations without
2193   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2194   dummy_region->set_eden();
2195   // Make sure it's full.
2196   dummy_region->set_top(dummy_region->end());
2197   G1AllocRegion::setup(this, dummy_region);
2198 
2199   _allocator->init_mutator_alloc_region();
2200 
2201   // Do create of the monitoring and management support so that
2202   // values in the heap have been properly initialized.
2203   _g1mm = new G1MonitoringSupport(this);
2204 
2205   G1StringDedup::initialize();
2206 
2207   return JNI_OK;
2208 }
2209 
2210 void G1CollectedHeap::stop() {
2211   // Stop all concurrent threads. We do this to make sure these threads
2212   // do not continue to execute and access resources (e.g. gclog_or_tty)
2213   // that are destroyed during shutdown.
2214   _cg1r->stop();
2215   _cmThread->stop();
2216   if (G1StringDedup::is_enabled()) {
2217     G1StringDedup::stop();
2218   }
2219 }
2220 
2221 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2222   return HeapRegion::max_region_size();
2223 }
2224 
2225 void G1CollectedHeap::post_initialize() {
2226   CollectedHeap::post_initialize();
2227   ref_processing_init();
2228 }
2229 
2230 void G1CollectedHeap::ref_processing_init() {
2231   // Reference processing in G1 currently works as follows:
2232   //
2233   // * There are two reference processor instances. One is
2234   //   used to record and process discovered references
2235   //   during concurrent marking; the other is used to
2236   //   record and process references during STW pauses
2237   //   (both full and incremental).
2238   // * Both ref processors need to 'span' the entire heap as
2239   //   the regions in the collection set may be dotted around.
2240   //
2241   // * For the concurrent marking ref processor:
2242   //   * Reference discovery is enabled at initial marking.
2243   //   * Reference discovery is disabled and the discovered
2244   //     references processed etc during remarking.
2245   //   * Reference discovery is MT (see below).
2246   //   * Reference discovery requires a barrier (see below).
2247   //   * Reference processing may or may not be MT
2248   //     (depending on the value of ParallelRefProcEnabled
2249   //     and ParallelGCThreads).
2250   //   * A full GC disables reference discovery by the CM
2251   //     ref processor and abandons any entries on it's
2252   //     discovered lists.
2253   //
2254   // * For the STW processor:
2255   //   * Non MT discovery is enabled at the start of a full GC.
2256   //   * Processing and enqueueing during a full GC is non-MT.
2257   //   * During a full GC, references are processed after marking.
2258   //
2259   //   * Discovery (may or may not be MT) is enabled at the start
2260   //     of an incremental evacuation pause.
2261   //   * References are processed near the end of a STW evacuation pause.
2262   //   * For both types of GC:
2263   //     * Discovery is atomic - i.e. not concurrent.
2264   //     * Reference discovery will not need a barrier.
2265 
2266   MemRegion mr = reserved_region();
2267 
2268   // Concurrent Mark ref processor
2269   _ref_processor_cm =
2270     new ReferenceProcessor(mr,    // span
2271                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2272                                 // mt processing
2273                            ParallelGCThreads,
2274                                 // degree of mt processing
2275                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2276                                 // mt discovery
2277                            MAX2(ParallelGCThreads, ConcGCThreads),
2278                                 // degree of mt discovery
2279                            false,
2280                                 // Reference discovery is not atomic
2281                            &_is_alive_closure_cm);
2282                                 // is alive closure
2283                                 // (for efficiency/performance)
2284 
2285   // STW ref processor
2286   _ref_processor_stw =
2287     new ReferenceProcessor(mr,    // span
2288                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2289                                 // mt processing
2290                            ParallelGCThreads,
2291                                 // degree of mt processing
2292                            (ParallelGCThreads > 1),
2293                                 // mt discovery
2294                            ParallelGCThreads,
2295                                 // degree of mt discovery
2296                            true,
2297                                 // Reference discovery is atomic
2298                            &_is_alive_closure_stw);
2299                                 // is alive closure
2300                                 // (for efficiency/performance)
2301 }
2302 
2303 size_t G1CollectedHeap::capacity() const {
2304   return _hrm.length() * HeapRegion::GrainBytes;
2305 }
2306 
2307 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2308   assert(!hr->is_continues_humongous(), "pre-condition");
2309   hr->reset_gc_time_stamp();
2310   if (hr->is_starts_humongous()) {
2311     uint first_index = hr->hrm_index() + 1;
2312     uint last_index = hr->last_hc_index();
2313     for (uint i = first_index; i < last_index; i += 1) {
2314       HeapRegion* chr = region_at(i);
2315       assert(chr->is_continues_humongous(), "sanity");
2316       chr->reset_gc_time_stamp();
2317     }
2318   }
2319 }
2320 
2321 #ifndef PRODUCT
2322 
2323 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2324 private:
2325   unsigned _gc_time_stamp;
2326   bool _failures;
2327 
2328 public:
2329   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2330     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2331 
2332   virtual bool doHeapRegion(HeapRegion* hr) {
2333     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2334     if (_gc_time_stamp != region_gc_time_stamp) {
2335       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2336                              "expected %d", HR_FORMAT_PARAMS(hr),
2337                              region_gc_time_stamp, _gc_time_stamp);
2338       _failures = true;
2339     }
2340     return false;
2341   }
2342 
2343   bool failures() { return _failures; }
2344 };
2345 
2346 void G1CollectedHeap::check_gc_time_stamps() {
2347   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2348   heap_region_iterate(&cl);
2349   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2350 }
2351 #endif // PRODUCT
2352 
2353 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2354                                                  DirtyCardQueue* into_cset_dcq,
2355                                                  bool concurrent,
2356                                                  uint worker_i) {
2357   // Clean cards in the hot card cache
2358   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2359   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2360 
2361   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2362   size_t n_completed_buffers = 0;
2363   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2364     n_completed_buffers++;
2365   }
2366   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2367   dcqs.clear_n_completed_buffers();
2368   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2369 }
2370 
2371 
2372 // Computes the sum of the storage used by the various regions.
2373 size_t G1CollectedHeap::used() const {
2374   size_t result = _allocator->used();
2375   if (_archive_allocator != NULL) {
2376     result += _archive_allocator->used();
2377   }
2378   return result;
2379 }
2380 
2381 size_t G1CollectedHeap::used_unlocked() const {
2382   return _allocator->used_unlocked();
2383 }
2384 
2385 class SumUsedClosure: public HeapRegionClosure {
2386   size_t _used;
2387 public:
2388   SumUsedClosure() : _used(0) {}
2389   bool doHeapRegion(HeapRegion* r) {
2390     if (!r->is_continues_humongous()) {
2391       _used += r->used();
2392     }
2393     return false;
2394   }
2395   size_t result() { return _used; }
2396 };
2397 
2398 size_t G1CollectedHeap::recalculate_used() const {
2399   double recalculate_used_start = os::elapsedTime();
2400 
2401   SumUsedClosure blk;
2402   heap_region_iterate(&blk);
2403 
2404   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2405   return blk.result();
2406 }
2407 
2408 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2409   switch (cause) {
2410     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2411     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2412     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2413     case GCCause::_g1_humongous_allocation: return true;
2414     case GCCause::_update_allocation_context_stats_inc: return true;
2415     case GCCause::_wb_conc_mark:            return true;
2416     default:                                return false;
2417   }
2418 }
2419 
2420 #ifndef PRODUCT
2421 void G1CollectedHeap::allocate_dummy_regions() {
2422   // Let's fill up most of the region
2423   size_t word_size = HeapRegion::GrainWords - 1024;
2424   // And as a result the region we'll allocate will be humongous.
2425   guarantee(is_humongous(word_size), "sanity");
2426 
2427   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2428     // Let's use the existing mechanism for the allocation
2429     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2430                                                  AllocationContext::system());
2431     if (dummy_obj != NULL) {
2432       MemRegion mr(dummy_obj, word_size);
2433       CollectedHeap::fill_with_object(mr);
2434     } else {
2435       // If we can't allocate once, we probably cannot allocate
2436       // again. Let's get out of the loop.
2437       break;
2438     }
2439   }
2440 }
2441 #endif // !PRODUCT
2442 
2443 void G1CollectedHeap::increment_old_marking_cycles_started() {
2444   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2445     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2446     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2447     _old_marking_cycles_started, _old_marking_cycles_completed));
2448 
2449   _old_marking_cycles_started++;
2450 }
2451 
2452 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2453   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2454 
2455   // We assume that if concurrent == true, then the caller is a
2456   // concurrent thread that was joined the Suspendible Thread
2457   // Set. If there's ever a cheap way to check this, we should add an
2458   // assert here.
2459 
2460   // Given that this method is called at the end of a Full GC or of a
2461   // concurrent cycle, and those can be nested (i.e., a Full GC can
2462   // interrupt a concurrent cycle), the number of full collections
2463   // completed should be either one (in the case where there was no
2464   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2465   // behind the number of full collections started.
2466 
2467   // This is the case for the inner caller, i.e. a Full GC.
2468   assert(concurrent ||
2469          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2470          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2471          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2472                  "is inconsistent with _old_marking_cycles_completed = %u",
2473                  _old_marking_cycles_started, _old_marking_cycles_completed));
2474 
2475   // This is the case for the outer caller, i.e. the concurrent cycle.
2476   assert(!concurrent ||
2477          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2478          err_msg("for outer caller (concurrent cycle): "
2479                  "_old_marking_cycles_started = %u "
2480                  "is inconsistent with _old_marking_cycles_completed = %u",
2481                  _old_marking_cycles_started, _old_marking_cycles_completed));
2482 
2483   _old_marking_cycles_completed += 1;
2484 
2485   // We need to clear the "in_progress" flag in the CM thread before
2486   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2487   // is set) so that if a waiter requests another System.gc() it doesn't
2488   // incorrectly see that a marking cycle is still in progress.
2489   if (concurrent) {
2490     _cmThread->clear_in_progress();
2491   }
2492 
2493   // This notify_all() will ensure that a thread that called
2494   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2495   // and it's waiting for a full GC to finish will be woken up. It is
2496   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2497   FullGCCount_lock->notify_all();
2498 }
2499 
2500 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2501   collector_state()->set_concurrent_cycle_started(true);
2502   _gc_timer_cm->register_gc_start(start_time);
2503 
2504   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2505   trace_heap_before_gc(_gc_tracer_cm);
2506 }
2507 
2508 void G1CollectedHeap::register_concurrent_cycle_end() {
2509   if (collector_state()->concurrent_cycle_started()) {
2510     if (_cm->has_aborted()) {
2511       _gc_tracer_cm->report_concurrent_mode_failure();
2512     }
2513 
2514     _gc_timer_cm->register_gc_end();
2515     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2516 
2517     // Clear state variables to prepare for the next concurrent cycle.
2518      collector_state()->set_concurrent_cycle_started(false);
2519     _heap_summary_sent = false;
2520   }
2521 }
2522 
2523 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2524   if (collector_state()->concurrent_cycle_started()) {
2525     // This function can be called when:
2526     //  the cleanup pause is run
2527     //  the concurrent cycle is aborted before the cleanup pause.
2528     //  the concurrent cycle is aborted after the cleanup pause,
2529     //   but before the concurrent cycle end has been registered.
2530     // Make sure that we only send the heap information once.
2531     if (!_heap_summary_sent) {
2532       trace_heap_after_gc(_gc_tracer_cm);
2533       _heap_summary_sent = true;
2534     }
2535   }
2536 }
2537 
2538 void G1CollectedHeap::collect(GCCause::Cause cause) {
2539   assert_heap_not_locked();
2540 
2541   uint gc_count_before;
2542   uint old_marking_count_before;
2543   uint full_gc_count_before;
2544   bool retry_gc;
2545 
2546   do {
2547     retry_gc = false;
2548 
2549     {
2550       MutexLocker ml(Heap_lock);
2551 
2552       // Read the GC count while holding the Heap_lock
2553       gc_count_before = total_collections();
2554       full_gc_count_before = total_full_collections();
2555       old_marking_count_before = _old_marking_cycles_started;
2556     }
2557 
2558     if (should_do_concurrent_full_gc(cause)) {
2559       // Schedule an initial-mark evacuation pause that will start a
2560       // concurrent cycle. We're setting word_size to 0 which means that
2561       // we are not requesting a post-GC allocation.
2562       VM_G1IncCollectionPause op(gc_count_before,
2563                                  0,     /* word_size */
2564                                  true,  /* should_initiate_conc_mark */
2565                                  g1_policy()->max_pause_time_ms(),
2566                                  cause);
2567       op.set_allocation_context(AllocationContext::current());
2568 
2569       VMThread::execute(&op);
2570       if (!op.pause_succeeded()) {
2571         if (old_marking_count_before == _old_marking_cycles_started) {
2572           retry_gc = op.should_retry_gc();
2573         } else {
2574           // A Full GC happened while we were trying to schedule the
2575           // initial-mark GC. No point in starting a new cycle given
2576           // that the whole heap was collected anyway.
2577         }
2578 
2579         if (retry_gc) {
2580           if (GC_locker::is_active_and_needs_gc()) {
2581             GC_locker::stall_until_clear();
2582           }
2583         }
2584       }
2585     } else {
2586       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2587           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2588 
2589         // Schedule a standard evacuation pause. We're setting word_size
2590         // to 0 which means that we are not requesting a post-GC allocation.
2591         VM_G1IncCollectionPause op(gc_count_before,
2592                                    0,     /* word_size */
2593                                    false, /* should_initiate_conc_mark */
2594                                    g1_policy()->max_pause_time_ms(),
2595                                    cause);
2596         VMThread::execute(&op);
2597       } else {
2598         // Schedule a Full GC.
2599         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2600         VMThread::execute(&op);
2601       }
2602     }
2603   } while (retry_gc);
2604 }
2605 
2606 bool G1CollectedHeap::is_in(const void* p) const {
2607   if (_hrm.reserved().contains(p)) {
2608     // Given that we know that p is in the reserved space,
2609     // heap_region_containing_raw() should successfully
2610     // return the containing region.
2611     HeapRegion* hr = heap_region_containing_raw(p);
2612     return hr->is_in(p);
2613   } else {
2614     return false;
2615   }
2616 }
2617 
2618 #ifdef ASSERT
2619 bool G1CollectedHeap::is_in_exact(const void* p) const {
2620   bool contains = reserved_region().contains(p);
2621   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2622   if (contains && available) {
2623     return true;
2624   } else {
2625     return false;
2626   }
2627 }
2628 #endif
2629 
2630 // Iteration functions.
2631 
2632 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2633 
2634 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2635   ExtendedOopClosure* _cl;
2636 public:
2637   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2638   bool doHeapRegion(HeapRegion* r) {
2639     if (!r->is_continues_humongous()) {
2640       r->oop_iterate(_cl);
2641     }
2642     return false;
2643   }
2644 };
2645 
2646 // Iterates an ObjectClosure over all objects within a HeapRegion.
2647 
2648 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2649   ObjectClosure* _cl;
2650 public:
2651   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2652   bool doHeapRegion(HeapRegion* r) {
2653     if (!r->is_continues_humongous()) {
2654       r->object_iterate(_cl);
2655     }
2656     return false;
2657   }
2658 };
2659 
2660 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2661   IterateObjectClosureRegionClosure blk(cl);
2662   heap_region_iterate(&blk);
2663 }
2664 
2665 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2666   _hrm.iterate(cl);
2667 }
2668 
2669 void
2670 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2671                                          uint worker_id,
2672                                          HeapRegionClaimer *hrclaimer,
2673                                          bool concurrent) const {
2674   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2675 }
2676 
2677 // Clear the cached CSet starting regions and (more importantly)
2678 // the time stamps. Called when we reset the GC time stamp.
2679 void G1CollectedHeap::clear_cset_start_regions() {
2680   assert(_worker_cset_start_region != NULL, "sanity");
2681   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2682 
2683   for (uint i = 0; i < ParallelGCThreads; i++) {
2684     _worker_cset_start_region[i] = NULL;
2685     _worker_cset_start_region_time_stamp[i] = 0;
2686   }
2687 }
2688 
2689 // Given the id of a worker, obtain or calculate a suitable
2690 // starting region for iterating over the current collection set.
2691 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2692   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2693 
2694   HeapRegion* result = NULL;
2695   unsigned gc_time_stamp = get_gc_time_stamp();
2696 
2697   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2698     // Cached starting region for current worker was set
2699     // during the current pause - so it's valid.
2700     // Note: the cached starting heap region may be NULL
2701     // (when the collection set is empty).
2702     result = _worker_cset_start_region[worker_i];
2703     assert(result == NULL || result->in_collection_set(), "sanity");
2704     return result;
2705   }
2706 
2707   // The cached entry was not valid so let's calculate
2708   // a suitable starting heap region for this worker.
2709 
2710   // We want the parallel threads to start their collection
2711   // set iteration at different collection set regions to
2712   // avoid contention.
2713   // If we have:
2714   //          n collection set regions
2715   //          p threads
2716   // Then thread t will start at region floor ((t * n) / p)
2717 
2718   result = g1_policy()->collection_set();
2719   uint cs_size = g1_policy()->cset_region_length();
2720   uint active_workers = workers()->active_workers();
2721 
2722   uint end_ind   = (cs_size * worker_i) / active_workers;
2723   uint start_ind = 0;
2724 
2725   if (worker_i > 0 &&
2726       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2727     // Previous workers starting region is valid
2728     // so let's iterate from there
2729     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2730     result = _worker_cset_start_region[worker_i - 1];
2731   }
2732 
2733   for (uint i = start_ind; i < end_ind; i++) {
2734     result = result->next_in_collection_set();
2735   }
2736 
2737   // Note: the calculated starting heap region may be NULL
2738   // (when the collection set is empty).
