1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_old_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              ParallelGCThreads,                   // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 308 
 309   // Generation Counters - generation 1, 1 subspace
 310   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 311       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 312 
 313   _space_counters = new GSpaceCounters(gen_name, 0,
 314                                        _virtual_space.reserved_size(),
 315                                        this, _gen_counters);
 316 }
 317 
 318 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 319   _cms_gen(cms_gen)
 320 {
 321   assert(alpha <= 100, "bad value");
 322   _saved_alpha = alpha;
 323 
 324   // Initialize the alphas to the bootstrap value of 100.
 325   _gc0_alpha = _cms_alpha = 100;
 326 
 327   _cms_begin_time.update();
 328   _cms_end_time.update();
 329 
 330   _gc0_duration = 0.0;
 331   _gc0_period = 0.0;
 332   _gc0_promoted = 0;
 333 
 334   _cms_duration = 0.0;
 335   _cms_period = 0.0;
 336   _cms_allocated = 0;
 337 
 338   _cms_used_at_gc0_begin = 0;
 339   _cms_used_at_gc0_end = 0;
 340   _allow_duty_cycle_reduction = false;
 341   _valid_bits = 0;
 342 }
 343 
 344 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 345   // TBD: CR 6909490
 346   return 1.0;
 347 }
 348 
 349 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 350 }
 351 
 352 // If promotion failure handling is on use
 353 // the padded average size of the promotion for each
 354 // young generation collection.
 355 double CMSStats::time_until_cms_gen_full() const {
 356   size_t cms_free = _cms_gen->cmsSpace()->free();
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 359                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 360   if (cms_free > expected_promotion) {
 361     // Start a cms collection if there isn't enough space to promote
 362     // for the next young collection.  Use the padded average as
 363     // a safety factor.
 364     cms_free -= expected_promotion;
 365 
 366     // Adjust by the safety factor.
 367     double cms_free_dbl = (double)cms_free;
 368     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 369     // Apply a further correction factor which tries to adjust
 370     // for recent occurance of concurrent mode failures.
 371     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 372     cms_free_dbl = cms_free_dbl * cms_adjustment;
 373 
 374     if (PrintGCDetails && Verbose) {
 375       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 376         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377         cms_free, expected_promotion);
 378       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 379         cms_free_dbl, cms_consumption_rate() + 1.0);
 380     }
 381     // Add 1 in case the consumption rate goes to zero.
 382     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 383   }
 384   return 0.0;
 385 }
 386 
 387 // Compare the duration of the cms collection to the
 388 // time remaining before the cms generation is empty.
 389 // Note that the time from the start of the cms collection
 390 // to the start of the cms sweep (less than the total
 391 // duration of the cms collection) can be used.  This
 392 // has been tried and some applications experienced
 393 // promotion failures early in execution.  This was
 394 // possibly because the averages were not accurate
 395 // enough at the beginning.
 396 double CMSStats::time_until_cms_start() const {
 397   // We add "gc0_period" to the "work" calculation
 398   // below because this query is done (mostly) at the
 399   // end of a scavenge, so we need to conservatively
 400   // account for that much possible delay
 401   // in the query so as to avoid concurrent mode failures
 402   // due to starting the collection just a wee bit too
 403   // late.
 404   double work = cms_duration() + gc0_period();
 405   double deadline = time_until_cms_gen_full();
 406   // If a concurrent mode failure occurred recently, we want to be
 407   // more conservative and halve our expected time_until_cms_gen_full()
 408   if (work > deadline) {
 409     if (Verbose && PrintGCDetails) {
 410       gclog_or_tty->print(
 411         " CMSCollector: collect because of anticipated promotion "
 412         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 413         gc0_period(), time_until_cms_gen_full());
 414     }
 415     return 0.0;
 416   }
 417   return work - deadline;
 418 }
 419 
 420 #ifndef PRODUCT
 421 void CMSStats::print_on(outputStream *st) const {
 422   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 423   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 424                gc0_duration(), gc0_period(), gc0_promoted());
 425   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 426             cms_duration(), cms_period(), cms_allocated());
 427   st->print(",cms_since_beg=%g,cms_since_end=%g",
 428             cms_time_since_begin(), cms_time_since_end());
 429   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 430             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 431 
 432   if (valid()) {
 433     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 434               promotion_rate(), cms_allocation_rate());
 435     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 436               cms_consumption_rate(), time_until_cms_gen_full());
 437   }
 438   st->print(" ");
 439 }
 440 #endif // #ifndef PRODUCT
 441 
 442 CMSCollector::CollectorState CMSCollector::_collectorState =
 443                              CMSCollector::Idling;
 444 bool CMSCollector::_foregroundGCIsActive = false;
 445 bool CMSCollector::_foregroundGCShouldWait = false;
 446 
 447 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 448                            CardTableRS*                   ct,
 449                            ConcurrentMarkSweepPolicy*     cp):
 450   _cmsGen(cmsGen),
 451   _ct(ct),
 452   _ref_processor(NULL),    // will be set later
 453   _conc_workers(NULL),     // may be set later
 454   _abort_preclean(false),
 455   _start_sampling(false),
 456   _between_prologue_and_epilogue(false),
 457   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 458   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 459                  -1 /* lock-free */, "No_lock" /* dummy */),
 460   _modUnionClosurePar(&_modUnionTable),
 461   // Adjust my span to cover old (cms) gen
 462   _span(cmsGen->reserved()),
 463   // Construct the is_alive_closure with _span & markBitMap
 464   _is_alive_closure(_span, &_markBitMap),
 465   _restart_addr(NULL),
 466   _overflow_list(NULL),
 467   _stats(cmsGen),
 468   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 469                              //verify that this lock should be acquired with safepoint check.
 470                              Monitor::_safepoint_check_sometimes)),
 471   _eden_chunk_array(NULL),     // may be set in ctor body
 472   _eden_chunk_capacity(0),     // -- ditto --
 473   _eden_chunk_index(0),        // -- ditto --
 474   _survivor_plab_array(NULL),  // -- ditto --
 475   _survivor_chunk_array(NULL), // -- ditto --
 476   _survivor_chunk_capacity(0), // -- ditto --
 477   _survivor_chunk_index(0),    // -- ditto --
 478   _ser_pmc_preclean_ovflw(0),
 479   _ser_kac_preclean_ovflw(0),
 480   _ser_pmc_remark_ovflw(0),
 481   _par_pmc_remark_ovflw(0),
 482   _ser_kac_ovflw(0),
 483   _par_kac_ovflw(0),
 484 #ifndef PRODUCT
 485   _num_par_pushes(0),
 486 #endif
 487   _collection_count_start(0),
 488   _verifying(false),
 489   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 490   _completed_initialization(false),
 491   _collector_policy(cp),
 492   _should_unload_classes(CMSClassUnloadingEnabled),
 493   _concurrent_cycles_since_last_unload(0),
 494   _roots_scanning_options(GenCollectedHeap::SO_None),
 495   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 497   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 498   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 499   _cms_start_registered(false)
 500 {
 501   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 502     ExplicitGCInvokesConcurrent = true;
 503   }
 504   // Now expand the span and allocate the collection support structures
 505   // (MUT, marking bit map etc.) to cover both generations subject to
 506   // collection.
 507 
 508   // For use by dirty card to oop closures.
 509   _cmsGen->cmsSpace()->set_collector(this);
 510 
 511   // Allocate MUT and marking bit map
 512   {
 513     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 514     if (!_markBitMap.allocate(_span)) {
 515       warning("Failed to allocate CMS Bit Map");
 516       return;
 517     }
 518     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 519   }
 520   {
 521     _modUnionTable.allocate(_span);
 522     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 523   }
 524 
 525   if (!_markStack.allocate(MarkStackSize)) {
 526     warning("Failed to allocate CMS Marking Stack");
 527     return;
 528   }
 529 
 530   // Support for multi-threaded concurrent phases
 531   if (CMSConcurrentMTEnabled) {
 532     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 533       // just for now
 534       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 535     }
 536     if (ConcGCThreads > 1) {
 537       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 538                                  ConcGCThreads, true);
 539       if (_conc_workers == NULL) {
 540         warning("GC/CMS: _conc_workers allocation failure: "
 541               "forcing -CMSConcurrentMTEnabled");
 542         CMSConcurrentMTEnabled = false;
 543       } else {
 544         _conc_workers->initialize_workers();
 545       }
 546     } else {
 547       CMSConcurrentMTEnabled = false;
 548     }
 549   }
 550   if (!CMSConcurrentMTEnabled) {
 551     ConcGCThreads = 0;
 552   } else {
 553     // Turn off CMSCleanOnEnter optimization temporarily for
 554     // the MT case where it's not fixed yet; see 6178663.
 555     CMSCleanOnEnter = false;
 556   }
 557   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 558          "Inconsistency");
 559 
 560   // Parallel task queues; these are shared for the
 561   // concurrent and stop-world phases of CMS, but
 562   // are not shared with parallel scavenge (ParNew).
 563   {
 564     uint i;
 565     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 566 
 567     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 568          || ParallelRefProcEnabled)
 569         && num_queues > 0) {
 570       _task_queues = new OopTaskQueueSet(num_queues);
 571       if (_task_queues == NULL) {
 572         warning("task_queues allocation failure.");
 573         return;
 574       }
 575       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 576       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 577       for (i = 0; i < num_queues; i++) {
 578         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 579         if (q == NULL) {
 580           warning("work_queue allocation failure.");
 581           return;
 582         }
 583         _task_queues->register_queue(i, q);
 584       }
 585       for (i = 0; i < num_queues; i++) {
 586         _task_queues->queue(i)->initialize();
 587         _hash_seed[i] = 17;  // copied from ParNew
 588       }
 589     }
 590   }
 591 
 592   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 593 
 594   // Clip CMSBootstrapOccupancy between 0 and 100.
 595   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 596 
 597   // Now tell CMS generations the identity of their collector
 598   ConcurrentMarkSweepGeneration::set_collector(this);
 599 
 600   // Create & start a CMS thread for this CMS collector
 601   _cmsThread = ConcurrentMarkSweepThread::start(this);
 602   assert(cmsThread() != NULL, "CMS Thread should have been created");
 603   assert(cmsThread()->collector() == this,
 604          "CMS Thread should refer to this gen");
 605   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 606 
 607   // Support for parallelizing young gen rescan
 608   GenCollectedHeap* gch = GenCollectedHeap::heap();
 609   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 610   _young_gen = (ParNewGeneration*)gch->young_gen();
 611   if (gch->supports_inline_contig_alloc()) {
 612     _top_addr = gch->top_addr();
 613     _end_addr = gch->end_addr();
 614     assert(_young_gen != NULL, "no _young_gen");
 615     _eden_chunk_index = 0;
 616     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 617     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 618   }
 619 
 620   // Support for parallelizing survivor space rescan
 621   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 622     const size_t max_plab_samples =
 623       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 624 
 625     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 626     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 627     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 628     _survivor_chunk_capacity = max_plab_samples;
 629     for (uint i = 0; i < ParallelGCThreads; i++) {
 630       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 631       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 632       assert(cur->end() == 0, "Should be 0");
 633       assert(cur->array() == vec, "Should be vec");
 634       assert(cur->capacity() == max_plab_samples, "Error");
 635     }
 636   }
 637 
 638   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 639   _gc_counters = new CollectorCounters("CMS", 1);
 640   _completed_initialization = true;
 641   _inter_sweep_timer.start();  // start of time
 642 }
 643 
 644 const char* ConcurrentMarkSweepGeneration::name() const {
 645   return "concurrent mark-sweep generation";
 646 }
 647 void ConcurrentMarkSweepGeneration::update_counters() {
 648   if (UsePerfData) {
 649     _space_counters->update_all();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 // this is an optimized version of update_counters(). it takes the
 655 // used value as a parameter rather than computing it.
 656 //
 657 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 658   if (UsePerfData) {
 659     _space_counters->update_used(used);
 660     _space_counters->update_capacity();
 661     _gen_counters->update_all();
 662   }
 663 }
 664 
 665 void ConcurrentMarkSweepGeneration::print() const {
 666   Generation::print();
 667   cmsSpace()->print();
 668 }
 669 
 670 #ifndef PRODUCT
 671 void ConcurrentMarkSweepGeneration::print_statistics() {
 672   cmsSpace()->printFLCensus(0);
 673 }
 674 #endif
 675 
 676 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 677   GenCollectedHeap* gch = GenCollectedHeap::heap();
 678   if (PrintGCDetails) {
 679     // I didn't want to change the logging when removing the level concept,
 680     // but I guess this logging could say "old" or something instead of "1".
 681     assert(gch->is_old_gen(this),
 682            "The CMS generation should be the old generation");
 683     uint level = 1;
 684     if (Verbose) {
 685       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 686         level, short_name(), s, used(), capacity());
 687     } else {
 688       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 689         level, short_name(), s, used() / K, capacity() / K);
 690     }
 691   }
 692   if (Verbose) {
 693     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 694               gch->used(), gch->capacity());
 695   } else {
 696     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 697               gch->used() / K, gch->capacity() / K);
 698   }
 699 }
 700 
 701 size_t
 702 ConcurrentMarkSweepGeneration::contiguous_available() const {
 703   // dld proposes an improvement in precision here. If the committed
 704   // part of the space ends in a free block we should add that to
 705   // uncommitted size in the calculation below. Will make this
 706   // change later, staying with the approximation below for the
 707   // time being. -- ysr.
 708   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 709 }
 710 
 711 size_t
 712 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 713   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 714 }
 715 
 716 size_t ConcurrentMarkSweepGeneration::max_available() const {
 717   return free() + _virtual_space.uncommitted_size();
 718 }
 719 
 720 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 721   size_t available = max_available();
 722   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 723   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 724   if (Verbose && PrintGCDetails) {
 725     gclog_or_tty->print_cr(
 726       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 727       "max_promo(" SIZE_FORMAT ")",
 728       res? "":" not", available, res? ">=":"<",
 729       av_promo, max_promotion_in_bytes);
 730   }
 731   return res;
 732 }
 733 
 734 // At a promotion failure dump information on block layout in heap
 735 // (cms old generation).
 736 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 737   if (CMSDumpAtPromotionFailure) {
 738     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 739   }
 740 }
 741 
 742 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 743   // Clear the promotion information.  These pointers can be adjusted
 744   // along with all the other pointers into the heap but
 745   // compaction is expected to be a rare event with
 746   // a heap using cms so don't do it without seeing the need.
 747   for (uint i = 0; i < ParallelGCThreads; i++) {
 748     _par_gc_thread_states[i]->promo.reset();
 749   }
 750 }
 751 
 752 void ConcurrentMarkSweepGeneration::compute_new_size() {
 753   assert_locked_or_safepoint(Heap_lock);
 754 
 755   // If incremental collection failed, we just want to expand
 756   // to the limit.
 757   if (incremental_collection_failed()) {
 758     clear_incremental_collection_failed();
 759     grow_to_reserved();
 760     return;
 761   }
 762 
 763   // The heap has been compacted but not reset yet.
 764   // Any metric such as free() or used() will be incorrect.
 765 
 766   CardGeneration::compute_new_size();
 767 
 768   // Reset again after a possible resizing
 769   if (did_compact()) {
 770     cmsSpace()->reset_after_compaction();
 771   }
 772 }
 773 
 774 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 775   assert_locked_or_safepoint(Heap_lock);
 776 
 777   // If incremental collection failed, we just want to expand
 778   // to the limit.
 779   if (incremental_collection_failed()) {
 780     clear_incremental_collection_failed();
 781     grow_to_reserved();
 782     return;
 783   }
 784 
 785   double free_percentage = ((double) free()) / capacity();
 786   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 787   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 788 
 789   // compute expansion delta needed for reaching desired free percentage
 790   if (free_percentage < desired_free_percentage) {
 791     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 792     assert(desired_capacity >= capacity(), "invalid expansion size");
 793     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 794     if (PrintGCDetails && Verbose) {
 795       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 796       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 797       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 798       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 799       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 800       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity() / 1000);
 801       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 802       GenCollectedHeap* gch = GenCollectedHeap::heap();
 803       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 804       size_t young_size = gch->young_gen()->capacity();
 805       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 806       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 807       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 808       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 809     }
 810     // safe if expansion fails
 811     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 812     if (PrintGCDetails && Verbose) {
 813       gclog_or_tty->print_cr("  Expanded free fraction %f", ((double) free()) / capacity());
 814     }
 815   } else {
 816     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 817     assert(desired_capacity <= capacity(), "invalid expansion size");
 818     size_t shrink_bytes = capacity() - desired_capacity;
 819     // Don't shrink unless the delta is greater than the minimum shrink we want
 820     if (shrink_bytes >= MinHeapDeltaBytes) {
 821       shrink_free_list_by(shrink_bytes);
 822     }
 823   }
 824 }
 825 
 826 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 827   return cmsSpace()->freelistLock();
 828 }
 829 
 830 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 831   CMSSynchronousYieldRequest yr;
 832   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 833   return have_lock_and_allocate(size, tlab);
 834 }
 835 
 836 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 837                                                                 bool   tlab /* ignored */) {
 838   assert_lock_strong(freelistLock());
 839   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 840   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 841   // Allocate the object live (grey) if the background collector has
 842   // started marking. This is necessary because the marker may
 843   // have passed this address and consequently this object will
 844   // not otherwise be greyed and would be incorrectly swept up.
 845   // Note that if this object contains references, the writing
 846   // of those references will dirty the card containing this object
 847   // allowing the object to be blackened (and its references scanned)
 848   // either during a preclean phase or at the final checkpoint.
 849   if (res != NULL) {
 850     // We may block here with an uninitialized object with
 851     // its mark-bit or P-bits not yet set. Such objects need
 852     // to be safely navigable by block_start().
 853     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 854     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 855     collector()->direct_allocated(res, adjustedSize);
 856     _direct_allocated_words += adjustedSize;
 857     // allocation counters
 858     NOT_PRODUCT(
 859       _numObjectsAllocated++;
 860       _numWordsAllocated += (int)adjustedSize;
 861     )
 862   }
 863   return res;
 864 }
 865 
 866 // In the case of direct allocation by mutators in a generation that
 867 // is being concurrently collected, the object must be allocated
 868 // live (grey) if the background collector has started marking.
 869 // This is necessary because the marker may
 870 // have passed this address and consequently this object will
 871 // not otherwise be greyed and would be incorrectly swept up.
 872 // Note that if this object contains references, the writing
 873 // of those references will dirty the card containing this object
 874 // allowing the object to be blackened (and its references scanned)
 875 // either during a preclean phase or at the final checkpoint.
 876 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 877   assert(_markBitMap.covers(start, size), "Out of bounds");
 878   if (_collectorState >= Marking) {
 879     MutexLockerEx y(_markBitMap.lock(),
 880                     Mutex::_no_safepoint_check_flag);
 881     // [see comments preceding SweepClosure::do_blk() below for details]
 882     //
 883     // Can the P-bits be deleted now?  JJJ
 884     //
 885     // 1. need to mark the object as live so it isn't collected
 886     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 887     // 3. need to mark the end of the object so marking, precleaning or sweeping
 888     //    can skip over uninitialized or unparsable objects. An allocated
 889     //    object is considered uninitialized for our purposes as long as
 890     //    its klass word is NULL.  All old gen objects are parsable
 891     //    as soon as they are initialized.)
 892     _markBitMap.mark(start);          // object is live
 893     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 894     _markBitMap.mark(start + size - 1);
 895                                       // mark end of object
 896   }
 897   // check that oop looks uninitialized
 898   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 899 }
 900 
 901 void CMSCollector::promoted(bool par, HeapWord* start,
 902                             bool is_obj_array, size_t obj_size) {
 903   assert(_markBitMap.covers(start), "Out of bounds");
 904   // See comment in direct_allocated() about when objects should
 905   // be allocated live.
 906   if (_collectorState >= Marking) {
 907     // we already hold the marking bit map lock, taken in
 908     // the prologue
 909     if (par) {
 910       _markBitMap.par_mark(start);
 911     } else {
 912       _markBitMap.mark(start);
 913     }
 914     // We don't need to mark the object as uninitialized (as
 915     // in direct_allocated above) because this is being done with the
 916     // world stopped and the object will be initialized by the
 917     // time the marking, precleaning or sweeping get to look at it.
 918     // But see the code for copying objects into the CMS generation,
 919     // where we need to ensure that concurrent readers of the
 920     // block offset table are able to safely navigate a block that
 921     // is in flux from being free to being allocated (and in
 922     // transition while being copied into) and subsequently
 923     // becoming a bona-fide object when the copy/promotion is complete.
 924     assert(SafepointSynchronize::is_at_safepoint(),
 925            "expect promotion only at safepoints");
 926 
 927     if (_collectorState < Sweeping) {
 928       // Mark the appropriate cards in the modUnionTable, so that
 929       // this object gets scanned before the sweep. If this is
 930       // not done, CMS generation references in the object might
 931       // not get marked.
 932       // For the case of arrays, which are otherwise precisely
 933       // marked, we need to dirty the entire array, not just its head.
 934       if (is_obj_array) {
 935         // The [par_]mark_range() method expects mr.end() below to
 936         // be aligned to the granularity of a bit's representation
 937         // in the heap. In the case of the MUT below, that's a
 938         // card size.
 939         MemRegion mr(start,
 940                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 941                         CardTableModRefBS::card_size /* bytes */));
 942         if (par) {
 943           _modUnionTable.par_mark_range(mr);
 944         } else {
 945           _modUnionTable.mark_range(mr);
 946         }
 947       } else {  // not an obj array; we can just mark the head
 948         if (par) {
 949           _modUnionTable.par_mark(start);
 950         } else {
 951           _modUnionTable.mark(start);
 952         }
 953       }
 954     }
 955   }
 956 }
 957 
 958 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 959   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 960   // allocate, copy and if necessary update promoinfo --
 961   // delegate to underlying space.
 962   assert_lock_strong(freelistLock());
 963 
 964 #ifndef PRODUCT
 965   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 966     return NULL;
 967   }
 968 #endif  // #ifndef PRODUCT
 969 
 970   oop res = _cmsSpace->promote(obj, obj_size);
 971   if (res == NULL) {
 972     // expand and retry
 973     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 974     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 975     // Since this is the old generation, we don't try to promote
 976     // into a more senior generation.
 977     res = _cmsSpace->promote(obj, obj_size);
 978   }
 979   if (res != NULL) {
 980     // See comment in allocate() about when objects should
 981     // be allocated live.
 982     assert(obj->is_oop(), "Will dereference klass pointer below");
 983     collector()->promoted(false,           // Not parallel
 984                           (HeapWord*)res, obj->is_objArray(), obj_size);
 985     // promotion counters
 986     NOT_PRODUCT(
 987       _numObjectsPromoted++;
 988       _numWordsPromoted +=
 989         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 990     )
 991   }
 992   return res;
 993 }
 994 
 995 
 996 // IMPORTANT: Notes on object size recognition in CMS.
 997 // ---------------------------------------------------
 998 // A block of storage in the CMS generation is always in
 999 // one of three states. A free block (FREE), an allocated
1000 // object (OBJECT) whose size() method reports the correct size,
1001 // and an intermediate state (TRANSIENT) in which its size cannot
1002 // be accurately determined.
1003 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1004 // -----------------------------------------------------
1005 // FREE:      klass_word & 1 == 1; mark_word holds block size
1006 //
1007 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1008 //            obj->size() computes correct size
1009 //
1010 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1011 //
1012 // STATE IDENTIFICATION: (64 bit+COOPS)
1013 // ------------------------------------
1014 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1015 //
1016 // OBJECT:    klass_word installed; klass_word != 0;
1017 //            obj->size() computes correct size
1018 //
1019 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1020 //
1021 //
1022 // STATE TRANSITION DIAGRAM
1023 //
1024 //        mut / parnew                     mut  /  parnew
1025 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1026 //  ^                                                                   |
1027 //  |------------------------ DEAD <------------------------------------|
1028 //         sweep                            mut
1029 //
1030 // While a block is in TRANSIENT state its size cannot be determined
1031 // so readers will either need to come back later or stall until
1032 // the size can be determined. Note that for the case of direct
1033 // allocation, P-bits, when available, may be used to determine the
1034 // size of an object that may not yet have been initialized.
1035 
1036 // Things to support parallel young-gen collection.
1037 oop
1038 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1039                                            oop old, markOop m,
1040                                            size_t word_sz) {
1041 #ifndef PRODUCT
1042   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1043     return NULL;
1044   }
1045 #endif  // #ifndef PRODUCT
1046 
1047   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1048   PromotionInfo* promoInfo = &ps->promo;
1049   // if we are tracking promotions, then first ensure space for
1050   // promotion (including spooling space for saving header if necessary).
1051   // then allocate and copy, then track promoted info if needed.
1052   // When tracking (see PromotionInfo::track()), the mark word may
1053   // be displaced and in this case restoration of the mark word
1054   // occurs in the (oop_since_save_marks_)iterate phase.
1055   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1056     // Out of space for allocating spooling buffers;
1057     // try expanding and allocating spooling buffers.
1058     if (!expand_and_ensure_spooling_space(promoInfo)) {
1059       return NULL;
1060     }
1061   }
1062   assert(promoInfo->has_spooling_space(), "Control point invariant");
1063   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1064   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1065   if (obj_ptr == NULL) {
1066      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1067      if (obj_ptr == NULL) {
1068        return NULL;
1069      }
1070   }
1071   oop obj = oop(obj_ptr);
1072   OrderAccess::storestore();
1073   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1074   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1075   // IMPORTANT: See note on object initialization for CMS above.
1076   // Otherwise, copy the object.  Here we must be careful to insert the
1077   // klass pointer last, since this marks the block as an allocated object.
1078   // Except with compressed oops it's the mark word.
1079   HeapWord* old_ptr = (HeapWord*)old;
1080   // Restore the mark word copied above.
1081   obj->set_mark(m);
1082   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1083   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1084   OrderAccess::storestore();
1085 
1086   if (UseCompressedClassPointers) {
1087     // Copy gap missed by (aligned) header size calculation below
1088     obj->set_klass_gap(old->klass_gap());
1089   }
1090   if (word_sz > (size_t)oopDesc::header_size()) {
1091     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1092                                  obj_ptr + oopDesc::header_size(),
1093                                  word_sz - oopDesc::header_size());
1094   }
1095 
1096   // Now we can track the promoted object, if necessary.  We take care
1097   // to delay the transition from uninitialized to full object
1098   // (i.e., insertion of klass pointer) until after, so that it
1099   // atomically becomes a promoted object.
1100   if (promoInfo->tracking()) {
1101     promoInfo->track((PromotedObject*)obj, old->klass());
1102   }
1103   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1104   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1105   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1106 
1107   // Finally, install the klass pointer (this should be volatile).
1108   OrderAccess::storestore();
1109   obj->set_klass(old->klass());
1110   // We should now be able to calculate the right size for this object
1111   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1112 
1113   collector()->promoted(true,          // parallel
1114                         obj_ptr, old->is_objArray(), word_sz);
1115 
1116   NOT_PRODUCT(
1117     Atomic::inc_ptr(&_numObjectsPromoted);
1118     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1119   )
1120 
1121   return obj;
1122 }
1123 
1124 void
1125 ConcurrentMarkSweepGeneration::
1126 par_promote_alloc_done(int thread_num) {
1127   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1128   ps->lab.retire(thread_num);
1129 }
1130 
1131 void
1132 ConcurrentMarkSweepGeneration::
1133 par_oop_since_save_marks_iterate_done(int thread_num) {
1134   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1135   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1136   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1137 }
1138 
1139 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1140                                                    size_t size,
1141                                                    bool   tlab)
1142 {
1143   // We allow a STW collection only if a full
1144   // collection was requested.
1145   return full || should_allocate(size, tlab); // FIX ME !!!
1146   // This and promotion failure handling are connected at the
1147   // hip and should be fixed by untying them.
1148 }
1149 
1150 bool CMSCollector::shouldConcurrentCollect() {
1151   if (_full_gc_requested) {
1152     if (Verbose && PrintGCDetails) {
1153       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1154                              " gc request (or gc_locker)");
1155     }
1156     return true;
1157   }
1158 
1159   FreelistLocker x(this);
1160   // ------------------------------------------------------------------
1161   // Print out lots of information which affects the initiation of
1162   // a collection.
1163   if (PrintCMSInitiationStatistics && stats().valid()) {
1164     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1165     gclog_or_tty->stamp();
1166     gclog_or_tty->cr();
1167     stats().print_on(gclog_or_tty);
1168     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1169       stats().time_until_cms_gen_full());
1170     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1171     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1172                            _cmsGen->contiguous_available());
1173     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1174     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1175     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1176     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1177     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1178     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1179     gclog_or_tty->print_cr("metadata initialized %d",
1180       MetaspaceGC::should_concurrent_collect());
1181   }
1182   // ------------------------------------------------------------------
1183 
1184   // If the estimated time to complete a cms collection (cms_duration())
1185   // is less than the estimated time remaining until the cms generation
1186   // is full, start a collection.
1187   if (!UseCMSInitiatingOccupancyOnly) {
1188     if (stats().valid()) {
1189       if (stats().time_until_cms_start() == 0.0) {
1190         return true;
1191       }
1192     } else {
1193       // We want to conservatively collect somewhat early in order
1194       // to try and "bootstrap" our CMS/promotion statistics;
1195       // this branch will not fire after the first successful CMS
1196       // collection because the stats should then be valid.
1197       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1198         if (Verbose && PrintGCDetails) {
1199           gclog_or_tty->print_cr(
1200             " CMSCollector: collect for bootstrapping statistics:"
1201             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1202             _bootstrap_occupancy);
1203         }
1204         return true;
1205       }
1206     }
1207   }
1208 
1209   // Otherwise, we start a collection cycle if
1210   // old gen want a collection cycle started. Each may use
1211   // an appropriate criterion for making this decision.
1212   // XXX We need to make sure that the gen expansion
1213   // criterion dovetails well with this. XXX NEED TO FIX THIS
1214   if (_cmsGen->should_concurrent_collect()) {
1215     if (Verbose && PrintGCDetails) {
1216       gclog_or_tty->print_cr("CMS old gen initiated");
1217     }
1218     return true;
1219   }
1220 
1221   // We start a collection if we believe an incremental collection may fail;
1222   // this is not likely to be productive in practice because it's probably too
1223   // late anyway.
1224   GenCollectedHeap* gch = GenCollectedHeap::heap();
1225   assert(gch->collector_policy()->is_generation_policy(),
1226          "You may want to check the correctness of the following");
1227   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1228     if (Verbose && PrintGCDetails) {
1229       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1230     }
1231     return true;
1232   }
1233 
1234   if (MetaspaceGC::should_concurrent_collect()) {
1235     if (Verbose && PrintGCDetails) {
1236       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1237     }
1238     return true;
1239   }
1240 
1241   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1242   if (CMSTriggerInterval >= 0) {
1243     if (CMSTriggerInterval == 0) {
1244       // Trigger always
1245       return true;
1246     }
1247 
1248     // Check the CMS time since begin (we do not check the stats validity
1249     // as we want to be able to trigger the first CMS cycle as well)
1250     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1251       if (Verbose && PrintGCDetails) {
1252         if (stats().valid()) {
1253           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1254                                  stats().cms_time_since_begin());
1255         } else {
1256           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1257         }
1258       }
1259       return true;
1260     }
1261   }
1262 
1263   return false;
1264 }
1265 
1266 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1267 
1268 // Clear _expansion_cause fields of constituent generations
1269 void CMSCollector::clear_expansion_cause() {
1270   _cmsGen->clear_expansion_cause();
1271 }
1272 
1273 // We should be conservative in starting a collection cycle.  To
1274 // start too eagerly runs the risk of collecting too often in the
1275 // extreme.  To collect too rarely falls back on full collections,
1276 // which works, even if not optimum in terms of concurrent work.
1277 // As a work around for too eagerly collecting, use the flag
1278 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1279 // giving the user an easily understandable way of controlling the
1280 // collections.
1281 // We want to start a new collection cycle if any of the following
1282 // conditions hold:
1283 // . our current occupancy exceeds the configured initiating occupancy
1284 //   for this generation, or
1285 // . we recently needed to expand this space and have not, since that
1286 //   expansion, done a collection of this generation, or
1287 // . the underlying space believes that it may be a good idea to initiate
1288 //   a concurrent collection (this may be based on criteria such as the
1289 //   following: the space uses linear allocation and linear allocation is
1290 //   going to fail, or there is believed to be excessive fragmentation in
1291 //   the generation, etc... or ...
1292 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1293 //   the case of the old generation; see CR 6543076):
1294 //   we may be approaching a point at which allocation requests may fail because
1295 //   we will be out of sufficient free space given allocation rate estimates.]
1296 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1297 
1298   assert_lock_strong(freelistLock());
1299   if (occupancy() > initiating_occupancy()) {
1300     if (PrintGCDetails && Verbose) {
1301       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1302         short_name(), occupancy(), initiating_occupancy());
1303     }
1304     return true;
1305   }
1306   if (UseCMSInitiatingOccupancyOnly) {
1307     return false;
1308   }
1309   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1310     if (PrintGCDetails && Verbose) {
1311       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1312         short_name());
1313     }
1314     return true;
1315   }
1316   if (_cmsSpace->should_concurrent_collect()) {
1317     if (PrintGCDetails && Verbose) {
1318       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1319         short_name());
1320     }
1321     return true;
1322   }
1323   return false;
1324 }
1325 
1326 void ConcurrentMarkSweepGeneration::collect(bool   full,
1327                                             bool   clear_all_soft_refs,
1328                                             size_t size,
1329                                             bool   tlab)
1330 {
1331   collector()->collect(full, clear_all_soft_refs, size, tlab);
1332 }
1333 
1334 void CMSCollector::collect(bool   full,
1335                            bool   clear_all_soft_refs,
1336                            size_t size,
1337                            bool   tlab)
1338 {
1339   // The following "if" branch is present for defensive reasons.
1340   // In the current uses of this interface, it can be replaced with:
1341   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1342   // But I am not placing that assert here to allow future
1343   // generality in invoking this interface.
1344   if (GC_locker::is_active()) {
1345     // A consistency test for GC_locker
1346     assert(GC_locker::needs_gc(), "Should have been set already");
1347     // Skip this foreground collection, instead
1348     // expanding the heap if necessary.
1349     // Need the free list locks for the call to free() in compute_new_size()
1350     compute_new_size();
1351     return;
1352   }
1353   acquire_control_and_collect(full, clear_all_soft_refs);
1354 }
1355 
1356 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1357   GenCollectedHeap* gch = GenCollectedHeap::heap();
1358   unsigned int gc_count = gch->total_full_collections();
1359   if (gc_count == full_gc_count) {
1360     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1361     _full_gc_requested = true;
1362     _full_gc_cause = cause;
1363     CGC_lock->notify();   // nudge CMS thread
1364   } else {
1365     assert(gc_count > full_gc_count, "Error: causal loop");
1366   }
1367 }
1368 
1369 bool CMSCollector::is_external_interruption() {
1370   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1371   return GCCause::is_user_requested_gc(cause) ||
1372          GCCause::is_serviceability_requested_gc(cause);
1373 }
1374 
1375 void CMSCollector::report_concurrent_mode_interruption() {
1376   if (is_external_interruption()) {
1377     if (PrintGCDetails) {
1378       gclog_or_tty->print(" (concurrent mode interrupted)");
1379     }
1380   } else {
1381     if (PrintGCDetails) {
1382       gclog_or_tty->print(" (concurrent mode failure)");
1383     }
1384     _gc_tracer_cm->report_concurrent_mode_failure();
1385   }
1386 }
1387 
1388 
1389 // The foreground and background collectors need to coordinate in order
1390 // to make sure that they do not mutually interfere with CMS collections.
