1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/taskqueue.hpp"
  32 
  33 class G1CollectedHeap;
  34 class CMBitMap;
  35 class CMTask;
  36 class ConcurrentMark;
  37 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
  38 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
  39 
  40 // Closure used by CM during concurrent reference discovery
  41 // and reference processing (during remarking) to determine
  42 // if a particular object is alive. It is primarily used
  43 // to determine if referents of discovered reference objects
  44 // are alive. An instance is also embedded into the
  45 // reference processor as the _is_alive_non_header field
  46 class G1CMIsAliveClosure: public BoolObjectClosure {
  47   G1CollectedHeap* _g1;
  48  public:
  49   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  50 
  51   bool do_object_b(oop obj);
  52 };
  53 
  54 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  55 // class, with one bit per (1<<_shifter) HeapWords.
  56 
  57 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  58  protected:
  59   HeapWord* _bmStartWord;      // base address of range covered by map
  60   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  61   const int _shifter;          // map to char or bit
  62   BitMap    _bm;               // the bit map itself
  63 
  64  public:
  65   // constructor
  66   CMBitMapRO(int shifter);
  67 
  68   enum { do_yield = true };
  69 
  70   // inquiries
  71   HeapWord* startWord()   const { return _bmStartWord; }
  72   size_t    sizeInWords() const { return _bmWordSize;  }
  73   // the following is one past the last word in space
  74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  75 
  76   // read marks
  77 
  78   bool isMarked(HeapWord* addr) const {
  79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  80            "outside underlying space?");
  81     return _bm.at(heapWordToOffset(addr));
  82   }
  83 
  84   // iteration
  85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  86   inline bool iterate(BitMapClosure* cl);
  87 
  88   // Return the address corresponding to the next marked bit at or after
  89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  91   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  92                                      const HeapWord* limit = NULL) const;
  93   // Return the address corresponding to the next unmarked bit at or after
  94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  96   HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
  97                                        const HeapWord* limit = NULL) const;
  98 
  99   // conversion utilities
 100   HeapWord* offsetToHeapWord(size_t offset) const {
 101     return _bmStartWord + (offset << _shifter);
 102   }
 103   size_t heapWordToOffset(const HeapWord* addr) const {
 104     return pointer_delta(addr, _bmStartWord) >> _shifter;
 105   }
 106   int heapWordDiffToOffsetDiff(size_t diff) const;
 107 
 108   // The argument addr should be the start address of a valid object
 109   HeapWord* nextObject(HeapWord* addr) {
 110     oop obj = (oop) addr;
 111     HeapWord* res =  addr + obj->size();
 112     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
 113     return res;
 114   }
 115 
 116   void print_on_error(outputStream* st, const char* prefix) const;
 117 
 118   // debugging
 119   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 120 };
 121 
 122 class CMBitMapMappingChangedListener : public G1MappingChangedListener {
 123  private:
 124   CMBitMap* _bm;
 125  public:
 126   CMBitMapMappingChangedListener() : _bm(NULL) {}
 127 
 128   void set_bitmap(CMBitMap* bm) { _bm = bm; }
 129 
 130   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 131 };
 132 
 133 class CMBitMap : public CMBitMapRO {
 134  private:
 135   CMBitMapMappingChangedListener _listener;
 136 
 137  public:
 138   static size_t compute_size(size_t heap_size);
 139   // Returns the amount of bytes on the heap between two marks in the bitmap.
 140   static size_t mark_distance();
 141   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 142   // mark bitmap corresponds to. This is the same as the mark distance above.
 143   static size_t heap_map_factor() {
 144     return mark_distance();
 145   }
 146 
 147   CMBitMap() : CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 148 
 149   // Initializes the underlying BitMap to cover the given area.
 150   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 151 
 152   // Write marks.
 153   inline void mark(HeapWord* addr);
 154   inline void clear(HeapWord* addr);
 155   inline bool parMark(HeapWord* addr);
 156   inline bool parClear(HeapWord* addr);
 157 
 158   void markRange(MemRegion mr);
 159   void clearRange(MemRegion mr);
 160 
 161   // Starting at the bit corresponding to "addr" (inclusive), find the next
 162   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 163   // the end of this run (stopping at "end_addr").  Return the MemRegion
 164   // covering from the start of the region corresponding to the first bit
 165   // of the run to the end of the region corresponding to the last bit of
 166   // the run.  If there is no "1" bit at or after "addr", return an empty
 167   // MemRegion.
 168   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 169 
 170   // Clear the whole mark bitmap.
 171   void clearAll();
 172 };
 173 
 174 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 175 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 176   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 177   ConcurrentMark* _cm;
 178   oop* _base;        // bottom of stack
 179   jint _index;       // one more than last occupied index
 180   jint _capacity;    // max #elements
 181   jint _saved_index; // value of _index saved at start of GC
 182 
 183   bool  _overflow;
 184   bool  _should_expand;
 185   DEBUG_ONLY(bool _drain_in_progress;)
 186   DEBUG_ONLY(bool _drain_in_progress_yields;)
 187 
 188   oop pop() {
 189     if (!isEmpty()) {
 190       return _base[--_index] ;
 191     }
 192     return NULL;
 193   }
 194 
 195  public:
 196   CMMarkStack(ConcurrentMark* cm);
 197   ~CMMarkStack();
 198 
 199   bool allocate(size_t capacity);
 200 
 201   // Pushes the first "n" elements of "ptr_arr" on the stack.
 202   // Locking impl: concurrency is allowed only with
 203   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 204   // locking strategy.
