1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/parallel/parallelScavengeHeap.hpp"
  30 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  31 #include "gc/parallel/psMarkSweep.hpp"
  32 #include "gc/parallel/psMarkSweepDecorator.hpp"
  33 #include "gc/parallel/psOldGen.hpp"
  34 #include "gc/parallel/psScavenge.hpp"
  35 #include "gc/parallel/psYoungGen.hpp"
  36 #include "gc/serial/markSweep.hpp"
  37 #include "gc/shared/gcCause.hpp"
  38 #include "gc/shared/gcHeapSummary.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/gcTimer.hpp"
  41 #include "gc/shared/gcTrace.hpp"
  42 #include "gc/shared/gcTraceTime.hpp"
  43 #include "gc/shared/isGCActiveMark.hpp"
  44 #include "gc/shared/referencePolicy.hpp"
  45 #include "gc/shared/referenceProcessor.hpp"
  46 #include "gc/shared/spaceDecorator.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/safepoint.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "services/management.hpp"
  53 #include "services/memoryService.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/stack.inline.hpp"
  56 
  57 elapsedTimer        PSMarkSweep::_accumulated_time;
  58 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  59 CollectorCounters*  PSMarkSweep::_counters = NULL;
  60 
  61 void PSMarkSweep::initialize() {
  62   MemRegion mr = ParallelScavengeHeap::heap()->reserved_region();
  63   set_ref_processor(new ReferenceProcessor(mr));     // a vanilla ref proc
  64   _counters = new CollectorCounters("PSMarkSweep", 1);
  65 }
  66 
  67 // This method contains all heap specific policy for invoking mark sweep.
  68 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  69 // the heap. It will do nothing further. If we need to bail out for policy
  70 // reasons, scavenge before full gc, or any other specialized behavior, it
  71 // needs to be added here.
  72 //
  73 // Note that this method should only be called from the vm_thread while
  74 // at a safepoint!
  75 //
  76 // Note that the all_soft_refs_clear flag in the collector policy
  77 // may be true because this method can be called without intervening
  78 // activity.  For example when the heap space is tight and full measure
  79 // are being taken to free space.
  80 
  81 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  82   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  83   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  84   assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
  85 
  86   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  87   GCCause::Cause gc_cause = heap->gc_cause();
  88   PSAdaptiveSizePolicy* policy = heap->size_policy();
  89   IsGCActiveMark mark;
  90 
  91   if (ScavengeBeforeFullGC) {
  92     PSScavenge::invoke_no_policy();
  93   }
  94 
  95   const bool clear_all_soft_refs =
  96     heap->collector_policy()->should_clear_all_soft_refs();
  97 
  98   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
  99   UIntXFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 100   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 101 }
 102 
 103 // This method contains no policy. You should probably
 104 // be calling invoke() instead.
 105 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 106   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 107   assert(ref_processor() != NULL, "Sanity");
 108 
 109   if (GC_locker::check_active_before_gc()) {
 110     return false;
 111   }
 112 
 113   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 114   GCCause::Cause gc_cause = heap->gc_cause();
 115 
 116   _gc_timer->register_gc_start();
 117   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 118 
 119   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 120 
 121   // The scope of casr should end after code that can change
 122   // CollectorPolicy::_should_clear_all_soft_refs.
 123   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 124 
 125   PSYoungGen* young_gen = heap->young_gen();
 126   PSOldGen* old_gen = heap->old_gen();
 127 
 128   // Increment the invocation count
 129   heap->increment_total_collections(true /* full */);
 130 
 131   // Save information needed to minimize mangling
 132   heap->record_gen_tops_before_GC();
 133 
 134   // We need to track unique mark sweep invocations as well.
 135   _total_invocations++;
 136 
 137   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 138 
 139   heap->print_heap_before_gc();
 140   heap->trace_heap_before_gc(_gc_tracer);
 141 
 142   // Fill in TLABs
 143   heap->accumulate_statistics_all_tlabs();
 144   heap->ensure_parsability(true);  // retire TLABs
 145 
 146   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 147     HandleMark hm;  // Discard invalid handles created during verification
 148     Universe::verify(" VerifyBeforeGC:");
 149   }
 150 
 151   // Verify object start arrays
 152   if (VerifyObjectStartArray &&
 153       VerifyBeforeGC) {
 154     old_gen->verify_object_start_array();
 155   }
 156 
 157   heap->pre_full_gc_dump(_gc_timer);
 158 
 159   // Filled in below to track the state of the young gen after the collection.