1391 // When a background collection is active,
1392 // the foreground collector may need to take over (preempt) and
1393 // synchronously complete an ongoing collection. Depending on the
1394 // frequency of the background collections and the heap usage
1395 // of the application, this preemption can be seldom or frequent.
1396 // There are only certain
1397 // points in the background collection that the "collection-baton"
1398 // can be passed to the foreground collector.
1399 //
1400 // The foreground collector will wait for the baton before
1401 // starting any part of the collection.  The foreground collector
1402 // will only wait at one location.
1403 //
1404 // The background collector will yield the baton before starting a new
1405 // phase of the collection (e.g., before initial marking, marking from roots,
1406 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1407 // of the loop which switches the phases. The background collector does some
1408 // of the phases (initial mark, final re-mark) with the world stopped.
1409 // Because of locking involved in stopping the world,
1410 // the foreground collector should not block waiting for the background
1411 // collector when it is doing a stop-the-world phase.  The background
1412 // collector will yield the baton at an additional point just before
1413 // it enters a stop-the-world phase.  Once the world is stopped, the
1414 // background collector checks the phase of the collection.  If the
1415 // phase has not changed, it proceeds with the collection.  If the
1416 // phase has changed, it skips that phase of the collection.  See
1417 // the comments on the use of the Heap_lock in collect_in_background().
1418 //
1419 // Variable used in baton passing.
1420 //   _foregroundGCIsActive - Set to true by the foreground collector when
1421 //      it wants the baton.  The foreground clears it when it has finished
1422 //      the collection.
1423 //   _foregroundGCShouldWait - Set to true by the background collector
1424 //        when it is running.  The foreground collector waits while
1425 //      _foregroundGCShouldWait is true.
1426 //  CGC_lock - monitor used to protect access to the above variables
1427 //      and to notify the foreground and background collectors.
1428 //  _collectorState - current state of the CMS collection.
1429 //
1430 // The foreground collector
1431 //   acquires the CGC_lock
1432 //   sets _foregroundGCIsActive
1433 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1434 //     various locks acquired in preparation for the collection
1435 //     are released so as not to block the background collector
1436 //     that is in the midst of a collection
1437 //   proceeds with the collection
1438 //   clears _foregroundGCIsActive
1439 //   returns
1440 //
1441 // The background collector in a loop iterating on the phases of the
1442 //      collection
1443 //   acquires the CGC_lock
1444 //   sets _foregroundGCShouldWait
1445 //   if _foregroundGCIsActive is set
1446 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1447 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1448 //     and exits the loop.
1449 //   otherwise
1450 //     proceed with that phase of the collection
1451 //     if the phase is a stop-the-world phase,
1452 //       yield the baton once more just before enqueueing
1453 //       the stop-world CMS operation (executed by the VM thread).
1454 //   returns after all phases of the collection are done
1455 //
1456 
1457 void CMSCollector::acquire_control_and_collect(bool full,
1458         bool clear_all_soft_refs) {
1459   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1460   assert(!Thread::current()->is_ConcurrentGC_thread(),
1461          "shouldn't try to acquire control from self!");
1462 
1463   // Start the protocol for acquiring control of the
1464   // collection from the background collector (aka CMS thread).
1465   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1466          "VM thread should have CMS token");
1467   // Remember the possibly interrupted state of an ongoing
1468   // concurrent collection
1469   CollectorState first_state = _collectorState;
1470 
1471   // Signal to a possibly ongoing concurrent collection that
1472   // we want to do a foreground collection.
1473   _foregroundGCIsActive = true;
1474 
1475   // release locks and wait for a notify from the background collector
1476   // releasing the locks in only necessary for phases which
1477   // do yields to improve the granularity of the collection.
1478   assert_lock_strong(bitMapLock());
1479   // We need to lock the Free list lock for the space that we are
1480   // currently collecting.
1481   assert(haveFreelistLocks(), "Must be holding free list locks");
1482   bitMapLock()->unlock();
1483   releaseFreelistLocks();
1484   {
1485     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1486     if (_foregroundGCShouldWait) {
1487       // We are going to be waiting for action for the CMS thread;
1488       // it had better not be gone (for instance at shutdown)!
1489       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1490              "CMS thread must be running");
1491       // Wait here until the background collector gives us the go-ahead
1492       ConcurrentMarkSweepThread::clear_CMS_flag(
1493         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1494       // Get a possibly blocked CMS thread going:
1495       //   Note that we set _foregroundGCIsActive true above,
1496       //   without protection of the CGC_lock.
1497       CGC_lock->notify();
1498       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1499              "Possible deadlock");
1500       while (_foregroundGCShouldWait) {
1501         // wait for notification
1502         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1503         // Possibility of delay/starvation here, since CMS token does
1504         // not know to give priority to VM thread? Actually, i think
1505         // there wouldn't be any delay/starvation, but the proof of
1506         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1507       }
1508       ConcurrentMarkSweepThread::set_CMS_flag(
1509         ConcurrentMarkSweepThread::CMS_vm_has_token);
1510     }
1511   }
1512   // The CMS_token is already held.  Get back the other locks.
1513   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1514          "VM thread should have CMS token");
1515   getFreelistLocks();
1516   bitMapLock()->lock_without_safepoint_check();
1517   if (TraceCMSState) {
1518     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1519       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1520     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1521   }
1522 
1523   // Inform cms gen if this was due to partial collection failing.
1524   // The CMS gen may use this fact to determine its expansion policy.
1525   GenCollectedHeap* gch = GenCollectedHeap::heap();
1526   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1527     assert(!_cmsGen->incremental_collection_failed(),
1528            "Should have been noticed, reacted to and cleared");
1529     _cmsGen->set_incremental_collection_failed();
1530   }
1531 
1532   if (first_state > Idling) {
1533     report_concurrent_mode_interruption();
1534   }
1535 
1536   set_did_compact(true);
1537 
1538   // If the collection is being acquired from the background
1539   // collector, there may be references on the discovered
1540   // references lists.  Abandon those references, since some
1541   // of them may have become unreachable after concurrent
1542   // discovery; the STW compacting collector will redo discovery
1543   // more precisely, without being subject to floating garbage.
1544   // Leaving otherwise unreachable references in the discovered
1545   // lists would require special handling.
1546   ref_processor()->disable_discovery();
1547   ref_processor()->abandon_partial_discovery();
1548   ref_processor()->verify_no_references_recorded();
1549 
1550   if (first_state > Idling) {
1551     save_heap_summary();
1552   }
1553 
1554   do_compaction_work(clear_all_soft_refs);
1555 
1556   // Has the GC time limit been exceeded?
1557   size_t max_eden_size = _young_gen->max_capacity() -
1558                          _young_gen->to()->capacity() -
1559                          _young_gen->from()->capacity();
1560   GCCause::Cause gc_cause = gch->gc_cause();
1561   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1562                                          _young_gen->eden()->used(),
1563                                          _cmsGen->max_capacity(),
1564                                          max_eden_size,
1565                                          full,
1566                                          gc_cause,
1567                                          gch->collector_policy());
1568 
1569   // Reset the expansion cause, now that we just completed
1570   // a collection cycle.
1571   clear_expansion_cause();
1572   _foregroundGCIsActive = false;
1573   return;
1574 }
1575 
1576 // Resize the tenured generation
1577 // after obtaining the free list locks for the
1578 // two generations.
1579 void CMSCollector::compute_new_size() {
1580   assert_locked_or_safepoint(Heap_lock);
1581   FreelistLocker z(this);
1582   MetaspaceGC::compute_new_size();
1583   _cmsGen->compute_new_size_free_list();
1584 }
1585 
1586 // A work method used by the foreground collector to do
1587 // a mark-sweep-compact.
1588 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1589   GenCollectedHeap* gch = GenCollectedHeap::heap();
1590 
1591   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1592   gc_timer->register_gc_start();
1593 
1594   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1595   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1596 
1597   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1598 
1599   // Temporarily widen the span of the weak reference processing to
1600   // the entire heap.
1601   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1602   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1603   // Temporarily, clear the "is_alive_non_header" field of the
1604   // reference processor.
1605   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1606   // Temporarily make reference _processing_ single threaded (non-MT).
1607   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1608   // Temporarily make refs discovery atomic
1609   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1610   // Temporarily make reference _discovery_ single threaded (non-MT)
1611   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1612 
1613   ref_processor()->set_enqueuing_is_done(false);
1614   ref_processor()->enable_discovery();
1615   ref_processor()->setup_policy(clear_all_soft_refs);
1616   // If an asynchronous collection finishes, the _modUnionTable is
1617   // all clear.  If we are assuming the collection from an asynchronous
1618   // collection, clear the _modUnionTable.
1619   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1620     "_modUnionTable should be clear if the baton was not passed");
1621   _modUnionTable.clear_all();
1622   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1623     "mod union for klasses should be clear if the baton was passed");
1624   _ct->klass_rem_set()->clear_mod_union();
1625 
1626   // We must adjust the allocation statistics being maintained
1627   // in the free list space. We do so by reading and clearing
1628   // the sweep timer and updating the block flux rate estimates below.
1629   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1630   if (_inter_sweep_timer.is_active()) {
1631     _inter_sweep_timer.stop();
1632     // Note that we do not use this sample to update the _inter_sweep_estimate.
1633     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1634                                             _inter_sweep_estimate.padded_average(),
1635                                             _intra_sweep_estimate.padded_average());
1636   }
1637 
1638   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1639   #ifdef ASSERT
1640     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1641     size_t free_size = cms_space->free();
1642     assert(free_size ==
1643            pointer_delta(cms_space->end(), cms_space->compaction_top())
1644            * HeapWordSize,
1645       "All the free space should be compacted into one chunk at top");
1646     assert(cms_space->dictionary()->total_chunk_size(
1647                                       debug_only(cms_space->freelistLock())) == 0 ||
1648            cms_space->totalSizeInIndexedFreeLists() == 0,
1649       "All the free space should be in a single chunk");
1650     size_t num = cms_space->totalCount();
1651     assert((free_size == 0 && num == 0) ||
1652            (free_size > 0  && (num == 1 || num == 2)),
1653          "There should be at most 2 free chunks after compaction");
1654   #endif // ASSERT
1655   _collectorState = Resetting;
1656   assert(_restart_addr == NULL,
1657          "Should have been NULL'd before baton was passed");
1658   reset(false /* == !concurrent */);
1659   _cmsGen->reset_after_compaction();
1660   _concurrent_cycles_since_last_unload = 0;
1661 
1662   // Clear any data recorded in the PLAB chunk arrays.
1663   if (_survivor_plab_array != NULL) {
1664     reset_survivor_plab_arrays();
1665   }
1666 
1667   // Adjust the per-size allocation stats for the next epoch.
1668   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1669   // Restart the "inter sweep timer" for the next epoch.
1670   _inter_sweep_timer.reset();
1671   _inter_sweep_timer.start();
1672 
1673   gc_timer->register_gc_end();
1674 
1675   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1676 
1677   // For a mark-sweep-compact, compute_new_size() will be called
1678   // in the heap's do_collection() method.
1679 }
1680 
1681 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1682   ContiguousSpace* eden_space = _young_gen->eden();
1683   ContiguousSpace* from_space = _young_gen->from();
1684   ContiguousSpace* to_space   = _young_gen->to();
1685   // Eden
1686   if (_eden_chunk_array != NULL) {
1687     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1688                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1689                            p2i(eden_space->end()), eden_space->capacity());
1690     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1691                            "_eden_chunk_capacity=" SIZE_FORMAT,
1692                            _eden_chunk_index, _eden_chunk_capacity);
1693     for (size_t i = 0; i < _eden_chunk_index; i++) {
1694       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1695                              i, p2i(_eden_chunk_array[i]));
1696     }
1697   }
1698   // Survivor
1699   if (_survivor_chunk_array != NULL) {
1700     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1701                            p2i(from_space->bottom()), p2i(from_space->top()),
1702                            p2i(from_space->end()), from_space->capacity());
1703     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1704                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1705                            _survivor_chunk_index, _survivor_chunk_capacity);
1706     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1707       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1708                              i, p2i(_survivor_chunk_array[i]));
1709     }
1710   }
1711 }
1712 
1713 void CMSCollector::getFreelistLocks() const {
1714   // Get locks for all free lists in all generations that this
1715   // collector is responsible for
1716   _cmsGen->freelistLock()->lock_without_safepoint_check();
1717 }
1718 
1719 void CMSCollector::releaseFreelistLocks() const {
1720   // Release locks for all free lists in all generations that this
1721   // collector is responsible for
1722   _cmsGen->freelistLock()->unlock();
1723 }
1724 
1725 bool CMSCollector::haveFreelistLocks() const {
1726   // Check locks for all free lists in all generations that this
1727   // collector is responsible for
1728   assert_lock_strong(_cmsGen->freelistLock());
1729   PRODUCT_ONLY(ShouldNotReachHere());
1730   return true;
1731 }
1732 
1733 // A utility class that is used by the CMS collector to
1734 // temporarily "release" the foreground collector from its
1735 // usual obligation to wait for the background collector to
1736 // complete an ongoing phase before proceeding.
1737 class ReleaseForegroundGC: public StackObj {
1738  private:
1739   CMSCollector* _c;
1740  public:
1741   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1742     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1743     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1744     // allow a potentially blocked foreground collector to proceed
1745     _c->_foregroundGCShouldWait = false;
1746     if (_c->_foregroundGCIsActive) {
1747       CGC_lock->notify();
1748     }
1749     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1750            "Possible deadlock");
1751   }
1752 
1753   ~ReleaseForegroundGC() {
1754     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1755     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1756     _c->_foregroundGCShouldWait = true;
1757   }
1758 };
1759 
1760 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1761   assert(Thread::current()->is_ConcurrentGC_thread(),
1762     "A CMS asynchronous collection is only allowed on a CMS thread.");
1763 
1764   GenCollectedHeap* gch = GenCollectedHeap::heap();
1765   {
1766     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1767     MutexLockerEx hl(Heap_lock, safepoint_check);
1768     FreelistLocker fll(this);
1769     MutexLockerEx x(CGC_lock, safepoint_check);
1770     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1771       // The foreground collector is active or we're
1772       // not using asynchronous collections.  Skip this
1773       // background collection.
1774       assert(!_foregroundGCShouldWait, "Should be clear");
1775       return;
1776     } else {
1777       assert(_collectorState == Idling, "Should be idling before start.");
1778       _collectorState = InitialMarking;
1779       register_gc_start(cause);
1780       // Reset the expansion cause, now that we are about to begin
1781       // a new cycle.
1782       clear_expansion_cause();
1783 
1784       // Clear the MetaspaceGC flag since a concurrent collection
1785       // is starting but also clear it after the collection.
1786       MetaspaceGC::set_should_concurrent_collect(false);
1787     }
1788     // Decide if we want to enable class unloading as part of the
1789     // ensuing concurrent GC cycle.
1790     update_should_unload_classes();
1791     _full_gc_requested = false;           // acks all outstanding full gc requests
1792     _full_gc_cause = GCCause::_no_gc;
1793     // Signal that we are about to start a collection
1794     gch->increment_total_full_collections();  // ... starting a collection cycle
1795     _collection_count_start = gch->total_full_collections();
1796   }
1797 
1798   // Used for PrintGC
1799   size_t prev_used;
1800   if (PrintGC && Verbose) {
1801     prev_used = _cmsGen->used();
1802   }
1803 
1804   // The change of the collection state is normally done at this level;
1805   // the exceptions are phases that are executed while the world is
1806   // stopped.  For those phases the change of state is done while the
1807   // world is stopped.  For baton passing purposes this allows the
1808   // background collector to finish the phase and change state atomically.
1809   // The foreground collector cannot wait on a phase that is done
1810   // while the world is stopped because the foreground collector already
1811   // has the world stopped and would deadlock.
1812   while (_collectorState != Idling) {
1813     if (TraceCMSState) {
1814       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1815         p2i(Thread::current()), _collectorState);
1816     }
1817     // The foreground collector
1818     //   holds the Heap_lock throughout its collection.
1819     //   holds the CMS token (but not the lock)
1820     //     except while it is waiting for the background collector to yield.
1821     //
1822     // The foreground collector should be blocked (not for long)
1823     //   if the background collector is about to start a phase
1824     //   executed with world stopped.  If the background
1825     //   collector has already started such a phase, the
1826     //   foreground collector is blocked waiting for the
1827     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1828     //   are executed in the VM thread.
1829     //
1830     // The locking order is
1831     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1832     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1833     //   CMS token  (claimed in
1834     //                stop_world_and_do() -->
1835     //                  safepoint_synchronize() -->
1836     //                    CMSThread::synchronize())
1837 
1838     {
1839       // Check if the FG collector wants us to yield.
1840       CMSTokenSync x(true); // is cms thread
1841       if (waitForForegroundGC()) {
1842         // We yielded to a foreground GC, nothing more to be
1843         // done this round.
1844         assert(_foregroundGCShouldWait == false, "We set it to false in "
1845                "waitForForegroundGC()");
1846         if (TraceCMSState) {
1847           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1848             " exiting collection CMS state %d",
1849             p2i(Thread::current()), _collectorState);
1850         }
1851         return;
1852       } else {
1853         // The background collector can run but check to see if the
1854         // foreground collector has done a collection while the
1855         // background collector was waiting to get the CGC_lock
1856         // above.  If yes, break so that _foregroundGCShouldWait
1857         // is cleared before returning.
1858         if (_collectorState == Idling) {
1859           break;
1860         }
1861       }
1862     }
1863 
1864     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1865       "should be waiting");
1866 
1867     switch (_collectorState) {
1868       case InitialMarking:
1869         {
1870           ReleaseForegroundGC x(this);
1871           stats().record_cms_begin();
1872           VM_CMS_Initial_Mark initial_mark_op(this);
1873           VMThread::execute(&initial_mark_op);
1874         }
1875         // The collector state may be any legal state at this point
1876         // since the background collector may have yielded to the
1877         // foreground collector.
1878         break;
1879       case Marking:
1880         // initial marking in checkpointRootsInitialWork has been completed
1881         if (markFromRoots()) { // we were successful
1882           assert(_collectorState == Precleaning, "Collector state should "
1883             "have changed");
1884         } else {
1885           assert(_foregroundGCIsActive, "Internal state inconsistency");
1886         }
1887         break;
1888       case Precleaning:
1889         // marking from roots in markFromRoots has been completed
1890         preclean();
1891         assert(_collectorState == AbortablePreclean ||
1892                _collectorState == FinalMarking,
1893                "Collector state should have changed");
1894         break;
1895       case AbortablePreclean:
1896         abortable_preclean();
1897         assert(_collectorState == FinalMarking, "Collector state should "
1898           "have changed");
1899         break;
1900       case FinalMarking:
1901         {
1902           ReleaseForegroundGC x(this);
1903 
1904           VM_CMS_Final_Remark final_remark_op(this);
1905           VMThread::execute(&final_remark_op);
1906         }
1907         assert(_foregroundGCShouldWait, "block post-condition");
1908         break;
1909       case Sweeping:
1910         // final marking in checkpointRootsFinal has been completed
1911         sweep();
1912         assert(_collectorState == Resizing, "Collector state change "
1913           "to Resizing must be done under the free_list_lock");
1914 
1915       case Resizing: {
1916         // Sweeping has been completed...
1917         // At this point the background collection has completed.
1918         // Don't move the call to compute_new_size() down
1919         // into code that might be executed if the background
1920         // collection was preempted.
1921         {
1922           ReleaseForegroundGC x(this);   // unblock FG collection
1923           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1924           CMSTokenSync        z(true);   // not strictly needed.
1925           if (_collectorState == Resizing) {
1926             compute_new_size();
1927             save_heap_summary();
1928             _collectorState = Resetting;
1929           } else {
1930             assert(_collectorState == Idling, "The state should only change"
1931                    " because the foreground collector has finished the collection");
1932           }
1933         }
1934         break;
1935       }
1936       case Resetting:
1937         // CMS heap resizing has been completed
1938         reset(true);
1939         assert(_collectorState == Idling, "Collector state should "
1940           "have changed");
1941 
1942         MetaspaceGC::set_should_concurrent_collect(false);
1943 
1944         stats().record_cms_end();
1945         // Don't move the concurrent_phases_end() and compute_new_size()
1946         // calls to here because a preempted background collection
1947         // has it's state set to "Resetting".
1948         break;
1949       case Idling:
1950       default:
1951         ShouldNotReachHere();
1952         break;
1953     }
1954     if (TraceCMSState) {
1955       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1956         p2i(Thread::current()), _collectorState);
1957     }
1958     assert(_foregroundGCShouldWait, "block post-condition");
1959   }
1960 
1961   // Should this be in gc_epilogue?
1962   collector_policy()->counters()->update_counters();
1963 
1964   {
1965     // Clear _foregroundGCShouldWait and, in the event that the
1966     // foreground collector is waiting, notify it, before
1967     // returning.
1968     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1969     _foregroundGCShouldWait = false;
1970     if (_foregroundGCIsActive) {
1971       CGC_lock->notify();
1972     }
1973     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1974            "Possible deadlock");
1975   }
1976   if (TraceCMSState) {
1977     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1978       " exiting collection CMS state %d",
1979       p2i(Thread::current()), _collectorState);
1980   }
1981   if (PrintGC && Verbose) {
1982     _cmsGen->print_heap_change(prev_used);
1983   }
1984 }
1985 
1986 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1987   _cms_start_registered = true;
1988   _gc_timer_cm->register_gc_start();
1989   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1990 }
1991 
1992 void CMSCollector::register_gc_end() {
1993   if (_cms_start_registered) {
1994     report_heap_summary(GCWhen::AfterGC);
1995 
1996     _gc_timer_cm->register_gc_end();
1997     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1998     _cms_start_registered = false;
1999   }
2000 }
2001 
2002 void CMSCollector::save_heap_summary() {
2003   GenCollectedHeap* gch = GenCollectedHeap::heap();
2004   _last_heap_summary = gch->create_heap_summary();
2005   _last_metaspace_summary = gch->create_metaspace_summary();
2006 }
2007 
2008 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2009   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2010   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2011 }
2012 
2013 bool CMSCollector::waitForForegroundGC() {
2014   bool res = false;
2015   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2016          "CMS thread should have CMS token");
2017   // Block the foreground collector until the
2018   // background collectors decides whether to
2019   // yield.
2020   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2021   _foregroundGCShouldWait = true;
2022   if (_foregroundGCIsActive) {
2023     // The background collector yields to the
2024     // foreground collector and returns a value
2025     // indicating that it has yielded.  The foreground
2026     // collector can proceed.
2027     res = true;
2028     _foregroundGCShouldWait = false;
2029     ConcurrentMarkSweepThread::clear_CMS_flag(
2030       ConcurrentMarkSweepThread::CMS_cms_has_token);
2031     ConcurrentMarkSweepThread::set_CMS_flag(
2032       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2033     // Get a possibly blocked foreground thread going
2034     CGC_lock->notify();
2035     if (TraceCMSState) {
2036       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2037         p2i(Thread::current()), _collectorState);
2038     }
2039     while (_foregroundGCIsActive) {
2040       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2041     }
2042     ConcurrentMarkSweepThread::set_CMS_flag(
2043       ConcurrentMarkSweepThread::CMS_cms_has_token);
2044     ConcurrentMarkSweepThread::clear_CMS_flag(
2045       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2046   }
2047   if (TraceCMSState) {
2048     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2049       p2i(Thread::current()), _collectorState);
2050   }
2051   return res;
2052 }
2053 
2054 // Because of the need to lock the free lists and other structures in
2055 // the collector, common to all the generations that the collector is
2056 // collecting, we need the gc_prologues of individual CMS generations
2057 // delegate to their collector. It may have been simpler had the
2058 // current infrastructure allowed one to call a prologue on a
2059 // collector. In the absence of that we have the generation's
2060 // prologue delegate to the collector, which delegates back
2061 // some "local" work to a worker method in the individual generations
2062 // that it's responsible for collecting, while itself doing any
2063 // work common to all generations it's responsible for. A similar
2064 // comment applies to the  gc_epilogue()'s.
2065 // The role of the variable _between_prologue_and_epilogue is to
2066 // enforce the invocation protocol.
2067 void CMSCollector::gc_prologue(bool full) {
2068   // Call gc_prologue_work() for the CMSGen
2069   // we are responsible for.
2070 
2071   // The following locking discipline assumes that we are only called
2072   // when the world is stopped.
2073   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2074 
2075   // The CMSCollector prologue must call the gc_prologues for the
2076   // "generations" that it's responsible
2077   // for.
2078 
2079   assert(   Thread::current()->is_VM_thread()
2080          || (   CMSScavengeBeforeRemark
2081              && Thread::current()->is_ConcurrentGC_thread()),
2082          "Incorrect thread type for prologue execution");
2083 
2084   if (_between_prologue_and_epilogue) {
2085     // We have already been invoked; this is a gc_prologue delegation
2086     // from yet another CMS generation that we are responsible for, just
2087     // ignore it since all relevant work has already been done.
2088     return;
2089   }
2090 
2091   // set a bit saying prologue has been called; cleared in epilogue
2092   _between_prologue_and_epilogue = true;
2093   // Claim locks for common data structures, then call gc_prologue_work()
2094   // for each CMSGen.
2095 
2096   getFreelistLocks();   // gets free list locks on constituent spaces
2097   bitMapLock()->lock_without_safepoint_check();
2098 
2099   // Should call gc_prologue_work() for all cms gens we are responsible for
2100   bool duringMarking =    _collectorState >= Marking
2101                          && _collectorState < Sweeping;
2102 
2103   // The young collections clear the modified oops state, which tells if
2104   // there are any modified oops in the class. The remark phase also needs
2105   // that information. Tell the young collection to save the union of all
2106   // modified klasses.
2107   if (duringMarking) {
2108     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2109   }
2110 
2111   bool registerClosure = duringMarking;
2112 
2113   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2114 
2115   if (!full) {
2116     stats().record_gc0_begin();
2117   }
2118 }
2119 
2120 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2121 
2122   _capacity_at_prologue = capacity();
2123   _used_at_prologue = used();
2124 
2125   // Delegate to CMScollector which knows how to coordinate between
2126   // this and any other CMS generations that it is responsible for
2127   // collecting.
2128   collector()->gc_prologue(full);
2129 }
2130 
2131 // This is a "private" interface for use by this generation's CMSCollector.
2132 // Not to be called directly by any other entity (for instance,
2133 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2134 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2135   bool registerClosure, ModUnionClosure* modUnionClosure) {
2136   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2137   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2138     "Should be NULL");
2139   if (registerClosure) {
2140     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2141   }
2142   cmsSpace()->gc_prologue();
2143   // Clear stat counters
2144   NOT_PRODUCT(
2145     assert(_numObjectsPromoted == 0, "check");
2146     assert(_numWordsPromoted   == 0, "check");
2147     if (Verbose && PrintGC) {
2148       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2149                           SIZE_FORMAT " bytes concurrently",
2150       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2151     }
2152     _numObjectsAllocated = 0;
2153     _numWordsAllocated   = 0;
2154   )
2155 }
2156 
2157 void CMSCollector::gc_epilogue(bool full) {
2158   // The following locking discipline assumes that we are only called
2159   // when the world is stopped.
2160   assert(SafepointSynchronize::is_at_safepoint(),
2161          "world is stopped assumption");
2162 
2163   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2164   // if linear allocation blocks need to be appropriately marked to allow the
2165   // the blocks to be parsable. We also check here whether we need to nudge the
2166   // CMS collector thread to start a new cycle (if it's not already active).
2167   assert(   Thread::current()->is_VM_thread()
2168          || (   CMSScavengeBeforeRemark
2169              && Thread::current()->is_ConcurrentGC_thread()),
2170          "Incorrect thread type for epilogue execution");
2171 
2172   if (!_between_prologue_and_epilogue) {
2173     // We have already been invoked; this is a gc_epilogue delegation
2174     // from yet another CMS generation that we are responsible for, just
2175     // ignore it since all relevant work has already been done.
2176     return;
2177   }
2178   assert(haveFreelistLocks(), "must have freelist locks");
2179   assert_lock_strong(bitMapLock());
2180 
2181   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2182 
2183   _cmsGen->gc_epilogue_work(full);
2184 
2185   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2186     // in case sampling was not already enabled, enable it
2187     _start_sampling = true;
2188   }
2189   // reset _eden_chunk_array so sampling starts afresh
2190   _eden_chunk_index = 0;
2191 
2192   size_t cms_used   = _cmsGen->cmsSpace()->used();
2193 
2194   // update performance counters - this uses a special version of
2195   // update_counters() that allows the utilization to be passed as a
2196   // parameter, avoiding multiple calls to used().
2197   //
2198   _cmsGen->update_counters(cms_used);
2199 
2200   bitMapLock()->unlock();
2201   releaseFreelistLocks();
2202 
2203   if (!CleanChunkPoolAsync) {
2204     Chunk::clean_chunk_pool();
2205   }
2206 
2207   set_did_compact(false);
2208   _between_prologue_and_epilogue = false;  // ready for next cycle
2209 }
2210 
2211 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2212   collector()->gc_epilogue(full);
2213 
2214   // Also reset promotion tracking in par gc thread states.
2215   for (uint i = 0; i < ParallelGCThreads; i++) {
2216     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2217   }
2218 }
2219 
2220 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2221   assert(!incremental_collection_failed(), "Should have been cleared");
2222   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2223   cmsSpace()->gc_epilogue();
2224     // Print stat counters
2225   NOT_PRODUCT(
2226     assert(_numObjectsAllocated == 0, "check");
2227     assert(_numWordsAllocated == 0, "check");
2228     if (Verbose && PrintGC) {
2229       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2230                           SIZE_FORMAT " bytes",
2231                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2232     }
2233     _numObjectsPromoted = 0;
2234     _numWordsPromoted   = 0;
2235   )
2236 
2237   if (PrintGC && Verbose) {
2238     // Call down the chain in contiguous_available needs the freelistLock
2239     // so print this out before releasing the freeListLock.
2240     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2241                         contiguous_available());
2242   }
2243 }
2244 
2245 #ifndef PRODUCT
2246 bool CMSCollector::have_cms_token() {
2247   Thread* thr = Thread::current();
2248   if (thr->is_VM_thread()) {
2249     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2250   } else if (thr->is_ConcurrentGC_thread()) {
2251     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2252   } else if (thr->is_GC_task_thread()) {
2253     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2254            ParGCRareEvent_lock->owned_by_self();
2255   }
2256   return false;
2257 }
2258 #endif
2259 
2260 // Check reachability of the given heap address in CMS generation,
2261 // treating all other generations as roots.
2262 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2263   // We could "guarantee" below, rather than assert, but I'll
2264   // leave these as "asserts" so that an adventurous debugger
2265   // could try this in the product build provided some subset of
2266   // the conditions were met, provided they were interested in the
2267   // results and knew that the computation below wouldn't interfere
2268   // with other concurrent computations mutating the structures
2269   // being read or written.
2270   assert(SafepointSynchronize::is_at_safepoint(),
2271          "Else mutations in object graph will make answer suspect");
2272   assert(have_cms_token(), "Should hold cms token");
2273   assert(haveFreelistLocks(), "must hold free list locks");
2274   assert_lock_strong(bitMapLock());
2275 
2276   // Clear the marking bit map array before starting, but, just
2277   // for kicks, first report if the given address is already marked
2278   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2279                 _markBitMap.isMarked(addr) ? "" : " not");
2280 
2281   if (verify_after_remark()) {
2282     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2283     bool result = verification_mark_bm()->isMarked(addr);
2284     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2285                            result ? "IS" : "is NOT");
2286     return result;
2287   } else {
2288     gclog_or_tty->print_cr("Could not compute result");
2289     return false;
2290   }
2291 }
2292 
2293 
2294 void
2295 CMSCollector::print_on_error(outputStream* st) {
2296   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2297   if (collector != NULL) {
2298     CMSBitMap* bitmap = &collector->_markBitMap;
2299     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2300     bitmap->print_on_error(st, " Bits: ");
2301 
2302     st->cr();
2303 
2304     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2305     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2306     mut_bitmap->print_on_error(st, " Bits: ");
2307   }
2308 }
2309 
2310 ////////////////////////////////////////////////////////
2311 // CMS Verification Support
2312 ////////////////////////////////////////////////////////
2313 // Following the remark phase, the following invariant
2314 // should hold -- each object in the CMS heap which is
2315 // marked in markBitMap() should be marked in the verification_mark_bm().
2316 
2317 class VerifyMarkedClosure: public BitMapClosure {
2318   CMSBitMap* _marks;
2319   bool       _failed;
2320 
2321  public:
2322   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2323 
2324   bool do_bit(size_t offset) {
2325     HeapWord* addr = _marks->offsetToHeapWord(offset);
2326     if (!_marks->isMarked(addr)) {
2327       oop(addr)->print_on(gclog_or_tty);
2328       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2329       _failed = true;
2330     }
2331     return true;
2332   }
2333 
2334   bool failed() { return _failed; }
2335 };
2336 
2337 bool CMSCollector::verify_after_remark(bool silent) {
2338   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2339   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2340   static bool init = false;
2341 
2342   assert(SafepointSynchronize::is_at_safepoint(),
2343          "Else mutations in object graph will make answer suspect");
2344   assert(have_cms_token(),
2345          "Else there may be mutual interference in use of "
2346          " verification data structures");
2347   assert(_collectorState > Marking && _collectorState <= Sweeping,
2348          "Else marking info checked here may be obsolete");
2349   assert(haveFreelistLocks(), "must hold free list locks");
2350   assert_lock_strong(bitMapLock());
2351 
2352 
2353   // Allocate marking bit map if not already allocated
2354   if (!init) { // first time
2355     if (!verification_mark_bm()->allocate(_span)) {
2356       return false;
2357     }
2358     init = true;
2359   }
2360 
2361   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2362 
2363   // Turn off refs discovery -- so we will be tracing through refs.
2364   // This is as intended, because by this time
2365   // GC must already have cleared any refs that need to be cleared,
2366   // and traced those that need to be marked; moreover,
2367   // the marking done here is not going to interfere in any
2368   // way with the marking information used by GC.
2369   NoRefDiscovery no_discovery(ref_processor());
2370 
2371   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2372 
2373   // Clear any marks from a previous round
2374   verification_mark_bm()->clear_all();
2375   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2376   verify_work_stacks_empty();
2377 
2378   GenCollectedHeap* gch = GenCollectedHeap::heap();
2379   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2380   // Update the saved marks which may affect the root scans.
2381   gch->save_marks();
2382 
2383   if (CMSRemarkVerifyVariant == 1) {
2384     // In this first variant of verification, we complete
2385     // all marking, then check if the new marks-vector is
2386     // a subset of the CMS marks-vector.
2387     verify_after_remark_work_1();
2388   } else if (CMSRemarkVerifyVariant == 2) {
2389     // In this second variant of verification, we flag an error
2390     // (i.e. an object reachable in the new marks-vector not reachable
2391     // in the CMS marks-vector) immediately, also indicating the
2392     // identify of an object (A) that references the unmarked object (B) --
2393     // presumably, a mutation to A failed to be picked up by preclean/remark?
2394     verify_after_remark_work_2();
2395   } else {
2396     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2397             CMSRemarkVerifyVariant);
2398   }
2399   if (!silent) gclog_or_tty->print(" done] ");
2400   return true;
2401 }
2402 
2403 void CMSCollector::verify_after_remark_work_1() {
2404   ResourceMark rm;
2405   HandleMark  hm;
2406   GenCollectedHeap* gch = GenCollectedHeap::heap();
2407 
2408   // Get a clear set of claim bits for the roots processing to work with.
