1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/concurrentMark.hpp"
  29 #include "gc/g1/evacuationInfo.hpp"
  30 #include "gc/g1/g1AllocRegion.hpp"
  31 #include "gc/g1/g1AllocationContext.hpp"
  32 #include "gc/g1/g1Allocator.hpp"
  33 #include "gc/g1/g1BiasedArray.hpp"
  34 #include "gc/g1/g1CollectorState.hpp"
  35 #include "gc/g1/g1HRPrinter.hpp"
  36 #include "gc/g1/g1InCSetState.hpp"
  37 #include "gc/g1/g1MonitoringSupport.hpp"
  38 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc/g1/g1YCTypes.hpp"
  40 #include "gc/g1/hSpaceCounters.hpp"
  41 #include "gc/g1/heapRegionManager.hpp"
  42 #include "gc/g1/heapRegionSet.hpp"
  43 #include "gc/shared/barrierSet.hpp"
  44 #include "gc/shared/collectedHeap.hpp"
  45 #include "memory/memRegion.hpp"
  46 #include "utilities/stack.hpp"
  47 
  48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  49 // It uses the "Garbage First" heap organization and algorithm, which
  50 // may combine concurrent marking with parallel, incremental compaction of
  51 // heap subsets that will yield large amounts of garbage.
  52 
  53 // Forward declarations
  54 class HeapRegion;
  55 class HRRSCleanupTask;
  56 class GenerationSpec;
  57 class OopsInHeapRegionClosure;
  58 class G1KlassScanClosure;
  59 class G1ParScanThreadState;
  60 class ObjectClosure;
  61 class SpaceClosure;
  62 class CompactibleSpaceClosure;
  63 class Space;
  64 class G1CollectorPolicy;
  65 class GenRemSet;
  66 class G1RemSet;
  67 class HeapRegionRemSetIterator;
  68 class ConcurrentMark;
  69 class ConcurrentMarkThread;
  70 class ConcurrentG1Refine;
  71 class ConcurrentGCTimer;
  72 class GenerationCounters;
  73 class STWGCTimer;
  74 class G1NewTracer;
  75 class G1OldTracer;
  76 class EvacuationFailedInfo;
  77 class nmethod;
  78 class Ticks;
  79 class FlexibleWorkGang;
  80 
  81 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  82 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  83 
  84 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  85 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  86 
  87 class YoungList : public CHeapObj<mtGC> {
  88 private:
  89   G1CollectedHeap* _g1h;
  90 
  91   HeapRegion* _head;
  92 
  93   HeapRegion* _survivor_head;
  94   HeapRegion* _survivor_tail;
  95 
  96   HeapRegion* _curr;
  97 
  98   uint        _length;
  99   uint        _survivor_length;
 100 
 101   size_t      _last_sampled_rs_lengths;
 102   size_t      _sampled_rs_lengths;
 103 
 104   void         empty_list(HeapRegion* list);
 105 
 106 public:
 107   YoungList(G1CollectedHeap* g1h);
 108 
 109   void         push_region(HeapRegion* hr);
 110   void         add_survivor_region(HeapRegion* hr);
 111 
 112   void         empty_list();
 113   bool         is_empty() { return _length == 0; }
 114   uint         length() { return _length; }
 115   uint         eden_length() { return length() - survivor_length(); }
 116   uint         survivor_length() { return _survivor_length; }
 117 
 118   // Currently we do not keep track of the used byte sum for the
 119   // young list and the survivors and it'd be quite a lot of work to
 120   // do so. When we'll eventually replace the young list with
 121   // instances of HeapRegionLinkedList we'll get that for free. So,
 122   // we'll report the more accurate information then.
 123   size_t       eden_used_bytes() {
 124     assert(length() >= survivor_length(), "invariant");
 125     return (size_t) eden_length() * HeapRegion::GrainBytes;
 126   }
 127   size_t       survivor_used_bytes() {
 128     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 129   }
 130 
 131   void rs_length_sampling_init();
 132   bool rs_length_sampling_more();
 133   void rs_length_sampling_next();
 134 
 135   void reset_sampled_info() {
 136     _last_sampled_rs_lengths =   0;
 137   }
 138   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 139 
 140   // for development purposes
 141   void reset_auxilary_lists();
 142   void clear() { _head = NULL; _length = 0; }
 143 
 144   void clear_survivors() {
 145     _survivor_head    = NULL;
 146     _survivor_tail    = NULL;
 147     _survivor_length  = 0;
 148   }
 149 
 150   HeapRegion* first_region() { return _head; }
 151   HeapRegion* first_survivor_region() { return _survivor_head; }
 152   HeapRegion* last_survivor_region() { return _survivor_tail; }
 153 
 154   // debugging
 155   bool          check_list_well_formed();
 156   bool          check_list_empty(bool check_sample = true);
 157   void          print();
 158 };
 159 
 160 // The G1 STW is alive closure.
 161 // An instance is embedded into the G1CH and used as the
 162 // (optional) _is_alive_non_header closure in the STW
 163 // reference processor. It is also extensively used during
 164 // reference processing during STW evacuation pauses.
 165 class G1STWIsAliveClosure: public BoolObjectClosure {
 166   G1CollectedHeap* _g1;
 167 public:
 168   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 169   bool do_object_b(oop p);
 170 };
 171 
 172 class RefineCardTableEntryClosure;
 173 
 174 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 175  private:
 176   void reset_from_card_cache(uint start_idx, size_t num_regions);
 177  public:
 178   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 179 };
 180 
 181 class G1CollectedHeap : public CollectedHeap {
 182   friend class VM_CollectForMetadataAllocation;
 183   friend class VM_G1CollectForAllocation;
 184   friend class VM_G1CollectFull;
 185   friend class VM_G1IncCollectionPause;
 186   friend class VMStructs;
 187   friend class MutatorAllocRegion;
 188   friend class SurvivorGCAllocRegion;
 189   friend class OldGCAllocRegion;
 190   friend class G1Allocator;
 191   friend class G1ArchiveAllocator;
 192 
 193   // Closures used in implementation.
 194   friend class G1ParScanThreadState;
 195   friend class G1ParTask;
 196   friend class G1ParGCAllocator;
 197   friend class G1PrepareCompactClosure;
 198 
 199   // Other related classes.
 200   friend class HeapRegionClaimer;
 201 
 202   // Testing classes.
 203   friend class G1CheckCSetFastTableClosure;
 204 
 205 private:
 206   FlexibleWorkGang* _workers;
 207 
 208   static size_t _humongous_object_threshold_in_words;
 209 
 210   // The secondary free list which contains regions that have been
 211   // freed up during the cleanup process. This will be appended to
 212   // the master free list when appropriate.
 213   FreeRegionList _secondary_free_list;
 214 
 215   // It keeps track of the old regions.
 216   HeapRegionSet _old_set;
 217 
 218   // It keeps track of the humongous regions.
 219   HeapRegionSet _humongous_set;
 220 
 221   void eagerly_reclaim_humongous_regions();
 222 
 223   // The number of regions we could create by expansion.
 224   uint _expansion_regions;
 225 
 226   // The block offset table for the G1 heap.
 227   G1BlockOffsetSharedArray* _bot_shared;
 228 
 229   // Tears down the region sets / lists so that they are empty and the
 230   // regions on the heap do not belong to a region set / list. The
 231   // only exception is the humongous set which we leave unaltered. If
 232   // free_list_only is true, it will only tear down the master free
 233   // list. It is called before a Full GC (free_list_only == false) or
 234   // before heap shrinking (free_list_only == true).