 160   bool eden_empty;
 161   bool survivors_empty;
 162   bool young_gen_empty;
 163 
 164   {
 165     HandleMark hm;
 166 
 167     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 168     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer->gc_id());
 169     TraceCollectorStats tcs(counters());
 170     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 171 
 172     if (TraceOldGenTime) accumulated_time()->start();
 173 
 174     // Let the size policy know we're starting
 175     size_policy->major_collection_begin();
 176 
 177     CodeCache::gc_prologue();
 178     BiasedLocking::preserve_marks();
 179 
 180     // Capture heap size before collection for printing.
 181     size_t prev_used = heap->used();
 182 
 183     // Capture metadata size before collection for sizing.
 184     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 185 
 186     // For PrintGCDetails
 187     size_t old_gen_prev_used = old_gen->used_in_bytes();
 188     size_t young_gen_prev_used = young_gen->used_in_bytes();
 189 
 190     allocate_stacks();
 191 
 192     COMPILER2_PRESENT(DerivedPointerTable::clear());
 193 
 194     ref_processor()->enable_discovery();
 195     ref_processor()->setup_policy(clear_all_softrefs);
 196 
 197     mark_sweep_phase1(clear_all_softrefs);
 198 
 199     mark_sweep_phase2();
 200 
 201     // Don't add any more derived pointers during phase3
 202     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
 203     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
 204 
 205     mark_sweep_phase3();
 206 
 207     mark_sweep_phase4();
 208 
 209     restore_marks();
 210 
 211     deallocate_stacks();
 212 
 213     if (ZapUnusedHeapArea) {
 214       // Do a complete mangle (top to end) because the usage for
 215       // scratch does not maintain a top pointer.
 216       young_gen->to_space()->mangle_unused_area_complete();
 217     }
 218 
 219     eden_empty = young_gen->eden_space()->is_empty();
 220     if (!eden_empty) {
 221       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 222     }
 223 
 224     // Update heap occupancy information which is used as
 225     // input to soft ref clearing policy at the next gc.
 226     Universe::update_heap_info_at_gc();
 227 
 228     survivors_empty = young_gen->from_space()->is_empty() &&
 229                       young_gen->to_space()->is_empty();
 230     young_gen_empty = eden_empty && survivors_empty;
 231 
 232     ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
 233     MemRegion old_mr = heap->old_gen()->reserved();
 234     if (young_gen_empty) {
 235       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
 236     } else {
 237       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 238     }
 239 
 240     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 241     ClassLoaderDataGraph::purge();
 242     MetaspaceAux::verify_metrics();
 243 
 244     BiasedLocking::restore_marks();
 245     CodeCache::gc_epilogue();
 246     JvmtiExport::gc_epilogue();
 247 
 248     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 249 
 250     ref_processor()->enqueue_discovered_references(NULL);
 251 
 252     // Update time of last GC
 253     reset_millis_since_last_gc();
 254 
 255     // Let the size policy know we're done
 256     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 257 
 258     if (UseAdaptiveSizePolicy) {
 259 
 260       if (PrintAdaptiveSizePolicy) {
 261         gclog_or_tty->print("AdaptiveSizeStart: ");
 262         gclog_or_tty->stamp();
 263         gclog_or_tty->print_cr(" collection: %d ",
 264                        heap->total_collections());
 265         if (Verbose) {
 266           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
 267             " young_gen_capacity: " SIZE_FORMAT,
 268             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 269         }
 270       }
 271 
 272       // Don't check if the size_policy is ready here.  Let
 273       // the size_policy check that internally.
 274       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 275           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
 276         // Swap the survivor spaces if from_space is empty. The
 277         // resize_young_gen() called below is normally used after
 278         // a successful young GC and swapping of survivor spaces;
 279         // otherwise, it will fail to resize the young gen with
 280         // the current implementation.