2739   assert(result == NULL || result->in_collection_set(), "sanity");
2740   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2741          "should be updated only once per pause");
2742   _worker_cset_start_region[worker_i] = result;
2743   OrderAccess::storestore();
2744   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2745   return result;
2746 }
2747 
2748 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2749   HeapRegion* r = g1_policy()->collection_set();
2750   while (r != NULL) {
2751     HeapRegion* next = r->next_in_collection_set();
2752     if (cl->doHeapRegion(r)) {
2753       cl->incomplete();
2754       return;
2755     }
2756     r = next;
2757   }
2758 }
2759 
2760 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2761                                                   HeapRegionClosure *cl) {
2762   if (r == NULL) {
2763     // The CSet is empty so there's nothing to do.
2764     return;
2765   }
2766 
2767   assert(r->in_collection_set(),
2768          "Start region must be a member of the collection set.");
2769   HeapRegion* cur = r;
2770   while (cur != NULL) {
2771     HeapRegion* next = cur->next_in_collection_set();
2772     if (cl->doHeapRegion(cur) && false) {
2773       cl->incomplete();
2774       return;
2775     }
2776     cur = next;
2777   }
2778   cur = g1_policy()->collection_set();
2779   while (cur != r) {
2780     HeapRegion* next = cur->next_in_collection_set();
2781     if (cl->doHeapRegion(cur) && false) {
2782       cl->incomplete();
2783       return;
2784     }
2785     cur = next;
2786   }
2787 }
2788 
2789 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2790   HeapRegion* result = _hrm.next_region_in_heap(from);
2791   while (result != NULL && result->is_pinned()) {
2792     result = _hrm.next_region_in_heap(result);
2793   }
2794   return result;
2795 }
2796 
2797 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2798   HeapRegion* hr = heap_region_containing(addr);
2799   return hr->block_start(addr);
2800 }
2801 
2802 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2803   HeapRegion* hr = heap_region_containing(addr);
2804   return hr->block_size(addr);
2805 }
2806 
2807 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2808   HeapRegion* hr = heap_region_containing(addr);
2809   return hr->block_is_obj(addr);
2810 }
2811 
2812 bool G1CollectedHeap::supports_tlab_allocation() const {
2813   return true;
2814 }
2815 
2816 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2817   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2818 }
2819 
2820 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2821   return young_list()->eden_used_bytes();
2822 }
2823 
2824 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2825 // must be smaller than the humongous object limit.
2826 size_t G1CollectedHeap::max_tlab_size() const {
2827   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2828 }
2829 
2830 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2831   // Return the remaining space in the cur alloc region, but not less than
2832   // the min TLAB size.
2833 
2834   // Also, this value can be at most the humongous object threshold,
2835   // since we can't allow tlabs to grow big enough to accommodate
2836   // humongous objects.
2837 
2838   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2839   size_t max_tlab = max_tlab_size() * wordSize;
2840   if (hr == NULL) {
2841     return max_tlab;
2842   } else {
2843     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2844   }
2845 }
2846 
2847 size_t G1CollectedHeap::max_capacity() const {
2848   return _hrm.reserved().byte_size();
2849 }
2850 
2851 jlong G1CollectedHeap::millis_since_last_gc() {
2852   // assert(false, "NYI");
2853   return 0;
2854 }
2855 
2856 void G1CollectedHeap::prepare_for_verify() {
2857   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2858     ensure_parsability(false);
2859   }
2860   g1_rem_set()->prepare_for_verify();
2861 }
2862 
2863 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2864                                               VerifyOption vo) {
2865   switch (vo) {
2866   case VerifyOption_G1UsePrevMarking:
2867     return hr->obj_allocated_since_prev_marking(obj);
2868   case VerifyOption_G1UseNextMarking:
2869     return hr->obj_allocated_since_next_marking(obj);
2870   case VerifyOption_G1UseMarkWord:
2871     return false;
2872   default:
2873     ShouldNotReachHere();
2874   }
2875   return false; // keep some compilers happy
2876 }
2877 
2878 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2879   switch (vo) {
2880   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2881   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2882   case VerifyOption_G1UseMarkWord:    return NULL;
2883   default:                            ShouldNotReachHere();
2884   }
2885   return NULL; // keep some compilers happy
2886 }
2887 
2888 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2889   switch (vo) {
2890   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2891   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2892   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2893   default:                            ShouldNotReachHere();
2894   }
2895   return false; // keep some compilers happy
2896 }
2897 
2898 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2899   switch (vo) {
2900   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2901   case VerifyOption_G1UseNextMarking: return "NTAMS";
2902   case VerifyOption_G1UseMarkWord:    return "NONE";
2903   default:                            ShouldNotReachHere();
2904   }
2905   return NULL; // keep some compilers happy
2906 }
2907 
2908 class VerifyRootsClosure: public OopClosure {
2909 private:
2910   G1CollectedHeap* _g1h;
2911   VerifyOption     _vo;
2912   bool             _failures;
2913 public:
2914   // _vo == UsePrevMarking -> use "prev" marking information,
2915   // _vo == UseNextMarking -> use "next" marking information,
2916   // _vo == UseMarkWord    -> use mark word from object header.
2917   VerifyRootsClosure(VerifyOption vo) :
2918     _g1h(G1CollectedHeap::heap()),
2919     _vo(vo),
2920     _failures(false) { }
2921 
2922   bool failures() { return _failures; }
2923 
2924   template <class T> void do_oop_nv(T* p) {
2925     T heap_oop = oopDesc::load_heap_oop(p);
2926     if (!oopDesc::is_null(heap_oop)) {
2927       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2928       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2929         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2930                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2931         if (_vo == VerifyOption_G1UseMarkWord) {
2932           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2933         }
2934         obj->print_on(gclog_or_tty);
2935         _failures = true;
2936       }
2937     }
2938   }
2939 
2940   void do_oop(oop* p)       { do_oop_nv(p); }
2941   void do_oop(narrowOop* p) { do_oop_nv(p); }
2942 };
2943 
2944 class G1VerifyCodeRootOopClosure: public OopClosure {
2945   G1CollectedHeap* _g1h;
2946   OopClosure* _root_cl;
2947   nmethod* _nm;
2948   VerifyOption _vo;
2949   bool _failures;
2950 
2951   template <class T> void do_oop_work(T* p) {
2952     // First verify that this root is live
2953     _root_cl->do_oop(p);
2954 
2955     if (!G1VerifyHeapRegionCodeRoots) {
2956       // We're not verifying the code roots attached to heap region.
2957       return;
2958     }
2959 
2960     // Don't check the code roots during marking verification in a full GC
2961     if (_vo == VerifyOption_G1UseMarkWord) {
2962       return;
2963     }
2964 
2965     // Now verify that the current nmethod (which contains p) is
2966     // in the code root list of the heap region containing the
2967     // object referenced by p.
2968 
2969     T heap_oop = oopDesc::load_heap_oop(p);
2970     if (!oopDesc::is_null(heap_oop)) {
2971       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2972 
2973       // Now fetch the region containing the object
2974       HeapRegion* hr = _g1h->heap_region_containing(obj);
2975       HeapRegionRemSet* hrrs = hr->rem_set();
2976       // Verify that the strong code root list for this region
2977       // contains the nmethod
2978       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2979         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2980                                "from nmethod "PTR_FORMAT" not in strong "
2981                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2982                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2983         _failures = true;
2984       }
2985     }
2986   }
2987 
2988 public:
2989   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2990     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2991 
2992   void do_oop(oop* p) { do_oop_work(p); }
2993   void do_oop(narrowOop* p) { do_oop_work(p); }
2994 
2995   void set_nmethod(nmethod* nm) { _nm = nm; }
2996   bool failures() { return _failures; }
2997 };
2998 
2999 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3000   G1VerifyCodeRootOopClosure* _oop_cl;
3001 
3002 public:
3003   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3004     _oop_cl(oop_cl) {}
3005 
3006   void do_code_blob(CodeBlob* cb) {
3007     nmethod* nm = cb->as_nmethod_or_null();
3008     if (nm != NULL) {
3009       _oop_cl->set_nmethod(nm);
3010       nm->oops_do(_oop_cl);
3011     }
3012   }
3013 };
3014 
3015 class YoungRefCounterClosure : public OopClosure {
3016   G1CollectedHeap* _g1h;
3017   int              _count;
3018  public:
3019   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3020   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3021   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3022 
3023   int count() { return _count; }
3024   void reset_count() { _count = 0; };
3025 };
3026 
3027 class VerifyKlassClosure: public KlassClosure {
3028   YoungRefCounterClosure _young_ref_counter_closure;
3029   OopClosure *_oop_closure;
3030  public:
3031   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3032   void do_klass(Klass* k) {
3033     k->oops_do(_oop_closure);
3034 
3035     _young_ref_counter_closure.reset_count();
3036     k->oops_do(&_young_ref_counter_closure);
3037     if (_young_ref_counter_closure.count() > 0) {
3038       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3039     }
3040   }
3041 };
3042 
3043 class VerifyLivenessOopClosure: public OopClosure {
3044   G1CollectedHeap* _g1h;
3045   VerifyOption _vo;
3046 public:
3047   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3048     _g1h(g1h), _vo(vo)
3049   { }
3050   void do_oop(narrowOop *p) { do_oop_work(p); }
3051   void do_oop(      oop *p) { do_oop_work(p); }
3052 
3053   template <class T> void do_oop_work(T *p) {
3054     oop obj = oopDesc::load_decode_heap_oop(p);
3055     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3056               "Dead object referenced by a not dead object");
3057   }
3058 };
3059 
3060 class VerifyObjsInRegionClosure: public ObjectClosure {
3061 private:
3062   G1CollectedHeap* _g1h;
3063   size_t _live_bytes;
3064   HeapRegion *_hr;
3065   VerifyOption _vo;
3066 public:
3067   // _vo == UsePrevMarking -> use "prev" marking information,
3068   // _vo == UseNextMarking -> use "next" marking information,
3069   // _vo == UseMarkWord    -> use mark word from object header.
3070   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3071     : _live_bytes(0), _hr(hr), _vo(vo) {
3072     _g1h = G1CollectedHeap::heap();
3073   }
3074   void do_object(oop o) {
3075     VerifyLivenessOopClosure isLive(_g1h, _vo);
3076     assert(o != NULL, "Huh?");
3077     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3078       // If the object is alive according to the mark word,
3079       // then verify that the marking information agrees.
3080       // Note we can't verify the contra-positive of the
3081       // above: if the object is dead (according to the mark
3082       // word), it may not be marked, or may have been marked
3083       // but has since became dead, or may have been allocated
3084       // since the last marking.
3085       if (_vo == VerifyOption_G1UseMarkWord) {
3086         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3087       }
3088 
3089       o->oop_iterate_no_header(&isLive);
3090       if (!_hr->obj_allocated_since_prev_marking(o)) {
3091         size_t obj_size = o->size();    // Make sure we don't overflow
3092         _live_bytes += (obj_size * HeapWordSize);
3093       }
3094     }
3095   }
3096   size_t live_bytes() { return _live_bytes; }
3097 };
3098 
3099 class VerifyArchiveOopClosure: public OopClosure {
3100 public:
3101   VerifyArchiveOopClosure(HeapRegion *hr) { }
3102   void do_oop(narrowOop *p) { do_oop_work(p); }
3103   void do_oop(      oop *p) { do_oop_work(p); }
3104 
3105   template <class T> void do_oop_work(T *p) {
3106     oop obj = oopDesc::load_decode_heap_oop(p);
3107     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3108               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3109                       p2i(p), p2i(obj)));
3110   }
3111 };
3112 
3113 class VerifyArchiveRegionClosure: public ObjectClosure {
3114 public:
3115   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3116   // Verify that all object pointers are to archive regions.
3117   void do_object(oop o) {
3118     VerifyArchiveOopClosure checkOop(NULL);
3119     assert(o != NULL, "Should not be here for NULL oops");
3120     o->oop_iterate_no_header(&checkOop);
3121   }
3122 };
3123 
3124 class VerifyRegionClosure: public HeapRegionClosure {
3125 private:
3126   bool             _par;
3127   VerifyOption     _vo;
3128   bool             _failures;
3129 public:
3130   // _vo == UsePrevMarking -> use "prev" marking information,
3131   // _vo == UseNextMarking -> use "next" marking information,
3132   // _vo == UseMarkWord    -> use mark word from object header.
3133   VerifyRegionClosure(bool par, VerifyOption vo)
3134     : _par(par),
3135       _vo(vo),
3136       _failures(false) {}
3137 
3138   bool failures() {
3139     return _failures;
3140   }
3141 
3142   bool doHeapRegion(HeapRegion* r) {
3143     // For archive regions, verify there are no heap pointers to
3144     // non-pinned regions. For all others, verify liveness info.
3145     if (r->is_archive()) {
3146       VerifyArchiveRegionClosure verify_oop_pointers(r);
3147       r->object_iterate(&verify_oop_pointers);
3148       return true;
3149     }
3150     if (!r->is_continues_humongous()) {
3151       bool failures = false;
3152       r->verify(_vo, &failures);
3153       if (failures) {
3154         _failures = true;
3155       } else {
3156         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3157         r->object_iterate(&not_dead_yet_cl);
3158         if (_vo != VerifyOption_G1UseNextMarking) {
3159           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3160             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3161                                    "max_live_bytes "SIZE_FORMAT" "
3162                                    "< calculated "SIZE_FORMAT,
3163                                    p2i(r->bottom()), p2i(r->end()),
3164                                    r->max_live_bytes(),
3165                                  not_dead_yet_cl.live_bytes());
3166             _failures = true;
3167           }
3168         } else {
3169           // When vo == UseNextMarking we cannot currently do a sanity
3170           // check on the live bytes as the calculation has not been
3171           // finalized yet.
3172         }
3173       }
3174     }
3175     return false; // stop the region iteration if we hit a failure
3176   }
3177 };
3178 
3179 // This is the task used for parallel verification of the heap regions
3180 
3181 class G1ParVerifyTask: public AbstractGangTask {
3182 private:
3183   G1CollectedHeap*  _g1h;
3184   VerifyOption      _vo;
3185   bool              _failures;
3186   HeapRegionClaimer _hrclaimer;
3187 
3188 public:
3189   // _vo == UsePrevMarking -> use "prev" marking information,
3190   // _vo == UseNextMarking -> use "next" marking information,
3191   // _vo == UseMarkWord    -> use mark word from object header.
3192   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3193       AbstractGangTask("Parallel verify task"),
3194       _g1h(g1h),
3195       _vo(vo),
3196       _failures(false),
3197       _hrclaimer(g1h->workers()->active_workers()) {}
3198 
3199   bool failures() {
3200     return _failures;
3201   }
3202 
3203   void work(uint worker_id) {
3204     HandleMark hm;
3205     VerifyRegionClosure blk(true, _vo);
3206     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3207     if (blk.failures()) {
3208       _failures = true;
3209     }
3210   }
3211 };
3212 
3213 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3214   if (SafepointSynchronize::is_at_safepoint()) {
3215     assert(Thread::current()->is_VM_thread(),
3216            "Expected to be executed serially by the VM thread at this point");
3217 
3218     if (!silent) { gclog_or_tty->print("Roots "); }
3219     VerifyRootsClosure rootsCl(vo);
3220     VerifyKlassClosure klassCl(this, &rootsCl);
3221     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3222 
3223     // We apply the relevant closures to all the oops in the
3224     // system dictionary, class loader data graph, the string table
3225     // and the nmethods in the code cache.
3226     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3227     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3228 
3229     {
3230       G1RootProcessor root_processor(this, 1);
3231       root_processor.process_all_roots(&rootsCl,
3232                                        &cldCl,
3233                                        &blobsCl);
3234     }
3235 
3236     bool failures = rootsCl.failures() || codeRootsCl.failures();
3237 
3238     if (vo != VerifyOption_G1UseMarkWord) {
3239       // If we're verifying during a full GC then the region sets
3240       // will have been torn down at the start of the GC. Therefore
3241       // verifying the region sets will fail. So we only verify
3242       // the region sets when not in a full GC.
3243       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3244       verify_region_sets();
3245     }
3246 
3247     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3248     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3249 
3250       G1ParVerifyTask task(this, vo);
3251       workers()->run_task(&task);
3252       if (task.failures()) {
3253         failures = true;
3254       }
3255 
3256     } else {
3257       VerifyRegionClosure blk(false, vo);
3258       heap_region_iterate(&blk);
3259       if (blk.failures()) {
3260         failures = true;
3261       }
3262     }
3263 
3264     if (G1StringDedup::is_enabled()) {
3265       if (!silent) gclog_or_tty->print("StrDedup ");
3266       G1StringDedup::verify();
3267     }
3268 
3269     if (failures) {
3270       gclog_or_tty->print_cr("Heap:");
3271       // It helps to have the per-region information in the output to
3272       // help us track down what went wrong. This is why we call
3273       // print_extended_on() instead of print_on().