 235   void tear_down_region_sets(bool free_list_only);
 236 
 237   // Rebuilds the region sets / lists so that they are repopulated to
 238   // reflect the contents of the heap. The only exception is the
 239   // humongous set which was not torn down in the first place. If
 240   // free_list_only is true, it will only rebuild the master free
 241   // list. It is called after a Full GC (free_list_only == false) or
 242   // after heap shrinking (free_list_only == true).
 243   void rebuild_region_sets(bool free_list_only);
 244 
 245   // Callback for region mapping changed events.
 246   G1RegionMappingChangedListener _listener;
 247 
 248   // The sequence of all heap regions in the heap.
 249   HeapRegionManager _hrm;
 250 
 251   // Class that handles the different kinds of allocations.
 252   G1Allocator* _allocator;
 253 
 254   // Class that handles archive allocation ranges.
 255   G1ArchiveAllocator* _archive_allocator;
 256 
 257   // Statistics for each allocation context
 258   AllocationContextStats _allocation_context_stats;
 259 
 260   // PLAB sizing policy for survivors.
 261   PLABStats _survivor_plab_stats;
 262 
 263   // PLAB sizing policy for tenured objects.
 264   PLABStats _old_plab_stats;
 265 
 266   // It specifies whether we should attempt to expand the heap after a
 267   // region allocation failure. If heap expansion fails we set this to
 268   // false so that we don't re-attempt the heap expansion (it's likely
 269   // that subsequent expansion attempts will also fail if one fails).
 270   // Currently, it is only consulted during GC and it's reset at the
 271   // start of each GC.
 272   bool _expand_heap_after_alloc_failure;
 273 
 274   // It resets the mutator alloc region before new allocations can take place.
 275   void init_mutator_alloc_region();
 276 
 277   // It releases the mutator alloc region.
 278   void release_mutator_alloc_region();
 279 
 280   // It initializes the GC alloc regions at the start of a GC.
 281   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 282 
 283   // It releases the GC alloc regions at the end of a GC.
 284   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
 285 
 286   // It does any cleanup that needs to be done on the GC alloc regions
 287   // before a Full GC.
 288   void abandon_gc_alloc_regions();
 289 
 290   // Helper for monitoring and management support.
 291   G1MonitoringSupport* _g1mm;
 292 
 293   // Records whether the region at the given index is (still) a
 294   // candidate for eager reclaim.  Only valid for humongous start
 295   // regions; other regions have unspecified values.  Humongous start
 296   // regions are initialized at start of collection pause, with
 297   // candidates removed from the set as they are found reachable from
 298   // roots or the young generation.
 299   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 300    protected:
 301     bool default_value() const { return false; }
 302    public:
 303     void clear() { G1BiasedMappedArray<bool>::clear(); }
 304     void set_candidate(uint region, bool value) {
 305       set_by_index(region, value);
 306     }
 307     bool is_candidate(uint region) {
 308       return get_by_index(region);
 309     }
 310   };
 311 
 312   HumongousReclaimCandidates _humongous_reclaim_candidates;
 313   // Stores whether during humongous object registration we found candidate regions.
 314   // If not, we can skip a few steps.
 315   bool _has_humongous_reclaim_candidates;
 316 
 317   volatile unsigned _gc_time_stamp;
 318 
 319   size_t* _surviving_young_words;
 320 
 321   G1HRPrinter _hr_printer;
 322 
 323   void setup_surviving_young_words();
 324   void update_surviving_young_words(size_t* surv_young_words);
 325   void cleanup_surviving_young_words();
 326 
 327   // It decides whether an explicit GC should start a concurrent cycle
 328   // instead of doing a STW GC. Currently, a concurrent cycle is
 329   // explicitly started if:
 330   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 331   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 332   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 333   // (d) cause == _g1_humongous_allocation
 334   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 335 
 336   // indicates whether we are in young or mixed GC mode
 337   G1CollectorState _collector_state;
 338 
 339   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 340   // concurrent cycles) we have started.
 341   volatile uint _old_marking_cycles_started;
 342 
 343   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 344   // concurrent cycles) we have completed.
 345   volatile uint _old_marking_cycles_completed;
 346 
 347   bool _heap_summary_sent;
 348 
 349   // This is a non-product method that is helpful for testing. It is
 350   // called at the end of a GC and artificially expands the heap by
 351   // allocating a number of dead regions. This way we can induce very
 352   // frequent marking cycles and stress the cleanup / concurrent
 353   // cleanup code more (as all the regions that will be allocated by
 354   // this method will be found dead by the marking cycle).
 355   void allocate_dummy_regions() PRODUCT_RETURN;
 356 
 357   // Clear RSets after a compaction. It also resets the GC time stamps.
 358   void clear_rsets_post_compaction();
 359 
 360   // If the HR printer is active, dump the state of the regions in the
 361   // heap after a compaction.
 362   void print_hrm_post_compaction();
 363 
 364   // Create a memory mapper for auxiliary data structures of the given size and
 365   // translation factor.
 366   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 367                                                          size_t size,
 368                                                          size_t translation_factor);
 369 
 370   double verify(bool guard, const char* msg);
 371   void verify_before_gc();
 372   void verify_after_gc();
 373 
 374   void log_gc_header();
 375   void log_gc_footer(double pause_time_sec);
 376 
 377   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 378 
 379   // These are macros so that, if the assert fires, we get the correct
 380   // line number, file, etc.
 381 
 382 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 383   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 384           (_extra_message_),                                                  \
 385           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 386           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 387           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 388 
 389 #define assert_heap_locked()                                                  \
 390   do {                                                                        \
 391     assert(Heap_lock->owned_by_self(),                                        \
 392            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 393   } while (0)
 394 
 395 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 396   do {                                                                        \
 397     assert(Heap_lock->owned_by_self() ||                                      \
 398            (SafepointSynchronize::is_at_safepoint() &&                        \
 399              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 400            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 401                                         "should be at a safepoint"));         \
 402   } while (0)
 403 
 404 #define assert_heap_locked_and_not_at_safepoint()                             \
 405   do {                                                                        \
 406     assert(Heap_lock->owned_by_self() &&                                      \
 407                                     !SafepointSynchronize::is_at_safepoint(), \
 408           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 409                                        "should not be at a safepoint"));      \
 410   } while (0)
 411 
 412 #define assert_heap_not_locked()                                              \
 413   do {                                                                        \
 414     assert(!Heap_lock->owned_by_self(),                                       \
 415         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 416   } while (0)
 417 
 418 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 419   do {                                                                        \
 420     assert(!Heap_lock->owned_by_self() &&                                     \
 421                                     !SafepointSynchronize::is_at_safepoint(), \
 422       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 423                                    "should not be at a safepoint"));          \
 424   } while (0)
 425 
 426 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 427   do {                                                                        \
 428     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 429               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 430            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 431   } while (0)
 432 
 433 #define assert_not_at_safepoint()                                             \
 434   do {                                                                        \
 435     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 436            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 437   } while (0)
 438 
 439 protected:
 440 
 441   // The young region list.
 442   YoungList*  _young_list;
 443 
 444   // The current policy object for the collector.
 445   G1CollectorPolicy* _g1_policy;
 446 
 447   // This is the second level of trying to allocate a new region. If
 448   // new_region() didn't find a region on the free_list, this call will
 449   // check whether there's anything available on the
 450   // secondary_free_list and/or wait for more regions to appear on
 451   // that list, if _free_regions_coming is set.
 452   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 453 
 454   // Try to allocate a single non-humongous HeapRegion sufficient for
 455   // an allocation of the given word_size. If do_expand is true,
 456   // attempt to expand the heap if necessary to satisfy the allocation
 457   // request. If the region is to be used as an old region or for a
 458   // humongous object, set is_old to true. If not, to false.