2409   ClassLoaderDataGraph::clear_claimed_marks();
2410 
2411   // Mark from roots one level into CMS
2412   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2413   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2414 
2415   {
2416     StrongRootsScope srs(1);
2417 
2418     gch->gen_process_roots(&srs,
2419                            GenCollectedHeap::OldGen,
2420                            true,   // young gen as roots
2421                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2422                            should_unload_classes(),
2423                            &notOlder,
2424                            NULL,
2425                            NULL);
2426   }
2427 
2428   // Now mark from the roots
2429   MarkFromRootsClosure markFromRootsClosure(this, _span,
2430     verification_mark_bm(), verification_mark_stack(),
2431     false /* don't yield */, true /* verifying */);
2432   assert(_restart_addr == NULL, "Expected pre-condition");
2433   verification_mark_bm()->iterate(&markFromRootsClosure);
2434   while (_restart_addr != NULL) {
2435     // Deal with stack overflow: by restarting at the indicated
2436     // address.
2437     HeapWord* ra = _restart_addr;
2438     markFromRootsClosure.reset(ra);
2439     _restart_addr = NULL;
2440     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2441   }
2442   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2443   verify_work_stacks_empty();
2444 
2445   // Marking completed -- now verify that each bit marked in
2446   // verification_mark_bm() is also marked in markBitMap(); flag all
2447   // errors by printing corresponding objects.
2448   VerifyMarkedClosure vcl(markBitMap());
2449   verification_mark_bm()->iterate(&vcl);
2450   if (vcl.failed()) {
2451     gclog_or_tty->print("Verification failed");
2452     gch->print_on(gclog_or_tty);
2453     fatal("CMS: failed marking verification after remark");
2454   }
2455 }
2456 
2457 class VerifyKlassOopsKlassClosure : public KlassClosure {
2458   class VerifyKlassOopsClosure : public OopClosure {
2459     CMSBitMap* _bitmap;
2460    public:
2461     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2462     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2463     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2464   } _oop_closure;
2465  public:
2466   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2467   void do_klass(Klass* k) {
2468     k->oops_do(&_oop_closure);
2469   }
2470 };
2471 
2472 void CMSCollector::verify_after_remark_work_2() {
2473   ResourceMark rm;
2474   HandleMark  hm;
2475   GenCollectedHeap* gch = GenCollectedHeap::heap();
2476 
2477   // Get a clear set of claim bits for the roots processing to work with.
2478   ClassLoaderDataGraph::clear_claimed_marks();
2479 
2480   // Mark from roots one level into CMS
2481   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2482                                      markBitMap());
2483   CLDToOopClosure cld_closure(&notOlder, true);
2484 
2485   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2486 
2487   {
2488     StrongRootsScope srs(1);
2489 
2490     gch->gen_process_roots(&srs,
2491                            GenCollectedHeap::OldGen,
2492                            true,   // young gen as roots
2493                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2494                            should_unload_classes(),
2495                            &notOlder,
2496                            NULL,
2497                            &cld_closure);
2498   }
2499 
2500   // Now mark from the roots
2501   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2502     verification_mark_bm(), markBitMap(), verification_mark_stack());
2503   assert(_restart_addr == NULL, "Expected pre-condition");
2504   verification_mark_bm()->iterate(&markFromRootsClosure);
2505   while (_restart_addr != NULL) {
2506     // Deal with stack overflow: by restarting at the indicated
2507     // address.
2508     HeapWord* ra = _restart_addr;
2509     markFromRootsClosure.reset(ra);
2510     _restart_addr = NULL;
2511     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2512   }
2513   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2514   verify_work_stacks_empty();
2515 
2516   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2517   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2518 
2519   // Marking completed -- now verify that each bit marked in
2520   // verification_mark_bm() is also marked in markBitMap(); flag all
2521   // errors by printing corresponding objects.
2522   VerifyMarkedClosure vcl(markBitMap());
2523   verification_mark_bm()->iterate(&vcl);
2524   assert(!vcl.failed(), "Else verification above should not have succeeded");
2525 }
2526 
2527 void ConcurrentMarkSweepGeneration::save_marks() {
2528   // delegate to CMS space
2529   cmsSpace()->save_marks();
2530   for (uint i = 0; i < ParallelGCThreads; i++) {
2531     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2532   }
2533 }
2534 
2535 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2536   return cmsSpace()->no_allocs_since_save_marks();
2537 }
2538 
2539 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2540                                                                 \
2541 void ConcurrentMarkSweepGeneration::                            \
2542 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2543   cl->set_generation(this);                                     \
2544   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2545   cl->reset_generation();                                       \
2546   save_marks();                                                 \
2547 }
2548 
2549 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2550 
2551 void
2552 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2553   if (freelistLock()->owned_by_self()) {
2554     Generation::oop_iterate(cl);
2555   } else {
2556     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2557     Generation::oop_iterate(cl);
2558   }
2559 }
2560 
2561 void
2562 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2563   if (freelistLock()->owned_by_self()) {
2564     Generation::object_iterate(cl);
2565   } else {
2566     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2567     Generation::object_iterate(cl);
2568   }
2569 }
2570 
2571 void
2572 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2573   if (freelistLock()->owned_by_self()) {
2574     Generation::safe_object_iterate(cl);
2575   } else {
2576     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2577     Generation::safe_object_iterate(cl);
2578   }
2579 }
2580 
2581 void
2582 ConcurrentMarkSweepGeneration::post_compact() {
2583 }
2584 
2585 void
2586 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2587   // Fix the linear allocation blocks to look like free blocks.
2588 
2589   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2590   // are not called when the heap is verified during universe initialization and
2591   // at vm shutdown.
2592   if (freelistLock()->owned_by_self()) {
2593     cmsSpace()->prepare_for_verify();
2594   } else {
2595     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2596     cmsSpace()->prepare_for_verify();
2597   }
2598 }
2599 
2600 void
2601 ConcurrentMarkSweepGeneration::verify() {
2602   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2603   // are not called when the heap is verified during universe initialization and
2604   // at vm shutdown.
2605   if (freelistLock()->owned_by_self()) {
2606     cmsSpace()->verify();
2607   } else {
2608     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2609     cmsSpace()->verify();
2610   }
2611 }
2612 
2613 void CMSCollector::verify() {
2614   _cmsGen->verify();
2615 }
2616 
2617 #ifndef PRODUCT
2618 bool CMSCollector::overflow_list_is_empty() const {
2619   assert(_num_par_pushes >= 0, "Inconsistency");
2620   if (_overflow_list == NULL) {
2621     assert(_num_par_pushes == 0, "Inconsistency");
2622   }
2623   return _overflow_list == NULL;
2624 }
2625 
2626 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2627 // merely consolidate assertion checks that appear to occur together frequently.
2628 void CMSCollector::verify_work_stacks_empty() const {
2629   assert(_markStack.isEmpty(), "Marking stack should be empty");
2630   assert(overflow_list_is_empty(), "Overflow list should be empty");
2631 }
2632 
2633 void CMSCollector::verify_overflow_empty() const {
2634   assert(overflow_list_is_empty(), "Overflow list should be empty");
2635   assert(no_preserved_marks(), "No preserved marks");
2636 }
2637 #endif // PRODUCT
2638 
2639 // Decide if we want to enable class unloading as part of the
2640 // ensuing concurrent GC cycle. We will collect and
2641 // unload classes if it's the case that:
2642 // (1) an explicit gc request has been made and the flag
2643 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2644 // (2) (a) class unloading is enabled at the command line, and
2645 //     (b) old gen is getting really full
2646 // NOTE: Provided there is no change in the state of the heap between
2647 // calls to this method, it should have idempotent results. Moreover,
2648 // its results should be monotonically increasing (i.e. going from 0 to 1,
2649 // but not 1 to 0) between successive calls between which the heap was
2650 // not collected. For the implementation below, it must thus rely on
2651 // the property that concurrent_cycles_since_last_unload()
2652 // will not decrease unless a collection cycle happened and that
2653 // _cmsGen->is_too_full() are
2654 // themselves also monotonic in that sense. See check_monotonicity()
2655 // below.
2656 void CMSCollector::update_should_unload_classes() {
2657   _should_unload_classes = false;
2658   // Condition 1 above
2659   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2660     _should_unload_classes = true;
2661   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2662     // Disjuncts 2.b.(i,ii,iii) above
2663     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2664                               CMSClassUnloadingMaxInterval)
2665                            || _cmsGen->is_too_full();
2666   }
2667 }
2668 
2669 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2670   bool res = should_concurrent_collect();
2671   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2672   return res;
2673 }
2674 
2675 void CMSCollector::setup_cms_unloading_and_verification_state() {
2676   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2677                              || VerifyBeforeExit;
2678   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2679 
2680   // We set the proper root for this CMS cycle here.
2681   if (should_unload_classes()) {   // Should unload classes this cycle
2682     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2683     set_verifying(should_verify);    // Set verification state for this cycle
2684     return;                            // Nothing else needs to be done at this time
2685   }
2686 
2687   // Not unloading classes this cycle
2688   assert(!should_unload_classes(), "Inconsistency!");
2689 
2690   // If we are not unloading classes then add SO_AllCodeCache to root
2691   // scanning options.
2692   add_root_scanning_option(rso);
2693 
2694   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2695     set_verifying(true);
2696   } else if (verifying() && !should_verify) {
2697     // We were verifying, but some verification flags got disabled.
2698     set_verifying(false);
2699     // Exclude symbols, strings and code cache elements from root scanning to
2700     // reduce IM and RM pauses.
2701     remove_root_scanning_option(rso);
2702   }
2703 }
2704 
2705 
2706 #ifndef PRODUCT
2707 HeapWord* CMSCollector::block_start(const void* p) const {
2708   const HeapWord* addr = (HeapWord*)p;
2709   if (_span.contains(p)) {
2710     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2711       return _cmsGen->cmsSpace()->block_start(p);
2712     }
2713   }
2714   return NULL;
2715 }
2716 #endif
2717 
2718 HeapWord*
2719 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2720                                                    bool   tlab,
2721                                                    bool   parallel) {
2722   CMSSynchronousYieldRequest yr;
2723   assert(!tlab, "Can't deal with TLAB allocation");
2724   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2725   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2726   if (GCExpandToAllocateDelayMillis > 0) {
2727     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2728   }
2729   return have_lock_and_allocate(word_size, tlab);
2730 }
2731 
2732 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2733     size_t bytes,
2734     size_t expand_bytes,
2735     CMSExpansionCause::Cause cause)
2736 {
2737 
2738   bool success = expand(bytes, expand_bytes);
2739 
2740   // remember why we expanded; this information is used
2741   // by shouldConcurrentCollect() when making decisions on whether to start
2742   // a new CMS cycle.
2743   if (success) {
2744     set_expansion_cause(cause);
2745     if (PrintGCDetails && Verbose) {
2746       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2747         CMSExpansionCause::to_string(cause));
2748     }
2749   }
2750 }
2751 
2752 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2753   HeapWord* res = NULL;
2754   MutexLocker x(ParGCRareEvent_lock);
2755   while (true) {
2756     // Expansion by some other thread might make alloc OK now:
2757     res = ps->lab.alloc(word_sz);
2758     if (res != NULL) return res;
2759     // If there's not enough expansion space available, give up.
2760     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2761       return NULL;
2762     }
2763     // Otherwise, we try expansion.
2764     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2765     // Now go around the loop and try alloc again;
2766     // A competing par_promote might beat us to the expansion space,
2767     // so we may go around the loop again if promotion fails again.
2768     if (GCExpandToAllocateDelayMillis > 0) {
2769       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2770     }
2771   }
2772 }
2773 
2774 
2775 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2776   PromotionInfo* promo) {
2777   MutexLocker x(ParGCRareEvent_lock);
2778   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2779   while (true) {
2780     // Expansion by some other thread might make alloc OK now:
2781     if (promo->ensure_spooling_space()) {
2782       assert(promo->has_spooling_space(),
2783              "Post-condition of successful ensure_spooling_space()");
2784       return true;
2785     }
2786     // If there's not enough expansion space available, give up.
2787     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2788       return false;
2789     }
2790     // Otherwise, we try expansion.
2791     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2792     // Now go around the loop and try alloc again;
2793     // A competing allocation might beat us to the expansion space,
2794     // so we may go around the loop again if allocation fails again.
2795     if (GCExpandToAllocateDelayMillis > 0) {
2796       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2797     }
2798   }
2799 }
2800 
2801 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2802   // Only shrink if a compaction was done so that all the free space
2803   // in the generation is in a contiguous block at the end.
2804   if (did_compact()) {
2805     CardGeneration::shrink(bytes);
2806   }
2807 }
2808 
2809 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2810   assert_locked_or_safepoint(Heap_lock);
2811 }
2812 
2813 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2814   assert_locked_or_safepoint(Heap_lock);
2815   assert_lock_strong(freelistLock());
2816   if (PrintGCDetails && Verbose) {
2817     warning("Shrinking of CMS not yet implemented");
2818   }
2819   return;
2820 }
2821 
2822 
2823 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2824 // phases.
2825 class CMSPhaseAccounting: public StackObj {
2826  public:
2827   CMSPhaseAccounting(CMSCollector *collector,
2828                      const char *phase,
2829                      const GCId gc_id,
2830                      bool print_cr = true);
2831   ~CMSPhaseAccounting();
2832 
2833  private:
2834   CMSCollector *_collector;
2835   const char *_phase;
2836   elapsedTimer _wallclock;
2837   bool _print_cr;
2838   const GCId _gc_id;
2839 
2840  public:
2841   // Not MT-safe; so do not pass around these StackObj's
2842   // where they may be accessed by other threads.
2843   jlong wallclock_millis() {
2844     assert(_wallclock.is_active(), "Wall clock should not stop");
2845     _wallclock.stop();  // to record time
2846     jlong ret = _wallclock.milliseconds();
2847     _wallclock.start(); // restart
2848     return ret;
2849   }
2850 };
2851 
2852 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2853                                        const char *phase,
2854                                        const GCId gc_id,
2855                                        bool print_cr) :
2856   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2857 
2858   if (PrintCMSStatistics != 0) {
2859     _collector->resetYields();
2860   }
2861   if (PrintGCDetails) {
2862     gclog_or_tty->gclog_stamp(_gc_id);
2863     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2864       _collector->cmsGen()->short_name(), _phase);
2865   }
2866   _collector->resetTimer();
2867   _wallclock.start();
2868   _collector->startTimer();
2869 }
2870 
2871 CMSPhaseAccounting::~CMSPhaseAccounting() {
2872   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2873   _collector->stopTimer();
2874   _wallclock.stop();
2875   if (PrintGCDetails) {
2876     gclog_or_tty->gclog_stamp(_gc_id);
2877     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2878                  _collector->cmsGen()->short_name(),
2879                  _phase, _collector->timerValue(), _wallclock.seconds());
2880     if (_print_cr) {
2881       gclog_or_tty->cr();
2882     }
2883     if (PrintCMSStatistics != 0) {
2884       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2885                     _collector->yields());
2886     }
2887   }
2888 }
2889 
2890 // CMS work
2891 
2892 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2893 class CMSParMarkTask : public AbstractGangTask {
2894  protected:
2895   CMSCollector*     _collector;
2896   uint              _n_workers;
2897   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2898       AbstractGangTask(name),
2899       _collector(collector),
2900       _n_workers(n_workers) {}
2901   // Work method in support of parallel rescan ... of young gen spaces
2902   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2903                              ContiguousSpace* space,
2904                              HeapWord** chunk_array, size_t chunk_top);
2905   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2906 };
2907 
2908 // Parallel initial mark task
2909 class CMSParInitialMarkTask: public CMSParMarkTask {
2910   StrongRootsScope* _strong_roots_scope;
2911  public:
2912   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2913       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2914       _strong_roots_scope(strong_roots_scope) {}
2915   void work(uint worker_id);
2916 };
2917 
2918 // Checkpoint the roots into this generation from outside
2919 // this generation. [Note this initial checkpoint need only
2920 // be approximate -- we'll do a catch up phase subsequently.]
2921 void CMSCollector::checkpointRootsInitial() {
2922   assert(_collectorState == InitialMarking, "Wrong collector state");
2923   check_correct_thread_executing();
2924   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2925 
2926   save_heap_summary();
2927   report_heap_summary(GCWhen::BeforeGC);
2928 
2929   ReferenceProcessor* rp = ref_processor();
2930   assert(_restart_addr == NULL, "Control point invariant");
2931   {
2932     // acquire locks for subsequent manipulations
2933     MutexLockerEx x(bitMapLock(),
2934                     Mutex::_no_safepoint_check_flag);
2935     checkpointRootsInitialWork();
2936     // enable ("weak") refs discovery
2937     rp->enable_discovery();
2938     _collectorState = Marking;
2939   }
2940 }
2941 
2942 void CMSCollector::checkpointRootsInitialWork() {
2943   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2944   assert(_collectorState == InitialMarking, "just checking");
2945 
2946   // Already have locks.
2947   assert_lock_strong(bitMapLock());
2948   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2949 
2950   // Setup the verification and class unloading state for this
2951   // CMS collection cycle.
2952   setup_cms_unloading_and_verification_state();
2953 
2954   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2955     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2956 
2957   // Reset all the PLAB chunk arrays if necessary.
2958   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2959     reset_survivor_plab_arrays();
2960   }
2961 
2962   ResourceMark rm;
2963   HandleMark  hm;
2964 
2965   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2966   GenCollectedHeap* gch = GenCollectedHeap::heap();
2967 
2968   verify_work_stacks_empty();
2969   verify_overflow_empty();
2970 
2971   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2972   // Update the saved marks which may affect the root scans.
2973   gch->save_marks();
2974 
2975   // weak reference processing has not started yet.
2976   ref_processor()->set_enqueuing_is_done(false);
2977 
2978   // Need to remember all newly created CLDs,
2979   // so that we can guarantee that the remark finds them.
2980   ClassLoaderDataGraph::remember_new_clds(true);
2981 
2982   // Whenever a CLD is found, it will be claimed before proceeding to mark
2983   // the klasses. The claimed marks need to be cleared before marking starts.
2984   ClassLoaderDataGraph::clear_claimed_marks();
2985 
2986   if (CMSPrintEdenSurvivorChunks) {
2987     print_eden_and_survivor_chunk_arrays();
2988   }
2989 
2990   {
2991     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2992     if (CMSParallelInitialMarkEnabled) {
2993       // The parallel version.
2994       WorkGang* workers = gch->workers();
2995       assert(workers != NULL, "Need parallel worker threads.");
2996       uint n_workers = workers->active_workers();
2997 
2998       StrongRootsScope srs(n_workers);
2999 
3000       CMSParInitialMarkTask tsk(this, &srs, n_workers);
3001       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3002       if (n_workers > 1) {
3003         workers->run_task(&tsk);
3004       } else {
3005         tsk.work(0);
3006       }
3007     } else {
3008       // The serial version.
3009       CLDToOopClosure cld_closure(&notOlder, true);
3010       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3011 
3012       StrongRootsScope srs(1);
3013 
3014       gch->gen_process_roots(&srs,
3015                              GenCollectedHeap::OldGen,
3016                              true,   // young gen as roots
3017                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3018                              should_unload_classes(),
3019                              &notOlder,
3020                              NULL,
3021                              &cld_closure);
3022     }
3023   }
3024 
3025   // Clear mod-union table; it will be dirtied in the prologue of
3026   // CMS generation per each young generation collection.
3027 
3028   assert(_modUnionTable.isAllClear(),
3029        "Was cleared in most recent final checkpoint phase"
3030        " or no bits are set in the gc_prologue before the start of the next "
3031        "subsequent marking phase.");
3032 
3033   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3034 
3035   // Save the end of the used_region of the constituent generations
3036   // to be used to limit the extent of sweep in each generation.
3037   save_sweep_limits();
3038   verify_overflow_empty();
3039 }
3040 
3041 bool CMSCollector::markFromRoots() {
3042   // we might be tempted to assert that:
3043   // assert(!SafepointSynchronize::is_at_safepoint(),
3044   //        "inconsistent argument?");
3045   // However that wouldn't be right, because it's possible that
3046   // a safepoint is indeed in progress as a young generation
3047   // stop-the-world GC happens even as we mark in this generation.
3048   assert(_collectorState == Marking, "inconsistent state?");
3049   check_correct_thread_executing();
3050   verify_overflow_empty();
3051 
3052   // Weak ref discovery note: We may be discovering weak
3053   // refs in this generation concurrent (but interleaved) with
3054   // weak ref discovery by the young generation collector.
3055 
3056   CMSTokenSyncWithLocks ts(true, bitMapLock());
3057   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3058   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3059   bool res = markFromRootsWork();
3060   if (res) {
3061     _collectorState = Precleaning;
3062   } else { // We failed and a foreground collection wants to take over
3063     assert(_foregroundGCIsActive, "internal state inconsistency");
3064     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3065     if (PrintGCDetails) {
3066       gclog_or_tty->print_cr("bailing out to foreground collection");
3067     }
3068   }
3069   verify_overflow_empty();
3070   return res;
3071 }
3072 
3073 bool CMSCollector::markFromRootsWork() {
3074   // iterate over marked bits in bit map, doing a full scan and mark
3075   // from these roots using the following algorithm:
3076   // . if oop is to the right of the current scan pointer,
3077   //   mark corresponding bit (we'll process it later)
3078   // . else (oop is to left of current scan pointer)
3079   //   push oop on marking stack
3080   // . drain the marking stack
3081 
3082   // Note that when we do a marking step we need to hold the
3083   // bit map lock -- recall that direct allocation (by mutators)
3084   // and promotion (by the young generation collector) is also
3085   // marking the bit map. [the so-called allocate live policy.]
3086   // Because the implementation of bit map marking is not
3087   // robust wrt simultaneous marking of bits in the same word,
3088   // we need to make sure that there is no such interference
3089   // between concurrent such updates.
3090 
3091   // already have locks
3092   assert_lock_strong(bitMapLock());
3093 
3094   verify_work_stacks_empty();
3095   verify_overflow_empty();
3096   bool result = false;
3097   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3098     result = do_marking_mt();
3099   } else {
3100     result = do_marking_st();
3101   }
3102   return result;
3103 }
3104 
3105 // Forward decl
3106 class CMSConcMarkingTask;
3107 
3108 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3109   CMSCollector*       _collector;
3110   CMSConcMarkingTask* _task;
3111  public:
3112   virtual void yield();
3113 
3114   // "n_threads" is the number of threads to be terminated.
3115   // "queue_set" is a set of work queues of other threads.
3116   // "collector" is the CMS collector associated with this task terminator.
3117   // "yield" indicates whether we need the gang as a whole to yield.
3118   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3119     ParallelTaskTerminator(n_threads, queue_set),
3120     _collector(collector) { }
3121 
3122   void set_task(CMSConcMarkingTask* task) {
3123     _task = task;
3124   }
3125 };
3126 
3127 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3128   CMSConcMarkingTask* _task;
3129  public:
3130   bool should_exit_termination();
3131   void set_task(CMSConcMarkingTask* task) {
3132     _task = task;
3133   }
3134 };
3135 
3136 // MT Concurrent Marking Task
3137 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3138   CMSCollector* _collector;
3139   uint          _n_workers;       // requested/desired # workers
3140   bool          _result;
3141   CompactibleFreeListSpace*  _cms_space;
3142   char          _pad_front[64];   // padding to ...
3143   HeapWord*     _global_finger;   // ... avoid sharing cache line
3144   char          _pad_back[64];
3145   HeapWord*     _restart_addr;
3146 
3147   //  Exposed here for yielding support
3148   Mutex* const _bit_map_lock;
3149 
3150   // The per thread work queues, available here for stealing
3151   OopTaskQueueSet*  _task_queues;
3152 
3153   // Termination (and yielding) support
3154   CMSConcMarkingTerminator _term;
3155   CMSConcMarkingTerminatorTerminator _term_term;
3156 
3157  public:
3158   CMSConcMarkingTask(CMSCollector* collector,
3159                  CompactibleFreeListSpace* cms_space,
3160                  YieldingFlexibleWorkGang* workers,
3161                  OopTaskQueueSet* task_queues):
3162     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3163     _collector(collector),
3164     _cms_space(cms_space),
3165     _n_workers(0), _result(true),
3166     _task_queues(task_queues),
3167     _term(_n_workers, task_queues, _collector),
3168     _bit_map_lock(collector->bitMapLock())
3169   {
3170     _requested_size = _n_workers;
3171     _term.set_task(this);
3172     _term_term.set_task(this);
3173     _restart_addr = _global_finger = _cms_space->bottom();
3174   }
3175 
3176 
3177   OopTaskQueueSet* task_queues()  { return _task_queues; }
3178 
3179   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3180 
3181   HeapWord** global_finger_addr() { return &_global_finger; }
3182 
3183   CMSConcMarkingTerminator* terminator() { return &_term; }
3184 
3185   virtual void set_for_termination(uint active_workers) {
3186     terminator()->reset_for_reuse(active_workers);
3187   }
3188 
3189   void work(uint worker_id);
3190   bool should_yield() {
3191     return    ConcurrentMarkSweepThread::should_yield()
3192            && !_collector->foregroundGCIsActive();
3193   }
3194 
3195   virtual void coordinator_yield();  // stuff done by coordinator
3196   bool result() { return _result; }
3197 
3198   void reset(HeapWord* ra) {
3199     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3200     _restart_addr = _global_finger = ra;
3201     _term.reset_for_reuse();
3202   }
3203 
3204   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3205                                            OopTaskQueue* work_q);
3206 
3207  private:
3208   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3209   void do_work_steal(int i);
3210   void bump_global_finger(HeapWord* f);
3211 };
3212 
3213 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3214   assert(_task != NULL, "Error");
3215   return _task->yielding();
3216   // Note that we do not need the disjunct || _task->should_yield() above
3217   // because we want terminating threads to yield only if the task
3218   // is already in the midst of yielding, which happens only after at least one
3219   // thread has yielded.
3220 }
3221 
3222 void CMSConcMarkingTerminator::yield() {
3223   if (_task->should_yield()) {
3224     _task->yield();
3225   } else {
3226     ParallelTaskTerminator::yield();
3227   }
3228 }
3229 
3230 ////////////////////////////////////////////////////////////////
3231 // Concurrent Marking Algorithm Sketch
3232 ////////////////////////////////////////////////////////////////
3233 // Until all tasks exhausted (both spaces):
3234 // -- claim next available chunk
3235 // -- bump global finger via CAS
3236 // -- find first object that starts in this chunk
3237 //    and start scanning bitmap from that position
3238 // -- scan marked objects for oops
3239 // -- CAS-mark target, and if successful:
3240 //    . if target oop is above global finger (volatile read)
3241 //      nothing to do
3242 //    . if target oop is in chunk and above local finger
3243 //        then nothing to do
3244 //    . else push on work-queue
3245 // -- Deal with possible overflow issues:
3246 //    . local work-queue overflow causes stuff to be pushed on
3247 //      global (common) overflow queue
3248 //    . always first empty local work queue
3249 //    . then get a batch of oops from global work queue if any
3250 //    . then do work stealing
3251 // -- When all tasks claimed (both spaces)
3252 //    and local work queue empty,
3253 //    then in a loop do:
3254 //    . check global overflow stack; steal a batch of oops and trace
3255 //    . try to steal from other threads oif GOS is empty
3256 //    . if neither is available, offer termination
3257 // -- Terminate and return result
3258 //
3259 void CMSConcMarkingTask::work(uint worker_id) {
3260   elapsedTimer _timer;
3261   ResourceMark rm;
3262   HandleMark hm;
3263 
3264   DEBUG_ONLY(_collector->verify_overflow_empty();)
3265 
3266   // Before we begin work, our work queue should be empty
3267   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3268   // Scan the bitmap covering _cms_space, tracing through grey objects.
3269   _timer.start();
3270   do_scan_and_mark(worker_id, _cms_space);
3271   _timer.stop();
3272   if (PrintCMSStatistics != 0) {
3273     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3274       worker_id, _timer.seconds());
3275       // XXX: need xxx/xxx type of notation, two timers
3276   }
3277 
3278   // ... do work stealing
3279   _timer.reset();
3280   _timer.start();
3281   do_work_steal(worker_id);
3282   _timer.stop();
3283   if (PrintCMSStatistics != 0) {
3284     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3285       worker_id, _timer.seconds());
3286       // XXX: need xxx/xxx type of notation, two timers
3287   }
3288   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3289   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3290   // Note that under the current task protocol, the
3291   // following assertion is true even of the spaces
3292   // expanded since the completion of the concurrent
3293   // marking. XXX This will likely change under a strict
3294   // ABORT semantics.
3295   // After perm removal the comparison was changed to
3296   // greater than or equal to from strictly greater than.
3297   // Before perm removal the highest address sweep would
3298   // have been at the end of perm gen but now is at the
3299   // end of the tenured gen.
3300   assert(_global_finger >=  _cms_space->end(),
3301          "All tasks have been completed");
3302   DEBUG_ONLY(_collector->verify_overflow_empty();)
3303 }
3304 
3305 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3306   HeapWord* read = _global_finger;
3307   HeapWord* cur  = read;
3308   while (f > read) {
3309     cur = read;
3310     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3311     if (cur == read) {
3312       // our cas succeeded
3313       assert(_global_finger >= f, "protocol consistency");
3314       break;
3315     }
3316   }
3317 }
3318 
3319 // This is really inefficient, and should be redone by
3320 // using (not yet available) block-read and -write interfaces to the
3321 // stack and the work_queue. XXX FIX ME !!!
3322 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3323                                                       OopTaskQueue* work_q) {
3324   // Fast lock-free check
3325   if (ovflw_stk->length() == 0) {
3326     return false;
3327   }
3328   assert(work_q->size() == 0, "Shouldn't steal");
3329   MutexLockerEx ml(ovflw_stk->par_lock(),
3330                    Mutex::_no_safepoint_check_flag);
3331   // Grab up to 1/4 the size of the work queue
3332   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3333                     (size_t)ParGCDesiredObjsFromOverflowList);
3334   num = MIN2(num, ovflw_stk->length());
3335   for (int i = (int) num; i > 0; i--) {
3336     oop cur = ovflw_stk->pop();
3337     assert(cur != NULL, "Counted wrong?");
3338     work_q->push(cur);
3339   }
3340   return num > 0;
3341 }
3342 
3343 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3344   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3345   int n_tasks = pst->n_tasks();
3346   // We allow that there may be no tasks to do here because
3347   // we are restarting after a stack overflow.
3348   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3349   uint nth_task = 0;
3350 
3351   HeapWord* aligned_start = sp->bottom();
3352   if (sp->used_region().contains(_restart_addr)) {
3353     // Align down to a card boundary for the start of 0th task
3354     // for this space.
3355     aligned_start =
3356       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3357                                  CardTableModRefBS::card_size);
3358   }
3359 
3360   size_t chunk_size = sp->marking_task_size();
3361   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3362     // Having claimed the nth task in this space,
3363     // compute the chunk that it corresponds to:
3364     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3365                                aligned_start + (nth_task+1)*chunk_size);
3366     // Try and bump the global finger via a CAS;
3367     // note that we need to do the global finger bump
3368     // _before_ taking the intersection below, because
3369     // the task corresponding to that region will be
3370     // deemed done even if the used_region() expands
3371     // because of allocation -- as it almost certainly will
3372     // during start-up while the threads yield in the
3373     // closure below.
3374     HeapWord* finger = span.end();
3375     bump_global_finger(finger);   // atomically
3376     // There are null tasks here corresponding to chunks
3377     // beyond the "top" address of the space.
3378     span = span.intersection(sp->used_region());
3379     if (!span.is_empty()) {  // Non-null task
3380       HeapWord* prev_obj;
3381       assert(!span.contains(_restart_addr) || nth_task == 0,
3382              "Inconsistency");
3383       if (nth_task == 0) {
3384         // For the 0th task, we'll not need to compute a block_start.
3385         if (span.contains(_restart_addr)) {
3386           // In the case of a restart because of stack overflow,
3387           // we might additionally skip a chunk prefix.
3388           prev_obj = _restart_addr;
3389         } else {
3390           prev_obj = span.start();
3391         }
3392       } else {
3393         // We want to skip the first object because
3394         // the protocol is to scan any object in its entirety
3395         // that _starts_ in this span; a fortiori, any
3396         // object starting in an earlier span is scanned
3397         // as part of an earlier claimed task.
3398         // Below we use the "careful" version of block_start
3399         // so we do not try to navigate uninitialized objects.
3400         prev_obj = sp->block_start_careful(span.start());
3401         // Below we use a variant of block_size that uses the
3402         // Printezis bits to avoid waiting for allocated
3403         // objects to become initialized/parsable.
3404         while (prev_obj < span.start()) {
3405           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3406           if (sz > 0) {
3407             prev_obj += sz;
3408           } else {
3409             // In this case we may end up doing a bit of redundant
3410             // scanning, but that appears unavoidable, short of
3411             // locking the free list locks; see bug 6324141.
3412             break;
3413           }
3414         }
3415       }
3416       if (prev_obj < span.end()) {
3417         MemRegion my_span = MemRegion(prev_obj, span.end());
3418         // Do the marking work within a non-empty span --
3419         // the last argument to the constructor indicates whether the
3420         // iteration should be incremental with periodic yields.
3421         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3422                                     &_collector->_markBitMap,
3423                                     work_queue(i),
3424                                     &_collector->_markStack);
3425         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3426       } // else nothing to do for this task
3427     }   // else nothing to do for this task
3428   }
3429   // We'd be tempted to assert here that since there are no
3430   // more tasks left to claim in this space, the global_finger
3431   // must exceed space->top() and a fortiori space->end(). However,
3432   // that would not quite be correct because the bumping of
3433   // global_finger occurs strictly after the claiming of a task,
3434   // so by the time we reach here the global finger may not yet
3435   // have been bumped up by the thread that claimed the last
3436   // task.
3437   pst->all_tasks_completed();
3438 }
3439 
3440 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3441  private:
3442   CMSCollector* _collector;
3443   CMSConcMarkingTask* _task;
3444   MemRegion     _span;
3445   CMSBitMap*    _bit_map;
3446   CMSMarkStack* _overflow_stack;
3447   OopTaskQueue* _work_queue;
3448  protected:
3449   DO_OOP_WORK_DEFN
3450  public:
3451   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3452                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3453     MetadataAwareOopClosure(collector->ref_processor()),
3454     _collector(collector),
3455     _task(task),
3456     _span(collector->_span),
3457     _work_queue(work_queue),
3458     _bit_map(bit_map),
3459     _overflow_stack(overflow_stack)
3460   { }
3461   virtual void do_oop(oop* p);
3462   virtual void do_oop(narrowOop* p);
3463 
3464   void trim_queue(size_t max);
3465   void handle_stack_overflow(HeapWord* lost);
3466   void do_yield_check() {
3467     if (_task->should_yield()) {
3468       _task->yield();
3469     }
3470   }
3471 };
3472 
3473 // Grey object scanning during work stealing phase --
3474 // the salient assumption here is that any references
3475 // that are in these stolen objects being scanned must
3476 // already have been initialized (else they would not have
3477 // been published), so we do not need to check for
3478 // uninitialized objects before pushing here.
3479 void Par_ConcMarkingClosure::do_oop(oop obj) {
3480   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3481   HeapWord* addr = (HeapWord*)obj;
3482   // Check if oop points into the CMS generation
3483   // and is not marked
3484   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3485     // a white object ...