 281         if (young_gen->from_space()->is_empty()) {
 282           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 283           young_gen->swap_spaces();
 284         }
 285 
 286         // Calculate optimal free space amounts
 287         assert(young_gen->max_size() >
 288           young_gen->from_space()->capacity_in_bytes() +
 289           young_gen->to_space()->capacity_in_bytes(),
 290           "Sizes of space in young gen are out-of-bounds");
 291 
 292         size_t young_live = young_gen->used_in_bytes();
 293         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 294         size_t old_live = old_gen->used_in_bytes();
 295         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 296         size_t max_old_gen_size = old_gen->max_gen_size();
 297         size_t max_eden_size = young_gen->max_size() -
 298           young_gen->from_space()->capacity_in_bytes() -
 299           young_gen->to_space()->capacity_in_bytes();
 300 
 301         // Used for diagnostics
 302         size_policy->clear_generation_free_space_flags();
 303 
 304         size_policy->compute_generations_free_space(young_live,
 305                                                     eden_live,
 306                                                     old_live,
 307                                                     cur_eden,
 308                                                     max_old_gen_size,
 309                                                     max_eden_size,
 310                                                     true /* full gc*/);
 311 
 312         size_policy->check_gc_overhead_limit(young_live,
 313                                              eden_live,
 314                                              max_old_gen_size,
 315                                              max_eden_size,
 316                                              true /* full gc*/,
 317                                              gc_cause,
 318                                              heap->collector_policy());
 319 
 320         size_policy->decay_supplemental_growth(true /* full gc*/);
 321 
 322         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 323 
 324         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 325                                size_policy->calculated_survivor_size_in_bytes());
 326       }
 327       if (PrintAdaptiveSizePolicy) {
 328         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 329                        heap->total_collections());
 330       }
 331     }
 332 
 333     if (UsePerfData) {
 334       heap->gc_policy_counters()->update_counters();
 335       heap->gc_policy_counters()->update_old_capacity(
 336         old_gen->capacity_in_bytes());
 337       heap->gc_policy_counters()->update_young_capacity(
 338         young_gen->capacity_in_bytes());
 339     }
 340 
 341     heap->resize_all_tlabs();
 342 
 343     // We collected the heap, recalculate the metaspace capacity
 344     MetaspaceGC::compute_new_size();
 345 
 346     if (TraceOldGenTime) accumulated_time()->stop();
 347 
 348     if (PrintGC) {
 349       if (PrintGCDetails) {
 350         // Don't print a GC timestamp here.  This is after the GC so
 351         // would be confusing.
 352         young_gen->print_used_change(young_gen_prev_used);
 353         old_gen->print_used_change(old_gen_prev_used);
 354       }
 355       heap->print_heap_change(prev_used);
 356       if (PrintGCDetails) {
 357         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 358       }
 359     }
 360 
 361     // Track memory usage and detect low memory
 362     MemoryService::track_memory_usage();
 363     heap->update_counters();
 364   }
 365 
 366   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 367     HandleMark hm;  // Discard invalid handles created during verification
 368     Universe::verify(" VerifyAfterGC:");
 369   }
 370 
 371   // Re-verify object start arrays
 372   if (VerifyObjectStartArray &&
 373       VerifyAfterGC) {
 374     old_gen->verify_object_start_array();
 375   }
 376 
 377   if (ZapUnusedHeapArea) {
 378     old_gen->object_space()->check_mangled_unused_area_complete();
 379   }
 380 
 381   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 382 
 383   heap->print_heap_after_gc();
 384   heap->trace_heap_after_gc(_gc_tracer);
 385 
 386   heap->post_full_gc_dump(_gc_timer);
 387 
 388 #ifdef TRACESPINNING
 389   ParallelTaskTerminator::print_termination_counts();
 390 #endif
 391 
 392   _gc_timer->register_gc_end();
 393 
 394   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 395 
 396   return true;
 397 }
 398 
 399 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 400                                              PSYoungGen* young_gen,
 401                                              PSOldGen* old_gen) {
 402   MutableSpace* const eden_space = young_gen->eden_space();
 403   assert(!eden_space->is_empty(), "eden must be non-empty");
 404   assert(young_gen->virtual_space()->alignment() ==
 405          old_gen->virtual_space()->alignment(), "alignments do not match");
 406 
 407   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 408     return false;
 409   }
 410 
 411   // Both generations must be completely committed.