 459   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 460 
 461   // Initialize a contiguous set of free regions of length num_regions
 462   // and starting at index first so that they appear as a single
 463   // humongous region.
 464   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 465                                                       uint num_regions,
 466                                                       size_t word_size,
 467                                                       AllocationContext_t context);
 468 
 469   // Attempt to allocate a humongous object of the given size. Return
 470   // NULL if unsuccessful.
 471   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 472 
 473   // The following two methods, allocate_new_tlab() and
 474   // mem_allocate(), are the two main entry points from the runtime
 475   // into the G1's allocation routines. They have the following
 476   // assumptions:
 477   //
 478   // * They should both be called outside safepoints.
 479   //
 480   // * They should both be called without holding the Heap_lock.
 481   //
 482   // * All allocation requests for new TLABs should go to
 483   //   allocate_new_tlab().
 484   //
 485   // * All non-TLAB allocation requests should go to mem_allocate().
 486   //
 487   // * If either call cannot satisfy the allocation request using the
 488   //   current allocating region, they will try to get a new one. If
 489   //   this fails, they will attempt to do an evacuation pause and
 490   //   retry the allocation.
 491   //
 492   // * If all allocation attempts fail, even after trying to schedule
 493   //   an evacuation pause, allocate_new_tlab() will return NULL,
 494   //   whereas mem_allocate() will attempt a heap expansion and/or
 495   //   schedule a Full GC.
 496   //
 497   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 498   //   should never be called with word_size being humongous. All
 499   //   humongous allocation requests should go to mem_allocate() which
 500   //   will satisfy them with a special path.
 501 
 502   virtual HeapWord* allocate_new_tlab(size_t word_size);
 503 
 504   virtual HeapWord* mem_allocate(size_t word_size,
 505                                  bool*  gc_overhead_limit_was_exceeded);
 506 
 507   // The following three methods take a gc_count_before_ret
 508   // parameter which is used to return the GC count if the method
 509   // returns NULL. Given that we are required to read the GC count
 510   // while holding the Heap_lock, and these paths will take the
 511   // Heap_lock at some point, it's easier to get them to read the GC
 512   // count while holding the Heap_lock before they return NULL instead
 513   // of the caller (namely: mem_allocate()) having to also take the
 514   // Heap_lock just to read the GC count.
 515 
 516   // First-level mutator allocation attempt: try to allocate out of
 517   // the mutator alloc region without taking the Heap_lock. This
 518   // should only be used for non-humongous allocations.
 519   inline HeapWord* attempt_allocation(size_t word_size,
 520                                       uint* gc_count_before_ret,
 521                                       uint* gclocker_retry_count_ret);
 522 
 523   // Second-level mutator allocation attempt: take the Heap_lock and
 524   // retry the allocation attempt, potentially scheduling a GC
 525   // pause. This should only be used for non-humongous allocations.
 526   HeapWord* attempt_allocation_slow(size_t word_size,
 527                                     AllocationContext_t context,
 528                                     uint* gc_count_before_ret,
 529                                     uint* gclocker_retry_count_ret);
 530 
 531   // Takes the Heap_lock and attempts a humongous allocation. It can
 532   // potentially schedule a GC pause.
 533   HeapWord* attempt_allocation_humongous(size_t word_size,
 534                                          uint* gc_count_before_ret,
 535                                          uint* gclocker_retry_count_ret);
 536 
 537   // Allocation attempt that should be called during safepoints (e.g.,
 538   // at the end of a successful GC). expect_null_mutator_alloc_region
 539   // specifies whether the mutator alloc region is expected to be NULL
 540   // or not.
 541   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 542                                             AllocationContext_t context,
 543                                             bool expect_null_mutator_alloc_region);
 544 
 545   // It dirties the cards that cover the block so that so that the post
 546   // write barrier never queues anything when updating objects on this
 547   // block. It is assumed (and in fact we assert) that the block
 548   // belongs to a young region.
 549   inline void dirty_young_block(HeapWord* start, size_t word_size);
 550 
 551   // Allocate blocks during garbage collection. Will ensure an
 552   // allocation region, either by picking one or expanding the
 553   // heap, and then allocate a block of the given size. The block
 554   // may not be a humongous - it must fit into a single heap region.
 555   inline HeapWord* par_allocate_during_gc(InCSetState dest,
 556                                           size_t word_size,
 557                                           AllocationContext_t context);
 558   // Ensure that no further allocations can happen in "r", bearing in mind
 559   // that parallel threads might be attempting allocations.
 560   void par_allocate_remaining_space(HeapRegion* r);
 561 
 562   // Allocation attempt during GC for a survivor object / PLAB.
 563   inline HeapWord* survivor_attempt_allocation(size_t word_size,
 564                                                AllocationContext_t context);
 565 
 566   // Allocation attempt during GC for an old object / PLAB.
 567   inline HeapWord* old_attempt_allocation(size_t word_size,
 568                                           AllocationContext_t context);
 569 
 570   // These methods are the "callbacks" from the G1AllocRegion class.
 571 
 572   // For mutator alloc regions.
 573   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 574   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 575                                    size_t allocated_bytes);
 576 
 577   // For GC alloc regions.
 578   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 579                                   InCSetState dest);
 580   void retire_gc_alloc_region(HeapRegion* alloc_region,
 581                               size_t allocated_bytes, InCSetState dest);
 582 
 583   // Allocate the highest free region in the reserved heap. This will commit
 584   // regions as necessary.
 585   HeapRegion* alloc_highest_free_region();
 586 
 587   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 588   //   inspection request and should collect the entire heap
 589   // - if clear_all_soft_refs is true, all soft references should be
 590   //   cleared during the GC
 591   // - if explicit_gc is false, word_size describes the allocation that
 592   //   the GC should attempt (at least) to satisfy
 593   // - it returns false if it is unable to do the collection due to the
 594   //   GC locker being active, true otherwise
 595   bool do_collection(bool explicit_gc,
 596                      bool clear_all_soft_refs,
 597                      size_t word_size);
 598 
 599   // Callback from VM_G1CollectFull operation.
 600   // Perform a full collection.
 601   virtual void do_full_collection(bool clear_all_soft_refs);
 602 
 603   // Resize the heap if necessary after a full collection.  If this is
 604   // after a collect-for allocation, "word_size" is the allocation size,
 605   // and will be considered part of the used portion of the heap.
 606   void resize_if_necessary_after_full_collection(size_t word_size);
 607 
 608   // Callback from VM_G1CollectForAllocation operation.
 609   // This function does everything necessary/possible to satisfy a
 610   // failed allocation request (including collection, expansion, etc.)
 611   HeapWord* satisfy_failed_allocation(size_t word_size,
 612                                       AllocationContext_t context,
 613                                       bool* succeeded);
 614 
 615   // Attempting to expand the heap sufficiently
 616   // to support an allocation of the given "word_size".  If
 617   // successful, perform the allocation and return the address of the
 618   // allocated block, or else "NULL".
 619   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 620 
 621   // Process any reference objects discovered during
 622   // an incremental evacuation pause.
 623   void process_discovered_references();
 624 
 625   // Enqueue any remaining discovered references
 626   // after processing.
 627   void enqueue_discovered_references();
 628 
 629 public:
 630   FlexibleWorkGang* workers() const { return _workers; }
 631 
 632   G1Allocator* allocator() {
 633     return _allocator;
 634   }
 635 
 636   G1MonitoringSupport* g1mm() {
 637     assert(_g1mm != NULL, "should have been initialized");
 638     return _g1mm;
 639   }
 640 
 641   // Expand the garbage-first heap by at least the given size (in bytes!).