 205   void par_push_arr(oop* ptr_arr, int n);
 206 
 207   // If returns false, the array was empty.  Otherwise, removes up to "max"
 208   // elements from the stack, and transfers them to "ptr_arr" in an
 209   // unspecified order.  The actual number transferred is given in "n" ("n
 210   // == 0" is deliberately redundant with the return value.)  Locking impl:
 211   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 212   // operations, which use the same locking strategy.
 213   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 214 
 215   // Drain the mark stack, applying the given closure to all fields of
 216   // objects on the stack.  (That is, continue until the stack is empty,
 217   // even if closure applications add entries to the stack.)  The "bm"
 218   // argument, if non-null, may be used to verify that only marked objects
 219   // are on the mark stack.  If "yield_after" is "true", then the
 220   // concurrent marker performing the drain offers to yield after
 221   // processing each object.  If a yield occurs, stops the drain operation
 222   // and returns false.  Otherwise, returns true.
 223   template<class OopClosureClass>
 224   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 225 
 226   bool isEmpty()    { return _index == 0; }
 227   int  maxElems()   { return _capacity; }
 228 
 229   bool overflow() { return _overflow; }
 230   void clear_overflow() { _overflow = false; }
 231 
 232   bool should_expand() const { return _should_expand; }
 233   void set_should_expand();
 234 
 235   // Expand the stack, typically in response to an overflow condition
 236   void expand();
 237 
 238   int  size() { return _index; }
 239 
 240   void setEmpty()   { _index = 0; clear_overflow(); }
 241 
 242   // Record the current index.
 243   void note_start_of_gc();
 244 
 245   // Make sure that we have not added any entries to the stack during GC.
 246   void note_end_of_gc();
 247 
 248   // Apply fn to each oop in the mark stack, up to the bound recorded
 249   // via one of the above "note" functions.  The mark stack must not
 250   // be modified while iterating.
 251   template<typename Fn> void iterate(Fn fn);
 252 };
 253 
 254 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 255 private:
 256 #ifndef PRODUCT
 257   uintx _num_remaining;
 258   bool _force;
 259 #endif // !defined(PRODUCT)
 260 
 261 public:
 262   void init() PRODUCT_RETURN;
 263   void update() PRODUCT_RETURN;
 264   bool should_force() PRODUCT_RETURN_( return false; );
 265 };
 266 
 267 // this will enable a variety of different statistics per GC task
 268 #define _MARKING_STATS_       0
 269 // this will enable the higher verbose levels
 270 #define _MARKING_VERBOSE_     0
 271 
 272 #if _MARKING_STATS_
 273 #define statsOnly(statement)  \
 274 do {                          \
 275   statement ;                 \
 276 } while (0)
 277 #else // _MARKING_STATS_
 278 #define statsOnly(statement)  \
 279 do {                          \
 280 } while (0)
 281 #endif // _MARKING_STATS_
 282 
 283 typedef enum {
 284   no_verbose  = 0,   // verbose turned off
 285   stats_verbose,     // only prints stats at the end of marking
 286   low_verbose,       // low verbose, mostly per region and per major event
 287   medium_verbose,    // a bit more detailed than low
 288   high_verbose       // per object verbose
 289 } CMVerboseLevel;
 290 
 291 class YoungList;
 292 
 293 // Root Regions are regions that are not empty at the beginning of a
 294 // marking cycle and which we might collect during an evacuation pause
 295 // while the cycle is active. Given that, during evacuation pauses, we
 296 // do not copy objects that are explicitly marked, what we have to do
 297 // for the root regions is to scan them and mark all objects reachable
 298 // from them. According to the SATB assumptions, we only need to visit
 299 // each object once during marking. So, as long as we finish this scan
 300 // before the next evacuation pause, we can copy the objects from the
 301 // root regions without having to mark them or do anything else to them.
 302 //
 303 // Currently, we only support root region scanning once (at the start
 304 // of the marking cycle) and the root regions are all the survivor
 305 // regions populated during the initial-mark pause.
 306 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
 307 private:
 308   YoungList*           _young_list;
 309   ConcurrentMark*      _cm;
 310 
 311   volatile bool        _scan_in_progress;
 312   volatile bool        _should_abort;
 313   HeapRegion* volatile _next_survivor;
 314 
 315 public:
 316   CMRootRegions();
 317   // We actually do most of the initialization in this method.
 318   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
 319 
 320   // Reset the claiming / scanning of the root regions.
 321   void prepare_for_scan();
 322 
 323   // Forces get_next() to return NULL so that the iteration aborts early.
 324   void abort() { _should_abort = true; }
 325 
 326   // Return true if the CM thread are actively scanning root regions,
 327   // false otherwise.
 328   bool scan_in_progress() { return _scan_in_progress; }
 329 
 330   // Claim the next root region to scan atomically, or return NULL if
 331   // all have been claimed.
 332   HeapRegion* claim_next();
 333 
 334   // Flag that we're done with root region scanning and notify anyone
 335   // who's waiting on it. If aborted is false, assume that all regions
 336   // have been claimed.
 337   void scan_finished();
 338 
 339   // If CM threads are still scanning root regions, wait until they
 340   // are done. Return true if we had to wait, false otherwise.