 412   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 413     return false;
 414   }
 415   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 416     return false;
 417   }
 418 
 419   // Figure out how much to take from eden.  Include the average amount promoted
 420   // in the total; otherwise the next young gen GC will simply bail out to a
 421   // full GC.
 422   const size_t alignment = old_gen->virtual_space()->alignment();
 423   const size_t eden_used = eden_space->used_in_bytes();
 424   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 425   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 426   const size_t eden_capacity = eden_space->capacity_in_bytes();
 427 
 428   if (absorb_size >= eden_capacity) {
 429     return false; // Must leave some space in eden.
 430   }
 431 
 432   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 433   if (new_young_size < young_gen->min_gen_size()) {
 434     return false; // Respect young gen minimum size.
 435   }
 436 
 437   if (TraceAdaptiveGCBoundary && Verbose) {
 438     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
 439                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 440                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 441                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 442                         absorb_size / K,
 443                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 444                         young_gen->from_space()->used_in_bytes() / K,
 445                         young_gen->to_space()->used_in_bytes() / K,
 446                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 447   }
 448 
 449   // Fill the unused part of the old gen.
 450   MutableSpace* const old_space = old_gen->object_space();
 451   HeapWord* const unused_start = old_space->top();
 452   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 453 
 454   if (unused_words > 0) {
 455     if (unused_words < CollectedHeap::min_fill_size()) {
 456       return false;  // If the old gen cannot be filled, must give up.
 457     }
 458     CollectedHeap::fill_with_objects(unused_start, unused_words);
 459   }
 460 
 461   // Take the live data from eden and set both top and end in the old gen to
 462   // eden top.  (Need to set end because reset_after_change() mangles the region
 463   // from end to virtual_space->high() in debug builds).
 464   HeapWord* const new_top = eden_space->top();
 465   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 466                                         absorb_size);
 467   young_gen->reset_after_change();
 468   old_space->set_top(new_top);
 469   old_space->set_end(new_top);
 470   old_gen->reset_after_change();
 471 
 472   // Update the object start array for the filler object and the data from eden.
 473   ObjectStartArray* const start_array = old_gen->start_array();
 474   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 475     start_array->allocate_block(p);
 476   }
 477 
 478   // Could update the promoted average here, but it is not typically updated at
 479   // full GCs and the value to use is unclear.  Something like
 480   //
 481   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 482 
 483   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 484   return true;
 485 }
 486 
 487 void PSMarkSweep::allocate_stacks() {
 488   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 489   PSYoungGen* young_gen = heap->young_gen();
 490 
 491   MutableSpace* to_space = young_gen->to_space();
 492   _preserved_marks = (PreservedMark*)to_space->top();
 493   _preserved_count = 0;
 494 
 495   // We want to calculate the size in bytes first.
 496   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 497   // Now divide by the size of a PreservedMark
 498   _preserved_count_max /= sizeof(PreservedMark);
 499 }
 500 
 501 
 502 void PSMarkSweep::deallocate_stacks() {
 503   _preserved_mark_stack.clear(true);
 504   _preserved_oop_stack.clear(true);
 505   _marking_stack.clear();
 506   _objarray_stack.clear(true);
 507 }
 508 
 509 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 510   // Recursively traverse all live objects and mark them
 511   GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 512 
 513   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 514 
 515   // Need to clear claim bits before the tracing starts.
 516   ClassLoaderDataGraph::clear_claimed_marks();
 517 
 518   // General strong roots.
 519   {
 520     ParallelScavengeHeap::ParStrongRootsScope psrs;
 521     Universe::oops_do(mark_and_push_closure());
 522     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 523     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
 524     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 525     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
 526     ObjectSynchronizer::oops_do(mark_and_push_closure());
 527     FlatProfiler::oops_do(mark_and_push_closure());
 528     Management::oops_do(mark_and_push_closure());
 529     JvmtiExport::oops_do(mark_and_push_closure());
 530     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 531     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
 532     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 533     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 534   }
 535 
 536   // Flush marking stack.
 537   follow_stack();
 538 
 539   // Process reference objects found during marking
 540   {
 541     ref_processor()->setup_policy(clear_all_softrefs);
 542     const ReferenceProcessorStats& stats =
 543       ref_processor()->process_discovered_references(
 544         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer, _gc_tracer->gc_id());
 545     gc_tracer()->report_gc_reference_stats(stats);
 546   }
 547 
 548   // This is the point where the entire marking should have completed.