 642   // Returns true if the heap was expanded by the requested amount;
 643   // false otherwise.
 644   // (Rounds up to a HeapRegion boundary.)
 645   bool expand(size_t expand_bytes);
 646 
 647   // Returns the PLAB statistics for a given destination.
 648   inline PLABStats* alloc_buffer_stats(InCSetState dest);
 649 
 650   // Determines PLAB size for a given destination.
 651   inline size_t desired_plab_sz(InCSetState dest);
 652 
 653   inline AllocationContextStats& allocation_context_stats();
 654 
 655   // Do anything common to GC's.
 656   void gc_prologue(bool full);
 657   void gc_epilogue(bool full);
 658 
 659   // Modify the reclaim candidate set and test for presence.
 660   // These are only valid for starts_humongous regions.
 661   inline void set_humongous_reclaim_candidate(uint region, bool value);
 662   inline bool is_humongous_reclaim_candidate(uint region);
 663 
 664   // Remove from the reclaim candidate set.  Also remove from the
 665   // collection set so that later encounters avoid the slow path.
 666   inline void set_humongous_is_live(oop obj);
 667 
 668   // Register the given region to be part of the collection set.
 669   inline void register_humongous_region_with_cset(uint index);
 670   // Register regions with humongous objects (actually on the start region) in
 671   // the in_cset_fast_test table.
 672   void register_humongous_regions_with_cset();
 673   // We register a region with the fast "in collection set" test. We
 674   // simply set to true the array slot corresponding to this region.
 675   void register_young_region_with_cset(HeapRegion* r) {
 676     _in_cset_fast_test.set_in_young(r->hrm_index());
 677   }
 678   void register_old_region_with_cset(HeapRegion* r) {
 679     _in_cset_fast_test.set_in_old(r->hrm_index());
 680   }
 681   void clear_in_cset(const HeapRegion* hr) {
 682     _in_cset_fast_test.clear(hr);
 683   }
 684 
 685   void clear_cset_fast_test() {
 686     _in_cset_fast_test.clear();
 687   }
 688 
 689   // This is called at the start of either a concurrent cycle or a Full
 690   // GC to update the number of old marking cycles started.
 691   void increment_old_marking_cycles_started();
 692 
 693   // This is called at the end of either a concurrent cycle or a Full
 694   // GC to update the number of old marking cycles completed. Those two
 695   // can happen in a nested fashion, i.e., we start a concurrent
 696   // cycle, a Full GC happens half-way through it which ends first,
 697   // and then the cycle notices that a Full GC happened and ends
 698   // too. The concurrent parameter is a boolean to help us do a bit
 699   // tighter consistency checking in the method. If concurrent is
 700   // false, the caller is the inner caller in the nesting (i.e., the
 701   // Full GC). If concurrent is true, the caller is the outer caller
 702   // in this nesting (i.e., the concurrent cycle). Further nesting is
 703   // not currently supported. The end of this call also notifies
 704   // the FullGCCount_lock in case a Java thread is waiting for a full
 705   // GC to happen (e.g., it called System.gc() with
 706   // +ExplicitGCInvokesConcurrent).
 707   void increment_old_marking_cycles_completed(bool concurrent);
 708 
 709   uint old_marking_cycles_completed() {
 710     return _old_marking_cycles_completed;
 711   }
 712 
 713   void register_concurrent_cycle_start(const Ticks& start_time);
 714   void register_concurrent_cycle_end();
 715   void trace_heap_after_concurrent_cycle();
 716 
 717   G1HRPrinter* hr_printer() { return &_hr_printer; }
 718 
 719   // Frees a non-humongous region by initializing its contents and
 720   // adding it to the free list that's passed as a parameter (this is
 721   // usually a local list which will be appended to the master free
 722   // list later). The used bytes of freed regions are accumulated in
 723   // pre_used. If par is true, the region's RSet will not be freed
 724   // up. The assumption is that this will be done later.
 725   // The locked parameter indicates if the caller has already taken
 726   // care of proper synchronization. This may allow some optimizations.
 727   void free_region(HeapRegion* hr,
 728                    FreeRegionList* free_list,
 729                    bool par,
 730                    bool locked = false);
 731 
 732   // Frees a humongous region by collapsing it into individual regions
 733   // and calling free_region() for each of them. The freed regions
 734   // will be added to the free list that's passed as a parameter (this
 735   // is usually a local list which will be appended to the master free
 736   // list later). The used bytes of freed regions are accumulated in
 737   // pre_used. If par is true, the region's RSet will not be freed
 738   // up. The assumption is that this will be done later.
 739   void free_humongous_region(HeapRegion* hr,
 740                              FreeRegionList* free_list,
 741                              bool par);
 742 
 743   // Facility for allocating in 'archive' regions in high heap memory and
 744   // recording the allocated ranges. These should all be called from the
 745   // VM thread at safepoints, without the heap lock held. They can be used
 746   // to create and archive a set of heap regions which can be mapped at the
 747   // same fixed addresses in a subsequent JVM invocation.
 748   void begin_archive_alloc_range();
 749 
 750   // Check if the requested size would be too large for an archive allocation.
 751   bool is_archive_alloc_too_large(size_t word_size);
 752 
 753   // Allocate memory of the requested size from the archive region. This will
 754   // return NULL if the size is too large or if no memory is available. It
 755   // does not trigger a garbage collection.
 756   HeapWord* archive_mem_allocate(size_t word_size);
 757 
 758   // Optionally aligns the end address and returns the allocated ranges in
 759   // an array of MemRegions in order of ascending addresses.
 760   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 761                                size_t end_alignment_in_bytes = 0);
 762 
 763   // Facility for allocating a fixed range within the heap and marking
 764   // the containing regions as 'archive'. For use at JVM init time, when the
 765   // caller may mmap archived heap data at the specified range(s).
 766   // Verify that the MemRegions specified in the argument array are within the
 767   // reserved heap.
 768   bool check_archive_addresses(MemRegion* range, size_t count);
 769 
 770   // Commit the appropriate G1 regions containing the specified MemRegions
 771   // and mark them as 'archive' regions. The regions in the array must be
 772   // non-overlapping and in order of ascending address.
 773   bool alloc_archive_regions(MemRegion* range, size_t count);
 774 
 775   // Insert any required filler objects in the G1 regions around the specified
 776   // ranges to make the regions parseable. This must be called after
 777   // alloc_archive_regions, and after class loading has occurred.
 778   void fill_archive_regions(MemRegion* range, size_t count);
 779 
 780 protected:
 781 
 782   // Shrink the garbage-first heap by at most the given size (in bytes!).
 783   // (Rounds down to a HeapRegion boundary.)
 784   virtual void shrink(size_t expand_bytes);
 785   void shrink_helper(size_t expand_bytes);
 786 
 787   #if TASKQUEUE_STATS
 788   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 789   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 790   void reset_taskqueue_stats();
 791   #endif // TASKQUEUE_STATS
 792 
 793   // Schedule the VM operation that will do an evacuation pause to
 794   // satisfy an allocation request of word_size. *succeeded will
 795   // return whether the VM operation was successful (it did do an
 796   // evacuation pause) or not (another thread beat us to it or the GC
 797   // locker was active). Given that we should not be holding the
 798   // Heap_lock when we enter this method, we will pass the
 799   // gc_count_before (i.e., total_collections()) as a parameter since
 800   // it has to be read while holding the Heap_lock. Currently, both
 801   // methods that call do_collection_pause() release the Heap_lock
 802   // before the call, so it's easy to read gc_count_before just before.