3274       print_extended_on(gclog_or_tty);
3275       gclog_or_tty->cr();
3276       gclog_or_tty->flush();
3277     }
3278     guarantee(!failures, "there should not have been any failures");
3279   } else {
3280     if (!silent) {
3281       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3282       if (G1StringDedup::is_enabled()) {
3283         gclog_or_tty->print(", StrDedup");
3284       }
3285       gclog_or_tty->print(") ");
3286     }
3287   }
3288 }
3289 
3290 void G1CollectedHeap::verify(bool silent) {
3291   verify(silent, VerifyOption_G1UsePrevMarking);
3292 }
3293 
3294 double G1CollectedHeap::verify(bool guard, const char* msg) {
3295   double verify_time_ms = 0.0;
3296 
3297   if (guard && total_collections() >= VerifyGCStartAt) {
3298     double verify_start = os::elapsedTime();
3299     HandleMark hm;  // Discard invalid handles created during verification
3300     prepare_for_verify();
3301     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3302     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3303   }
3304 
3305   return verify_time_ms;
3306 }
3307 
3308 void G1CollectedHeap::verify_before_gc() {
3309   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3310   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3311 }
3312 
3313 void G1CollectedHeap::verify_after_gc() {
3314   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3315   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3316 }
3317 
3318 class PrintRegionClosure: public HeapRegionClosure {
3319   outputStream* _st;
3320 public:
3321   PrintRegionClosure(outputStream* st) : _st(st) {}
3322   bool doHeapRegion(HeapRegion* r) {
3323     r->print_on(_st);
3324     return false;
3325   }
3326 };
3327 
3328 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3329                                        const HeapRegion* hr,
3330                                        const VerifyOption vo) const {
3331   switch (vo) {
3332   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3333   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3334   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3335   default:                            ShouldNotReachHere();
3336   }
3337   return false; // keep some compilers happy
3338 }
3339 
3340 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3341                                        const VerifyOption vo) const {
3342   switch (vo) {
3343   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3344   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3345   case VerifyOption_G1UseMarkWord: {
3346     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3347     return !obj->is_gc_marked() && !hr->is_archive();
3348   }
3349   default:                            ShouldNotReachHere();
3350   }
3351   return false; // keep some compilers happy
3352 }
3353 
3354 void G1CollectedHeap::print_on(outputStream* st) const {
3355   st->print(" %-20s", "garbage-first heap");
3356   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3357             capacity()/K, used_unlocked()/K);
3358   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3359             p2i(_hrm.reserved().start()),
3360             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3361             p2i(_hrm.reserved().end()));
3362   st->cr();
3363   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3364   uint young_regions = _young_list->length();
3365   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3366             (size_t) young_regions * HeapRegion::GrainBytes / K);
3367   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3368   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3369             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3370   st->cr();
3371   MetaspaceAux::print_on(st);
3372 }
3373 
3374 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3375   print_on(st);
3376 
3377   // Print the per-region information.
3378   st->cr();
3379   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3380                "HS=humongous(starts), HC=humongous(continues), "
3381                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3382                "PTAMS=previous top-at-mark-start, "
3383                "NTAMS=next top-at-mark-start)");
3384   PrintRegionClosure blk(st);
3385   heap_region_iterate(&blk);
3386 }
3387 
3388 void G1CollectedHeap::print_on_error(outputStream* st) const {
3389   this->CollectedHeap::print_on_error(st);
3390 
3391   if (_cm != NULL) {
3392     st->cr();
3393     _cm->print_on_error(st);
3394   }
3395 }
3396 
3397 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3398   workers()->print_worker_threads_on(st);
3399   _cmThread->print_on(st);
3400   st->cr();
3401   _cm->print_worker_threads_on(st);
3402   _cg1r->print_worker_threads_on(st);
3403   if (G1StringDedup::is_enabled()) {
3404     G1StringDedup::print_worker_threads_on(st);
3405   }
3406 }
3407 
3408 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3409   workers()->threads_do(tc);
3410   tc->do_thread(_cmThread);
3411   _cg1r->threads_do(tc);
3412   if (G1StringDedup::is_enabled()) {
3413     G1StringDedup::threads_do(tc);
3414   }
3415 }
3416 
3417 void G1CollectedHeap::print_tracing_info() const {
3418   // We'll overload this to mean "trace GC pause statistics."
3419   if (TraceYoungGenTime || TraceOldGenTime) {
3420     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3421     // to that.
3422     g1_policy()->print_tracing_info();
3423   }
3424   if (G1SummarizeRSetStats) {
3425     g1_rem_set()->print_summary_info();
3426   }
3427   if (G1SummarizeConcMark) {
3428     concurrent_mark()->print_summary_info();
3429   }
3430   g1_policy()->print_yg_surv_rate_info();
3431 }
3432 
3433 #ifndef PRODUCT
3434 // Helpful for debugging RSet issues.
3435 
3436 class PrintRSetsClosure : public HeapRegionClosure {
3437 private:
3438   const char* _msg;
3439   size_t _occupied_sum;
3440 
3441 public:
3442   bool doHeapRegion(HeapRegion* r) {
3443     HeapRegionRemSet* hrrs = r->rem_set();
3444     size_t occupied = hrrs->occupied();
3445     _occupied_sum += occupied;
3446 
3447     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3448                            HR_FORMAT_PARAMS(r));
3449     if (occupied == 0) {
3450       gclog_or_tty->print_cr("  RSet is empty");
3451     } else {
3452       hrrs->print();
3453     }
3454     gclog_or_tty->print_cr("----------");
3455     return false;
3456   }
3457 
3458   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3459     gclog_or_tty->cr();
3460     gclog_or_tty->print_cr("========================================");
3461     gclog_or_tty->print_cr("%s", msg);
3462     gclog_or_tty->cr();
3463   }
3464 
3465   ~PrintRSetsClosure() {
3466     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3467     gclog_or_tty->print_cr("========================================");
3468     gclog_or_tty->cr();
3469   }
3470 };
3471 
3472 void G1CollectedHeap::print_cset_rsets() {
3473   PrintRSetsClosure cl("Printing CSet RSets");
3474   collection_set_iterate(&cl);
3475 }
3476 
3477 void G1CollectedHeap::print_all_rsets() {
3478   PrintRSetsClosure cl("Printing All RSets");;
3479   heap_region_iterate(&cl);
3480 }
3481 #endif // PRODUCT
3482 
3483 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3484   YoungList* young_list = heap()->young_list();
3485 
3486   size_t eden_used_bytes = young_list->eden_used_bytes();
3487   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3488 
3489   size_t eden_capacity_bytes =
3490     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3491 
3492   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3493   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3494 }
3495 
3496 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3497   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3498   gc_tracer->report_gc_heap_summary(when, heap_summary);
3499 
3500   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3501   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3502 }
3503 
3504 
3505 G1CollectedHeap* G1CollectedHeap::heap() {
3506   CollectedHeap* heap = Universe::heap();
3507   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3508   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3509   return (G1CollectedHeap*)heap;
3510 }
3511 
3512 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3513   // always_do_update_barrier = false;
3514   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3515   // Fill TLAB's and such
3516   accumulate_statistics_all_tlabs();
3517   ensure_parsability(true);
3518 
3519   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3520       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3521     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3522   }
3523 }
3524 
3525 void G1CollectedHeap::gc_epilogue(bool full) {
3526 
3527   if (G1SummarizeRSetStats &&
3528       (G1SummarizeRSetStatsPeriod > 0) &&
3529       // we are at the end of the GC. Total collections has already been increased.
3530       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3531     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3532   }
3533 
3534   // FIXME: what is this about?
3535   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3536   // is set.
3537   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3538                         "derived pointer present"));
3539   // always_do_update_barrier = true;
3540 
3541   resize_all_tlabs();
3542   allocation_context_stats().update(full);
3543 
3544   // We have just completed a GC. Update the soft reference
3545   // policy with the new heap occupancy
3546   Universe::update_heap_info_at_gc();
3547 }
3548 
3549 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3550                                                uint gc_count_before,
3551                                                bool* succeeded,
3552                                                GCCause::Cause gc_cause) {
3553   assert_heap_not_locked_and_not_at_safepoint();
3554   g1_policy()->record_stop_world_start();
3555   VM_G1IncCollectionPause op(gc_count_before,
3556                              word_size,
3557                              false, /* should_initiate_conc_mark */
3558                              g1_policy()->max_pause_time_ms(),
3559                              gc_cause);
3560 
3561   op.set_allocation_context(AllocationContext::current());
3562   VMThread::execute(&op);
3563 
3564   HeapWord* result = op.result();
3565   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3566   assert(result == NULL || ret_succeeded,
3567          "the result should be NULL if the VM did not succeed");
3568   *succeeded = ret_succeeded;
3569 
3570   assert_heap_not_locked();
3571   return result;
3572 }
3573 
3574 void
3575 G1CollectedHeap::doConcurrentMark() {
3576   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3577   if (!_cmThread->in_progress()) {
3578     _cmThread->set_started();
3579     CGC_lock->notify();
3580   }
3581 }
3582 
3583 size_t G1CollectedHeap::pending_card_num() {
3584   size_t extra_cards = 0;
3585   JavaThread *curr = Threads::first();
3586   while (curr != NULL) {
3587     DirtyCardQueue& dcq = curr->dirty_card_queue();
3588     extra_cards += dcq.size();
3589     curr = curr->next();
3590   }
3591   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3592   size_t buffer_size = dcqs.buffer_size();
3593   size_t buffer_num = dcqs.completed_buffers_num();
3594 
3595   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3596   // in bytes - not the number of 'entries'. We need to convert
3597   // into a number of cards.
3598   return (buffer_size * buffer_num + extra_cards) / oopSize;
3599 }
3600 
3601 size_t G1CollectedHeap::cards_scanned() {
3602   return g1_rem_set()->cardsScanned();
3603 }
3604 
3605 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3606  private:
3607   size_t _total_humongous;
3608   size_t _candidate_humongous;
3609 
3610   DirtyCardQueue _dcq;
3611 
3612   // We don't nominate objects with many remembered set entries, on
3613   // the assumption that such objects are likely still live.
3614   bool is_remset_small(HeapRegion* region) const {
3615     HeapRegionRemSet* const rset = region->rem_set();
3616     return G1EagerReclaimHumongousObjectsWithStaleRefs
3617       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3618       : rset->is_empty();
3619   }
3620 
3621   bool is_typeArray_region(HeapRegion* region) const {
3622     return oop(region->bottom())->is_typeArray();
3623   }
3624 
3625   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3626     assert(region->is_starts_humongous(), "Must start a humongous object");
3627 
3628     // Candidate selection must satisfy the following constraints
3629     // while concurrent marking is in progress:
3630     //
3631     // * In order to maintain SATB invariants, an object must not be
3632     // reclaimed if it was allocated before the start of marking and
3633     // has not had its references scanned.  Such an object must have
3634     // its references (including type metadata) scanned to ensure no
3635     // live objects are missed by the marking process.  Objects
3636     // allocated after the start of concurrent marking don't need to
3637     // be scanned.
3638     //
3639     // * An object must not be reclaimed if it is on the concurrent
3640     // mark stack.  Objects allocated after the start of concurrent
3641     // marking are never pushed on the mark stack.
3642     //
3643     // Nominating only objects allocated after the start of concurrent
3644     // marking is sufficient to meet both constraints.  This may miss
3645     // some objects that satisfy the constraints, but the marking data
3646     // structures don't support efficiently performing the needed
3647     // additional tests or scrubbing of the mark stack.
3648     //
3649     // However, we presently only nominate is_typeArray() objects.
3650     // A humongous object containing references induces remembered
3651     // set entries on other regions.  In order to reclaim such an
3652     // object, those remembered sets would need to be cleaned up.
3653     //
3654     // We also treat is_typeArray() objects specially, allowing them
3655     // to be reclaimed even if allocated before the start of
3656     // concurrent mark.  For this we rely on mark stack insertion to
3657     // exclude is_typeArray() objects, preventing reclaiming an object
3658     // that is in the mark stack.  We also rely on the metadata for
3659     // such objects to be built-in and so ensured to be kept live.
3660     // Frequent allocation and drop of large binary blobs is an
3661     // important use case for eager reclaim, and this special handling
3662     // may reduce needed headroom.
3663 
3664     return is_typeArray_region(region) && is_remset_small(region);
3665   }
3666 
3667  public:
3668   RegisterHumongousWithInCSetFastTestClosure()
3669   : _total_humongous(0),
3670     _candidate_humongous(0),
3671     _dcq(&JavaThread::dirty_card_queue_set()) {
3672   }
3673 
3674   virtual bool doHeapRegion(HeapRegion* r) {
3675     if (!r->is_starts_humongous()) {
3676       return false;
3677     }
3678     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3679 
3680     bool is_candidate = humongous_region_is_candidate(g1h, r);
3681     uint rindex = r->hrm_index();
3682     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3683     if (is_candidate) {
3684       _candidate_humongous++;
3685       g1h->register_humongous_region_with_cset(rindex);
3686       // Is_candidate already filters out humongous object with large remembered sets.
3687       // If we have a humongous object with a few remembered sets, we simply flush these
3688       // remembered set entries into the DCQS. That will result in automatic
3689       // re-evaluation of their remembered set entries during the following evacuation
3690       // phase.
3691       if (!r->rem_set()->is_empty()) {
3692         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3693                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3694         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3695         HeapRegionRemSetIterator hrrs(r->rem_set());
3696         size_t card_index;
3697         while (hrrs.has_next(card_index)) {
3698           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3699           // The remembered set might contain references to already freed
3700           // regions. Filter out such entries to avoid failing card table
3701           // verification.
3702           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3703             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3704               *card_ptr = CardTableModRefBS::dirty_card_val();
3705               _dcq.enqueue(card_ptr);
3706             }
3707           }
3708         }
3709         r->rem_set()->clear_locked();
3710       }
3711       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3712     }
3713     _total_humongous++;
3714 
3715     return false;
3716   }
3717 
3718   size_t total_humongous() const { return _total_humongous; }
3719   size_t candidate_humongous() const { return _candidate_humongous; }
3720 
3721   void flush_rem_set_entries() { _dcq.flush(); }
3722 };
3723 
3724 void G1CollectedHeap::register_humongous_regions_with_cset() {
3725   if (!G1EagerReclaimHumongousObjects) {
3726     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3727     return;
3728   }
3729   double time = os::elapsed_counter();
3730 
3731   // Collect reclaim candidate information and register candidates with cset.
3732   RegisterHumongousWithInCSetFastTestClosure cl;
3733   heap_region_iterate(&cl);
3734 
3735   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3736   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3737                                                                   cl.total_humongous(),
3738                                                                   cl.candidate_humongous());
3739   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3740 
3741   // Finally flush all remembered set entries to re-check into the global DCQS.
3742   cl.flush_rem_set_entries();
3743 }
3744 
3745 void
3746 G1CollectedHeap::setup_surviving_young_words() {
3747   assert(_surviving_young_words == NULL, "pre-condition");
3748   uint array_length = g1_policy()->young_cset_region_length();
3749   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3750   if (_surviving_young_words == NULL) {
3751     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3752                           "Not enough space for young surv words summary.");
3753   }
3754   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3755 #ifdef ASSERT
3756   for (uint i = 0;  i < array_length; ++i) {
3757     assert( _surviving_young_words[i] == 0, "memset above" );
3758   }
3759 #endif // !ASSERT
3760 }
3761 
3762 void
3763 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3764   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3765   uint array_length = g1_policy()->young_cset_region_length();
3766   for (uint i = 0; i < array_length; ++i) {
3767     _surviving_young_words[i] += surv_young_words[i];
3768   }
3769 }
3770 
3771 void
3772 G1CollectedHeap::cleanup_surviving_young_words() {
3773   guarantee( _surviving_young_words != NULL, "pre-condition" );
3774   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3775   _surviving_young_words = NULL;
3776 }
3777 
3778 #ifdef ASSERT
3779 class VerifyCSetClosure: public HeapRegionClosure {
3780 public:
3781   bool doHeapRegion(HeapRegion* hr) {
3782     // Here we check that the CSet region's RSet is ready for parallel
3783     // iteration. The fields that we'll verify are only manipulated
3784     // when the region is part of a CSet and is collected. Afterwards,
3785     // we reset these fields when we clear the region's RSet (when the
3786     // region is freed) so they are ready when the region is
3787     // re-allocated. The only exception to this is if there's an
3788     // evacuation failure and instead of freeing the region we leave
3789     // it in the heap. In that case, we reset these fields during
3790     // evacuation failure handling.
3791     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3792 
3793     // Here's a good place to add any other checks we'd like to
3794     // perform on CSet regions.
3795     return false;
3796   }
3797 };
3798 #endif // ASSERT
3799 
3800 uint G1CollectedHeap::num_task_queues() const {
3801   return _task_queues->size();
3802 }
3803 
3804 #if TASKQUEUE_STATS
3805 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3806   st->print_raw_cr("GC Task Stats");
3807   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3808   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3809 }
3810 
3811 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3812   print_taskqueue_stats_hdr(st);
3813 
3814   TaskQueueStats totals;
3815   const uint n = num_task_queues();
3816   for (uint i = 0; i < n; ++i) {
3817     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3818     totals += task_queue(i)->stats;
3819   }
3820   st->print_raw("tot "); totals.print(st); st->cr();
3821 
3822   DEBUG_ONLY(totals.verify());
3823 }
3824 
3825 void G1CollectedHeap::reset_taskqueue_stats() {
3826   const uint n = num_task_queues();
3827   for (uint i = 0; i < n; ++i) {
3828     task_queue(i)->stats.reset();
3829   }
3830 }
3831 #endif // TASKQUEUE_STATS
3832 
3833 void G1CollectedHeap::log_gc_header() {
3834   if (!G1Log::fine()) {
3835     return;
3836   }
3837 
3838   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3839 
3840   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3841     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3842     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3843 
3844   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3845 }
3846 
3847 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3848   if (!G1Log::fine()) {
3849     return;
3850   }
3851 
3852   if (G1Log::finer()) {
3853     if (evacuation_failed()) {
3854       gclog_or_tty->print(" (to-space exhausted)");
3855     }
3856     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3857     g1_policy()->phase_times()->note_gc_end();
3858     g1_policy()->phase_times()->print(pause_time_sec);
3859     g1_policy()->print_detailed_heap_transition();
3860   } else {
3861     if (evacuation_failed()) {
3862       gclog_or_tty->print("--");
3863     }
3864     g1_policy()->print_heap_transition();
3865     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3866   }
3867   gclog_or_tty->flush();
3868 }
3869 
3870 bool
3871 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3872   assert_at_safepoint(true /* should_be_vm_thread */);
3873   guarantee(!is_gc_active(), "collection is not reentrant");
3874 
3875   if (GC_locker::check_active_before_gc()) {
3876     return false;
3877   }
3878 
3879   _gc_timer_stw->register_gc_start();
3880 
3881   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3882 
3883   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3884   ResourceMark rm;
3885 
3886   G1Log::update_level();
3887   print_heap_before_gc();
3888   trace_heap_before_gc(_gc_tracer_stw);
3889 
3890   verify_region_sets_optional();
3891   verify_dirty_young_regions();
3892 
3893   // This call will decide whether this pause is an initial-mark
3894   // pause. If it is, during_initial_mark_pause() will return true
3895   // for the duration of this pause.