 341   bool wait_until_scan_finished();
 342 };
 343 
 344 class ConcurrentMarkThread;
 345 
 346 class ConcurrentMark: public CHeapObj<mtGC> {
 347   friend class CMMarkStack;
 348   friend class ConcurrentMarkThread;
 349   friend class CMTask;
 350   friend class CMBitMapClosure;
 351   friend class CMRemarkTask;
 352   friend class CMConcurrentMarkingTask;
 353   friend class G1ParNoteEndTask;
 354   friend class CalcLiveObjectsClosure;
 355   friend class G1CMRefProcTaskProxy;
 356   friend class G1CMRefProcTaskExecutor;
 357   friend class G1CMKeepAliveAndDrainClosure;
 358   friend class G1CMDrainMarkingStackClosure;
 359 
 360 protected:
 361   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 362   G1CollectedHeap*      _g1h;        // The heap
 363   uint                  _parallel_marking_threads; // The number of marking
 364                                                    // threads we're using
 365   uint                  _max_parallel_marking_threads; // Max number of marking
 366                                                        // threads we'll ever use
 367   double                _sleep_factor; // How much we have to sleep, with
 368                                        // respect to the work we just did, to
 369                                        // meet the marking overhead goal
 370   double                _marking_task_overhead; // Marking target overhead for
 371                                                 // a single task
 372 
 373   // Same as the two above, but for the cleanup task
 374   double                _cleanup_sleep_factor;
 375   double                _cleanup_task_overhead;
 376 
 377   FreeRegionList        _cleanup_list;
 378 
 379   // Concurrent marking support structures
 380   CMBitMap                _markBitMap1;
 381   CMBitMap                _markBitMap2;
 382   CMBitMapRO*             _prevMarkBitMap; // Completed mark bitmap
 383   CMBitMap*               _nextMarkBitMap; // Under-construction mark bitmap
 384 
 385   BitMap                  _region_bm;
 386   BitMap                  _card_bm;
 387 
 388   // Heap bounds
 389   HeapWord*               _heap_start;
 390   HeapWord*               _heap_end;
 391 
 392   // Root region tracking and claiming
 393   CMRootRegions           _root_regions;
 394 
 395   // For gray objects
 396   CMMarkStack             _markStack; // Grey objects behind global finger
 397   HeapWord* volatile      _finger;  // The global finger, region aligned,
 398                                     // always points to the end of the
 399                                     // last claimed region
 400 
 401   // Marking tasks
 402   uint                    _max_worker_id;// Maximum worker id
 403   uint                    _active_tasks; // Task num currently active
 404   CMTask**                _tasks;        // Task queue array (max_worker_id len)
 405   CMTaskQueueSet*         _task_queues;  // Task queue set
 406   ParallelTaskTerminator  _terminator;   // For termination
 407 
 408   // Two sync barriers that are used to synchronize tasks when an
 409   // overflow occurs. The algorithm is the following. All tasks enter
 410   // the first one to ensure that they have all stopped manipulating
 411   // the global data structures. After they exit it, they re-initialize
 412   // their data structures and task 0 re-initializes the global data
 413   // structures. Then, they enter the second sync barrier. This
 414   // ensure, that no task starts doing work before all data
 415   // structures (local and global) have been re-initialized. When they
 416   // exit it, they are free to start working again.
 417   WorkGangBarrierSync     _first_overflow_barrier_sync;
 418   WorkGangBarrierSync     _second_overflow_barrier_sync;
 419 
 420   // This is set by any task, when an overflow on the global data
 421   // structures is detected
 422   volatile bool           _has_overflown;
 423   // True: marking is concurrent, false: we're in remark
 424   volatile bool           _concurrent;
 425   // Set at the end of a Full GC so that marking aborts
 426   volatile bool           _has_aborted;
 427 
 428   // Used when remark aborts due to an overflow to indicate that
 429   // another concurrent marking phase should start
 430   volatile bool           _restart_for_overflow;
 431 
 432   // This is true from the very start of concurrent marking until the
 433   // point when all the tasks complete their work. It is really used
 434   // to determine the points between the end of concurrent marking and
 435   // time of remark.
 436   volatile bool           _concurrent_marking_in_progress;
 437 
 438   // Verbose level
 439   CMVerboseLevel          _verbose_level;
 440 
 441   // All of these times are in ms
 442   NumberSeq _init_times;
 443   NumberSeq _remark_times;
 444   NumberSeq _remark_mark_times;
 445   NumberSeq _remark_weak_ref_times;
 446   NumberSeq _cleanup_times;
 447   double    _total_counting_time;
 448   double    _total_rs_scrub_time;
 449 
 450   double*   _accum_task_vtime;   // Accumulated task vtime
 451 
 452   WorkGang* _parallel_workers;
 453 
 454   ForceOverflowSettings _force_overflow_conc;
 455   ForceOverflowSettings _force_overflow_stw;
 456 
 457   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 458   void weakRefsWork(bool clear_all_soft_refs);
 459 
 460   void swapMarkBitMaps();
 461 
 462   // It resets the global marking data structures, as well as the
 463   // task local ones; should be called during initial mark.
 464   void reset();
 465 
 466   // Resets all the marking data structures. Called when we have to restart
 467   // marking or when marking completes (via set_non_marking_state below).
 468   void reset_marking_state(bool clear_overflow = true);
 469 
 470   // We do this after we're done with marking so that the marking data
 471   // structures are initialized to a sensible and predictable state.
 472   void set_non_marking_state();
 473 
 474   // Called to indicate how many threads are currently active.
 475   void set_concurrency(uint active_tasks);
 476 
 477   // It should be called to indicate which phase we're in (concurrent
 478   // mark or remark) and how many threads are currently active.