 803   HeapWord* do_collection_pause(size_t         word_size,
 804                                 uint           gc_count_before,
 805                                 bool*          succeeded,
 806                                 GCCause::Cause gc_cause);
 807 
 808   // The guts of the incremental collection pause, executed by the vm
 809   // thread. It returns false if it is unable to do the collection due
 810   // to the GC locker being active, true otherwise
 811   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 812 
 813   // Actually do the work of evacuating the collection set.
 814   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 815 
 816   // The g1 remembered set of the heap.
 817   G1RemSet* _g1_rem_set;
 818 
 819   // A set of cards that cover the objects for which the Rsets should be updated
 820   // concurrently after the collection.
 821   DirtyCardQueueSet _dirty_card_queue_set;
 822 
 823   // The closure used to refine a single card.
 824   RefineCardTableEntryClosure* _refine_cte_cl;
 825 
 826   // A DirtyCardQueueSet that is used to hold cards that contain
 827   // references into the current collection set. This is used to
 828   // update the remembered sets of the regions in the collection
 829   // set in the event of an evacuation failure.
 830   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 831 
 832   // After a collection pause, make the regions in the CS into free
 833   // regions.
 834   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 835 
 836   // Abandon the current collection set without recording policy
 837   // statistics or updating free lists.
 838   void abandon_collection_set(HeapRegion* cs_head);
 839 
 840   // The concurrent marker (and the thread it runs in.)
 841   ConcurrentMark* _cm;
 842   ConcurrentMarkThread* _cmThread;
 843 
 844   // The concurrent refiner.
 845   ConcurrentG1Refine* _cg1r;
 846 
 847   // The parallel task queues
 848   RefToScanQueueSet *_task_queues;
 849 
 850   // True iff a evacuation has failed in the current collection.
 851   bool _evacuation_failed;
 852 
 853   EvacuationFailedInfo* _evacuation_failed_info_array;
 854 
 855   // Failed evacuations cause some logical from-space objects to have
 856   // forwarding pointers to themselves.  Reset them.
 857   void remove_self_forwarding_pointers();
 858 
 859   // Together, these store an object with a preserved mark, and its mark value.
 860   Stack<oop, mtGC>     _objs_with_preserved_marks;
 861   Stack<markOop, mtGC> _preserved_marks_of_objs;
 862 
 863   // Preserve the mark of "obj", if necessary, in preparation for its mark
 864   // word being overwritten with a self-forwarding-pointer.
 865   void preserve_mark_if_necessary(oop obj, markOop m);
 866 
 867   // The stack of evac-failure objects left to be scanned.
 868   GrowableArray<oop>*    _evac_failure_scan_stack;
 869   // The closure to apply to evac-failure objects.
 870 
 871   OopsInHeapRegionClosure* _evac_failure_closure;
 872   // Set the field above.
 873   void
 874   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 875     _evac_failure_closure = evac_failure_closure;
 876   }
 877 
 878   // Push "obj" on the scan stack.
 879   void push_on_evac_failure_scan_stack(oop obj);
 880   // Process scan stack entries until the stack is empty.
 881   void drain_evac_failure_scan_stack();
 882   // True iff an invocation of "drain_scan_stack" is in progress; to
 883   // prevent unnecessary recursion.
 884   bool _drain_in_progress;
 885 
 886   // Do any necessary initialization for evacuation-failure handling.
 887   // "cl" is the closure that will be used to process evac-failure
 888   // objects.
 889   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 890   // Do any necessary cleanup for evacuation-failure handling data
 891   // structures.
 892   void finalize_for_evac_failure();
 893 
 894   // An attempt to evacuate "obj" has failed; take necessary steps.
 895   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 896   void handle_evacuation_failure_common(oop obj, markOop m);
 897 
 898 #ifndef PRODUCT
 899   // Support for forcing evacuation failures. Analogous to
 900   // PromotionFailureALot for the other collectors.
 901 
 902   // Records whether G1EvacuationFailureALot should be in effect
 903   // for the current GC
 904   bool _evacuation_failure_alot_for_current_gc;
 905 
 906   // Used to record the GC number for interval checking when
 907   // determining whether G1EvaucationFailureALot is in effect
 908   // for the current GC.
 909   size_t _evacuation_failure_alot_gc_number;
 910 
 911   // Count of the number of evacuations between failures.
 912   volatile size_t _evacuation_failure_alot_count;
 913 
 914   // Set whether G1EvacuationFailureALot should be in effect
 915   // for the current GC (based upon the type of GC and which
 916   // command line flags are set);
 917   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 918                                                   bool during_initial_mark,
 919                                                   bool during_marking);
 920 
 921   inline void set_evacuation_failure_alot_for_current_gc();
 922 
 923   // Return true if it's time to cause an evacuation failure.
 924   inline bool evacuation_should_fail();
 925 
 926   // Reset the G1EvacuationFailureALot counters.  Should be called at
 927   // the end of an evacuation pause in which an evacuation failure occurred.
 928   inline void reset_evacuation_should_fail();
 929 #endif // !PRODUCT
 930 
 931   // ("Weak") Reference processing support.
 932   //
 933   // G1 has 2 instances of the reference processor class. One
 934   // (_ref_processor_cm) handles reference object discovery
 935   // and subsequent processing during concurrent marking cycles.
 936   //
 937   // The other (_ref_processor_stw) handles reference object
 938   // discovery and processing during full GCs and incremental
 939   // evacuation pauses.
 940   //
 941   // During an incremental pause, reference discovery will be
 942   // temporarily disabled for _ref_processor_cm and will be
 943   // enabled for _ref_processor_stw. At the end of the evacuation
 944   // pause references discovered by _ref_processor_stw will be
 945   // processed and discovery will be disabled. The previous
 946   // setting for reference object discovery for _ref_processor_cm
 947   // will be re-instated.
 948   //
 949   // At the start of marking:
 950   //  * Discovery by the CM ref processor is verified to be inactive
 951   //    and it's discovered lists are empty.
 952   //  * Discovery by the CM ref processor is then enabled.
 953   //
 954   // At the end of marking:
 955   //  * Any references on the CM ref processor's discovered
 956   //    lists are processed (possibly MT).
 957   //
 958   // At the start of full GC we:
 959   //  * Disable discovery by the CM ref processor and
 960   //    empty CM ref processor's discovered lists
 961   //    (without processing any entries).
 962   //  * Verify that the STW ref processor is inactive and it's
 963   //    discovered lists are empty.
 964   //  * Temporarily set STW ref processor discovery as single threaded.
 965   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 966   //    field.
 967   //  * Finally enable discovery by the STW ref processor.
 968   //
 969   // The STW ref processor is used to record any discovered
 970   // references during the full GC.
 971   //
 972   // At the end of a full GC we:
 973   //  * Enqueue any reference objects discovered by the STW ref processor
 974   //    that have non-live referents. This has the side-effect of
 975   //    making the STW ref processor inactive by disabling discovery.
 976   //  * Verify that the CM ref processor is still inactive
 977   //    and no references have been placed on it's discovered
 978   //    lists (also checked as a precondition during initial marking).
 979 
 980   // The (stw) reference processor...
 981   ReferenceProcessor* _ref_processor_stw;
 982 
 983   STWGCTimer* _gc_timer_stw;
 984   ConcurrentGCTimer* _gc_timer_cm;
 985 
 986   G1OldTracer* _gc_tracer_cm;
 987   G1NewTracer* _gc_tracer_stw;
 988 
 989   // During reference object discovery, the _is_alive_non_header
 990   // closure (if non-null) is applied to the referent object to
 991   // determine whether the referent is live. If so then the
 992   // reference object does not need to be 'discovered' and can
 993   // be treated as a regular oop. This has the benefit of reducing
 994   // the number of 'discovered' reference objects that need to
 995   // be processed.