3896   g1_policy()->decide_on_conc_mark_initiation();
3897 
3898   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3899   assert(!collector_state()->during_initial_mark_pause() ||
3900           collector_state()->gcs_are_young(), "sanity");
3901 
3902   // We also do not allow mixed GCs during marking.
3903   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3904 
3905   // Record whether this pause is an initial mark. When the current
3906   // thread has completed its logging output and it's safe to signal
3907   // the CM thread, the flag's value in the policy has been reset.
3908   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3909 
3910   // Inner scope for scope based logging, timers, and stats collection
3911   {
3912     EvacuationInfo evacuation_info;
3913 
3914     if (collector_state()->during_initial_mark_pause()) {
3915       // We are about to start a marking cycle, so we increment the
3916       // full collection counter.
3917       increment_old_marking_cycles_started();
3918       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3919     }
3920 
3921     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3922 
3923     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3924 
3925     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3926                                                                   workers()->active_workers(),
3927                                                                   Threads::number_of_non_daemon_threads());
3928     workers()->set_active_workers(active_workers);
3929 
3930     double pause_start_sec = os::elapsedTime();
3931     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
3932     log_gc_header();
3933 
3934     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3935     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3936 
3937     // If the secondary_free_list is not empty, append it to the
3938     // free_list. No need to wait for the cleanup operation to finish;
3939     // the region allocation code will check the secondary_free_list
3940     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3941     // set, skip this step so that the region allocation code has to
3942     // get entries from the secondary_free_list.
3943     if (!G1StressConcRegionFreeing) {
3944       append_secondary_free_list_if_not_empty_with_lock();
3945     }
3946 
3947     assert(check_young_list_well_formed(), "young list should be well formed");
3948 
3949     // Don't dynamically change the number of GC threads this early.  A value of
3950     // 0 is used to indicate serial work.  When parallel work is done,
3951     // it will be set.
3952 
3953     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3954       IsGCActiveMark x;
3955 
3956       gc_prologue(false);
3957       increment_total_collections(false /* full gc */);
3958       increment_gc_time_stamp();
3959 
3960       verify_before_gc();
3961 
3962       check_bitmaps("GC Start");
3963 
3964       COMPILER2_PRESENT(DerivedPointerTable::clear());
3965 
3966       // Please see comment in g1CollectedHeap.hpp and
3967       // G1CollectedHeap::ref_processing_init() to see how
3968       // reference processing currently works in G1.
3969 
3970       // Enable discovery in the STW reference processor
3971       ref_processor_stw()->enable_discovery();
3972 
3973       {
3974         // We want to temporarily turn off discovery by the
3975         // CM ref processor, if necessary, and turn it back on
3976         // on again later if we do. Using a scoped
3977         // NoRefDiscovery object will do this.
3978         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3979 
3980         // Forget the current alloc region (we might even choose it to be part
3981         // of the collection set!).
3982         _allocator->release_mutator_alloc_region();
3983 
3984         // We should call this after we retire the mutator alloc
3985         // region(s) so that all the ALLOC / RETIRE events are generated
3986         // before the start GC event.
3987         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3988 
3989         // This timing is only used by the ergonomics to handle our pause target.
3990         // It is unclear why this should not include the full pause. We will
3991         // investigate this in CR 7178365.
3992         //
3993         // Preserving the old comment here if that helps the investigation:
3994         //
3995         // The elapsed time induced by the start time below deliberately elides
3996         // the possible verification above.
3997         double sample_start_time_sec = os::elapsedTime();
3998 
3999 #if YOUNG_LIST_VERBOSE
4000         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4001         _young_list->print();
4002         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4003 #endif // YOUNG_LIST_VERBOSE
4004 
4005         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4006 
4007         double scan_wait_start = os::elapsedTime();
4008         // We have to wait until the CM threads finish scanning the
4009         // root regions as it's the only way to ensure that all the
4010         // objects on them have been correctly scanned before we start
4011         // moving them during the GC.
4012         bool waited = _cm->root_regions()->wait_until_scan_finished();
4013         double wait_time_ms = 0.0;
4014         if (waited) {
4015           double scan_wait_end = os::elapsedTime();
4016           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4017         }
4018         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4019 
4020 #if YOUNG_LIST_VERBOSE
4021         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4022         _young_list->print();
4023 #endif // YOUNG_LIST_VERBOSE
4024 
4025         if (collector_state()->during_initial_mark_pause()) {
4026           concurrent_mark()->checkpointRootsInitialPre();
4027         }
4028 
4029 #if YOUNG_LIST_VERBOSE
4030         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4031         _young_list->print();
4032         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4033 #endif // YOUNG_LIST_VERBOSE
4034 
4035         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4036 
4037         register_humongous_regions_with_cset();
4038 
4039         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4040 
4041         _cm->note_start_of_gc();
4042         // We call this after finalize_cset() to
4043         // ensure that the CSet has been finalized.
4044         _cm->verify_no_cset_oops();
4045 
4046         if (_hr_printer.is_active()) {
4047           HeapRegion* hr = g1_policy()->collection_set();
4048           while (hr != NULL) {
4049             _hr_printer.cset(hr);
4050             hr = hr->next_in_collection_set();
4051           }
4052         }
4053 
4054 #ifdef ASSERT
4055         VerifyCSetClosure cl;
4056         collection_set_iterate(&cl);
4057 #endif // ASSERT
4058 
4059         setup_surviving_young_words();
4060 
4061         // Initialize the GC alloc regions.
4062         _allocator->init_gc_alloc_regions(evacuation_info);
4063 
4064         // Actually do the work...
4065         evacuate_collection_set(evacuation_info);
4066 
4067         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4068 
4069         eagerly_reclaim_humongous_regions();
4070 
4071         g1_policy()->clear_collection_set();
4072 
4073         cleanup_surviving_young_words();
4074 
4075         // Start a new incremental collection set for the next pause.
4076         g1_policy()->start_incremental_cset_building();
4077 
4078         clear_cset_fast_test();
4079 
4080         _young_list->reset_sampled_info();
4081 
4082         // Don't check the whole heap at this point as the
4083         // GC alloc regions from this pause have been tagged
4084         // as survivors and moved on to the survivor list.
4085         // Survivor regions will fail the !is_young() check.
4086         assert(check_young_list_empty(false /* check_heap */),
4087           "young list should be empty");
4088 
4089 #if YOUNG_LIST_VERBOSE
4090         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4091         _young_list->print();
4092 #endif // YOUNG_LIST_VERBOSE
4093 
4094         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4095                                              _young_list->first_survivor_region(),
4096                                              _young_list->last_survivor_region());
4097 
4098         _young_list->reset_auxilary_lists();
4099 
4100         if (evacuation_failed()) {
4101           _allocator->set_used(recalculate_used());
4102           if (_archive_allocator != NULL) {
4103             _archive_allocator->clear_used();
4104           }
4105           for (uint i = 0; i < ParallelGCThreads; i++) {
4106             if (_evacuation_failed_info_array[i].has_failed()) {
4107               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4108             }
4109           }
4110         } else {
4111           // The "used" of the the collection set have already been subtracted
4112           // when they were freed.  Add in the bytes evacuated.
4113           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4114         }
4115 
4116         if (collector_state()->during_initial_mark_pause()) {
4117           // We have to do this before we notify the CM threads that
4118           // they can start working to make sure that all the
4119           // appropriate initialization is done on the CM object.
4120           concurrent_mark()->checkpointRootsInitialPost();
4121           collector_state()->set_mark_in_progress(true);
4122           // Note that we don't actually trigger the CM thread at
4123           // this point. We do that later when we're sure that
4124           // the current thread has completed its logging output.
4125         }
4126 
4127         allocate_dummy_regions();
4128 
4129 #if YOUNG_LIST_VERBOSE
4130         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4131         _young_list->print();
4132         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4133 #endif // YOUNG_LIST_VERBOSE
4134 
4135         _allocator->init_mutator_alloc_region();
4136 
4137         {
4138           size_t expand_bytes = g1_policy()->expansion_amount();
4139           if (expand_bytes > 0) {
4140             size_t bytes_before = capacity();
4141             // No need for an ergo verbose message here,
4142             // expansion_amount() does this when it returns a value > 0.
4143             if (!expand(expand_bytes)) {
4144               // We failed to expand the heap. Cannot do anything about it.
4145             }
4146           }
4147         }
4148 
4149         // We redo the verification but now wrt to the new CSet which
4150         // has just got initialized after the previous CSet was freed.
4151         _cm->verify_no_cset_oops();
4152         _cm->note_end_of_gc();
4153 
4154         // This timing is only used by the ergonomics to handle our pause target.
4155         // It is unclear why this should not include the full pause. We will
4156         // investigate this in CR 7178365.
4157         double sample_end_time_sec = os::elapsedTime();
4158         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4159         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4160 
4161         MemoryService::track_memory_usage();
4162 
4163         // In prepare_for_verify() below we'll need to scan the deferred
4164         // update buffers to bring the RSets up-to-date if
4165         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4166         // the update buffers we'll probably need to scan cards on the
4167         // regions we just allocated to (i.e., the GC alloc
4168         // regions). However, during the last GC we called
4169         // set_saved_mark() on all the GC alloc regions, so card
4170         // scanning might skip the [saved_mark_word()...top()] area of
4171         // those regions (i.e., the area we allocated objects into
4172         // during the last GC). But it shouldn't. Given that
4173         // saved_mark_word() is conditional on whether the GC time stamp
4174         // on the region is current or not, by incrementing the GC time
4175         // stamp here we invalidate all the GC time stamps on all the
4176         // regions and saved_mark_word() will simply return top() for
4177         // all the regions. This is a nicer way of ensuring this rather
4178         // than iterating over the regions and fixing them. In fact, the
4179         // GC time stamp increment here also ensures that
4180         // saved_mark_word() will return top() between pauses, i.e.,
4181         // during concurrent refinement. So we don't need the
4182         // is_gc_active() check to decided which top to use when
4183         // scanning cards (see CR 7039627).
4184         increment_gc_time_stamp();
4185 
4186         verify_after_gc();
4187         check_bitmaps("GC End");
4188 
4189         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4190         ref_processor_stw()->verify_no_references_recorded();
4191 
4192         // CM reference discovery will be re-enabled if necessary.
4193       }
4194 
4195       // We should do this after we potentially expand the heap so
4196       // that all the COMMIT events are generated before the end GC
4197       // event, and after we retire the GC alloc regions so that all
4198       // RETIRE events are generated before the end GC event.
4199       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4200 
4201 #ifdef TRACESPINNING
4202       ParallelTaskTerminator::print_termination_counts();
4203 #endif
4204 
4205       gc_epilogue(false);
4206     }
4207 
4208     // Print the remainder of the GC log output.
4209     log_gc_footer(os::elapsedTime() - pause_start_sec);
4210 
4211     // It is not yet to safe to tell the concurrent mark to
4212     // start as we have some optional output below. We don't want the
4213     // output from the concurrent mark thread interfering with this
4214     // logging output either.
4215 
4216     _hrm.verify_optional();
4217     verify_region_sets_optional();
4218 
4219     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4220     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4221 
4222     print_heap_after_gc();
4223     trace_heap_after_gc(_gc_tracer_stw);
4224 
4225     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4226     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4227     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4228     // before any GC notifications are raised.
4229     g1mm()->update_sizes();
4230 
4231     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4232     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4233     _gc_timer_stw->register_gc_end();
4234     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4235   }
4236   // It should now be safe to tell the concurrent mark thread to start
4237   // without its logging output interfering with the logging output
4238   // that came from the pause.
4239 
4240   if (should_start_conc_mark) {
4241     // CAUTION: after the doConcurrentMark() call below,
4242     // the concurrent marking thread(s) could be running
4243     // concurrently with us. Make sure that anything after
4244     // this point does not assume that we are the only GC thread
4245     // running. Note: of course, the actual marking work will
4246     // not start until the safepoint itself is released in
4247     // SuspendibleThreadSet::desynchronize().
4248     doConcurrentMark();
4249   }
4250 
4251   return true;
4252 }
4253 
4254 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4255   _drain_in_progress = false;
4256   set_evac_failure_closure(cl);
4257   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4258 }
4259 
4260 void G1CollectedHeap::finalize_for_evac_failure() {
4261   assert(_evac_failure_scan_stack != NULL &&
4262          _evac_failure_scan_stack->length() == 0,
4263          "Postcondition");
4264   assert(!_drain_in_progress, "Postcondition");
4265   delete _evac_failure_scan_stack;
4266   _evac_failure_scan_stack = NULL;
4267 }
4268 
4269 void G1CollectedHeap::remove_self_forwarding_pointers() {
4270   double remove_self_forwards_start = os::elapsedTime();
4271 
4272   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4273   workers()->run_task(&rsfp_task);
4274 
4275   // Now restore saved marks, if any.
4276   assert(_objs_with_preserved_marks.size() ==
4277             _preserved_marks_of_objs.size(), "Both or none.");
4278   while (!_objs_with_preserved_marks.is_empty()) {
4279     oop obj = _objs_with_preserved_marks.pop();
4280     markOop m = _preserved_marks_of_objs.pop();
4281     obj->set_mark(m);
4282   }
4283   _objs_with_preserved_marks.clear(true);
4284   _preserved_marks_of_objs.clear(true);
4285 
4286   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4287 }
4288 
4289 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4290   _evac_failure_scan_stack->push(obj);
4291 }
4292 
4293 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4294   assert(_evac_failure_scan_stack != NULL, "precondition");
4295 
4296   while (_evac_failure_scan_stack->length() > 0) {
4297      oop obj = _evac_failure_scan_stack->pop();
4298      _evac_failure_closure->set_region(heap_region_containing(obj));
4299      obj->oop_iterate_backwards(_evac_failure_closure);
4300   }
4301 }
4302 
4303 oop
4304 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4305                                                oop old) {
4306   assert(obj_in_cs(old),
4307          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4308                  p2i(old)));
4309   markOop m = old->mark();
4310   oop forward_ptr = old->forward_to_atomic(old);
4311   if (forward_ptr == NULL) {
4312     // Forward-to-self succeeded.
4313     assert(_par_scan_state != NULL, "par scan state");
4314     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4315     uint queue_num = _par_scan_state->queue_num();
4316 
4317     _evacuation_failed = true;
4318     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4319     if (_evac_failure_closure != cl) {
4320       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4321       assert(!_drain_in_progress,
4322              "Should only be true while someone holds the lock.");
4323       // Set the global evac-failure closure to the current thread's.
4324       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4325       set_evac_failure_closure(cl);
4326       // Now do the common part.
4327       handle_evacuation_failure_common(old, m);
4328       // Reset to NULL.
4329       set_evac_failure_closure(NULL);
4330     } else {
4331       // The lock is already held, and this is recursive.
4332       assert(_drain_in_progress, "This should only be the recursive case.");
4333       handle_evacuation_failure_common(old, m);
4334     }
4335     return old;
4336   } else {
4337     // Forward-to-self failed. Either someone else managed to allocate
4338     // space for this object (old != forward_ptr) or they beat us in
4339     // self-forwarding it (old == forward_ptr).
4340     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4341            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4342                    "should not be in the CSet",
4343                    p2i(old), p2i(forward_ptr)));
4344     return forward_ptr;
4345   }
4346 }
4347 
4348 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4349   preserve_mark_if_necessary(old, m);
4350 
4351   HeapRegion* r = heap_region_containing(old);
4352   if (!r->evacuation_failed()) {
4353     r->set_evacuation_failed(true);
4354     _hr_printer.evac_failure(r);
4355   }
4356 
4357   push_on_evac_failure_scan_stack(old);
4358 
4359   if (!_drain_in_progress) {
4360     // prevent recursion in copy_to_survivor_space()
4361     _drain_in_progress = true;
4362     drain_evac_failure_scan_stack();
4363     _drain_in_progress = false;
4364   }
4365 }
4366 
4367 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4368   assert(evacuation_failed(), "Oversaving!");
4369   // We want to call the "for_promotion_failure" version only in the
4370   // case of a promotion failure.
4371   if (m->must_be_preserved_for_promotion_failure(obj)) {
4372     _objs_with_preserved_marks.push(obj);
4373     _preserved_marks_of_objs.push(m);
4374   }
4375 }
4376 
4377 void G1ParCopyHelper::mark_object(oop obj) {
4378   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4379 
4380   // We know that the object is not moving so it's safe to read its size.
4381   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4382 }
4383 
4384 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4385   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4386   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4387   assert(from_obj != to_obj, "should not be self-forwarded");
4388 
4389   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4390   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4391 
4392   // The object might be in the process of being copied by another
4393   // worker so we cannot trust that its to-space image is
4394   // well-formed. So we have to read its size from its from-space
4395   // image which we know should not be changing.
4396   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4397 }
4398 
4399 template <class T>
4400 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4401   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4402     _scanned_klass->record_modified_oops();
4403   }
4404 }
4405 
4406 template <G1Barrier barrier, G1Mark do_mark_object>
4407 template <class T>
4408 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4409   T heap_oop = oopDesc::load_heap_oop(p);
4410 
4411   if (oopDesc::is_null(heap_oop)) {
4412     return;
4413   }
4414 
4415   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4416 
4417   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4418 
4419   const InCSetState state = _g1->in_cset_state(obj);
4420   if (state.is_in_cset()) {
4421     oop forwardee;
4422     markOop m = obj->mark();
4423     if (m->is_marked()) {
4424       forwardee = (oop) m->decode_pointer();
4425     } else {
4426       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4427     }
4428     assert(forwardee != NULL, "forwardee should not be NULL");
4429     oopDesc::encode_store_heap_oop(p, forwardee);
4430     if (do_mark_object != G1MarkNone && forwardee != obj) {
4431       // If the object is self-forwarded we don't need to explicitly
4432       // mark it, the evacuation failure protocol will do so.