 479   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 480 
 481   // Prints all gathered CM-related statistics
 482   void print_stats();
 483 
 484   bool cleanup_list_is_empty() {
 485     return _cleanup_list.is_empty();
 486   }
 487 
 488   // Accessor methods
 489   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 490   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 491   double sleep_factor()                     { return _sleep_factor; }
 492   double marking_task_overhead()            { return _marking_task_overhead;}
 493   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
 494   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
 495 
 496   HeapWord*               finger()          { return _finger;   }
 497   bool                    concurrent()      { return _concurrent; }
 498   uint                    active_tasks()    { return _active_tasks; }
 499   ParallelTaskTerminator* terminator()      { return &_terminator; }
 500 
 501   // It claims the next available region to be scanned by a marking
 502   // task/thread. It might return NULL if the next region is empty or
 503   // we have run out of regions. In the latter case, out_of_regions()
 504   // determines whether we've really run out of regions or the task
 505   // should call claim_region() again. This might seem a bit
 506   // awkward. Originally, the code was written so that claim_region()
 507   // either successfully returned with a non-empty region or there
 508   // were no more regions to be claimed. The problem with this was
 509   // that, in certain circumstances, it iterated over large chunks of
 510   // the heap finding only empty regions and, while it was working, it
 511   // was preventing the calling task to call its regular clock
 512   // method. So, this way, each task will spend very little time in
 513   // claim_region() and is allowed to call the regular clock method
 514   // frequently.
 515   HeapRegion* claim_region(uint worker_id);
 516 
 517   // It determines whether we've run out of regions to scan. Note that
 518   // the finger can point past the heap end in case the heap was expanded
 519   // to satisfy an allocation without doing a GC. This is fine, because all
 520   // objects in those regions will be considered live anyway because of
 521   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 522   bool        out_of_regions() { return _finger >= _heap_end; }
 523 
 524   // Returns the task with the given id
 525   CMTask* task(int id) {
 526     assert(0 <= id && id < (int) _active_tasks,
 527            "task id not within active bounds");
 528     return _tasks[id];
 529   }
 530 
 531   // Returns the task queue with the given id
 532   CMTaskQueue* task_queue(int id) {
 533     assert(0 <= id && id < (int) _active_tasks,
 534            "task queue id not within active bounds");
 535     return (CMTaskQueue*) _task_queues->queue(id);
 536   }
 537 
 538   // Returns the task queue set
 539   CMTaskQueueSet* task_queues()  { return _task_queues; }
 540 
 541   // Access / manipulation of the overflow flag which is set to
 542   // indicate that the global stack has overflown
 543   bool has_overflown()           { return _has_overflown; }
 544   void set_has_overflown()       { _has_overflown = true; }
 545   void clear_has_overflown()     { _has_overflown = false; }
 546   bool restart_for_overflow()    { return _restart_for_overflow; }
 547 
 548   // Methods to enter the two overflow sync barriers
 549   void enter_first_sync_barrier(uint worker_id);
 550   void enter_second_sync_barrier(uint worker_id);
 551 
 552   ForceOverflowSettings* force_overflow_conc() {
 553     return &_force_overflow_conc;
 554   }
 555 
 556   ForceOverflowSettings* force_overflow_stw() {
 557     return &_force_overflow_stw;
 558   }
 559 
 560   ForceOverflowSettings* force_overflow() {
 561     if (concurrent()) {
 562       return force_overflow_conc();
 563     } else {
 564       return force_overflow_stw();
 565     }
 566   }
 567 
 568   // Live Data Counting data structures...
 569   // These data structures are initialized at the start of
 570   // marking. They are written to while marking is active.
 571   // They are aggregated during remark; the aggregated values
 572   // are then used to populate the _region_bm, _card_bm, and
 573   // the total live bytes, which are then subsequently updated
 574   // during cleanup.
 575 
 576   // An array of bitmaps (one bit map per task). Each bitmap
 577   // is used to record the cards spanned by the live objects
 578   // marked by that task/worker.
 579   BitMap*  _count_card_bitmaps;
 580 
 581   // Used to record the number of marked live bytes
 582   // (for each region, by worker thread).
 583   size_t** _count_marked_bytes;
 584 
 585   // Card index of the bottom of the G1 heap. Used for biasing indices into
 586   // the card bitmaps.
 587   intptr_t _heap_bottom_card_num;
 588 
 589   // Set to true when initialization is complete
 590   bool _completed_initialization;
 591 
 592 public:
 593   // Manipulation of the global mark stack.
 594   // The push and pop operations are used by tasks for transfers
 595   // between task-local queues and the global mark stack, and use
 596   // locking for concurrency safety.
 597   bool mark_stack_push(oop* arr, int n) {
 598     _markStack.par_push_arr(arr, n);
 599     if (_markStack.overflow()) {
 600       set_has_overflown();
 601       return false;
 602     }
 603     return true;
 604   }
 605   void mark_stack_pop(oop* arr, int max, int* n) {
 606     _markStack.par_pop_arr(arr, max, n);
 607   }
 608   size_t mark_stack_size()                { return _markStack.size(); }
 609   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 610   bool mark_stack_overflow()              { return _markStack.overflow(); }
 611   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 612 
 613   CMRootRegions* root_regions() { return &_root_regions; }
 614 
 615   bool concurrent_marking_in_progress() {
 616     return _concurrent_marking_in_progress;
 617   }
 618   void set_concurrent_marking_in_progress() {
 619     _concurrent_marking_in_progress = true;
 620   }
 621   void clear_concurrent_marking_in_progress() {
 622     _concurrent_marking_in_progress = false;
 623   }
 624 
 625   void update_accum_task_vtime(int i, double vtime) {
 626     _accum_task_vtime[i] += vtime;
 627   }
 628 
 629   double all_task_accum_vtime() {
 630     double ret = 0.0;
 631     for (uint i = 0; i < _max_worker_id; ++i)
 632       ret += _accum_task_vtime[i];
 633     return ret;
 634   }
 635 
 636   // Attempts to steal an object from the task queues of other tasks
 637   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 638 
 639   ConcurrentMark(G1CollectedHeap* g1h,
 640                  G1RegionToSpaceMapper* prev_bitmap_storage,
 641                  G1RegionToSpaceMapper* next_bitmap_storage);
 642   ~ConcurrentMark();
 643 
 644   ConcurrentMarkThread* cmThread() { return _cmThread; }
 645 
 646   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 647   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 648 
 649   // Returns the number of GC threads to be used in a concurrent
 650   // phase based on the number of GC threads being used in a STW
 651   // phase.