3486     // If we manage to "claim" the object, by being the
3487     // first thread to mark it, then we push it on our
3488     // marking stack
3489     if (_bit_map->par_mark(addr)) {     // ... now grey
3490       // push on work queue (grey set)
3491       bool simulate_overflow = false;
3492       NOT_PRODUCT(
3493         if (CMSMarkStackOverflowALot &&
3494             _collector->simulate_overflow()) {
3495           // simulate a stack overflow
3496           simulate_overflow = true;
3497         }
3498       )
3499       if (simulate_overflow ||
3500           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3501         // stack overflow
3502         if (PrintCMSStatistics != 0) {
3503           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3504                                  SIZE_FORMAT, _overflow_stack->capacity());
3505         }
3506         // We cannot assert that the overflow stack is full because
3507         // it may have been emptied since.
3508         assert(simulate_overflow ||
3509                _work_queue->size() == _work_queue->max_elems(),
3510               "Else push should have succeeded");
3511         handle_stack_overflow(addr);
3512       }
3513     } // Else, some other thread got there first
3514     do_yield_check();
3515   }
3516 }
3517 
3518 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3519 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3520 
3521 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3522   while (_work_queue->size() > max) {
3523     oop new_oop;
3524     if (_work_queue->pop_local(new_oop)) {
3525       assert(new_oop->is_oop(), "Should be an oop");
3526       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3527       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3528       new_oop->oop_iterate(this);  // do_oop() above
3529       do_yield_check();
3530     }
3531   }
3532 }
3533 
3534 // Upon stack overflow, we discard (part of) the stack,
3535 // remembering the least address amongst those discarded
3536 // in CMSCollector's _restart_address.
3537 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3538   // We need to do this under a mutex to prevent other
3539   // workers from interfering with the work done below.
3540   MutexLockerEx ml(_overflow_stack->par_lock(),
3541                    Mutex::_no_safepoint_check_flag);
3542   // Remember the least grey address discarded
3543   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3544   _collector->lower_restart_addr(ra);
3545   _overflow_stack->reset();  // discard stack contents
3546   _overflow_stack->expand(); // expand the stack if possible
3547 }
3548 
3549 
3550 void CMSConcMarkingTask::do_work_steal(int i) {
3551   OopTaskQueue* work_q = work_queue(i);
3552   oop obj_to_scan;
3553   CMSBitMap* bm = &(_collector->_markBitMap);
3554   CMSMarkStack* ovflw = &(_collector->_markStack);
3555   int* seed = _collector->hash_seed(i);
3556   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3557   while (true) {
3558     cl.trim_queue(0);
3559     assert(work_q->size() == 0, "Should have been emptied above");
3560     if (get_work_from_overflow_stack(ovflw, work_q)) {
3561       // Can't assert below because the work obtained from the
3562       // overflow stack may already have been stolen from us.
3563       // assert(work_q->size() > 0, "Work from overflow stack");
3564       continue;
3565     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3566       assert(obj_to_scan->is_oop(), "Should be an oop");
3567       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3568       obj_to_scan->oop_iterate(&cl);
3569     } else if (terminator()->offer_termination(&_term_term)) {
3570       assert(work_q->size() == 0, "Impossible!");
3571       break;
3572     } else if (yielding() || should_yield()) {
3573       yield();
3574     }
3575   }
3576 }
3577 
3578 // This is run by the CMS (coordinator) thread.
3579 void CMSConcMarkingTask::coordinator_yield() {
3580   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3581          "CMS thread should hold CMS token");
3582   // First give up the locks, then yield, then re-lock
3583   // We should probably use a constructor/destructor idiom to
3584   // do this unlock/lock or modify the MutexUnlocker class to
3585   // serve our purpose. XXX
3586   assert_lock_strong(_bit_map_lock);
3587   _bit_map_lock->unlock();
3588   ConcurrentMarkSweepThread::desynchronize(true);
3589   _collector->stopTimer();
3590   if (PrintCMSStatistics != 0) {
3591     _collector->incrementYields();
3592   }
3593 
3594   // It is possible for whichever thread initiated the yield request
3595   // not to get a chance to wake up and take the bitmap lock between
3596   // this thread releasing it and reacquiring it. So, while the
3597   // should_yield() flag is on, let's sleep for a bit to give the
3598   // other thread a chance to wake up. The limit imposed on the number
3599   // of iterations is defensive, to avoid any unforseen circumstances
3600   // putting us into an infinite loop. Since it's always been this
3601   // (coordinator_yield()) method that was observed to cause the
3602   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3603   // which is by default non-zero. For the other seven methods that
3604   // also perform the yield operation, as are using a different
3605   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3606   // can enable the sleeping for those methods too, if necessary.
3607   // See 6442774.
3608   //
3609   // We really need to reconsider the synchronization between the GC
3610   // thread and the yield-requesting threads in the future and we
3611   // should really use wait/notify, which is the recommended
3612   // way of doing this type of interaction. Additionally, we should
3613   // consolidate the eight methods that do the yield operation and they
3614   // are almost identical into one for better maintainability and
3615   // readability. See 6445193.
3616   //
3617   // Tony 2006.06.29
3618   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3619                    ConcurrentMarkSweepThread::should_yield() &&
3620                    !CMSCollector::foregroundGCIsActive(); ++i) {
3621     os::sleep(Thread::current(), 1, false);
3622   }
3623 
3624   ConcurrentMarkSweepThread::synchronize(true);
3625   _bit_map_lock->lock_without_safepoint_check();
3626   _collector->startTimer();
3627 }
3628 
3629 bool CMSCollector::do_marking_mt() {
3630   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3631   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3632                                                                   conc_workers()->active_workers(),
3633                                                                   Threads::number_of_non_daemon_threads());
3634   conc_workers()->set_active_workers(num_workers);
3635 
3636   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3637 
3638   CMSConcMarkingTask tsk(this,
3639                          cms_space,
3640                          conc_workers(),
3641                          task_queues());
3642 
3643   // Since the actual number of workers we get may be different
3644   // from the number we requested above, do we need to do anything different
3645   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3646   // class?? XXX
3647   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3648 
3649   // Refs discovery is already non-atomic.
3650   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3651   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3652   conc_workers()->start_task(&tsk);
3653   while (tsk.yielded()) {
3654     tsk.coordinator_yield();
3655     conc_workers()->continue_task(&tsk);
3656   }
3657   // If the task was aborted, _restart_addr will be non-NULL
3658   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3659   while (_restart_addr != NULL) {
3660     // XXX For now we do not make use of ABORTED state and have not
3661     // yet implemented the right abort semantics (even in the original
3662     // single-threaded CMS case). That needs some more investigation
3663     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3664     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3665     // If _restart_addr is non-NULL, a marking stack overflow
3666     // occurred; we need to do a fresh marking iteration from the
3667     // indicated restart address.
3668     if (_foregroundGCIsActive) {
3669       // We may be running into repeated stack overflows, having
3670       // reached the limit of the stack size, while making very
3671       // slow forward progress. It may be best to bail out and
3672       // let the foreground collector do its job.
3673       // Clear _restart_addr, so that foreground GC
3674       // works from scratch. This avoids the headache of
3675       // a "rescan" which would otherwise be needed because
3676       // of the dirty mod union table & card table.
3677       _restart_addr = NULL;
3678       return false;
3679     }
3680     // Adjust the task to restart from _restart_addr
3681     tsk.reset(_restart_addr);
3682     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3683                   _restart_addr);
3684     _restart_addr = NULL;
3685     // Get the workers going again
3686     conc_workers()->start_task(&tsk);
3687     while (tsk.yielded()) {
3688       tsk.coordinator_yield();
3689       conc_workers()->continue_task(&tsk);
3690     }
3691   }
3692   assert(tsk.completed(), "Inconsistency");
3693   assert(tsk.result() == true, "Inconsistency");
3694   return true;
3695 }
3696 
3697 bool CMSCollector::do_marking_st() {
3698   ResourceMark rm;
3699   HandleMark   hm;
3700 
3701   // Temporarily make refs discovery single threaded (non-MT)
3702   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3703   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3704     &_markStack, CMSYield);
3705   // the last argument to iterate indicates whether the iteration
3706   // should be incremental with periodic yields.
3707   _markBitMap.iterate(&markFromRootsClosure);
3708   // If _restart_addr is non-NULL, a marking stack overflow
3709   // occurred; we need to do a fresh iteration from the
3710   // indicated restart address.
3711   while (_restart_addr != NULL) {
3712     if (_foregroundGCIsActive) {
3713       // We may be running into repeated stack overflows, having
3714       // reached the limit of the stack size, while making very
3715       // slow forward progress. It may be best to bail out and
3716       // let the foreground collector do its job.
3717       // Clear _restart_addr, so that foreground GC
3718       // works from scratch. This avoids the headache of
3719       // a "rescan" which would otherwise be needed because
3720       // of the dirty mod union table & card table.
3721       _restart_addr = NULL;
3722       return false;  // indicating failure to complete marking
3723     }
3724     // Deal with stack overflow:
3725     // we restart marking from _restart_addr
3726     HeapWord* ra = _restart_addr;
3727     markFromRootsClosure.reset(ra);
3728     _restart_addr = NULL;
3729     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3730   }
3731   return true;
3732 }
3733 
3734 void CMSCollector::preclean() {
3735   check_correct_thread_executing();
3736   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3737   verify_work_stacks_empty();
3738   verify_overflow_empty();
3739   _abort_preclean = false;
3740   if (CMSPrecleaningEnabled) {
3741     if (!CMSEdenChunksRecordAlways) {
3742       _eden_chunk_index = 0;
3743     }
3744     size_t used = get_eden_used();
3745     size_t capacity = get_eden_capacity();
3746     // Don't start sampling unless we will get sufficiently
3747     // many samples.
3748     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3749                 * CMSScheduleRemarkEdenPenetration)) {
3750       _start_sampling = true;
3751     } else {
3752       _start_sampling = false;
3753     }
3754     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3755     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3756     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3757   }
3758   CMSTokenSync x(true); // is cms thread
3759   if (CMSPrecleaningEnabled) {
3760     sample_eden();
3761     _collectorState = AbortablePreclean;
3762   } else {
3763     _collectorState = FinalMarking;
3764   }
3765   verify_work_stacks_empty();
3766   verify_overflow_empty();
3767 }
3768 
3769 // Try and schedule the remark such that young gen
3770 // occupancy is CMSScheduleRemarkEdenPenetration %.
3771 void CMSCollector::abortable_preclean() {
3772   check_correct_thread_executing();
3773   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3774   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3775 
3776   // If Eden's current occupancy is below this threshold,
3777   // immediately schedule the remark; else preclean
3778   // past the next scavenge in an effort to
3779   // schedule the pause as described above. By choosing
3780   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3781   // we will never do an actual abortable preclean cycle.
3782   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3783     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3784     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3785     // We need more smarts in the abortable preclean
3786     // loop below to deal with cases where allocation
3787     // in young gen is very very slow, and our precleaning
3788     // is running a losing race against a horde of
3789     // mutators intent on flooding us with CMS updates
3790     // (dirty cards).
3791     // One, admittedly dumb, strategy is to give up
3792     // after a certain number of abortable precleaning loops
3793     // or after a certain maximum time. We want to make
3794     // this smarter in the next iteration.
3795     // XXX FIX ME!!! YSR
3796     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3797     while (!(should_abort_preclean() ||
3798              ConcurrentMarkSweepThread::should_terminate())) {
3799       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3800       cumworkdone += workdone;
3801       loops++;
3802       // Voluntarily terminate abortable preclean phase if we have
3803       // been at it for too long.
3804       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3805           loops >= CMSMaxAbortablePrecleanLoops) {
3806         if (PrintGCDetails) {
3807           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3808         }
3809         break;
3810       }
3811       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3812         if (PrintGCDetails) {
3813           gclog_or_tty->print(" CMS: abort preclean due to time ");
3814         }
3815         break;
3816       }
3817       // If we are doing little work each iteration, we should
3818       // take a short break.
3819       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3820         // Sleep for some time, waiting for work to accumulate
3821         stopTimer();
3822         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3823         startTimer();
3824         waited++;
3825       }
3826     }
3827     if (PrintCMSStatistics > 0) {
3828       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3829                           loops, waited, cumworkdone);
3830     }
3831   }
3832   CMSTokenSync x(true); // is cms thread
3833   if (_collectorState != Idling) {
3834     assert(_collectorState == AbortablePreclean,
3835            "Spontaneous state transition?");
3836     _collectorState = FinalMarking;
3837   } // Else, a foreground collection completed this CMS cycle.
3838   return;
3839 }
3840 
3841 // Respond to an Eden sampling opportunity
3842 void CMSCollector::sample_eden() {
3843   // Make sure a young gc cannot sneak in between our
3844   // reading and recording of a sample.
3845   assert(Thread::current()->is_ConcurrentGC_thread(),
3846          "Only the cms thread may collect Eden samples");
3847   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3848          "Should collect samples while holding CMS token");
3849   if (!_start_sampling) {
3850     return;
3851   }
3852   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3853   // is populated by the young generation.
3854   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3855     if (_eden_chunk_index < _eden_chunk_capacity) {
3856       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3857       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3858              "Unexpected state of Eden");
3859       // We'd like to check that what we just sampled is an oop-start address;
3860       // however, we cannot do that here since the object may not yet have been
3861       // initialized. So we'll instead do the check when we _use_ this sample
3862       // later.
3863       if (_eden_chunk_index == 0 ||
3864           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3865                          _eden_chunk_array[_eden_chunk_index-1])
3866            >= CMSSamplingGrain)) {
3867         _eden_chunk_index++;  // commit sample
3868       }
3869     }
3870   }
3871   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3872     size_t used = get_eden_used();
3873     size_t capacity = get_eden_capacity();
3874     assert(used <= capacity, "Unexpected state of Eden");
3875     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3876       _abort_preclean = true;
3877     }
3878   }
3879 }
3880 
3881 
3882 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3883   assert(_collectorState == Precleaning ||
3884          _collectorState == AbortablePreclean, "incorrect state");
3885   ResourceMark rm;
3886   HandleMark   hm;
3887 
3888   // Precleaning is currently not MT but the reference processor
3889   // may be set for MT.  Disable it temporarily here.
3890   ReferenceProcessor* rp = ref_processor();
3891   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3892 
3893   // Do one pass of scrubbing the discovered reference lists
3894   // to remove any reference objects with strongly-reachable
3895   // referents.
3896   if (clean_refs) {
3897     CMSPrecleanRefsYieldClosure yield_cl(this);
3898     assert(rp->span().equals(_span), "Spans should be equal");
3899     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3900                                    &_markStack, true /* preclean */);
3901     CMSDrainMarkingStackClosure complete_trace(this,
3902                                    _span, &_markBitMap, &_markStack,
3903                                    &keep_alive, true /* preclean */);
3904 
3905     // We don't want this step to interfere with a young
3906     // collection because we don't want to take CPU
3907     // or memory bandwidth away from the young GC threads
3908     // (which may be as many as there are CPUs).
3909     // Note that we don't need to protect ourselves from
3910     // interference with mutators because they can't
3911     // manipulate the discovered reference lists nor affect
3912     // the computed reachability of the referents, the
3913     // only properties manipulated by the precleaning
3914     // of these reference lists.
3915     stopTimer();
3916     CMSTokenSyncWithLocks x(true /* is cms thread */,
3917                             bitMapLock());
3918     startTimer();
3919     sample_eden();
3920 
3921     // The following will yield to allow foreground
3922     // collection to proceed promptly. XXX YSR:
3923     // The code in this method may need further
3924     // tweaking for better performance and some restructuring
3925     // for cleaner interfaces.
3926     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3927     rp->preclean_discovered_references(
3928           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3929           gc_timer, _gc_tracer_cm->gc_id());
3930   }
3931 
3932   if (clean_survivor) {  // preclean the active survivor space(s)
3933     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3934                              &_markBitMap, &_modUnionTable,
3935                              &_markStack, true /* precleaning phase */);
3936     stopTimer();
3937     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3938                              bitMapLock());
3939     startTimer();
3940     unsigned int before_count =
3941       GenCollectedHeap::heap()->total_collections();
3942     SurvivorSpacePrecleanClosure
3943       sss_cl(this, _span, &_markBitMap, &_markStack,
3944              &pam_cl, before_count, CMSYield);
3945     _young_gen->from()->object_iterate_careful(&sss_cl);
3946     _young_gen->to()->object_iterate_careful(&sss_cl);
3947   }
3948   MarkRefsIntoAndScanClosure
3949     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3950              &_markStack, this, CMSYield,
3951              true /* precleaning phase */);
3952   // CAUTION: The following closure has persistent state that may need to
3953   // be reset upon a decrease in the sequence of addresses it
3954   // processes.
3955   ScanMarkedObjectsAgainCarefullyClosure
3956     smoac_cl(this, _span,
3957       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3958 
3959   // Preclean dirty cards in ModUnionTable and CardTable using
3960   // appropriate convergence criterion;
3961   // repeat CMSPrecleanIter times unless we find that
3962   // we are losing.
3963   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3964   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3965          "Bad convergence multiplier");
3966   assert(CMSPrecleanThreshold >= 100,
3967          "Unreasonably low CMSPrecleanThreshold");
3968 
3969   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3970   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3971        numIter < CMSPrecleanIter;
3972        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3973     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3974     if (Verbose && PrintGCDetails) {
3975       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3976     }
3977     // Either there are very few dirty cards, so re-mark
3978     // pause will be small anyway, or our pre-cleaning isn't
3979     // that much faster than the rate at which cards are being
3980     // dirtied, so we might as well stop and re-mark since
3981     // precleaning won't improve our re-mark time by much.
3982     if (curNumCards <= CMSPrecleanThreshold ||
3983         (numIter > 0 &&
3984          (curNumCards * CMSPrecleanDenominator >
3985          lastNumCards * CMSPrecleanNumerator))) {
3986       numIter++;
3987       cumNumCards += curNumCards;
3988       break;
3989     }
3990   }
3991 
3992   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3993 
3994   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3995   cumNumCards += curNumCards;
3996   if (PrintGCDetails && PrintCMSStatistics != 0) {
3997     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3998                   curNumCards, cumNumCards, numIter);
3999   }
4000   return cumNumCards;   // as a measure of useful work done
4001 }
4002 
4003 // PRECLEANING NOTES:
4004 // Precleaning involves:
4005 // . reading the bits of the modUnionTable and clearing the set bits.
4006 // . For the cards corresponding to the set bits, we scan the
4007 //   objects on those cards. This means we need the free_list_lock
4008 //   so that we can safely iterate over the CMS space when scanning
4009 //   for oops.
4010 // . When we scan the objects, we'll be both reading and setting
4011 //   marks in the marking bit map, so we'll need the marking bit map.
4012 // . For protecting _collector_state transitions, we take the CGC_lock.
4013 //   Note that any races in the reading of of card table entries by the
4014 //   CMS thread on the one hand and the clearing of those entries by the
4015 //   VM thread or the setting of those entries by the mutator threads on the
4016 //   other are quite benign. However, for efficiency it makes sense to keep
4017 //   the VM thread from racing with the CMS thread while the latter is
4018 //   dirty card info to the modUnionTable. We therefore also use the
4019 //   CGC_lock to protect the reading of the card table and the mod union
4020 //   table by the CM thread.
4021 // . We run concurrently with mutator updates, so scanning
4022 //   needs to be done carefully  -- we should not try to scan
4023 //   potentially uninitialized objects.
4024 //
4025 // Locking strategy: While holding the CGC_lock, we scan over and
4026 // reset a maximal dirty range of the mod union / card tables, then lock
4027 // the free_list_lock and bitmap lock to do a full marking, then
4028 // release these locks; and repeat the cycle. This allows for a
4029 // certain amount of fairness in the sharing of these locks between
4030 // the CMS collector on the one hand, and the VM thread and the
4031 // mutators on the other.
4032 
4033 // NOTE: preclean_mod_union_table() and preclean_card_table()
4034 // further below are largely identical; if you need to modify
4035 // one of these methods, please check the other method too.
4036 
4037 size_t CMSCollector::preclean_mod_union_table(
4038   ConcurrentMarkSweepGeneration* old_gen,
4039   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4040   verify_work_stacks_empty();
4041   verify_overflow_empty();
4042 
4043   // strategy: starting with the first card, accumulate contiguous
4044   // ranges of dirty cards; clear these cards, then scan the region
4045   // covered by these cards.
4046 
4047   // Since all of the MUT is committed ahead, we can just use
4048   // that, in case the generations expand while we are precleaning.
4049   // It might also be fine to just use the committed part of the
4050   // generation, but we might potentially miss cards when the
4051   // generation is rapidly expanding while we are in the midst
4052   // of precleaning.
4053   HeapWord* startAddr = old_gen->reserved().start();
4054   HeapWord* endAddr   = old_gen->reserved().end();
4055 
4056   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4057 
4058   size_t numDirtyCards, cumNumDirtyCards;
4059   HeapWord *nextAddr, *lastAddr;
4060   for (cumNumDirtyCards = numDirtyCards = 0,
4061        nextAddr = lastAddr = startAddr;
4062        nextAddr < endAddr;
4063        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4064 
4065     ResourceMark rm;
4066     HandleMark   hm;
4067 
4068     MemRegion dirtyRegion;
4069     {
4070       stopTimer();
4071       // Potential yield point
4072       CMSTokenSync ts(true);
4073       startTimer();
4074       sample_eden();
4075       // Get dirty region starting at nextOffset (inclusive),
4076       // simultaneously clearing it.
4077       dirtyRegion =
4078         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4079       assert(dirtyRegion.start() >= nextAddr,
4080              "returned region inconsistent?");
4081     }
4082     // Remember where the next search should begin.
4083     // The returned region (if non-empty) is a right open interval,
4084     // so lastOffset is obtained from the right end of that
4085     // interval.
4086     lastAddr = dirtyRegion.end();
4087     // Should do something more transparent and less hacky XXX
4088     numDirtyCards =
4089       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4090 
4091     // We'll scan the cards in the dirty region (with periodic
4092     // yields for foreground GC as needed).
4093     if (!dirtyRegion.is_empty()) {
4094       assert(numDirtyCards > 0, "consistency check");
4095       HeapWord* stop_point = NULL;
4096       stopTimer();
4097       // Potential yield point
4098       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4099                                bitMapLock());
4100       startTimer();
4101       {
4102         verify_work_stacks_empty();
4103         verify_overflow_empty();
4104         sample_eden();
4105         stop_point =
4106           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4107       }
4108       if (stop_point != NULL) {
4109         // The careful iteration stopped early either because it found an
4110         // uninitialized object, or because we were in the midst of an
4111         // "abortable preclean", which should now be aborted. Redirty
4112         // the bits corresponding to the partially-scanned or unscanned
4113         // cards. We'll either restart at the next block boundary or
4114         // abort the preclean.
4115         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4116                "Should only be AbortablePreclean.");
4117         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4118         if (should_abort_preclean()) {
4119           break; // out of preclean loop
4120         } else {
4121           // Compute the next address at which preclean should pick up;
4122           // might need bitMapLock in order to read P-bits.
4123           lastAddr = next_card_start_after_block(stop_point);
4124         }
4125       }
4126     } else {
4127       assert(lastAddr == endAddr, "consistency check");
4128       assert(numDirtyCards == 0, "consistency check");
4129       break;
4130     }
4131   }
4132   verify_work_stacks_empty();
4133   verify_overflow_empty();
4134   return cumNumDirtyCards;
4135 }
4136 
4137 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4138 // below are largely identical; if you need to modify
4139 // one of these methods, please check the other method too.
4140 
4141 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4142   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4143   // strategy: it's similar to precleamModUnionTable above, in that
4144   // we accumulate contiguous ranges of dirty cards, mark these cards
4145   // precleaned, then scan the region covered by these cards.
4146   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4147   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4148 
4149   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4150 
4151   size_t numDirtyCards, cumNumDirtyCards;
4152   HeapWord *lastAddr, *nextAddr;
4153 
4154   for (cumNumDirtyCards = numDirtyCards = 0,
4155        nextAddr = lastAddr = startAddr;
4156        nextAddr < endAddr;
4157        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4158 
4159     ResourceMark rm;
4160     HandleMark   hm;
4161 
4162     MemRegion dirtyRegion;
4163     {
4164       // See comments in "Precleaning notes" above on why we
4165       // do this locking. XXX Could the locking overheads be
4166       // too high when dirty cards are sparse? [I don't think so.]
4167       stopTimer();
4168       CMSTokenSync x(true); // is cms thread
4169       startTimer();
4170       sample_eden();
4171       // Get and clear dirty region from card table
4172       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4173                                     MemRegion(nextAddr, endAddr),
4174                                     true,
4175                                     CardTableModRefBS::precleaned_card_val());
4176 
4177       assert(dirtyRegion.start() >= nextAddr,
4178              "returned region inconsistent?");
4179     }
4180     lastAddr = dirtyRegion.end();
4181     numDirtyCards =
4182       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4183 
4184     if (!dirtyRegion.is_empty()) {
4185       stopTimer();
4186       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4187       startTimer();
4188       sample_eden();
4189       verify_work_stacks_empty();
4190       verify_overflow_empty();
4191       HeapWord* stop_point =
4192         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4193       if (stop_point != NULL) {
4194         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4195                "Should only be AbortablePreclean.");
4196         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4197         if (should_abort_preclean()) {
4198           break; // out of preclean loop
4199         } else {
4200           // Compute the next address at which preclean should pick up.
4201           lastAddr = next_card_start_after_block(stop_point);
4202         }
4203       }
4204     } else {
4205       break;
4206     }
4207   }
4208   verify_work_stacks_empty();
4209   verify_overflow_empty();
4210   return cumNumDirtyCards;
4211 }
4212 
4213 class PrecleanKlassClosure : public KlassClosure {
4214   KlassToOopClosure _cm_klass_closure;
4215  public:
4216   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4217   void do_klass(Klass* k) {
4218     if (k->has_accumulated_modified_oops()) {
4219       k->clear_accumulated_modified_oops();
4220 
4221       _cm_klass_closure.do_klass(k);
4222     }
4223   }
4224 };
4225 
4226 // The freelist lock is needed to prevent asserts, is it really needed?
4227 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4228 
4229   cl->set_freelistLock(freelistLock);
4230 
4231   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4232 
4233   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4234   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4235   PrecleanKlassClosure preclean_klass_closure(cl);
4236   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4237 
4238   verify_work_stacks_empty();
4239   verify_overflow_empty();
4240 }
4241 
4242 void CMSCollector::checkpointRootsFinal() {
4243   assert(_collectorState == FinalMarking, "incorrect state transition?");
4244   check_correct_thread_executing();
4245   // world is stopped at this checkpoint
4246   assert(SafepointSynchronize::is_at_safepoint(),
4247          "world should be stopped");
4248   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4249 
4250   verify_work_stacks_empty();
4251   verify_overflow_empty();
4252 
4253   if (PrintGCDetails) {
4254     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4255                         _young_gen->used() / K,
4256                         _young_gen->capacity() / K);
4257   }
4258   {
4259     if (CMSScavengeBeforeRemark) {
4260       GenCollectedHeap* gch = GenCollectedHeap::heap();
4261       // Temporarily set flag to false, GCH->do_collection will
4262       // expect it to be false and set to true
4263       FlagSetting fl(gch->_is_gc_active, false);
4264       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4265         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4266       gch->do_collection(true,                      // full (i.e. force, see below)
4267                          false,                     // !clear_all_soft_refs
4268                          0,                         // size
4269                          false,                     // is_tlab
4270                          GenCollectedHeap::YoungGen // type
4271         );
4272     }
4273     FreelistLocker x(this);
4274     MutexLockerEx y(bitMapLock(),
4275                     Mutex::_no_safepoint_check_flag);
4276     checkpointRootsFinalWork();
4277   }
4278   verify_work_stacks_empty();
4279   verify_overflow_empty();
4280 }
4281 
4282 void CMSCollector::checkpointRootsFinalWork() {
4283   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4284 
4285   assert(haveFreelistLocks(), "must have free list locks");
4286   assert_lock_strong(bitMapLock());
4287 
4288   ResourceMark rm;
4289   HandleMark   hm;
4290 
4291   GenCollectedHeap* gch = GenCollectedHeap::heap();
4292 
4293   if (should_unload_classes()) {
4294     CodeCache::gc_prologue();
4295   }
4296   assert(haveFreelistLocks(), "must have free list locks");
4297   assert_lock_strong(bitMapLock());
4298 
4299   // We might assume that we need not fill TLAB's when
4300   // CMSScavengeBeforeRemark is set, because we may have just done
4301   // a scavenge which would have filled all TLAB's -- and besides
4302   // Eden would be empty. This however may not always be the case --
4303   // for instance although we asked for a scavenge, it may not have
4304   // happened because of a JNI critical section. We probably need
4305   // a policy for deciding whether we can in that case wait until
4306   // the critical section releases and then do the remark following
4307   // the scavenge, and skip it here. In the absence of that policy,
4308   // or of an indication of whether the scavenge did indeed occur,
4309   // we cannot rely on TLAB's having been filled and must do
4310   // so here just in case a scavenge did not happen.
4311   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4312   // Update the saved marks which may affect the root scans.
4313   gch->save_marks();
4314 
4315   if (CMSPrintEdenSurvivorChunks) {
4316     print_eden_and_survivor_chunk_arrays();
4317   }
4318 
4319   {
4320     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4321 
4322     // Note on the role of the mod union table:
4323     // Since the marker in "markFromRoots" marks concurrently with
4324     // mutators, it is possible for some reachable objects not to have been
4325     // scanned. For instance, an only reference to an object A was
4326     // placed in object B after the marker scanned B. Unless B is rescanned,
4327     // A would be collected. Such updates to references in marked objects
4328     // are detected via the mod union table which is the set of all cards
4329     // dirtied since the first checkpoint in this GC cycle and prior to
4330     // the most recent young generation GC, minus those cleaned up by the
4331     // concurrent precleaning.
4332     if (CMSParallelRemarkEnabled) {
4333       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4334       do_remark_parallel();
4335     } else {
4336       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4337                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4338       do_remark_non_parallel();
4339     }
4340   }
4341   verify_work_stacks_empty();
4342   verify_overflow_empty();
4343 
4344   {
4345     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4346     refProcessingWork();
4347   }
4348   verify_work_stacks_empty();
4349   verify_overflow_empty();
4350 
4351   if (should_unload_classes()) {
4352     CodeCache::gc_epilogue();
4353   }
4354   JvmtiExport::gc_epilogue();
4355 
4356   // If we encountered any (marking stack / work queue) overflow
4357   // events during the current CMS cycle, take appropriate
4358   // remedial measures, where possible, so as to try and avoid
4359   // recurrence of that condition.
4360   assert(_markStack.isEmpty(), "No grey objects");
4361   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4362                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4363   if (ser_ovflw > 0) {
4364     if (PrintCMSStatistics != 0) {
4365       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4366         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4367         ", kac_preclean=" SIZE_FORMAT ")",
4368         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4369         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4370     }
4371     _markStack.expand();
4372     _ser_pmc_remark_ovflw = 0;
4373     _ser_pmc_preclean_ovflw = 0;
4374     _ser_kac_preclean_ovflw = 0;
4375     _ser_kac_ovflw = 0;
4376   }
4377   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4378     if (PrintCMSStatistics != 0) {
4379       gclog_or_tty->print_cr("Work queue overflow (benign) "
4380         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4381         _par_pmc_remark_ovflw, _par_kac_ovflw);
4382     }
4383     _par_pmc_remark_ovflw = 0;
4384     _par_kac_ovflw = 0;
4385   }
4386   if (PrintCMSStatistics != 0) {
4387      if (_markStack._hit_limit > 0) {
4388        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4389                               _markStack._hit_limit);
4390      }
4391      if (_markStack._failed_double > 0) {
4392        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4393                               " current capacity " SIZE_FORMAT,
4394                               _markStack._failed_double,
4395                               _markStack.capacity());
4396      }
4397   }
4398   _markStack._hit_limit = 0;
4399   _markStack._failed_double = 0;
4400 
4401   if ((VerifyAfterGC || VerifyDuringGC) &&
4402       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4403     verify_after_remark();
4404   }
4405 
4406   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4407 
4408   // Change under the freelistLocks.
4409   _collectorState = Sweeping;
4410   // Call isAllClear() under bitMapLock
4411   assert(_modUnionTable.isAllClear(),
4412       "Should be clear by end of the final marking");
4413   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4414       "Should be clear by end of the final marking");
4415 }
4416 
4417 void CMSParInitialMarkTask::work(uint worker_id) {
4418   elapsedTimer _timer;
4419   ResourceMark rm;
4420   HandleMark   hm;
4421 
4422   // ---------- scan from roots --------------
4423   _timer.start();
4424   GenCollectedHeap* gch = GenCollectedHeap::heap();
4425   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4426 
4427   // ---------- young gen roots --------------
4428   {
4429     work_on_young_gen_roots(worker_id, &par_mri_cl);
4430     _timer.stop();
4431     if (PrintCMSStatistics != 0) {
4432       gclog_or_tty->print_cr(
4433         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4434         worker_id, _timer.seconds());
4435     }
4436   }
4437 
4438   // ---------- remaining roots --------------
4439   _timer.reset();
4440   _timer.start();
4441 
4442   CLDToOopClosure cld_closure(&par_mri_cl, true);
4443 
4444   gch->gen_process_roots(_strong_roots_scope,
4445                          GenCollectedHeap::OldGen,
4446                          false,     // yg was scanned above
4447                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4448                          _collector->should_unload_classes(),
4449                          &par_mri_cl,
4450                          NULL,
4451                          &cld_closure);
4452   assert(_collector->should_unload_classes()
4453          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4454          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4455   _timer.stop();
4456   if (PrintCMSStatistics != 0) {
4457     gclog_or_tty->print_cr(
4458       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4459       worker_id, _timer.seconds());
4460   }
4461 }
4462 
4463 // Parallel remark task
4464 class CMSParRemarkTask: public CMSParMarkTask {
4465   CompactibleFreeListSpace* _cms_space;
4466 
4467   // The per-thread work queues, available here for stealing.
4468   OopTaskQueueSet*       _task_queues;
4469   ParallelTaskTerminator _term;
4470   StrongRootsScope*      _strong_roots_scope;
4471 
4472  public:
4473   // A value of 0 passed to n_workers will cause the number of
4474   // workers to be taken from the active workers in the work gang.
4475   CMSParRemarkTask(CMSCollector* collector,
4476                    CompactibleFreeListSpace* cms_space,
4477                    uint n_workers, WorkGang* workers,
4478                    OopTaskQueueSet* task_queues,
4479                    StrongRootsScope* strong_roots_scope):
4480     CMSParMarkTask("Rescan roots and grey objects in parallel",
4481                    collector, n_workers),
4482     _cms_space(cms_space),
4483     _task_queues(task_queues),
4484     _term(n_workers, task_queues),
4485     _strong_roots_scope(strong_roots_scope) { }
4486 
4487   OopTaskQueueSet* task_queues() { return _task_queues; }
4488 
4489   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4490 
4491   ParallelTaskTerminator* terminator() { return &_term; }
4492   uint n_workers() { return _n_workers; }
4493 
4494   void work(uint worker_id);
4495 
4496  private:
4497   // ... of  dirty cards in old space
4498   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4499                                   Par_MarkRefsIntoAndScanClosure* cl);
4500 
4501   // ... work stealing for the above
4502   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4503 };
4504 
4505 class RemarkKlassClosure : public KlassClosure {
4506   KlassToOopClosure _cm_klass_closure;
4507  public:
4508   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4509   void do_klass(Klass* k) {
4510     // Check if we have modified any oops in the Klass during the concurrent marking.
4511     if (k->has_accumulated_modified_oops()) {
4512       k->clear_accumulated_modified_oops();
4513 
4514       // We could have transfered the current modified marks to the accumulated marks,
4515       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4516     } else if (k->has_modified_oops()) {
4517       // Don't clear anything, this info is needed by the next young collection.