4433       mark_forwarded_object(obj, forwardee);
4434     }
4435 
4436     if (barrier == G1BarrierKlass) {
4437       do_klass_barrier(p, forwardee);
4438     }
4439   } else {
4440     if (state.is_humongous()) {
4441       _g1->set_humongous_is_live(obj);
4442     }
4443     // The object is not in collection set. If we're a root scanning
4444     // closure during an initial mark pause then attempt to mark the object.
4445     if (do_mark_object == G1MarkFromRoot) {
4446       mark_object(obj);
4447     }
4448   }
4449 
4450   if (barrier == G1BarrierEvac) {
4451     _par_scan_state->update_rs(_from, p, _worker_id);
4452   }
4453 }
4454 
4455 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4456 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4457 
4458 class G1ParEvacuateFollowersClosure : public VoidClosure {
4459 protected:
4460   G1CollectedHeap*              _g1h;
4461   G1ParScanThreadState*         _par_scan_state;
4462   RefToScanQueueSet*            _queues;
4463   ParallelTaskTerminator*       _terminator;
4464 
4465   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4466   RefToScanQueueSet*      queues()         { return _queues; }
4467   ParallelTaskTerminator* terminator()     { return _terminator; }
4468 
4469 public:
4470   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4471                                 G1ParScanThreadState* par_scan_state,
4472                                 RefToScanQueueSet* queues,
4473                                 ParallelTaskTerminator* terminator)
4474     : _g1h(g1h), _par_scan_state(par_scan_state),
4475       _queues(queues), _terminator(terminator) {}
4476 
4477   void do_void();
4478 
4479 private:
4480   inline bool offer_termination();
4481 };
4482 
4483 bool G1ParEvacuateFollowersClosure::offer_termination() {
4484   G1ParScanThreadState* const pss = par_scan_state();
4485   pss->start_term_time();
4486   const bool res = terminator()->offer_termination();
4487   pss->end_term_time();
4488   return res;
4489 }
4490 
4491 void G1ParEvacuateFollowersClosure::do_void() {
4492   G1ParScanThreadState* const pss = par_scan_state();
4493   pss->trim_queue();
4494   do {
4495     pss->steal_and_trim_queue(queues());
4496   } while (!offer_termination());
4497 }
4498 
4499 class G1KlassScanClosure : public KlassClosure {
4500  G1ParCopyHelper* _closure;
4501  bool             _process_only_dirty;
4502  int              _count;
4503  public:
4504   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4505       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4506   void do_klass(Klass* klass) {
4507     // If the klass has not been dirtied we know that there's
4508     // no references into  the young gen and we can skip it.
4509    if (!_process_only_dirty || klass->has_modified_oops()) {
4510       // Clean the klass since we're going to scavenge all the metadata.
4511       klass->clear_modified_oops();
4512 
4513       // Tell the closure that this klass is the Klass to scavenge
4514       // and is the one to dirty if oops are left pointing into the young gen.
4515       _closure->set_scanned_klass(klass);
4516 
4517       klass->oops_do(_closure);
4518 
4519       _closure->set_scanned_klass(NULL);
4520     }
4521     _count++;
4522   }
4523 };
4524 
4525 class G1ParTask : public AbstractGangTask {
4526 protected:
4527   G1CollectedHeap*       _g1h;
4528   RefToScanQueueSet      *_queues;
4529   G1RootProcessor*       _root_processor;
4530   ParallelTaskTerminator _terminator;
4531   uint _n_workers;
4532 
4533   Mutex _stats_lock;
4534   Mutex* stats_lock() { return &_stats_lock; }
4535 
4536 public:
4537   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4538     : AbstractGangTask("G1 collection"),
4539       _g1h(g1h),
4540       _queues(task_queues),
4541       _root_processor(root_processor),
4542       _terminator(n_workers, _queues),
4543       _n_workers(n_workers),
4544       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4545   {}
4546 
4547   RefToScanQueueSet* queues() { return _queues; }
4548 
4549   RefToScanQueue *work_queue(int i) {
4550     return queues()->queue(i);
4551   }
4552 
4553   ParallelTaskTerminator* terminator() { return &_terminator; }
4554 
4555   // Helps out with CLD processing.
4556   //
4557   // During InitialMark we need to:
4558   // 1) Scavenge all CLDs for the young GC.
4559   // 2) Mark all objects directly reachable from strong CLDs.
4560   template <G1Mark do_mark_object>
4561   class G1CLDClosure : public CLDClosure {
4562     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4563     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4564     G1KlassScanClosure                                _klass_in_cld_closure;
4565     bool                                              _claim;
4566 
4567    public:
4568     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4569                  bool only_young, bool claim)
4570         : _oop_closure(oop_closure),
4571           _oop_in_klass_closure(oop_closure->g1(),
4572                                 oop_closure->pss(),
4573                                 oop_closure->rp()),
4574           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4575           _claim(claim) {
4576 
4577     }
4578 
4579     void do_cld(ClassLoaderData* cld) {
4580       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4581     }
4582   };
4583 
4584   void work(uint worker_id) {
4585     if (worker_id >= _n_workers) return;  // no work needed this round
4586 
4587     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4588 
4589     {
4590       ResourceMark rm;
4591       HandleMark   hm;
4592 
4593       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4594 
4595       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4596       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4597 
4598       pss.set_evac_failure_closure(&evac_failure_cl);
4599 
4600       bool only_young = _g1h->collector_state()->gcs_are_young();
4601 
4602       // Non-IM young GC.
4603       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4604       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4605                                                                                only_young, // Only process dirty klasses.
4606                                                                                false);     // No need to claim CLDs.
4607       // IM young GC.
4608       //    Strong roots closures.
4609       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4610       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4611                                                                                false, // Process all klasses.
4612                                                                                true); // Need to claim CLDs.
4613       //    Weak roots closures.
4614       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4615       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4616                                                                                     false, // Process all klasses.
4617                                                                                     true); // Need to claim CLDs.
4618 
4619       OopClosure* strong_root_cl;
4620       OopClosure* weak_root_cl;
4621       CLDClosure* strong_cld_cl;
4622       CLDClosure* weak_cld_cl;
4623 
4624       bool trace_metadata = false;
4625 
4626       if (_g1h->collector_state()->during_initial_mark_pause()) {
4627         // We also need to mark copied objects.
4628         strong_root_cl = &scan_mark_root_cl;
4629         strong_cld_cl  = &scan_mark_cld_cl;
4630         if (ClassUnloadingWithConcurrentMark) {
4631           weak_root_cl = &scan_mark_weak_root_cl;
4632           weak_cld_cl  = &scan_mark_weak_cld_cl;
4633           trace_metadata = true;
4634         } else {
4635           weak_root_cl = &scan_mark_root_cl;
4636           weak_cld_cl  = &scan_mark_cld_cl;
4637         }
4638       } else {
4639         strong_root_cl = &scan_only_root_cl;
4640         weak_root_cl   = &scan_only_root_cl;
4641         strong_cld_cl  = &scan_only_cld_cl;
4642         weak_cld_cl    = &scan_only_cld_cl;
4643       }
4644 
4645       pss.start_strong_roots();
4646 
4647       _root_processor->evacuate_roots(strong_root_cl,
4648                                       weak_root_cl,
4649                                       strong_cld_cl,
4650                                       weak_cld_cl,
4651                                       trace_metadata,
4652                                       worker_id);
4653 
4654       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4655       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4656                                             weak_root_cl,
4657                                             worker_id);
4658       pss.end_strong_roots();
4659 
4660       {
4661         double start = os::elapsedTime();
4662         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4663         evac.do_void();
4664         double elapsed_sec = os::elapsedTime() - start;
4665         double term_sec = pss.term_time();
4666         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4667         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4668         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4669       }
4670       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4671       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4672 
4673       if (PrintTerminationStats) {
4674         MutexLocker x(stats_lock());
4675         pss.print_termination_stats(worker_id);
4676       }
4677 
4678       assert(pss.queue_is_empty(), "should be empty");
4679 
4680       // Close the inner scope so that the ResourceMark and HandleMark
4681       // destructors are executed here and are included as part of the
4682       // "GC Worker Time".
4683     }
4684     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4685   }
4686 };
4687 
4688 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4689 private:
4690   BoolObjectClosure* _is_alive;
4691   int _initial_string_table_size;
4692   int _initial_symbol_table_size;
4693 
4694   bool  _process_strings;
4695   int _strings_processed;
4696   int _strings_removed;
4697 
4698   bool  _process_symbols;
4699   int _symbols_processed;
4700   int _symbols_removed;
4701 
4702 public:
4703   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4704     AbstractGangTask("String/Symbol Unlinking"),
4705     _is_alive(is_alive),
4706     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4707     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4708 
4709     _initial_string_table_size = StringTable::the_table()->table_size();
4710     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4711     if (process_strings) {
4712       StringTable::clear_parallel_claimed_index();
4713     }
4714     if (process_symbols) {
4715       SymbolTable::clear_parallel_claimed_index();
4716     }
4717   }
4718 
4719   ~G1StringSymbolTableUnlinkTask() {
4720     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4721               err_msg("claim value %d after unlink less than initial string table size %d",
4722                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4723     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4724               err_msg("claim value %d after unlink less than initial symbol table size %d",
4725                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4726 
4727     if (G1TraceStringSymbolTableScrubbing) {
4728       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4729                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4730                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4731                              strings_processed(), strings_removed(),
4732                              symbols_processed(), symbols_removed());
4733     }
4734   }
4735 
4736   void work(uint worker_id) {
4737     int strings_processed = 0;
4738     int strings_removed = 0;
4739     int symbols_processed = 0;
4740     int symbols_removed = 0;
4741     if (_process_strings) {
4742       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4743       Atomic::add(strings_processed, &_strings_processed);
4744       Atomic::add(strings_removed, &_strings_removed);
4745     }
4746     if (_process_symbols) {
4747       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4748       Atomic::add(symbols_processed, &_symbols_processed);
4749       Atomic::add(symbols_removed, &_symbols_removed);
4750     }
4751   }
4752 
4753   size_t strings_processed() const { return (size_t)_strings_processed; }
4754   size_t strings_removed()   const { return (size_t)_strings_removed; }
4755 
4756   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4757   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4758 };
4759 
4760 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4761 private:
4762   static Monitor* _lock;
4763 
4764   BoolObjectClosure* const _is_alive;
4765   const bool               _unloading_occurred;
4766   const uint               _num_workers;
4767 
4768   // Variables used to claim nmethods.
4769   nmethod* _first_nmethod;
4770   volatile nmethod* _claimed_nmethod;
4771 
4772   // The list of nmethods that need to be processed by the second pass.
4773   volatile nmethod* _postponed_list;
4774   volatile uint     _num_entered_barrier;
4775 
4776  public:
4777   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4778       _is_alive(is_alive),
4779       _unloading_occurred(unloading_occurred),
4780       _num_workers(num_workers),
4781       _first_nmethod(NULL),
4782       _claimed_nmethod(NULL),
4783       _postponed_list(NULL),
4784       _num_entered_barrier(0)
4785   {
4786     nmethod::increase_unloading_clock();
4787     // Get first alive nmethod
4788     NMethodIterator iter = NMethodIterator();
4789     if(iter.next_alive()) {
4790       _first_nmethod = iter.method();
4791     }
4792     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4793   }
4794 
4795   ~G1CodeCacheUnloadingTask() {
4796     CodeCache::verify_clean_inline_caches();
4797 
4798     CodeCache::set_needs_cache_clean(false);
4799     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4800 
4801     CodeCache::verify_icholder_relocations();
4802   }
4803 
4804  private:
4805   void add_to_postponed_list(nmethod* nm) {
4806       nmethod* old;
4807       do {
4808         old = (nmethod*)_postponed_list;
4809         nm->set_unloading_next(old);
4810       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4811   }
4812 
4813   void clean_nmethod(nmethod* nm) {
4814     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4815 
4816     if (postponed) {
4817       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4818       add_to_postponed_list(nm);
4819     }
4820 
4821     // Mark that this thread has been cleaned/unloaded.
4822     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4823     nm->set_unloading_clock(nmethod::global_unloading_clock());
4824   }
4825 
4826   void clean_nmethod_postponed(nmethod* nm) {
4827     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4828   }
4829 
4830   static const int MaxClaimNmethods = 16;
4831 
4832   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4833     nmethod* first;
4834     NMethodIterator last;
4835 
4836     do {
4837       *num_claimed_nmethods = 0;
4838 
4839       first = (nmethod*)_claimed_nmethod;
4840       last = NMethodIterator(first);
4841 
4842       if (first != NULL) {
4843 
4844         for (int i = 0; i < MaxClaimNmethods; i++) {
4845           if (!last.next_alive()) {
4846             break;
4847           }
4848           claimed_nmethods[i] = last.method();
4849           (*num_claimed_nmethods)++;
4850         }
4851       }
4852 
4853     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4854   }
4855 
4856   nmethod* claim_postponed_nmethod() {
4857     nmethod* claim;
4858     nmethod* next;
4859 
4860     do {
4861       claim = (nmethod*)_postponed_list;
4862       if (claim == NULL) {
4863         return NULL;
4864       }
4865 
4866       next = claim->unloading_next();
4867 
4868     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4869 
4870     return claim;
4871   }
4872 
4873  public:
4874   // Mark that we're done with the first pass of nmethod cleaning.
4875   void barrier_mark(uint worker_id) {
4876     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4877     _num_entered_barrier++;
4878     if (_num_entered_barrier == _num_workers) {
4879       ml.notify_all();
4880     }
4881   }
4882 
4883   // See if we have to wait for the other workers to
4884   // finish their first-pass nmethod cleaning work.
4885   void barrier_wait(uint worker_id) {
4886     if (_num_entered_barrier < _num_workers) {
4887       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4888       while (_num_entered_barrier < _num_workers) {
4889           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4890       }
4891     }
4892   }
4893 
4894   // Cleaning and unloading of nmethods. Some work has to be postponed
4895   // to the second pass, when we know which nmethods survive.
4896   void work_first_pass(uint worker_id) {
4897     // The first nmethods is claimed by the first worker.
4898     if (worker_id == 0 && _first_nmethod != NULL) {
4899       clean_nmethod(_first_nmethod);
4900       _first_nmethod = NULL;
4901     }
4902 
4903     int num_claimed_nmethods;
4904     nmethod* claimed_nmethods[MaxClaimNmethods];
4905 
4906     while (true) {
4907       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4908 
4909       if (num_claimed_nmethods == 0) {
4910         break;
4911       }
4912 
4913       for (int i = 0; i < num_claimed_nmethods; i++) {
4914         clean_nmethod(claimed_nmethods[i]);
4915       }
4916     }
4917   }
4918 
4919   void work_second_pass(uint worker_id) {
4920     nmethod* nm;
4921     // Take care of postponed nmethods.
4922     while ((nm = claim_postponed_nmethod()) != NULL) {
4923       clean_nmethod_postponed(nm);
4924     }
4925   }
4926 };
4927 
4928 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4929 
4930 class G1KlassCleaningTask : public StackObj {
4931   BoolObjectClosure*                      _is_alive;
4932   volatile jint                           _clean_klass_tree_claimed;
4933   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4934 
4935  public:
4936   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4937       _is_alive(is_alive),
4938       _clean_klass_tree_claimed(0),
4939       _klass_iterator() {
4940   }
4941 
4942  private:
4943   bool claim_clean_klass_tree_task() {
4944     if (_clean_klass_tree_claimed) {
4945       return false;
4946     }
4947 
4948     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4949   }
4950 
4951   InstanceKlass* claim_next_klass() {
4952     Klass* klass;
4953     do {
4954       klass =_klass_iterator.next_klass();
4955     } while (klass != NULL && !klass->oop_is_instance());
4956 
4957     return (InstanceKlass*)klass;
4958   }
4959 
4960 public:
4961 
4962   void clean_klass(InstanceKlass* ik) {
4963     ik->clean_implementors_list(_is_alive);
4964     ik->clean_method_data(_is_alive);
4965 
4966     // G1 specific cleanup work that has
4967     // been moved here to be done in parallel.
4968     ik->clean_dependent_nmethods();
4969   }
4970 
4971   void work() {
4972     ResourceMark rm;
4973 
4974     // One worker will clean the subklass/sibling klass tree.
4975     if (claim_clean_klass_tree_task()) {
4976       Klass::clean_subklass_tree(_is_alive);
4977     }
4978 
4979     // All workers will help cleaning the classes,
4980     InstanceKlass* klass;
4981     while ((klass = claim_next_klass()) != NULL) {
4982       clean_klass(klass);
4983     }
4984   }
4985 };
4986 
4987 // To minimize the remark pause times, the tasks below are done in parallel.
4988 class G1ParallelCleaningTask : public AbstractGangTask {
4989 private:
4990   G1StringSymbolTableUnlinkTask _string_symbol_task;
4991   G1CodeCacheUnloadingTask      _code_cache_task;
4992   G1KlassCleaningTask           _klass_cleaning_task;
4993 
4994 public:
4995   // The constructor is run in the VMThread.
4996   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4997       AbstractGangTask("Parallel Cleaning"),
4998       _string_symbol_task(is_alive, process_strings, process_symbols),
4999       _code_cache_task(num_workers, is_alive, unloading_occurred),
5000       _klass_cleaning_task(is_alive) {
5001   }
5002 
5003   // The parallel work done by all worker threads.
5004   void work(uint worker_id) {
5005     // Do first pass of code cache cleaning.
5006     _code_cache_task.work_first_pass(worker_id);
5007 
5008     // Let the threads mark that the first pass is done.
5009     _code_cache_task.barrier_mark(worker_id);
5010 
5011     // Clean the Strings and Symbols.
5012     _string_symbol_task.work(worker_id);
5013 
5014     // Wait for all workers to finish the first code cache cleaning pass.
5015     _code_cache_task.barrier_wait(worker_id);
5016 
5017     // Do the second code cache cleaning work, which realize on
5018     // the liveness information gathered during the first pass.
5019     _code_cache_task.work_second_pass(worker_id);
5020 
5021     // Clean all klasses that were not unloaded.