 549   assert(_marking_stack.is_empty(), "Marking should have completed");
 550 
 551   // Unload classes and purge the SystemDictionary.
 552   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 553 
 554   // Unload nmethods.
 555   CodeCache::do_unloading(is_alive_closure(), purged_class);
 556 
 557   // Prune dead klasses from subklass/sibling/implementor lists.
 558   Klass::clean_weak_klass_links(is_alive_closure());
 559 
 560   // Delete entries for dead interned strings.
 561   StringTable::unlink(is_alive_closure());
 562 
 563   // Clean up unreferenced symbols in symbol table.
 564   SymbolTable::unlink();
 565   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 566 }
 567 
 568 
 569 void PSMarkSweep::mark_sweep_phase2() {
 570   GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 571 
 572   // Now all live objects are marked, compute the new object addresses.
 573 
 574   // It is not required that we traverse spaces in the same order in
 575   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 576   // tracking expects us to do so. See comment under phase4.
 577 
 578   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 579   PSOldGen* old_gen = heap->old_gen();
 580 
 581   // Begin compacting into the old gen
 582   PSMarkSweepDecorator::set_destination_decorator_tenured();
 583 
 584   // This will also compact the young gen spaces.
 585   old_gen->precompact();
 586 }
 587 
 588 // This should be moved to the shared markSweep code!
 589 class PSAlwaysTrueClosure: public BoolObjectClosure {
 590 public:
 591   bool do_object_b(oop p) { return true; }
 592 };
 593 static PSAlwaysTrueClosure always_true;
 594 
 595 void PSMarkSweep::mark_sweep_phase3() {
 596   // Adjust the pointers to reflect the new locations
 597   GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 598 
 599   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 600   PSYoungGen* young_gen = heap->young_gen();
 601   PSOldGen* old_gen = heap->old_gen();
 602 
 603   // Need to clear claim bits before the tracing starts.
 604   ClassLoaderDataGraph::clear_claimed_marks();
 605 
 606   // General strong roots.
 607   Universe::oops_do(adjust_pointer_closure());
 608   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 609   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
 610   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
 611   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 612   FlatProfiler::oops_do(adjust_pointer_closure());
 613   Management::oops_do(adjust_pointer_closure());
 614   JvmtiExport::oops_do(adjust_pointer_closure());
 615   SystemDictionary::oops_do(adjust_pointer_closure());
 616   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 617 
 618   // Now adjust pointers in remaining weak roots.  (All of which should
 619   // have been cleared if they pointed to non-surviving objects.)
 620   // Global (weak) JNI handles
 621   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
 622 
 623   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 624   CodeCache::blobs_do(&adjust_from_blobs);
 625   StringTable::oops_do(adjust_pointer_closure());
 626   ref_processor()->weak_oops_do(adjust_pointer_closure());
 627   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 628 
 629   adjust_marks();
 630 
 631   young_gen->adjust_pointers();
 632   old_gen->adjust_pointers();
 633 }
 634 
 635 void PSMarkSweep::mark_sweep_phase4() {
 636   EventMark m("4 compact heap");
 637   GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 638 
 639   // All pointers are now adjusted, move objects accordingly
 640 
 641   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 642   PSYoungGen* young_gen = heap->young_gen();
 643   PSOldGen* old_gen = heap->old_gen();
 644 
 645   old_gen->compact();
 646   young_gen->compact();
 647 }
 648 
 649 jlong PSMarkSweep::millis_since_last_gc() {
 650   // We need a monotonically non-decreasing time in ms but
 651   // os::javaTimeMillis() does not guarantee monotonicity.
 652   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 653   jlong ret_val = now - _time_of_last_gc;
 654   // XXX See note in genCollectedHeap::millis_since_last_gc().
 655   if (ret_val < 0) {
 656     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
 657     return 0;
 658   }
 659   return ret_val;
 660 }
 661 
 662 void PSMarkSweep::reset_millis_since_last_gc() {
 663   // We need a monotonically non-decreasing time in ms but
 664   // os::javaTimeMillis() does not guarantee monotonicity.
 665   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 666 }