4518     } else {
4519       // No modified oops in the Klass.
4520       return;
4521     }
4522 
4523     // The klass has modified fields, need to scan the klass.
4524     _cm_klass_closure.do_klass(k);
4525   }
4526 };
4527 
4528 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4529   ParNewGeneration* young_gen = _collector->_young_gen;
4530   ContiguousSpace* eden_space = young_gen->eden();
4531   ContiguousSpace* from_space = young_gen->from();
4532   ContiguousSpace* to_space   = young_gen->to();
4533 
4534   HeapWord** eca = _collector->_eden_chunk_array;
4535   size_t     ect = _collector->_eden_chunk_index;
4536   HeapWord** sca = _collector->_survivor_chunk_array;
4537   size_t     sct = _collector->_survivor_chunk_index;
4538 
4539   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4540   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4541 
4542   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4543   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4544   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4545 }
4546 
4547 // work_queue(i) is passed to the closure
4548 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4549 // also is passed to do_dirty_card_rescan_tasks() and to
4550 // do_work_steal() to select the i-th task_queue.
4551 
4552 void CMSParRemarkTask::work(uint worker_id) {
4553   elapsedTimer _timer;
4554   ResourceMark rm;
4555   HandleMark   hm;
4556 
4557   // ---------- rescan from roots --------------
4558   _timer.start();
4559   GenCollectedHeap* gch = GenCollectedHeap::heap();
4560   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4561     _collector->_span, _collector->ref_processor(),
4562     &(_collector->_markBitMap),
4563     work_queue(worker_id));
4564 
4565   // Rescan young gen roots first since these are likely
4566   // coarsely partitioned and may, on that account, constitute
4567   // the critical path; thus, it's best to start off that
4568   // work first.
4569   // ---------- young gen roots --------------
4570   {
4571     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4572     _timer.stop();
4573     if (PrintCMSStatistics != 0) {
4574       gclog_or_tty->print_cr(
4575         "Finished young gen rescan work in %dth thread: %3.3f sec",
4576         worker_id, _timer.seconds());
4577     }
4578   }
4579 
4580   // ---------- remaining roots --------------
4581   _timer.reset();
4582   _timer.start();
4583   gch->gen_process_roots(_strong_roots_scope,
4584                          GenCollectedHeap::OldGen,
4585                          false,     // yg was scanned above
4586                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4587                          _collector->should_unload_classes(),
4588                          &par_mrias_cl,
4589                          NULL,
4590                          NULL);     // The dirty klasses will be handled below
4591 
4592   assert(_collector->should_unload_classes()
4593          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4594          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4595   _timer.stop();
4596   if (PrintCMSStatistics != 0) {
4597     gclog_or_tty->print_cr(
4598       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4599       worker_id, _timer.seconds());
4600   }
4601 
4602   // ---------- unhandled CLD scanning ----------
4603   if (worker_id == 0) { // Single threaded at the moment.
4604     _timer.reset();
4605     _timer.start();
4606 
4607     // Scan all new class loader data objects and new dependencies that were
4608     // introduced during concurrent marking.
4609     ResourceMark rm;
4610     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4611     for (int i = 0; i < array->length(); i++) {
4612       par_mrias_cl.do_cld_nv(array->at(i));
4613     }
4614 
4615     // We don't need to keep track of new CLDs anymore.
4616     ClassLoaderDataGraph::remember_new_clds(false);
4617 
4618     _timer.stop();
4619     if (PrintCMSStatistics != 0) {
4620       gclog_or_tty->print_cr(
4621           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4622           worker_id, _timer.seconds());
4623     }
4624   }
4625 
4626   // ---------- dirty klass scanning ----------
4627   if (worker_id == 0) { // Single threaded at the moment.
4628     _timer.reset();
4629     _timer.start();
4630 
4631     // Scan all classes that was dirtied during the concurrent marking phase.
4632     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4633     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4634 
4635     _timer.stop();
4636     if (PrintCMSStatistics != 0) {
4637       gclog_or_tty->print_cr(
4638           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4639           worker_id, _timer.seconds());
4640     }
4641   }
4642 
4643   // We might have added oops to ClassLoaderData::_handles during the
4644   // concurrent marking phase. These oops point to newly allocated objects
4645   // that are guaranteed to be kept alive. Either by the direct allocation
4646   // code, or when the young collector processes the roots. Hence,
4647   // we don't have to revisit the _handles block during the remark phase.
4648 
4649   // ---------- rescan dirty cards ------------
4650   _timer.reset();
4651   _timer.start();
4652 
4653   // Do the rescan tasks for each of the two spaces
4654   // (cms_space) in turn.
4655   // "worker_id" is passed to select the task_queue for "worker_id"
4656   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4657   _timer.stop();
4658   if (PrintCMSStatistics != 0) {
4659     gclog_or_tty->print_cr(
4660       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4661       worker_id, _timer.seconds());
4662   }
4663 
4664   // ---------- steal work from other threads ...
4665   // ---------- ... and drain overflow list.
4666   _timer.reset();
4667   _timer.start();
4668   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4669   _timer.stop();
4670   if (PrintCMSStatistics != 0) {
4671     gclog_or_tty->print_cr(
4672       "Finished work stealing in %dth thread: %3.3f sec",
4673       worker_id, _timer.seconds());
4674   }
4675 }
4676 
4677 // Note that parameter "i" is not used.
4678 void
4679 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4680   OopsInGenClosure* cl, ContiguousSpace* space,
4681   HeapWord** chunk_array, size_t chunk_top) {
4682   // Until all tasks completed:
4683   // . claim an unclaimed task
4684   // . compute region boundaries corresponding to task claimed
4685   //   using chunk_array
4686   // . par_oop_iterate(cl) over that region
4687 
4688   ResourceMark rm;
4689   HandleMark   hm;
4690 
4691   SequentialSubTasksDone* pst = space->par_seq_tasks();
4692 
4693   uint nth_task = 0;
4694   uint n_tasks  = pst->n_tasks();
4695 
4696   if (n_tasks > 0) {
4697     assert(pst->valid(), "Uninitialized use?");
4698     HeapWord *start, *end;
4699     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4700       // We claimed task # nth_task; compute its boundaries.
4701       if (chunk_top == 0) {  // no samples were taken
4702         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4703         start = space->bottom();
4704         end   = space->top();
4705       } else if (nth_task == 0) {
4706         start = space->bottom();
4707         end   = chunk_array[nth_task];
4708       } else if (nth_task < (uint)chunk_top) {
4709         assert(nth_task >= 1, "Control point invariant");
4710         start = chunk_array[nth_task - 1];
4711         end   = chunk_array[nth_task];
4712       } else {
4713         assert(nth_task == (uint)chunk_top, "Control point invariant");
4714         start = chunk_array[chunk_top - 1];
4715         end   = space->top();
4716       }
4717       MemRegion mr(start, end);
4718       // Verify that mr is in space
4719       assert(mr.is_empty() || space->used_region().contains(mr),
4720              "Should be in space");
4721       // Verify that "start" is an object boundary
4722       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4723              "Should be an oop");
4724       space->par_oop_iterate(mr, cl);
4725     }
4726     pst->all_tasks_completed();
4727   }
4728 }
4729 
4730 void
4731 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4732   CompactibleFreeListSpace* sp, int i,
4733   Par_MarkRefsIntoAndScanClosure* cl) {
4734   // Until all tasks completed:
4735   // . claim an unclaimed task
4736   // . compute region boundaries corresponding to task claimed
4737   // . transfer dirty bits ct->mut for that region
4738   // . apply rescanclosure to dirty mut bits for that region
4739 
4740   ResourceMark rm;
4741   HandleMark   hm;
4742 
4743   OopTaskQueue* work_q = work_queue(i);
4744   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4745   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4746   // CAUTION: This closure has state that persists across calls to
4747   // the work method dirty_range_iterate_clear() in that it has
4748   // embedded in it a (subtype of) UpwardsObjectClosure. The
4749   // use of that state in the embedded UpwardsObjectClosure instance
4750   // assumes that the cards are always iterated (even if in parallel
4751   // by several threads) in monotonically increasing order per each
4752   // thread. This is true of the implementation below which picks
4753   // card ranges (chunks) in monotonically increasing order globally
4754   // and, a-fortiori, in monotonically increasing order per thread
4755   // (the latter order being a subsequence of the former).
4756   // If the work code below is ever reorganized into a more chaotic
4757   // work-partitioning form than the current "sequential tasks"
4758   // paradigm, the use of that persistent state will have to be
4759   // revisited and modified appropriately. See also related
4760   // bug 4756801 work on which should examine this code to make
4761   // sure that the changes there do not run counter to the
4762   // assumptions made here and necessary for correctness and
4763   // efficiency. Note also that this code might yield inefficient
4764   // behavior in the case of very large objects that span one or
4765   // more work chunks. Such objects would potentially be scanned
4766   // several times redundantly. Work on 4756801 should try and
4767   // address that performance anomaly if at all possible. XXX
4768   MemRegion  full_span  = _collector->_span;
4769   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4770   MarkFromDirtyCardsClosure
4771     greyRescanClosure(_collector, full_span, // entire span of interest
4772                       sp, bm, work_q, cl);
4773 
4774   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4775   assert(pst->valid(), "Uninitialized use?");
4776   uint nth_task = 0;
4777   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4778   MemRegion span = sp->used_region();
4779   HeapWord* start_addr = span.start();
4780   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4781                                            alignment);
4782   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4783   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4784          start_addr, "Check alignment");
4785   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4786          chunk_size, "Check alignment");
4787 
4788   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4789     // Having claimed the nth_task, compute corresponding mem-region,
4790     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4791     // The alignment restriction ensures that we do not need any
4792     // synchronization with other gang-workers while setting or
4793     // clearing bits in thus chunk of the MUT.
4794     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4795                                     start_addr + (nth_task+1)*chunk_size);
4796     // The last chunk's end might be way beyond end of the
4797     // used region. In that case pull back appropriately.
4798     if (this_span.end() > end_addr) {
4799       this_span.set_end(end_addr);
4800       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4801     }
4802     // Iterate over the dirty cards covering this chunk, marking them
4803     // precleaned, and setting the corresponding bits in the mod union
4804     // table. Since we have been careful to partition at Card and MUT-word
4805     // boundaries no synchronization is needed between parallel threads.
4806     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4807                                                  &modUnionClosure);
4808 
4809     // Having transferred these marks into the modUnionTable,
4810     // rescan the marked objects on the dirty cards in the modUnionTable.
4811     // Even if this is at a synchronous collection, the initial marking
4812     // may have been done during an asynchronous collection so there
4813     // may be dirty bits in the mod-union table.
4814     _collector->_modUnionTable.dirty_range_iterate_clear(
4815                   this_span, &greyRescanClosure);
4816     _collector->_modUnionTable.verifyNoOneBitsInRange(
4817                                  this_span.start(),
4818                                  this_span.end());
4819   }
4820   pst->all_tasks_completed();  // declare that i am done
4821 }
4822 
4823 // . see if we can share work_queues with ParNew? XXX
4824 void
4825 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4826                                 int* seed) {
4827   OopTaskQueue* work_q = work_queue(i);
4828   NOT_PRODUCT(int num_steals = 0;)
4829   oop obj_to_scan;
4830   CMSBitMap* bm = &(_collector->_markBitMap);
4831 
4832   while (true) {
4833     // Completely finish any left over work from (an) earlier round(s)
4834     cl->trim_queue(0);
4835     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4836                                          (size_t)ParGCDesiredObjsFromOverflowList);
4837     // Now check if there's any work in the overflow list
4838     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4839     // only affects the number of attempts made to get work from the
4840     // overflow list and does not affect the number of workers.  Just
4841     // pass ParallelGCThreads so this behavior is unchanged.
4842     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4843                                                 work_q,
4844                                                 ParallelGCThreads)) {
4845       // found something in global overflow list;
4846       // not yet ready to go stealing work from others.
4847       // We'd like to assert(work_q->size() != 0, ...)
4848       // because we just took work from the overflow list,
4849       // but of course we can't since all of that could have
4850       // been already stolen from us.
4851       // "He giveth and He taketh away."
4852       continue;
4853     }
4854     // Verify that we have no work before we resort to stealing
4855     assert(work_q->size() == 0, "Have work, shouldn't steal");
4856     // Try to steal from other queues that have work
4857     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4858       NOT_PRODUCT(num_steals++;)
4859       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4860       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4861       // Do scanning work
4862       obj_to_scan->oop_iterate(cl);
4863       // Loop around, finish this work, and try to steal some more
4864     } else if (terminator()->offer_termination()) {
4865         break;  // nirvana from the infinite cycle
4866     }
4867   }
4868   NOT_PRODUCT(
4869     if (PrintCMSStatistics != 0) {
4870       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4871     }
4872   )
4873   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4874          "Else our work is not yet done");
4875 }
4876 
4877 // Record object boundaries in _eden_chunk_array by sampling the eden
4878 // top in the slow-path eden object allocation code path and record
4879 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4880 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4881 // sampling in sample_eden() that activates during the part of the
4882 // preclean phase.
4883 void CMSCollector::sample_eden_chunk() {
4884   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4885     if (_eden_chunk_lock->try_lock()) {
4886       // Record a sample. This is the critical section. The contents
4887       // of the _eden_chunk_array have to be non-decreasing in the
4888       // address order.
4889       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4890       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4891              "Unexpected state of Eden");
4892       if (_eden_chunk_index == 0 ||
4893           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4894            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4895                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4896         _eden_chunk_index++;  // commit sample
4897       }
4898       _eden_chunk_lock->unlock();
4899     }
4900   }
4901 }
4902 
4903 // Return a thread-local PLAB recording array, as appropriate.
4904 void* CMSCollector::get_data_recorder(int thr_num) {
4905   if (_survivor_plab_array != NULL &&
4906       (CMSPLABRecordAlways ||
4907        (_collectorState > Marking && _collectorState < FinalMarking))) {
4908     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4909     ChunkArray* ca = &_survivor_plab_array[thr_num];
4910     ca->reset();   // clear it so that fresh data is recorded
4911     return (void*) ca;
4912   } else {
4913     return NULL;
4914   }
4915 }
4916 
4917 // Reset all the thread-local PLAB recording arrays
4918 void CMSCollector::reset_survivor_plab_arrays() {
4919   for (uint i = 0; i < ParallelGCThreads; i++) {
4920     _survivor_plab_array[i].reset();
4921   }
4922 }
4923 
4924 // Merge the per-thread plab arrays into the global survivor chunk
4925 // array which will provide the partitioning of the survivor space
4926 // for CMS initial scan and rescan.
4927 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4928                                               int no_of_gc_threads) {
4929   assert(_survivor_plab_array  != NULL, "Error");
4930   assert(_survivor_chunk_array != NULL, "Error");
4931   assert(_collectorState == FinalMarking ||
4932          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4933   for (int j = 0; j < no_of_gc_threads; j++) {
4934     _cursor[j] = 0;
4935   }
4936   HeapWord* top = surv->top();
4937   size_t i;
4938   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4939     HeapWord* min_val = top;          // Higher than any PLAB address
4940     uint      min_tid = 0;            // position of min_val this round
4941     for (int j = 0; j < no_of_gc_threads; j++) {
4942       ChunkArray* cur_sca = &_survivor_plab_array[j];
4943       if (_cursor[j] == cur_sca->end()) {
4944         continue;
4945       }
4946       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4947       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4948       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4949       if (cur_val < min_val) {
4950         min_tid = j;
4951         min_val = cur_val;
4952       } else {
4953         assert(cur_val < top, "All recorded addresses should be less");
4954       }
4955     }
4956     // At this point min_val and min_tid are respectively
4957     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4958     // and the thread (j) that witnesses that address.
4959     // We record this address in the _survivor_chunk_array[i]
4960     // and increment _cursor[min_tid] prior to the next round i.
4961     if (min_val == top) {
4962       break;
4963     }
4964     _survivor_chunk_array[i] = min_val;
4965     _cursor[min_tid]++;
4966   }
4967   // We are all done; record the size of the _survivor_chunk_array
4968   _survivor_chunk_index = i; // exclusive: [0, i)
4969   if (PrintCMSStatistics > 0) {
4970     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4971   }
4972   // Verify that we used up all the recorded entries
4973   #ifdef ASSERT
4974     size_t total = 0;
4975     for (int j = 0; j < no_of_gc_threads; j++) {
4976       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4977       total += _cursor[j];
4978     }
4979     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4980     // Check that the merged array is in sorted order
4981     if (total > 0) {
4982       for (size_t i = 0; i < total - 1; i++) {
4983         if (PrintCMSStatistics > 0) {
4984           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4985                               i, p2i(_survivor_chunk_array[i]));
4986         }
4987         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4988                "Not sorted");
4989       }
4990     }
4991   #endif // ASSERT
4992 }
4993 
4994 // Set up the space's par_seq_tasks structure for work claiming
4995 // for parallel initial scan and rescan of young gen.
4996 // See ParRescanTask where this is currently used.
4997 void
4998 CMSCollector::
4999 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5000   assert(n_threads > 0, "Unexpected n_threads argument");
5001 
5002   // Eden space
5003   if (!_young_gen->eden()->is_empty()) {
5004     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5005     assert(!pst->valid(), "Clobbering existing data?");
5006     // Each valid entry in [0, _eden_chunk_index) represents a task.
5007     size_t n_tasks = _eden_chunk_index + 1;
5008     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5009     // Sets the condition for completion of the subtask (how many threads
5010     // need to finish in order to be done).
5011     pst->set_n_threads(n_threads);
5012     pst->set_n_tasks((int)n_tasks);
5013   }
5014 
5015   // Merge the survivor plab arrays into _survivor_chunk_array
5016   if (_survivor_plab_array != NULL) {
5017     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5018   } else {
5019     assert(_survivor_chunk_index == 0, "Error");
5020   }
5021 
5022   // To space
5023   {
5024     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5025     assert(!pst->valid(), "Clobbering existing data?");
5026     // Sets the condition for completion of the subtask (how many threads
5027     // need to finish in order to be done).
5028     pst->set_n_threads(n_threads);
5029     pst->set_n_tasks(1);
5030     assert(pst->valid(), "Error");
5031   }
5032 
5033   // From space
5034   {
5035     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5036     assert(!pst->valid(), "Clobbering existing data?");
5037     size_t n_tasks = _survivor_chunk_index + 1;
5038     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5039     // Sets the condition for completion of the subtask (how many threads
5040     // need to finish in order to be done).
5041     pst->set_n_threads(n_threads);
5042     pst->set_n_tasks((int)n_tasks);
5043     assert(pst->valid(), "Error");
5044   }
5045 }
5046 
5047 // Parallel version of remark
5048 void CMSCollector::do_remark_parallel() {
5049   GenCollectedHeap* gch = GenCollectedHeap::heap();
5050   WorkGang* workers = gch->workers();
5051   assert(workers != NULL, "Need parallel worker threads.");
5052   // Choose to use the number of GC workers most recently set
5053   // into "active_workers".
5054   uint n_workers = workers->active_workers();
5055 
5056   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5057 
5058   StrongRootsScope srs(n_workers);
5059 
5060   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5061 
5062   // We won't be iterating over the cards in the card table updating
5063   // the younger_gen cards, so we shouldn't call the following else
5064   // the verification code as well as subsequent younger_refs_iterate
5065   // code would get confused. XXX
5066   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5067 
5068   // The young gen rescan work will not be done as part of
5069   // process_roots (which currently doesn't know how to
5070   // parallelize such a scan), but rather will be broken up into
5071   // a set of parallel tasks (via the sampling that the [abortable]
5072   // preclean phase did of eden, plus the [two] tasks of
5073   // scanning the [two] survivor spaces. Further fine-grain
5074   // parallelization of the scanning of the survivor spaces
5075   // themselves, and of precleaning of the young gen itself
5076   // is deferred to the future.
5077   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5078 
5079   // The dirty card rescan work is broken up into a "sequence"
5080   // of parallel tasks (per constituent space) that are dynamically
5081   // claimed by the parallel threads.
5082   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5083 
5084   // It turns out that even when we're using 1 thread, doing the work in a
5085   // separate thread causes wide variance in run times.  We can't help this
5086   // in the multi-threaded case, but we special-case n=1 here to get
5087   // repeatable measurements of the 1-thread overhead of the parallel code.
5088   if (n_workers > 1) {
5089     // Make refs discovery MT-safe, if it isn't already: it may not
5090     // necessarily be so, since it's possible that we are doing
5091     // ST marking.
5092     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5093     workers->run_task(&tsk);
5094   } else {
5095     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5096     tsk.work(0);
5097   }
5098 
5099   // restore, single-threaded for now, any preserved marks
5100   // as a result of work_q overflow
5101   restore_preserved_marks_if_any();
5102 }
5103 
5104 // Non-parallel version of remark
5105 void CMSCollector::do_remark_non_parallel() {
5106   ResourceMark rm;
5107   HandleMark   hm;
5108   GenCollectedHeap* gch = GenCollectedHeap::heap();
5109   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5110 
5111   MarkRefsIntoAndScanClosure
5112     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5113              &_markStack, this,
5114              false /* should_yield */, false /* not precleaning */);
5115   MarkFromDirtyCardsClosure
5116     markFromDirtyCardsClosure(this, _span,
5117                               NULL,  // space is set further below
5118                               &_markBitMap, &_markStack, &mrias_cl);
5119   {
5120     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5121     // Iterate over the dirty cards, setting the corresponding bits in the
5122     // mod union table.
5123     {
5124       ModUnionClosure modUnionClosure(&_modUnionTable);
5125       _ct->ct_bs()->dirty_card_iterate(
5126                       _cmsGen->used_region(),
5127                       &modUnionClosure);
5128     }
5129     // Having transferred these marks into the modUnionTable, we just need
5130     // to rescan the marked objects on the dirty cards in the modUnionTable.
5131     // The initial marking may have been done during an asynchronous
5132     // collection so there may be dirty bits in the mod-union table.
5133     const int alignment =
5134       CardTableModRefBS::card_size * BitsPerWord;
5135     {
5136       // ... First handle dirty cards in CMS gen
5137       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5138       MemRegion ur = _cmsGen->used_region();
5139       HeapWord* lb = ur.start();
5140       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5141       MemRegion cms_span(lb, ub);
5142       _modUnionTable.dirty_range_iterate_clear(cms_span,
5143                                                &markFromDirtyCardsClosure);
5144       verify_work_stacks_empty();
5145       if (PrintCMSStatistics != 0) {
5146         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5147           markFromDirtyCardsClosure.num_dirty_cards());
5148       }
5149     }
5150   }
5151   if (VerifyDuringGC &&
5152       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5153     HandleMark hm;  // Discard invalid handles created during verification
5154     Universe::verify();
5155   }
5156   {
5157     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5158 
5159     verify_work_stacks_empty();
5160 
5161     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5162     StrongRootsScope srs(1);
5163 
5164     gch->gen_process_roots(&srs,
5165                            GenCollectedHeap::OldGen,
5166                            true,  // young gen as roots
5167                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5168                            should_unload_classes(),
5169                            &mrias_cl,
5170                            NULL,
5171                            NULL); // The dirty klasses will be handled below
5172 
5173     assert(should_unload_classes()
5174            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5175            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5176   }
5177 
5178   {
5179     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5180 
5181     verify_work_stacks_empty();
5182 
5183     // Scan all class loader data objects that might have been introduced
5184     // during concurrent marking.
5185     ResourceMark rm;
5186     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5187     for (int i = 0; i < array->length(); i++) {
5188       mrias_cl.do_cld_nv(array->at(i));
5189     }
5190 
5191     // We don't need to keep track of new CLDs anymore.
5192     ClassLoaderDataGraph::remember_new_clds(false);
5193 
5194     verify_work_stacks_empty();
5195   }
5196 
5197   {
5198     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5199 
5200     verify_work_stacks_empty();
5201 
5202     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5203     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5204 
5205     verify_work_stacks_empty();
5206   }
5207 
5208   // We might have added oops to ClassLoaderData::_handles during the
5209   // concurrent marking phase. These oops point to newly allocated objects
5210   // that are guaranteed to be kept alive. Either by the direct allocation
5211   // code, or when the young collector processes the roots. Hence,
5212   // we don't have to revisit the _handles block during the remark phase.
5213 
5214   verify_work_stacks_empty();
5215   // Restore evacuated mark words, if any, used for overflow list links
5216   if (!CMSOverflowEarlyRestoration) {
5217     restore_preserved_marks_if_any();
5218   }
5219   verify_overflow_empty();
5220 }
5221 
5222 ////////////////////////////////////////////////////////
5223 // Parallel Reference Processing Task Proxy Class
5224 ////////////////////////////////////////////////////////
5225 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5226   OopTaskQueueSet*       _queues;
5227   ParallelTaskTerminator _terminator;
5228  public:
5229   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5230     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5231   ParallelTaskTerminator* terminator() { return &_terminator; }
5232   OopTaskQueueSet* queues() { return _queues; }
5233 };
5234 
5235 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5236   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5237   CMSCollector*          _collector;
5238   CMSBitMap*             _mark_bit_map;
5239   const MemRegion        _span;
5240   ProcessTask&           _task;
5241 
5242 public:
5243   CMSRefProcTaskProxy(ProcessTask&     task,
5244                       CMSCollector*    collector,
5245                       const MemRegion& span,
5246                       CMSBitMap*       mark_bit_map,
5247                       AbstractWorkGang* workers,
5248                       OopTaskQueueSet* task_queues):
5249     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5250       task_queues,
5251       workers->active_workers()),
5252     _task(task),
5253     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5254   {
5255     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5256            "Inconsistency in _span");
5257   }
5258 
5259   OopTaskQueueSet* task_queues() { return queues(); }
5260 
5261   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5262 
5263   void do_work_steal(int i,
5264                      CMSParDrainMarkingStackClosure* drain,
5265                      CMSParKeepAliveClosure* keep_alive,
5266                      int* seed);
5267 
5268   virtual void work(uint worker_id);
5269 };
5270 
5271 void CMSRefProcTaskProxy::work(uint worker_id) {
5272   ResourceMark rm;
5273   HandleMark hm;
5274   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5275   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5276                                         _mark_bit_map,
5277                                         work_queue(worker_id));
5278   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5279                                                  _mark_bit_map,
5280                                                  work_queue(worker_id));
5281   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5282   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5283   if (_task.marks_oops_alive()) {
5284     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5285                   _collector->hash_seed(worker_id));
5286   }
5287   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5288   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5289 }
5290 
5291 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5292   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5293   EnqueueTask& _task;
5294 
5295 public:
5296   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5297     : AbstractGangTask("Enqueue reference objects in parallel"),
5298       _task(task)
5299   { }
5300 
5301   virtual void work(uint worker_id)
5302   {
5303     _task.work(worker_id);
5304   }
5305 };
5306 
5307 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5308   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5309    _span(span),
5310    _bit_map(bit_map),
5311    _work_queue(work_queue),
5312    _mark_and_push(collector, span, bit_map, work_queue),
5313    _low_water_mark(MIN2((work_queue->max_elems()/4),
5314                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5315 { }
5316 
5317 // . see if we can share work_queues with ParNew? XXX
5318 void CMSRefProcTaskProxy::do_work_steal(int i,
5319   CMSParDrainMarkingStackClosure* drain,
5320   CMSParKeepAliveClosure* keep_alive,
5321   int* seed) {
5322   OopTaskQueue* work_q = work_queue(i);
5323   NOT_PRODUCT(int num_steals = 0;)
5324   oop obj_to_scan;
5325 
5326   while (true) {
5327     // Completely finish any left over work from (an) earlier round(s)
5328     drain->trim_queue(0);
5329     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5330                                          (size_t)ParGCDesiredObjsFromOverflowList);
5331     // Now check if there's any work in the overflow list
5332     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5333     // only affects the number of attempts made to get work from the
5334     // overflow list and does not affect the number of workers.  Just
5335     // pass ParallelGCThreads so this behavior is unchanged.
5336     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5337                                                 work_q,
5338                                                 ParallelGCThreads)) {
5339       // Found something in global overflow list;
5340       // not yet ready to go stealing work from others.
5341       // We'd like to assert(work_q->size() != 0, ...)
5342       // because we just took work from the overflow list,
5343       // but of course we can't, since all of that might have
5344       // been already stolen from us.
5345       continue;
5346     }
5347     // Verify that we have no work before we resort to stealing
5348     assert(work_q->size() == 0, "Have work, shouldn't steal");
5349     // Try to steal from other queues that have work
5350     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5351       NOT_PRODUCT(num_steals++;)
5352       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5353       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5354       // Do scanning work
5355       obj_to_scan->oop_iterate(keep_alive);
5356       // Loop around, finish this work, and try to steal some more
5357     } else if (terminator()->offer_termination()) {
5358       break;  // nirvana from the infinite cycle
5359     }
5360   }
5361   NOT_PRODUCT(
5362     if (PrintCMSStatistics != 0) {
5363       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5364     }
5365   )
5366 }
5367 
5368 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5369 {
5370   GenCollectedHeap* gch = GenCollectedHeap::heap();
5371   WorkGang* workers = gch->workers();
5372   assert(workers != NULL, "Need parallel worker threads.");
5373   CMSRefProcTaskProxy rp_task(task, &_collector,
5374                               _collector.ref_processor()->span(),
5375                               _collector.markBitMap(),
5376                               workers, _collector.task_queues());
5377   workers->run_task(&rp_task);
5378 }
5379 
5380 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5381 {
5382 
5383   GenCollectedHeap* gch = GenCollectedHeap::heap();
5384   WorkGang* workers = gch->workers();
5385   assert(workers != NULL, "Need parallel worker threads.");
5386   CMSRefEnqueueTaskProxy enq_task(task);
5387   workers->run_task(&enq_task);
5388 }
5389 
5390 void CMSCollector::refProcessingWork() {
5391   ResourceMark rm;
5392   HandleMark   hm;
5393 
5394   ReferenceProcessor* rp = ref_processor();
5395   assert(rp->span().equals(_span), "Spans should be equal");
5396   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5397   // Process weak references.
5398   rp->setup_policy(false);
5399   verify_work_stacks_empty();
5400 
5401   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5402                                           &_markStack, false /* !preclean */);
5403   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5404                                 _span, &_markBitMap, &_markStack,
5405                                 &cmsKeepAliveClosure, false /* !preclean */);
5406   {
5407     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5408 
5409     ReferenceProcessorStats stats;
5410     if (rp->processing_is_mt()) {
5411       // Set the degree of MT here.  If the discovery is done MT, there
5412       // may have been a different number of threads doing the discovery
5413       // and a different number of discovered lists may have Ref objects.
5414       // That is OK as long as the Reference lists are balanced (see
5415       // balance_all_queues() and balance_queues()).
5416       GenCollectedHeap* gch = GenCollectedHeap::heap();
5417       uint active_workers = ParallelGCThreads;
5418       WorkGang* workers = gch->workers();
5419       if (workers != NULL) {
5420         active_workers = workers->active_workers();
5421         // The expectation is that active_workers will have already
5422         // been set to a reasonable value.  If it has not been set,
5423         // investigate.
5424         assert(active_workers > 0, "Should have been set during scavenge");
5425       }
5426       rp->set_active_mt_degree(active_workers);
5427       CMSRefProcTaskExecutor task_executor(*this);
5428       stats = rp->process_discovered_references(&_is_alive_closure,
5429                                         &cmsKeepAliveClosure,
5430                                         &cmsDrainMarkingStackClosure,
5431                                         &task_executor,
5432                                         _gc_timer_cm,
5433                                         _gc_tracer_cm->gc_id());
5434     } else {
5435       stats = rp->process_discovered_references(&_is_alive_closure,
5436                                         &cmsKeepAliveClosure,
5437                                         &cmsDrainMarkingStackClosure,
5438                                         NULL,
5439                                         _gc_timer_cm,
5440                                         _gc_tracer_cm->gc_id());
5441     }
5442     _gc_tracer_cm->report_gc_reference_stats(stats);
5443 
5444   }
5445 
5446   // This is the point where the entire marking should have completed.
5447   verify_work_stacks_empty();
5448 
5449   if (should_unload_classes()) {
5450     {
5451       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5452 
5453       // Unload classes and purge the SystemDictionary.
5454       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5455 
5456       // Unload nmethods.
5457       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5458 
5459       // Prune dead klasses from subklass/sibling/implementor lists.
5460       Klass::clean_weak_klass_links(&_is_alive_closure);
5461     }
5462 
5463     {
5464       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5465       // Clean up unreferenced symbols in symbol table.
5466       SymbolTable::unlink();
5467     }
5468 
5469     {
5470       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5471       // Delete entries for dead interned strings.
5472       StringTable::unlink(&_is_alive_closure);
5473     }
5474   }
5475 
5476 
5477   // Restore any preserved marks as a result of mark stack or
5478   // work queue overflow
5479   restore_preserved_marks_if_any();  // done single-threaded for now
5480 
5481   rp->set_enqueuing_is_done(true);
5482   if (rp->processing_is_mt()) {
5483     rp->balance_all_queues();
5484     CMSRefProcTaskExecutor task_executor(*this);
5485     rp->enqueue_discovered_references(&task_executor);
5486   } else {
5487     rp->enqueue_discovered_references(NULL);
5488   }
5489   rp->verify_no_references_recorded();
5490   assert(!rp->discovery_enabled(), "should have been disabled");
5491 }
5492 
5493 #ifndef PRODUCT
5494 void CMSCollector::check_correct_thread_executing() {
5495   Thread* t = Thread::current();
5496   // Only the VM thread or the CMS thread should be here.
5497   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5498          "Unexpected thread type");
5499   // If this is the vm thread, the foreground process
5500   // should not be waiting.  Note that _foregroundGCIsActive is
5501   // true while the foreground collector is waiting.
5502   if (_foregroundGCShouldWait) {
5503     // We cannot be the VM thread
5504     assert(t->is_ConcurrentGC_thread(),
5505            "Should be CMS thread");
5506   } else {
5507     // We can be the CMS thread only if we are in a stop-world
5508     // phase of CMS collection.
5509     if (t->is_ConcurrentGC_thread()) {
5510       assert(_collectorState == InitialMarking ||
5511              _collectorState == FinalMarking,
5512              "Should be a stop-world phase");
5513       // The CMS thread should be holding the CMS_token.
5514       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5515              "Potential interference with concurrently "
5516              "executing VM thread");
5517     }
5518   }
5519 }
5520 #endif
5521 
5522 void CMSCollector::sweep() {
5523   assert(_collectorState == Sweeping, "just checking");
5524   check_correct_thread_executing();
5525   verify_work_stacks_empty();
5526   verify_overflow_empty();
5527   increment_sweep_count();
5528   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5529 
5530   _inter_sweep_timer.stop();
5531   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5532 
5533   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5534   _intra_sweep_timer.reset();
5535   _intra_sweep_timer.start();
5536   {
5537     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5538     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5539     // First sweep the old gen
5540     {
5541       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5542                                bitMapLock());
5543       sweepWork(_cmsGen);
5544     }
5545 
5546     // Update Universe::_heap_*_at_gc figures.
5547     // We need all the free list locks to make the abstract state
5548     // transition from Sweeping to Resetting. See detailed note
5549     // further below.
5550     {
5551       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5552       // Update heap occupancy information which is used as
5553       // input to soft ref clearing policy at the next gc.
5554       Universe::update_heap_info_at_gc();
5555       _collectorState = Resizing;
5556     }
5557   }
5558   verify_work_stacks_empty();
5559   verify_overflow_empty();
5560 
5561   if (should_unload_classes()) {
5562     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5563     // requires that the virtual spaces are stable and not deleted.