5022     _klass_cleaning_task.work();
5023   }
5024 };
5025 
5026 
5027 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5028                                         bool process_strings,
5029                                         bool process_symbols,
5030                                         bool class_unloading_occurred) {
5031   uint n_workers = workers()->active_workers();
5032 
5033   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5034                                         n_workers, class_unloading_occurred);
5035   workers()->run_task(&g1_unlink_task);
5036 }
5037 
5038 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5039                                                      bool process_strings, bool process_symbols) {
5040   {
5041     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5042     workers()->run_task(&g1_unlink_task);
5043   }
5044 
5045   if (G1StringDedup::is_enabled()) {
5046     G1StringDedup::unlink(is_alive);
5047   }
5048 }
5049 
5050 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5051  private:
5052   DirtyCardQueueSet* _queue;
5053  public:
5054   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5055 
5056   virtual void work(uint worker_id) {
5057     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5058     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5059 
5060     RedirtyLoggedCardTableEntryClosure cl;
5061     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5062 
5063     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5064   }
5065 };
5066 
5067 void G1CollectedHeap::redirty_logged_cards() {
5068   double redirty_logged_cards_start = os::elapsedTime();
5069 
5070   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5071   dirty_card_queue_set().reset_for_par_iteration();
5072   workers()->run_task(&redirty_task);
5073 
5074   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5075   dcq.merge_bufferlists(&dirty_card_queue_set());
5076   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5077 
5078   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5079 }
5080 
5081 // Weak Reference Processing support
5082 
5083 // An always "is_alive" closure that is used to preserve referents.
5084 // If the object is non-null then it's alive.  Used in the preservation
5085 // of referent objects that are pointed to by reference objects
5086 // discovered by the CM ref processor.
5087 class G1AlwaysAliveClosure: public BoolObjectClosure {
5088   G1CollectedHeap* _g1;
5089 public:
5090   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5091   bool do_object_b(oop p) {
5092     if (p != NULL) {
5093       return true;
5094     }
5095     return false;
5096   }
5097 };
5098 
5099 bool G1STWIsAliveClosure::do_object_b(oop p) {
5100   // An object is reachable if it is outside the collection set,
5101   // or is inside and copied.
5102   return !_g1->obj_in_cs(p) || p->is_forwarded();
5103 }
5104 
5105 // Non Copying Keep Alive closure
5106 class G1KeepAliveClosure: public OopClosure {
5107   G1CollectedHeap* _g1;
5108 public:
5109   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5110   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5111   void do_oop(oop* p) {
5112     oop obj = *p;
5113     assert(obj != NULL, "the caller should have filtered out NULL values");
5114 
5115     const InCSetState cset_state = _g1->in_cset_state(obj);
5116     if (!cset_state.is_in_cset_or_humongous()) {
5117       return;
5118     }
5119     if (cset_state.is_in_cset()) {
5120       assert( obj->is_forwarded(), "invariant" );
5121       *p = obj->forwardee();
5122     } else {
5123       assert(!obj->is_forwarded(), "invariant" );
5124       assert(cset_state.is_humongous(),
5125              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5126       _g1->set_humongous_is_live(obj);
5127     }
5128   }
5129 };
5130 
5131 // Copying Keep Alive closure - can be called from both
5132 // serial and parallel code as long as different worker
5133 // threads utilize different G1ParScanThreadState instances
5134 // and different queues.
5135 
5136 class G1CopyingKeepAliveClosure: public OopClosure {
5137   G1CollectedHeap*         _g1h;
5138   OopClosure*              _copy_non_heap_obj_cl;
5139   G1ParScanThreadState*    _par_scan_state;
5140 
5141 public:
5142   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5143                             OopClosure* non_heap_obj_cl,
5144                             G1ParScanThreadState* pss):
5145     _g1h(g1h),
5146     _copy_non_heap_obj_cl(non_heap_obj_cl),
5147     _par_scan_state(pss)
5148   {}
5149 
5150   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5151   virtual void do_oop(      oop* p) { do_oop_work(p); }
5152 
5153   template <class T> void do_oop_work(T* p) {
5154     oop obj = oopDesc::load_decode_heap_oop(p);
5155 
5156     if (_g1h->is_in_cset_or_humongous(obj)) {
5157       // If the referent object has been forwarded (either copied
5158       // to a new location or to itself in the event of an
5159       // evacuation failure) then we need to update the reference
5160       // field and, if both reference and referent are in the G1
5161       // heap, update the RSet for the referent.
5162       //
5163       // If the referent has not been forwarded then we have to keep
5164       // it alive by policy. Therefore we have copy the referent.
5165       //
5166       // If the reference field is in the G1 heap then we can push
5167       // on the PSS queue. When the queue is drained (after each
5168       // phase of reference processing) the object and it's followers
5169       // will be copied, the reference field set to point to the
5170       // new location, and the RSet updated. Otherwise we need to
5171       // use the the non-heap or metadata closures directly to copy
5172       // the referent object and update the pointer, while avoiding
5173       // updating the RSet.
5174 
5175       if (_g1h->is_in_g1_reserved(p)) {
5176         _par_scan_state->push_on_queue(p);
5177       } else {
5178         assert(!Metaspace::contains((const void*)p),
5179                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5180         _copy_non_heap_obj_cl->do_oop(p);
5181       }
5182     }
5183   }
5184 };
5185 
5186 // Serial drain queue closure. Called as the 'complete_gc'
5187 // closure for each discovered list in some of the
5188 // reference processing phases.
5189 
5190 class G1STWDrainQueueClosure: public VoidClosure {
5191 protected:
5192   G1CollectedHeap* _g1h;
5193   G1ParScanThreadState* _par_scan_state;
5194 
5195   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5196 
5197 public:
5198   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5199     _g1h(g1h),
5200     _par_scan_state(pss)
5201   { }
5202 
5203   void do_void() {
5204     G1ParScanThreadState* const pss = par_scan_state();
5205     pss->trim_queue();
5206   }
5207 };
5208 
5209 // Parallel Reference Processing closures
5210 
5211 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5212 // processing during G1 evacuation pauses.
5213 
5214 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5215 private:
5216   G1CollectedHeap*   _g1h;
5217   RefToScanQueueSet* _queues;
5218   FlexibleWorkGang*  _workers;
5219   uint               _active_workers;
5220 
5221 public:
5222   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5223                            FlexibleWorkGang* workers,
5224                            RefToScanQueueSet *task_queues,
5225                            uint n_workers) :
5226     _g1h(g1h),
5227     _queues(task_queues),
5228     _workers(workers),
5229     _active_workers(n_workers)
5230   {
5231     assert(n_workers > 0, "shouldn't call this otherwise");
5232   }
5233 
5234   // Executes the given task using concurrent marking worker threads.
5235   virtual void execute(ProcessTask& task);
5236   virtual void execute(EnqueueTask& task);
5237 };
5238 
5239 // Gang task for possibly parallel reference processing
5240 
5241 class G1STWRefProcTaskProxy: public AbstractGangTask {
5242   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5243   ProcessTask&     _proc_task;
5244   G1CollectedHeap* _g1h;
5245   RefToScanQueueSet *_task_queues;
5246   ParallelTaskTerminator* _terminator;
5247 
5248 public:
5249   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5250                      G1CollectedHeap* g1h,
5251                      RefToScanQueueSet *task_queues,
5252                      ParallelTaskTerminator* terminator) :
5253     AbstractGangTask("Process reference objects in parallel"),
5254     _proc_task(proc_task),
5255     _g1h(g1h),
5256     _task_queues(task_queues),
5257     _terminator(terminator)
5258   {}
5259 
5260   virtual void work(uint worker_id) {
5261     // The reference processing task executed by a single worker.
5262     ResourceMark rm;
5263     HandleMark   hm;
5264 
5265     G1STWIsAliveClosure is_alive(_g1h);
5266 
5267     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5268     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5269 
5270     pss.set_evac_failure_closure(&evac_failure_cl);
5271 
5272     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5273 
5274     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5275 
5276     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5277 
5278     if (_g1h->collector_state()->during_initial_mark_pause()) {
5279       // We also need to mark copied objects.
5280       copy_non_heap_cl = &copy_mark_non_heap_cl;
5281     }
5282 
5283     // Keep alive closure.
5284     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5285 
5286     // Complete GC closure
5287     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5288 
5289     // Call the reference processing task's work routine.
5290     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5291 
5292     // Note we cannot assert that the refs array is empty here as not all
5293     // of the processing tasks (specifically phase2 - pp2_work) execute
5294     // the complete_gc closure (which ordinarily would drain the queue) so
5295     // the queue may not be empty.
5296   }
5297 };
5298 
5299 // Driver routine for parallel reference processing.
5300 // Creates an instance of the ref processing gang
5301 // task and has the worker threads execute it.
5302 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5303   assert(_workers != NULL, "Need parallel worker threads.");
5304 
5305   ParallelTaskTerminator terminator(_active_workers, _queues);
5306   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5307 
5308   _workers->run_task(&proc_task_proxy);
5309 }
5310 
5311 // Gang task for parallel reference enqueueing.
5312 
5313 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5314   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5315   EnqueueTask& _enq_task;
5316 
5317 public:
5318   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5319     AbstractGangTask("Enqueue reference objects in parallel"),
5320     _enq_task(enq_task)
5321   { }
5322 
5323   virtual void work(uint worker_id) {
5324     _enq_task.work(worker_id);
5325   }
5326 };
5327 
5328 // Driver routine for parallel reference enqueueing.
5329 // Creates an instance of the ref enqueueing gang
5330 // task and has the worker threads execute it.
5331 
5332 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5333   assert(_workers != NULL, "Need parallel worker threads.");
5334 
5335   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5336 
5337   _workers->run_task(&enq_task_proxy);
5338 }
5339 
5340 // End of weak reference support closures
5341 
5342 // Abstract task used to preserve (i.e. copy) any referent objects
5343 // that are in the collection set and are pointed to by reference
5344 // objects discovered by the CM ref processor.
5345 
5346 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5347 protected:
5348   G1CollectedHeap* _g1h;
5349   RefToScanQueueSet      *_queues;
5350   ParallelTaskTerminator _terminator;
5351   uint _n_workers;
5352 
5353 public:
5354   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5355     AbstractGangTask("ParPreserveCMReferents"),
5356     _g1h(g1h),
5357     _queues(task_queues),
5358     _terminator(workers, _queues),
5359     _n_workers(workers)
5360   { }
5361 
5362   void work(uint worker_id) {
5363     ResourceMark rm;
5364     HandleMark   hm;
5365 
5366     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5367     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5368 
5369     pss.set_evac_failure_closure(&evac_failure_cl);
5370 
5371     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5372 
5373     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5374 
5375     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5376 
5377     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5378 
5379     if (_g1h->collector_state()->during_initial_mark_pause()) {
5380       // We also need to mark copied objects.
5381       copy_non_heap_cl = &copy_mark_non_heap_cl;
5382     }
5383 
5384     // Is alive closure
5385     G1AlwaysAliveClosure always_alive(_g1h);
5386 
5387     // Copying keep alive closure. Applied to referent objects that need
5388     // to be copied.
5389     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5390 
5391     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5392 
5393     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5394     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5395 
5396     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5397     // So this must be true - but assert just in case someone decides to
5398     // change the worker ids.
5399     assert(worker_id < limit, "sanity");
5400     assert(!rp->discovery_is_atomic(), "check this code");
5401 
5402     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5403     for (uint idx = worker_id; idx < limit; idx += stride) {
5404       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5405 
5406       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5407       while (iter.has_next()) {
5408         // Since discovery is not atomic for the CM ref processor, we
5409         // can see some null referent objects.
5410         iter.load_ptrs(DEBUG_ONLY(true));
5411         oop ref = iter.obj();
5412 
5413         // This will filter nulls.
5414         if (iter.is_referent_alive()) {
5415           iter.make_referent_alive();
5416         }
5417         iter.move_to_next();
5418       }
5419     }
5420 
5421     // Drain the queue - which may cause stealing
5422     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5423     drain_queue.do_void();
5424     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5425     assert(pss.queue_is_empty(), "should be");
5426   }
5427 };
5428 
5429 // Weak Reference processing during an evacuation pause (part 1).
5430 void G1CollectedHeap::process_discovered_references() {
5431   double ref_proc_start = os::elapsedTime();
5432 
5433   ReferenceProcessor* rp = _ref_processor_stw;
5434   assert(rp->discovery_enabled(), "should have been enabled");
5435 
5436   // Any reference objects, in the collection set, that were 'discovered'
5437   // by the CM ref processor should have already been copied (either by
5438   // applying the external root copy closure to the discovered lists, or
5439   // by following an RSet entry).
5440   //
5441   // But some of the referents, that are in the collection set, that these
5442   // reference objects point to may not have been copied: the STW ref
5443   // processor would have seen that the reference object had already
5444   // been 'discovered' and would have skipped discovering the reference,
5445   // but would not have treated the reference object as a regular oop.
5446   // As a result the copy closure would not have been applied to the
5447   // referent object.
5448   //
5449   // We need to explicitly copy these referent objects - the references
5450   // will be processed at the end of remarking.
5451   //
5452   // We also need to do this copying before we process the reference
5453   // objects discovered by the STW ref processor in case one of these
5454   // referents points to another object which is also referenced by an
5455   // object discovered by the STW ref processor.
5456 
5457   uint no_of_gc_workers = workers()->active_workers();
5458 
5459   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5460                                                  no_of_gc_workers,
5461                                                  _task_queues);
5462 
5463   workers()->run_task(&keep_cm_referents);
5464 
5465   // Closure to test whether a referent is alive.
5466   G1STWIsAliveClosure is_alive(this);
5467 
5468   // Even when parallel reference processing is enabled, the processing
5469   // of JNI refs is serial and performed serially by the current thread
5470   // rather than by a worker. The following PSS will be used for processing
5471   // JNI refs.
5472 
5473   // Use only a single queue for this PSS.
5474   G1ParScanThreadState            pss(this, 0, NULL);
5475 
5476   // We do not embed a reference processor in the copying/scanning
5477   // closures while we're actually processing the discovered
5478   // reference objects.
5479   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5480 
5481   pss.set_evac_failure_closure(&evac_failure_cl);
5482 
5483   assert(pss.queue_is_empty(), "pre-condition");
5484 
5485   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5486 
5487   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5488 
5489   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5490 
5491   if (collector_state()->during_initial_mark_pause()) {
5492     // We also need to mark copied objects.
5493     copy_non_heap_cl = &copy_mark_non_heap_cl;
5494   }
5495 
5496   // Keep alive closure.
5497   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5498 
5499   // Serial Complete GC closure
5500   G1STWDrainQueueClosure drain_queue(this, &pss);
5501 
5502   // Setup the soft refs policy...
5503   rp->setup_policy(false);
5504 
5505   ReferenceProcessorStats stats;
5506   if (!rp->processing_is_mt()) {
5507     // Serial reference processing...
5508     stats = rp->process_discovered_references(&is_alive,
5509                                               &keep_alive,
5510                                               &drain_queue,
5511                                               NULL,
5512                                               _gc_timer_stw,
5513                                               _gc_tracer_stw->gc_id());
5514   } else {
5515     // Parallel reference processing
5516     assert(rp->num_q() == no_of_gc_workers, "sanity");
5517     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5518 
5519     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5520     stats = rp->process_discovered_references(&is_alive,
5521                                               &keep_alive,
5522                                               &drain_queue,
5523                                               &par_task_executor,
5524                                               _gc_timer_stw,
5525                                               _gc_tracer_stw->gc_id());
5526   }
5527 
5528   _gc_tracer_stw->report_gc_reference_stats(stats);
5529 
5530   // We have completed copying any necessary live referent objects.
5531   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5532 
5533   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5534   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5535 }
5536 
5537 // Weak Reference processing during an evacuation pause (part 2).
5538 void G1CollectedHeap::enqueue_discovered_references() {
5539   double ref_enq_start = os::elapsedTime();
5540 
5541   ReferenceProcessor* rp = _ref_processor_stw;
5542   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5543 
5544   // Now enqueue any remaining on the discovered lists on to
5545   // the pending list.
5546   if (!rp->processing_is_mt()) {
5547     // Serial reference processing...
5548     rp->enqueue_discovered_references();
5549   } else {
5550     // Parallel reference enqueueing
5551 
5552     uint n_workers = workers()->active_workers();
5553 
5554     assert(rp->num_q() == n_workers, "sanity");
5555     assert(n_workers <= rp->max_num_q(), "sanity");
5556 
5557     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5558     rp->enqueue_discovered_references(&par_task_executor);
5559   }
5560 
5561   rp->verify_no_references_recorded();
5562   assert(!rp->discovery_enabled(), "should have been disabled");
5563 
5564   // FIXME
5565   // CM's reference processing also cleans up the string and symbol tables.
5566   // Should we do that here also? We could, but it is a serial operation
5567   // and could significantly increase the pause time.
5568 
5569   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5570   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5571 }
5572 
5573 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5574   _expand_heap_after_alloc_failure = true;
5575   _evacuation_failed = false;
5576 
5577   // Should G1EvacuationFailureALot be in effect for this GC?
5578   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5579 
5580   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5581 
5582   // Disable the hot card cache.
5583   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5584   hot_card_cache->reset_hot_cache_claimed_index();
5585   hot_card_cache->set_use_cache(false);
5586 
5587   const uint n_workers = workers()->active_workers();
5588 
5589   init_for_evac_failure(NULL);
5590 
5591   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5592   double start_par_time_sec = os::elapsedTime();
5593   double end_par_time_sec;
5594 
5595   {
5596     G1RootProcessor root_processor(this, n_workers);
5597     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5598     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5599     if (collector_state()->during_initial_mark_pause()) {
5600       ClassLoaderDataGraph::clear_claimed_marks();
5601     }
5602 
5603     // The individual threads will set their evac-failure closures.
5604     if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5605 
5606     workers()->run_task(&g1_par_task);
5607     end_par_time_sec = os::elapsedTime();
5608 
5609     // Closing the inner scope will execute the destructor
5610     // for the G1RootProcessor object. We record the current
5611     // elapsed time before closing the scope so that time
5612     // taken for the destructor is NOT included in the
5613     // reported parallel time.