 652   uint scale_parallel_threads(uint n_par_threads);
 653 
 654   // Calculates the number of GC threads to be used in a concurrent phase.
 655   uint calc_parallel_marking_threads();
 656 
 657   // The following three are interaction between CM and
 658   // G1CollectedHeap
 659 
 660   // This notifies CM that a root during initial-mark needs to be
 661   // grayed. It is MT-safe. word_size is the size of the object in
 662   // words. It is passed explicitly as sometimes we cannot calculate
 663   // it from the given object because it might be in an inconsistent
 664   // state (e.g., in to-space and being copied). So the caller is
 665   // responsible for dealing with this issue (e.g., get the size from
 666   // the from-space image when the to-space image might be
 667   // inconsistent) and always passing the size. hr is the region that
 668   // contains the object and it's passed optionally from callers who
 669   // might already have it (no point in recalculating it).
 670   inline void grayRoot(oop obj,
 671                        size_t word_size,
 672                        uint worker_id,
 673                        HeapRegion* hr = NULL);
 674 
 675   // It iterates over the heap and for each object it comes across it
 676   // will dump the contents of its reference fields, as well as
 677   // liveness information for the object and its referents. The dump
 678   // will be written to a file with the following name:
 679   // G1PrintReachableBaseFile + "." + str.
 680   // vo decides whether the prev (vo == UsePrevMarking), the next
 681   // (vo == UseNextMarking) marking information, or the mark word
 682   // (vo == UseMarkWord) will be used to determine the liveness of
 683   // each object / referent.
 684   // If all is true, all objects in the heap will be dumped, otherwise
 685   // only the live ones. In the dump the following symbols / breviations
 686   // are used:
 687   //   M : an explicitly live object (its bitmap bit is set)
 688   //   > : an implicitly live object (over tams)
 689   //   O : an object outside the G1 heap (typically: in the perm gen)
 690   //   NOT : a reference field whose referent is not live
 691   //   AND MARKED : indicates that an object is both explicitly and
 692   //   implicitly live (it should be one or the other, not both)
 693   void print_reachable(const char* str,
 694                        VerifyOption vo,
 695                        bool all) PRODUCT_RETURN;
 696 
 697   // Clear the next marking bitmap (will be called concurrently).
 698   void clearNextBitmap();
 699 
 700   // Return whether the next mark bitmap has no marks set. To be used for assertions
 701   // only. Will not yield to pause requests.
 702   bool nextMarkBitmapIsClear();
 703 
 704   // These two do the work that needs to be done before and after the
 705   // initial root checkpoint. Since this checkpoint can be done at two
 706   // different points (i.e. an explicit pause or piggy-backed on a
 707   // young collection), then it's nice to be able to easily share the
 708   // pre/post code. It might be the case that we can put everything in
 709   // the post method. TP
 710   void checkpointRootsInitialPre();
 711   void checkpointRootsInitialPost();
 712 
 713   // Scan all the root regions and mark everything reachable from
 714   // them.
 715   void scanRootRegions();
 716 
 717   // Scan a single root region and mark everything reachable from it.
 718   void scanRootRegion(HeapRegion* hr, uint worker_id);
 719 
 720   // Do concurrent phase of marking, to a tentative transitive closure.
 721   void markFromRoots();
 722 
 723   void checkpointRootsFinal(bool clear_all_soft_refs);
 724   void checkpointRootsFinalWork();
 725   void cleanup();
 726   void completeCleanup();
 727 
 728   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 729   // this carefully!
 730   inline void markPrev(oop p);
 731 
 732   // Clears marks for all objects in the given range, for the prev or
 733   // next bitmaps.  NB: the previous bitmap is usually
 734   // read-only, so use this carefully!
 735   void clearRangePrevBitmap(MemRegion mr);
 736   void clearRangeNextBitmap(MemRegion mr);
 737 
 738   // Notify data structures that a GC has started.
 739   void note_start_of_gc() {
 740     _markStack.note_start_of_gc();
 741   }
 742 
 743   // Notify data structures that a GC is finished.
 744   void note_end_of_gc() {
 745     _markStack.note_end_of_gc();
 746   }
 747 
 748   // Verify that there are no CSet oops on the stacks (taskqueues /
 749   // global mark stack) and fingers (global / per-task).
 750   // If marking is not in progress, it's a no-op.
 751   void verify_no_cset_oops() PRODUCT_RETURN;
 752 
 753   bool isPrevMarked(oop p) const {
 754     assert(p != NULL && p->is_oop(), "expected an oop");
 755     HeapWord* addr = (HeapWord*)p;
 756     assert(addr >= _prevMarkBitMap->startWord() ||
 757            addr < _prevMarkBitMap->endWord(), "in a region");
 758 
 759     return _prevMarkBitMap->isMarked(addr);
 760   }
 761 
 762   inline bool do_yield_check(uint worker_i = 0);
 763 
 764   // Called to abort the marking cycle after a Full GC takes place.
 765   void abort();
 766 
 767   bool has_aborted()      { return _has_aborted; }
 768 
 769   // This prints the global/local fingers. It is used for debugging.