5564     ClassLoaderDataGraph::set_should_purge(true);
5565   }
5566 
5567   _intra_sweep_timer.stop();
5568   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5569 
5570   _inter_sweep_timer.reset();
5571   _inter_sweep_timer.start();
5572 
5573   // We need to use a monotonically non-decreasing time in ms
5574   // or we will see time-warp warnings and os::javaTimeMillis()
5575   // does not guarantee monotonicity.
5576   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5577   update_time_of_last_gc(now);
5578 
5579   // NOTE on abstract state transitions:
5580   // Mutators allocate-live and/or mark the mod-union table dirty
5581   // based on the state of the collection.  The former is done in
5582   // the interval [Marking, Sweeping] and the latter in the interval
5583   // [Marking, Sweeping).  Thus the transitions into the Marking state
5584   // and out of the Sweeping state must be synchronously visible
5585   // globally to the mutators.
5586   // The transition into the Marking state happens with the world
5587   // stopped so the mutators will globally see it.  Sweeping is
5588   // done asynchronously by the background collector so the transition
5589   // from the Sweeping state to the Resizing state must be done
5590   // under the freelistLock (as is the check for whether to
5591   // allocate-live and whether to dirty the mod-union table).
5592   assert(_collectorState == Resizing, "Change of collector state to"
5593     " Resizing must be done under the freelistLocks (plural)");
5594 
5595   // Now that sweeping has been completed, we clear
5596   // the incremental_collection_failed flag,
5597   // thus inviting a younger gen collection to promote into
5598   // this generation. If such a promotion may still fail,
5599   // the flag will be set again when a young collection is
5600   // attempted.
5601   GenCollectedHeap* gch = GenCollectedHeap::heap();
5602   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5603   gch->update_full_collections_completed(_collection_count_start);
5604 }
5605 
5606 // FIX ME!!! Looks like this belongs in CFLSpace, with
5607 // CMSGen merely delegating to it.
5608 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5609   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5610   HeapWord*  minAddr        = _cmsSpace->bottom();
5611   HeapWord*  largestAddr    =
5612     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5613   if (largestAddr == NULL) {
5614     // The dictionary appears to be empty.  In this case
5615     // try to coalesce at the end of the heap.
5616     largestAddr = _cmsSpace->end();
5617   }
5618   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5619   size_t nearLargestOffset =
5620     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5621   if (PrintFLSStatistics != 0) {
5622     gclog_or_tty->print_cr(
5623       "CMS: Large Block: " PTR_FORMAT ";"
5624       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5625       p2i(largestAddr),
5626       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5627   }
5628   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5629 }
5630 
5631 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5632   return addr >= _cmsSpace->nearLargestChunk();
5633 }
5634 
5635 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5636   return _cmsSpace->find_chunk_at_end();
5637 }
5638 
5639 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5640                                                     bool full) {
5641   // If the young generation has been collected, gather any statistics
5642   // that are of interest at this point.
5643   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5644   if (!full && current_is_young) {
5645     // Gather statistics on the young generation collection.
5646     collector()->stats().record_gc0_end(used());
5647   }
5648 }
5649 
5650 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5651   // We iterate over the space(s) underlying this generation,
5652   // checking the mark bit map to see if the bits corresponding
5653   // to specific blocks are marked or not. Blocks that are
5654   // marked are live and are not swept up. All remaining blocks
5655   // are swept up, with coalescing on-the-fly as we sweep up
5656   // contiguous free and/or garbage blocks:
5657   // We need to ensure that the sweeper synchronizes with allocators
5658   // and stop-the-world collectors. In particular, the following
5659   // locks are used:
5660   // . CMS token: if this is held, a stop the world collection cannot occur
5661   // . freelistLock: if this is held no allocation can occur from this
5662   //                 generation by another thread
5663   // . bitMapLock: if this is held, no other thread can access or update
5664   //
5665 
5666   // Note that we need to hold the freelistLock if we use
5667   // block iterate below; else the iterator might go awry if
5668   // a mutator (or promotion) causes block contents to change
5669   // (for instance if the allocator divvies up a block).
5670   // If we hold the free list lock, for all practical purposes
5671   // young generation GC's can't occur (they'll usually need to
5672   // promote), so we might as well prevent all young generation
5673   // GC's while we do a sweeping step. For the same reason, we might
5674   // as well take the bit map lock for the entire duration
5675 
5676   // check that we hold the requisite locks
5677   assert(have_cms_token(), "Should hold cms token");
5678   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5679   assert_lock_strong(old_gen->freelistLock());
5680   assert_lock_strong(bitMapLock());
5681 
5682   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5683   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5684   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5685                                           _inter_sweep_estimate.padded_average(),
5686                                           _intra_sweep_estimate.padded_average());
5687   old_gen->setNearLargestChunk();
5688 
5689   {
5690     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5691     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5692     // We need to free-up/coalesce garbage/blocks from a
5693     // co-terminal free run. This is done in the SweepClosure
5694     // destructor; so, do not remove this scope, else the
5695     // end-of-sweep-census below will be off by a little bit.
5696   }
5697   old_gen->cmsSpace()->sweep_completed();
5698   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5699   if (should_unload_classes()) {                // unloaded classes this cycle,
5700     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5701   } else {                                      // did not unload classes,
5702     _concurrent_cycles_since_last_unload++;     // ... increment count
5703   }
5704 }
5705 
5706 // Reset CMS data structures (for now just the marking bit map)
5707 // preparatory for the next cycle.
5708 void CMSCollector::reset(bool concurrent) {
5709   if (concurrent) {
5710     CMSTokenSyncWithLocks ts(true, bitMapLock());
5711 
5712     // If the state is not "Resetting", the foreground  thread
5713     // has done a collection and the resetting.
5714     if (_collectorState != Resetting) {
5715       assert(_collectorState == Idling, "The state should only change"
5716         " because the foreground collector has finished the collection");
5717       return;
5718     }
5719 
5720     // Clear the mark bitmap (no grey objects to start with)
5721     // for the next cycle.
5722     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5723     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5724 
5725     HeapWord* curAddr = _markBitMap.startWord();
5726     while (curAddr < _markBitMap.endWord()) {
5727       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5728       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5729       _markBitMap.clear_large_range(chunk);
5730       if (ConcurrentMarkSweepThread::should_yield() &&
5731           !foregroundGCIsActive() &&
5732           CMSYield) {
5733         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5734                "CMS thread should hold CMS token");
5735         assert_lock_strong(bitMapLock());
5736         bitMapLock()->unlock();
5737         ConcurrentMarkSweepThread::desynchronize(true);
5738         stopTimer();
5739         if (PrintCMSStatistics != 0) {
5740           incrementYields();
5741         }
5742 
5743         // See the comment in coordinator_yield()
5744         for (unsigned i = 0; i < CMSYieldSleepCount &&
5745                          ConcurrentMarkSweepThread::should_yield() &&
5746                          !CMSCollector::foregroundGCIsActive(); ++i) {
5747           os::sleep(Thread::current(), 1, false);
5748         }
5749 
5750         ConcurrentMarkSweepThread::synchronize(true);
5751         bitMapLock()->lock_without_safepoint_check();
5752         startTimer();
5753       }
5754       curAddr = chunk.end();
5755     }
5756     // A successful mostly concurrent collection has been done.
5757     // Because only the full (i.e., concurrent mode failure) collections
5758     // are being measured for gc overhead limits, clean the "near" flag
5759     // and count.
5760     size_policy()->reset_gc_overhead_limit_count();
5761     _collectorState = Idling;
5762   } else {
5763     // already have the lock
5764     assert(_collectorState == Resetting, "just checking");
5765     assert_lock_strong(bitMapLock());
5766     _markBitMap.clear_all();
5767     _collectorState = Idling;
5768   }
5769 
5770   register_gc_end();
5771 }
5772 
5773 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5774   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5775   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5776   TraceCollectorStats tcs(counters());
5777 
5778   switch (op) {
5779     case CMS_op_checkpointRootsInitial: {
5780       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5781       checkpointRootsInitial();
5782       if (PrintGC) {
5783         _cmsGen->printOccupancy("initial-mark");
5784       }
5785       break;
5786     }
5787     case CMS_op_checkpointRootsFinal: {
5788       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5789       checkpointRootsFinal();
5790       if (PrintGC) {
5791         _cmsGen->printOccupancy("remark");
5792       }
5793       break;
5794     }
5795     default:
5796       fatal("No such CMS_op");
5797   }
5798 }
5799 
5800 #ifndef PRODUCT
5801 size_t const CMSCollector::skip_header_HeapWords() {
5802   return FreeChunk::header_size();
5803 }
5804 
5805 // Try and collect here conditions that should hold when
5806 // CMS thread is exiting. The idea is that the foreground GC
5807 // thread should not be blocked if it wants to terminate
5808 // the CMS thread and yet continue to run the VM for a while
5809 // after that.
5810 void CMSCollector::verify_ok_to_terminate() const {
5811   assert(Thread::current()->is_ConcurrentGC_thread(),
5812          "should be called by CMS thread");
5813   assert(!_foregroundGCShouldWait, "should be false");
5814   // We could check here that all the various low-level locks
5815   // are not held by the CMS thread, but that is overkill; see
5816   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5817   // is checked.
5818 }
5819 #endif
5820 
5821 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5822    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5823           "missing Printezis mark?");
5824   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5825   size_t size = pointer_delta(nextOneAddr + 1, addr);
5826   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5827          "alignment problem");
5828   assert(size >= 3, "Necessary for Printezis marks to work");
5829   return size;
5830 }
5831 
5832 // A variant of the above (block_size_using_printezis_bits()) except
5833 // that we return 0 if the P-bits are not yet set.
5834 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5835   if (_markBitMap.isMarked(addr + 1)) {
5836     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5837     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5838     size_t size = pointer_delta(nextOneAddr + 1, addr);
5839     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5840            "alignment problem");
5841     assert(size >= 3, "Necessary for Printezis marks to work");
5842     return size;
5843   }
5844   return 0;
5845 }
5846 
5847 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5848   size_t sz = 0;
5849   oop p = (oop)addr;
5850   if (p->klass_or_null() != NULL) {
5851     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5852   } else {
5853     sz = block_size_using_printezis_bits(addr);
5854   }
5855   assert(sz > 0, "size must be nonzero");
5856   HeapWord* next_block = addr + sz;
5857   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5858                                              CardTableModRefBS::card_size);
5859   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5860          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5861          "must be different cards");
5862   return next_card;
5863 }
5864 
5865 
5866 // CMS Bit Map Wrapper /////////////////////////////////////////
5867 
5868 // Construct a CMS bit map infrastructure, but don't create the
5869 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5870 // further below.
5871 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5872   _bm(),
5873   _shifter(shifter),
5874   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5875                                     Monitor::_safepoint_check_sometimes) : NULL)
5876 {
5877   _bmStartWord = 0;
5878   _bmWordSize  = 0;
5879 }
5880 
5881 bool CMSBitMap::allocate(MemRegion mr) {
5882   _bmStartWord = mr.start();
5883   _bmWordSize  = mr.word_size();
5884   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5885                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5886   if (!brs.is_reserved()) {
5887     warning("CMS bit map allocation failure");
5888     return false;
5889   }
5890   // For now we'll just commit all of the bit map up front.
5891   // Later on we'll try to be more parsimonious with swap.
5892   if (!_virtual_space.initialize(brs, brs.size())) {
5893     warning("CMS bit map backing store failure");
5894     return false;
5895   }
5896   assert(_virtual_space.committed_size() == brs.size(),
5897          "didn't reserve backing store for all of CMS bit map?");
5898   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5899   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5900          _bmWordSize, "inconsistency in bit map sizing");
5901   _bm.set_size(_bmWordSize >> _shifter);
5902 
5903   // bm.clear(); // can we rely on getting zero'd memory? verify below
5904   assert(isAllClear(),
5905          "Expected zero'd memory from ReservedSpace constructor");
5906   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5907          "consistency check");
5908   return true;
5909 }
5910 
5911 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5912   HeapWord *next_addr, *end_addr, *last_addr;
5913   assert_locked();
5914   assert(covers(mr), "out-of-range error");
5915   // XXX assert that start and end are appropriately aligned
5916   for (next_addr = mr.start(), end_addr = mr.end();
5917        next_addr < end_addr; next_addr = last_addr) {
5918     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5919     last_addr = dirty_region.end();
5920     if (!dirty_region.is_empty()) {
5921       cl->do_MemRegion(dirty_region);
5922     } else {
5923       assert(last_addr == end_addr, "program logic");
5924       return;
5925     }
5926   }
5927 }
5928 
5929 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5930   _bm.print_on_error(st, prefix);
5931 }
5932 
5933 #ifndef PRODUCT
5934 void CMSBitMap::assert_locked() const {
5935   CMSLockVerifier::assert_locked(lock());
5936 }
5937 
5938 bool CMSBitMap::covers(MemRegion mr) const {
5939   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5940   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5941          "size inconsistency");
5942   return (mr.start() >= _bmStartWord) &&
5943          (mr.end()   <= endWord());
5944 }
5945 
5946 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5947     return (start >= _bmStartWord && (start + size) <= endWord());
5948 }
5949 
5950 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5951   // verify that there are no 1 bits in the interval [left, right)
5952   FalseBitMapClosure falseBitMapClosure;
5953   iterate(&falseBitMapClosure, left, right);
5954 }
5955 
5956 void CMSBitMap::region_invariant(MemRegion mr)
5957 {
5958   assert_locked();
5959   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5960   assert(!mr.is_empty(), "unexpected empty region");
5961   assert(covers(mr), "mr should be covered by bit map");
5962   // convert address range into offset range
5963   size_t start_ofs = heapWordToOffset(mr.start());
5964   // Make sure that end() is appropriately aligned
5965   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5966                         (1 << (_shifter+LogHeapWordSize))),
5967          "Misaligned mr.end()");
5968   size_t end_ofs   = heapWordToOffset(mr.end());
5969   assert(end_ofs > start_ofs, "Should mark at least one bit");
5970 }
5971 
5972 #endif
5973 
5974 bool CMSMarkStack::allocate(size_t size) {
5975   // allocate a stack of the requisite depth
5976   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5977                    size * sizeof(oop)));
5978   if (!rs.is_reserved()) {
5979     warning("CMSMarkStack allocation failure");
5980     return false;
5981   }
5982   if (!_virtual_space.initialize(rs, rs.size())) {
5983     warning("CMSMarkStack backing store failure");
5984     return false;
5985   }
5986   assert(_virtual_space.committed_size() == rs.size(),
5987          "didn't reserve backing store for all of CMS stack?");
5988   _base = (oop*)(_virtual_space.low());
5989   _index = 0;
5990   _capacity = size;
5991   NOT_PRODUCT(_max_depth = 0);
5992   return true;
5993 }
5994 
5995 // XXX FIX ME !!! In the MT case we come in here holding a
5996 // leaf lock. For printing we need to take a further lock
5997 // which has lower rank. We need to recalibrate the two
5998 // lock-ranks involved in order to be able to print the
5999 // messages below. (Or defer the printing to the caller.
6000 // For now we take the expedient path of just disabling the
6001 // messages for the problematic case.)
6002 void CMSMarkStack::expand() {
6003   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6004   if (_capacity == MarkStackSizeMax) {
6005     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6006       // We print a warning message only once per CMS cycle.
6007       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6008     }
6009     return;
6010   }
6011   // Double capacity if possible
6012   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6013   // Do not give up existing stack until we have managed to
6014   // get the double capacity that we desired.
6015   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6016                    new_capacity * sizeof(oop)));
6017   if (rs.is_reserved()) {
6018     // Release the backing store associated with old stack
6019     _virtual_space.release();
6020     // Reinitialize virtual space for new stack
6021     if (!_virtual_space.initialize(rs, rs.size())) {
6022       fatal("Not enough swap for expanded marking stack");
6023     }
6024     _base = (oop*)(_virtual_space.low());
6025     _index = 0;
6026     _capacity = new_capacity;
6027   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6028     // Failed to double capacity, continue;
6029     // we print a detail message only once per CMS cycle.
6030     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6031             SIZE_FORMAT "K",
6032             _capacity / K, new_capacity / K);
6033   }
6034 }
6035 
6036 
6037 // Closures
6038 // XXX: there seems to be a lot of code  duplication here;
6039 // should refactor and consolidate common code.
6040 
6041 // This closure is used to mark refs into the CMS generation in
6042 // the CMS bit map. Called at the first checkpoint. This closure
6043 // assumes that we do not need to re-mark dirty cards; if the CMS
6044 // generation on which this is used is not an oldest
6045 // generation then this will lose younger_gen cards!
6046 
6047 MarkRefsIntoClosure::MarkRefsIntoClosure(
6048   MemRegion span, CMSBitMap* bitMap):
6049     _span(span),
6050     _bitMap(bitMap)
6051 {
6052     assert(_ref_processor == NULL, "deliberately left NULL");
6053     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6054 }
6055 
6056 void MarkRefsIntoClosure::do_oop(oop obj) {
6057   // if p points into _span, then mark corresponding bit in _markBitMap
6058   assert(obj->is_oop(), "expected an oop");
6059   HeapWord* addr = (HeapWord*)obj;
6060   if (_span.contains(addr)) {
6061     // this should be made more efficient
6062     _bitMap->mark(addr);
6063   }
6064 }
6065 
6066 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6067 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6068 
6069 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6070   MemRegion span, CMSBitMap* bitMap):
6071     _span(span),
6072     _bitMap(bitMap)
6073 {
6074     assert(_ref_processor == NULL, "deliberately left NULL");
6075     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6076 }
6077 
6078 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6079   // if p points into _span, then mark corresponding bit in _markBitMap
6080   assert(obj->is_oop(), "expected an oop");
6081   HeapWord* addr = (HeapWord*)obj;
6082   if (_span.contains(addr)) {
6083     // this should be made more efficient
6084     _bitMap->par_mark(addr);
6085   }
6086 }
6087 
6088 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6089 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6090 
6091 // A variant of the above, used for CMS marking verification.
6092 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6093   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6094     _span(span),
6095     _verification_bm(verification_bm),
6096     _cms_bm(cms_bm)
6097 {
6098     assert(_ref_processor == NULL, "deliberately left NULL");
6099     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6100 }
6101 
6102 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6103   // if p points into _span, then mark corresponding bit in _markBitMap
6104   assert(obj->is_oop(), "expected an oop");
6105   HeapWord* addr = (HeapWord*)obj;
6106   if (_span.contains(addr)) {
6107     _verification_bm->mark(addr);
6108     if (!_cms_bm->isMarked(addr)) {
6109       oop(addr)->print();
6110       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6111       fatal("... aborting");
6112     }
6113   }
6114 }
6115 
6116 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6117 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6118 
6119 //////////////////////////////////////////////////
6120 // MarkRefsIntoAndScanClosure
6121 //////////////////////////////////////////////////
6122 
6123 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6124                                                        ReferenceProcessor* rp,
6125                                                        CMSBitMap* bit_map,
6126                                                        CMSBitMap* mod_union_table,
6127                                                        CMSMarkStack*  mark_stack,
6128                                                        CMSCollector* collector,
6129                                                        bool should_yield,
6130                                                        bool concurrent_precleaning):
6131   _collector(collector),
6132   _span(span),
6133   _bit_map(bit_map),
6134   _mark_stack(mark_stack),
6135   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6136                       mark_stack, concurrent_precleaning),
6137   _yield(should_yield),
6138   _concurrent_precleaning(concurrent_precleaning),
6139   _freelistLock(NULL)
6140 {
6141   _ref_processor = rp;
6142   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6143 }
6144 
6145 // This closure is used to mark refs into the CMS generation at the
6146 // second (final) checkpoint, and to scan and transitively follow
6147 // the unmarked oops. It is also used during the concurrent precleaning
6148 // phase while scanning objects on dirty cards in the CMS generation.
6149 // The marks are made in the marking bit map and the marking stack is
6150 // used for keeping the (newly) grey objects during the scan.
6151 // The parallel version (Par_...) appears further below.
6152 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6153   if (obj != NULL) {
6154     assert(obj->is_oop(), "expected an oop");
6155     HeapWord* addr = (HeapWord*)obj;
6156     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6157     assert(_collector->overflow_list_is_empty(),
6158            "overflow list should be empty");
6159     if (_span.contains(addr) &&
6160         !_bit_map->isMarked(addr)) {
6161       // mark bit map (object is now grey)
6162       _bit_map->mark(addr);
6163       // push on marking stack (stack should be empty), and drain the
6164       // stack by applying this closure to the oops in the oops popped
6165       // from the stack (i.e. blacken the grey objects)
6166       bool res = _mark_stack->push(obj);
6167       assert(res, "Should have space to push on empty stack");
6168       do {
6169         oop new_oop = _mark_stack->pop();
6170         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6171         assert(_bit_map->isMarked((HeapWord*)new_oop),
6172                "only grey objects on this stack");
6173         // iterate over the oops in this oop, marking and pushing
6174         // the ones in CMS heap (i.e. in _span).
6175         new_oop->oop_iterate(&_pushAndMarkClosure);
6176         // check if it's time to yield
6177         do_yield_check();
6178       } while (!_mark_stack->isEmpty() ||
6179                (!_concurrent_precleaning && take_from_overflow_list()));
6180         // if marking stack is empty, and we are not doing this
6181         // during precleaning, then check the overflow list
6182     }
6183     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6184     assert(_collector->overflow_list_is_empty(),
6185            "overflow list was drained above");
6186     // We could restore evacuated mark words, if any, used for
6187     // overflow list links here because the overflow list is
6188     // provably empty here. That would reduce the maximum
6189     // size requirements for preserved_{oop,mark}_stack.
6190     // But we'll just postpone it until we are all done
6191     // so we can just stream through.
6192     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6193       _collector->restore_preserved_marks_if_any();
6194       assert(_collector->no_preserved_marks(), "No preserved marks");
6195     }
6196     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6197            "All preserved marks should have been restored above");
6198   }
6199 }
6200 
6201 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6202 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6203 
6204 void MarkRefsIntoAndScanClosure::do_yield_work() {
6205   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6206          "CMS thread should hold CMS token");
6207   assert_lock_strong(_freelistLock);
6208   assert_lock_strong(_bit_map->lock());
6209   // relinquish the free_list_lock and bitMaplock()
6210   _bit_map->lock()->unlock();
6211   _freelistLock->unlock();
6212   ConcurrentMarkSweepThread::desynchronize(true);
6213   _collector->stopTimer();
6214   if (PrintCMSStatistics != 0) {
6215     _collector->incrementYields();
6216   }
6217 
6218   // See the comment in coordinator_yield()
6219   for (unsigned i = 0;
6220        i < CMSYieldSleepCount &&
6221        ConcurrentMarkSweepThread::should_yield() &&
6222        !CMSCollector::foregroundGCIsActive();
6223        ++i) {
6224     os::sleep(Thread::current(), 1, false);
6225   }
6226 
6227   ConcurrentMarkSweepThread::synchronize(true);
6228   _freelistLock->lock_without_safepoint_check();
6229   _bit_map->lock()->lock_without_safepoint_check();
6230   _collector->startTimer();
6231 }
6232 
6233 ///////////////////////////////////////////////////////////
6234 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6235 //                                 MarkRefsIntoAndScanClosure
6236 ///////////////////////////////////////////////////////////
6237 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6238   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6239   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6240   _span(span),
6241   _bit_map(bit_map),
6242   _work_queue(work_queue),
6243   _low_water_mark(MIN2((work_queue->max_elems()/4),
6244                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6245   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6246 {
6247   _ref_processor = rp;
6248   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6249 }
6250 
6251 // This closure is used to mark refs into the CMS generation at the
6252 // second (final) checkpoint, and to scan and transitively follow
6253 // the unmarked oops. The marks are made in the marking bit map and
6254 // the work_queue is used for keeping the (newly) grey objects during
6255 // the scan phase whence they are also available for stealing by parallel
6256 // threads. Since the marking bit map is shared, updates are
6257 // synchronized (via CAS).
6258 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6259   if (obj != NULL) {
6260     // Ignore mark word because this could be an already marked oop
6261     // that may be chained at the end of the overflow list.
6262     assert(obj->is_oop(true), "expected an oop");
6263     HeapWord* addr = (HeapWord*)obj;
6264     if (_span.contains(addr) &&
6265         !_bit_map->isMarked(addr)) {
6266       // mark bit map (object will become grey):
6267       // It is possible for several threads to be
6268       // trying to "claim" this object concurrently;
6269       // the unique thread that succeeds in marking the
6270       // object first will do the subsequent push on
6271       // to the work queue (or overflow list).
6272       if (_bit_map->par_mark(addr)) {
6273         // push on work_queue (which may not be empty), and trim the
6274         // queue to an appropriate length by applying this closure to
6275         // the oops in the oops popped from the stack (i.e. blacken the
6276         // grey objects)
6277         bool res = _work_queue->push(obj);
6278         assert(res, "Low water mark should be less than capacity?");
6279         trim_queue(_low_water_mark);
6280       } // Else, another thread claimed the object
6281     }
6282   }
6283 }
6284 
6285 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6286 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6287 
6288 // This closure is used to rescan the marked objects on the dirty cards
6289 // in the mod union table and the card table proper.
6290 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6291   oop p, MemRegion mr) {
6292 
6293   size_t size = 0;
6294   HeapWord* addr = (HeapWord*)p;
6295   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6296   assert(_span.contains(addr), "we are scanning the CMS generation");
6297   // check if it's time to yield
6298   if (do_yield_check()) {
6299     // We yielded for some foreground stop-world work,
6300     // and we have been asked to abort this ongoing preclean cycle.
6301     return 0;
6302   }
6303   if (_bitMap->isMarked(addr)) {
6304     // it's marked; is it potentially uninitialized?
6305     if (p->klass_or_null() != NULL) {
6306         // an initialized object; ignore mark word in verification below
6307         // since we are running concurrent with mutators
6308         assert(p->is_oop(true), "should be an oop");
6309         if (p->is_objArray()) {
6310           // objArrays are precisely marked; restrict scanning
6311           // to dirty cards only.
6312           size = CompactibleFreeListSpace::adjustObjectSize(
6313                    p->oop_iterate_size(_scanningClosure, mr));
6314         } else {
6315           // A non-array may have been imprecisely marked; we need
6316           // to scan object in its entirety.
6317           size = CompactibleFreeListSpace::adjustObjectSize(
6318                    p->oop_iterate_size(_scanningClosure));
6319         }
6320         #ifdef ASSERT
6321           size_t direct_size =
6322             CompactibleFreeListSpace::adjustObjectSize(p->size());
6323           assert(size == direct_size, "Inconsistency in size");
6324           assert(size >= 3, "Necessary for Printezis marks to work");
6325           if (!_bitMap->isMarked(addr+1)) {
6326             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6327           } else {
6328             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6329             assert(_bitMap->isMarked(addr+size-1),
6330                    "inconsistent Printezis mark");
6331           }
6332         #endif // ASSERT
6333     } else {
6334       // An uninitialized object.
6335       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6336       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6337       size = pointer_delta(nextOneAddr + 1, addr);
6338       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6339              "alignment problem");
6340       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6341       // will dirty the card when the klass pointer is installed in the
6342       // object (signaling the completion of initialization).
6343     }
6344   } else {
6345     // Either a not yet marked object or an uninitialized object
6346     if (p->klass_or_null() == NULL) {
6347       // An uninitialized object, skip to the next card, since
6348       // we may not be able to read its P-bits yet.
6349       assert(size == 0, "Initial value");
6350     } else {
6351       // An object not (yet) reached by marking: we merely need to
6352       // compute its size so as to go look at the next block.
6353       assert(p->is_oop(true), "should be an oop");
6354       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6355     }
6356   }
6357   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6358   return size;
6359 }
6360 
6361 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6362   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6363          "CMS thread should hold CMS token");
6364   assert_lock_strong(_freelistLock);
6365   assert_lock_strong(_bitMap->lock());
6366   // relinquish the free_list_lock and bitMaplock()
6367   _bitMap->lock()->unlock();
6368   _freelistLock->unlock();
6369   ConcurrentMarkSweepThread::desynchronize(true);
6370   _collector->stopTimer();
6371   if (PrintCMSStatistics != 0) {
6372     _collector->incrementYields();
6373   }
6374 
6375   // See the comment in coordinator_yield()
6376   for (unsigned i = 0; i < CMSYieldSleepCount &&
6377                    ConcurrentMarkSweepThread::should_yield() &&
6378                    !CMSCollector::foregroundGCIsActive(); ++i) {
6379     os::sleep(Thread::current(), 1, false);
6380   }
6381 
6382   ConcurrentMarkSweepThread::synchronize(true);
6383   _freelistLock->lock_without_safepoint_check();
6384   _bitMap->lock()->lock_without_safepoint_check();
6385   _collector->startTimer();
6386 }
6387 
6388 
6389 //////////////////////////////////////////////////////////////////
6390 // SurvivorSpacePrecleanClosure
6391 //////////////////////////////////////////////////////////////////
6392 // This (single-threaded) closure is used to preclean the oops in
6393 // the survivor spaces.
6394 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6395 
6396   HeapWord* addr = (HeapWord*)p;
6397   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6398   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6399   assert(p->klass_or_null() != NULL, "object should be initialized");
6400   // an initialized object; ignore mark word in verification below
6401   // since we are running concurrent with mutators
6402   assert(p->is_oop(true), "should be an oop");
6403   // Note that we do not yield while we iterate over
6404   // the interior oops of p, pushing the relevant ones
6405   // on our marking stack.
6406   size_t size = p->oop_iterate_size(_scanning_closure);
6407   do_yield_check();
6408   // Observe that below, we do not abandon the preclean
6409   // phase as soon as we should; rather we empty the
6410   // marking stack before returning. This is to satisfy
6411   // some existing assertions. In general, it may be a
6412   // good idea to abort immediately and complete the marking
6413   // from the grey objects at a later time.
6414   while (!_mark_stack->isEmpty()) {
6415     oop new_oop = _mark_stack->pop();
6416     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6417     assert(_bit_map->isMarked((HeapWord*)new_oop),
6418            "only grey objects on this stack");
6419     // iterate over the oops in this oop, marking and pushing
6420     // the ones in CMS heap (i.e. in _span).
6421     new_oop->oop_iterate(_scanning_closure);
6422     // check if it's time to yield
6423     do_yield_check();
6424   }
6425   unsigned int after_count =
6426     GenCollectedHeap::heap()->total_collections();
6427   bool abort = (_before_count != after_count) ||
6428                _collector->should_abort_preclean();
6429   return abort ? 0 : size;
6430 }
6431 
6432 void SurvivorSpacePrecleanClosure::do_yield_work() {
6433   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6434          "CMS thread should hold CMS token");
6435   assert_lock_strong(_bit_map->lock());
6436   // Relinquish the bit map lock
6437   _bit_map->lock()->unlock();
6438   ConcurrentMarkSweepThread::desynchronize(true);
6439   _collector->stopTimer();
6440   if (PrintCMSStatistics != 0) {
6441     _collector->incrementYields();
6442   }
6443 
6444   // See the comment in coordinator_yield()
6445   for (unsigned i = 0; i < CMSYieldSleepCount &&
6446                        ConcurrentMarkSweepThread::should_yield() &&
6447                        !CMSCollector::foregroundGCIsActive(); ++i) {
6448     os::sleep(Thread::current(), 1, false);
6449   }
6450 
6451   ConcurrentMarkSweepThread::synchronize(true);
6452   _bit_map->lock()->lock_without_safepoint_check();
6453   _collector->startTimer();
6454 }
6455 
6456 // This closure is used to rescan the marked objects on the dirty cards
6457 // in the mod union table and the card table proper. In the parallel
6458 // case, although the bitMap is shared, we do a single read so the
6459 // isMarked() query is "safe".
6460 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6461   // Ignore mark word because we are running concurrent with mutators
6462   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6463   HeapWord* addr = (HeapWord*)p;
6464   assert(_span.contains(addr), "we are scanning the CMS generation");
6465   bool is_obj_array = false;
6466   #ifdef ASSERT
6467     if (!_parallel) {
6468       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6469       assert(_collector->overflow_list_is_empty(),
6470              "overflow list should be empty");
6471 
6472     }
6473   #endif // ASSERT
6474   if (_bit_map->isMarked(addr)) {
6475     // Obj arrays are precisely marked, non-arrays are not;
6476     // so we scan objArrays precisely and non-arrays in their
6477     // entirety.
6478     if (p->is_objArray()) {
6479       is_obj_array = true;
6480       if (_parallel) {
6481         p->oop_iterate(_par_scan_closure, mr);
6482       } else {
6483         p->oop_iterate(_scan_closure, mr);
6484       }
6485     } else {
6486       if (_parallel) {
6487         p->oop_iterate(_par_scan_closure);
6488       } else {
6489         p->oop_iterate(_scan_closure);
6490       }
6491     }
6492   }
6493   #ifdef ASSERT
6494     if (!_parallel) {
6495       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6496       assert(_collector->overflow_list_is_empty(),
6497              "overflow list should be empty");
6498 
6499     }
6500   #endif // ASSERT
6501   return is_obj_array;
6502 }
6503 
6504 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6505                         MemRegion span,
6506                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6507                         bool should_yield, bool verifying):
6508   _collector(collector),
6509   _span(span),
6510   _bitMap(bitMap),
6511   _mut(&collector->_modUnionTable),
6512   _markStack(markStack),
6513   _yield(should_yield),
6514   _skipBits(0)
6515 {
6516   assert(_markStack->isEmpty(), "stack should be empty");
6517   _finger = _bitMap->startWord();
6518   _threshold = _finger;
6519   assert(_collector->_restart_addr == NULL, "Sanity check");
6520   assert(_span.contains(_finger), "Out of bounds _finger?");
6521   DEBUG_ONLY(_verifying = verifying;)
6522 }
6523 
6524 void MarkFromRootsClosure::reset(HeapWord* addr) {
6525   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6526   assert(_span.contains(addr), "Out of bounds _finger?");
6527   _finger = addr;
6528   _threshold = (HeapWord*)round_to(
6529                  (intptr_t)_finger, CardTableModRefBS::card_size);
6530 }
6531 
6532 // Should revisit to see if this should be restructured for
6533 // greater efficiency.
6534 bool MarkFromRootsClosure::do_bit(size_t offset) {
6535   if (_skipBits > 0) {
6536     _skipBits--;
6537     return true;
6538   }
6539   // convert offset into a HeapWord*
6540   HeapWord* addr = _bitMap->startWord() + offset;
6541   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6542          "address out of range");
6543   assert(_bitMap->isMarked(addr), "tautology");
6544   if (_bitMap->isMarked(addr+1)) {
6545     // this is an allocated but not yet initialized object
6546     assert(_skipBits == 0, "tautology");
6547     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6548     oop p = oop(addr);
6549     if (p->klass_or_null() == NULL) {
6550       DEBUG_ONLY(if (!_verifying) {)
6551         // We re-dirty the cards on which this object lies and increase
6552         // the _threshold so that we'll come back to scan this object
6553         // during the preclean or remark phase. (CMSCleanOnEnter)
6554         if (CMSCleanOnEnter) {
6555           size_t sz = _collector->block_size_using_printezis_bits(addr);
6556           HeapWord* end_card_addr   = (HeapWord*)round_to(
6557                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6558           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6559           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6560           // Bump _threshold to end_card_addr; note that
6561           // _threshold cannot possibly exceed end_card_addr, anyhow.
6562           // This prevents future clearing of the card as the scan proceeds
6563           // to the right.