 996   //
 997   // Instance of the is_alive closure for embedding into the
 998   // STW reference processor as the _is_alive_non_header field.
 999   // Supplying a value for the _is_alive_non_header field is
1000   // optional but doing so prevents unnecessary additions to
1001   // the discovered lists during reference discovery.
1002   G1STWIsAliveClosure _is_alive_closure_stw;
1003 
1004   // The (concurrent marking) reference processor...
1005   ReferenceProcessor* _ref_processor_cm;
1006 
1007   // Instance of the concurrent mark is_alive closure for embedding
1008   // into the Concurrent Marking reference processor as the
1009   // _is_alive_non_header field. Supplying a value for the
1010   // _is_alive_non_header field is optional but doing so prevents
1011   // unnecessary additions to the discovered lists during reference
1012   // discovery.
1013   G1CMIsAliveClosure _is_alive_closure_cm;
1014 
1015   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1016   HeapRegion** _worker_cset_start_region;
1017 
1018   // Time stamp to validate the regions recorded in the cache
1019   // used by G1CollectedHeap::start_cset_region_for_worker().
1020   // The heap region entry for a given worker is valid iff
1021   // the associated time stamp value matches the current value
1022   // of G1CollectedHeap::_gc_time_stamp.
1023   uint* _worker_cset_start_region_time_stamp;
1024 
1025   volatile bool _free_regions_coming;
1026 
1027 public:
1028 
1029   void set_refine_cte_cl_concurrency(bool concurrent);
1030 
1031   RefToScanQueue *task_queue(uint i) const;
1032 
1033   uint num_task_queues() const;
1034 
1035   // A set of cards where updates happened during the GC
1036   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1037 
1038   // A DirtyCardQueueSet that is used to hold cards that contain
1039   // references into the current collection set. This is used to
1040   // update the remembered sets of the regions in the collection
1041   // set in the event of an evacuation failure.
1042   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1043         { return _into_cset_dirty_card_queue_set; }
1044 
1045   // Create a G1CollectedHeap with the specified policy.
1046   // Must call the initialize method afterwards.
1047   // May not return if something goes wrong.
1048   G1CollectedHeap(G1CollectorPolicy* policy);
1049 
1050   // Initialize the G1CollectedHeap to have the initial and
1051   // maximum sizes and remembered and barrier sets
1052   // specified by the policy object.
1053   jint initialize();
1054 
1055   virtual void stop();
1056 
1057   // Return the (conservative) maximum heap alignment for any G1 heap
1058   static size_t conservative_max_heap_alignment();
1059 
1060   // Does operations required after initialization has been done.
1061   void post_initialize();
1062 
1063   // Initialize weak reference processing.
1064   void ref_processing_init();
1065 
1066   virtual Name kind() const {
1067     return CollectedHeap::G1CollectedHeap;
1068   }
1069 
1070   G1CollectorState* collector_state() { return &_collector_state; }
1071 
1072   // The current policy object for the collector.
1073   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1074 
1075   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1076 
1077   // Adaptive size policy.  No such thing for g1.
1078   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1079 
1080   // The rem set and barrier set.
1081   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1082 
1083   unsigned get_gc_time_stamp() {
1084     return _gc_time_stamp;
1085   }
1086 
1087   inline void reset_gc_time_stamp();
1088 
1089   void check_gc_time_stamps() PRODUCT_RETURN;
1090 
1091   inline void increment_gc_time_stamp();
1092 
1093   // Reset the given region's GC timestamp. If it's starts humongous,
1094   // also reset the GC timestamp of its corresponding
1095   // continues humongous regions too.
1096   void reset_gc_time_stamps(HeapRegion* hr);
1097 
1098   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1099                                   DirtyCardQueue* into_cset_dcq,
1100                                   bool concurrent, uint worker_i);
1101 
1102   // The shared block offset table array.
1103   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1104 
1105   // Reference Processing accessors
1106 
1107   // The STW reference processor....
1108   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1109 
1110   // The Concurrent Marking reference processor...
1111   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1112 
1113   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1114   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1115 
1116   virtual size_t capacity() const;
1117   virtual size_t used() const;
1118   // This should be called when we're not holding the heap lock. The
1119   // result might be a bit inaccurate.
1120   size_t used_unlocked() const;
1121   size_t recalculate_used() const;
1122 
1123   // These virtual functions do the actual allocation.
1124   // Some heaps may offer a contiguous region for shared non-blocking
1125   // allocation, via inlined code (by exporting the address of the top and
1126   // end fields defining the extent of the contiguous allocation region.)
1127   // But G1CollectedHeap doesn't yet support this.
1128 
1129   virtual bool is_maximal_no_gc() const {
1130     return _hrm.available() == 0;
1131   }
1132 
1133   // The current number of regions in the heap.
1134   uint num_regions() const { return _hrm.length(); }
1135 
1136   // The max number of regions in the heap.
1137   uint max_regions() const { return _hrm.max_length(); }
1138 
1139   // The number of regions that are completely free.
1140   uint num_free_regions() const { return _hrm.num_free_regions(); }
1141 
1142   MemoryUsage get_auxiliary_data_memory_usage() const {
1143     return _hrm.get_auxiliary_data_memory_usage();
1144   }
1145 
1146   // The number of regions that are not completely free.
1147   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1148 
1149   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1150   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1151   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1152   void verify_dirty_young_regions() PRODUCT_RETURN;
1153 
1154 #ifndef PRODUCT
1155   // Make sure that the given bitmap has no marked objects in the
1156   // range [from,limit). If it does, print an error message and return
1157   // false. Otherwise, just return true. bitmap_name should be "prev"
1158   // or "next".
1159   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1160                                 HeapWord* from, HeapWord* limit);
1161 
1162   // Verify that the prev / next bitmap range [tams,end) for the given
1163   // region has no marks. Return true if all is well, false if errors
1164   // are detected.
1165   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1166 #endif // PRODUCT
1167 
1168   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1169   // the given region do not have any spurious marks. If errors are
1170   // detected, print appropriate error messages and crash.
1171   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1172 
1173   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1174   // have any spurious marks. If errors are detected, print
1175   // appropriate error messages and crash.
1176   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1177 
1178   // Do sanity check on the contents of the in-cset fast test table.
1179   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1180 
1181   // verify_region_sets() performs verification over the region
1182   // lists. It will be compiled in the product code to be used when
1183   // necessary (i.e., during heap verification).
1184   void verify_region_sets();
1185 
1186   // verify_region_sets_optional() is planted in the code for
1187   // list verification in non-product builds (and it can be enabled in
1188   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1189 #if HEAP_REGION_SET_FORCE_VERIFY
1190   void verify_region_sets_optional() {
1191     verify_region_sets();
1192   }
1193 #else // HEAP_REGION_SET_FORCE_VERIFY
1194   void verify_region_sets_optional() { }
1195 #endif // HEAP_REGION_SET_FORCE_VERIFY
1196 
1197 #ifdef ASSERT
1198   bool is_on_master_free_list(HeapRegion* hr) {
1199     return _hrm.is_free(hr);
1200   }
1201 #endif // ASSERT
1202 
1203   // Wrapper for the region list operations that can be called from
1204   // methods outside this class.
1205 
1206   void secondary_free_list_add(FreeRegionList* list) {
1207     _secondary_free_list.add_ordered(list);
1208   }
1209 
1210   void append_secondary_free_list() {
1211     _hrm.insert_list_into_free_list(&_secondary_free_list);
1212   }
1213 
1214   void append_secondary_free_list_if_not_empty_with_lock() {
1215     // If the secondary free list looks empty there's no reason to
1216     // take the lock and then try to append it.