 770   NOT_PRODUCT(void print_finger();)
 771 
 772   void print_summary_info();
 773 
 774   void print_worker_threads_on(outputStream* st) const;
 775 
 776   void print_on_error(outputStream* st) const;
 777 
 778   // The following indicate whether a given verbose level has been
 779   // set. Notice that anything above stats is conditional to
 780   // _MARKING_VERBOSE_ having been set to 1
 781   bool verbose_stats() {
 782     return _verbose_level >= stats_verbose;
 783   }
 784   bool verbose_low() {
 785     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
 786   }
 787   bool verbose_medium() {
 788     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
 789   }
 790   bool verbose_high() {
 791     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
 792   }
 793 
 794   // Liveness counting
 795 
 796   // Utility routine to set an exclusive range of cards on the given
 797   // card liveness bitmap
 798   inline void set_card_bitmap_range(BitMap* card_bm,
 799                                     BitMap::idx_t start_idx,
 800                                     BitMap::idx_t end_idx,
 801                                     bool is_par);
 802 
 803   // Returns the card number of the bottom of the G1 heap.
 804   // Used in biasing indices into accounting card bitmaps.
 805   intptr_t heap_bottom_card_num() const {
 806     return _heap_bottom_card_num;
 807   }
 808 
 809   // Returns the card bitmap for a given task or worker id.
 810   BitMap* count_card_bitmap_for(uint worker_id) {
 811     assert(worker_id < _max_worker_id, "oob");
 812     assert(_count_card_bitmaps != NULL, "uninitialized");
 813     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 814     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 815     return task_card_bm;
 816   }
 817 
 818   // Returns the array containing the marked bytes for each region,
 819   // for the given worker or task id.
 820   size_t* count_marked_bytes_array_for(uint worker_id) {
 821     assert(worker_id < _max_worker_id, "oob");
 822     assert(_count_marked_bytes != NULL, "uninitialized");
 823     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 824     assert(marked_bytes_array != NULL, "uninitialized");
 825     return marked_bytes_array;
 826   }
 827 
 828   // Returns the index in the liveness accounting card table bitmap
 829   // for the given address
 830   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 831 
 832   // Counts the size of the given memory region in the the given
 833   // marked_bytes array slot for the given HeapRegion.
 834   // Sets the bits in the given card bitmap that are associated with the
 835   // cards that are spanned by the memory region.
 836   inline void count_region(MemRegion mr,
 837                            HeapRegion* hr,
 838                            size_t* marked_bytes_array,
 839                            BitMap* task_card_bm);
 840 
 841   // Counts the given memory region in the task/worker counting
 842   // data structures for the given worker id.
 843   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
 844 
 845   // Counts the given object in the given task/worker counting
 846   // data structures.
 847   inline void count_object(oop obj,
 848                            HeapRegion* hr,
 849                            size_t* marked_bytes_array,
 850                            BitMap* task_card_bm);
 851 
 852   // Attempts to mark the given object and, if successful, counts
 853   // the object in the given task/worker counting structures.
 854   inline bool par_mark_and_count(oop obj,
 855                                  HeapRegion* hr,
 856                                  size_t* marked_bytes_array,
 857                                  BitMap* task_card_bm);
 858 
 859   // Attempts to mark the given object and, if successful, counts
 860   // the object in the task/worker counting structures for the
 861   // given worker id.
 862   inline bool par_mark_and_count(oop obj,
 863                                  size_t word_size,
 864                                  HeapRegion* hr,
 865                                  uint worker_id);
 866 
 867   // Returns true if initialization was successfully completed.
 868   bool completed_initialization() const {
 869     return _completed_initialization;
 870   }
 871 
 872 protected:
 873   // Clear all the per-task bitmaps and arrays used to store the
 874   // counting data.
 875   void clear_all_count_data();
 876 
 877   // Aggregates the counting data for each worker/task
 878   // that was constructed while marking. Also sets
 879   // the amount of marked bytes for each region and
 880   // the top at concurrent mark count.
 881   void aggregate_count_data();
 882 
 883   // Verification routine
 884   void verify_count_data();
 885 };
 886 
 887 // A class representing a marking task.
 888 class CMTask : public TerminatorTerminator {
 889 private:
 890   enum PrivateConstants {
 891     // the regular clock call is called once the scanned words reaches
 892     // this limit
 893     words_scanned_period          = 12*1024,
 894     // the regular clock call is called once the number of visited
 895     // references reaches this limit
 896     refs_reached_period           = 384,
 897     // initial value for the hash seed, used in the work stealing code
 898     init_hash_seed                = 17,
 899     // how many entries will be transferred between global stack and
 900     // local queues
 901     global_stack_transfer_size    = 16
 902   };
 903 
 904   uint                        _worker_id;
 905   G1CollectedHeap*            _g1h;
 906   ConcurrentMark*             _cm;
 907   CMBitMap*                   _nextMarkBitMap;
 908   // the task queue of this task
 909   CMTaskQueue*                _task_queue;
 910 private:
 911   // the task queue set---needed for stealing
 912   CMTaskQueueSet*             _task_queues;
 913   // indicates whether the task has been claimed---this is only  for
 914   // debugging purposes
 915   bool                        _claimed;
 916 
 917   // number of calls to this task
 918   int                         _calls;
 919 
 920   // when the virtual timer reaches this time, the marking step should
 921   // exit
 922   double                      _time_target_ms;
 923   // the start time of the current marking step
 924   double                      _start_time_ms;
 925 
 926   // the oop closure used for iterations over oops
 927   G1CMOopClosure*             _cm_oop_closure;
 928 
 929   // the region this task is scanning, NULL if we're not scanning any
 930   HeapRegion*                 _curr_region;
 931   // the local finger of this task, NULL if we're not scanning a region
 932   HeapWord*                   _finger;
 933   // limit of the region this task is scanning, NULL if we're not scanning one
 934   HeapWord*                   _region_limit;
 935 
 936   // the number of words this task has scanned
 937   size_t                      _words_scanned;
 938   // When _words_scanned reaches this limit, the regular clock is
 939   // called. Notice that this might be decreased under certain
 940   // circumstances (i.e. when we believe that we did an expensive
 941   // operation).