6564           assert(_threshold <= end_card_addr,
6565                  "Because we are just scanning into this object");
6566           if (_threshold < end_card_addr) {
6567             _threshold = end_card_addr;
6568           }
6569           if (p->klass_or_null() != NULL) {
6570             // Redirty the range of cards...
6571             _mut->mark_range(redirty_range);
6572           } // ...else the setting of klass will dirty the card anyway.
6573         }
6574       DEBUG_ONLY(})
6575       return true;
6576     }
6577   }
6578   scanOopsInOop(addr);
6579   return true;
6580 }
6581 
6582 // We take a break if we've been at this for a while,
6583 // so as to avoid monopolizing the locks involved.
6584 void MarkFromRootsClosure::do_yield_work() {
6585   // First give up the locks, then yield, then re-lock
6586   // We should probably use a constructor/destructor idiom to
6587   // do this unlock/lock or modify the MutexUnlocker class to
6588   // serve our purpose. XXX
6589   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6590          "CMS thread should hold CMS token");
6591   assert_lock_strong(_bitMap->lock());
6592   _bitMap->lock()->unlock();
6593   ConcurrentMarkSweepThread::desynchronize(true);
6594   _collector->stopTimer();
6595   if (PrintCMSStatistics != 0) {
6596     _collector->incrementYields();
6597   }
6598 
6599   // See the comment in coordinator_yield()
6600   for (unsigned i = 0; i < CMSYieldSleepCount &&
6601                        ConcurrentMarkSweepThread::should_yield() &&
6602                        !CMSCollector::foregroundGCIsActive(); ++i) {
6603     os::sleep(Thread::current(), 1, false);
6604   }
6605 
6606   ConcurrentMarkSweepThread::synchronize(true);
6607   _bitMap->lock()->lock_without_safepoint_check();
6608   _collector->startTimer();
6609 }
6610 
6611 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6612   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6613   assert(_markStack->isEmpty(),
6614          "should drain stack to limit stack usage");
6615   // convert ptr to an oop preparatory to scanning
6616   oop obj = oop(ptr);
6617   // Ignore mark word in verification below, since we
6618   // may be running concurrent with mutators.
6619   assert(obj->is_oop(true), "should be an oop");
6620   assert(_finger <= ptr, "_finger runneth ahead");
6621   // advance the finger to right end of this object
6622   _finger = ptr + obj->size();
6623   assert(_finger > ptr, "we just incremented it above");
6624   // On large heaps, it may take us some time to get through
6625   // the marking phase. During
6626   // this time it's possible that a lot of mutations have
6627   // accumulated in the card table and the mod union table --
6628   // these mutation records are redundant until we have
6629   // actually traced into the corresponding card.
6630   // Here, we check whether advancing the finger would make
6631   // us cross into a new card, and if so clear corresponding
6632   // cards in the MUT (preclean them in the card-table in the
6633   // future).
6634 
6635   DEBUG_ONLY(if (!_verifying) {)
6636     // The clean-on-enter optimization is disabled by default,
6637     // until we fix 6178663.
6638     if (CMSCleanOnEnter && (_finger > _threshold)) {
6639       // [_threshold, _finger) represents the interval
6640       // of cards to be cleared  in MUT (or precleaned in card table).
6641       // The set of cards to be cleared is all those that overlap
6642       // with the interval [_threshold, _finger); note that
6643       // _threshold is always kept card-aligned but _finger isn't
6644       // always card-aligned.
6645       HeapWord* old_threshold = _threshold;
6646       assert(old_threshold == (HeapWord*)round_to(
6647               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6648              "_threshold should always be card-aligned");
6649       _threshold = (HeapWord*)round_to(
6650                      (intptr_t)_finger, CardTableModRefBS::card_size);
6651       MemRegion mr(old_threshold, _threshold);
6652       assert(!mr.is_empty(), "Control point invariant");
6653       assert(_span.contains(mr), "Should clear within span");
6654       _mut->clear_range(mr);
6655     }
6656   DEBUG_ONLY(})
6657   // Note: the finger doesn't advance while we drain
6658   // the stack below.
6659   PushOrMarkClosure pushOrMarkClosure(_collector,
6660                                       _span, _bitMap, _markStack,
6661                                       _finger, this);
6662   bool res = _markStack->push(obj);
6663   assert(res, "Empty non-zero size stack should have space for single push");
6664   while (!_markStack->isEmpty()) {
6665     oop new_oop = _markStack->pop();
6666     // Skip verifying header mark word below because we are
6667     // running concurrent with mutators.
6668     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6669     // now scan this oop's oops
6670     new_oop->oop_iterate(&pushOrMarkClosure);
6671     do_yield_check();
6672   }
6673   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6674 }
6675 
6676 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6677                        CMSCollector* collector, MemRegion span,
6678                        CMSBitMap* bit_map,
6679                        OopTaskQueue* work_queue,
6680                        CMSMarkStack*  overflow_stack):
6681   _collector(collector),
6682   _whole_span(collector->_span),
6683   _span(span),
6684   _bit_map(bit_map),
6685   _mut(&collector->_modUnionTable),
6686   _work_queue(work_queue),
6687   _overflow_stack(overflow_stack),
6688   _skip_bits(0),
6689   _task(task)
6690 {
6691   assert(_work_queue->size() == 0, "work_queue should be empty");
6692   _finger = span.start();
6693   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6694   assert(_span.contains(_finger), "Out of bounds _finger?");
6695 }
6696 
6697 // Should revisit to see if this should be restructured for
6698 // greater efficiency.
6699 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6700   if (_skip_bits > 0) {
6701     _skip_bits--;
6702     return true;
6703   }
6704   // convert offset into a HeapWord*
6705   HeapWord* addr = _bit_map->startWord() + offset;
6706   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6707          "address out of range");
6708   assert(_bit_map->isMarked(addr), "tautology");
6709   if (_bit_map->isMarked(addr+1)) {
6710     // this is an allocated object that might not yet be initialized
6711     assert(_skip_bits == 0, "tautology");
6712     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6713     oop p = oop(addr);
6714     if (p->klass_or_null() == NULL) {
6715       // in the case of Clean-on-Enter optimization, redirty card
6716       // and avoid clearing card by increasing  the threshold.
6717       return true;
6718     }
6719   }
6720   scan_oops_in_oop(addr);
6721   return true;
6722 }
6723 
6724 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6725   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6726   // Should we assert that our work queue is empty or
6727   // below some drain limit?
6728   assert(_work_queue->size() == 0,
6729          "should drain stack to limit stack usage");
6730   // convert ptr to an oop preparatory to scanning
6731   oop obj = oop(ptr);
6732   // Ignore mark word in verification below, since we
6733   // may be running concurrent with mutators.
6734   assert(obj->is_oop(true), "should be an oop");
6735   assert(_finger <= ptr, "_finger runneth ahead");
6736   // advance the finger to right end of this object
6737   _finger = ptr + obj->size();
6738   assert(_finger > ptr, "we just incremented it above");
6739   // On large heaps, it may take us some time to get through
6740   // the marking phase. During
6741   // this time it's possible that a lot of mutations have
6742   // accumulated in the card table and the mod union table --
6743   // these mutation records are redundant until we have
6744   // actually traced into the corresponding card.
6745   // Here, we check whether advancing the finger would make
6746   // us cross into a new card, and if so clear corresponding
6747   // cards in the MUT (preclean them in the card-table in the
6748   // future).
6749 
6750   // The clean-on-enter optimization is disabled by default,
6751   // until we fix 6178663.
6752   if (CMSCleanOnEnter && (_finger > _threshold)) {
6753     // [_threshold, _finger) represents the interval
6754     // of cards to be cleared  in MUT (or precleaned in card table).
6755     // The set of cards to be cleared is all those that overlap
6756     // with the interval [_threshold, _finger); note that
6757     // _threshold is always kept card-aligned but _finger isn't
6758     // always card-aligned.
6759     HeapWord* old_threshold = _threshold;
6760     assert(old_threshold == (HeapWord*)round_to(
6761             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6762            "_threshold should always be card-aligned");
6763     _threshold = (HeapWord*)round_to(
6764                    (intptr_t)_finger, CardTableModRefBS::card_size);
6765     MemRegion mr(old_threshold, _threshold);
6766     assert(!mr.is_empty(), "Control point invariant");
6767     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6768     _mut->clear_range(mr);
6769   }
6770 
6771   // Note: the local finger doesn't advance while we drain
6772   // the stack below, but the global finger sure can and will.
6773   HeapWord** gfa = _task->global_finger_addr();
6774   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6775                                       _span, _bit_map,
6776                                       _work_queue,
6777                                       _overflow_stack,
6778                                       _finger,
6779                                       gfa, this);
6780   bool res = _work_queue->push(obj);   // overflow could occur here
6781   assert(res, "Will hold once we use workqueues");
6782   while (true) {
6783     oop new_oop;
6784     if (!_work_queue->pop_local(new_oop)) {
6785       // We emptied our work_queue; check if there's stuff that can
6786       // be gotten from the overflow stack.
6787       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6788             _overflow_stack, _work_queue)) {
6789         do_yield_check();
6790         continue;
6791       } else {  // done
6792         break;
6793       }
6794     }
6795     // Skip verifying header mark word below because we are
6796     // running concurrent with mutators.
6797     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6798     // now scan this oop's oops
6799     new_oop->oop_iterate(&pushOrMarkClosure);
6800     do_yield_check();
6801   }
6802   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6803 }
6804 
6805 // Yield in response to a request from VM Thread or
6806 // from mutators.
6807 void Par_MarkFromRootsClosure::do_yield_work() {
6808   assert(_task != NULL, "sanity");
6809   _task->yield();
6810 }
6811 
6812 // A variant of the above used for verifying CMS marking work.
6813 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6814                         MemRegion span,
6815                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6816                         CMSMarkStack*  mark_stack):
6817   _collector(collector),
6818   _span(span),
6819   _verification_bm(verification_bm),
6820   _cms_bm(cms_bm),
6821   _mark_stack(mark_stack),
6822   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6823                       mark_stack)
6824 {
6825   assert(_mark_stack->isEmpty(), "stack should be empty");
6826   _finger = _verification_bm->startWord();
6827   assert(_collector->_restart_addr == NULL, "Sanity check");
6828   assert(_span.contains(_finger), "Out of bounds _finger?");
6829 }
6830 
6831 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6832   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6833   assert(_span.contains(addr), "Out of bounds _finger?");
6834   _finger = addr;
6835 }
6836 
6837 // Should revisit to see if this should be restructured for
6838 // greater efficiency.
6839 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6840   // convert offset into a HeapWord*
6841   HeapWord* addr = _verification_bm->startWord() + offset;
6842   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6843          "address out of range");
6844   assert(_verification_bm->isMarked(addr), "tautology");
6845   assert(_cms_bm->isMarked(addr), "tautology");
6846 
6847   assert(_mark_stack->isEmpty(),
6848          "should drain stack to limit stack usage");
6849   // convert addr to an oop preparatory to scanning
6850   oop obj = oop(addr);
6851   assert(obj->is_oop(), "should be an oop");
6852   assert(_finger <= addr, "_finger runneth ahead");
6853   // advance the finger to right end of this object
6854   _finger = addr + obj->size();
6855   assert(_finger > addr, "we just incremented it above");
6856   // Note: the finger doesn't advance while we drain
6857   // the stack below.
6858   bool res = _mark_stack->push(obj);
6859   assert(res, "Empty non-zero size stack should have space for single push");
6860   while (!_mark_stack->isEmpty()) {
6861     oop new_oop = _mark_stack->pop();
6862     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6863     // now scan this oop's oops
6864     new_oop->oop_iterate(&_pam_verify_closure);
6865   }
6866   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6867   return true;
6868 }
6869 
6870 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6871   CMSCollector* collector, MemRegion span,
6872   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6873   CMSMarkStack*  mark_stack):
6874   MetadataAwareOopClosure(collector->ref_processor()),
6875   _collector(collector),
6876   _span(span),
6877   _verification_bm(verification_bm),
6878   _cms_bm(cms_bm),
6879   _mark_stack(mark_stack)
6880 { }
6881 
6882 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6883 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6884 
6885 // Upon stack overflow, we discard (part of) the stack,
6886 // remembering the least address amongst those discarded
6887 // in CMSCollector's _restart_address.
6888 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6889   // Remember the least grey address discarded
6890   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6891   _collector->lower_restart_addr(ra);
6892   _mark_stack->reset();  // discard stack contents
6893   _mark_stack->expand(); // expand the stack if possible
6894 }
6895 
6896 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6897   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6898   HeapWord* addr = (HeapWord*)obj;
6899   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6900     // Oop lies in _span and isn't yet grey or black
6901     _verification_bm->mark(addr);            // now grey
6902     if (!_cms_bm->isMarked(addr)) {
6903       oop(addr)->print();
6904       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6905                              p2i(addr));
6906       fatal("... aborting");
6907     }
6908 
6909     if (!_mark_stack->push(obj)) { // stack overflow
6910       if (PrintCMSStatistics != 0) {
6911         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6912                                SIZE_FORMAT, _mark_stack->capacity());
6913       }
6914       assert(_mark_stack->isFull(), "Else push should have succeeded");
6915       handle_stack_overflow(addr);
6916     }
6917     // anything including and to the right of _finger
6918     // will be scanned as we iterate over the remainder of the
6919     // bit map
6920   }
6921 }
6922 
6923 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6924                      MemRegion span,
6925                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6926                      HeapWord* finger, MarkFromRootsClosure* parent) :
6927   MetadataAwareOopClosure(collector->ref_processor()),
6928   _collector(collector),
6929   _span(span),
6930   _bitMap(bitMap),
6931   _markStack(markStack),
6932   _finger(finger),
6933   _parent(parent)
6934 { }
6935 
6936 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6937                      MemRegion span,
6938                      CMSBitMap* bit_map,
6939                      OopTaskQueue* work_queue,
6940                      CMSMarkStack*  overflow_stack,
6941                      HeapWord* finger,
6942                      HeapWord** global_finger_addr,
6943                      Par_MarkFromRootsClosure* parent) :
6944   MetadataAwareOopClosure(collector->ref_processor()),
6945   _collector(collector),
6946   _whole_span(collector->_span),
6947   _span(span),
6948   _bit_map(bit_map),
6949   _work_queue(work_queue),
6950   _overflow_stack(overflow_stack),
6951   _finger(finger),
6952   _global_finger_addr(global_finger_addr),
6953   _parent(parent)
6954 { }
6955 
6956 // Assumes thread-safe access by callers, who are
6957 // responsible for mutual exclusion.
6958 void CMSCollector::lower_restart_addr(HeapWord* low) {
6959   assert(_span.contains(low), "Out of bounds addr");
6960   if (_restart_addr == NULL) {
6961     _restart_addr = low;
6962   } else {
6963     _restart_addr = MIN2(_restart_addr, low);
6964   }
6965 }
6966 
6967 // Upon stack overflow, we discard (part of) the stack,
6968 // remembering the least address amongst those discarded
6969 // in CMSCollector's _restart_address.
6970 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6971   // Remember the least grey address discarded
6972   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6973   _collector->lower_restart_addr(ra);
6974   _markStack->reset();  // discard stack contents
6975   _markStack->expand(); // expand the stack if possible
6976 }
6977 
6978 // Upon stack overflow, we discard (part of) the stack,
6979 // remembering the least address amongst those discarded
6980 // in CMSCollector's _restart_address.
6981 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6982   // We need to do this under a mutex to prevent other
6983   // workers from interfering with the work done below.
6984   MutexLockerEx ml(_overflow_stack->par_lock(),
6985                    Mutex::_no_safepoint_check_flag);
6986   // Remember the least grey address discarded
6987   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6988   _collector->lower_restart_addr(ra);
6989   _overflow_stack->reset();  // discard stack contents
6990   _overflow_stack->expand(); // expand the stack if possible
6991 }
6992 
6993 void PushOrMarkClosure::do_oop(oop obj) {
6994   // Ignore mark word because we are running concurrent with mutators.
6995   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6996   HeapWord* addr = (HeapWord*)obj;
6997   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6998     // Oop lies in _span and isn't yet grey or black
6999     _bitMap->mark(addr);            // now grey
7000     if (addr < _finger) {
7001       // the bit map iteration has already either passed, or
7002       // sampled, this bit in the bit map; we'll need to
7003       // use the marking stack to scan this oop's oops.
7004       bool simulate_overflow = false;
7005       NOT_PRODUCT(
7006         if (CMSMarkStackOverflowALot &&
7007             _collector->simulate_overflow()) {
7008           // simulate a stack overflow
7009           simulate_overflow = true;
7010         }
7011       )
7012       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7013         if (PrintCMSStatistics != 0) {
7014           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7015                                  SIZE_FORMAT, _markStack->capacity());
7016         }
7017         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7018         handle_stack_overflow(addr);
7019       }
7020     }
7021     // anything including and to the right of _finger
7022     // will be scanned as we iterate over the remainder of the
7023     // bit map
7024     do_yield_check();
7025   }
7026 }
7027 
7028 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7029 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7030 
7031 void Par_PushOrMarkClosure::do_oop(oop obj) {
7032   // Ignore mark word because we are running concurrent with mutators.
7033   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7034   HeapWord* addr = (HeapWord*)obj;
7035   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7036     // Oop lies in _span and isn't yet grey or black
7037     // We read the global_finger (volatile read) strictly after marking oop
7038     bool res = _bit_map->par_mark(addr);    // now grey
7039     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7040     // Should we push this marked oop on our stack?
7041     // -- if someone else marked it, nothing to do
7042     // -- if target oop is above global finger nothing to do
7043     // -- if target oop is in chunk and above local finger
7044     //      then nothing to do
7045     // -- else push on work queue
7046     if (   !res       // someone else marked it, they will deal with it
7047         || (addr >= *gfa)  // will be scanned in a later task
7048         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7049       return;
7050     }
7051     // the bit map iteration has already either passed, or
7052     // sampled, this bit in the bit map; we'll need to
7053     // use the marking stack to scan this oop's oops.
7054     bool simulate_overflow = false;
7055     NOT_PRODUCT(
7056       if (CMSMarkStackOverflowALot &&
7057           _collector->simulate_overflow()) {
7058         // simulate a stack overflow
7059         simulate_overflow = true;
7060       }
7061     )
7062     if (simulate_overflow ||
7063         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7064       // stack overflow
7065       if (PrintCMSStatistics != 0) {
7066         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7067                                SIZE_FORMAT, _overflow_stack->capacity());
7068       }
7069       // We cannot assert that the overflow stack is full because
7070       // it may have been emptied since.
7071       assert(simulate_overflow ||
7072              _work_queue->size() == _work_queue->max_elems(),
7073             "Else push should have succeeded");
7074       handle_stack_overflow(addr);
7075     }
7076     do_yield_check();
7077   }
7078 }
7079 
7080 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7081 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7082 
7083 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7084                                        MemRegion span,
7085                                        ReferenceProcessor* rp,
7086                                        CMSBitMap* bit_map,
7087                                        CMSBitMap* mod_union_table,
7088                                        CMSMarkStack*  mark_stack,
7089                                        bool           concurrent_precleaning):
7090   MetadataAwareOopClosure(rp),
7091   _collector(collector),
7092   _span(span),
7093   _bit_map(bit_map),
7094   _mod_union_table(mod_union_table),
7095   _mark_stack(mark_stack),
7096   _concurrent_precleaning(concurrent_precleaning)
7097 {
7098   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7099 }
7100 
7101 // Grey object rescan during pre-cleaning and second checkpoint phases --
7102 // the non-parallel version (the parallel version appears further below.)
7103 void PushAndMarkClosure::do_oop(oop obj) {
7104   // Ignore mark word verification. If during concurrent precleaning,
7105   // the object monitor may be locked. If during the checkpoint
7106   // phases, the object may already have been reached by a  different
7107   // path and may be at the end of the global overflow list (so
7108   // the mark word may be NULL).
7109   assert(obj->is_oop_or_null(true /* ignore mark word */),
7110          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7111   HeapWord* addr = (HeapWord*)obj;
7112   // Check if oop points into the CMS generation
7113   // and is not marked
7114   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7115     // a white object ...
7116     _bit_map->mark(addr);         // ... now grey
7117     // push on the marking stack (grey set)
7118     bool simulate_overflow = false;
7119     NOT_PRODUCT(
7120       if (CMSMarkStackOverflowALot &&
7121           _collector->simulate_overflow()) {
7122         // simulate a stack overflow
7123         simulate_overflow = true;
7124       }
7125     )
7126     if (simulate_overflow || !_mark_stack->push(obj)) {
7127       if (_concurrent_precleaning) {
7128          // During precleaning we can just dirty the appropriate card(s)
7129          // in the mod union table, thus ensuring that the object remains
7130          // in the grey set  and continue. In the case of object arrays
7131          // we need to dirty all of the cards that the object spans,
7132          // since the rescan of object arrays will be limited to the
7133          // dirty cards.
7134          // Note that no one can be interfering with us in this action
7135          // of dirtying the mod union table, so no locking or atomics
7136          // are required.
7137          if (obj->is_objArray()) {
7138            size_t sz = obj->size();
7139            HeapWord* end_card_addr = (HeapWord*)round_to(
7140                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7141            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7142            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7143            _mod_union_table->mark_range(redirty_range);
7144          } else {
7145            _mod_union_table->mark(addr);
7146          }
7147          _collector->_ser_pmc_preclean_ovflw++;
7148       } else {
7149          // During the remark phase, we need to remember this oop
7150          // in the overflow list.
7151          _collector->push_on_overflow_list(obj);
7152          _collector->_ser_pmc_remark_ovflw++;
7153       }
7154     }
7155   }
7156 }
7157 
7158 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7159                                                MemRegion span,
7160                                                ReferenceProcessor* rp,
7161                                                CMSBitMap* bit_map,
7162                                                OopTaskQueue* work_queue):
7163   MetadataAwareOopClosure(rp),
7164   _collector(collector),
7165   _span(span),
7166   _bit_map(bit_map),
7167   _work_queue(work_queue)
7168 {
7169   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7170 }
7171 
7172 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7173 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7174 
7175 // Grey object rescan during second checkpoint phase --
7176 // the parallel version.
7177 void Par_PushAndMarkClosure::do_oop(oop obj) {
7178   // In the assert below, we ignore the mark word because
7179   // this oop may point to an already visited object that is
7180   // on the overflow stack (in which case the mark word has
7181   // been hijacked for chaining into the overflow stack --
7182   // if this is the last object in the overflow stack then
7183   // its mark word will be NULL). Because this object may
7184   // have been subsequently popped off the global overflow
7185   // stack, and the mark word possibly restored to the prototypical
7186   // value, by the time we get to examined this failing assert in
7187   // the debugger, is_oop_or_null(false) may subsequently start
7188   // to hold.
7189   assert(obj->is_oop_or_null(true),
7190          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7191   HeapWord* addr = (HeapWord*)obj;
7192   // Check if oop points into the CMS generation
7193   // and is not marked
7194   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7195     // a white object ...
7196     // If we manage to "claim" the object, by being the
7197     // first thread to mark it, then we push it on our
7198     // marking stack
7199     if (_bit_map->par_mark(addr)) {     // ... now grey
7200       // push on work queue (grey set)
7201       bool simulate_overflow = false;
7202       NOT_PRODUCT(
7203         if (CMSMarkStackOverflowALot &&
7204             _collector->par_simulate_overflow()) {
7205           // simulate a stack overflow
7206           simulate_overflow = true;
7207         }
7208       )
7209       if (simulate_overflow || !_work_queue->push(obj)) {
7210         _collector->par_push_on_overflow_list(obj);
7211         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7212       }
7213     } // Else, some other thread got there first
7214   }
7215 }
7216 
7217 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7218 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7219 
7220 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7221   Mutex* bml = _collector->bitMapLock();
7222   assert_lock_strong(bml);
7223   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7224          "CMS thread should hold CMS token");
7225 
7226   bml->unlock();
7227   ConcurrentMarkSweepThread::desynchronize(true);
7228 
7229   _collector->stopTimer();
7230   if (PrintCMSStatistics != 0) {
7231     _collector->incrementYields();
7232   }
7233 
7234   // See the comment in coordinator_yield()
7235   for (unsigned i = 0; i < CMSYieldSleepCount &&
7236                        ConcurrentMarkSweepThread::should_yield() &&
7237                        !CMSCollector::foregroundGCIsActive(); ++i) {
7238     os::sleep(Thread::current(), 1, false);
7239   }
7240 
7241   ConcurrentMarkSweepThread::synchronize(true);
7242   bml->lock();
7243 
7244   _collector->startTimer();
7245 }
7246 
7247 bool CMSPrecleanRefsYieldClosure::should_return() {
7248   if (ConcurrentMarkSweepThread::should_yield()) {
7249     do_yield_work();
7250   }
7251   return _collector->foregroundGCIsActive();
7252 }
7253 
7254 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7255   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7256          "mr should be aligned to start at a card boundary");
7257   // We'd like to assert:
7258   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7259   //        "mr should be a range of cards");
7260   // However, that would be too strong in one case -- the last
7261   // partition ends at _unallocated_block which, in general, can be
7262   // an arbitrary boundary, not necessarily card aligned.
7263   if (PrintCMSStatistics != 0) {
7264     _num_dirty_cards +=
7265          mr.word_size()/CardTableModRefBS::card_size_in_words;
7266   }
7267   _space->object_iterate_mem(mr, &_scan_cl);
7268 }
7269 
7270 SweepClosure::SweepClosure(CMSCollector* collector,
7271                            ConcurrentMarkSweepGeneration* g,
7272                            CMSBitMap* bitMap, bool should_yield) :
7273   _collector(collector),
7274   _g(g),
7275   _sp(g->cmsSpace()),
7276   _limit(_sp->sweep_limit()),
7277   _freelistLock(_sp->freelistLock()),
7278   _bitMap(bitMap),
7279   _yield(should_yield),
7280   _inFreeRange(false),           // No free range at beginning of sweep
7281   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7282   _lastFreeRangeCoalesced(false),
7283   _freeFinger(g->used_region().start())
7284 {
7285   NOT_PRODUCT(
7286     _numObjectsFreed = 0;
7287     _numWordsFreed   = 0;
7288     _numObjectsLive = 0;
7289     _numWordsLive = 0;
7290     _numObjectsAlreadyFree = 0;
7291     _numWordsAlreadyFree = 0;
7292     _last_fc = NULL;
7293 
7294     _sp->initializeIndexedFreeListArrayReturnedBytes();
7295     _sp->dictionary()->initialize_dict_returned_bytes();
7296   )
7297   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7298          "sweep _limit out of bounds");
7299   if (CMSTraceSweeper) {
7300     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7301                         p2i(_limit));
7302   }
7303 }
7304 
7305 void SweepClosure::print_on(outputStream* st) const {
7306   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7307                 p2i(_sp->bottom()), p2i(_sp->end()));
7308   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7309   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7310   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7311   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7312                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7313 }
7314 
7315 #ifndef PRODUCT
7316 // Assertion checking only:  no useful work in product mode --
7317 // however, if any of the flags below become product flags,
7318 // you may need to review this code to see if it needs to be
7319 // enabled in product mode.
7320 SweepClosure::~SweepClosure() {
7321   assert_lock_strong(_freelistLock);
7322   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7323          "sweep _limit out of bounds");
7324   if (inFreeRange()) {
7325     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7326     print();
7327     ShouldNotReachHere();
7328   }
7329   if (Verbose && PrintGC) {
7330     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7331                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7332     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7333                            SIZE_FORMAT " bytes  "
7334       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7335       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7336       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7337     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7338                         * sizeof(HeapWord);
7339     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7340 
7341     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7342       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7343       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7344       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7345       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7346       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7347         indexListReturnedBytes);
7348       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7349         dict_returned_bytes);
7350     }
7351   }
7352   if (CMSTraceSweeper) {
7353     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7354                            p2i(_limit));
7355   }
7356 }
7357 #endif  // PRODUCT
7358 
7359 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7360     bool freeRangeInFreeLists) {
7361   if (CMSTraceSweeper) {
7362     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7363                p2i(freeFinger), freeRangeInFreeLists);
7364   }
7365   assert(!inFreeRange(), "Trampling existing free range");
7366   set_inFreeRange(true);
7367   set_lastFreeRangeCoalesced(false);
7368 
7369   set_freeFinger(freeFinger);
7370   set_freeRangeInFreeLists(freeRangeInFreeLists);
7371   if (CMSTestInFreeList) {
7372     if (freeRangeInFreeLists) {
7373       FreeChunk* fc = (FreeChunk*) freeFinger;
7374       assert(fc->is_free(), "A chunk on the free list should be free.");
7375       assert(fc->size() > 0, "Free range should have a size");
7376       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7377     }
7378   }
7379 }
7380 
7381 // Note that the sweeper runs concurrently with mutators. Thus,
7382 // it is possible for direct allocation in this generation to happen
7383 // in the middle of the sweep. Note that the sweeper also coalesces
7384 // contiguous free blocks. Thus, unless the sweeper and the allocator
7385 // synchronize appropriately freshly allocated blocks may get swept up.
7386 // This is accomplished by the sweeper locking the free lists while
7387 // it is sweeping. Thus blocks that are determined to be free are
7388 // indeed free. There is however one additional complication:
7389 // blocks that have been allocated since the final checkpoint and
7390 // mark, will not have been marked and so would be treated as
7391 // unreachable and swept up. To prevent this, the allocator marks
7392 // the bit map when allocating during the sweep phase. This leads,
7393 // however, to a further complication -- objects may have been allocated
7394 // but not yet initialized -- in the sense that the header isn't yet
7395 // installed. The sweeper can not then determine the size of the block
7396 // in order to skip over it. To deal with this case, we use a technique
7397 // (due to Printezis) to encode such uninitialized block sizes in the
7398 // bit map. Since the bit map uses a bit per every HeapWord, but the
7399 // CMS generation has a minimum object size of 3 HeapWords, it follows
7400 // that "normal marks" won't be adjacent in the bit map (there will
7401 // always be at least two 0 bits between successive 1 bits). We make use
7402 // of these "unused" bits to represent uninitialized blocks -- the bit
7403 // corresponding to the start of the uninitialized object and the next
7404 // bit are both set. Finally, a 1 bit marks the end of the object that
7405 // started with the two consecutive 1 bits to indicate its potentially
7406 // uninitialized state.
7407 
7408 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7409   FreeChunk* fc = (FreeChunk*)addr;
7410   size_t res;
7411 
7412   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7413   // than "addr == _limit" because although _limit was a block boundary when
7414   // we started the sweep, it may no longer be one because heap expansion
7415   // may have caused us to coalesce the block ending at the address _limit
7416   // with a newly expanded chunk (this happens when _limit was set to the
7417   // previous _end of the space), so we may have stepped past _limit:
7418   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7419   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7420     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7421            "sweep _limit out of bounds");
7422     assert(addr < _sp->end(), "addr out of bounds");
7423     // Flush any free range we might be holding as a single
7424     // coalesced chunk to the appropriate free list.
7425     if (inFreeRange()) {
7426       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7427              err_msg("freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger())));
7428       flush_cur_free_chunk(freeFinger(),
7429                            pointer_delta(addr, freeFinger()));
7430       if (CMSTraceSweeper) {
7431         gclog_or_tty->print("Sweep: last chunk: ");
7432         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7433                    "[coalesced:%d]\n",
7434                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7435                    lastFreeRangeCoalesced() ? 1 : 0);
7436       }
7437     }
7438 
7439     // help the iterator loop finish
7440     return pointer_delta(_sp->end(), addr);
7441   }
7442 
7443   assert(addr < _limit, "sweep invariant");
7444   // check if we should yield
7445   do_yield_check(addr);
7446   if (fc->is_free()) {
7447     // Chunk that is already free
7448     res = fc->size();
7449     do_already_free_chunk(fc);
7450     debug_only(_sp->verifyFreeLists());
7451     // If we flush the chunk at hand in lookahead_and_flush()
7452     // and it's coalesced with a preceding chunk, then the
7453     // process of "mangling" the payload of the coalesced block
7454     // will cause erasure of the size information from the
7455     // (erstwhile) header of all the coalesced blocks but the
7456     // first, so the first disjunct in the assert will not hold
7457     // in that specific case (in which case the second disjunct
7458     // will hold).
7459     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7460            "Otherwise the size info doesn't change at this step");
7461     NOT_PRODUCT(
7462       _numObjectsAlreadyFree++;
7463       _numWordsAlreadyFree += res;
7464     )
7465     NOT_PRODUCT(_last_fc = fc;)
7466   } else if (!_bitMap->isMarked(addr)) {
7467     // Chunk is fresh garbage
7468     res = do_garbage_chunk(fc);
7469     debug_only(_sp->verifyFreeLists());
7470     NOT_PRODUCT(
7471       _numObjectsFreed++;
7472       _numWordsFreed += res;
7473     )
7474   } else {
7475     // Chunk that is alive.
7476     res = do_live_chunk(fc);
7477     debug_only(_sp->verifyFreeLists());
7478     NOT_PRODUCT(
7479         _numObjectsLive++;
7480         _numWordsLive += res;
7481     )
7482   }
7483   return res;
7484 }
7485 
7486 // For the smart allocation, record following
7487 //  split deaths - a free chunk is removed from its free list because
7488 //      it is being split into two or more chunks.
7489 //  split birth - a free chunk is being added to its free list because
7490 //      a larger free chunk has been split and resulted in this free chunk.
7491 //  coal death - a free chunk is being removed from its free list because
7492 //      it is being coalesced into a large free chunk.
7493 //  coal birth - a free chunk is being added to its free list because
7494 //      it was created when two or more free chunks where coalesced into
7495 //      this free chunk.
7496 //
7497 // These statistics are used to determine the desired number of free
7498 // chunks of a given size.  The desired number is chosen to be relative
7499 // to the end of a CMS sweep.  The desired number at the end of a sweep
7500 // is the
7501 //      count-at-end-of-previous-sweep (an amount that was enough)
7502 //              - count-at-beginning-of-current-sweep  (the excess)
7503 //              + split-births  (gains in this size during interval)
7504 //              - split-deaths  (demands on this size during interval)
7505 // where the interval is from the end of one sweep to the end of the
7506 // next.
7507 //
7508 // When sweeping the sweeper maintains an accumulated chunk which is
7509 // the chunk that is made up of chunks that have been coalesced.  That
7510 // will be termed the left-hand chunk.  A new chunk of garbage that
7511 // is being considered for coalescing will be referred to as the
7512 // right-hand chunk.
7513 //
7514 // When making a decision on whether to coalesce a right-hand chunk with
7515 // the current left-hand chunk, the current count vs. the desired count
7516 // of the left-hand chunk is considered.  Also if the right-hand chunk
7517 // is near the large chunk at the end of the heap (see
7518 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7519 // left-hand chunk is coalesced.
7520 //
7521 // When making a decision about whether to split a chunk, the desired count
7522 // vs. the current count of the candidate to be split is also considered.
7523 // If the candidate is underpopulated (currently fewer chunks than desired)
7524 // a chunk of an overpopulated (currently more chunks than desired) size may
7525 // be chosen.  The "hint" associated with a free list, if non-null, points
7526 // to a free list which may be overpopulated.
7527 //
7528 
7529 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7530   const size_t size = fc->size();
7531   // Chunks that cannot be coalesced are not in the
7532   // free lists.
7533   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7534     assert(_sp->verify_chunk_in_free_list(fc),
7535       "free chunk should be in free lists");
7536   }
7537   // a chunk that is already free, should not have been
7538   // marked in the bit map
7539   HeapWord* const addr = (HeapWord*) fc;
7540   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7541   // Verify that the bit map has no bits marked between
7542   // addr and purported end of this block.
7543   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7544 
7545   // Some chunks cannot be coalesced under any circumstances.