5614   }
5615 
5616   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5617 
5618   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5619   phase_times->record_par_time(par_time_ms);
5620 
5621   double code_root_fixup_time_ms =
5622         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5623   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5624 
5625   // Process any discovered reference objects - we have
5626   // to do this _before_ we retire the GC alloc regions
5627   // as we may have to copy some 'reachable' referent
5628   // objects (and their reachable sub-graphs) that were
5629   // not copied during the pause.
5630   process_discovered_references();
5631 
5632   if (G1StringDedup::is_enabled()) {
5633     double fixup_start = os::elapsedTime();
5634 
5635     G1STWIsAliveClosure is_alive(this);
5636     G1KeepAliveClosure keep_alive(this);
5637     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5638 
5639     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5640     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5641   }
5642 
5643   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5644   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5645 
5646   // Reset and re-enable the hot card cache.
5647   // Note the counts for the cards in the regions in the
5648   // collection set are reset when the collection set is freed.
5649   hot_card_cache->reset_hot_cache();
5650   hot_card_cache->set_use_cache(true);
5651 
5652   purge_code_root_memory();
5653 
5654   finalize_for_evac_failure();
5655 
5656   if (evacuation_failed()) {
5657     remove_self_forwarding_pointers();
5658 
5659     // Reset the G1EvacuationFailureALot counters and flags
5660     // Note: the values are reset only when an actual
5661     // evacuation failure occurs.
5662     NOT_PRODUCT(reset_evacuation_should_fail();)
5663   }
5664 
5665   // Enqueue any remaining references remaining on the STW
5666   // reference processor's discovered lists. We need to do
5667   // this after the card table is cleaned (and verified) as
5668   // the act of enqueueing entries on to the pending list
5669   // will log these updates (and dirty their associated
5670   // cards). We need these updates logged to update any
5671   // RSets.
5672   enqueue_discovered_references();
5673 
5674   redirty_logged_cards();
5675   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5676 }
5677 
5678 void G1CollectedHeap::free_region(HeapRegion* hr,
5679                                   FreeRegionList* free_list,
5680                                   bool par,
5681                                   bool locked) {
5682   assert(!hr->is_free(), "the region should not be free");
5683   assert(!hr->is_empty(), "the region should not be empty");
5684   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5685   assert(free_list != NULL, "pre-condition");
5686 
5687   if (G1VerifyBitmaps) {
5688     MemRegion mr(hr->bottom(), hr->end());
5689     concurrent_mark()->clearRangePrevBitmap(mr);
5690   }
5691 
5692   // Clear the card counts for this region.
5693   // Note: we only need to do this if the region is not young
5694   // (since we don't refine cards in young regions).
5695   if (!hr->is_young()) {
5696     _cg1r->hot_card_cache()->reset_card_counts(hr);
5697   }
5698   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5699   free_list->add_ordered(hr);
5700 }
5701 
5702 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5703                                      FreeRegionList* free_list,
5704                                      bool par) {
5705   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5706   assert(free_list != NULL, "pre-condition");
5707 
5708   size_t hr_capacity = hr->capacity();
5709   // We need to read this before we make the region non-humongous,
5710   // otherwise the information will be gone.
5711   uint last_index = hr->last_hc_index();
5712   hr->clear_humongous();
5713   free_region(hr, free_list, par);
5714 
5715   uint i = hr->hrm_index() + 1;
5716   while (i < last_index) {
5717     HeapRegion* curr_hr = region_at(i);
5718     assert(curr_hr->is_continues_humongous(), "invariant");
5719     curr_hr->clear_humongous();
5720     free_region(curr_hr, free_list, par);
5721     i += 1;
5722   }
5723 }
5724 
5725 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5726                                        const HeapRegionSetCount& humongous_regions_removed) {
5727   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5728     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5729     _old_set.bulk_remove(old_regions_removed);
5730     _humongous_set.bulk_remove(humongous_regions_removed);
5731   }
5732 
5733 }
5734 
5735 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5736   assert(list != NULL, "list can't be null");
5737   if (!list->is_empty()) {
5738     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5739     _hrm.insert_list_into_free_list(list);
5740   }
5741 }
5742 
5743 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5744   _allocator->decrease_used(bytes);
5745 }
5746 
5747 class G1ParCleanupCTTask : public AbstractGangTask {
5748   G1SATBCardTableModRefBS* _ct_bs;
5749   G1CollectedHeap* _g1h;
5750   HeapRegion* volatile _su_head;
5751 public:
5752   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5753                      G1CollectedHeap* g1h) :
5754     AbstractGangTask("G1 Par Cleanup CT Task"),
5755     _ct_bs(ct_bs), _g1h(g1h) { }
5756 
5757   void work(uint worker_id) {
5758     HeapRegion* r;
5759     while (r = _g1h->pop_dirty_cards_region()) {
5760       clear_cards(r);
5761     }
5762   }
5763 
5764   void clear_cards(HeapRegion* r) {
5765     // Cards of the survivors should have already been dirtied.
5766     if (!r->is_survivor()) {
5767       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5768     }
5769   }
5770 };
5771 
5772 #ifndef PRODUCT
5773 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5774   G1CollectedHeap* _g1h;
5775   G1SATBCardTableModRefBS* _ct_bs;
5776 public:
5777   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5778     : _g1h(g1h), _ct_bs(ct_bs) { }
5779   virtual bool doHeapRegion(HeapRegion* r) {
5780     if (r->is_survivor()) {
5781       _g1h->verify_dirty_region(r);
5782     } else {
5783       _g1h->verify_not_dirty_region(r);
5784     }
5785     return false;
5786   }
5787 };
5788 
5789 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5790   // All of the region should be clean.
5791   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5792   MemRegion mr(hr->bottom(), hr->end());
5793   ct_bs->verify_not_dirty_region(mr);
5794 }
5795 
5796 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5797   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5798   // dirty allocated blocks as they allocate them. The thread that
5799   // retires each region and replaces it with a new one will do a
5800   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5801   // not dirty that area (one less thing to have to do while holding
5802   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5803   // is dirty.
5804   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5805   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5806   if (hr->is_young()) {
5807     ct_bs->verify_g1_young_region(mr);
5808   } else {
5809     ct_bs->verify_dirty_region(mr);
5810   }
5811 }
5812 
5813 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5814   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5815   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5816     verify_dirty_region(hr);
5817   }
5818 }
5819 
5820 void G1CollectedHeap::verify_dirty_young_regions() {
5821   verify_dirty_young_list(_young_list->first_region());
5822 }
5823 
5824 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5825                                                HeapWord* tams, HeapWord* end) {
5826   guarantee(tams <= end,
5827             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5828   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5829   if (result < end) {
5830     gclog_or_tty->cr();
5831     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5832                            bitmap_name, p2i(result));
5833     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5834                            bitmap_name, p2i(tams), p2i(end));
5835     return false;
5836   }
5837   return true;
5838 }
5839 
5840 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5841   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5842   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5843 
5844   HeapWord* bottom = hr->bottom();
5845   HeapWord* ptams  = hr->prev_top_at_mark_start();
5846   HeapWord* ntams  = hr->next_top_at_mark_start();
5847   HeapWord* end    = hr->end();
5848 
5849   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5850 
5851   bool res_n = true;
5852   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5853   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5854   // if we happen to be in that state.
5855   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5856     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5857   }
5858   if (!res_p || !res_n) {
5859     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5860                            HR_FORMAT_PARAMS(hr));
5861     gclog_or_tty->print_cr("#### Caller: %s", caller);
5862     return false;
5863   }
5864   return true;
5865 }
5866 
5867 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5868   if (!G1VerifyBitmaps) return;
5869 
5870   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5871 }
5872 
5873 class G1VerifyBitmapClosure : public HeapRegionClosure {
5874 private:
5875   const char* _caller;
5876   G1CollectedHeap* _g1h;
5877   bool _failures;
5878 
5879 public:
5880   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5881     _caller(caller), _g1h(g1h), _failures(false) { }
5882 
5883   bool failures() { return _failures; }
5884 
5885   virtual bool doHeapRegion(HeapRegion* hr) {
5886     if (hr->is_continues_humongous()) return false;
5887 
5888     bool result = _g1h->verify_bitmaps(_caller, hr);
5889     if (!result) {
5890       _failures = true;
5891     }
5892     return false;
5893   }
5894 };
5895 
5896 void G1CollectedHeap::check_bitmaps(const char* caller) {
5897   if (!G1VerifyBitmaps) return;
5898 
5899   G1VerifyBitmapClosure cl(caller, this);
5900   heap_region_iterate(&cl);
5901   guarantee(!cl.failures(), "bitmap verification");
5902 }
5903 
5904 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5905  private:
5906   bool _failures;
5907  public:
5908   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5909 
5910   virtual bool doHeapRegion(HeapRegion* hr) {
5911     uint i = hr->hrm_index();
5912     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5913     if (hr->is_humongous()) {
5914       if (hr->in_collection_set()) {
5915         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5916         _failures = true;
5917         return true;
5918       }
5919       if (cset_state.is_in_cset()) {
5920         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5921         _failures = true;
5922         return true;
5923       }
5924       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5925         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5926         _failures = true;
5927         return true;
5928       }
5929     } else {
5930       if (cset_state.is_humongous()) {
5931         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5932         _failures = true;
5933         return true;
5934       }
5935       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5936         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5937                                hr->in_collection_set(), cset_state.value(), i);
5938         _failures = true;
5939         return true;
5940       }
5941       if (cset_state.is_in_cset()) {
5942         if (hr->is_young() != (cset_state.is_young())) {
5943           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5944                                  hr->is_young(), cset_state.value(), i);
5945           _failures = true;
5946           return true;
5947         }
5948         if (hr->is_old() != (cset_state.is_old())) {
5949           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5950                                  hr->is_old(), cset_state.value(), i);
5951           _failures = true;
5952           return true;
5953         }
5954       }
5955     }
5956     return false;
5957   }
5958 
5959   bool failures() const { return _failures; }
5960 };
5961 
5962 bool G1CollectedHeap::check_cset_fast_test() {
5963   G1CheckCSetFastTableClosure cl;
5964   _hrm.iterate(&cl);
5965   return !cl.failures();
5966 }
5967 #endif // PRODUCT
5968 
5969 void G1CollectedHeap::cleanUpCardTable() {
5970   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5971   double start = os::elapsedTime();
5972 
5973   {
5974     // Iterate over the dirty cards region list.
5975     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5976 
5977     workers()->run_task(&cleanup_task);
5978 #ifndef PRODUCT
5979     if (G1VerifyCTCleanup || VerifyAfterGC) {
5980       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5981       heap_region_iterate(&cleanup_verifier);
5982     }
5983 #endif
5984   }
5985 
5986   double elapsed = os::elapsedTime() - start;
5987   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5988 }
5989 
5990 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5991   size_t pre_used = 0;
5992   FreeRegionList local_free_list("Local List for CSet Freeing");
5993 
5994   double young_time_ms     = 0.0;
5995   double non_young_time_ms = 0.0;
5996 
5997   // Since the collection set is a superset of the the young list,
5998   // all we need to do to clear the young list is clear its
5999   // head and length, and unlink any young regions in the code below
6000   _young_list->clear();
6001 
6002   G1CollectorPolicy* policy = g1_policy();
6003 
6004   double start_sec = os::elapsedTime();
6005   bool non_young = true;
6006 
6007   HeapRegion* cur = cs_head;
6008   int age_bound = -1;
6009   size_t rs_lengths = 0;
6010 
6011   while (cur != NULL) {
6012     assert(!is_on_master_free_list(cur), "sanity");
6013     if (non_young) {
6014       if (cur->is_young()) {
6015         double end_sec = os::elapsedTime();
6016         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6017         non_young_time_ms += elapsed_ms;
6018 
6019         start_sec = os::elapsedTime();
6020         non_young = false;
6021       }
6022     } else {
6023       if (!cur->is_young()) {
6024         double end_sec = os::elapsedTime();
6025         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6026         young_time_ms += elapsed_ms;
6027 
6028         start_sec = os::elapsedTime();
6029         non_young = true;
6030       }
6031     }
6032 
6033     rs_lengths += cur->rem_set()->occupied_locked();
6034 
6035     HeapRegion* next = cur->next_in_collection_set();
6036     assert(cur->in_collection_set(), "bad CS");
6037     cur->set_next_in_collection_set(NULL);
6038     clear_in_cset(cur);
6039 
6040     if (cur->is_young()) {
6041       int index = cur->young_index_in_cset();
6042       assert(index != -1, "invariant");
6043       assert((uint) index < policy->young_cset_region_length(), "invariant");
6044       size_t words_survived = _surviving_young_words[index];
6045       cur->record_surv_words_in_group(words_survived);
6046 
6047       // At this point the we have 'popped' cur from the collection set
6048       // (linked via next_in_collection_set()) but it is still in the
6049       // young list (linked via next_young_region()). Clear the
6050       // _next_young_region field.
6051       cur->set_next_young_region(NULL);
6052     } else {
6053       int index = cur->young_index_in_cset();
6054       assert(index == -1, "invariant");
6055     }
6056 
6057     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6058             (!cur->is_young() && cur->young_index_in_cset() == -1),
6059             "invariant" );
6060 
6061     if (!cur->evacuation_failed()) {
6062       MemRegion used_mr = cur->used_region();
6063 
6064       // And the region is empty.
6065       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6066       pre_used += cur->used();
6067       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6068     } else {
6069       cur->uninstall_surv_rate_group();
6070       if (cur->is_young()) {
6071         cur->set_young_index_in_cset(-1);
6072       }
6073       cur->set_evacuation_failed(false);
6074       // The region is now considered to be old.
6075       cur->set_old();
6076       _old_set.add(cur);
6077       evacuation_info.increment_collectionset_used_after(cur->used());
6078     }
6079     cur = next;
6080   }
6081 
6082   evacuation_info.set_regions_freed(local_free_list.length());
6083   policy->record_max_rs_lengths(rs_lengths);
6084   policy->cset_regions_freed();
6085 
6086   double end_sec = os::elapsedTime();
6087   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6088 
6089   if (non_young) {
6090     non_young_time_ms += elapsed_ms;
6091   } else {
6092     young_time_ms += elapsed_ms;
6093   }
6094 
6095   prepend_to_freelist(&local_free_list);
6096   decrement_summary_bytes(pre_used);
6097   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6098   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6099 }
6100 
6101 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6102  private:
6103   FreeRegionList* _free_region_list;
6104   HeapRegionSet* _proxy_set;
6105   HeapRegionSetCount _humongous_regions_removed;
6106   size_t _freed_bytes;
6107  public:
6108 
6109   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6110     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6111   }
6112 
6113   virtual bool doHeapRegion(HeapRegion* r) {
6114     if (!r->is_starts_humongous()) {
6115       return false;
6116     }
6117 
6118     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6119 
6120     oop obj = (oop)r->bottom();
6121     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6122 
6123     // The following checks whether the humongous object is live are sufficient.
6124     // The main additional check (in addition to having a reference from the roots
6125     // or the young gen) is whether the humongous object has a remembered set entry.
6126     //
6127     // A humongous object cannot be live if there is no remembered set for it
6128     // because:
6129     // - there can be no references from within humongous starts regions referencing
6130     // the object because we never allocate other objects into them.
6131     // (I.e. there are no intra-region references that may be missed by the
6132     // remembered set)
6133     // - as soon there is a remembered set entry to the humongous starts region
6134     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6135     // until the end of a concurrent mark.
6136     //
6137     // It is not required to check whether the object has been found dead by marking
6138     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6139     // all objects allocated during that time are considered live.
6140     // SATB marking is even more conservative than the remembered set.
6141     // So if at this point in the collection there is no remembered set entry,
6142     // nobody has a reference to it.
6143     // At the start of collection we flush all refinement logs, and remembered sets
6144     // are completely up-to-date wrt to references to the humongous object.
6145     //
6146     // Other implementation considerations:
6147     // - never consider object arrays at this time because they would pose
6148     // considerable effort for cleaning up the the remembered sets. This is
6149     // required because stale remembered sets might reference locations that
6150     // are currently allocated into.
6151     uint region_idx = r->hrm_index();
6152     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6153         !r->rem_set()->is_empty()) {
6154 
6155       if (G1TraceEagerReclaimHumongousObjects) {
6156         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6157                                region_idx,
6158                                (size_t)obj->size() * HeapWordSize,
6159                                p2i(r->bottom()),
6160                                r->region_num(),
6161                                r->rem_set()->occupied(),
6162                                r->rem_set()->strong_code_roots_list_length(),
6163                                next_bitmap->isMarked(r->bottom()),
6164                                g1h->is_humongous_reclaim_candidate(region_idx),
6165                                obj->is_typeArray()
6166                               );
6167       }
6168 
6169       return false;
6170     }
6171 
6172     guarantee(obj->is_typeArray(),
6173               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6174                       PTR_FORMAT " is not.",
6175                       p2i(r->bottom())));
6176 
6177     if (G1TraceEagerReclaimHumongousObjects) {
6178       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6179                              region_idx,
6180                              (size_t)obj->size() * HeapWordSize,
6181                              p2i(r->bottom()),
6182                              r->region_num(),
6183                              r->rem_set()->occupied(),
6184                              r->rem_set()->strong_code_roots_list_length(),
6185                              next_bitmap->isMarked(r->bottom()),
6186                              g1h->is_humongous_reclaim_candidate(region_idx),
6187                              obj->is_typeArray()
6188                             );
6189     }
6190     // Need to clear mark bit of the humongous object if already set.