 942   size_t                      _words_scanned_limit;
 943   // the initial value of _words_scanned_limit (i.e. what it was
 944   // before it was decreased).
 945   size_t                      _real_words_scanned_limit;
 946 
 947   // the number of references this task has visited
 948   size_t                      _refs_reached;
 949   // When _refs_reached reaches this limit, the regular clock is
 950   // called. Notice this this might be decreased under certain
 951   // circumstances (i.e. when we believe that we did an expensive
 952   // operation).
 953   size_t                      _refs_reached_limit;
 954   // the initial value of _refs_reached_limit (i.e. what it was before
 955   // it was decreased).
 956   size_t                      _real_refs_reached_limit;
 957 
 958   // used by the work stealing stuff
 959   int                         _hash_seed;
 960   // if this is true, then the task has aborted for some reason
 961   bool                        _has_aborted;
 962   // set when the task aborts because it has met its time quota
 963   bool                        _has_timed_out;
 964   // true when we're draining SATB buffers; this avoids the task
 965   // aborting due to SATB buffers being available (as we're already
 966   // dealing with them)
 967   bool                        _draining_satb_buffers;
 968 
 969   // number sequence of past step times
 970   NumberSeq                   _step_times_ms;
 971   // elapsed time of this task
 972   double                      _elapsed_time_ms;
 973   // termination time of this task
 974   double                      _termination_time_ms;
 975   // when this task got into the termination protocol
 976   double                      _termination_start_time_ms;
 977 
 978   // true when the task is during a concurrent phase, false when it is
 979   // in the remark phase (so, in the latter case, we do not have to
 980   // check all the things that we have to check during the concurrent
 981   // phase, i.e. SATB buffer availability...)
 982   bool                        _concurrent;
 983 
 984   TruncatedSeq                _marking_step_diffs_ms;
 985 
 986   // Counting data structures. Embedding the task's marked_bytes_array
 987   // and card bitmap into the actual task saves having to go through
 988   // the ConcurrentMark object.
 989   size_t*                     _marked_bytes_array;
 990   BitMap*                     _card_bm;
 991 
 992   // LOTS of statistics related with this task
 993 #if _MARKING_STATS_
 994   NumberSeq                   _all_clock_intervals_ms;
 995   double                      _interval_start_time_ms;
 996 
 997   size_t                      _aborted;
 998   size_t                      _aborted_overflow;
 999   size_t                      _aborted_cm_aborted;
1000   size_t                      _aborted_yield;
1001   size_t                      _aborted_timed_out;
1002   size_t                      _aborted_satb;
1003   size_t                      _aborted_termination;
1004 
1005   size_t                      _steal_attempts;
1006   size_t                      _steals;
1007 
1008   size_t                      _clock_due_to_marking;
1009   size_t                      _clock_due_to_scanning;
1010 
1011   size_t                      _local_pushes;
1012   size_t                      _local_pops;
1013   size_t                      _local_max_size;
1014   size_t                      _objs_scanned;
1015 
1016   size_t                      _global_pushes;
1017   size_t                      _global_pops;
1018   size_t                      _global_max_size;
1019 
1020   size_t                      _global_transfers_to;
1021   size_t                      _global_transfers_from;
1022 
1023   size_t                      _regions_claimed;
1024   size_t                      _objs_found_on_bitmap;
1025 
1026   size_t                      _satb_buffers_processed;
1027 #endif // _MARKING_STATS_
1028 
1029   // it updates the local fields after this task has claimed
1030   // a new region to scan
1031   void setup_for_region(HeapRegion* hr);
1032   // it brings up-to-date the limit of the region
1033   void update_region_limit();
1034 
1035   // called when either the words scanned or the refs visited limit
1036   // has been reached
1037   void reached_limit();
1038   // recalculates the words scanned and refs visited limits
1039   void recalculate_limits();
1040   // decreases the words scanned and refs visited limits when we reach
1041   // an expensive operation
1042   void decrease_limits();
1043   // it checks whether the words scanned or refs visited reached their
1044   // respective limit and calls reached_limit() if they have
1045   void check_limits() {
1046     if (_words_scanned >= _words_scanned_limit ||
1047         _refs_reached >= _refs_reached_limit) {
1048       reached_limit();
1049     }
1050   }
1051   // this is supposed to be called regularly during a marking step as
1052   // it checks a bunch of conditions that might cause the marking step
1053   // to abort
1054   void regular_clock_call();
1055   bool concurrent() { return _concurrent; }
1056 
1057   // Test whether obj might have already been passed over by the
1058   // mark bitmap scan, and so needs to be pushed onto the mark stack.
1059   bool is_below_finger(oop obj, HeapWord* global_finger) const;
1060 
1061   template<bool scan> void process_grey_object(oop obj);
1062 
1063 public:
1064   // It resets the task; it should be called right at the beginning of
1065   // a marking phase.
1066   void reset(CMBitMap* _nextMarkBitMap);
1067   // it clears all the fields that correspond to a claimed region.