7546   // See the definition of cantCoalesce().
7547   if (!fc->cantCoalesce()) {
7548     // This chunk can potentially be coalesced.
7549     if (_sp->adaptive_freelists()) {
7550       // All the work is done in
7551       do_post_free_or_garbage_chunk(fc, size);
7552     } else {  // Not adaptive free lists
7553       // this is a free chunk that can potentially be coalesced by the sweeper;
7554       if (!inFreeRange()) {
7555         // if the next chunk is a free block that can't be coalesced
7556         // it doesn't make sense to remove this chunk from the free lists
7557         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7558         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7559         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7560             nextChunk->is_free()               &&     // ... which is free...
7561             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7562           // nothing to do
7563         } else {
7564           // Potentially the start of a new free range:
7565           // Don't eagerly remove it from the free lists.
7566           // No need to remove it if it will just be put
7567           // back again.  (Also from a pragmatic point of view
7568           // if it is a free block in a region that is beyond
7569           // any allocated blocks, an assertion will fail)
7570           // Remember the start of a free run.
7571           initialize_free_range(addr, true);
7572           // end - can coalesce with next chunk
7573         }
7574       } else {
7575         // the midst of a free range, we are coalescing
7576         print_free_block_coalesced(fc);
7577         if (CMSTraceSweeper) {
7578           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7579         }
7580         // remove it from the free lists
7581         _sp->removeFreeChunkFromFreeLists(fc);
7582         set_lastFreeRangeCoalesced(true);
7583         // If the chunk is being coalesced and the current free range is
7584         // in the free lists, remove the current free range so that it
7585         // will be returned to the free lists in its entirety - all
7586         // the coalesced pieces included.
7587         if (freeRangeInFreeLists()) {
7588           FreeChunk* ffc = (FreeChunk*) freeFinger();
7589           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7590             "Size of free range is inconsistent with chunk size.");
7591           if (CMSTestInFreeList) {
7592             assert(_sp->verify_chunk_in_free_list(ffc),
7593               "free range is not in free lists");
7594           }
7595           _sp->removeFreeChunkFromFreeLists(ffc);
7596           set_freeRangeInFreeLists(false);
7597         }
7598       }
7599     }
7600     // Note that if the chunk is not coalescable (the else arm
7601     // below), we unconditionally flush, without needing to do
7602     // a "lookahead," as we do below.
7603     if (inFreeRange()) lookahead_and_flush(fc, size);
7604   } else {
7605     // Code path common to both original and adaptive free lists.
7606 
7607     // cant coalesce with previous block; this should be treated
7608     // as the end of a free run if any
7609     if (inFreeRange()) {
7610       // we kicked some butt; time to pick up the garbage
7611       assert(freeFinger() < addr, "freeFinger points too high");
7612       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7613     }
7614     // else, nothing to do, just continue
7615   }
7616 }
7617 
7618 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7619   // This is a chunk of garbage.  It is not in any free list.
7620   // Add it to a free list or let it possibly be coalesced into
7621   // a larger chunk.
7622   HeapWord* const addr = (HeapWord*) fc;
7623   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7624 
7625   if (_sp->adaptive_freelists()) {
7626     // Verify that the bit map has no bits marked between
7627     // addr and purported end of just dead object.
7628     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7629 
7630     do_post_free_or_garbage_chunk(fc, size);
7631   } else {
7632     if (!inFreeRange()) {
7633       // start of a new free range
7634       assert(size > 0, "A free range should have a size");
7635       initialize_free_range(addr, false);
7636     } else {
7637       // this will be swept up when we hit the end of the
7638       // free range
7639       if (CMSTraceSweeper) {
7640         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7641       }
7642       // If the chunk is being coalesced and the current free range is
7643       // in the free lists, remove the current free range so that it
7644       // will be returned to the free lists in its entirety - all
7645       // the coalesced pieces included.
7646       if (freeRangeInFreeLists()) {
7647         FreeChunk* ffc = (FreeChunk*)freeFinger();
7648         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7649           "Size of free range is inconsistent with chunk size.");
7650         if (CMSTestInFreeList) {
7651           assert(_sp->verify_chunk_in_free_list(ffc),
7652             "free range is not in free lists");
7653         }
7654         _sp->removeFreeChunkFromFreeLists(ffc);
7655         set_freeRangeInFreeLists(false);
7656       }
7657       set_lastFreeRangeCoalesced(true);
7658     }
7659     // this will be swept up when we hit the end of the free range
7660 
7661     // Verify that the bit map has no bits marked between
7662     // addr and purported end of just dead object.
7663     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7664   }
7665   assert(_limit >= addr + size,
7666          "A freshly garbage chunk can't possibly straddle over _limit");
7667   if (inFreeRange()) lookahead_and_flush(fc, size);
7668   return size;
7669 }
7670 
7671 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7672   HeapWord* addr = (HeapWord*) fc;
7673   // The sweeper has just found a live object. Return any accumulated
7674   // left hand chunk to the free lists.
7675   if (inFreeRange()) {
7676     assert(freeFinger() < addr, "freeFinger points too high");
7677     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7678   }
7679 
7680   // This object is live: we'd normally expect this to be
7681   // an oop, and like to assert the following:
7682   // assert(oop(addr)->is_oop(), "live block should be an oop");
7683   // However, as we commented above, this may be an object whose
7684   // header hasn't yet been initialized.
7685   size_t size;
7686   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7687   if (_bitMap->isMarked(addr + 1)) {
7688     // Determine the size from the bit map, rather than trying to
7689     // compute it from the object header.
7690     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7691     size = pointer_delta(nextOneAddr + 1, addr);
7692     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7693            "alignment problem");
7694 
7695 #ifdef ASSERT
7696       if (oop(addr)->klass_or_null() != NULL) {
7697         // Ignore mark word because we are running concurrent with mutators
7698         assert(oop(addr)->is_oop(true), "live block should be an oop");
7699         assert(size ==
7700                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7701                "P-mark and computed size do not agree");
7702       }
7703 #endif
7704 
7705   } else {
7706     // This should be an initialized object that's alive.
7707     assert(oop(addr)->klass_or_null() != NULL,
7708            "Should be an initialized object");
7709     // Ignore mark word because we are running concurrent with mutators
7710     assert(oop(addr)->is_oop(true), "live block should be an oop");
7711     // Verify that the bit map has no bits marked between
7712     // addr and purported end of this block.
7713     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7714     assert(size >= 3, "Necessary for Printezis marks to work");
7715     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7716     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7717   }
7718   return size;
7719 }
7720 
7721 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7722                                                  size_t chunkSize) {
7723   // do_post_free_or_garbage_chunk() should only be called in the case
7724   // of the adaptive free list allocator.
7725   const bool fcInFreeLists = fc->is_free();
7726   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7727   assert((HeapWord*)fc <= _limit, "sweep invariant");
7728   if (CMSTestInFreeList && fcInFreeLists) {
7729     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7730   }
7731 
7732   if (CMSTraceSweeper) {
7733     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7734   }
7735 
7736   HeapWord* const fc_addr = (HeapWord*) fc;
7737 
7738   bool coalesce;
7739   const size_t left  = pointer_delta(fc_addr, freeFinger());
7740   const size_t right = chunkSize;
7741   switch (FLSCoalescePolicy) {
7742     // numeric value forms a coalition aggressiveness metric
7743     case 0:  { // never coalesce
7744       coalesce = false;
7745       break;
7746     }
7747     case 1: { // coalesce if left & right chunks on overpopulated lists
7748       coalesce = _sp->coalOverPopulated(left) &&
7749                  _sp->coalOverPopulated(right);
7750       break;
7751     }
7752     case 2: { // coalesce if left chunk on overpopulated list (default)
7753       coalesce = _sp->coalOverPopulated(left);
7754       break;
7755     }
7756     case 3: { // coalesce if left OR right chunk on overpopulated list
7757       coalesce = _sp->coalOverPopulated(left) ||
7758                  _sp->coalOverPopulated(right);
7759       break;
7760     }
7761     case 4: { // always coalesce
7762       coalesce = true;
7763       break;
7764     }
7765     default:
7766      ShouldNotReachHere();
7767   }
7768 
7769   // Should the current free range be coalesced?
7770   // If the chunk is in a free range and either we decided to coalesce above
7771   // or the chunk is near the large block at the end of the heap
7772   // (isNearLargestChunk() returns true), then coalesce this chunk.
7773   const bool doCoalesce = inFreeRange()
7774                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7775   if (doCoalesce) {
7776     // Coalesce the current free range on the left with the new
7777     // chunk on the right.  If either is on a free list,
7778     // it must be removed from the list and stashed in the closure.
7779     if (freeRangeInFreeLists()) {
7780       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7781       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7782         "Size of free range is inconsistent with chunk size.");
7783       if (CMSTestInFreeList) {
7784         assert(_sp->verify_chunk_in_free_list(ffc),
7785           "Chunk is not in free lists");
7786       }
7787       _sp->coalDeath(ffc->size());
7788       _sp->removeFreeChunkFromFreeLists(ffc);
7789       set_freeRangeInFreeLists(false);
7790     }
7791     if (fcInFreeLists) {
7792       _sp->coalDeath(chunkSize);
7793       assert(fc->size() == chunkSize,
7794         "The chunk has the wrong size or is not in the free lists");
7795       _sp->removeFreeChunkFromFreeLists(fc);
7796     }
7797     set_lastFreeRangeCoalesced(true);
7798     print_free_block_coalesced(fc);
7799   } else {  // not in a free range and/or should not coalesce
7800     // Return the current free range and start a new one.
7801     if (inFreeRange()) {
7802       // In a free range but cannot coalesce with the right hand chunk.
7803       // Put the current free range into the free lists.
7804       flush_cur_free_chunk(freeFinger(),
7805                            pointer_delta(fc_addr, freeFinger()));
7806     }
7807     // Set up for new free range.  Pass along whether the right hand
7808     // chunk is in the free lists.
7809     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7810   }
7811 }
7812 
7813 // Lookahead flush:
7814 // If we are tracking a free range, and this is the last chunk that
7815 // we'll look at because its end crosses past _limit, we'll preemptively
7816 // flush it along with any free range we may be holding on to. Note that
7817 // this can be the case only for an already free or freshly garbage
7818 // chunk. If this block is an object, it can never straddle
7819 // over _limit. The "straddling" occurs when _limit is set at
7820 // the previous end of the space when this cycle started, and
7821 // a subsequent heap expansion caused the previously co-terminal
7822 // free block to be coalesced with the newly expanded portion,
7823 // thus rendering _limit a non-block-boundary making it dangerous
7824 // for the sweeper to step over and examine.
7825 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7826   assert(inFreeRange(), "Should only be called if currently in a free range.");
7827   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7828   assert(_sp->used_region().contains(eob - 1),
7829          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7830                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7831                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7832                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7833   if (eob >= _limit) {
7834     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7835     if (CMSTraceSweeper) {
7836       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7837                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7838                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7839                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7840     }
7841     // Return the storage we are tracking back into the free lists.
7842     if (CMSTraceSweeper) {
7843       gclog_or_tty->print_cr("Flushing ... ");
7844     }
7845     assert(freeFinger() < eob, "Error");
7846     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7847   }
7848 }
7849 
7850 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7851   assert(inFreeRange(), "Should only be called if currently in a free range.");
7852   assert(size > 0,
7853     "A zero sized chunk cannot be added to the free lists.");
7854   if (!freeRangeInFreeLists()) {
7855     if (CMSTestInFreeList) {
7856       FreeChunk* fc = (FreeChunk*) chunk;
7857       fc->set_size(size);
7858       assert(!_sp->verify_chunk_in_free_list(fc),
7859         "chunk should not be in free lists yet");
7860     }
7861     if (CMSTraceSweeper) {
7862       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7863                     p2i(chunk), size);
7864     }
7865     // A new free range is going to be starting.  The current
7866     // free range has not been added to the free lists yet or
7867     // was removed so add it back.
7868     // If the current free range was coalesced, then the death
7869     // of the free range was recorded.  Record a birth now.
7870     if (lastFreeRangeCoalesced()) {
7871       _sp->coalBirth(size);
7872     }
7873     _sp->addChunkAndRepairOffsetTable(chunk, size,
7874             lastFreeRangeCoalesced());
7875   } else if (CMSTraceSweeper) {
7876     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7877   }
7878   set_inFreeRange(false);
7879   set_freeRangeInFreeLists(false);
7880 }
7881 
7882 // We take a break if we've been at this for a while,
7883 // so as to avoid monopolizing the locks involved.
7884 void SweepClosure::do_yield_work(HeapWord* addr) {
7885   // Return current free chunk being used for coalescing (if any)
7886   // to the appropriate freelist.  After yielding, the next
7887   // free block encountered will start a coalescing range of
7888   // free blocks.  If the next free block is adjacent to the
7889   // chunk just flushed, they will need to wait for the next
7890   // sweep to be coalesced.
7891   if (inFreeRange()) {
7892     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7893   }
7894 
7895   // First give up the locks, then yield, then re-lock.
7896   // We should probably use a constructor/destructor idiom to
7897   // do this unlock/lock or modify the MutexUnlocker class to
7898   // serve our purpose. XXX
7899   assert_lock_strong(_bitMap->lock());
7900   assert_lock_strong(_freelistLock);
7901   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7902          "CMS thread should hold CMS token");
7903   _bitMap->lock()->unlock();
7904   _freelistLock->unlock();
7905   ConcurrentMarkSweepThread::desynchronize(true);
7906   _collector->stopTimer();
7907   if (PrintCMSStatistics != 0) {
7908     _collector->incrementYields();
7909   }
7910 
7911   // See the comment in coordinator_yield()
7912   for (unsigned i = 0; i < CMSYieldSleepCount &&
7913                        ConcurrentMarkSweepThread::should_yield() &&
7914                        !CMSCollector::foregroundGCIsActive(); ++i) {
7915     os::sleep(Thread::current(), 1, false);
7916   }
7917 
7918   ConcurrentMarkSweepThread::synchronize(true);
7919   _freelistLock->lock();
7920   _bitMap->lock()->lock_without_safepoint_check();
7921   _collector->startTimer();
7922 }
7923 
7924 #ifndef PRODUCT
7925 // This is actually very useful in a product build if it can
7926 // be called from the debugger.  Compile it into the product
7927 // as needed.
7928 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7929   return debug_cms_space->verify_chunk_in_free_list(fc);
7930 }
7931 #endif
7932 
7933 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7934   if (CMSTraceSweeper) {
7935     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7936                            p2i(fc), fc->size());
7937   }
7938 }
7939 
7940 // CMSIsAliveClosure
7941 bool CMSIsAliveClosure::do_object_b(oop obj) {
7942   HeapWord* addr = (HeapWord*)obj;
7943   return addr != NULL &&
7944          (!_span.contains(addr) || _bit_map->isMarked(addr));
7945 }
7946 
7947 
7948 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7949                       MemRegion span,
7950                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7951                       bool cpc):
7952   _collector(collector),
7953   _span(span),
7954   _bit_map(bit_map),
7955   _mark_stack(mark_stack),
7956   _concurrent_precleaning(cpc) {
7957   assert(!_span.is_empty(), "Empty span could spell trouble");
7958 }
7959 
7960 
7961 // CMSKeepAliveClosure: the serial version
7962 void CMSKeepAliveClosure::do_oop(oop obj) {
7963   HeapWord* addr = (HeapWord*)obj;
7964   if (_span.contains(addr) &&
7965       !_bit_map->isMarked(addr)) {
7966     _bit_map->mark(addr);
7967     bool simulate_overflow = false;
7968     NOT_PRODUCT(
7969       if (CMSMarkStackOverflowALot &&
7970           _collector->simulate_overflow()) {
7971         // simulate a stack overflow
7972         simulate_overflow = true;
7973       }
7974     )
7975     if (simulate_overflow || !_mark_stack->push(obj)) {
7976       if (_concurrent_precleaning) {
7977         // We dirty the overflown object and let the remark
7978         // phase deal with it.
7979         assert(_collector->overflow_list_is_empty(), "Error");
7980         // In the case of object arrays, we need to dirty all of
7981         // the cards that the object spans. No locking or atomics
7982         // are needed since no one else can be mutating the mod union
7983         // table.
7984         if (obj->is_objArray()) {
7985           size_t sz = obj->size();
7986           HeapWord* end_card_addr =
7987             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7988           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7989           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7990           _collector->_modUnionTable.mark_range(redirty_range);
7991         } else {
7992           _collector->_modUnionTable.mark(addr);
7993         }
7994         _collector->_ser_kac_preclean_ovflw++;
7995       } else {
7996         _collector->push_on_overflow_list(obj);
7997         _collector->_ser_kac_ovflw++;
7998       }
7999     }
8000   }
8001 }
8002 
8003 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8004 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8005 
8006 // CMSParKeepAliveClosure: a parallel version of the above.
8007 // The work queues are private to each closure (thread),
8008 // but (may be) available for stealing by other threads.
8009 void CMSParKeepAliveClosure::do_oop(oop obj) {
8010   HeapWord* addr = (HeapWord*)obj;
8011   if (_span.contains(addr) &&
8012       !_bit_map->isMarked(addr)) {
8013     // In general, during recursive tracing, several threads
8014     // may be concurrently getting here; the first one to
8015     // "tag" it, claims it.
8016     if (_bit_map->par_mark(addr)) {
8017       bool res = _work_queue->push(obj);
8018       assert(res, "Low water mark should be much less than capacity");
8019       // Do a recursive trim in the hope that this will keep
8020       // stack usage lower, but leave some oops for potential stealers
8021       trim_queue(_low_water_mark);
8022     } // Else, another thread got there first
8023   }
8024 }
8025 
8026 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8027 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8028 
8029 void CMSParKeepAliveClosure::trim_queue(uint max) {
8030   while (_work_queue->size() > max) {
8031     oop new_oop;
8032     if (_work_queue->pop_local(new_oop)) {
8033       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8034       assert(_bit_map->isMarked((HeapWord*)new_oop),
8035              "no white objects on this stack!");
8036       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8037       // iterate over the oops in this oop, marking and pushing
8038       // the ones in CMS heap (i.e. in _span).
8039       new_oop->oop_iterate(&_mark_and_push);
8040     }
8041   }
8042 }
8043 
8044 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8045                                 CMSCollector* collector,
8046                                 MemRegion span, CMSBitMap* bit_map,
8047                                 OopTaskQueue* work_queue):
8048   _collector(collector),
8049   _span(span),
8050   _bit_map(bit_map),
8051   _work_queue(work_queue) { }
8052 
8053 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8054   HeapWord* addr = (HeapWord*)obj;
8055   if (_span.contains(addr) &&
8056       !_bit_map->isMarked(addr)) {
8057     if (_bit_map->par_mark(addr)) {
8058       bool simulate_overflow = false;
8059       NOT_PRODUCT(
8060         if (CMSMarkStackOverflowALot &&
8061             _collector->par_simulate_overflow()) {
8062           // simulate a stack overflow
8063           simulate_overflow = true;
8064         }
8065       )
8066       if (simulate_overflow || !_work_queue->push(obj)) {
8067         _collector->par_push_on_overflow_list(obj);
8068         _collector->_par_kac_ovflw++;
8069       }
8070     } // Else another thread got there already
8071   }
8072 }
8073 
8074 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8075 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8076 
8077 //////////////////////////////////////////////////////////////////
8078 //  CMSExpansionCause                /////////////////////////////
8079 //////////////////////////////////////////////////////////////////
8080 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8081   switch (cause) {
8082     case _no_expansion:
8083       return "No expansion";
8084     case _satisfy_free_ratio:
8085       return "Free ratio";
8086     case _satisfy_promotion:
8087       return "Satisfy promotion";
8088     case _satisfy_allocation:
8089       return "allocation";
8090     case _allocate_par_lab:
8091       return "Par LAB";
8092     case _allocate_par_spooling_space:
8093       return "Par Spooling Space";
8094     case _adaptive_size_policy:
8095       return "Ergonomics";
8096     default:
8097       return "unknown";
8098   }
8099 }
8100 
8101 void CMSDrainMarkingStackClosure::do_void() {
8102   // the max number to take from overflow list at a time
8103   const size_t num = _mark_stack->capacity()/4;
8104   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8105          "Overflow list should be NULL during concurrent phases");
8106   while (!_mark_stack->isEmpty() ||
8107          // if stack is empty, check the overflow list
8108          _collector->take_from_overflow_list(num, _mark_stack)) {
8109     oop obj = _mark_stack->pop();
8110     HeapWord* addr = (HeapWord*)obj;
8111     assert(_span.contains(addr), "Should be within span");
8112     assert(_bit_map->isMarked(addr), "Should be marked");
8113     assert(obj->is_oop(), "Should be an oop");
8114     obj->oop_iterate(_keep_alive);
8115   }
8116 }
8117 
8118 void CMSParDrainMarkingStackClosure::do_void() {
8119   // drain queue
8120   trim_queue(0);
8121 }
8122 
8123 // Trim our work_queue so its length is below max at return
8124 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8125   while (_work_queue->size() > max) {
8126     oop new_oop;
8127     if (_work_queue->pop_local(new_oop)) {
8128       assert(new_oop->is_oop(), "Expected an oop");
8129       assert(_bit_map->isMarked((HeapWord*)new_oop),
8130              "no white objects on this stack!");
8131       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8132       // iterate over the oops in this oop, marking and pushing
8133       // the ones in CMS heap (i.e. in _span).
8134       new_oop->oop_iterate(&_mark_and_push);
8135     }
8136   }
8137 }
8138 
8139 ////////////////////////////////////////////////////////////////////
8140 // Support for Marking Stack Overflow list handling and related code
8141 ////////////////////////////////////////////////////////////////////
8142 // Much of the following code is similar in shape and spirit to the
8143 // code used in ParNewGC. We should try and share that code
8144 // as much as possible in the future.
8145 
8146 #ifndef PRODUCT
8147 // Debugging support for CMSStackOverflowALot
8148 
8149 // It's OK to call this multi-threaded;  the worst thing
8150 // that can happen is that we'll get a bunch of closely
8151 // spaced simulated overflows, but that's OK, in fact
8152 // probably good as it would exercise the overflow code
8153 // under contention.
8154 bool CMSCollector::simulate_overflow() {
8155   if (_overflow_counter-- <= 0) { // just being defensive
8156     _overflow_counter = CMSMarkStackOverflowInterval;
8157     return true;
8158   } else {
8159     return false;
8160   }
8161 }
8162 
8163 bool CMSCollector::par_simulate_overflow() {
8164   return simulate_overflow();
8165 }
8166 #endif
8167 
8168 // Single-threaded
8169 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8170   assert(stack->isEmpty(), "Expected precondition");
8171   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8172   size_t i = num;
8173   oop  cur = _overflow_list;
8174   const markOop proto = markOopDesc::prototype();
8175   NOT_PRODUCT(ssize_t n = 0;)
8176   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8177     next = oop(cur->mark());
8178     cur->set_mark(proto);   // until proven otherwise
8179     assert(cur->is_oop(), "Should be an oop");
8180     bool res = stack->push(cur);
8181     assert(res, "Bit off more than can chew?");
8182     NOT_PRODUCT(n++;)
8183   }
8184   _overflow_list = cur;
8185 #ifndef PRODUCT
8186   assert(_num_par_pushes >= n, "Too many pops?");
8187   _num_par_pushes -=n;
8188 #endif
8189   return !stack->isEmpty();
8190 }
8191 
8192 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8193 // (MT-safe) Get a prefix of at most "num" from the list.
8194 // The overflow list is chained through the mark word of
8195 // each object in the list. We fetch the entire list,
8196 // break off a prefix of the right size and return the
8197 // remainder. If other threads try to take objects from
8198 // the overflow list at that time, they will wait for
8199 // some time to see if data becomes available. If (and
8200 // only if) another thread places one or more object(s)
8201 // on the global list before we have returned the suffix
8202 // to the global list, we will walk down our local list
8203 // to find its end and append the global list to
8204 // our suffix before returning it. This suffix walk can
8205 // prove to be expensive (quadratic in the amount of traffic)
8206 // when there are many objects in the overflow list and
8207 // there is much producer-consumer contention on the list.
8208 // *NOTE*: The overflow list manipulation code here and
8209 // in ParNewGeneration:: are very similar in shape,
8210 // except that in the ParNew case we use the old (from/eden)
8211 // copy of the object to thread the list via its klass word.
8212 // Because of the common code, if you make any changes in
8213 // the code below, please check the ParNew version to see if
8214 // similar changes might be needed.
8215 // CR 6797058 has been filed to consolidate the common code.
8216 bool CMSCollector::par_take_from_overflow_list(size_t num,
8217                                                OopTaskQueue* work_q,
8218                                                int no_of_gc_threads) {
8219   assert(work_q->size() == 0, "First empty local work queue");
8220   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8221   if (_overflow_list == NULL) {
8222     return false;
8223   }
8224   // Grab the entire list; we'll put back a suffix
8225   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8226   Thread* tid = Thread::current();
8227   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8228   // set to ParallelGCThreads.
8229   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8230   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8231   // If the list is busy, we spin for a short while,
8232   // sleeping between attempts to get the list.
8233   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8234     os::sleep(tid, sleep_time_millis, false);
8235     if (_overflow_list == NULL) {
8236       // Nothing left to take
8237       return false;
8238     } else if (_overflow_list != BUSY) {
8239       // Try and grab the prefix
8240       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8241     }
8242   }
8243   // If the list was found to be empty, or we spun long
8244   // enough, we give up and return empty-handed. If we leave
8245   // the list in the BUSY state below, it must be the case that
8246   // some other thread holds the overflow list and will set it
8247   // to a non-BUSY state in the future.
8248   if (prefix == NULL || prefix == BUSY) {
8249      // Nothing to take or waited long enough
8250      if (prefix == NULL) {
8251        // Write back the NULL in case we overwrote it with BUSY above
8252        // and it is still the same value.
8253        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8254      }
8255      return false;
8256   }
8257   assert(prefix != NULL && prefix != BUSY, "Error");
8258   size_t i = num;
8259   oop cur = prefix;
8260   // Walk down the first "num" objects, unless we reach the end.
8261   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8262   if (cur->mark() == NULL) {
8263     // We have "num" or fewer elements in the list, so there
8264     // is nothing to return to the global list.
8265     // Write back the NULL in lieu of the BUSY we wrote
8266     // above, if it is still the same value.
8267     if (_overflow_list == BUSY) {
8268       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8269     }
8270   } else {
8271     // Chop off the suffix and return it to the global list.
8272     assert(cur->mark() != BUSY, "Error");
8273     oop suffix_head = cur->mark(); // suffix will be put back on global list
8274     cur->set_mark(NULL);           // break off suffix
8275     // It's possible that the list is still in the empty(busy) state
8276     // we left it in a short while ago; in that case we may be
8277     // able to place back the suffix without incurring the cost
8278     // of a walk down the list.
8279     oop observed_overflow_list = _overflow_list;
8280     oop cur_overflow_list = observed_overflow_list;
8281     bool attached = false;
8282     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8283       observed_overflow_list =
8284         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8285       if (cur_overflow_list == observed_overflow_list) {
8286         attached = true;
8287         break;
8288       } else cur_overflow_list = observed_overflow_list;
8289     }
8290     if (!attached) {
8291       // Too bad, someone else sneaked in (at least) an element; we'll need
8292       // to do a splice. Find tail of suffix so we can prepend suffix to global
8293       // list.
8294       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8295       oop suffix_tail = cur;
8296       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8297              "Tautology");
8298       observed_overflow_list = _overflow_list;
8299       do {
8300         cur_overflow_list = observed_overflow_list;
8301         if (cur_overflow_list != BUSY) {
8302           // Do the splice ...
8303           suffix_tail->set_mark(markOop(cur_overflow_list));
8304         } else { // cur_overflow_list == BUSY
8305           suffix_tail->set_mark(NULL);
8306         }
8307         // ... and try to place spliced list back on overflow_list ...
8308         observed_overflow_list =
8309           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8310       } while (cur_overflow_list != observed_overflow_list);
8311       // ... until we have succeeded in doing so.
8312     }
8313   }
8314 
8315   // Push the prefix elements on work_q
8316   assert(prefix != NULL, "control point invariant");
8317   const markOop proto = markOopDesc::prototype();
8318   oop next;
8319   NOT_PRODUCT(ssize_t n = 0;)
8320   for (cur = prefix; cur != NULL; cur = next) {
8321     next = oop(cur->mark());
8322     cur->set_mark(proto);   // until proven otherwise
8323     assert(cur->is_oop(), "Should be an oop");
8324     bool res = work_q->push(cur);
8325     assert(res, "Bit off more than we can chew?");
8326     NOT_PRODUCT(n++;)
8327   }
8328 #ifndef PRODUCT
8329   assert(_num_par_pushes >= n, "Too many pops?");
8330   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8331 #endif
8332   return true;
8333 }
8334 
8335 // Single-threaded
8336 void CMSCollector::push_on_overflow_list(oop p) {
8337   NOT_PRODUCT(_num_par_pushes++;)
8338   assert(p->is_oop(), "Not an oop");
8339   preserve_mark_if_necessary(p);
8340   p->set_mark((markOop)_overflow_list);
8341   _overflow_list = p;
8342 }
8343 
8344 // Multi-threaded; use CAS to prepend to overflow list
8345 void CMSCollector::par_push_on_overflow_list(oop p) {
8346   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8347   assert(p->is_oop(), "Not an oop");
8348   par_preserve_mark_if_necessary(p);
8349   oop observed_overflow_list = _overflow_list;
8350   oop cur_overflow_list;
8351   do {
8352     cur_overflow_list = observed_overflow_list;
8353     if (cur_overflow_list != BUSY) {
8354       p->set_mark(markOop(cur_overflow_list));
8355     } else {
8356       p->set_mark(NULL);
8357     }
8358     observed_overflow_list =
8359       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8360   } while (cur_overflow_list != observed_overflow_list);
8361 }
8362 #undef BUSY
8363 
8364 // Single threaded
8365 // General Note on GrowableArray: pushes may silently fail
8366 // because we are (temporarily) out of C-heap for expanding
8367 // the stack. The problem is quite ubiquitous and affects
8368 // a lot of code in the JVM. The prudent thing for GrowableArray
8369 // to do (for now) is to exit with an error. However, that may
8370 // be too draconian in some cases because the caller may be
8371 // able to recover without much harm. For such cases, we
8372 // should probably introduce a "soft_push" method which returns
8373 // an indication of success or failure with the assumption that
8374 // the caller may be able to recover from a failure; code in
8375 // the VM can then be changed, incrementally, to deal with such
8376 // failures where possible, thus, incrementally hardening the VM
8377 // in such low resource situations.
8378 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8379   _preserved_oop_stack.push(p);
8380   _preserved_mark_stack.push(m);
8381   assert(m == p->mark(), "Mark word changed");
8382   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8383          "bijection");
8384 }
8385 
8386 // Single threaded
8387 void CMSCollector::preserve_mark_if_necessary(oop p) {
8388   markOop m = p->mark();
8389   if (m->must_be_preserved(p)) {
8390     preserve_mark_work(p, m);
8391   }
8392 }
8393 
8394 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8395   markOop m = p->mark();
8396   if (m->must_be_preserved(p)) {
8397     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8398     // Even though we read the mark word without holding
8399     // the lock, we are assured that it will not change
8400     // because we "own" this oop, so no other thread can
8401     // be trying to push it on the overflow list; see
8402     // the assertion in preserve_mark_work() that checks
8403     // that m == p->mark().
8404     preserve_mark_work(p, m);
8405   }
8406 }
8407 
8408 // We should be able to do this multi-threaded,
8409 // a chunk of stack being a task (this is
8410 // correct because each oop only ever appears
8411 // once in the overflow list. However, it's
8412 // not very easy to completely overlap this with
8413 // other operations, so will generally not be done
8414 // until all work's been completed. Because we
8415 // expect the preserved oop stack (set) to be small,
8416 // it's probably fine to do this single-threaded.
8417 // We can explore cleverer concurrent/overlapped/parallel
8418 // processing of preserved marks if we feel the
8419 // need for this in the future. Stack overflow should
8420 // be so rare in practice and, when it happens, its
8421 // effect on performance so great that this will
8422 // likely just be in the noise anyway.
8423 void CMSCollector::restore_preserved_marks_if_any() {
8424   assert(SafepointSynchronize::is_at_safepoint(),
8425          "world should be stopped");
8426   assert(Thread::current()->is_ConcurrentGC_thread() ||
8427          Thread::current()->is_VM_thread(),
8428          "should be single-threaded");
8429   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8430          "bijection");
8431 
8432   while (!_preserved_oop_stack.is_empty()) {
8433     oop p = _preserved_oop_stack.pop();
8434     assert(p->is_oop(), "Should be an oop");
8435     assert(_span.contains(p), "oop should be in _span");
8436     assert(p->mark() == markOopDesc::prototype(),
8437            "Set when taken from overflow list");
8438     markOop m = _preserved_mark_stack.pop();
8439     p->set_mark(m);
8440   }
8441   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8442          "stacks were cleared above");
8443 }
8444 
8445 #ifndef PRODUCT
8446 bool CMSCollector::no_preserved_marks() const {
8447   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8448 }
8449 #endif
8450 
8451 // Transfer some number of overflown objects to usual marking
8452 // stack. Return true if some objects were transferred.
8453 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8454   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8455                     (size_t)ParGCDesiredObjsFromOverflowList);
8456 
8457   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8458   assert(_collector->overflow_list_is_empty() || res,
8459          "If list is not empty, we should have taken something");
8460   assert(!res || !_mark_stack->isEmpty(),
8461          "If we took something, it should now be on our stack");
8462   return res;
8463 }
8464 
8465 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8466   size_t res = _sp->block_size_no_stall(addr, _collector);
8467   if (_sp->block_is_obj(addr)) {
8468     if (_live_bit_map->isMarked(addr)) {
8469       // It can't have been dead in a previous cycle
8470       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8471     } else {
8472       _dead_bit_map->mark(addr);      // mark the dead object
8473     }
8474   }
8475   // Could be 0, if the block size could not be computed without stalling.
8476   return res;
8477 }
8478 
8479 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8480 
8481   switch (phase) {
8482     case CMSCollector::InitialMarking:
8483       initialize(true  /* fullGC */ ,
8484                  cause /* cause of the GC */,
8485                  true  /* recordGCBeginTime */,
8486                  true  /* recordPreGCUsage */,
8487                  false /* recordPeakUsage */,
8488                  false /* recordPostGCusage */,
8489                  true  /* recordAccumulatedGCTime */,
8490                  false /* recordGCEndTime */,
8491                  false /* countCollection */  );
8492       break;
8493 
8494     case CMSCollector::FinalMarking:
8495       initialize(true  /* fullGC */ ,
8496                  cause /* cause of the GC */,
8497                  false /* recordGCBeginTime */,
8498                  false /* recordPreGCUsage */,
8499                  false /* recordPeakUsage */,
8500                  false /* recordPostGCusage */,
8501                  true  /* recordAccumulatedGCTime */,
8502                  false /* recordGCEndTime */,
8503                  false /* countCollection */  );
8504       break;
8505 
8506     case CMSCollector::Sweeping:
8507       initialize(true  /* fullGC */ ,
8508                  cause /* cause of the GC */,
8509                  false /* recordGCBeginTime */,
8510                  false /* recordPreGCUsage */,
8511                  true  /* recordPeakUsage */,
8512                  true  /* recordPostGCusage */,
8513                  false /* recordAccumulatedGCTime */,
8514                  true  /* recordGCEndTime */,
8515                  true  /* countCollection */  );
8516       break;
8517 
8518     default:
8519       ShouldNotReachHere();
8520   }
8521 }