6191     if (next_bitmap->isMarked(r->bottom())) {
6192       next_bitmap->clear(r->bottom());
6193     }
6194     _freed_bytes += r->used();
6195     r->set_containing_set(NULL);
6196     _humongous_regions_removed.increment(1u, r->capacity());
6197     g1h->free_humongous_region(r, _free_region_list, false);
6198 
6199     return false;
6200   }
6201 
6202   HeapRegionSetCount& humongous_free_count() {
6203     return _humongous_regions_removed;
6204   }
6205 
6206   size_t bytes_freed() const {
6207     return _freed_bytes;
6208   }
6209 
6210   size_t humongous_reclaimed() const {
6211     return _humongous_regions_removed.length();
6212   }
6213 };
6214 
6215 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6216   assert_at_safepoint(true);
6217 
6218   if (!G1EagerReclaimHumongousObjects ||
6219       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6220     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6221     return;
6222   }
6223 
6224   double start_time = os::elapsedTime();
6225 
6226   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6227 
6228   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6229   heap_region_iterate(&cl);
6230 
6231   HeapRegionSetCount empty_set;
6232   remove_from_old_sets(empty_set, cl.humongous_free_count());
6233 
6234   G1HRPrinter* hrp = hr_printer();
6235   if (hrp->is_active()) {
6236     FreeRegionListIterator iter(&local_cleanup_list);
6237     while (iter.more_available()) {
6238       HeapRegion* hr = iter.get_next();
6239       hrp->cleanup(hr);
6240     }
6241   }
6242 
6243   prepend_to_freelist(&local_cleanup_list);
6244   decrement_summary_bytes(cl.bytes_freed());
6245 
6246   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6247                                                                     cl.humongous_reclaimed());
6248 }
6249 
6250 // This routine is similar to the above but does not record
6251 // any policy statistics or update free lists; we are abandoning
6252 // the current incremental collection set in preparation of a
6253 // full collection. After the full GC we will start to build up
6254 // the incremental collection set again.
6255 // This is only called when we're doing a full collection
6256 // and is immediately followed by the tearing down of the young list.
6257 
6258 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6259   HeapRegion* cur = cs_head;
6260 
6261   while (cur != NULL) {
6262     HeapRegion* next = cur->next_in_collection_set();
6263     assert(cur->in_collection_set(), "bad CS");
6264     cur->set_next_in_collection_set(NULL);
6265     clear_in_cset(cur);
6266     cur->set_young_index_in_cset(-1);
6267     cur = next;
6268   }
6269 }
6270 
6271 void G1CollectedHeap::set_free_regions_coming() {
6272   if (G1ConcRegionFreeingVerbose) {
6273     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6274                            "setting free regions coming");
6275   }
6276 
6277   assert(!free_regions_coming(), "pre-condition");
6278   _free_regions_coming = true;
6279 }
6280 
6281 void G1CollectedHeap::reset_free_regions_coming() {
6282   assert(free_regions_coming(), "pre-condition");
6283 
6284   {
6285     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6286     _free_regions_coming = false;
6287     SecondaryFreeList_lock->notify_all();
6288   }
6289 
6290   if (G1ConcRegionFreeingVerbose) {
6291     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6292                            "reset free regions coming");
6293   }
6294 }
6295 
6296 void G1CollectedHeap::wait_while_free_regions_coming() {
6297   // Most of the time we won't have to wait, so let's do a quick test
6298   // first before we take the lock.
6299   if (!free_regions_coming()) {
6300     return;
6301   }
6302 
6303   if (G1ConcRegionFreeingVerbose) {
6304     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6305                            "waiting for free regions");
6306   }
6307 
6308   {
6309     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6310     while (free_regions_coming()) {
6311       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6312     }
6313   }
6314 
6315   if (G1ConcRegionFreeingVerbose) {
6316     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6317                            "done waiting for free regions");
6318   }
6319 }
6320 
6321 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6322   _young_list->push_region(hr);
6323 }
6324 
6325 class NoYoungRegionsClosure: public HeapRegionClosure {
6326 private:
6327   bool _success;
6328 public:
6329   NoYoungRegionsClosure() : _success(true) { }
6330   bool doHeapRegion(HeapRegion* r) {
6331     if (r->is_young()) {
6332       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6333                              p2i(r->bottom()), p2i(r->end()));
6334       _success = false;
6335     }
6336     return false;
6337   }
6338   bool success() { return _success; }
6339 };
6340 
6341 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6342   bool ret = _young_list->check_list_empty(check_sample);
6343 
6344   if (check_heap) {
6345     NoYoungRegionsClosure closure;
6346     heap_region_iterate(&closure);
6347     ret = ret && closure.success();
6348   }
6349 
6350   return ret;
6351 }
6352 
6353 class TearDownRegionSetsClosure : public HeapRegionClosure {
6354 private:
6355   HeapRegionSet *_old_set;
6356 
6357 public:
6358   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6359 
6360   bool doHeapRegion(HeapRegion* r) {
6361     if (r->is_old()) {
6362       _old_set->remove(r);
6363     } else {
6364       // We ignore free regions, we'll empty the free list afterwards.
6365       // We ignore young regions, we'll empty the young list afterwards.
6366       // We ignore humongous regions, we're not tearing down the
6367       // humongous regions set.
6368       assert(r->is_free() || r->is_young() || r->is_humongous(),
6369              "it cannot be another type");
6370     }
6371     return false;
6372   }
6373 
6374   ~TearDownRegionSetsClosure() {
6375     assert(_old_set->is_empty(), "post-condition");
6376   }
6377 };
6378 
6379 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6380   assert_at_safepoint(true /* should_be_vm_thread */);
6381 
6382   if (!free_list_only) {
6383     TearDownRegionSetsClosure cl(&_old_set);
6384     heap_region_iterate(&cl);
6385 
6386     // Note that emptying the _young_list is postponed and instead done as
6387     // the first step when rebuilding the regions sets again. The reason for
6388     // this is that during a full GC string deduplication needs to know if
6389     // a collected region was young or old when the full GC was initiated.
6390   }
6391   _hrm.remove_all_free_regions();
6392 }
6393 
6394 class RebuildRegionSetsClosure : public HeapRegionClosure {
6395 private:
6396   bool            _free_list_only;
6397   HeapRegionSet*   _old_set;
6398   HeapRegionManager*   _hrm;
6399   size_t          _total_used;
6400 
6401 public:
6402   RebuildRegionSetsClosure(bool free_list_only,
6403                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6404     _free_list_only(free_list_only),
6405     _old_set(old_set), _hrm(hrm), _total_used(0) {
6406     assert(_hrm->num_free_regions() == 0, "pre-condition");
6407     if (!free_list_only) {
6408       assert(_old_set->is_empty(), "pre-condition");
6409     }
6410   }
6411 
6412   bool doHeapRegion(HeapRegion* r) {
6413     if (r->is_continues_humongous()) {
6414       return false;
6415     }
6416 
6417     if (r->is_empty()) {
6418       // Add free regions to the free list
6419       r->set_free();
6420       r->set_allocation_context(AllocationContext::system());
6421       _hrm->insert_into_free_list(r);
6422     } else if (!_free_list_only) {
6423       assert(!r->is_young(), "we should not come across young regions");
6424 
6425       if (r->is_humongous()) {
6426         // We ignore humongous regions. We left the humongous set unchanged.
6427       } else {
6428         // Objects that were compacted would have ended up on regions
6429         // that were previously old or free.  Archive regions (which are
6430         // old) will not have been touched.
6431         assert(r->is_free() || r->is_old(), "invariant");
6432         // We now consider them old, so register as such. Leave
6433         // archive regions set that way, however, while still adding
6434         // them to the old set.
6435         if (!r->is_archive()) {
6436           r->set_old();
6437         }
6438         _old_set->add(r);
6439       }
6440       _total_used += r->used();
6441     }
6442 
6443     return false;
6444   }
6445 
6446   size_t total_used() {
6447     return _total_used;
6448   }
6449 };
6450 
6451 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6452   assert_at_safepoint(true /* should_be_vm_thread */);
6453 
6454   if (!free_list_only) {
6455     _young_list->empty_list();
6456   }
6457 
6458   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6459   heap_region_iterate(&cl);
6460 
6461   if (!free_list_only) {
6462     _allocator->set_used(cl.total_used());
6463     if (_archive_allocator != NULL) {
6464       _archive_allocator->clear_used();
6465     }
6466   }
6467   assert(_allocator->used_unlocked() == recalculate_used(),
6468          err_msg("inconsistent _allocator->used_unlocked(), "
6469                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6470                  _allocator->used_unlocked(), recalculate_used()));
6471 }
6472 
6473 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6474   _refine_cte_cl->set_concurrent(concurrent);
6475 }
6476 
6477 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6478   HeapRegion* hr = heap_region_containing(p);
6479   return hr->is_in(p);
6480 }
6481 
6482 // Methods for the mutator alloc region
6483 
6484 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6485                                                       bool force) {
6486   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6487   assert(!force || g1_policy()->can_expand_young_list(),
6488          "if force is true we should be able to expand the young list");
6489   bool young_list_full = g1_policy()->is_young_list_full();
6490   if (force || !young_list_full) {
6491     HeapRegion* new_alloc_region = new_region(word_size,
6492                                               false /* is_old */,
6493                                               false /* do_expand */);
6494     if (new_alloc_region != NULL) {
6495       set_region_short_lived_locked(new_alloc_region);
6496       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6497       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6498       return new_alloc_region;
6499     }
6500   }
6501   return NULL;
6502 }
6503 
6504 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6505                                                   size_t allocated_bytes) {
6506   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6507   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6508 
6509   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6510   _allocator->increase_used(allocated_bytes);
6511   _hr_printer.retire(alloc_region);
6512   // We update the eden sizes here, when the region is retired,
6513   // instead of when it's allocated, since this is the point that its
6514   // used space has been recored in _summary_bytes_used.
6515   g1mm()->update_eden_size();
6516 }
6517 
6518 // Methods for the GC alloc regions
6519 
6520 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6521                                                  uint count,
6522                                                  InCSetState dest) {
6523   assert(FreeList_lock->owned_by_self(), "pre-condition");
6524 
6525   if (count < g1_policy()->max_regions(dest)) {
6526     const bool is_survivor = (dest.is_young());
6527     HeapRegion* new_alloc_region = new_region(word_size,
6528                                               !is_survivor,
6529                                               true /* do_expand */);
6530     if (new_alloc_region != NULL) {
6531       // We really only need to do this for old regions given that we
6532       // should never scan survivors. But it doesn't hurt to do it
6533       // for survivors too.
6534       new_alloc_region->record_timestamp();
6535       if (is_survivor) {
6536         new_alloc_region->set_survivor();
6537         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6538         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6539       } else {
6540         new_alloc_region->set_old();
6541         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6542         check_bitmaps("Old Region Allocation", new_alloc_region);
6543       }
6544       bool during_im = collector_state()->during_initial_mark_pause();
6545       new_alloc_region->note_start_of_copying(during_im);
6546       return new_alloc_region;
6547     }
6548   }
6549   return NULL;
6550 }
6551 
6552 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6553                                              size_t allocated_bytes,
6554                                              InCSetState dest) {
6555   bool during_im = collector_state()->during_initial_mark_pause();
6556   alloc_region->note_end_of_copying(during_im);
6557   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6558   if (dest.is_young()) {
6559     young_list()->add_survivor_region(alloc_region);
6560   } else {
6561     _old_set.add(alloc_region);
6562   }
6563   _hr_printer.retire(alloc_region);
6564 }
6565 
6566 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6567   bool expanded = false;
6568   uint index = _hrm.find_highest_free(&expanded);
6569 
6570   if (index != G1_NO_HRM_INDEX) {
6571     if (expanded) {
6572       ergo_verbose1(ErgoHeapSizing,
6573                     "attempt heap expansion",
6574                     ergo_format_reason("requested address range outside heap bounds")
6575                     ergo_format_byte("region size"),
6576                     HeapRegion::GrainWords * HeapWordSize);
6577     }
6578     _hrm.allocate_free_regions_starting_at(index, 1);
6579     return region_at(index);
6580   }
6581   return NULL;
6582 }
6583 
6584 
6585 // Heap region set verification
6586 
6587 class VerifyRegionListsClosure : public HeapRegionClosure {
6588 private:
6589   HeapRegionSet*   _old_set;
6590   HeapRegionSet*   _humongous_set;
6591   HeapRegionManager*   _hrm;
6592 
6593 public:
6594   HeapRegionSetCount _old_count;
6595   HeapRegionSetCount _humongous_count;
6596   HeapRegionSetCount _free_count;
6597 
6598   VerifyRegionListsClosure(HeapRegionSet* old_set,
6599                            HeapRegionSet* humongous_set,
6600                            HeapRegionManager* hrm) :
6601     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6602     _old_count(), _humongous_count(), _free_count(){ }
6603 
6604   bool doHeapRegion(HeapRegion* hr) {
6605     if (hr->is_continues_humongous()) {
6606       return false;
6607     }
6608 
6609     if (hr->is_young()) {
6610       // TODO
6611     } else if (hr->is_starts_humongous()) {
6612       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6613       _humongous_count.increment(1u, hr->capacity());
6614     } else if (hr->is_empty()) {
6615       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6616       _free_count.increment(1u, hr->capacity());
6617     } else if (hr->is_old()) {
6618       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6619       _old_count.increment(1u, hr->capacity());
6620     } else {
6621       // There are no other valid region types. Check for one invalid
6622       // one we can identify: pinned without old or humongous set.
6623       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6624       ShouldNotReachHere();
6625     }
6626     return false;
6627   }
6628 
6629   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6630     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6631     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6632         old_set->total_capacity_bytes(), _old_count.capacity()));
6633 
6634     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6635     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6636         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6637 
6638     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6639     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6640         free_list->total_capacity_bytes(), _free_count.capacity()));
6641   }
6642 };
6643 
6644 void G1CollectedHeap::verify_region_sets() {
6645   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6646 
6647   // First, check the explicit lists.
6648   _hrm.verify();
6649   {
6650     // Given that a concurrent operation might be adding regions to
6651     // the secondary free list we have to take the lock before
6652     // verifying it.
6653     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6654     _secondary_free_list.verify_list();
6655   }
6656 
6657   // If a concurrent region freeing operation is in progress it will
6658   // be difficult to correctly attributed any free regions we come
6659   // across to the correct free list given that they might belong to
6660   // one of several (free_list, secondary_free_list, any local lists,
6661   // etc.). So, if that's the case we will skip the rest of the
6662   // verification operation. Alternatively, waiting for the concurrent
6663   // operation to complete will have a non-trivial effect on the GC's
6664   // operation (no concurrent operation will last longer than the
6665   // interval between two calls to verification) and it might hide
6666   // any issues that we would like to catch during testing.
6667   if (free_regions_coming()) {
6668     return;
6669   }
6670 
6671   // Make sure we append the secondary_free_list on the free_list so
6672   // that all free regions we will come across can be safely
6673   // attributed to the free_list.
6674   append_secondary_free_list_if_not_empty_with_lock();
6675 
6676   // Finally, make sure that the region accounting in the lists is
6677   // consistent with what we see in the heap.
6678 
6679   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6680   heap_region_iterate(&cl);
6681   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6682 }
6683 
6684 // Optimized nmethod scanning
6685 
6686 class RegisterNMethodOopClosure: public OopClosure {
6687   G1CollectedHeap* _g1h;
6688   nmethod* _nm;
6689 
6690   template <class T> void do_oop_work(T* p) {
6691     T heap_oop = oopDesc::load_heap_oop(p);
6692     if (!oopDesc::is_null(heap_oop)) {
6693       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6694       HeapRegion* hr = _g1h->heap_region_containing(obj);
6695       assert(!hr->is_continues_humongous(),
6696              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6697                      " starting at "HR_FORMAT,
6698                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6699 
6700       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6701       hr->add_strong_code_root_locked(_nm);
6702     }
6703   }
6704 
6705 public:
6706   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6707     _g1h(g1h), _nm(nm) {}
6708 
6709   void do_oop(oop* p)       { do_oop_work(p); }
6710   void do_oop(narrowOop* p) { do_oop_work(p); }
6711 };
6712 
6713 class UnregisterNMethodOopClosure: public OopClosure {
6714   G1CollectedHeap* _g1h;
6715   nmethod* _nm;
6716 
6717   template <class T> void do_oop_work(T* p) {
6718     T heap_oop = oopDesc::load_heap_oop(p);
6719     if (!oopDesc::is_null(heap_oop)) {
6720       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6721       HeapRegion* hr = _g1h->heap_region_containing(obj);
6722       assert(!hr->is_continues_humongous(),
6723              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6724                      " starting at "HR_FORMAT,
6725                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6726 
6727       hr->remove_strong_code_root(_nm);
6728     }
6729   }
6730 
6731 public:
6732   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6733     _g1h(g1h), _nm(nm) {}
6734 
6735   void do_oop(oop* p)       { do_oop_work(p); }
6736   void do_oop(narrowOop* p) { do_oop_work(p); }
6737 };
6738 
6739 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6740   CollectedHeap::register_nmethod(nm);
6741 
6742   guarantee(nm != NULL, "sanity");
6743   RegisterNMethodOopClosure reg_cl(this, nm);
6744   nm->oops_do(&reg_cl);
6745 }
6746 
6747 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6748   CollectedHeap::unregister_nmethod(nm);
6749 
6750   guarantee(nm != NULL, "sanity");
6751   UnregisterNMethodOopClosure reg_cl(this, nm);
6752   nm->oops_do(&reg_cl, true);
6753 }
6754 
6755 void G1CollectedHeap::purge_code_root_memory() {
6756   double purge_start = os::elapsedTime();
6757   G1CodeRootSet::purge();
6758   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6759   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6760 }
6761 
6762 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6763   G1CollectedHeap* _g1h;
6764 
6765 public:
6766   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6767     _g1h(g1h) {}
6768 
6769   void do_code_blob(CodeBlob* cb) {
6770     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6771     if (nm == NULL) {
6772       return;
6773     }
6774 
6775     if (ScavengeRootsInCode) {
6776       _g1h->register_nmethod(nm);
6777     }
6778   }
6779 };
6780 
6781 void G1CollectedHeap::rebuild_strong_code_roots() {
6782   RebuildStrongCodeRootClosure blob_cl(this);
6783   CodeCache::blobs_do(&blob_cl);
6784 }