1068   void clear_region_fields();
1069 
1070   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1071 
1072   // The main method of this class which performs a marking step
1073   // trying not to exceed the given duration. However, it might exit
1074   // prematurely, according to some conditions (i.e. SATB buffers are
1075   // available for processing).
1076   void do_marking_step(double target_ms,
1077                        bool do_termination,
1078                        bool is_serial);
1079 
1080   // These two calls start and stop the timer
1081   void record_start_time() {
1082     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1083   }
1084   void record_end_time() {
1085     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1086   }
1087 
1088   // returns the worker ID associated with this task.
1089   uint worker_id() { return _worker_id; }
1090 
1091   // From TerminatorTerminator. It determines whether this task should
1092   // exit the termination protocol after it's entered it.
1093   virtual bool should_exit_termination();
1094 
1095   // Resets the local region fields after a task has finished scanning a
1096   // region; or when they have become stale as a result of the region
1097   // being evacuated.
1098   void giveup_current_region();
1099 
1100   HeapWord* finger()            { return _finger; }
1101 
1102   bool has_aborted()            { return _has_aborted; }
1103   void set_has_aborted()        { _has_aborted = true; }
1104   void clear_has_aborted()      { _has_aborted = false; }
1105   bool has_timed_out()          { return _has_timed_out; }
1106   bool claimed()                { return _claimed; }
1107 
1108   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
1109 
1110   // Increment the number of references this task has visited.
1111   void increment_refs_reached() { ++_refs_reached; }
1112 
1113   // Grey the object by marking it.  If not already marked, push it on
1114   // the local queue if below the finger.
1115   // Precondition: obj is in region.
1116   // Precondition: obj is below region's NTAMS.
1117   inline void make_reference_grey(oop obj, HeapRegion* region);
1118 
1119   // Grey the object (by calling make_grey_reference) if required,
1120   // e.g. obj is below its containing region's NTAMS.
1121   // Precondition: obj is a valid heap object.
1122   inline void deal_with_reference(oop obj);
1123 
1124   // It scans an object and visits its children.
1125   inline void scan_object(oop obj);
1126 
1127   // It pushes an object on the local queue.
1128   inline void push(oop obj);
1129 
1130   // These two move entries to/from the global stack.
1131   void move_entries_to_global_stack();
1132   void get_entries_from_global_stack();
1133 
1134   // It pops and scans objects from the local queue. If partially is
1135   // true, then it stops when the queue size is of a given limit. If
1136   // partially is false, then it stops when the queue is empty.
1137   void drain_local_queue(bool partially);
1138   // It moves entries from the global stack to the local queue and
1139   // drains the local queue. If partially is true, then it stops when
1140   // both the global stack and the local queue reach a given size. If
1141   // partially if false, it tries to empty them totally.
1142   void drain_global_stack(bool partially);
1143   // It keeps picking SATB buffers and processing them until no SATB
1144   // buffers are available.
1145   void drain_satb_buffers();
1146 
1147   // moves the local finger to a new location
1148   inline void move_finger_to(HeapWord* new_finger) {
1149     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1150     _finger = new_finger;
1151   }
1152 
1153   CMTask(uint worker_id,
1154          ConcurrentMark *cm,
1155          size_t* marked_bytes,
1156          BitMap* card_bm,
1157          CMTaskQueue* task_queue,
1158          CMTaskQueueSet* task_queues);
1159 
1160   // it prints statistics associated with this task
1161   void print_stats();
1162 
1163 #if _MARKING_STATS_
1164   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1165 #endif // _MARKING_STATS_
1166 };
1167 
1168 // Class that's used to to print out per-region liveness
1169 // information. It's currently used at the end of marking and also
1170 // after we sort the old regions at the end of the cleanup operation.
1171 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1172 private:
1173   outputStream* _out;
1174 
1175   // Accumulators for these values.
1176   size_t _total_used_bytes;
1177   size_t _total_capacity_bytes;
1178   size_t _total_prev_live_bytes;
1179   size_t _total_next_live_bytes;
1180 
1181   // These are set up when we come across a "stars humongous" region
1182   // (as this is where most of this information is stored, not in the
1183   // subsequent "continues humongous" regions). After that, for every
1184   // region in a given humongous region series we deduce the right
1185   // values for it by simply subtracting the appropriate amount from
1186   // these fields. All these values should reach 0 after we've visited
1187   // the last region in the series.
1188   size_t _hum_used_bytes;
1189   size_t _hum_capacity_bytes;
1190   size_t _hum_prev_live_bytes;
1191   size_t _hum_next_live_bytes;
1192 
1193   // Accumulator for the remembered set size
1194   size_t _total_remset_bytes;
1195 
1196   // Accumulator for strong code roots memory size
1197   size_t _total_strong_code_roots_bytes;
1198 
1199   static double perc(size_t val, size_t total) {
1200     if (total == 0) {
1201       return 0.0;
1202     } else {
1203       return 100.0 * ((double) val / (double) total);
1204     }
1205   }
1206 
1207   static double bytes_to_mb(size_t val) {
1208     return (double) val / (double) M;
1209   }
1210 
1211   // See the .cpp file.
1212   size_t get_hum_bytes(size_t* hum_bytes);
1213   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1214                      size_t* prev_live_bytes, size_t* next_live_bytes);
1215 
1216 public:
1217   // The header and footer are printed in the constructor and
1218   // destructor respectively.
1219   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1220   virtual bool doHeapRegion(HeapRegion* r);
1221   ~G1PrintRegionLivenessInfoClosure();
1222 };
1223 
1224 #endif // SHARE_VM_GC_G1_CONCURRENTMARK_HPP