1217     if (!_secondary_free_list.is_empty()) {
1218       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1219       append_secondary_free_list();
1220     }
1221   }
1222 
1223   inline void old_set_remove(HeapRegion* hr);
1224 
1225   size_t non_young_capacity_bytes() {
1226     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1227   }
1228 
1229   void set_free_regions_coming();
1230   void reset_free_regions_coming();
1231   bool free_regions_coming() { return _free_regions_coming; }
1232   void wait_while_free_regions_coming();
1233 
1234   // Determine whether the given region is one that we are using as an
1235   // old GC alloc region.
1236   bool is_old_gc_alloc_region(HeapRegion* hr) {
1237     return _allocator->is_retained_old_region(hr);
1238   }
1239 
1240   // Perform a collection of the heap; intended for use in implementing
1241   // "System.gc".  This probably implies as full a collection as the
1242   // "CollectedHeap" supports.
1243   virtual void collect(GCCause::Cause cause);
1244 
1245   // The same as above but assume that the caller holds the Heap_lock.
1246   void collect_locked(GCCause::Cause cause);
1247 
1248   virtual bool copy_allocation_context_stats(const jint* contexts,
1249                                              jlong* totals,
1250                                              jbyte* accuracy,
1251                                              jint len);
1252 
1253   // True iff an evacuation has failed in the most-recent collection.
1254   bool evacuation_failed() { return _evacuation_failed; }
1255 
1256   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1257   void prepend_to_freelist(FreeRegionList* list);
1258   void decrement_summary_bytes(size_t bytes);
1259 
1260   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1261   virtual bool is_in(const void* p) const;
1262 #ifdef ASSERT
1263   // Returns whether p is in one of the available areas of the heap. Slow but
1264   // extensive version.
1265   bool is_in_exact(const void* p) const;
1266 #endif
1267 
1268   // Return "TRUE" iff the given object address is within the collection
1269   // set. Slow implementation.
1270   inline bool obj_in_cs(oop obj);
1271 
1272   inline bool is_in_cset(const HeapRegion *hr);
1273   inline bool is_in_cset(oop obj);
1274 
1275   inline bool is_in_cset_or_humongous(const oop obj);
1276 
1277  private:
1278   // This array is used for a quick test on whether a reference points into
1279   // the collection set or not. Each of the array's elements denotes whether the
1280   // corresponding region is in the collection set or not.
1281   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1282 
1283  public:
1284 
1285   inline InCSetState in_cset_state(const oop obj);
1286 
1287   // Return "TRUE" iff the given object address is in the reserved
1288   // region of g1.
1289   bool is_in_g1_reserved(const void* p) const {
1290     return _hrm.reserved().contains(p);
1291   }
1292 
1293   // Returns a MemRegion that corresponds to the space that has been
1294   // reserved for the heap
1295   MemRegion g1_reserved() const {
1296     return _hrm.reserved();
1297   }
1298 
1299   virtual bool is_in_closed_subset(const void* p) const;
1300 
1301   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1302     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1303   }
1304 
1305   // This resets the card table to all zeros.  It is used after
1306   // a collection pause which used the card table to claim cards.
1307   void cleanUpCardTable();
1308 
1309   // Iteration functions.
1310 
1311   // Iterate over all objects, calling "cl.do_object" on each.
1312   virtual void object_iterate(ObjectClosure* cl);
1313 
1314   virtual void safe_object_iterate(ObjectClosure* cl) {
1315     object_iterate(cl);
1316   }
1317 
1318   // Iterate over heap regions, in address order, terminating the
1319   // iteration early if the "doHeapRegion" method returns "true".
1320   void heap_region_iterate(HeapRegionClosure* blk) const;
1321 
1322   // Return the region with the given index. It assumes the index is valid.
1323   inline HeapRegion* region_at(uint index) const;
1324 
1325   // Calculate the region index of the given address. Given address must be
1326   // within the heap.
1327   inline uint addr_to_region(HeapWord* addr) const;
1328 
1329   inline HeapWord* bottom_addr_for_region(uint index) const;
1330 
1331   // Iterate over the heap regions in parallel. Assumes that this will be called
1332   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1333   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1334   // to each of the regions, by attempting to claim the region using the
1335   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1336   // region. The concurrent argument should be set to true if iteration is
1337   // performed concurrently, during which no assumptions are made for consistent
1338   // attributes of the heap regions (as they might be modified while iterating).
1339   void heap_region_par_iterate(HeapRegionClosure* cl,
1340                                uint worker_id,
1341                                HeapRegionClaimer* hrclaimer,
1342                                bool concurrent = false) const;
1343 
1344   // Clear the cached cset start regions and (more importantly)
1345   // the time stamps. Called when we reset the GC time stamp.
1346   void clear_cset_start_regions();
1347 
1348   // Given the id of a worker, obtain or calculate a suitable
1349   // starting region for iterating over the current collection set.
1350   HeapRegion* start_cset_region_for_worker(uint worker_i);
1351 
1352   // Iterate over the regions (if any) in the current collection set.
1353   void collection_set_iterate(HeapRegionClosure* blk);
1354 
1355   // As above but starting from region r
1356   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1357 
1358   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1359 
1360   // Returns the HeapRegion that contains addr. addr must not be NULL.
1361   template <class T>
1362   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1363 
1364   // Returns the HeapRegion that contains addr. addr must not be NULL.
1365   // If addr is within a humongous continues region, it returns its humongous start region.
1366   template <class T>
1367   inline HeapRegion* heap_region_containing(const T addr) const;
1368 
1369   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1370   // each address in the (reserved) heap is a member of exactly
1371   // one block.  The defining characteristic of a block is that it is
1372   // possible to find its size, and thus to progress forward to the next
1373   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1374   // represent Java objects, or they might be free blocks in a
1375   // free-list-based heap (or subheap), as long as the two kinds are
1376   // distinguishable and the size of each is determinable.
1377 
1378   // Returns the address of the start of the "block" that contains the
1379   // address "addr".  We say "blocks" instead of "object" since some heaps
1380   // may not pack objects densely; a chunk may either be an object or a
1381   // non-object.
1382   virtual HeapWord* block_start(const void* addr) const;
1383 
1384   // Requires "addr" to be the start of a chunk, and returns its size.
1385   // "addr + size" is required to be the start of a new chunk, or the end
1386   // of the active area of the heap.
1387   virtual size_t block_size(const HeapWord* addr) const;
1388 
1389   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1390   // the block is an object.
1391   virtual bool block_is_obj(const HeapWord* addr) const;
1392 
1393   // Section on thread-local allocation buffers (TLABs)
1394   // See CollectedHeap for semantics.
1395 
1396   bool supports_tlab_allocation() const;
1397   size_t tlab_capacity(Thread* ignored) const;
1398   size_t tlab_used(Thread* ignored) const;
1399   size_t max_tlab_size() const;
1400   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1401 
1402   // Can a compiler initialize a new object without store barriers?
1403   // This permission only extends from the creation of a new object
1404   // via a TLAB up to the first subsequent safepoint. If such permission
1405   // is granted for this heap type, the compiler promises to call
1406   // defer_store_barrier() below on any slow path allocation of
1407   // a new object for which such initializing store barriers will
1408   // have been elided. G1, like CMS, allows this, but should be
1409   // ready to provide a compensating write barrier as necessary
1410   // if that storage came out of a non-young region. The efficiency
1411   // of this implementation depends crucially on being able to
1412   // answer very efficiently in constant time whether a piece of
1413   // storage in the heap comes from a young region or not.
1414   // See ReduceInitialCardMarks.
1415   virtual bool can_elide_tlab_store_barriers() const {
1416     return true;
1417   }
1418 
1419   virtual bool card_mark_must_follow_store() const {
1420     return true;
1421   }
1422 
1423   inline bool is_in_young(const oop obj);
1424 
1425   virtual bool is_scavengable(const void* addr);
1426 
1427   // We don't need barriers for initializing stores to objects
1428   // in the young gen: for the SATB pre-barrier, there is no
1429   // pre-value that needs to be remembered; for the remembered-set
1430   // update logging post-barrier, we don't maintain remembered set
1431   // information for young gen objects.
1432   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1433 
1434   // Returns "true" iff the given word_size is "very large".
1435   static bool is_humongous(size_t word_size) {
1436     // Note this has to be strictly greater-than as the TLABs
1437     // are capped at the humongous threshold and we want to
1438     // ensure that we don't try to allocate a TLAB as
1439     // humongous and that we don't allocate a humongous
1440     // object in a TLAB.
1441     return word_size > _humongous_object_threshold_in_words;
1442   }
1443 
1444   // Returns the humongous threshold for a specific region size
1445   static size_t humongous_threshold_for(size_t region_size) {
1446     return (region_size / 2);
1447   }
1448 
1449   // Update mod union table with the set of dirty cards.
1450   void updateModUnion();
1451 
1452   // Set the mod union bits corresponding to the given memRegion.  Note
1453   // that this is always a safe operation, since it doesn't clear any
1454   // bits.
1455   void markModUnionRange(MemRegion mr);
1456 
1457   // Print the maximum heap capacity.
1458   virtual size_t max_capacity() const;
1459 
1460   virtual jlong millis_since_last_gc();
1461 
1462 
1463   // Convenience function to be used in situations where the heap type can be
1464   // asserted to be this type.
1465   static G1CollectedHeap* heap();
1466 
1467   void set_region_short_lived_locked(HeapRegion* hr);
1468   // add appropriate methods for any other surv rate groups
1469 
1470   YoungList* young_list() const { return _young_list; }
1471 
1472   // debugging
1473   bool check_young_list_well_formed() {
1474     return _young_list->check_list_well_formed();
1475   }
1476 
1477   bool check_young_list_empty(bool check_heap,
1478                               bool check_sample = true);
1479 
1480   // *** Stuff related to concurrent marking.  It's not clear to me that so
1481   // many of these need to be public.
1482 
1483   // The functions below are helper functions that a subclass of
1484   // "CollectedHeap" can use in the implementation of its virtual
1485   // functions.
1486   // This performs a concurrent marking of the live objects in a
1487   // bitmap off to the side.
1488   void doConcurrentMark();
1489 
1490   bool isMarkedPrev(oop obj) const;
1491   bool isMarkedNext(oop obj) const;
1492 
1493   // Determine if an object is dead, given the object and also
1494   // the region to which the object belongs. An object is dead
1495   // iff a) it was not allocated since the last mark, b) it
1496   // is not marked, and c) it is not in an archive region.
1497   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1498     return
1499       !hr->obj_allocated_since_prev_marking(obj) &&
1500       !isMarkedPrev(obj) &&
1501       !hr->is_archive();
1502   }
1503 
1504   // This function returns true when an object has been
1505   // around since the previous marking and hasn't yet
1506   // been marked during this marking, and is not in an archive region.
1507   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1508     return
1509       !hr->obj_allocated_since_next_marking(obj) &&
1510       !isMarkedNext(obj) &&
1511       !hr->is_archive();
1512   }
1513 
1514   // Determine if an object is dead, given only the object itself.
1515   // This will find the region to which the object belongs and
1516   // then call the region version of the same function.
1517 
1518   // Added if it is NULL it isn't dead.
1519 
1520   inline bool is_obj_dead(const oop obj) const;
1521 
1522   inline bool is_obj_ill(const oop obj) const;
1523 
1524   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1525   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1526   bool is_marked(oop obj, VerifyOption vo);
1527   const char* top_at_mark_start_str(VerifyOption vo);
1528 
1529   ConcurrentMark* concurrent_mark() const { return _cm; }
1530 
1531   // Refinement
1532 
1533   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1534 
1535   // The dirty cards region list is used to record a subset of regions
1536   // whose cards need clearing. The list if populated during the
1537   // remembered set scanning and drained during the card table
1538   // cleanup. Although the methods are reentrant, population/draining
1539   // phases must not overlap. For synchronization purposes the last
1540   // element on the list points to itself.
1541   HeapRegion* _dirty_cards_region_list;
1542   void push_dirty_cards_region(HeapRegion* hr);
1543   HeapRegion* pop_dirty_cards_region();
1544 
1545   // Optimized nmethod scanning support routines
1546 
1547   // Register the given nmethod with the G1 heap.
1548   virtual void register_nmethod(nmethod* nm);
1549 
1550   // Unregister the given nmethod from the G1 heap.
1551   virtual void unregister_nmethod(nmethod* nm);
1552 
1553   // Free up superfluous code root memory.
1554   void purge_code_root_memory();
1555 
1556   // Rebuild the strong code root lists for each region
1557   // after a full GC.
1558   void rebuild_strong_code_roots();
1559 
1560   // Delete entries for dead interned string and clean up unreferenced symbols
1561   // in symbol table, possibly in parallel.
1562   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1563 
1564   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1565   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1566 
1567   // Redirty logged cards in the refinement queue.
1568   void redirty_logged_cards();
1569   // Verification
1570 
1571   // Perform any cleanup actions necessary before allowing a verification.
1572   virtual void prepare_for_verify();
1573 
1574   // Perform verification.
1575 
1576   // vo == UsePrevMarking  -> use "prev" marking information,
1577   // vo == UseNextMarking -> use "next" marking information
1578   // vo == UseMarkWord    -> use the mark word in the object header
1579   //
1580   // NOTE: Only the "prev" marking information is guaranteed to be
1581   // consistent most of the time, so most calls to this should use
1582   // vo == UsePrevMarking.
1583   // Currently, there is only one case where this is called with
1584   // vo == UseNextMarking, which is to verify the "next" marking
1585   // information at the end of remark.
1586   // Currently there is only one place where this is called with
1587   // vo == UseMarkWord, which is to verify the marking during a
1588   // full GC.
1589   void verify(bool silent, VerifyOption vo);
1590 
1591   // Override; it uses the "prev" marking information
1592   virtual void verify(bool silent);
1593 
1594   // The methods below are here for convenience and dispatch the
1595   // appropriate method depending on value of the given VerifyOption
1596   // parameter. The values for that parameter, and their meanings,
1597   // are the same as those above.
1598 
1599   bool is_obj_dead_cond(const oop obj,
1600                         const HeapRegion* hr,
1601                         const VerifyOption vo) const;
1602 
1603   bool is_obj_dead_cond(const oop obj,
1604                         const VerifyOption vo) const;
1605 
1606   G1HeapSummary create_g1_heap_summary();
1607 
1608   // Printing
1609 
1610   virtual void print_on(outputStream* st) const;
1611   virtual void print_extended_on(outputStream* st) const;
1612   virtual void print_on_error(outputStream* st) const;
1613 
1614   virtual void print_gc_threads_on(outputStream* st) const;
1615   virtual void gc_threads_do(ThreadClosure* tc) const;
1616 
1617   // Override
1618   void print_tracing_info() const;
1619 
1620   // The following two methods are helpful for debugging RSet issues.
1621   void print_cset_rsets() PRODUCT_RETURN;
1622   void print_all_rsets() PRODUCT_RETURN;
1623 
1624 public:
1625   size_t pending_card_num();
1626   size_t cards_scanned();
1627 
1628 protected:
1629   size_t _max_heap_capacity;
1630 };
1631 
1632 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP