1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcId.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "memory/allocation.hpp"
  58 #include "memory/iterator.inline.hpp"
  59 #include "memory/padded.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "runtime/atomic.inline.hpp"
  64 #include "runtime/globals_extension.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "services/memoryService.hpp"
  70 #include "services/runtimeService.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 // statics
  74 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  75 bool CMSCollector::_full_gc_requested = false;
  76 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  77 
  78 //////////////////////////////////////////////////////////////////
  79 // In support of CMS/VM thread synchronization
  80 //////////////////////////////////////////////////////////////////
  81 // We split use of the CGC_lock into 2 "levels".
  82 // The low-level locking is of the usual CGC_lock monitor. We introduce
  83 // a higher level "token" (hereafter "CMS token") built on top of the
  84 // low level monitor (hereafter "CGC lock").
  85 // The token-passing protocol gives priority to the VM thread. The
  86 // CMS-lock doesn't provide any fairness guarantees, but clients
  87 // should ensure that it is only held for very short, bounded
  88 // durations.
  89 //
  90 // When either of the CMS thread or the VM thread is involved in
  91 // collection operations during which it does not want the other
  92 // thread to interfere, it obtains the CMS token.
  93 //
  94 // If either thread tries to get the token while the other has
  95 // it, that thread waits. However, if the VM thread and CMS thread
  96 // both want the token, then the VM thread gets priority while the
  97 // CMS thread waits. This ensures, for instance, that the "concurrent"
  98 // phases of the CMS thread's work do not block out the VM thread
  99 // for long periods of time as the CMS thread continues to hog
 100 // the token. (See bug 4616232).
 101 //
 102 // The baton-passing functions are, however, controlled by the
 103 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 104 // and here the low-level CMS lock, not the high level token,
 105 // ensures mutual exclusion.
 106 //
 107 // Two important conditions that we have to satisfy:
 108 // 1. if a thread does a low-level wait on the CMS lock, then it
 109 //    relinquishes the CMS token if it were holding that token
 110 //    when it acquired the low-level CMS lock.
 111 // 2. any low-level notifications on the low-level lock
 112 //    should only be sent when a thread has relinquished the token.
 113 //
 114 // In the absence of either property, we'd have potential deadlock.
 115 //
 116 // We protect each of the CMS (concurrent and sequential) phases
 117 // with the CMS _token_, not the CMS _lock_.
 118 //
 119 // The only code protected by CMS lock is the token acquisition code
 120 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 121 // baton-passing code.
 122 //
 123 // Unfortunately, i couldn't come up with a good abstraction to factor and
 124 // hide the naked CGC_lock manipulation in the baton-passing code
 125 // further below. That's something we should try to do. Also, the proof
 126 // of correctness of this 2-level locking scheme is far from obvious,
 127 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 128 // that there may be a theoretical possibility of delay/starvation in the
 129 // low-level lock/wait/notify scheme used for the baton-passing because of
 130 // potential interference with the priority scheme embodied in the
 131 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 132 // invocation further below and marked with "XXX 20011219YSR".
 133 // Indeed, as we note elsewhere, this may become yet more slippery
 134 // in the presence of multiple CMS and/or multiple VM threads. XXX
 135 
 136 class CMSTokenSync: public StackObj {
 137  private:
 138   bool _is_cms_thread;
 139  public:
 140   CMSTokenSync(bool is_cms_thread):
 141     _is_cms_thread(is_cms_thread) {
 142     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 143            "Incorrect argument to constructor");
 144     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 145   }
 146 
 147   ~CMSTokenSync() {
 148     assert(_is_cms_thread ?
 149              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 150              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 151           "Incorrect state");
 152     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 153   }
 154 };
 155 
 156 // Convenience class that does a CMSTokenSync, and then acquires
 157 // upto three locks.
 158 class CMSTokenSyncWithLocks: public CMSTokenSync {
 159  private:
 160   // Note: locks are acquired in textual declaration order
 161   // and released in the opposite order
 162   MutexLockerEx _locker1, _locker2, _locker3;
 163  public:
 164   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 165                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 166     CMSTokenSync(is_cms_thread),
 167     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 168     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 169     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 170   { }
 171 };
 172 
 173 
 174 //////////////////////////////////////////////////////////////////
 175 //  Concurrent Mark-Sweep Generation /////////////////////////////
 176 //////////////////////////////////////////////////////////////////
 177 
 178 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 179 
 180 // This struct contains per-thread things necessary to support parallel
 181 // young-gen collection.
 182 class CMSParGCThreadState: public CHeapObj<mtGC> {
 183  public:
 184   CFLS_LAB lab;
 185   PromotionInfo promo;
 186 
 187   // Constructor.
 188   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 189     promo.setSpace(cfls);
 190   }
 191 };
 192 
 193 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 194      ReservedSpace rs, size_t initial_byte_size,
 195      CardTableRS* ct, bool use_adaptive_freelists,
 196      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 197   CardGeneration(rs, initial_byte_size, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _did_compact(false)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 213                                            use_adaptive_freelists,
 214                                            dictionaryChoice);
 215   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 216   _cmsSpace->_old_gen = this;
 217 
 218   _gc_stats = new CMSGCStats();
 219 
 220   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 221   // offsets match. The ability to tell free chunks from objects
 222   // depends on this property.
 223   debug_only(
 224     FreeChunk* junk = NULL;
 225     assert(UseCompressedClassPointers ||
 226            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 227            "Offset of FreeChunk::_prev within FreeChunk must match"
 228            "  that of OopDesc::_klass within OopDesc");
 229   )
 230 
 231   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 232   for (uint i = 0; i < ParallelGCThreads; i++) {
 233     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 234   }
 235 
 236   _incremental_collection_failed = false;
 237   // The "dilatation_factor" is the expansion that can occur on
 238   // account of the fact that the minimum object size in the CMS
 239   // generation may be larger than that in, say, a contiguous young
 240   //  generation.
 241   // Ideally, in the calculation below, we'd compute the dilatation
 242   // factor as: MinChunkSize/(promoting_gen's min object size)
 243   // Since we do not have such a general query interface for the
 244   // promoting generation, we'll instead just use the minimum
 245   // object size (which today is a header's worth of space);
 246   // note that all arithmetic is in units of HeapWords.
 247   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 248   assert(_dilatation_factor >= 1.0, "from previous assert");
 249 }
 250 
 251 
 252 // The field "_initiating_occupancy" represents the occupancy percentage
 253 // at which we trigger a new collection cycle.  Unless explicitly specified
 254 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 255 // is calculated by:
 256 //
 257 //   Let "f" be MinHeapFreeRatio in
 258 //
 259 //    _initiating_occupancy = 100-f +
 260 //                           f * (CMSTriggerRatio/100)
 261 //   where CMSTriggerRatio is the argument "tr" below.
 262 //
 263 // That is, if we assume the heap is at its desired maximum occupancy at the
 264 // end of a collection, we let CMSTriggerRatio of the (purported) free
 265 // space be allocated before initiating a new collection cycle.
 266 //
 267 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 268   assert(io <= 100 && tr <= 100, "Check the arguments");
 269   if (io >= 0) {
 270     _initiating_occupancy = (double)io / 100.0;
 271   } else {
 272     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 273                              (double)(tr * MinHeapFreeRatio) / 100.0)
 274                             / 100.0;
 275   }
 276 }
 277 
 278 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 279   assert(collector() != NULL, "no collector");
 280   collector()->ref_processor_init();
 281 }
 282 
 283 void CMSCollector::ref_processor_init() {
 284   if (_ref_processor == NULL) {
 285     // Allocate and initialize a reference processor
 286     _ref_processor =
 287       new ReferenceProcessor(_span,                               // span
 288                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 289                              ParallelGCThreads,                   // mt processing degree
 290                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 291                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 292                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 293                              &_is_alive_closure);                 // closure for liveness info
 294     // Initialize the _ref_processor field of CMSGen
 295     _cmsGen->set_ref_processor(_ref_processor);
 296 
 297   }
 298 }
 299 
 300 AdaptiveSizePolicy* CMSCollector::size_policy() {
 301   GenCollectedHeap* gch = GenCollectedHeap::heap();
 302   return gch->gen_policy()->size_policy();
 303 }
 304 
 305 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 306 
 307   const char* gen_name = "old";
 308   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 309   // Generation Counters - generation 1, 1 subspace
 310   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 311       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 312 
 313   _space_counters = new GSpaceCounters(gen_name, 0,
 314                                        _virtual_space.reserved_size(),
 315                                        this, _gen_counters);
 316 }
 317 
 318 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 319   _cms_gen(cms_gen)
 320 {
 321   assert(alpha <= 100, "bad value");
 322   _saved_alpha = alpha;
 323 
 324   // Initialize the alphas to the bootstrap value of 100.
 325   _gc0_alpha = _cms_alpha = 100;
 326 
 327   _cms_begin_time.update();
 328   _cms_end_time.update();
 329 
 330   _gc0_duration = 0.0;
 331   _gc0_period = 0.0;
 332   _gc0_promoted = 0;
 333 
 334   _cms_duration = 0.0;
 335   _cms_period = 0.0;
 336   _cms_allocated = 0;
 337 
 338   _cms_used_at_gc0_begin = 0;
 339   _cms_used_at_gc0_end = 0;
 340   _allow_duty_cycle_reduction = false;
 341   _valid_bits = 0;
 342 }
 343 
 344 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 345   // TBD: CR 6909490
 346   return 1.0;
 347 }
 348 
 349 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 350 }
 351 
 352 // If promotion failure handling is on use
 353 // the padded average size of the promotion for each
 354 // young generation collection.
 355 double CMSStats::time_until_cms_gen_full() const {
 356   size_t cms_free = _cms_gen->cmsSpace()->free();
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 359                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 360   if (cms_free > expected_promotion) {
 361     // Start a cms collection if there isn't enough space to promote
 362     // for the next young collection.  Use the padded average as
 363     // a safety factor.
 364     cms_free -= expected_promotion;
 365 
 366     // Adjust by the safety factor.
 367     double cms_free_dbl = (double)cms_free;
 368     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 369     // Apply a further correction factor which tries to adjust
 370     // for recent occurance of concurrent mode failures.
 371     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 372     cms_free_dbl = cms_free_dbl * cms_adjustment;
 373 
 374     if (PrintGCDetails && Verbose) {
 375       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 376         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377         cms_free, expected_promotion);
 378       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 379         cms_free_dbl, cms_consumption_rate() + 1.0);
 380     }
 381     // Add 1 in case the consumption rate goes to zero.
 382     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 383   }
 384   return 0.0;
 385 }
 386 
 387 // Compare the duration of the cms collection to the
 388 // time remaining before the cms generation is empty.
 389 // Note that the time from the start of the cms collection
 390 // to the start of the cms sweep (less than the total
 391 // duration of the cms collection) can be used.  This
 392 // has been tried and some applications experienced
 393 // promotion failures early in execution.  This was
 394 // possibly because the averages were not accurate
 395 // enough at the beginning.
 396 double CMSStats::time_until_cms_start() const {
 397   // We add "gc0_period" to the "work" calculation
 398   // below because this query is done (mostly) at the
 399   // end of a scavenge, so we need to conservatively
 400   // account for that much possible delay
 401   // in the query so as to avoid concurrent mode failures
 402   // due to starting the collection just a wee bit too
 403   // late.
 404   double work = cms_duration() + gc0_period();
 405   double deadline = time_until_cms_gen_full();
 406   // If a concurrent mode failure occurred recently, we want to be
 407   // more conservative and halve our expected time_until_cms_gen_full()
 408   if (work > deadline) {
 409     if (Verbose && PrintGCDetails) {
 410       gclog_or_tty->print(
 411         " CMSCollector: collect because of anticipated promotion "
 412         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 413         gc0_period(), time_until_cms_gen_full());
 414     }
 415     return 0.0;
 416   }
 417   return work - deadline;
 418 }
 419 
 420 #ifndef PRODUCT
 421 void CMSStats::print_on(outputStream *st) const {
 422   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 423   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 424                gc0_duration(), gc0_period(), gc0_promoted());
 425   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 426             cms_duration(), cms_period(), cms_allocated());
 427   st->print(",cms_since_beg=%g,cms_since_end=%g",
 428             cms_time_since_begin(), cms_time_since_end());
 429   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 430             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 431 
 432   if (valid()) {
 433     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 434               promotion_rate(), cms_allocation_rate());
 435     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 436               cms_consumption_rate(), time_until_cms_gen_full());
 437   }
 438   st->print(" ");
 439 }
 440 #endif // #ifndef PRODUCT
 441 
 442 CMSCollector::CollectorState CMSCollector::_collectorState =
 443                              CMSCollector::Idling;
 444 bool CMSCollector::_foregroundGCIsActive = false;
 445 bool CMSCollector::_foregroundGCShouldWait = false;
 446 
 447 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 448                            CardTableRS*                   ct,
 449                            ConcurrentMarkSweepPolicy*     cp):
 450   _cmsGen(cmsGen),
 451   _ct(ct),
 452   _ref_processor(NULL),    // will be set later
 453   _conc_workers(NULL),     // may be set later
 454   _abort_preclean(false),
 455   _start_sampling(false),
 456   _between_prologue_and_epilogue(false),
 457   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 458   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 459                  -1 /* lock-free */, "No_lock" /* dummy */),
 460   _modUnionClosurePar(&_modUnionTable),
 461   // Adjust my span to cover old (cms) gen
 462   _span(cmsGen->reserved()),
 463   // Construct the is_alive_closure with _span & markBitMap
 464   _is_alive_closure(_span, &_markBitMap),
 465   _restart_addr(NULL),
 466   _overflow_list(NULL),
 467   _stats(cmsGen),
 468   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 469                              //verify that this lock should be acquired with safepoint check.
 470                              Monitor::_safepoint_check_sometimes)),
 471   _eden_chunk_array(NULL),     // may be set in ctor body
 472   _eden_chunk_capacity(0),     // -- ditto --
 473   _eden_chunk_index(0),        // -- ditto --
 474   _survivor_plab_array(NULL),  // -- ditto --
 475   _survivor_chunk_array(NULL), // -- ditto --
 476   _survivor_chunk_capacity(0), // -- ditto --
 477   _survivor_chunk_index(0),    // -- ditto --
 478   _ser_pmc_preclean_ovflw(0),
 479   _ser_kac_preclean_ovflw(0),
 480   _ser_pmc_remark_ovflw(0),
 481   _par_pmc_remark_ovflw(0),
 482   _ser_kac_ovflw(0),
 483   _par_kac_ovflw(0),
 484 #ifndef PRODUCT
 485   _num_par_pushes(0),
 486 #endif
 487   _collection_count_start(0),
 488   _verifying(false),
 489   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 490   _completed_initialization(false),
 491   _collector_policy(cp),
 492   _should_unload_classes(CMSClassUnloadingEnabled),
 493   _concurrent_cycles_since_last_unload(0),
 494   _roots_scanning_options(GenCollectedHeap::SO_None),
 495   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 497   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 498   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 499   _cms_start_registered(false)
 500 {
 501   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 502     ExplicitGCInvokesConcurrent = true;
 503   }
 504   // Now expand the span and allocate the collection support structures
 505   // (MUT, marking bit map etc.) to cover both generations subject to
 506   // collection.
 507 
 508   // For use by dirty card to oop closures.
 509   _cmsGen->cmsSpace()->set_collector(this);
 510 
 511   // Allocate MUT and marking bit map
 512   {
 513     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 514     if (!_markBitMap.allocate(_span)) {
 515       warning("Failed to allocate CMS Bit Map");
 516       return;
 517     }
 518     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 519   }
 520   {
 521     _modUnionTable.allocate(_span);
 522     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 523   }
 524 
 525   if (!_markStack.allocate(MarkStackSize)) {
 526     warning("Failed to allocate CMS Marking Stack");
 527     return;
 528   }
 529 
 530   // Support for multi-threaded concurrent phases
 531   if (CMSConcurrentMTEnabled) {
 532     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 533       // just for now
 534       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 535     }
 536     if (ConcGCThreads > 1) {
 537       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 538                                  ConcGCThreads, true);
 539       if (_conc_workers == NULL) {
 540         warning("GC/CMS: _conc_workers allocation failure: "
 541               "forcing -CMSConcurrentMTEnabled");
 542         CMSConcurrentMTEnabled = false;
 543       } else {
 544         _conc_workers->initialize_workers();
 545       }
 546     } else {
 547       CMSConcurrentMTEnabled = false;
 548     }
 549   }
 550   if (!CMSConcurrentMTEnabled) {
 551     ConcGCThreads = 0;
 552   } else {
 553     // Turn off CMSCleanOnEnter optimization temporarily for
 554     // the MT case where it's not fixed yet; see 6178663.
 555     CMSCleanOnEnter = false;
 556   }
 557   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 558          "Inconsistency");
 559 
 560   // Parallel task queues; these are shared for the
 561   // concurrent and stop-world phases of CMS, but
 562   // are not shared with parallel scavenge (ParNew).
 563   {
 564     uint i;
 565     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 566 
 567     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 568          || ParallelRefProcEnabled)
 569         && num_queues > 0) {
 570       _task_queues = new OopTaskQueueSet(num_queues);
 571       if (_task_queues == NULL) {
 572         warning("task_queues allocation failure.");
 573         return;
 574       }
 575       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 576       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 577       for (i = 0; i < num_queues; i++) {
 578         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 579         if (q == NULL) {
 580           warning("work_queue allocation failure.");
 581           return;
 582         }
 583         _task_queues->register_queue(i, q);
 584       }
 585       for (i = 0; i < num_queues; i++) {
 586         _task_queues->queue(i)->initialize();
 587         _hash_seed[i] = 17;  // copied from ParNew
 588       }
 589     }
 590   }
 591 
 592   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 593 
 594   // Clip CMSBootstrapOccupancy between 0 and 100.
 595   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 596 
 597   // Now tell CMS generations the identity of their collector
 598   ConcurrentMarkSweepGeneration::set_collector(this);
 599 
 600   // Create & start a CMS thread for this CMS collector
 601   _cmsThread = ConcurrentMarkSweepThread::start(this);
 602   assert(cmsThread() != NULL, "CMS Thread should have been created");
 603   assert(cmsThread()->collector() == this,
 604          "CMS Thread should refer to this gen");
 605   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 606 
 607   // Support for parallelizing young gen rescan
 608   GenCollectedHeap* gch = GenCollectedHeap::heap();
 609   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 610   _young_gen = (ParNewGeneration*)gch->young_gen();
 611   if (gch->supports_inline_contig_alloc()) {
 612     _top_addr = gch->top_addr();
 613     _end_addr = gch->end_addr();
 614     assert(_young_gen != NULL, "no _young_gen");
 615     _eden_chunk_index = 0;
 616     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 617     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 618   }
 619 
 620   // Support for parallelizing survivor space rescan
 621   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 622     const size_t max_plab_samples =
 623       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 624 
 625     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 626     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 627     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 628     _survivor_chunk_capacity = max_plab_samples;
 629     for (uint i = 0; i < ParallelGCThreads; i++) {
 630       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 631       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 632       assert(cur->end() == 0, "Should be 0");
 633       assert(cur->array() == vec, "Should be vec");
 634       assert(cur->capacity() == max_plab_samples, "Error");
 635     }
 636   }
 637 
 638   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 639   _gc_counters = new CollectorCounters("CMS", 1);
 640   _completed_initialization = true;
 641   _inter_sweep_timer.start();  // start of time
 642 }
 643 
 644 const char* ConcurrentMarkSweepGeneration::name() const {
 645   return "concurrent mark-sweep generation";
 646 }
 647 void ConcurrentMarkSweepGeneration::update_counters() {
 648   if (UsePerfData) {
 649     _space_counters->update_all();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 // this is an optimized version of update_counters(). it takes the
 655 // used value as a parameter rather than computing it.
 656 //
 657 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 658   if (UsePerfData) {
 659     _space_counters->update_used(used);
 660     _space_counters->update_capacity();
 661     _gen_counters->update_all();
 662   }
 663 }
 664 
 665 void ConcurrentMarkSweepGeneration::print() const {
 666   Generation::print();
 667   cmsSpace()->print();
 668 }
 669 
 670 #ifndef PRODUCT
 671 void ConcurrentMarkSweepGeneration::print_statistics() {
 672   cmsSpace()->printFLCensus(0);
 673 }
 674 #endif
 675 
 676 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 677   GenCollectedHeap* gch = GenCollectedHeap::heap();
 678   if (PrintGCDetails) {
 679     // I didn't want to change the logging when removing the level concept,
 680     // but I guess this logging could say "old" or something instead of "1".
 681     assert(gch->is_old_gen(this),
 682            "The CMS generation should be the old generation");
 683     uint level = 1;
 684     if (Verbose) {
 685       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 686         level, short_name(), s, used(), capacity());
 687     } else {
 688       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 689         level, short_name(), s, used() / K, capacity() / K);
 690     }
 691   }
 692   if (Verbose) {
 693     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 694               gch->used(), gch->capacity());
 695   } else {
 696     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 697               gch->used() / K, gch->capacity() / K);
 698   }
 699 }
 700 
 701 size_t
 702 ConcurrentMarkSweepGeneration::contiguous_available() const {
 703   // dld proposes an improvement in precision here. If the committed
 704   // part of the space ends in a free block we should add that to
 705   // uncommitted size in the calculation below. Will make this
 706   // change later, staying with the approximation below for the
 707   // time being. -- ysr.
 708   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 709 }
 710 
 711 size_t
 712 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 713   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 714 }
 715 
 716 size_t ConcurrentMarkSweepGeneration::max_available() const {
 717   return free() + _virtual_space.uncommitted_size();
 718 }
 719 
 720 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 721   size_t available = max_available();
 722   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 723   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 724   if (Verbose && PrintGCDetails) {
 725     gclog_or_tty->print_cr(
 726       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 727       "max_promo(" SIZE_FORMAT ")",
 728       res? "":" not", available, res? ">=":"<",
 729       av_promo, max_promotion_in_bytes);
 730   }
 731   return res;
 732 }
 733 
 734 // At a promotion failure dump information on block layout in heap
 735 // (cms old generation).
 736 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 737   if (CMSDumpAtPromotionFailure) {
 738     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 739   }
 740 }
 741 
 742 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 743   // Clear the promotion information.  These pointers can be adjusted
 744   // along with all the other pointers into the heap but
 745   // compaction is expected to be a rare event with
 746   // a heap using cms so don't do it without seeing the need.
 747   for (uint i = 0; i < ParallelGCThreads; i++) {
 748     _par_gc_thread_states[i]->promo.reset();
 749   }
 750 }
 751 
 752 void ConcurrentMarkSweepGeneration::compute_new_size() {
 753   assert_locked_or_safepoint(Heap_lock);
 754 
 755   // If incremental collection failed, we just want to expand
 756   // to the limit.
 757   if (incremental_collection_failed()) {
 758     clear_incremental_collection_failed();
 759     grow_to_reserved();
 760     return;
 761   }
 762 
 763   // The heap has been compacted but not reset yet.
 764   // Any metric such as free() or used() will be incorrect.
 765 
 766   CardGeneration::compute_new_size();
 767 
 768   // Reset again after a possible resizing
 769   if (did_compact()) {
 770     cmsSpace()->reset_after_compaction();
 771   }
 772 }
 773 
 774 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 775   assert_locked_or_safepoint(Heap_lock);
 776 
 777   // If incremental collection failed, we just want to expand
 778   // to the limit.
 779   if (incremental_collection_failed()) {
 780     clear_incremental_collection_failed();
 781     grow_to_reserved();
 782     return;
 783   }
 784 
 785   double free_percentage = ((double) free()) / capacity();
 786   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 787   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 788 
 789   // compute expansion delta needed for reaching desired free percentage
 790   if (free_percentage < desired_free_percentage) {
 791     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 792     assert(desired_capacity >= capacity(), "invalid expansion size");
 793     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 794     if (PrintGCDetails && Verbose) {
 795       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 796       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 797       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 798       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 799       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 800       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity() / 1000);
 801       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 802       GenCollectedHeap* gch = GenCollectedHeap::heap();
 803       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 804       size_t young_size = gch->young_gen()->capacity();
 805       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 806       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 807       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 808       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 809     }
 810     // safe if expansion fails
 811     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 812     if (PrintGCDetails && Verbose) {
 813       gclog_or_tty->print_cr("  Expanded free fraction %f", ((double) free()) / capacity());
 814     }
 815   } else {
 816     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 817     assert(desired_capacity <= capacity(), "invalid expansion size");
 818     size_t shrink_bytes = capacity() - desired_capacity;
 819     // Don't shrink unless the delta is greater than the minimum shrink we want
 820     if (shrink_bytes >= MinHeapDeltaBytes) {
 821       shrink_free_list_by(shrink_bytes);
 822     }
 823   }
 824 }
 825 
 826 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 827   return cmsSpace()->freelistLock();
 828 }
 829 
 830 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 831   CMSSynchronousYieldRequest yr;
 832   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 833   return have_lock_and_allocate(size, tlab);
 834 }
 835 
 836 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 837                                                                 bool   tlab /* ignored */) {
 838   assert_lock_strong(freelistLock());
 839   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 840   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 841   // Allocate the object live (grey) if the background collector has
 842   // started marking. This is necessary because the marker may
 843   // have passed this address and consequently this object will
 844   // not otherwise be greyed and would be incorrectly swept up.
 845   // Note that if this object contains references, the writing
 846   // of those references will dirty the card containing this object
 847   // allowing the object to be blackened (and its references scanned)
 848   // either during a preclean phase or at the final checkpoint.
 849   if (res != NULL) {
 850     // We may block here with an uninitialized object with
 851     // its mark-bit or P-bits not yet set. Such objects need
 852     // to be safely navigable by block_start().
 853     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 854     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 855     collector()->direct_allocated(res, adjustedSize);
 856     _direct_allocated_words += adjustedSize;
 857     // allocation counters
 858     NOT_PRODUCT(
 859       _numObjectsAllocated++;
 860       _numWordsAllocated += (int)adjustedSize;
 861     )
 862   }
 863   return res;
 864 }
 865 
 866 // In the case of direct allocation by mutators in a generation that
 867 // is being concurrently collected, the object must be allocated
 868 // live (grey) if the background collector has started marking.
 869 // This is necessary because the marker may
 870 // have passed this address and consequently this object will
 871 // not otherwise be greyed and would be incorrectly swept up.
 872 // Note that if this object contains references, the writing
 873 // of those references will dirty the card containing this object
 874 // allowing the object to be blackened (and its references scanned)
 875 // either during a preclean phase or at the final checkpoint.
 876 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 877   assert(_markBitMap.covers(start, size), "Out of bounds");
 878   if (_collectorState >= Marking) {
 879     MutexLockerEx y(_markBitMap.lock(),
 880                     Mutex::_no_safepoint_check_flag);
 881     // [see comments preceding SweepClosure::do_blk() below for details]
 882     //
 883     // Can the P-bits be deleted now?  JJJ
 884     //
 885     // 1. need to mark the object as live so it isn't collected
 886     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 887     // 3. need to mark the end of the object so marking, precleaning or sweeping
 888     //    can skip over uninitialized or unparsable objects. An allocated
 889     //    object is considered uninitialized for our purposes as long as
 890     //    its klass word is NULL.  All old gen objects are parsable
 891     //    as soon as they are initialized.)
 892     _markBitMap.mark(start);          // object is live
 893     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 894     _markBitMap.mark(start + size - 1);
 895                                       // mark end of object
 896   }
 897   // check that oop looks uninitialized
 898   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 899 }
 900 
 901 void CMSCollector::promoted(bool par, HeapWord* start,
 902                             bool is_obj_array, size_t obj_size) {
 903   assert(_markBitMap.covers(start), "Out of bounds");
 904   // See comment in direct_allocated() about when objects should
 905   // be allocated live.
 906   if (_collectorState >= Marking) {
 907     // we already hold the marking bit map lock, taken in
 908     // the prologue
 909     if (par) {
 910       _markBitMap.par_mark(start);
 911     } else {
 912       _markBitMap.mark(start);
 913     }
 914     // We don't need to mark the object as uninitialized (as
 915     // in direct_allocated above) because this is being done with the
 916     // world stopped and the object will be initialized by the
 917     // time the marking, precleaning or sweeping get to look at it.
 918     // But see the code for copying objects into the CMS generation,
 919     // where we need to ensure that concurrent readers of the
 920     // block offset table are able to safely navigate a block that
 921     // is in flux from being free to being allocated (and in
 922     // transition while being copied into) and subsequently
 923     // becoming a bona-fide object when the copy/promotion is complete.
 924     assert(SafepointSynchronize::is_at_safepoint(),
 925            "expect promotion only at safepoints");
 926 
 927     if (_collectorState < Sweeping) {
 928       // Mark the appropriate cards in the modUnionTable, so that
 929       // this object gets scanned before the sweep. If this is
 930       // not done, CMS generation references in the object might
 931       // not get marked.
 932       // For the case of arrays, which are otherwise precisely
 933       // marked, we need to dirty the entire array, not just its head.
 934       if (is_obj_array) {
 935         // The [par_]mark_range() method expects mr.end() below to
 936         // be aligned to the granularity of a bit's representation
 937         // in the heap. In the case of the MUT below, that's a
 938         // card size.
 939         MemRegion mr(start,
 940                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 941                         CardTableModRefBS::card_size /* bytes */));
 942         if (par) {
 943           _modUnionTable.par_mark_range(mr);
 944         } else {
 945           _modUnionTable.mark_range(mr);
 946         }
 947       } else {  // not an obj array; we can just mark the head
 948         if (par) {
 949           _modUnionTable.par_mark(start);
 950         } else {
 951           _modUnionTable.mark(start);
 952         }
 953       }
 954     }
 955   }
 956 }
 957 
 958 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 959   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 960   // allocate, copy and if necessary update promoinfo --
 961   // delegate to underlying space.
 962   assert_lock_strong(freelistLock());
 963 
 964 #ifndef PRODUCT
 965   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 966     return NULL;
 967   }
 968 #endif  // #ifndef PRODUCT
 969 
 970   oop res = _cmsSpace->promote(obj, obj_size);
 971   if (res == NULL) {
 972     // expand and retry
 973     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 974     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 975     // Since this is the old generation, we don't try to promote
 976     // into a more senior generation.
 977     res = _cmsSpace->promote(obj, obj_size);
 978   }
 979   if (res != NULL) {
 980     // See comment in allocate() about when objects should
 981     // be allocated live.
 982     assert(obj->is_oop(), "Will dereference klass pointer below");
 983     collector()->promoted(false,           // Not parallel
 984                           (HeapWord*)res, obj->is_objArray(), obj_size);
 985     // promotion counters
 986     NOT_PRODUCT(
 987       _numObjectsPromoted++;
 988       _numWordsPromoted +=
 989         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 990     )
 991   }
 992   return res;
 993 }
 994 
 995 
 996 // IMPORTANT: Notes on object size recognition in CMS.
 997 // ---------------------------------------------------
 998 // A block of storage in the CMS generation is always in
 999 // one of three states. A free block (FREE), an allocated
1000 // object (OBJECT) whose size() method reports the correct size,
1001 // and an intermediate state (TRANSIENT) in which its size cannot
1002 // be accurately determined.
1003 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1004 // -----------------------------------------------------
1005 // FREE:      klass_word & 1 == 1; mark_word holds block size
1006 //
1007 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1008 //            obj->size() computes correct size
1009 //
1010 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1011 //
1012 // STATE IDENTIFICATION: (64 bit+COOPS)
1013 // ------------------------------------
1014 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1015 //
1016 // OBJECT:    klass_word installed; klass_word != 0;
1017 //            obj->size() computes correct size
1018 //
1019 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1020 //
1021 //
1022 // STATE TRANSITION DIAGRAM
1023 //
1024 //        mut / parnew                     mut  /  parnew
1025 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1026 //  ^                                                                   |
1027 //  |------------------------ DEAD <------------------------------------|
1028 //         sweep                            mut
1029 //
1030 // While a block is in TRANSIENT state its size cannot be determined
1031 // so readers will either need to come back later or stall until
1032 // the size can be determined. Note that for the case of direct
1033 // allocation, P-bits, when available, may be used to determine the
1034 // size of an object that may not yet have been initialized.
1035 
1036 // Things to support parallel young-gen collection.
1037 oop
1038 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1039                                            oop old, markOop m,
1040                                            size_t word_sz) {
1041 #ifndef PRODUCT
1042   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1043     return NULL;
1044   }
1045 #endif  // #ifndef PRODUCT
1046 
1047   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1048   PromotionInfo* promoInfo = &ps->promo;
1049   // if we are tracking promotions, then first ensure space for
1050   // promotion (including spooling space for saving header if necessary).
1051   // then allocate and copy, then track promoted info if needed.
1052   // When tracking (see PromotionInfo::track()), the mark word may
1053   // be displaced and in this case restoration of the mark word
1054   // occurs in the (oop_since_save_marks_)iterate phase.
1055   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1056     // Out of space for allocating spooling buffers;
1057     // try expanding and allocating spooling buffers.
1058     if (!expand_and_ensure_spooling_space(promoInfo)) {
1059       return NULL;
1060     }
1061   }
1062   assert(promoInfo->has_spooling_space(), "Control point invariant");
1063   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1064   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1065   if (obj_ptr == NULL) {
1066      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1067      if (obj_ptr == NULL) {
1068        return NULL;
1069      }
1070   }
1071   oop obj = oop(obj_ptr);
1072   OrderAccess::storestore();
1073   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1074   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1075   // IMPORTANT: See note on object initialization for CMS above.
1076   // Otherwise, copy the object.  Here we must be careful to insert the
1077   // klass pointer last, since this marks the block as an allocated object.
1078   // Except with compressed oops it's the mark word.
1079   HeapWord* old_ptr = (HeapWord*)old;
1080   // Restore the mark word copied above.
1081   obj->set_mark(m);
1082   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1083   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1084   OrderAccess::storestore();
1085 
1086   if (UseCompressedClassPointers) {
1087     // Copy gap missed by (aligned) header size calculation below
1088     obj->set_klass_gap(old->klass_gap());
1089   }
1090   if (word_sz > (size_t)oopDesc::header_size()) {
1091     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1092                                  obj_ptr + oopDesc::header_size(),
1093                                  word_sz - oopDesc::header_size());
1094   }
1095 
1096   // Now we can track the promoted object, if necessary.  We take care
1097   // to delay the transition from uninitialized to full object
1098   // (i.e., insertion of klass pointer) until after, so that it
1099   // atomically becomes a promoted object.
1100   if (promoInfo->tracking()) {
1101     promoInfo->track((PromotedObject*)obj, old->klass());
1102   }
1103   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1104   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1105   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1106 
1107   // Finally, install the klass pointer (this should be volatile).
1108   OrderAccess::storestore();
1109   obj->set_klass(old->klass());
1110   // We should now be able to calculate the right size for this object
1111   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1112 
1113   collector()->promoted(true,          // parallel
1114                         obj_ptr, old->is_objArray(), word_sz);
1115 
1116   NOT_PRODUCT(
1117     Atomic::inc_ptr(&_numObjectsPromoted);
1118     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1119   )
1120 
1121   return obj;
1122 }
1123 
1124 void
1125 ConcurrentMarkSweepGeneration::
1126 par_promote_alloc_done(int thread_num) {
1127   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1128   ps->lab.retire(thread_num);
1129 }
1130 
1131 void
1132 ConcurrentMarkSweepGeneration::
1133 par_oop_since_save_marks_iterate_done(int thread_num) {
1134   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1135   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1136   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1137 }
1138 
1139 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1140                                                    size_t size,
1141                                                    bool   tlab)
1142 {
1143   // We allow a STW collection only if a full
1144   // collection was requested.
1145   return full || should_allocate(size, tlab); // FIX ME !!!
1146   // This and promotion failure handling are connected at the
1147   // hip and should be fixed by untying them.
1148 }
1149 
1150 bool CMSCollector::shouldConcurrentCollect() {
1151   if (_full_gc_requested) {
1152     if (Verbose && PrintGCDetails) {
1153       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1154                              " gc request (or gc_locker)");
1155     }
1156     return true;
1157   }
1158 
1159   FreelistLocker x(this);
1160   // ------------------------------------------------------------------
1161   // Print out lots of information which affects the initiation of
1162   // a collection.
1163   if (PrintCMSInitiationStatistics && stats().valid()) {
1164     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1165     gclog_or_tty->stamp();
1166     gclog_or_tty->cr();
1167     stats().print_on(gclog_or_tty);
1168     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1169       stats().time_until_cms_gen_full());
1170     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1171     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1172                            _cmsGen->contiguous_available());
1173     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1174     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1175     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1176     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1177     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1178     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1179     gclog_or_tty->print_cr("metadata initialized %d",
1180       MetaspaceGC::should_concurrent_collect());
1181   }
1182   // ------------------------------------------------------------------
1183 
1184   // If the estimated time to complete a cms collection (cms_duration())
1185   // is less than the estimated time remaining until the cms generation
1186   // is full, start a collection.
1187   if (!UseCMSInitiatingOccupancyOnly) {
1188     if (stats().valid()) {
1189       if (stats().time_until_cms_start() == 0.0) {
1190         return true;
1191       }
1192     } else {
1193       // We want to conservatively collect somewhat early in order
1194       // to try and "bootstrap" our CMS/promotion statistics;
1195       // this branch will not fire after the first successful CMS
1196       // collection because the stats should then be valid.
1197       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1198         if (Verbose && PrintGCDetails) {
1199           gclog_or_tty->print_cr(
1200             " CMSCollector: collect for bootstrapping statistics:"
1201             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1202             _bootstrap_occupancy);
1203         }
1204         return true;
1205       }
1206     }
1207   }
1208 
1209   // Otherwise, we start a collection cycle if
1210   // old gen want a collection cycle started. Each may use
1211   // an appropriate criterion for making this decision.
1212   // XXX We need to make sure that the gen expansion
1213   // criterion dovetails well with this. XXX NEED TO FIX THIS
1214   if (_cmsGen->should_concurrent_collect()) {
1215     if (Verbose && PrintGCDetails) {
1216       gclog_or_tty->print_cr("CMS old gen initiated");
1217     }
1218     return true;
1219   }
1220 
1221   // We start a collection if we believe an incremental collection may fail;
1222   // this is not likely to be productive in practice because it's probably too
1223   // late anyway.
1224   GenCollectedHeap* gch = GenCollectedHeap::heap();
1225   assert(gch->collector_policy()->is_generation_policy(),
1226          "You may want to check the correctness of the following");
1227   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1228     if (Verbose && PrintGCDetails) {
1229       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1230     }
1231     return true;
1232   }
1233 
1234   if (MetaspaceGC::should_concurrent_collect()) {
1235     if (Verbose && PrintGCDetails) {
1236       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1237     }
1238     return true;
1239   }
1240 
1241   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1242   if (CMSTriggerInterval >= 0) {
1243     if (CMSTriggerInterval == 0) {
1244       // Trigger always
1245       return true;
1246     }
1247 
1248     // Check the CMS time since begin (we do not check the stats validity
1249     // as we want to be able to trigger the first CMS cycle as well)
1250     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1251       if (Verbose && PrintGCDetails) {
1252         if (stats().valid()) {
1253           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1254                                  stats().cms_time_since_begin());
1255         } else {
1256           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1257         }
1258       }
1259       return true;
1260     }
1261   }
1262 
1263   return false;
1264 }
1265 
1266 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1267 
1268 // Clear _expansion_cause fields of constituent generations
1269 void CMSCollector::clear_expansion_cause() {
1270   _cmsGen->clear_expansion_cause();
1271 }
1272 
1273 // We should be conservative in starting a collection cycle.  To
1274 // start too eagerly runs the risk of collecting too often in the
1275 // extreme.  To collect too rarely falls back on full collections,
1276 // which works, even if not optimum in terms of concurrent work.
1277 // As a work around for too eagerly collecting, use the flag
1278 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1279 // giving the user an easily understandable way of controlling the
1280 // collections.
1281 // We want to start a new collection cycle if any of the following
1282 // conditions hold:
1283 // . our current occupancy exceeds the configured initiating occupancy
1284 //   for this generation, or
1285 // . we recently needed to expand this space and have not, since that
1286 //   expansion, done a collection of this generation, or
1287 // . the underlying space believes that it may be a good idea to initiate
1288 //   a concurrent collection (this may be based on criteria such as the
1289 //   following: the space uses linear allocation and linear allocation is
1290 //   going to fail, or there is believed to be excessive fragmentation in
1291 //   the generation, etc... or ...
1292 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1293 //   the case of the old generation; see CR 6543076):
1294 //   we may be approaching a point at which allocation requests may fail because
1295 //   we will be out of sufficient free space given allocation rate estimates.]
1296 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1297 
1298   assert_lock_strong(freelistLock());
1299   if (occupancy() > initiating_occupancy()) {
1300     if (PrintGCDetails && Verbose) {
1301       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1302         short_name(), occupancy(), initiating_occupancy());
1303     }
1304     return true;
1305   }
1306   if (UseCMSInitiatingOccupancyOnly) {
1307     return false;
1308   }
1309   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1310     if (PrintGCDetails && Verbose) {
1311       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1312         short_name());
1313     }
1314     return true;
1315   }
1316   if (_cmsSpace->should_concurrent_collect()) {
1317     if (PrintGCDetails && Verbose) {
1318       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1319         short_name());
1320     }
1321     return true;
1322   }
1323   return false;
1324 }
1325 
1326 void ConcurrentMarkSweepGeneration::collect(bool   full,
1327                                             bool   clear_all_soft_refs,
1328                                             size_t size,
1329                                             bool   tlab)
1330 {
1331   collector()->collect(full, clear_all_soft_refs, size, tlab);
1332 }
1333 
1334 void CMSCollector::collect(bool   full,
1335                            bool   clear_all_soft_refs,
1336                            size_t size,
1337                            bool   tlab)
1338 {
1339   // The following "if" branch is present for defensive reasons.
1340   // In the current uses of this interface, it can be replaced with:
1341   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1342   // But I am not placing that assert here to allow future
1343   // generality in invoking this interface.
1344   if (GC_locker::is_active()) {
1345     // A consistency test for GC_locker
1346     assert(GC_locker::needs_gc(), "Should have been set already");
1347     // Skip this foreground collection, instead
1348     // expanding the heap if necessary.
1349     // Need the free list locks for the call to free() in compute_new_size()
1350     compute_new_size();
1351     return;
1352   }
1353   acquire_control_and_collect(full, clear_all_soft_refs);
1354 }
1355 
1356 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1357   GenCollectedHeap* gch = GenCollectedHeap::heap();
1358   unsigned int gc_count = gch->total_full_collections();
1359   if (gc_count == full_gc_count) {
1360     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1361     _full_gc_requested = true;
1362     _full_gc_cause = cause;
1363     CGC_lock->notify();   // nudge CMS thread
1364   } else {
1365     assert(gc_count > full_gc_count, "Error: causal loop");
1366   }
1367 }
1368 
1369 bool CMSCollector::is_external_interruption() {
1370   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1371   return GCCause::is_user_requested_gc(cause) ||
1372          GCCause::is_serviceability_requested_gc(cause);
1373 }
1374 
1375 void CMSCollector::report_concurrent_mode_interruption() {
1376   if (is_external_interruption()) {
1377     if (PrintGCDetails) {
1378       gclog_or_tty->print(" (concurrent mode interrupted)");
1379     }
1380   } else {
1381     if (PrintGCDetails) {
1382       gclog_or_tty->print(" (concurrent mode failure)");
1383     }
1384     _gc_tracer_cm->report_concurrent_mode_failure();
1385   }
1386 }
1387 
1388 
1389 // The foreground and background collectors need to coordinate in order
1390 // to make sure that they do not mutually interfere with CMS collections.
1391 // When a background collection is active,
1392 // the foreground collector may need to take over (preempt) and
1393 // synchronously complete an ongoing collection. Depending on the
1394 // frequency of the background collections and the heap usage
1395 // of the application, this preemption can be seldom or frequent.
1396 // There are only certain
1397 // points in the background collection that the "collection-baton"
1398 // can be passed to the foreground collector.
1399 //
1400 // The foreground collector will wait for the baton before
1401 // starting any part of the collection.  The foreground collector
1402 // will only wait at one location.
1403 //
1404 // The background collector will yield the baton before starting a new
1405 // phase of the collection (e.g., before initial marking, marking from roots,
1406 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1407 // of the loop which switches the phases. The background collector does some
1408 // of the phases (initial mark, final re-mark) with the world stopped.
1409 // Because of locking involved in stopping the world,
1410 // the foreground collector should not block waiting for the background
1411 // collector when it is doing a stop-the-world phase.  The background
1412 // collector will yield the baton at an additional point just before
1413 // it enters a stop-the-world phase.  Once the world is stopped, the
1414 // background collector checks the phase of the collection.  If the
1415 // phase has not changed, it proceeds with the collection.  If the
1416 // phase has changed, it skips that phase of the collection.  See
1417 // the comments on the use of the Heap_lock in collect_in_background().
1418 //
1419 // Variable used in baton passing.
1420 //   _foregroundGCIsActive - Set to true by the foreground collector when
1421 //      it wants the baton.  The foreground clears it when it has finished
1422 //      the collection.
1423 //   _foregroundGCShouldWait - Set to true by the background collector
1424 //        when it is running.  The foreground collector waits while
1425 //      _foregroundGCShouldWait is true.
1426 //  CGC_lock - monitor used to protect access to the above variables
1427 //      and to notify the foreground and background collectors.
1428 //  _collectorState - current state of the CMS collection.
1429 //
1430 // The foreground collector
1431 //   acquires the CGC_lock
1432 //   sets _foregroundGCIsActive
1433 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1434 //     various locks acquired in preparation for the collection
1435 //     are released so as not to block the background collector
1436 //     that is in the midst of a collection
1437 //   proceeds with the collection
1438 //   clears _foregroundGCIsActive
1439 //   returns
1440 //
1441 // The background collector in a loop iterating on the phases of the
1442 //      collection
1443 //   acquires the CGC_lock
1444 //   sets _foregroundGCShouldWait
1445 //   if _foregroundGCIsActive is set
1446 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1447 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1448 //     and exits the loop.
1449 //   otherwise
1450 //     proceed with that phase of the collection
1451 //     if the phase is a stop-the-world phase,
1452 //       yield the baton once more just before enqueueing
1453 //       the stop-world CMS operation (executed by the VM thread).
1454 //   returns after all phases of the collection are done
1455 //
1456 
1457 void CMSCollector::acquire_control_and_collect(bool full,
1458         bool clear_all_soft_refs) {
1459   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1460   assert(!Thread::current()->is_ConcurrentGC_thread(),
1461          "shouldn't try to acquire control from self!");
1462 
1463   // Start the protocol for acquiring control of the
1464   // collection from the background collector (aka CMS thread).
1465   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1466          "VM thread should have CMS token");
1467   // Remember the possibly interrupted state of an ongoing
1468   // concurrent collection
1469   CollectorState first_state = _collectorState;
1470 
1471   // Signal to a possibly ongoing concurrent collection that
1472   // we want to do a foreground collection.
1473   _foregroundGCIsActive = true;
1474 
1475   // release locks and wait for a notify from the background collector
1476   // releasing the locks in only necessary for phases which
1477   // do yields to improve the granularity of the collection.
1478   assert_lock_strong(bitMapLock());
1479   // We need to lock the Free list lock for the space that we are
1480   // currently collecting.
1481   assert(haveFreelistLocks(), "Must be holding free list locks");
1482   bitMapLock()->unlock();
1483   releaseFreelistLocks();
1484   {
1485     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1486     if (_foregroundGCShouldWait) {
1487       // We are going to be waiting for action for the CMS thread;
1488       // it had better not be gone (for instance at shutdown)!
1489       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1490              "CMS thread must be running");
1491       // Wait here until the background collector gives us the go-ahead
1492       ConcurrentMarkSweepThread::clear_CMS_flag(
1493         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1494       // Get a possibly blocked CMS thread going:
1495       //   Note that we set _foregroundGCIsActive true above,
1496       //   without protection of the CGC_lock.
1497       CGC_lock->notify();
1498       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1499              "Possible deadlock");
1500       while (_foregroundGCShouldWait) {
1501         // wait for notification
1502         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1503         // Possibility of delay/starvation here, since CMS token does
1504         // not know to give priority to VM thread? Actually, i think
1505         // there wouldn't be any delay/starvation, but the proof of
1506         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1507       }
1508       ConcurrentMarkSweepThread::set_CMS_flag(
1509         ConcurrentMarkSweepThread::CMS_vm_has_token);
1510     }
1511   }
1512   // The CMS_token is already held.  Get back the other locks.
1513   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1514          "VM thread should have CMS token");
1515   getFreelistLocks();
1516   bitMapLock()->lock_without_safepoint_check();
1517   if (TraceCMSState) {
1518     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1519       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1520     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1521   }
1522 
1523   // Inform cms gen if this was due to partial collection failing.
1524   // The CMS gen may use this fact to determine its expansion policy.
1525   GenCollectedHeap* gch = GenCollectedHeap::heap();
1526   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1527     assert(!_cmsGen->incremental_collection_failed(),
1528            "Should have been noticed, reacted to and cleared");
1529     _cmsGen->set_incremental_collection_failed();
1530   }
1531 
1532   if (first_state > Idling) {
1533     report_concurrent_mode_interruption();
1534   }
1535 
1536   set_did_compact(true);
1537 
1538   // If the collection is being acquired from the background
1539   // collector, there may be references on the discovered
1540   // references lists.  Abandon those references, since some
1541   // of them may have become unreachable after concurrent
1542   // discovery; the STW compacting collector will redo discovery
1543   // more precisely, without being subject to floating garbage.
1544   // Leaving otherwise unreachable references in the discovered
1545   // lists would require special handling.
1546   ref_processor()->disable_discovery();
1547   ref_processor()->abandon_partial_discovery();
1548   ref_processor()->verify_no_references_recorded();
1549 
1550   if (first_state > Idling) {
1551     save_heap_summary();
1552   }
1553 
1554   do_compaction_work(clear_all_soft_refs);
1555 
1556   // Has the GC time limit been exceeded?
1557   size_t max_eden_size = _young_gen->max_capacity() -
1558                          _young_gen->to()->capacity() -
1559                          _young_gen->from()->capacity();
1560   GCCause::Cause gc_cause = gch->gc_cause();
1561   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1562                                          _young_gen->eden()->used(),
1563                                          _cmsGen->max_capacity(),
1564                                          max_eden_size,
1565                                          full,
1566                                          gc_cause,
1567                                          gch->collector_policy());
1568 
1569   // Reset the expansion cause, now that we just completed
1570   // a collection cycle.
1571   clear_expansion_cause();
1572   _foregroundGCIsActive = false;
1573   return;
1574 }
1575 
1576 // Resize the tenured generation
1577 // after obtaining the free list locks for the
1578 // two generations.
1579 void CMSCollector::compute_new_size() {
1580   assert_locked_or_safepoint(Heap_lock);
1581   FreelistLocker z(this);
1582   MetaspaceGC::compute_new_size();
1583   _cmsGen->compute_new_size_free_list();
1584 }
1585 
1586 // A work method used by the foreground collector to do
1587 // a mark-sweep-compact.
1588 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1589   GenCollectedHeap* gch = GenCollectedHeap::heap();
1590 
1591   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1592   gc_timer->register_gc_start();
1593 
1594   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1595   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1596 
1597   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
1598 
1599   // Temporarily widen the span of the weak reference processing to
1600   // the entire heap.
1601   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1602   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1603   // Temporarily, clear the "is_alive_non_header" field of the
1604   // reference processor.
1605   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1606   // Temporarily make reference _processing_ single threaded (non-MT).
1607   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1608   // Temporarily make refs discovery atomic
1609   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1610   // Temporarily make reference _discovery_ single threaded (non-MT)
1611   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1612 
1613   ref_processor()->set_enqueuing_is_done(false);
1614   ref_processor()->enable_discovery();
1615   ref_processor()->setup_policy(clear_all_soft_refs);
1616   // If an asynchronous collection finishes, the _modUnionTable is
1617   // all clear.  If we are assuming the collection from an asynchronous
1618   // collection, clear the _modUnionTable.
1619   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1620     "_modUnionTable should be clear if the baton was not passed");
1621   _modUnionTable.clear_all();
1622   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1623     "mod union for klasses should be clear if the baton was passed");
1624   _ct->klass_rem_set()->clear_mod_union();
1625 
1626   // We must adjust the allocation statistics being maintained
1627   // in the free list space. We do so by reading and clearing
1628   // the sweep timer and updating the block flux rate estimates below.
1629   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1630   if (_inter_sweep_timer.is_active()) {
1631     _inter_sweep_timer.stop();
1632     // Note that we do not use this sample to update the _inter_sweep_estimate.
1633     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1634                                             _inter_sweep_estimate.padded_average(),
1635                                             _intra_sweep_estimate.padded_average());
1636   }
1637 
1638   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1639   #ifdef ASSERT
1640     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1641     size_t free_size = cms_space->free();
1642     assert(free_size ==
1643            pointer_delta(cms_space->end(), cms_space->compaction_top())
1644            * HeapWordSize,
1645       "All the free space should be compacted into one chunk at top");
1646     assert(cms_space->dictionary()->total_chunk_size(
1647                                       debug_only(cms_space->freelistLock())) == 0 ||
1648            cms_space->totalSizeInIndexedFreeLists() == 0,
1649       "All the free space should be in a single chunk");
1650     size_t num = cms_space->totalCount();
1651     assert((free_size == 0 && num == 0) ||
1652            (free_size > 0  && (num == 1 || num == 2)),
1653          "There should be at most 2 free chunks after compaction");
1654   #endif // ASSERT
1655   _collectorState = Resetting;
1656   assert(_restart_addr == NULL,
1657          "Should have been NULL'd before baton was passed");
1658   reset(false /* == !concurrent */);
1659   _cmsGen->reset_after_compaction();
1660   _concurrent_cycles_since_last_unload = 0;
1661 
1662   // Clear any data recorded in the PLAB chunk arrays.
1663   if (_survivor_plab_array != NULL) {
1664     reset_survivor_plab_arrays();
1665   }
1666 
1667   // Adjust the per-size allocation stats for the next epoch.
1668   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1669   // Restart the "inter sweep timer" for the next epoch.
1670   _inter_sweep_timer.reset();
1671   _inter_sweep_timer.start();
1672 
1673   gc_timer->register_gc_end();
1674 
1675   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1676 
1677   // For a mark-sweep-compact, compute_new_size() will be called
1678   // in the heap's do_collection() method.
1679 }
1680 
1681 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1682   ContiguousSpace* eden_space = _young_gen->eden();
1683   ContiguousSpace* from_space = _young_gen->from();
1684   ContiguousSpace* to_space   = _young_gen->to();
1685   // Eden
1686   if (_eden_chunk_array != NULL) {
1687     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1688                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1689                            p2i(eden_space->end()), eden_space->capacity());
1690     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1691                            "_eden_chunk_capacity=" SIZE_FORMAT,
1692                            _eden_chunk_index, _eden_chunk_capacity);
1693     for (size_t i = 0; i < _eden_chunk_index; i++) {
1694       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1695                              i, p2i(_eden_chunk_array[i]));
1696     }
1697   }
1698   // Survivor
1699   if (_survivor_chunk_array != NULL) {
1700     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1701                            p2i(from_space->bottom()), p2i(from_space->top()),
1702                            p2i(from_space->end()), from_space->capacity());
1703     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1704                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1705                            _survivor_chunk_index, _survivor_chunk_capacity);
1706     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1707       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1708                              i, p2i(_survivor_chunk_array[i]));
1709     }
1710   }
1711 }
1712 
1713 void CMSCollector::getFreelistLocks() const {
1714   // Get locks for all free lists in all generations that this
1715   // collector is responsible for
1716   _cmsGen->freelistLock()->lock_without_safepoint_check();
1717 }
1718 
1719 void CMSCollector::releaseFreelistLocks() const {
1720   // Release locks for all free lists in all generations that this
1721   // collector is responsible for
1722   _cmsGen->freelistLock()->unlock();
1723 }
1724 
1725 bool CMSCollector::haveFreelistLocks() const {
1726   // Check locks for all free lists in all generations that this
1727   // collector is responsible for
1728   assert_lock_strong(_cmsGen->freelistLock());
1729   PRODUCT_ONLY(ShouldNotReachHere());
1730   return true;
1731 }
1732 
1733 // A utility class that is used by the CMS collector to
1734 // temporarily "release" the foreground collector from its
1735 // usual obligation to wait for the background collector to
1736 // complete an ongoing phase before proceeding.
1737 class ReleaseForegroundGC: public StackObj {
1738  private:
1739   CMSCollector* _c;
1740  public:
1741   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1742     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1743     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1744     // allow a potentially blocked foreground collector to proceed
1745     _c->_foregroundGCShouldWait = false;
1746     if (_c->_foregroundGCIsActive) {
1747       CGC_lock->notify();
1748     }
1749     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1750            "Possible deadlock");
1751   }
1752 
1753   ~ReleaseForegroundGC() {
1754     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1755     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1756     _c->_foregroundGCShouldWait = true;
1757   }
1758 };
1759 
1760 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1761   assert(Thread::current()->is_ConcurrentGC_thread(),
1762     "A CMS asynchronous collection is only allowed on a CMS thread.");
1763 
1764   GenCollectedHeap* gch = GenCollectedHeap::heap();
1765   {
1766     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1767     MutexLockerEx hl(Heap_lock, safepoint_check);
1768     FreelistLocker fll(this);
1769     MutexLockerEx x(CGC_lock, safepoint_check);
1770     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1771       // The foreground collector is active or we're
1772       // not using asynchronous collections.  Skip this
1773       // background collection.
1774       assert(!_foregroundGCShouldWait, "Should be clear");
1775       return;
1776     } else {
1777       assert(_collectorState == Idling, "Should be idling before start.");
1778       _collectorState = InitialMarking;
1779       register_gc_start(cause);
1780       // Reset the expansion cause, now that we are about to begin
1781       // a new cycle.
1782       clear_expansion_cause();
1783 
1784       // Clear the MetaspaceGC flag since a concurrent collection
1785       // is starting but also clear it after the collection.
1786       MetaspaceGC::set_should_concurrent_collect(false);
1787     }
1788     // Decide if we want to enable class unloading as part of the
1789     // ensuing concurrent GC cycle.
1790     update_should_unload_classes();
1791     _full_gc_requested = false;           // acks all outstanding full gc requests
1792     _full_gc_cause = GCCause::_no_gc;
1793     // Signal that we are about to start a collection
1794     gch->increment_total_full_collections();  // ... starting a collection cycle
1795     _collection_count_start = gch->total_full_collections();
1796   }
1797 
1798   // Used for PrintGC
1799   size_t prev_used;
1800   if (PrintGC && Verbose) {
1801     prev_used = _cmsGen->used();
1802   }
1803 
1804   // The change of the collection state is normally done at this level;
1805   // the exceptions are phases that are executed while the world is
1806   // stopped.  For those phases the change of state is done while the
1807   // world is stopped.  For baton passing purposes this allows the
1808   // background collector to finish the phase and change state atomically.
1809   // The foreground collector cannot wait on a phase that is done
1810   // while the world is stopped because the foreground collector already
1811   // has the world stopped and would deadlock.
1812   while (_collectorState != Idling) {
1813     if (TraceCMSState) {
1814       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1815         p2i(Thread::current()), _collectorState);
1816     }
1817     // The foreground collector
1818     //   holds the Heap_lock throughout its collection.
1819     //   holds the CMS token (but not the lock)
1820     //     except while it is waiting for the background collector to yield.
1821     //
1822     // The foreground collector should be blocked (not for long)
1823     //   if the background collector is about to start a phase
1824     //   executed with world stopped.  If the background
1825     //   collector has already started such a phase, the
1826     //   foreground collector is blocked waiting for the
1827     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1828     //   are executed in the VM thread.
1829     //
1830     // The locking order is
1831     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1832     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1833     //   CMS token  (claimed in
1834     //                stop_world_and_do() -->
1835     //                  safepoint_synchronize() -->
1836     //                    CMSThread::synchronize())
1837 
1838     {
1839       // Check if the FG collector wants us to yield.
1840       CMSTokenSync x(true); // is cms thread
1841       if (waitForForegroundGC()) {
1842         // We yielded to a foreground GC, nothing more to be
1843         // done this round.
1844         assert(_foregroundGCShouldWait == false, "We set it to false in "
1845                "waitForForegroundGC()");
1846         if (TraceCMSState) {
1847           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1848             " exiting collection CMS state %d",
1849             p2i(Thread::current()), _collectorState);
1850         }
1851         return;
1852       } else {
1853         // The background collector can run but check to see if the
1854         // foreground collector has done a collection while the
1855         // background collector was waiting to get the CGC_lock
1856         // above.  If yes, break so that _foregroundGCShouldWait
1857         // is cleared before returning.
1858         if (_collectorState == Idling) {
1859           break;
1860         }
1861       }
1862     }
1863 
1864     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1865       "should be waiting");
1866 
1867     switch (_collectorState) {
1868       case InitialMarking:
1869         {
1870           ReleaseForegroundGC x(this);
1871           stats().record_cms_begin();
1872           VM_CMS_Initial_Mark initial_mark_op(this);
1873           VMThread::execute(&initial_mark_op);
1874         }
1875         // The collector state may be any legal state at this point
1876         // since the background collector may have yielded to the
1877         // foreground collector.
1878         break;
1879       case Marking:
1880         // initial marking in checkpointRootsInitialWork has been completed
1881         if (markFromRoots()) { // we were successful
1882           assert(_collectorState == Precleaning, "Collector state should "
1883             "have changed");
1884         } else {
1885           assert(_foregroundGCIsActive, "Internal state inconsistency");
1886         }
1887         break;
1888       case Precleaning:
1889         // marking from roots in markFromRoots has been completed
1890         preclean();
1891         assert(_collectorState == AbortablePreclean ||
1892                _collectorState == FinalMarking,
1893                "Collector state should have changed");
1894         break;
1895       case AbortablePreclean:
1896         abortable_preclean();
1897         assert(_collectorState == FinalMarking, "Collector state should "
1898           "have changed");
1899         break;
1900       case FinalMarking:
1901         {
1902           ReleaseForegroundGC x(this);
1903 
1904           VM_CMS_Final_Remark final_remark_op(this);
1905           VMThread::execute(&final_remark_op);
1906         }
1907         assert(_foregroundGCShouldWait, "block post-condition");
1908         break;
1909       case Sweeping:
1910         // final marking in checkpointRootsFinal has been completed
1911         sweep();
1912         assert(_collectorState == Resizing, "Collector state change "
1913           "to Resizing must be done under the free_list_lock");
1914 
1915       case Resizing: {
1916         // Sweeping has been completed...
1917         // At this point the background collection has completed.
1918         // Don't move the call to compute_new_size() down
1919         // into code that might be executed if the background
1920         // collection was preempted.
1921         {
1922           ReleaseForegroundGC x(this);   // unblock FG collection
1923           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1924           CMSTokenSync        z(true);   // not strictly needed.
1925           if (_collectorState == Resizing) {
1926             compute_new_size();
1927             save_heap_summary();
1928             _collectorState = Resetting;
1929           } else {
1930             assert(_collectorState == Idling, "The state should only change"
1931                    " because the foreground collector has finished the collection");
1932           }
1933         }
1934         break;
1935       }
1936       case Resetting:
1937         // CMS heap resizing has been completed
1938         reset(true);
1939         assert(_collectorState == Idling, "Collector state should "
1940           "have changed");
1941 
1942         MetaspaceGC::set_should_concurrent_collect(false);
1943 
1944         stats().record_cms_end();
1945         // Don't move the concurrent_phases_end() and compute_new_size()
1946         // calls to here because a preempted background collection
1947         // has it's state set to "Resetting".
1948         break;
1949       case Idling:
1950       default:
1951         ShouldNotReachHere();
1952         break;
1953     }
1954     if (TraceCMSState) {
1955       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1956         p2i(Thread::current()), _collectorState);
1957     }
1958     assert(_foregroundGCShouldWait, "block post-condition");
1959   }
1960 
1961   // Should this be in gc_epilogue?
1962   collector_policy()->counters()->update_counters();
1963 
1964   {
1965     // Clear _foregroundGCShouldWait and, in the event that the
1966     // foreground collector is waiting, notify it, before
1967     // returning.
1968     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1969     _foregroundGCShouldWait = false;
1970     if (_foregroundGCIsActive) {
1971       CGC_lock->notify();
1972     }
1973     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1974            "Possible deadlock");
1975   }
1976   if (TraceCMSState) {
1977     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1978       " exiting collection CMS state %d",
1979       p2i(Thread::current()), _collectorState);
1980   }
1981   if (PrintGC && Verbose) {
1982     _cmsGen->print_heap_change(prev_used);
1983   }
1984 }
1985 
1986 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1987   _cms_start_registered = true;
1988   _gc_timer_cm->register_gc_start();
1989   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1990 }
1991 
1992 void CMSCollector::register_gc_end() {
1993   if (_cms_start_registered) {
1994     report_heap_summary(GCWhen::AfterGC);
1995 
1996     _gc_timer_cm->register_gc_end();
1997     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1998     _cms_start_registered = false;
1999   }
2000 }
2001 
2002 void CMSCollector::save_heap_summary() {
2003   GenCollectedHeap* gch = GenCollectedHeap::heap();
2004   _last_heap_summary = gch->create_heap_summary();
2005   _last_metaspace_summary = gch->create_metaspace_summary();
2006 }
2007 
2008 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2009   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2010   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2011 }
2012 
2013 bool CMSCollector::waitForForegroundGC() {
2014   bool res = false;
2015   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2016          "CMS thread should have CMS token");
2017   // Block the foreground collector until the
2018   // background collectors decides whether to
2019   // yield.
2020   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2021   _foregroundGCShouldWait = true;
2022   if (_foregroundGCIsActive) {
2023     // The background collector yields to the
2024     // foreground collector and returns a value
2025     // indicating that it has yielded.  The foreground
2026     // collector can proceed.
2027     res = true;
2028     _foregroundGCShouldWait = false;
2029     ConcurrentMarkSweepThread::clear_CMS_flag(
2030       ConcurrentMarkSweepThread::CMS_cms_has_token);
2031     ConcurrentMarkSweepThread::set_CMS_flag(
2032       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2033     // Get a possibly blocked foreground thread going
2034     CGC_lock->notify();
2035     if (TraceCMSState) {
2036       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2037         p2i(Thread::current()), _collectorState);
2038     }
2039     while (_foregroundGCIsActive) {
2040       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2041     }
2042     ConcurrentMarkSweepThread::set_CMS_flag(
2043       ConcurrentMarkSweepThread::CMS_cms_has_token);
2044     ConcurrentMarkSweepThread::clear_CMS_flag(
2045       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2046   }
2047   if (TraceCMSState) {
2048     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2049       p2i(Thread::current()), _collectorState);
2050   }
2051   return res;
2052 }
2053 
2054 // Because of the need to lock the free lists and other structures in
2055 // the collector, common to all the generations that the collector is
2056 // collecting, we need the gc_prologues of individual CMS generations
2057 // delegate to their collector. It may have been simpler had the
2058 // current infrastructure allowed one to call a prologue on a
2059 // collector. In the absence of that we have the generation's
2060 // prologue delegate to the collector, which delegates back
2061 // some "local" work to a worker method in the individual generations
2062 // that it's responsible for collecting, while itself doing any
2063 // work common to all generations it's responsible for. A similar
2064 // comment applies to the  gc_epilogue()'s.
2065 // The role of the variable _between_prologue_and_epilogue is to
2066 // enforce the invocation protocol.
2067 void CMSCollector::gc_prologue(bool full) {
2068   // Call gc_prologue_work() for the CMSGen
2069   // we are responsible for.
2070 
2071   // The following locking discipline assumes that we are only called
2072   // when the world is stopped.
2073   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2074 
2075   // The CMSCollector prologue must call the gc_prologues for the
2076   // "generations" that it's responsible
2077   // for.
2078 
2079   assert(   Thread::current()->is_VM_thread()
2080          || (   CMSScavengeBeforeRemark
2081              && Thread::current()->is_ConcurrentGC_thread()),
2082          "Incorrect thread type for prologue execution");
2083 
2084   if (_between_prologue_and_epilogue) {
2085     // We have already been invoked; this is a gc_prologue delegation
2086     // from yet another CMS generation that we are responsible for, just
2087     // ignore it since all relevant work has already been done.
2088     return;
2089   }
2090 
2091   // set a bit saying prologue has been called; cleared in epilogue
2092   _between_prologue_and_epilogue = true;
2093   // Claim locks for common data structures, then call gc_prologue_work()
2094   // for each CMSGen.
2095 
2096   getFreelistLocks();   // gets free list locks on constituent spaces
2097   bitMapLock()->lock_without_safepoint_check();
2098 
2099   // Should call gc_prologue_work() for all cms gens we are responsible for
2100   bool duringMarking =    _collectorState >= Marking
2101                          && _collectorState < Sweeping;
2102 
2103   // The young collections clear the modified oops state, which tells if
2104   // there are any modified oops in the class. The remark phase also needs
2105   // that information. Tell the young collection to save the union of all
2106   // modified klasses.
2107   if (duringMarking) {
2108     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2109   }
2110 
2111   bool registerClosure = duringMarking;
2112 
2113   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2114 
2115   if (!full) {
2116     stats().record_gc0_begin();
2117   }
2118 }
2119 
2120 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2121 
2122   _capacity_at_prologue = capacity();
2123   _used_at_prologue = used();
2124 
2125   // Delegate to CMScollector which knows how to coordinate between
2126   // this and any other CMS generations that it is responsible for
2127   // collecting.
2128   collector()->gc_prologue(full);
2129 }
2130 
2131 // This is a "private" interface for use by this generation's CMSCollector.
2132 // Not to be called directly by any other entity (for instance,
2133 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2134 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2135   bool registerClosure, ModUnionClosure* modUnionClosure) {
2136   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2137   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2138     "Should be NULL");
2139   if (registerClosure) {
2140     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2141   }
2142   cmsSpace()->gc_prologue();
2143   // Clear stat counters
2144   NOT_PRODUCT(
2145     assert(_numObjectsPromoted == 0, "check");
2146     assert(_numWordsPromoted   == 0, "check");
2147     if (Verbose && PrintGC) {
2148       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2149                           SIZE_FORMAT " bytes concurrently",
2150       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2151     }
2152     _numObjectsAllocated = 0;
2153     _numWordsAllocated   = 0;
2154   )
2155 }
2156 
2157 void CMSCollector::gc_epilogue(bool full) {
2158   // The following locking discipline assumes that we are only called
2159   // when the world is stopped.
2160   assert(SafepointSynchronize::is_at_safepoint(),
2161          "world is stopped assumption");
2162 
2163   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2164   // if linear allocation blocks need to be appropriately marked to allow the
2165   // the blocks to be parsable. We also check here whether we need to nudge the
2166   // CMS collector thread to start a new cycle (if it's not already active).
2167   assert(   Thread::current()->is_VM_thread()
2168          || (   CMSScavengeBeforeRemark
2169              && Thread::current()->is_ConcurrentGC_thread()),
2170          "Incorrect thread type for epilogue execution");
2171 
2172   if (!_between_prologue_and_epilogue) {
2173     // We have already been invoked; this is a gc_epilogue delegation
2174     // from yet another CMS generation that we are responsible for, just
2175     // ignore it since all relevant work has already been done.
2176     return;
2177   }
2178   assert(haveFreelistLocks(), "must have freelist locks");
2179   assert_lock_strong(bitMapLock());
2180 
2181   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2182 
2183   _cmsGen->gc_epilogue_work(full);
2184 
2185   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2186     // in case sampling was not already enabled, enable it
2187     _start_sampling = true;
2188   }
2189   // reset _eden_chunk_array so sampling starts afresh
2190   _eden_chunk_index = 0;
2191 
2192   size_t cms_used   = _cmsGen->cmsSpace()->used();
2193 
2194   // update performance counters - this uses a special version of
2195   // update_counters() that allows the utilization to be passed as a
2196   // parameter, avoiding multiple calls to used().
2197   //
2198   _cmsGen->update_counters(cms_used);
2199 
2200   bitMapLock()->unlock();
2201   releaseFreelistLocks();
2202 
2203   if (!CleanChunkPoolAsync) {
2204     Chunk::clean_chunk_pool();
2205   }
2206 
2207   set_did_compact(false);
2208   _between_prologue_and_epilogue = false;  // ready for next cycle
2209 }
2210 
2211 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2212   collector()->gc_epilogue(full);
2213 
2214   // Also reset promotion tracking in par gc thread states.
2215   for (uint i = 0; i < ParallelGCThreads; i++) {
2216     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2217   }
2218 }
2219 
2220 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2221   assert(!incremental_collection_failed(), "Should have been cleared");
2222   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2223   cmsSpace()->gc_epilogue();
2224     // Print stat counters
2225   NOT_PRODUCT(
2226     assert(_numObjectsAllocated == 0, "check");
2227     assert(_numWordsAllocated == 0, "check");
2228     if (Verbose && PrintGC) {
2229       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2230                           SIZE_FORMAT " bytes",
2231                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2232     }
2233     _numObjectsPromoted = 0;
2234     _numWordsPromoted   = 0;
2235   )
2236 
2237   if (PrintGC && Verbose) {
2238     // Call down the chain in contiguous_available needs the freelistLock
2239     // so print this out before releasing the freeListLock.
2240     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2241                         contiguous_available());
2242   }
2243 }
2244 
2245 #ifndef PRODUCT
2246 bool CMSCollector::have_cms_token() {
2247   Thread* thr = Thread::current();
2248   if (thr->is_VM_thread()) {
2249     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2250   } else if (thr->is_ConcurrentGC_thread()) {
2251     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2252   } else if (thr->is_GC_task_thread()) {
2253     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2254            ParGCRareEvent_lock->owned_by_self();
2255   }
2256   return false;
2257 }
2258 #endif
2259 
2260 // Check reachability of the given heap address in CMS generation,
2261 // treating all other generations as roots.
2262 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2263   // We could "guarantee" below, rather than assert, but I'll
2264   // leave these as "asserts" so that an adventurous debugger
2265   // could try this in the product build provided some subset of
2266   // the conditions were met, provided they were interested in the
2267   // results and knew that the computation below wouldn't interfere
2268   // with other concurrent computations mutating the structures
2269   // being read or written.
2270   assert(SafepointSynchronize::is_at_safepoint(),
2271          "Else mutations in object graph will make answer suspect");
2272   assert(have_cms_token(), "Should hold cms token");
2273   assert(haveFreelistLocks(), "must hold free list locks");
2274   assert_lock_strong(bitMapLock());
2275 
2276   // Clear the marking bit map array before starting, but, just
2277   // for kicks, first report if the given address is already marked
2278   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2279                 _markBitMap.isMarked(addr) ? "" : " not");
2280 
2281   if (verify_after_remark()) {
2282     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2283     bool result = verification_mark_bm()->isMarked(addr);
2284     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2285                            result ? "IS" : "is NOT");
2286     return result;
2287   } else {
2288     gclog_or_tty->print_cr("Could not compute result");
2289     return false;
2290   }
2291 }
2292 
2293 
2294 void
2295 CMSCollector::print_on_error(outputStream* st) {
2296   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2297   if (collector != NULL) {
2298     CMSBitMap* bitmap = &collector->_markBitMap;
2299     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2300     bitmap->print_on_error(st, " Bits: ");
2301 
2302     st->cr();
2303 
2304     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2305     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2306     mut_bitmap->print_on_error(st, " Bits: ");
2307   }
2308 }
2309 
2310 ////////////////////////////////////////////////////////
2311 // CMS Verification Support
2312 ////////////////////////////////////////////////////////
2313 // Following the remark phase, the following invariant
2314 // should hold -- each object in the CMS heap which is
2315 // marked in markBitMap() should be marked in the verification_mark_bm().
2316 
2317 class VerifyMarkedClosure: public BitMapClosure {
2318   CMSBitMap* _marks;
2319   bool       _failed;
2320 
2321  public:
2322   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2323 
2324   bool do_bit(size_t offset) {
2325     HeapWord* addr = _marks->offsetToHeapWord(offset);
2326     if (!_marks->isMarked(addr)) {
2327       oop(addr)->print_on(gclog_or_tty);
2328       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2329       _failed = true;
2330     }
2331     return true;
2332   }
2333 
2334   bool failed() { return _failed; }
2335 };
2336 
2337 bool CMSCollector::verify_after_remark(bool silent) {
2338   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2339   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2340   static bool init = false;
2341 
2342   assert(SafepointSynchronize::is_at_safepoint(),
2343          "Else mutations in object graph will make answer suspect");
2344   assert(have_cms_token(),
2345          "Else there may be mutual interference in use of "
2346          " verification data structures");
2347   assert(_collectorState > Marking && _collectorState <= Sweeping,
2348          "Else marking info checked here may be obsolete");
2349   assert(haveFreelistLocks(), "must hold free list locks");
2350   assert_lock_strong(bitMapLock());
2351 
2352 
2353   // Allocate marking bit map if not already allocated
2354   if (!init) { // first time
2355     if (!verification_mark_bm()->allocate(_span)) {
2356       return false;
2357     }
2358     init = true;
2359   }
2360 
2361   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2362 
2363   // Turn off refs discovery -- so we will be tracing through refs.
2364   // This is as intended, because by this time
2365   // GC must already have cleared any refs that need to be cleared,
2366   // and traced those that need to be marked; moreover,
2367   // the marking done here is not going to interfere in any
2368   // way with the marking information used by GC.
2369   NoRefDiscovery no_discovery(ref_processor());
2370 
2371   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2372 
2373   // Clear any marks from a previous round
2374   verification_mark_bm()->clear_all();
2375   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2376   verify_work_stacks_empty();
2377 
2378   GenCollectedHeap* gch = GenCollectedHeap::heap();
2379   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2380   // Update the saved marks which may affect the root scans.
2381   gch->save_marks();
2382 
2383   if (CMSRemarkVerifyVariant == 1) {
2384     // In this first variant of verification, we complete
2385     // all marking, then check if the new marks-vector is
2386     // a subset of the CMS marks-vector.
2387     verify_after_remark_work_1();
2388   } else if (CMSRemarkVerifyVariant == 2) {
2389     // In this second variant of verification, we flag an error
2390     // (i.e. an object reachable in the new marks-vector not reachable
2391     // in the CMS marks-vector) immediately, also indicating the
2392     // identify of an object (A) that references the unmarked object (B) --
2393     // presumably, a mutation to A failed to be picked up by preclean/remark?
2394     verify_after_remark_work_2();
2395   } else {
2396     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2397             CMSRemarkVerifyVariant);
2398   }
2399   if (!silent) gclog_or_tty->print(" done] ");
2400   return true;
2401 }
2402 
2403 void CMSCollector::verify_after_remark_work_1() {
2404   ResourceMark rm;
2405   HandleMark  hm;
2406   GenCollectedHeap* gch = GenCollectedHeap::heap();
2407 
2408   // Get a clear set of claim bits for the roots processing to work with.
2409   ClassLoaderDataGraph::clear_claimed_marks();
2410 
2411   // Mark from roots one level into CMS
2412   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2413   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2414 
2415   {
2416     StrongRootsScope srs(1);
2417 
2418     gch->gen_process_roots(&srs,
2419                            GenCollectedHeap::OldGen,
2420                            true,   // young gen as roots
2421                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2422                            should_unload_classes(),
2423                            &notOlder,
2424                            NULL,
2425                            NULL);
2426   }
2427 
2428   // Now mark from the roots
2429   MarkFromRootsClosure markFromRootsClosure(this, _span,
2430     verification_mark_bm(), verification_mark_stack(),
2431     false /* don't yield */, true /* verifying */);
2432   assert(_restart_addr == NULL, "Expected pre-condition");
2433   verification_mark_bm()->iterate(&markFromRootsClosure);
2434   while (_restart_addr != NULL) {
2435     // Deal with stack overflow: by restarting at the indicated
2436     // address.
2437     HeapWord* ra = _restart_addr;
2438     markFromRootsClosure.reset(ra);
2439     _restart_addr = NULL;
2440     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2441   }
2442   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2443   verify_work_stacks_empty();
2444 
2445   // Marking completed -- now verify that each bit marked in
2446   // verification_mark_bm() is also marked in markBitMap(); flag all
2447   // errors by printing corresponding objects.
2448   VerifyMarkedClosure vcl(markBitMap());
2449   verification_mark_bm()->iterate(&vcl);
2450   if (vcl.failed()) {
2451     gclog_or_tty->print("Verification failed");
2452     gch->print_on(gclog_or_tty);
2453     fatal("CMS: failed marking verification after remark");
2454   }
2455 }
2456 
2457 class VerifyKlassOopsKlassClosure : public KlassClosure {
2458   class VerifyKlassOopsClosure : public OopClosure {
2459     CMSBitMap* _bitmap;
2460    public:
2461     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2462     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2463     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2464   } _oop_closure;
2465  public:
2466   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2467   void do_klass(Klass* k) {
2468     k->oops_do(&_oop_closure);
2469   }
2470 };
2471 
2472 void CMSCollector::verify_after_remark_work_2() {
2473   ResourceMark rm;
2474   HandleMark  hm;
2475   GenCollectedHeap* gch = GenCollectedHeap::heap();
2476 
2477   // Get a clear set of claim bits for the roots processing to work with.
2478   ClassLoaderDataGraph::clear_claimed_marks();
2479 
2480   // Mark from roots one level into CMS
2481   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2482                                      markBitMap());
2483   CLDToOopClosure cld_closure(&notOlder, true);
2484 
2485   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2486 
2487   {
2488     StrongRootsScope srs(1);
2489 
2490     gch->gen_process_roots(&srs,
2491                            GenCollectedHeap::OldGen,
2492                            true,   // young gen as roots
2493                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2494                            should_unload_classes(),
2495                            &notOlder,
2496                            NULL,
2497                            &cld_closure);
2498   }
2499 
2500   // Now mark from the roots
2501   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2502     verification_mark_bm(), markBitMap(), verification_mark_stack());
2503   assert(_restart_addr == NULL, "Expected pre-condition");
2504   verification_mark_bm()->iterate(&markFromRootsClosure);
2505   while (_restart_addr != NULL) {
2506     // Deal with stack overflow: by restarting at the indicated
2507     // address.
2508     HeapWord* ra = _restart_addr;
2509     markFromRootsClosure.reset(ra);
2510     _restart_addr = NULL;
2511     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2512   }
2513   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2514   verify_work_stacks_empty();
2515 
2516   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2517   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2518 
2519   // Marking completed -- now verify that each bit marked in
2520   // verification_mark_bm() is also marked in markBitMap(); flag all
2521   // errors by printing corresponding objects.
2522   VerifyMarkedClosure vcl(markBitMap());
2523   verification_mark_bm()->iterate(&vcl);
2524   assert(!vcl.failed(), "Else verification above should not have succeeded");
2525 }
2526 
2527 void ConcurrentMarkSweepGeneration::save_marks() {
2528   // delegate to CMS space
2529   cmsSpace()->save_marks();
2530   for (uint i = 0; i < ParallelGCThreads; i++) {
2531     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2532   }
2533 }
2534 
2535 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2536   return cmsSpace()->no_allocs_since_save_marks();
2537 }
2538 
2539 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2540                                                                 \
2541 void ConcurrentMarkSweepGeneration::                            \
2542 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2543   cl->set_generation(this);                                     \
2544   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2545   cl->reset_generation();                                       \
2546   save_marks();                                                 \
2547 }
2548 
2549 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2550 
2551 void
2552 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2553   if (freelistLock()->owned_by_self()) {
2554     Generation::oop_iterate(cl);
2555   } else {
2556     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2557     Generation::oop_iterate(cl);
2558   }
2559 }
2560 
2561 void
2562 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2563   if (freelistLock()->owned_by_self()) {
2564     Generation::object_iterate(cl);
2565   } else {
2566     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2567     Generation::object_iterate(cl);
2568   }
2569 }
2570 
2571 void
2572 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2573   if (freelistLock()->owned_by_self()) {
2574     Generation::safe_object_iterate(cl);
2575   } else {
2576     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2577     Generation::safe_object_iterate(cl);
2578   }
2579 }
2580 
2581 void
2582 ConcurrentMarkSweepGeneration::post_compact() {
2583 }
2584 
2585 void
2586 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2587   // Fix the linear allocation blocks to look like free blocks.
2588 
2589   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2590   // are not called when the heap is verified during universe initialization and
2591   // at vm shutdown.
2592   if (freelistLock()->owned_by_self()) {
2593     cmsSpace()->prepare_for_verify();
2594   } else {
2595     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2596     cmsSpace()->prepare_for_verify();
2597   }
2598 }
2599 
2600 void
2601 ConcurrentMarkSweepGeneration::verify() {
2602   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2603   // are not called when the heap is verified during universe initialization and
2604   // at vm shutdown.
2605   if (freelistLock()->owned_by_self()) {
2606     cmsSpace()->verify();
2607   } else {
2608     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2609     cmsSpace()->verify();
2610   }
2611 }
2612 
2613 void CMSCollector::verify() {
2614   _cmsGen->verify();
2615 }
2616 
2617 #ifndef PRODUCT
2618 bool CMSCollector::overflow_list_is_empty() const {
2619   assert(_num_par_pushes >= 0, "Inconsistency");
2620   if (_overflow_list == NULL) {
2621     assert(_num_par_pushes == 0, "Inconsistency");
2622   }
2623   return _overflow_list == NULL;
2624 }
2625 
2626 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2627 // merely consolidate assertion checks that appear to occur together frequently.
2628 void CMSCollector::verify_work_stacks_empty() const {
2629   assert(_markStack.isEmpty(), "Marking stack should be empty");
2630   assert(overflow_list_is_empty(), "Overflow list should be empty");
2631 }
2632 
2633 void CMSCollector::verify_overflow_empty() const {
2634   assert(overflow_list_is_empty(), "Overflow list should be empty");
2635   assert(no_preserved_marks(), "No preserved marks");
2636 }
2637 #endif // PRODUCT
2638 
2639 // Decide if we want to enable class unloading as part of the
2640 // ensuing concurrent GC cycle. We will collect and
2641 // unload classes if it's the case that:
2642 // (1) an explicit gc request has been made and the flag
2643 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2644 // (2) (a) class unloading is enabled at the command line, and
2645 //     (b) old gen is getting really full
2646 // NOTE: Provided there is no change in the state of the heap between
2647 // calls to this method, it should have idempotent results. Moreover,
2648 // its results should be monotonically increasing (i.e. going from 0 to 1,
2649 // but not 1 to 0) between successive calls between which the heap was
2650 // not collected. For the implementation below, it must thus rely on
2651 // the property that concurrent_cycles_since_last_unload()
2652 // will not decrease unless a collection cycle happened and that
2653 // _cmsGen->is_too_full() are
2654 // themselves also monotonic in that sense. See check_monotonicity()
2655 // below.
2656 void CMSCollector::update_should_unload_classes() {
2657   _should_unload_classes = false;
2658   // Condition 1 above
2659   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2660     _should_unload_classes = true;
2661   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2662     // Disjuncts 2.b.(i,ii,iii) above
2663     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2664                               CMSClassUnloadingMaxInterval)
2665                            || _cmsGen->is_too_full();
2666   }
2667 }
2668 
2669 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2670   bool res = should_concurrent_collect();
2671   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2672   return res;
2673 }
2674 
2675 void CMSCollector::setup_cms_unloading_and_verification_state() {
2676   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2677                              || VerifyBeforeExit;
2678   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2679 
2680   // We set the proper root for this CMS cycle here.
2681   if (should_unload_classes()) {   // Should unload classes this cycle
2682     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2683     set_verifying(should_verify);    // Set verification state for this cycle
2684     return;                            // Nothing else needs to be done at this time
2685   }
2686 
2687   // Not unloading classes this cycle
2688   assert(!should_unload_classes(), "Inconsistency!");
2689 
2690   // If we are not unloading classes then add SO_AllCodeCache to root
2691   // scanning options.
2692   add_root_scanning_option(rso);
2693 
2694   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2695     set_verifying(true);
2696   } else if (verifying() && !should_verify) {
2697     // We were verifying, but some verification flags got disabled.
2698     set_verifying(false);
2699     // Exclude symbols, strings and code cache elements from root scanning to
2700     // reduce IM and RM pauses.
2701     remove_root_scanning_option(rso);
2702   }
2703 }
2704 
2705 
2706 #ifndef PRODUCT
2707 HeapWord* CMSCollector::block_start(const void* p) const {
2708   const HeapWord* addr = (HeapWord*)p;
2709   if (_span.contains(p)) {
2710     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2711       return _cmsGen->cmsSpace()->block_start(p);
2712     }
2713   }
2714   return NULL;
2715 }
2716 #endif
2717 
2718 HeapWord*
2719 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2720                                                    bool   tlab,
2721                                                    bool   parallel) {
2722   CMSSynchronousYieldRequest yr;
2723   assert(!tlab, "Can't deal with TLAB allocation");
2724   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2725   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2726   if (GCExpandToAllocateDelayMillis > 0) {
2727     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2728   }
2729   return have_lock_and_allocate(word_size, tlab);
2730 }
2731 
2732 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2733     size_t bytes,
2734     size_t expand_bytes,
2735     CMSExpansionCause::Cause cause)
2736 {
2737 
2738   bool success = expand(bytes, expand_bytes);
2739 
2740   // remember why we expanded; this information is used
2741   // by shouldConcurrentCollect() when making decisions on whether to start
2742   // a new CMS cycle.
2743   if (success) {
2744     set_expansion_cause(cause);
2745     if (PrintGCDetails && Verbose) {
2746       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2747         CMSExpansionCause::to_string(cause));
2748     }
2749   }
2750 }
2751 
2752 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2753   HeapWord* res = NULL;
2754   MutexLocker x(ParGCRareEvent_lock);
2755   while (true) {
2756     // Expansion by some other thread might make alloc OK now:
2757     res = ps->lab.alloc(word_sz);
2758     if (res != NULL) return res;
2759     // If there's not enough expansion space available, give up.
2760     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2761       return NULL;
2762     }
2763     // Otherwise, we try expansion.
2764     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2765     // Now go around the loop and try alloc again;
2766     // A competing par_promote might beat us to the expansion space,
2767     // so we may go around the loop again if promotion fails again.
2768     if (GCExpandToAllocateDelayMillis > 0) {
2769       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2770     }
2771   }
2772 }
2773 
2774 
2775 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2776   PromotionInfo* promo) {
2777   MutexLocker x(ParGCRareEvent_lock);
2778   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2779   while (true) {
2780     // Expansion by some other thread might make alloc OK now:
2781     if (promo->ensure_spooling_space()) {
2782       assert(promo->has_spooling_space(),
2783              "Post-condition of successful ensure_spooling_space()");
2784       return true;
2785     }
2786     // If there's not enough expansion space available, give up.
2787     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2788       return false;
2789     }
2790     // Otherwise, we try expansion.
2791     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2792     // Now go around the loop and try alloc again;
2793     // A competing allocation might beat us to the expansion space,
2794     // so we may go around the loop again if allocation fails again.
2795     if (GCExpandToAllocateDelayMillis > 0) {
2796       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2797     }
2798   }
2799 }
2800 
2801 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2802   // Only shrink if a compaction was done so that all the free space
2803   // in the generation is in a contiguous block at the end.
2804   if (did_compact()) {
2805     CardGeneration::shrink(bytes);
2806   }
2807 }
2808 
2809 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2810   assert_locked_or_safepoint(Heap_lock);
2811 }
2812 
2813 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2814   assert_locked_or_safepoint(Heap_lock);
2815   assert_lock_strong(freelistLock());
2816   if (PrintGCDetails && Verbose) {
2817     warning("Shrinking of CMS not yet implemented");
2818   }
2819   return;
2820 }
2821 
2822 
2823 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2824 // phases.
2825 class CMSPhaseAccounting: public StackObj {
2826  public:
2827   CMSPhaseAccounting(CMSCollector *collector,
2828                      const char *phase,
2829                      bool print_cr = true);
2830   ~CMSPhaseAccounting();
2831 
2832  private:
2833   CMSCollector *_collector;
2834   const char *_phase;
2835   elapsedTimer _wallclock;
2836   bool _print_cr;
2837 
2838  public:
2839   // Not MT-safe; so do not pass around these StackObj's
2840   // where they may be accessed by other threads.
2841   jlong wallclock_millis() {
2842     assert(_wallclock.is_active(), "Wall clock should not stop");
2843     _wallclock.stop();  // to record time
2844     jlong ret = _wallclock.milliseconds();
2845     _wallclock.start(); // restart
2846     return ret;
2847   }
2848 };
2849 
2850 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2851                                        const char *phase,
2852                                        bool print_cr) :
2853   _collector(collector), _phase(phase), _print_cr(print_cr) {
2854 
2855   if (PrintCMSStatistics != 0) {
2856     _collector->resetYields();
2857   }
2858   if (PrintGCDetails) {
2859     gclog_or_tty->gclog_stamp();
2860     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2861       _collector->cmsGen()->short_name(), _phase);
2862   }
2863   _collector->resetTimer();
2864   _wallclock.start();
2865   _collector->startTimer();
2866 }
2867 
2868 CMSPhaseAccounting::~CMSPhaseAccounting() {
2869   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2870   _collector->stopTimer();
2871   _wallclock.stop();
2872   if (PrintGCDetails) {
2873     gclog_or_tty->gclog_stamp();
2874     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2875                  _collector->cmsGen()->short_name(),
2876                  _phase, _collector->timerValue(), _wallclock.seconds());
2877     if (_print_cr) {
2878       gclog_or_tty->cr();
2879     }
2880     if (PrintCMSStatistics != 0) {
2881       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2882                     _collector->yields());
2883     }
2884   }
2885 }
2886 
2887 // CMS work
2888 
2889 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2890 class CMSParMarkTask : public AbstractGangTask {
2891  protected:
2892   CMSCollector*     _collector;
2893   uint              _n_workers;
2894   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2895       AbstractGangTask(name),
2896       _collector(collector),
2897       _n_workers(n_workers) {}
2898   // Work method in support of parallel rescan ... of young gen spaces
2899   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2900                              ContiguousSpace* space,
2901                              HeapWord** chunk_array, size_t chunk_top);
2902   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2903 };
2904 
2905 // Parallel initial mark task
2906 class CMSParInitialMarkTask: public CMSParMarkTask {
2907   StrongRootsScope* _strong_roots_scope;
2908  public:
2909   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2910       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2911       _strong_roots_scope(strong_roots_scope) {}
2912   void work(uint worker_id);
2913 };
2914 
2915 // Checkpoint the roots into this generation from outside
2916 // this generation. [Note this initial checkpoint need only
2917 // be approximate -- we'll do a catch up phase subsequently.]
2918 void CMSCollector::checkpointRootsInitial() {
2919   assert(_collectorState == InitialMarking, "Wrong collector state");
2920   check_correct_thread_executing();
2921   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2922 
2923   save_heap_summary();
2924   report_heap_summary(GCWhen::BeforeGC);
2925 
2926   ReferenceProcessor* rp = ref_processor();
2927   assert(_restart_addr == NULL, "Control point invariant");
2928   {
2929     // acquire locks for subsequent manipulations
2930     MutexLockerEx x(bitMapLock(),
2931                     Mutex::_no_safepoint_check_flag);
2932     checkpointRootsInitialWork();
2933     // enable ("weak") refs discovery
2934     rp->enable_discovery();
2935     _collectorState = Marking;
2936   }
2937 }
2938 
2939 void CMSCollector::checkpointRootsInitialWork() {
2940   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2941   assert(_collectorState == InitialMarking, "just checking");
2942 
2943   // Already have locks.
2944   assert_lock_strong(bitMapLock());
2945   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2946 
2947   // Setup the verification and class unloading state for this
2948   // CMS collection cycle.
2949   setup_cms_unloading_and_verification_state();
2950 
2951   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2952     PrintGCDetails && Verbose, true, _gc_timer_cm);)
2953 
2954   // Reset all the PLAB chunk arrays if necessary.
2955   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2956     reset_survivor_plab_arrays();
2957   }
2958 
2959   ResourceMark rm;
2960   HandleMark  hm;
2961 
2962   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2963   GenCollectedHeap* gch = GenCollectedHeap::heap();
2964 
2965   verify_work_stacks_empty();
2966   verify_overflow_empty();
2967 
2968   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2969   // Update the saved marks which may affect the root scans.
2970   gch->save_marks();
2971 
2972   // weak reference processing has not started yet.
2973   ref_processor()->set_enqueuing_is_done(false);
2974 
2975   // Need to remember all newly created CLDs,
2976   // so that we can guarantee that the remark finds them.
2977   ClassLoaderDataGraph::remember_new_clds(true);
2978 
2979   // Whenever a CLD is found, it will be claimed before proceeding to mark
2980   // the klasses. The claimed marks need to be cleared before marking starts.
2981   ClassLoaderDataGraph::clear_claimed_marks();
2982 
2983   if (CMSPrintEdenSurvivorChunks) {
2984     print_eden_and_survivor_chunk_arrays();
2985   }
2986 
2987   {
2988     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2989     if (CMSParallelInitialMarkEnabled) {
2990       // The parallel version.
2991       WorkGang* workers = gch->workers();
2992       assert(workers != NULL, "Need parallel worker threads.");
2993       uint n_workers = workers->active_workers();
2994 
2995       StrongRootsScope srs(n_workers);
2996 
2997       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2998       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2999       if (n_workers > 1) {
3000         workers->run_task(&tsk);
3001       } else {
3002         tsk.work(0);
3003       }
3004     } else {
3005       // The serial version.
3006       CLDToOopClosure cld_closure(&notOlder, true);
3007       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3008 
3009       StrongRootsScope srs(1);
3010 
3011       gch->gen_process_roots(&srs,
3012                              GenCollectedHeap::OldGen,
3013                              true,   // young gen as roots
3014                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3015                              should_unload_classes(),
3016                              &notOlder,
3017                              NULL,
3018                              &cld_closure);
3019     }
3020   }
3021 
3022   // Clear mod-union table; it will be dirtied in the prologue of
3023   // CMS generation per each young generation collection.
3024 
3025   assert(_modUnionTable.isAllClear(),
3026        "Was cleared in most recent final checkpoint phase"
3027        " or no bits are set in the gc_prologue before the start of the next "
3028        "subsequent marking phase.");
3029 
3030   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3031 
3032   // Save the end of the used_region of the constituent generations
3033   // to be used to limit the extent of sweep in each generation.
3034   save_sweep_limits();
3035   verify_overflow_empty();
3036 }
3037 
3038 bool CMSCollector::markFromRoots() {
3039   // we might be tempted to assert that:
3040   // assert(!SafepointSynchronize::is_at_safepoint(),
3041   //        "inconsistent argument?");
3042   // However that wouldn't be right, because it's possible that
3043   // a safepoint is indeed in progress as a young generation
3044   // stop-the-world GC happens even as we mark in this generation.
3045   assert(_collectorState == Marking, "inconsistent state?");
3046   check_correct_thread_executing();
3047   verify_overflow_empty();
3048 
3049   // Weak ref discovery note: We may be discovering weak
3050   // refs in this generation concurrent (but interleaved) with
3051   // weak ref discovery by the young generation collector.
3052 
3053   CMSTokenSyncWithLocks ts(true, bitMapLock());
3054   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3055   CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3056   bool res = markFromRootsWork();
3057   if (res) {
3058     _collectorState = Precleaning;
3059   } else { // We failed and a foreground collection wants to take over
3060     assert(_foregroundGCIsActive, "internal state inconsistency");
3061     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3062     if (PrintGCDetails) {
3063       gclog_or_tty->print_cr("bailing out to foreground collection");
3064     }
3065   }
3066   verify_overflow_empty();
3067   return res;
3068 }
3069 
3070 bool CMSCollector::markFromRootsWork() {
3071   // iterate over marked bits in bit map, doing a full scan and mark
3072   // from these roots using the following algorithm:
3073   // . if oop is to the right of the current scan pointer,
3074   //   mark corresponding bit (we'll process it later)
3075   // . else (oop is to left of current scan pointer)
3076   //   push oop on marking stack
3077   // . drain the marking stack
3078 
3079   // Note that when we do a marking step we need to hold the
3080   // bit map lock -- recall that direct allocation (by mutators)
3081   // and promotion (by the young generation collector) is also
3082   // marking the bit map. [the so-called allocate live policy.]
3083   // Because the implementation of bit map marking is not
3084   // robust wrt simultaneous marking of bits in the same word,
3085   // we need to make sure that there is no such interference
3086   // between concurrent such updates.
3087 
3088   // already have locks
3089   assert_lock_strong(bitMapLock());
3090 
3091   verify_work_stacks_empty();
3092   verify_overflow_empty();
3093   bool result = false;
3094   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3095     result = do_marking_mt();
3096   } else {
3097     result = do_marking_st();
3098   }
3099   return result;
3100 }
3101 
3102 // Forward decl
3103 class CMSConcMarkingTask;
3104 
3105 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3106   CMSCollector*       _collector;
3107   CMSConcMarkingTask* _task;
3108  public:
3109   virtual void yield();
3110 
3111   // "n_threads" is the number of threads to be terminated.
3112   // "queue_set" is a set of work queues of other threads.
3113   // "collector" is the CMS collector associated with this task terminator.
3114   // "yield" indicates whether we need the gang as a whole to yield.
3115   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3116     ParallelTaskTerminator(n_threads, queue_set),
3117     _collector(collector) { }
3118 
3119   void set_task(CMSConcMarkingTask* task) {
3120     _task = task;
3121   }
3122 };
3123 
3124 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3125   CMSConcMarkingTask* _task;
3126  public:
3127   bool should_exit_termination();
3128   void set_task(CMSConcMarkingTask* task) {
3129     _task = task;
3130   }
3131 };
3132 
3133 // MT Concurrent Marking Task
3134 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3135   CMSCollector* _collector;
3136   uint          _n_workers;       // requested/desired # workers
3137   bool          _result;
3138   CompactibleFreeListSpace*  _cms_space;
3139   char          _pad_front[64];   // padding to ...
3140   HeapWord*     _global_finger;   // ... avoid sharing cache line
3141   char          _pad_back[64];
3142   HeapWord*     _restart_addr;
3143 
3144   //  Exposed here for yielding support
3145   Mutex* const _bit_map_lock;
3146 
3147   // The per thread work queues, available here for stealing
3148   OopTaskQueueSet*  _task_queues;
3149 
3150   // Termination (and yielding) support
3151   CMSConcMarkingTerminator _term;
3152   CMSConcMarkingTerminatorTerminator _term_term;
3153 
3154  public:
3155   CMSConcMarkingTask(CMSCollector* collector,
3156                  CompactibleFreeListSpace* cms_space,
3157                  YieldingFlexibleWorkGang* workers,
3158                  OopTaskQueueSet* task_queues):
3159     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3160     _collector(collector),
3161     _cms_space(cms_space),
3162     _n_workers(0), _result(true),
3163     _task_queues(task_queues),
3164     _term(_n_workers, task_queues, _collector),
3165     _bit_map_lock(collector->bitMapLock())
3166   {
3167     _requested_size = _n_workers;
3168     _term.set_task(this);
3169     _term_term.set_task(this);
3170     _restart_addr = _global_finger = _cms_space->bottom();
3171   }
3172 
3173 
3174   OopTaskQueueSet* task_queues()  { return _task_queues; }
3175 
3176   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3177 
3178   HeapWord** global_finger_addr() { return &_global_finger; }
3179 
3180   CMSConcMarkingTerminator* terminator() { return &_term; }
3181 
3182   virtual void set_for_termination(uint active_workers) {
3183     terminator()->reset_for_reuse(active_workers);
3184   }
3185 
3186   void work(uint worker_id);
3187   bool should_yield() {
3188     return    ConcurrentMarkSweepThread::should_yield()
3189            && !_collector->foregroundGCIsActive();
3190   }
3191 
3192   virtual void coordinator_yield();  // stuff done by coordinator
3193   bool result() { return _result; }
3194 
3195   void reset(HeapWord* ra) {
3196     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3197     _restart_addr = _global_finger = ra;
3198     _term.reset_for_reuse();
3199   }
3200 
3201   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3202                                            OopTaskQueue* work_q);
3203 
3204  private:
3205   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3206   void do_work_steal(int i);
3207   void bump_global_finger(HeapWord* f);
3208 };
3209 
3210 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3211   assert(_task != NULL, "Error");
3212   return _task->yielding();
3213   // Note that we do not need the disjunct || _task->should_yield() above
3214   // because we want terminating threads to yield only if the task
3215   // is already in the midst of yielding, which happens only after at least one
3216   // thread has yielded.
3217 }
3218 
3219 void CMSConcMarkingTerminator::yield() {
3220   if (_task->should_yield()) {
3221     _task->yield();
3222   } else {
3223     ParallelTaskTerminator::yield();
3224   }
3225 }
3226 
3227 ////////////////////////////////////////////////////////////////
3228 // Concurrent Marking Algorithm Sketch
3229 ////////////////////////////////////////////////////////////////
3230 // Until all tasks exhausted (both spaces):
3231 // -- claim next available chunk
3232 // -- bump global finger via CAS
3233 // -- find first object that starts in this chunk
3234 //    and start scanning bitmap from that position
3235 // -- scan marked objects for oops
3236 // -- CAS-mark target, and if successful:
3237 //    . if target oop is above global finger (volatile read)
3238 //      nothing to do
3239 //    . if target oop is in chunk and above local finger
3240 //        then nothing to do
3241 //    . else push on work-queue
3242 // -- Deal with possible overflow issues:
3243 //    . local work-queue overflow causes stuff to be pushed on
3244 //      global (common) overflow queue
3245 //    . always first empty local work queue
3246 //    . then get a batch of oops from global work queue if any
3247 //    . then do work stealing
3248 // -- When all tasks claimed (both spaces)
3249 //    and local work queue empty,
3250 //    then in a loop do:
3251 //    . check global overflow stack; steal a batch of oops and trace
3252 //    . try to steal from other threads oif GOS is empty
3253 //    . if neither is available, offer termination
3254 // -- Terminate and return result
3255 //
3256 void CMSConcMarkingTask::work(uint worker_id) {
3257   elapsedTimer _timer;
3258   ResourceMark rm;
3259   HandleMark hm;
3260 
3261   DEBUG_ONLY(_collector->verify_overflow_empty();)
3262 
3263   // Before we begin work, our work queue should be empty
3264   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3265   // Scan the bitmap covering _cms_space, tracing through grey objects.
3266   _timer.start();
3267   do_scan_and_mark(worker_id, _cms_space);
3268   _timer.stop();
3269   if (PrintCMSStatistics != 0) {
3270     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3271       worker_id, _timer.seconds());
3272       // XXX: need xxx/xxx type of notation, two timers
3273   }
3274 
3275   // ... do work stealing
3276   _timer.reset();
3277   _timer.start();
3278   do_work_steal(worker_id);
3279   _timer.stop();
3280   if (PrintCMSStatistics != 0) {
3281     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3282       worker_id, _timer.seconds());
3283       // XXX: need xxx/xxx type of notation, two timers
3284   }
3285   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3286   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3287   // Note that under the current task protocol, the
3288   // following assertion is true even of the spaces
3289   // expanded since the completion of the concurrent
3290   // marking. XXX This will likely change under a strict
3291   // ABORT semantics.
3292   // After perm removal the comparison was changed to
3293   // greater than or equal to from strictly greater than.
3294   // Before perm removal the highest address sweep would
3295   // have been at the end of perm gen but now is at the
3296   // end of the tenured gen.
3297   assert(_global_finger >=  _cms_space->end(),
3298          "All tasks have been completed");
3299   DEBUG_ONLY(_collector->verify_overflow_empty();)
3300 }
3301 
3302 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3303   HeapWord* read = _global_finger;
3304   HeapWord* cur  = read;
3305   while (f > read) {
3306     cur = read;
3307     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3308     if (cur == read) {
3309       // our cas succeeded
3310       assert(_global_finger >= f, "protocol consistency");
3311       break;
3312     }
3313   }
3314 }
3315 
3316 // This is really inefficient, and should be redone by
3317 // using (not yet available) block-read and -write interfaces to the
3318 // stack and the work_queue. XXX FIX ME !!!
3319 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3320                                                       OopTaskQueue* work_q) {
3321   // Fast lock-free check
3322   if (ovflw_stk->length() == 0) {
3323     return false;
3324   }
3325   assert(work_q->size() == 0, "Shouldn't steal");
3326   MutexLockerEx ml(ovflw_stk->par_lock(),
3327                    Mutex::_no_safepoint_check_flag);
3328   // Grab up to 1/4 the size of the work queue
3329   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3330                     (size_t)ParGCDesiredObjsFromOverflowList);
3331   num = MIN2(num, ovflw_stk->length());
3332   for (int i = (int) num; i > 0; i--) {
3333     oop cur = ovflw_stk->pop();
3334     assert(cur != NULL, "Counted wrong?");
3335     work_q->push(cur);
3336   }
3337   return num > 0;
3338 }
3339 
3340 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3341   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3342   int n_tasks = pst->n_tasks();
3343   // We allow that there may be no tasks to do here because
3344   // we are restarting after a stack overflow.
3345   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3346   uint nth_task = 0;
3347 
3348   HeapWord* aligned_start = sp->bottom();
3349   if (sp->used_region().contains(_restart_addr)) {
3350     // Align down to a card boundary for the start of 0th task
3351     // for this space.
3352     aligned_start =
3353       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3354                                  CardTableModRefBS::card_size);
3355   }
3356 
3357   size_t chunk_size = sp->marking_task_size();
3358   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3359     // Having claimed the nth task in this space,
3360     // compute the chunk that it corresponds to:
3361     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3362                                aligned_start + (nth_task+1)*chunk_size);
3363     // Try and bump the global finger via a CAS;
3364     // note that we need to do the global finger bump
3365     // _before_ taking the intersection below, because
3366     // the task corresponding to that region will be
3367     // deemed done even if the used_region() expands
3368     // because of allocation -- as it almost certainly will
3369     // during start-up while the threads yield in the
3370     // closure below.
3371     HeapWord* finger = span.end();
3372     bump_global_finger(finger);   // atomically
3373     // There are null tasks here corresponding to chunks
3374     // beyond the "top" address of the space.
3375     span = span.intersection(sp->used_region());
3376     if (!span.is_empty()) {  // Non-null task
3377       HeapWord* prev_obj;
3378       assert(!span.contains(_restart_addr) || nth_task == 0,
3379              "Inconsistency");
3380       if (nth_task == 0) {
3381         // For the 0th task, we'll not need to compute a block_start.
3382         if (span.contains(_restart_addr)) {
3383           // In the case of a restart because of stack overflow,
3384           // we might additionally skip a chunk prefix.
3385           prev_obj = _restart_addr;
3386         } else {
3387           prev_obj = span.start();
3388         }
3389       } else {
3390         // We want to skip the first object because
3391         // the protocol is to scan any object in its entirety
3392         // that _starts_ in this span; a fortiori, any
3393         // object starting in an earlier span is scanned
3394         // as part of an earlier claimed task.
3395         // Below we use the "careful" version of block_start
3396         // so we do not try to navigate uninitialized objects.
3397         prev_obj = sp->block_start_careful(span.start());
3398         // Below we use a variant of block_size that uses the
3399         // Printezis bits to avoid waiting for allocated
3400         // objects to become initialized/parsable.
3401         while (prev_obj < span.start()) {
3402           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3403           if (sz > 0) {
3404             prev_obj += sz;
3405           } else {
3406             // In this case we may end up doing a bit of redundant
3407             // scanning, but that appears unavoidable, short of
3408             // locking the free list locks; see bug 6324141.
3409             break;
3410           }
3411         }
3412       }
3413       if (prev_obj < span.end()) {
3414         MemRegion my_span = MemRegion(prev_obj, span.end());
3415         // Do the marking work within a non-empty span --
3416         // the last argument to the constructor indicates whether the
3417         // iteration should be incremental with periodic yields.
3418         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3419                                     &_collector->_markBitMap,
3420                                     work_queue(i),
3421                                     &_collector->_markStack);
3422         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3423       } // else nothing to do for this task
3424     }   // else nothing to do for this task
3425   }
3426   // We'd be tempted to assert here that since there are no
3427   // more tasks left to claim in this space, the global_finger
3428   // must exceed space->top() and a fortiori space->end(). However,
3429   // that would not quite be correct because the bumping of
3430   // global_finger occurs strictly after the claiming of a task,
3431   // so by the time we reach here the global finger may not yet
3432   // have been bumped up by the thread that claimed the last
3433   // task.
3434   pst->all_tasks_completed();
3435 }
3436 
3437 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3438  private:
3439   CMSCollector* _collector;
3440   CMSConcMarkingTask* _task;
3441   MemRegion     _span;
3442   CMSBitMap*    _bit_map;
3443   CMSMarkStack* _overflow_stack;
3444   OopTaskQueue* _work_queue;
3445  protected:
3446   DO_OOP_WORK_DEFN
3447  public:
3448   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3449                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3450     MetadataAwareOopClosure(collector->ref_processor()),
3451     _collector(collector),
3452     _task(task),
3453     _span(collector->_span),
3454     _work_queue(work_queue),
3455     _bit_map(bit_map),
3456     _overflow_stack(overflow_stack)
3457   { }
3458   virtual void do_oop(oop* p);
3459   virtual void do_oop(narrowOop* p);
3460 
3461   void trim_queue(size_t max);
3462   void handle_stack_overflow(HeapWord* lost);
3463   void do_yield_check() {
3464     if (_task->should_yield()) {
3465       _task->yield();
3466     }
3467   }
3468 };
3469 
3470 // Grey object scanning during work stealing phase --
3471 // the salient assumption here is that any references
3472 // that are in these stolen objects being scanned must
3473 // already have been initialized (else they would not have
3474 // been published), so we do not need to check for
3475 // uninitialized objects before pushing here.
3476 void Par_ConcMarkingClosure::do_oop(oop obj) {
3477   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3478   HeapWord* addr = (HeapWord*)obj;
3479   // Check if oop points into the CMS generation
3480   // and is not marked
3481   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3482     // a white object ...
3483     // If we manage to "claim" the object, by being the
3484     // first thread to mark it, then we push it on our
3485     // marking stack
3486     if (_bit_map->par_mark(addr)) {     // ... now grey
3487       // push on work queue (grey set)
3488       bool simulate_overflow = false;
3489       NOT_PRODUCT(
3490         if (CMSMarkStackOverflowALot &&
3491             _collector->simulate_overflow()) {
3492           // simulate a stack overflow
3493           simulate_overflow = true;
3494         }
3495       )
3496       if (simulate_overflow ||
3497           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3498         // stack overflow
3499         if (PrintCMSStatistics != 0) {
3500           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3501                                  SIZE_FORMAT, _overflow_stack->capacity());
3502         }
3503         // We cannot assert that the overflow stack is full because
3504         // it may have been emptied since.
3505         assert(simulate_overflow ||
3506                _work_queue->size() == _work_queue->max_elems(),
3507               "Else push should have succeeded");
3508         handle_stack_overflow(addr);
3509       }
3510     } // Else, some other thread got there first
3511     do_yield_check();
3512   }
3513 }
3514 
3515 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3516 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3517 
3518 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3519   while (_work_queue->size() > max) {
3520     oop new_oop;
3521     if (_work_queue->pop_local(new_oop)) {
3522       assert(new_oop->is_oop(), "Should be an oop");
3523       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3524       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3525       new_oop->oop_iterate(this);  // do_oop() above
3526       do_yield_check();
3527     }
3528   }
3529 }
3530 
3531 // Upon stack overflow, we discard (part of) the stack,
3532 // remembering the least address amongst those discarded
3533 // in CMSCollector's _restart_address.
3534 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3535   // We need to do this under a mutex to prevent other
3536   // workers from interfering with the work done below.
3537   MutexLockerEx ml(_overflow_stack->par_lock(),
3538                    Mutex::_no_safepoint_check_flag);
3539   // Remember the least grey address discarded
3540   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3541   _collector->lower_restart_addr(ra);
3542   _overflow_stack->reset();  // discard stack contents
3543   _overflow_stack->expand(); // expand the stack if possible
3544 }
3545 
3546 
3547 void CMSConcMarkingTask::do_work_steal(int i) {
3548   OopTaskQueue* work_q = work_queue(i);
3549   oop obj_to_scan;
3550   CMSBitMap* bm = &(_collector->_markBitMap);
3551   CMSMarkStack* ovflw = &(_collector->_markStack);
3552   int* seed = _collector->hash_seed(i);
3553   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3554   while (true) {
3555     cl.trim_queue(0);
3556     assert(work_q->size() == 0, "Should have been emptied above");
3557     if (get_work_from_overflow_stack(ovflw, work_q)) {
3558       // Can't assert below because the work obtained from the
3559       // overflow stack may already have been stolen from us.
3560       // assert(work_q->size() > 0, "Work from overflow stack");
3561       continue;
3562     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3563       assert(obj_to_scan->is_oop(), "Should be an oop");
3564       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3565       obj_to_scan->oop_iterate(&cl);
3566     } else if (terminator()->offer_termination(&_term_term)) {
3567       assert(work_q->size() == 0, "Impossible!");
3568       break;
3569     } else if (yielding() || should_yield()) {
3570       yield();
3571     }
3572   }
3573 }
3574 
3575 // This is run by the CMS (coordinator) thread.
3576 void CMSConcMarkingTask::coordinator_yield() {
3577   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3578          "CMS thread should hold CMS token");
3579   // First give up the locks, then yield, then re-lock
3580   // We should probably use a constructor/destructor idiom to
3581   // do this unlock/lock or modify the MutexUnlocker class to
3582   // serve our purpose. XXX
3583   assert_lock_strong(_bit_map_lock);
3584   _bit_map_lock->unlock();
3585   ConcurrentMarkSweepThread::desynchronize(true);
3586   _collector->stopTimer();
3587   if (PrintCMSStatistics != 0) {
3588     _collector->incrementYields();
3589   }
3590 
3591   // It is possible for whichever thread initiated the yield request
3592   // not to get a chance to wake up and take the bitmap lock between
3593   // this thread releasing it and reacquiring it. So, while the
3594   // should_yield() flag is on, let's sleep for a bit to give the
3595   // other thread a chance to wake up. The limit imposed on the number
3596   // of iterations is defensive, to avoid any unforseen circumstances
3597   // putting us into an infinite loop. Since it's always been this
3598   // (coordinator_yield()) method that was observed to cause the
3599   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3600   // which is by default non-zero. For the other seven methods that
3601   // also perform the yield operation, as are using a different
3602   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3603   // can enable the sleeping for those methods too, if necessary.
3604   // See 6442774.
3605   //
3606   // We really need to reconsider the synchronization between the GC
3607   // thread and the yield-requesting threads in the future and we
3608   // should really use wait/notify, which is the recommended
3609   // way of doing this type of interaction. Additionally, we should
3610   // consolidate the eight methods that do the yield operation and they
3611   // are almost identical into one for better maintainability and
3612   // readability. See 6445193.
3613   //
3614   // Tony 2006.06.29
3615   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3616                    ConcurrentMarkSweepThread::should_yield() &&
3617                    !CMSCollector::foregroundGCIsActive(); ++i) {
3618     os::sleep(Thread::current(), 1, false);
3619   }
3620 
3621   ConcurrentMarkSweepThread::synchronize(true);
3622   _bit_map_lock->lock_without_safepoint_check();
3623   _collector->startTimer();
3624 }
3625 
3626 bool CMSCollector::do_marking_mt() {
3627   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3628   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3629                                                                   conc_workers()->active_workers(),
3630                                                                   Threads::number_of_non_daemon_threads());
3631   conc_workers()->set_active_workers(num_workers);
3632 
3633   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3634 
3635   CMSConcMarkingTask tsk(this,
3636                          cms_space,
3637                          conc_workers(),
3638                          task_queues());
3639 
3640   // Since the actual number of workers we get may be different
3641   // from the number we requested above, do we need to do anything different
3642   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3643   // class?? XXX
3644   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3645 
3646   // Refs discovery is already non-atomic.
3647   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3648   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3649   conc_workers()->start_task(&tsk);
3650   while (tsk.yielded()) {
3651     tsk.coordinator_yield();
3652     conc_workers()->continue_task(&tsk);
3653   }
3654   // If the task was aborted, _restart_addr will be non-NULL
3655   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3656   while (_restart_addr != NULL) {
3657     // XXX For now we do not make use of ABORTED state and have not
3658     // yet implemented the right abort semantics (even in the original
3659     // single-threaded CMS case). That needs some more investigation
3660     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3661     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3662     // If _restart_addr is non-NULL, a marking stack overflow
3663     // occurred; we need to do a fresh marking iteration from the
3664     // indicated restart address.
3665     if (_foregroundGCIsActive) {
3666       // We may be running into repeated stack overflows, having
3667       // reached the limit of the stack size, while making very
3668       // slow forward progress. It may be best to bail out and
3669       // let the foreground collector do its job.
3670       // Clear _restart_addr, so that foreground GC
3671       // works from scratch. This avoids the headache of
3672       // a "rescan" which would otherwise be needed because
3673       // of the dirty mod union table & card table.
3674       _restart_addr = NULL;
3675       return false;
3676     }
3677     // Adjust the task to restart from _restart_addr
3678     tsk.reset(_restart_addr);
3679     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3680                   _restart_addr);
3681     _restart_addr = NULL;
3682     // Get the workers going again
3683     conc_workers()->start_task(&tsk);
3684     while (tsk.yielded()) {
3685       tsk.coordinator_yield();
3686       conc_workers()->continue_task(&tsk);
3687     }
3688   }
3689   assert(tsk.completed(), "Inconsistency");
3690   assert(tsk.result() == true, "Inconsistency");
3691   return true;
3692 }
3693 
3694 bool CMSCollector::do_marking_st() {
3695   ResourceMark rm;
3696   HandleMark   hm;
3697 
3698   // Temporarily make refs discovery single threaded (non-MT)
3699   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3700   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3701     &_markStack, CMSYield);
3702   // the last argument to iterate indicates whether the iteration
3703   // should be incremental with periodic yields.
3704   _markBitMap.iterate(&markFromRootsClosure);
3705   // If _restart_addr is non-NULL, a marking stack overflow
3706   // occurred; we need to do a fresh iteration from the
3707   // indicated restart address.
3708   while (_restart_addr != NULL) {
3709     if (_foregroundGCIsActive) {
3710       // We may be running into repeated stack overflows, having
3711       // reached the limit of the stack size, while making very
3712       // slow forward progress. It may be best to bail out and
3713       // let the foreground collector do its job.
3714       // Clear _restart_addr, so that foreground GC
3715       // works from scratch. This avoids the headache of
3716       // a "rescan" which would otherwise be needed because
3717       // of the dirty mod union table & card table.
3718       _restart_addr = NULL;
3719       return false;  // indicating failure to complete marking
3720     }
3721     // Deal with stack overflow:
3722     // we restart marking from _restart_addr
3723     HeapWord* ra = _restart_addr;
3724     markFromRootsClosure.reset(ra);
3725     _restart_addr = NULL;
3726     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3727   }
3728   return true;
3729 }
3730 
3731 void CMSCollector::preclean() {
3732   check_correct_thread_executing();
3733   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3734   verify_work_stacks_empty();
3735   verify_overflow_empty();
3736   _abort_preclean = false;
3737   if (CMSPrecleaningEnabled) {
3738     if (!CMSEdenChunksRecordAlways) {
3739       _eden_chunk_index = 0;
3740     }
3741     size_t used = get_eden_used();
3742     size_t capacity = get_eden_capacity();
3743     // Don't start sampling unless we will get sufficiently
3744     // many samples.
3745     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3746                 * CMSScheduleRemarkEdenPenetration)) {
3747       _start_sampling = true;
3748     } else {
3749       _start_sampling = false;
3750     }
3751     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3752     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
3753     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3754   }
3755   CMSTokenSync x(true); // is cms thread
3756   if (CMSPrecleaningEnabled) {
3757     sample_eden();
3758     _collectorState = AbortablePreclean;
3759   } else {
3760     _collectorState = FinalMarking;
3761   }
3762   verify_work_stacks_empty();
3763   verify_overflow_empty();
3764 }
3765 
3766 // Try and schedule the remark such that young gen
3767 // occupancy is CMSScheduleRemarkEdenPenetration %.
3768 void CMSCollector::abortable_preclean() {
3769   check_correct_thread_executing();
3770   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3771   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3772 
3773   // If Eden's current occupancy is below this threshold,
3774   // immediately schedule the remark; else preclean
3775   // past the next scavenge in an effort to
3776   // schedule the pause as described above. By choosing
3777   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3778   // we will never do an actual abortable preclean cycle.
3779   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3780     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3781     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
3782     // We need more smarts in the abortable preclean
3783     // loop below to deal with cases where allocation
3784     // in young gen is very very slow, and our precleaning
3785     // is running a losing race against a horde of
3786     // mutators intent on flooding us with CMS updates
3787     // (dirty cards).
3788     // One, admittedly dumb, strategy is to give up
3789     // after a certain number of abortable precleaning loops
3790     // or after a certain maximum time. We want to make
3791     // this smarter in the next iteration.
3792     // XXX FIX ME!!! YSR
3793     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3794     while (!(should_abort_preclean() ||
3795              ConcurrentMarkSweepThread::should_terminate())) {
3796       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3797       cumworkdone += workdone;
3798       loops++;
3799       // Voluntarily terminate abortable preclean phase if we have
3800       // been at it for too long.
3801       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3802           loops >= CMSMaxAbortablePrecleanLoops) {
3803         if (PrintGCDetails) {
3804           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3805         }
3806         break;
3807       }
3808       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3809         if (PrintGCDetails) {
3810           gclog_or_tty->print(" CMS: abort preclean due to time ");
3811         }
3812         break;
3813       }
3814       // If we are doing little work each iteration, we should
3815       // take a short break.
3816       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3817         // Sleep for some time, waiting for work to accumulate
3818         stopTimer();
3819         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3820         startTimer();
3821         waited++;
3822       }
3823     }
3824     if (PrintCMSStatistics > 0) {
3825       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3826                           loops, waited, cumworkdone);
3827     }
3828   }
3829   CMSTokenSync x(true); // is cms thread
3830   if (_collectorState != Idling) {
3831     assert(_collectorState == AbortablePreclean,
3832            "Spontaneous state transition?");
3833     _collectorState = FinalMarking;
3834   } // Else, a foreground collection completed this CMS cycle.
3835   return;
3836 }
3837 
3838 // Respond to an Eden sampling opportunity
3839 void CMSCollector::sample_eden() {
3840   // Make sure a young gc cannot sneak in between our
3841   // reading and recording of a sample.
3842   assert(Thread::current()->is_ConcurrentGC_thread(),
3843          "Only the cms thread may collect Eden samples");
3844   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3845          "Should collect samples while holding CMS token");
3846   if (!_start_sampling) {
3847     return;
3848   }
3849   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3850   // is populated by the young generation.
3851   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3852     if (_eden_chunk_index < _eden_chunk_capacity) {
3853       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3854       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3855              "Unexpected state of Eden");
3856       // We'd like to check that what we just sampled is an oop-start address;
3857       // however, we cannot do that here since the object may not yet have been
3858       // initialized. So we'll instead do the check when we _use_ this sample
3859       // later.
3860       if (_eden_chunk_index == 0 ||
3861           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3862                          _eden_chunk_array[_eden_chunk_index-1])
3863            >= CMSSamplingGrain)) {
3864         _eden_chunk_index++;  // commit sample
3865       }
3866     }
3867   }
3868   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3869     size_t used = get_eden_used();
3870     size_t capacity = get_eden_capacity();
3871     assert(used <= capacity, "Unexpected state of Eden");
3872     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3873       _abort_preclean = true;
3874     }
3875   }
3876 }
3877 
3878 
3879 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3880   assert(_collectorState == Precleaning ||
3881          _collectorState == AbortablePreclean, "incorrect state");
3882   ResourceMark rm;
3883   HandleMark   hm;
3884 
3885   // Precleaning is currently not MT but the reference processor
3886   // may be set for MT.  Disable it temporarily here.
3887   ReferenceProcessor* rp = ref_processor();
3888   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3889 
3890   // Do one pass of scrubbing the discovered reference lists
3891   // to remove any reference objects with strongly-reachable
3892   // referents.
3893   if (clean_refs) {
3894     CMSPrecleanRefsYieldClosure yield_cl(this);
3895     assert(rp->span().equals(_span), "Spans should be equal");
3896     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3897                                    &_markStack, true /* preclean */);
3898     CMSDrainMarkingStackClosure complete_trace(this,
3899                                    _span, &_markBitMap, &_markStack,
3900                                    &keep_alive, true /* preclean */);
3901 
3902     // We don't want this step to interfere with a young
3903     // collection because we don't want to take CPU
3904     // or memory bandwidth away from the young GC threads
3905     // (which may be as many as there are CPUs).
3906     // Note that we don't need to protect ourselves from
3907     // interference with mutators because they can't
3908     // manipulate the discovered reference lists nor affect
3909     // the computed reachability of the referents, the
3910     // only properties manipulated by the precleaning
3911     // of these reference lists.
3912     stopTimer();
3913     CMSTokenSyncWithLocks x(true /* is cms thread */,
3914                             bitMapLock());
3915     startTimer();
3916     sample_eden();
3917 
3918     // The following will yield to allow foreground
3919     // collection to proceed promptly. XXX YSR:
3920     // The code in this method may need further
3921     // tweaking for better performance and some restructuring
3922     // for cleaner interfaces.
3923     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3924     rp->preclean_discovered_references(
3925           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3926           gc_timer);
3927   }
3928 
3929   if (clean_survivor) {  // preclean the active survivor space(s)
3930     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3931                              &_markBitMap, &_modUnionTable,
3932                              &_markStack, true /* precleaning phase */);
3933     stopTimer();
3934     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3935                              bitMapLock());
3936     startTimer();
3937     unsigned int before_count =
3938       GenCollectedHeap::heap()->total_collections();
3939     SurvivorSpacePrecleanClosure
3940       sss_cl(this, _span, &_markBitMap, &_markStack,
3941              &pam_cl, before_count, CMSYield);
3942     _young_gen->from()->object_iterate_careful(&sss_cl);
3943     _young_gen->to()->object_iterate_careful(&sss_cl);
3944   }
3945   MarkRefsIntoAndScanClosure
3946     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3947              &_markStack, this, CMSYield,
3948              true /* precleaning phase */);
3949   // CAUTION: The following closure has persistent state that may need to
3950   // be reset upon a decrease in the sequence of addresses it
3951   // processes.
3952   ScanMarkedObjectsAgainCarefullyClosure
3953     smoac_cl(this, _span,
3954       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3955 
3956   // Preclean dirty cards in ModUnionTable and CardTable using
3957   // appropriate convergence criterion;
3958   // repeat CMSPrecleanIter times unless we find that
3959   // we are losing.
3960   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3961   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3962          "Bad convergence multiplier");
3963   assert(CMSPrecleanThreshold >= 100,
3964          "Unreasonably low CMSPrecleanThreshold");
3965 
3966   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3967   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3968        numIter < CMSPrecleanIter;
3969        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3970     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3971     if (Verbose && PrintGCDetails) {
3972       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3973     }
3974     // Either there are very few dirty cards, so re-mark
3975     // pause will be small anyway, or our pre-cleaning isn't
3976     // that much faster than the rate at which cards are being
3977     // dirtied, so we might as well stop and re-mark since
3978     // precleaning won't improve our re-mark time by much.
3979     if (curNumCards <= CMSPrecleanThreshold ||
3980         (numIter > 0 &&
3981          (curNumCards * CMSPrecleanDenominator >
3982          lastNumCards * CMSPrecleanNumerator))) {
3983       numIter++;
3984       cumNumCards += curNumCards;
3985       break;
3986     }
3987   }
3988 
3989   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3990 
3991   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3992   cumNumCards += curNumCards;
3993   if (PrintGCDetails && PrintCMSStatistics != 0) {
3994     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3995                   curNumCards, cumNumCards, numIter);
3996   }
3997   return cumNumCards;   // as a measure of useful work done
3998 }
3999 
4000 // PRECLEANING NOTES:
4001 // Precleaning involves:
4002 // . reading the bits of the modUnionTable and clearing the set bits.
4003 // . For the cards corresponding to the set bits, we scan the
4004 //   objects on those cards. This means we need the free_list_lock
4005 //   so that we can safely iterate over the CMS space when scanning
4006 //   for oops.
4007 // . When we scan the objects, we'll be both reading and setting
4008 //   marks in the marking bit map, so we'll need the marking bit map.
4009 // . For protecting _collector_state transitions, we take the CGC_lock.
4010 //   Note that any races in the reading of of card table entries by the
4011 //   CMS thread on the one hand and the clearing of those entries by the
4012 //   VM thread or the setting of those entries by the mutator threads on the
4013 //   other are quite benign. However, for efficiency it makes sense to keep
4014 //   the VM thread from racing with the CMS thread while the latter is
4015 //   dirty card info to the modUnionTable. We therefore also use the
4016 //   CGC_lock to protect the reading of the card table and the mod union
4017 //   table by the CM thread.
4018 // . We run concurrently with mutator updates, so scanning
4019 //   needs to be done carefully  -- we should not try to scan
4020 //   potentially uninitialized objects.
4021 //
4022 // Locking strategy: While holding the CGC_lock, we scan over and
4023 // reset a maximal dirty range of the mod union / card tables, then lock
4024 // the free_list_lock and bitmap lock to do a full marking, then
4025 // release these locks; and repeat the cycle. This allows for a
4026 // certain amount of fairness in the sharing of these locks between
4027 // the CMS collector on the one hand, and the VM thread and the
4028 // mutators on the other.
4029 
4030 // NOTE: preclean_mod_union_table() and preclean_card_table()
4031 // further below are largely identical; if you need to modify
4032 // one of these methods, please check the other method too.
4033 
4034 size_t CMSCollector::preclean_mod_union_table(
4035   ConcurrentMarkSweepGeneration* old_gen,
4036   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4037   verify_work_stacks_empty();
4038   verify_overflow_empty();
4039 
4040   // strategy: starting with the first card, accumulate contiguous
4041   // ranges of dirty cards; clear these cards, then scan the region
4042   // covered by these cards.
4043 
4044   // Since all of the MUT is committed ahead, we can just use
4045   // that, in case the generations expand while we are precleaning.
4046   // It might also be fine to just use the committed part of the
4047   // generation, but we might potentially miss cards when the
4048   // generation is rapidly expanding while we are in the midst
4049   // of precleaning.
4050   HeapWord* startAddr = old_gen->reserved().start();
4051   HeapWord* endAddr   = old_gen->reserved().end();
4052 
4053   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4054 
4055   size_t numDirtyCards, cumNumDirtyCards;
4056   HeapWord *nextAddr, *lastAddr;
4057   for (cumNumDirtyCards = numDirtyCards = 0,
4058        nextAddr = lastAddr = startAddr;
4059        nextAddr < endAddr;
4060        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4061 
4062     ResourceMark rm;
4063     HandleMark   hm;
4064 
4065     MemRegion dirtyRegion;
4066     {
4067       stopTimer();
4068       // Potential yield point
4069       CMSTokenSync ts(true);
4070       startTimer();
4071       sample_eden();
4072       // Get dirty region starting at nextOffset (inclusive),
4073       // simultaneously clearing it.
4074       dirtyRegion =
4075         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4076       assert(dirtyRegion.start() >= nextAddr,
4077              "returned region inconsistent?");
4078     }
4079     // Remember where the next search should begin.
4080     // The returned region (if non-empty) is a right open interval,
4081     // so lastOffset is obtained from the right end of that
4082     // interval.
4083     lastAddr = dirtyRegion.end();
4084     // Should do something more transparent and less hacky XXX
4085     numDirtyCards =
4086       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4087 
4088     // We'll scan the cards in the dirty region (with periodic
4089     // yields for foreground GC as needed).
4090     if (!dirtyRegion.is_empty()) {
4091       assert(numDirtyCards > 0, "consistency check");
4092       HeapWord* stop_point = NULL;
4093       stopTimer();
4094       // Potential yield point
4095       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4096                                bitMapLock());
4097       startTimer();
4098       {
4099         verify_work_stacks_empty();
4100         verify_overflow_empty();
4101         sample_eden();
4102         stop_point =
4103           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4104       }
4105       if (stop_point != NULL) {
4106         // The careful iteration stopped early either because it found an
4107         // uninitialized object, or because we were in the midst of an
4108         // "abortable preclean", which should now be aborted. Redirty
4109         // the bits corresponding to the partially-scanned or unscanned
4110         // cards. We'll either restart at the next block boundary or
4111         // abort the preclean.
4112         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4113                "Should only be AbortablePreclean.");
4114         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4115         if (should_abort_preclean()) {
4116           break; // out of preclean loop
4117         } else {
4118           // Compute the next address at which preclean should pick up;
4119           // might need bitMapLock in order to read P-bits.
4120           lastAddr = next_card_start_after_block(stop_point);
4121         }
4122       }
4123     } else {
4124       assert(lastAddr == endAddr, "consistency check");
4125       assert(numDirtyCards == 0, "consistency check");
4126       break;
4127     }
4128   }
4129   verify_work_stacks_empty();
4130   verify_overflow_empty();
4131   return cumNumDirtyCards;
4132 }
4133 
4134 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4135 // below are largely identical; if you need to modify
4136 // one of these methods, please check the other method too.
4137 
4138 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4139   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4140   // strategy: it's similar to precleamModUnionTable above, in that
4141   // we accumulate contiguous ranges of dirty cards, mark these cards
4142   // precleaned, then scan the region covered by these cards.
4143   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4144   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4145 
4146   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4147 
4148   size_t numDirtyCards, cumNumDirtyCards;
4149   HeapWord *lastAddr, *nextAddr;
4150 
4151   for (cumNumDirtyCards = numDirtyCards = 0,
4152        nextAddr = lastAddr = startAddr;
4153        nextAddr < endAddr;
4154        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4155 
4156     ResourceMark rm;
4157     HandleMark   hm;
4158 
4159     MemRegion dirtyRegion;
4160     {
4161       // See comments in "Precleaning notes" above on why we
4162       // do this locking. XXX Could the locking overheads be
4163       // too high when dirty cards are sparse? [I don't think so.]
4164       stopTimer();
4165       CMSTokenSync x(true); // is cms thread
4166       startTimer();
4167       sample_eden();
4168       // Get and clear dirty region from card table
4169       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4170                                     MemRegion(nextAddr, endAddr),
4171                                     true,
4172                                     CardTableModRefBS::precleaned_card_val());
4173 
4174       assert(dirtyRegion.start() >= nextAddr,
4175              "returned region inconsistent?");
4176     }
4177     lastAddr = dirtyRegion.end();
4178     numDirtyCards =
4179       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4180 
4181     if (!dirtyRegion.is_empty()) {
4182       stopTimer();
4183       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4184       startTimer();
4185       sample_eden();
4186       verify_work_stacks_empty();
4187       verify_overflow_empty();
4188       HeapWord* stop_point =
4189         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4190       if (stop_point != NULL) {
4191         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4192                "Should only be AbortablePreclean.");
4193         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4194         if (should_abort_preclean()) {
4195           break; // out of preclean loop
4196         } else {
4197           // Compute the next address at which preclean should pick up.
4198           lastAddr = next_card_start_after_block(stop_point);
4199         }
4200       }
4201     } else {
4202       break;
4203     }
4204   }
4205   verify_work_stacks_empty();
4206   verify_overflow_empty();
4207   return cumNumDirtyCards;
4208 }
4209 
4210 class PrecleanKlassClosure : public KlassClosure {
4211   KlassToOopClosure _cm_klass_closure;
4212  public:
4213   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4214   void do_klass(Klass* k) {
4215     if (k->has_accumulated_modified_oops()) {
4216       k->clear_accumulated_modified_oops();
4217 
4218       _cm_klass_closure.do_klass(k);
4219     }
4220   }
4221 };
4222 
4223 // The freelist lock is needed to prevent asserts, is it really needed?
4224 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4225 
4226   cl->set_freelistLock(freelistLock);
4227 
4228   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4229 
4230   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4231   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4232   PrecleanKlassClosure preclean_klass_closure(cl);
4233   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4234 
4235   verify_work_stacks_empty();
4236   verify_overflow_empty();
4237 }
4238 
4239 void CMSCollector::checkpointRootsFinal() {
4240   assert(_collectorState == FinalMarking, "incorrect state transition?");
4241   check_correct_thread_executing();
4242   // world is stopped at this checkpoint
4243   assert(SafepointSynchronize::is_at_safepoint(),
4244          "world should be stopped");
4245   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4246 
4247   verify_work_stacks_empty();
4248   verify_overflow_empty();
4249 
4250   if (PrintGCDetails) {
4251     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4252                         _young_gen->used() / K,
4253                         _young_gen->capacity() / K);
4254   }
4255   {
4256     if (CMSScavengeBeforeRemark) {
4257       GenCollectedHeap* gch = GenCollectedHeap::heap();
4258       // Temporarily set flag to false, GCH->do_collection will
4259       // expect it to be false and set to true
4260       FlagSetting fl(gch->_is_gc_active, false);
4261       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4262         PrintGCDetails && Verbose, true, _gc_timer_cm);)
4263       gch->do_collection(true,                      // full (i.e. force, see below)
4264                          false,                     // !clear_all_soft_refs
4265                          0,                         // size
4266                          false,                     // is_tlab
4267                          GenCollectedHeap::YoungGen // type
4268         );
4269     }
4270     FreelistLocker x(this);
4271     MutexLockerEx y(bitMapLock(),
4272                     Mutex::_no_safepoint_check_flag);
4273     checkpointRootsFinalWork();
4274   }
4275   verify_work_stacks_empty();
4276   verify_overflow_empty();
4277 }
4278 
4279 void CMSCollector::checkpointRootsFinalWork() {
4280   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
4281 
4282   assert(haveFreelistLocks(), "must have free list locks");
4283   assert_lock_strong(bitMapLock());
4284 
4285   ResourceMark rm;
4286   HandleMark   hm;
4287 
4288   GenCollectedHeap* gch = GenCollectedHeap::heap();
4289 
4290   if (should_unload_classes()) {
4291     CodeCache::gc_prologue();
4292   }
4293   assert(haveFreelistLocks(), "must have free list locks");
4294   assert_lock_strong(bitMapLock());
4295 
4296   // We might assume that we need not fill TLAB's when
4297   // CMSScavengeBeforeRemark is set, because we may have just done
4298   // a scavenge which would have filled all TLAB's -- and besides
4299   // Eden would be empty. This however may not always be the case --
4300   // for instance although we asked for a scavenge, it may not have
4301   // happened because of a JNI critical section. We probably need
4302   // a policy for deciding whether we can in that case wait until
4303   // the critical section releases and then do the remark following
4304   // the scavenge, and skip it here. In the absence of that policy,
4305   // or of an indication of whether the scavenge did indeed occur,
4306   // we cannot rely on TLAB's having been filled and must do
4307   // so here just in case a scavenge did not happen.
4308   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4309   // Update the saved marks which may affect the root scans.
4310   gch->save_marks();
4311 
4312   if (CMSPrintEdenSurvivorChunks) {
4313     print_eden_and_survivor_chunk_arrays();
4314   }
4315 
4316   {
4317     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4318 
4319     // Note on the role of the mod union table:
4320     // Since the marker in "markFromRoots" marks concurrently with
4321     // mutators, it is possible for some reachable objects not to have been
4322     // scanned. For instance, an only reference to an object A was
4323     // placed in object B after the marker scanned B. Unless B is rescanned,
4324     // A would be collected. Such updates to references in marked objects
4325     // are detected via the mod union table which is the set of all cards
4326     // dirtied since the first checkpoint in this GC cycle and prior to
4327     // the most recent young generation GC, minus those cleaned up by the
4328     // concurrent precleaning.
4329     if (CMSParallelRemarkEnabled) {
4330       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
4331       do_remark_parallel();
4332     } else {
4333       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, _gc_timer_cm);
4334       do_remark_non_parallel();
4335     }
4336   }
4337   verify_work_stacks_empty();
4338   verify_overflow_empty();
4339 
4340   {
4341     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
4342     refProcessingWork();
4343   }
4344   verify_work_stacks_empty();
4345   verify_overflow_empty();
4346 
4347   if (should_unload_classes()) {
4348     CodeCache::gc_epilogue();
4349   }
4350   JvmtiExport::gc_epilogue();
4351 
4352   // If we encountered any (marking stack / work queue) overflow
4353   // events during the current CMS cycle, take appropriate
4354   // remedial measures, where possible, so as to try and avoid
4355   // recurrence of that condition.
4356   assert(_markStack.isEmpty(), "No grey objects");
4357   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4358                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4359   if (ser_ovflw > 0) {
4360     if (PrintCMSStatistics != 0) {
4361       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4362         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4363         ", kac_preclean=" SIZE_FORMAT ")",
4364         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4365         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4366     }
4367     _markStack.expand();
4368     _ser_pmc_remark_ovflw = 0;
4369     _ser_pmc_preclean_ovflw = 0;
4370     _ser_kac_preclean_ovflw = 0;
4371     _ser_kac_ovflw = 0;
4372   }
4373   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4374     if (PrintCMSStatistics != 0) {
4375       gclog_or_tty->print_cr("Work queue overflow (benign) "
4376         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4377         _par_pmc_remark_ovflw, _par_kac_ovflw);
4378     }
4379     _par_pmc_remark_ovflw = 0;
4380     _par_kac_ovflw = 0;
4381   }
4382   if (PrintCMSStatistics != 0) {
4383      if (_markStack._hit_limit > 0) {
4384        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4385                               _markStack._hit_limit);
4386      }
4387      if (_markStack._failed_double > 0) {
4388        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4389                               " current capacity " SIZE_FORMAT,
4390                               _markStack._failed_double,
4391                               _markStack.capacity());
4392      }
4393   }
4394   _markStack._hit_limit = 0;
4395   _markStack._failed_double = 0;
4396 
4397   if ((VerifyAfterGC || VerifyDuringGC) &&
4398       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4399     verify_after_remark();
4400   }
4401 
4402   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4403 
4404   // Change under the freelistLocks.
4405   _collectorState = Sweeping;
4406   // Call isAllClear() under bitMapLock
4407   assert(_modUnionTable.isAllClear(),
4408       "Should be clear by end of the final marking");
4409   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4410       "Should be clear by end of the final marking");
4411 }
4412 
4413 void CMSParInitialMarkTask::work(uint worker_id) {
4414   elapsedTimer _timer;
4415   ResourceMark rm;
4416   HandleMark   hm;
4417 
4418   // ---------- scan from roots --------------
4419   _timer.start();
4420   GenCollectedHeap* gch = GenCollectedHeap::heap();
4421   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4422 
4423   // ---------- young gen roots --------------
4424   {
4425     work_on_young_gen_roots(worker_id, &par_mri_cl);
4426     _timer.stop();
4427     if (PrintCMSStatistics != 0) {
4428       gclog_or_tty->print_cr(
4429         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4430         worker_id, _timer.seconds());
4431     }
4432   }
4433 
4434   // ---------- remaining roots --------------
4435   _timer.reset();
4436   _timer.start();
4437 
4438   CLDToOopClosure cld_closure(&par_mri_cl, true);
4439 
4440   gch->gen_process_roots(_strong_roots_scope,
4441                          GenCollectedHeap::OldGen,
4442                          false,     // yg was scanned above
4443                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4444                          _collector->should_unload_classes(),
4445                          &par_mri_cl,
4446                          NULL,
4447                          &cld_closure);
4448   assert(_collector->should_unload_classes()
4449          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4450          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4451   _timer.stop();
4452   if (PrintCMSStatistics != 0) {
4453     gclog_or_tty->print_cr(
4454       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4455       worker_id, _timer.seconds());
4456   }
4457 }
4458 
4459 // Parallel remark task
4460 class CMSParRemarkTask: public CMSParMarkTask {
4461   CompactibleFreeListSpace* _cms_space;
4462 
4463   // The per-thread work queues, available here for stealing.
4464   OopTaskQueueSet*       _task_queues;
4465   ParallelTaskTerminator _term;
4466   StrongRootsScope*      _strong_roots_scope;
4467 
4468  public:
4469   // A value of 0 passed to n_workers will cause the number of
4470   // workers to be taken from the active workers in the work gang.
4471   CMSParRemarkTask(CMSCollector* collector,
4472                    CompactibleFreeListSpace* cms_space,
4473                    uint n_workers, WorkGang* workers,
4474                    OopTaskQueueSet* task_queues,
4475                    StrongRootsScope* strong_roots_scope):
4476     CMSParMarkTask("Rescan roots and grey objects in parallel",
4477                    collector, n_workers),
4478     _cms_space(cms_space),
4479     _task_queues(task_queues),
4480     _term(n_workers, task_queues),
4481     _strong_roots_scope(strong_roots_scope) { }
4482 
4483   OopTaskQueueSet* task_queues() { return _task_queues; }
4484 
4485   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4486 
4487   ParallelTaskTerminator* terminator() { return &_term; }
4488   uint n_workers() { return _n_workers; }
4489 
4490   void work(uint worker_id);
4491 
4492  private:
4493   // ... of  dirty cards in old space
4494   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4495                                   Par_MarkRefsIntoAndScanClosure* cl);
4496 
4497   // ... work stealing for the above
4498   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4499 };
4500 
4501 class RemarkKlassClosure : public KlassClosure {
4502   KlassToOopClosure _cm_klass_closure;
4503  public:
4504   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4505   void do_klass(Klass* k) {
4506     // Check if we have modified any oops in the Klass during the concurrent marking.
4507     if (k->has_accumulated_modified_oops()) {
4508       k->clear_accumulated_modified_oops();
4509 
4510       // We could have transfered the current modified marks to the accumulated marks,
4511       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4512     } else if (k->has_modified_oops()) {
4513       // Don't clear anything, this info is needed by the next young collection.
4514     } else {
4515       // No modified oops in the Klass.
4516       return;
4517     }
4518 
4519     // The klass has modified fields, need to scan the klass.
4520     _cm_klass_closure.do_klass(k);
4521   }
4522 };
4523 
4524 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4525   ParNewGeneration* young_gen = _collector->_young_gen;
4526   ContiguousSpace* eden_space = young_gen->eden();
4527   ContiguousSpace* from_space = young_gen->from();
4528   ContiguousSpace* to_space   = young_gen->to();
4529 
4530   HeapWord** eca = _collector->_eden_chunk_array;
4531   size_t     ect = _collector->_eden_chunk_index;
4532   HeapWord** sca = _collector->_survivor_chunk_array;
4533   size_t     sct = _collector->_survivor_chunk_index;
4534 
4535   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4536   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4537 
4538   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4539   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4540   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4541 }
4542 
4543 // work_queue(i) is passed to the closure
4544 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4545 // also is passed to do_dirty_card_rescan_tasks() and to
4546 // do_work_steal() to select the i-th task_queue.
4547 
4548 void CMSParRemarkTask::work(uint worker_id) {
4549   elapsedTimer _timer;
4550   ResourceMark rm;
4551   HandleMark   hm;
4552 
4553   // ---------- rescan from roots --------------
4554   _timer.start();
4555   GenCollectedHeap* gch = GenCollectedHeap::heap();
4556   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4557     _collector->_span, _collector->ref_processor(),
4558     &(_collector->_markBitMap),
4559     work_queue(worker_id));
4560 
4561   // Rescan young gen roots first since these are likely
4562   // coarsely partitioned and may, on that account, constitute
4563   // the critical path; thus, it's best to start off that
4564   // work first.
4565   // ---------- young gen roots --------------
4566   {
4567     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4568     _timer.stop();
4569     if (PrintCMSStatistics != 0) {
4570       gclog_or_tty->print_cr(
4571         "Finished young gen rescan work in %dth thread: %3.3f sec",
4572         worker_id, _timer.seconds());
4573     }
4574   }
4575 
4576   // ---------- remaining roots --------------
4577   _timer.reset();
4578   _timer.start();
4579   gch->gen_process_roots(_strong_roots_scope,
4580                          GenCollectedHeap::OldGen,
4581                          false,     // yg was scanned above
4582                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4583                          _collector->should_unload_classes(),
4584                          &par_mrias_cl,
4585                          NULL,
4586                          NULL);     // The dirty klasses will be handled below
4587 
4588   assert(_collector->should_unload_classes()
4589          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4590          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4591   _timer.stop();
4592   if (PrintCMSStatistics != 0) {
4593     gclog_or_tty->print_cr(
4594       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4595       worker_id, _timer.seconds());
4596   }
4597 
4598   // ---------- unhandled CLD scanning ----------
4599   if (worker_id == 0) { // Single threaded at the moment.
4600     _timer.reset();
4601     _timer.start();
4602 
4603     // Scan all new class loader data objects and new dependencies that were
4604     // introduced during concurrent marking.
4605     ResourceMark rm;
4606     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4607     for (int i = 0; i < array->length(); i++) {
4608       par_mrias_cl.do_cld_nv(array->at(i));
4609     }
4610 
4611     // We don't need to keep track of new CLDs anymore.
4612     ClassLoaderDataGraph::remember_new_clds(false);
4613 
4614     _timer.stop();
4615     if (PrintCMSStatistics != 0) {
4616       gclog_or_tty->print_cr(
4617           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4618           worker_id, _timer.seconds());
4619     }
4620   }
4621 
4622   // ---------- dirty klass scanning ----------
4623   if (worker_id == 0) { // Single threaded at the moment.
4624     _timer.reset();
4625     _timer.start();
4626 
4627     // Scan all classes that was dirtied during the concurrent marking phase.
4628     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4629     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4630 
4631     _timer.stop();
4632     if (PrintCMSStatistics != 0) {
4633       gclog_or_tty->print_cr(
4634           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4635           worker_id, _timer.seconds());
4636     }
4637   }
4638 
4639   // We might have added oops to ClassLoaderData::_handles during the
4640   // concurrent marking phase. These oops point to newly allocated objects
4641   // that are guaranteed to be kept alive. Either by the direct allocation
4642   // code, or when the young collector processes the roots. Hence,
4643   // we don't have to revisit the _handles block during the remark phase.
4644 
4645   // ---------- rescan dirty cards ------------
4646   _timer.reset();
4647   _timer.start();
4648 
4649   // Do the rescan tasks for each of the two spaces
4650   // (cms_space) in turn.
4651   // "worker_id" is passed to select the task_queue for "worker_id"
4652   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4653   _timer.stop();
4654   if (PrintCMSStatistics != 0) {
4655     gclog_or_tty->print_cr(
4656       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4657       worker_id, _timer.seconds());
4658   }
4659 
4660   // ---------- steal work from other threads ...
4661   // ---------- ... and drain overflow list.
4662   _timer.reset();
4663   _timer.start();
4664   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4665   _timer.stop();
4666   if (PrintCMSStatistics != 0) {
4667     gclog_or_tty->print_cr(
4668       "Finished work stealing in %dth thread: %3.3f sec",
4669       worker_id, _timer.seconds());
4670   }
4671 }
4672 
4673 // Note that parameter "i" is not used.
4674 void
4675 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4676   OopsInGenClosure* cl, ContiguousSpace* space,
4677   HeapWord** chunk_array, size_t chunk_top) {
4678   // Until all tasks completed:
4679   // . claim an unclaimed task
4680   // . compute region boundaries corresponding to task claimed
4681   //   using chunk_array
4682   // . par_oop_iterate(cl) over that region
4683 
4684   ResourceMark rm;
4685   HandleMark   hm;
4686 
4687   SequentialSubTasksDone* pst = space->par_seq_tasks();
4688 
4689   uint nth_task = 0;
4690   uint n_tasks  = pst->n_tasks();
4691 
4692   if (n_tasks > 0) {
4693     assert(pst->valid(), "Uninitialized use?");
4694     HeapWord *start, *end;
4695     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4696       // We claimed task # nth_task; compute its boundaries.
4697       if (chunk_top == 0) {  // no samples were taken
4698         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4699         start = space->bottom();
4700         end   = space->top();
4701       } else if (nth_task == 0) {
4702         start = space->bottom();
4703         end   = chunk_array[nth_task];
4704       } else if (nth_task < (uint)chunk_top) {
4705         assert(nth_task >= 1, "Control point invariant");
4706         start = chunk_array[nth_task - 1];
4707         end   = chunk_array[nth_task];
4708       } else {
4709         assert(nth_task == (uint)chunk_top, "Control point invariant");
4710         start = chunk_array[chunk_top - 1];
4711         end   = space->top();
4712       }
4713       MemRegion mr(start, end);
4714       // Verify that mr is in space
4715       assert(mr.is_empty() || space->used_region().contains(mr),
4716              "Should be in space");
4717       // Verify that "start" is an object boundary
4718       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4719              "Should be an oop");
4720       space->par_oop_iterate(mr, cl);
4721     }
4722     pst->all_tasks_completed();
4723   }
4724 }
4725 
4726 void
4727 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4728   CompactibleFreeListSpace* sp, int i,
4729   Par_MarkRefsIntoAndScanClosure* cl) {
4730   // Until all tasks completed:
4731   // . claim an unclaimed task
4732   // . compute region boundaries corresponding to task claimed
4733   // . transfer dirty bits ct->mut for that region
4734   // . apply rescanclosure to dirty mut bits for that region
4735 
4736   ResourceMark rm;
4737   HandleMark   hm;
4738 
4739   OopTaskQueue* work_q = work_queue(i);
4740   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4741   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4742   // CAUTION: This closure has state that persists across calls to
4743   // the work method dirty_range_iterate_clear() in that it has
4744   // embedded in it a (subtype of) UpwardsObjectClosure. The
4745   // use of that state in the embedded UpwardsObjectClosure instance
4746   // assumes that the cards are always iterated (even if in parallel
4747   // by several threads) in monotonically increasing order per each
4748   // thread. This is true of the implementation below which picks
4749   // card ranges (chunks) in monotonically increasing order globally
4750   // and, a-fortiori, in monotonically increasing order per thread
4751   // (the latter order being a subsequence of the former).
4752   // If the work code below is ever reorganized into a more chaotic
4753   // work-partitioning form than the current "sequential tasks"
4754   // paradigm, the use of that persistent state will have to be
4755   // revisited and modified appropriately. See also related
4756   // bug 4756801 work on which should examine this code to make
4757   // sure that the changes there do not run counter to the
4758   // assumptions made here and necessary for correctness and
4759   // efficiency. Note also that this code might yield inefficient
4760   // behavior in the case of very large objects that span one or
4761   // more work chunks. Such objects would potentially be scanned
4762   // several times redundantly. Work on 4756801 should try and
4763   // address that performance anomaly if at all possible. XXX
4764   MemRegion  full_span  = _collector->_span;
4765   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4766   MarkFromDirtyCardsClosure
4767     greyRescanClosure(_collector, full_span, // entire span of interest
4768                       sp, bm, work_q, cl);
4769 
4770   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4771   assert(pst->valid(), "Uninitialized use?");
4772   uint nth_task = 0;
4773   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4774   MemRegion span = sp->used_region();
4775   HeapWord* start_addr = span.start();
4776   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4777                                            alignment);
4778   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4779   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4780          start_addr, "Check alignment");
4781   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4782          chunk_size, "Check alignment");
4783 
4784   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4785     // Having claimed the nth_task, compute corresponding mem-region,
4786     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4787     // The alignment restriction ensures that we do not need any
4788     // synchronization with other gang-workers while setting or
4789     // clearing bits in thus chunk of the MUT.
4790     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4791                                     start_addr + (nth_task+1)*chunk_size);
4792     // The last chunk's end might be way beyond end of the
4793     // used region. In that case pull back appropriately.
4794     if (this_span.end() > end_addr) {
4795       this_span.set_end(end_addr);
4796       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4797     }
4798     // Iterate over the dirty cards covering this chunk, marking them
4799     // precleaned, and setting the corresponding bits in the mod union
4800     // table. Since we have been careful to partition at Card and MUT-word
4801     // boundaries no synchronization is needed between parallel threads.
4802     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4803                                                  &modUnionClosure);
4804 
4805     // Having transferred these marks into the modUnionTable,
4806     // rescan the marked objects on the dirty cards in the modUnionTable.
4807     // Even if this is at a synchronous collection, the initial marking
4808     // may have been done during an asynchronous collection so there
4809     // may be dirty bits in the mod-union table.
4810     _collector->_modUnionTable.dirty_range_iterate_clear(
4811                   this_span, &greyRescanClosure);
4812     _collector->_modUnionTable.verifyNoOneBitsInRange(
4813                                  this_span.start(),
4814                                  this_span.end());
4815   }
4816   pst->all_tasks_completed();  // declare that i am done
4817 }
4818 
4819 // . see if we can share work_queues with ParNew? XXX
4820 void
4821 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4822                                 int* seed) {
4823   OopTaskQueue* work_q = work_queue(i);
4824   NOT_PRODUCT(int num_steals = 0;)
4825   oop obj_to_scan;
4826   CMSBitMap* bm = &(_collector->_markBitMap);
4827 
4828   while (true) {
4829     // Completely finish any left over work from (an) earlier round(s)
4830     cl->trim_queue(0);
4831     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4832                                          (size_t)ParGCDesiredObjsFromOverflowList);
4833     // Now check if there's any work in the overflow list
4834     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4835     // only affects the number of attempts made to get work from the
4836     // overflow list and does not affect the number of workers.  Just
4837     // pass ParallelGCThreads so this behavior is unchanged.
4838     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4839                                                 work_q,
4840                                                 ParallelGCThreads)) {
4841       // found something in global overflow list;
4842       // not yet ready to go stealing work from others.
4843       // We'd like to assert(work_q->size() != 0, ...)
4844       // because we just took work from the overflow list,
4845       // but of course we can't since all of that could have
4846       // been already stolen from us.
4847       // "He giveth and He taketh away."
4848       continue;
4849     }
4850     // Verify that we have no work before we resort to stealing
4851     assert(work_q->size() == 0, "Have work, shouldn't steal");
4852     // Try to steal from other queues that have work
4853     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4854       NOT_PRODUCT(num_steals++;)
4855       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4856       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4857       // Do scanning work
4858       obj_to_scan->oop_iterate(cl);
4859       // Loop around, finish this work, and try to steal some more
4860     } else if (terminator()->offer_termination()) {
4861         break;  // nirvana from the infinite cycle
4862     }
4863   }
4864   NOT_PRODUCT(
4865     if (PrintCMSStatistics != 0) {
4866       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4867     }
4868   )
4869   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4870          "Else our work is not yet done");
4871 }
4872 
4873 // Record object boundaries in _eden_chunk_array by sampling the eden
4874 // top in the slow-path eden object allocation code path and record
4875 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4876 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4877 // sampling in sample_eden() that activates during the part of the
4878 // preclean phase.
4879 void CMSCollector::sample_eden_chunk() {
4880   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4881     if (_eden_chunk_lock->try_lock()) {
4882       // Record a sample. This is the critical section. The contents
4883       // of the _eden_chunk_array have to be non-decreasing in the
4884       // address order.
4885       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4886       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4887              "Unexpected state of Eden");
4888       if (_eden_chunk_index == 0 ||
4889           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4890            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4891                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4892         _eden_chunk_index++;  // commit sample
4893       }
4894       _eden_chunk_lock->unlock();
4895     }
4896   }
4897 }
4898 
4899 // Return a thread-local PLAB recording array, as appropriate.
4900 void* CMSCollector::get_data_recorder(int thr_num) {
4901   if (_survivor_plab_array != NULL &&
4902       (CMSPLABRecordAlways ||
4903        (_collectorState > Marking && _collectorState < FinalMarking))) {
4904     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4905     ChunkArray* ca = &_survivor_plab_array[thr_num];
4906     ca->reset();   // clear it so that fresh data is recorded
4907     return (void*) ca;
4908   } else {
4909     return NULL;
4910   }
4911 }
4912 
4913 // Reset all the thread-local PLAB recording arrays
4914 void CMSCollector::reset_survivor_plab_arrays() {
4915   for (uint i = 0; i < ParallelGCThreads; i++) {
4916     _survivor_plab_array[i].reset();
4917   }
4918 }
4919 
4920 // Merge the per-thread plab arrays into the global survivor chunk
4921 // array which will provide the partitioning of the survivor space
4922 // for CMS initial scan and rescan.
4923 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4924                                               int no_of_gc_threads) {
4925   assert(_survivor_plab_array  != NULL, "Error");
4926   assert(_survivor_chunk_array != NULL, "Error");
4927   assert(_collectorState == FinalMarking ||
4928          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4929   for (int j = 0; j < no_of_gc_threads; j++) {
4930     _cursor[j] = 0;
4931   }
4932   HeapWord* top = surv->top();
4933   size_t i;
4934   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4935     HeapWord* min_val = top;          // Higher than any PLAB address
4936     uint      min_tid = 0;            // position of min_val this round
4937     for (int j = 0; j < no_of_gc_threads; j++) {
4938       ChunkArray* cur_sca = &_survivor_plab_array[j];
4939       if (_cursor[j] == cur_sca->end()) {
4940         continue;
4941       }
4942       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4943       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4944       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4945       if (cur_val < min_val) {
4946         min_tid = j;
4947         min_val = cur_val;
4948       } else {
4949         assert(cur_val < top, "All recorded addresses should be less");
4950       }
4951     }
4952     // At this point min_val and min_tid are respectively
4953     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4954     // and the thread (j) that witnesses that address.
4955     // We record this address in the _survivor_chunk_array[i]
4956     // and increment _cursor[min_tid] prior to the next round i.
4957     if (min_val == top) {
4958       break;
4959     }
4960     _survivor_chunk_array[i] = min_val;
4961     _cursor[min_tid]++;
4962   }
4963   // We are all done; record the size of the _survivor_chunk_array
4964   _survivor_chunk_index = i; // exclusive: [0, i)
4965   if (PrintCMSStatistics > 0) {
4966     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4967   }
4968   // Verify that we used up all the recorded entries
4969   #ifdef ASSERT
4970     size_t total = 0;
4971     for (int j = 0; j < no_of_gc_threads; j++) {
4972       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4973       total += _cursor[j];
4974     }
4975     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4976     // Check that the merged array is in sorted order
4977     if (total > 0) {
4978       for (size_t i = 0; i < total - 1; i++) {
4979         if (PrintCMSStatistics > 0) {
4980           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4981                               i, p2i(_survivor_chunk_array[i]));
4982         }
4983         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4984                "Not sorted");
4985       }
4986     }
4987   #endif // ASSERT
4988 }
4989 
4990 // Set up the space's par_seq_tasks structure for work claiming
4991 // for parallel initial scan and rescan of young gen.
4992 // See ParRescanTask where this is currently used.
4993 void
4994 CMSCollector::
4995 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4996   assert(n_threads > 0, "Unexpected n_threads argument");
4997 
4998   // Eden space
4999   if (!_young_gen->eden()->is_empty()) {
5000     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5001     assert(!pst->valid(), "Clobbering existing data?");
5002     // Each valid entry in [0, _eden_chunk_index) represents a task.
5003     size_t n_tasks = _eden_chunk_index + 1;
5004     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5005     // Sets the condition for completion of the subtask (how many threads
5006     // need to finish in order to be done).
5007     pst->set_n_threads(n_threads);
5008     pst->set_n_tasks((int)n_tasks);
5009   }
5010 
5011   // Merge the survivor plab arrays into _survivor_chunk_array
5012   if (_survivor_plab_array != NULL) {
5013     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5014   } else {
5015     assert(_survivor_chunk_index == 0, "Error");
5016   }
5017 
5018   // To space
5019   {
5020     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5021     assert(!pst->valid(), "Clobbering existing data?");
5022     // Sets the condition for completion of the subtask (how many threads
5023     // need to finish in order to be done).
5024     pst->set_n_threads(n_threads);
5025     pst->set_n_tasks(1);
5026     assert(pst->valid(), "Error");
5027   }
5028 
5029   // From space
5030   {
5031     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5032     assert(!pst->valid(), "Clobbering existing data?");
5033     size_t n_tasks = _survivor_chunk_index + 1;
5034     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5035     // Sets the condition for completion of the subtask (how many threads
5036     // need to finish in order to be done).
5037     pst->set_n_threads(n_threads);
5038     pst->set_n_tasks((int)n_tasks);
5039     assert(pst->valid(), "Error");
5040   }
5041 }
5042 
5043 // Parallel version of remark
5044 void CMSCollector::do_remark_parallel() {
5045   GenCollectedHeap* gch = GenCollectedHeap::heap();
5046   WorkGang* workers = gch->workers();
5047   assert(workers != NULL, "Need parallel worker threads.");
5048   // Choose to use the number of GC workers most recently set
5049   // into "active_workers".
5050   uint n_workers = workers->active_workers();
5051 
5052   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5053 
5054   StrongRootsScope srs(n_workers);
5055 
5056   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5057 
5058   // We won't be iterating over the cards in the card table updating
5059   // the younger_gen cards, so we shouldn't call the following else
5060   // the verification code as well as subsequent younger_refs_iterate
5061   // code would get confused. XXX
5062   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5063 
5064   // The young gen rescan work will not be done as part of
5065   // process_roots (which currently doesn't know how to
5066   // parallelize such a scan), but rather will be broken up into
5067   // a set of parallel tasks (via the sampling that the [abortable]
5068   // preclean phase did of eden, plus the [two] tasks of
5069   // scanning the [two] survivor spaces. Further fine-grain
5070   // parallelization of the scanning of the survivor spaces
5071   // themselves, and of precleaning of the young gen itself
5072   // is deferred to the future.
5073   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5074 
5075   // The dirty card rescan work is broken up into a "sequence"
5076   // of parallel tasks (per constituent space) that are dynamically
5077   // claimed by the parallel threads.
5078   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5079 
5080   // It turns out that even when we're using 1 thread, doing the work in a
5081   // separate thread causes wide variance in run times.  We can't help this
5082   // in the multi-threaded case, but we special-case n=1 here to get
5083   // repeatable measurements of the 1-thread overhead of the parallel code.
5084   if (n_workers > 1) {
5085     // Make refs discovery MT-safe, if it isn't already: it may not
5086     // necessarily be so, since it's possible that we are doing
5087     // ST marking.
5088     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5089     workers->run_task(&tsk);
5090   } else {
5091     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5092     tsk.work(0);
5093   }
5094 
5095   // restore, single-threaded for now, any preserved marks
5096   // as a result of work_q overflow
5097   restore_preserved_marks_if_any();
5098 }
5099 
5100 // Non-parallel version of remark
5101 void CMSCollector::do_remark_non_parallel() {
5102   ResourceMark rm;
5103   HandleMark   hm;
5104   GenCollectedHeap* gch = GenCollectedHeap::heap();
5105   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5106 
5107   MarkRefsIntoAndScanClosure
5108     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5109              &_markStack, this,
5110              false /* should_yield */, false /* not precleaning */);
5111   MarkFromDirtyCardsClosure
5112     markFromDirtyCardsClosure(this, _span,
5113                               NULL,  // space is set further below
5114                               &_markBitMap, &_markStack, &mrias_cl);
5115   {
5116     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5117     // Iterate over the dirty cards, setting the corresponding bits in the
5118     // mod union table.
5119     {
5120       ModUnionClosure modUnionClosure(&_modUnionTable);
5121       _ct->ct_bs()->dirty_card_iterate(
5122                       _cmsGen->used_region(),
5123                       &modUnionClosure);
5124     }
5125     // Having transferred these marks into the modUnionTable, we just need
5126     // to rescan the marked objects on the dirty cards in the modUnionTable.
5127     // The initial marking may have been done during an asynchronous
5128     // collection so there may be dirty bits in the mod-union table.
5129     const int alignment =
5130       CardTableModRefBS::card_size * BitsPerWord;
5131     {
5132       // ... First handle dirty cards in CMS gen
5133       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5134       MemRegion ur = _cmsGen->used_region();
5135       HeapWord* lb = ur.start();
5136       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5137       MemRegion cms_span(lb, ub);
5138       _modUnionTable.dirty_range_iterate_clear(cms_span,
5139                                                &markFromDirtyCardsClosure);
5140       verify_work_stacks_empty();
5141       if (PrintCMSStatistics != 0) {
5142         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5143           markFromDirtyCardsClosure.num_dirty_cards());
5144       }
5145     }
5146   }
5147   if (VerifyDuringGC &&
5148       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5149     HandleMark hm;  // Discard invalid handles created during verification
5150     Universe::verify();
5151   }
5152   {
5153     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5154 
5155     verify_work_stacks_empty();
5156 
5157     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5158     StrongRootsScope srs(1);
5159 
5160     gch->gen_process_roots(&srs,
5161                            GenCollectedHeap::OldGen,
5162                            true,  // young gen as roots
5163                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5164                            should_unload_classes(),
5165                            &mrias_cl,
5166                            NULL,
5167                            NULL); // The dirty klasses will be handled below
5168 
5169     assert(should_unload_classes()
5170            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5171            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5172   }
5173 
5174   {
5175     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5176 
5177     verify_work_stacks_empty();
5178 
5179     // Scan all class loader data objects that might have been introduced
5180     // during concurrent marking.
5181     ResourceMark rm;
5182     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5183     for (int i = 0; i < array->length(); i++) {
5184       mrias_cl.do_cld_nv(array->at(i));
5185     }
5186 
5187     // We don't need to keep track of new CLDs anymore.
5188     ClassLoaderDataGraph::remember_new_clds(false);
5189 
5190     verify_work_stacks_empty();
5191   }
5192 
5193   {
5194     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5195 
5196     verify_work_stacks_empty();
5197 
5198     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5199     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5200 
5201     verify_work_stacks_empty();
5202   }
5203 
5204   // We might have added oops to ClassLoaderData::_handles during the
5205   // concurrent marking phase. These oops point to newly allocated objects
5206   // that are guaranteed to be kept alive. Either by the direct allocation
5207   // code, or when the young collector processes the roots. Hence,
5208   // we don't have to revisit the _handles block during the remark phase.
5209 
5210   verify_work_stacks_empty();
5211   // Restore evacuated mark words, if any, used for overflow list links
5212   if (!CMSOverflowEarlyRestoration) {
5213     restore_preserved_marks_if_any();
5214   }
5215   verify_overflow_empty();
5216 }
5217 
5218 ////////////////////////////////////////////////////////
5219 // Parallel Reference Processing Task Proxy Class
5220 ////////////////////////////////////////////////////////
5221 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5222   OopTaskQueueSet*       _queues;
5223   ParallelTaskTerminator _terminator;
5224  public:
5225   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5226     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5227   ParallelTaskTerminator* terminator() { return &_terminator; }
5228   OopTaskQueueSet* queues() { return _queues; }
5229 };
5230 
5231 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5232   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5233   CMSCollector*          _collector;
5234   CMSBitMap*             _mark_bit_map;
5235   const MemRegion        _span;
5236   ProcessTask&           _task;
5237 
5238 public:
5239   CMSRefProcTaskProxy(ProcessTask&     task,
5240                       CMSCollector*    collector,
5241                       const MemRegion& span,
5242                       CMSBitMap*       mark_bit_map,
5243                       AbstractWorkGang* workers,
5244                       OopTaskQueueSet* task_queues):
5245     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5246       task_queues,
5247       workers->active_workers()),
5248     _task(task),
5249     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5250   {
5251     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5252            "Inconsistency in _span");
5253   }
5254 
5255   OopTaskQueueSet* task_queues() { return queues(); }
5256 
5257   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5258 
5259   void do_work_steal(int i,
5260                      CMSParDrainMarkingStackClosure* drain,
5261                      CMSParKeepAliveClosure* keep_alive,
5262                      int* seed);
5263 
5264   virtual void work(uint worker_id);
5265 };
5266 
5267 void CMSRefProcTaskProxy::work(uint worker_id) {
5268   ResourceMark rm;
5269   HandleMark hm;
5270   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5271   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5272                                         _mark_bit_map,
5273                                         work_queue(worker_id));
5274   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5275                                                  _mark_bit_map,
5276                                                  work_queue(worker_id));
5277   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5278   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5279   if (_task.marks_oops_alive()) {
5280     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5281                   _collector->hash_seed(worker_id));
5282   }
5283   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5284   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5285 }
5286 
5287 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5288   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5289   EnqueueTask& _task;
5290 
5291 public:
5292   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5293     : AbstractGangTask("Enqueue reference objects in parallel"),
5294       _task(task)
5295   { }
5296 
5297   virtual void work(uint worker_id)
5298   {
5299     _task.work(worker_id);
5300   }
5301 };
5302 
5303 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5304   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5305    _span(span),
5306    _bit_map(bit_map),
5307    _work_queue(work_queue),
5308    _mark_and_push(collector, span, bit_map, work_queue),
5309    _low_water_mark(MIN2((work_queue->max_elems()/4),
5310                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5311 { }
5312 
5313 // . see if we can share work_queues with ParNew? XXX
5314 void CMSRefProcTaskProxy::do_work_steal(int i,
5315   CMSParDrainMarkingStackClosure* drain,
5316   CMSParKeepAliveClosure* keep_alive,
5317   int* seed) {
5318   OopTaskQueue* work_q = work_queue(i);
5319   NOT_PRODUCT(int num_steals = 0;)
5320   oop obj_to_scan;
5321 
5322   while (true) {
5323     // Completely finish any left over work from (an) earlier round(s)
5324     drain->trim_queue(0);
5325     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5326                                          (size_t)ParGCDesiredObjsFromOverflowList);
5327     // Now check if there's any work in the overflow list
5328     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5329     // only affects the number of attempts made to get work from the
5330     // overflow list and does not affect the number of workers.  Just
5331     // pass ParallelGCThreads so this behavior is unchanged.
5332     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5333                                                 work_q,
5334                                                 ParallelGCThreads)) {
5335       // Found something in global overflow list;
5336       // not yet ready to go stealing work from others.
5337       // We'd like to assert(work_q->size() != 0, ...)
5338       // because we just took work from the overflow list,
5339       // but of course we can't, since all of that might have
5340       // been already stolen from us.
5341       continue;
5342     }
5343     // Verify that we have no work before we resort to stealing
5344     assert(work_q->size() == 0, "Have work, shouldn't steal");
5345     // Try to steal from other queues that have work
5346     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5347       NOT_PRODUCT(num_steals++;)
5348       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5349       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5350       // Do scanning work
5351       obj_to_scan->oop_iterate(keep_alive);
5352       // Loop around, finish this work, and try to steal some more
5353     } else if (terminator()->offer_termination()) {
5354       break;  // nirvana from the infinite cycle
5355     }
5356   }
5357   NOT_PRODUCT(
5358     if (PrintCMSStatistics != 0) {
5359       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5360     }
5361   )
5362 }
5363 
5364 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5365 {
5366   GenCollectedHeap* gch = GenCollectedHeap::heap();
5367   WorkGang* workers = gch->workers();
5368   assert(workers != NULL, "Need parallel worker threads.");
5369   CMSRefProcTaskProxy rp_task(task, &_collector,
5370                               _collector.ref_processor()->span(),
5371                               _collector.markBitMap(),
5372                               workers, _collector.task_queues());
5373   workers->run_task(&rp_task);
5374 }
5375 
5376 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5377 {
5378 
5379   GenCollectedHeap* gch = GenCollectedHeap::heap();
5380   WorkGang* workers = gch->workers();
5381   assert(workers != NULL, "Need parallel worker threads.");
5382   CMSRefEnqueueTaskProxy enq_task(task);
5383   workers->run_task(&enq_task);
5384 }
5385 
5386 void CMSCollector::refProcessingWork() {
5387   ResourceMark rm;
5388   HandleMark   hm;
5389 
5390   ReferenceProcessor* rp = ref_processor();
5391   assert(rp->span().equals(_span), "Spans should be equal");
5392   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5393   // Process weak references.
5394   rp->setup_policy(false);
5395   verify_work_stacks_empty();
5396 
5397   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5398                                           &_markStack, false /* !preclean */);
5399   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5400                                 _span, &_markBitMap, &_markStack,
5401                                 &cmsKeepAliveClosure, false /* !preclean */);
5402   {
5403     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
5404 
5405     ReferenceProcessorStats stats;
5406     if (rp->processing_is_mt()) {
5407       // Set the degree of MT here.  If the discovery is done MT, there
5408       // may have been a different number of threads doing the discovery
5409       // and a different number of discovered lists may have Ref objects.
5410       // That is OK as long as the Reference lists are balanced (see
5411       // balance_all_queues() and balance_queues()).
5412       GenCollectedHeap* gch = GenCollectedHeap::heap();
5413       uint active_workers = ParallelGCThreads;
5414       WorkGang* workers = gch->workers();
5415       if (workers != NULL) {
5416         active_workers = workers->active_workers();
5417         // The expectation is that active_workers will have already
5418         // been set to a reasonable value.  If it has not been set,
5419         // investigate.
5420         assert(active_workers > 0, "Should have been set during scavenge");
5421       }
5422       rp->set_active_mt_degree(active_workers);
5423       CMSRefProcTaskExecutor task_executor(*this);
5424       stats = rp->process_discovered_references(&_is_alive_closure,
5425                                         &cmsKeepAliveClosure,
5426                                         &cmsDrainMarkingStackClosure,
5427                                         &task_executor,
5428                                         _gc_timer_cm);
5429     } else {
5430       stats = rp->process_discovered_references(&_is_alive_closure,
5431                                         &cmsKeepAliveClosure,
5432                                         &cmsDrainMarkingStackClosure,
5433                                         NULL,
5434                                         _gc_timer_cm);
5435     }
5436     _gc_tracer_cm->report_gc_reference_stats(stats);
5437 
5438   }
5439 
5440   // This is the point where the entire marking should have completed.
5441   verify_work_stacks_empty();
5442 
5443   if (should_unload_classes()) {
5444     {
5445       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
5446 
5447       // Unload classes and purge the SystemDictionary.
5448       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5449 
5450       // Unload nmethods.
5451       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5452 
5453       // Prune dead klasses from subklass/sibling/implementor lists.
5454       Klass::clean_weak_klass_links(&_is_alive_closure);
5455     }
5456 
5457     {
5458       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
5459       // Clean up unreferenced symbols in symbol table.
5460       SymbolTable::unlink();
5461     }
5462 
5463     {
5464       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
5465       // Delete entries for dead interned strings.
5466       StringTable::unlink(&_is_alive_closure);
5467     }
5468   }
5469 
5470 
5471   // Restore any preserved marks as a result of mark stack or
5472   // work queue overflow
5473   restore_preserved_marks_if_any();  // done single-threaded for now
5474 
5475   rp->set_enqueuing_is_done(true);
5476   if (rp->processing_is_mt()) {
5477     rp->balance_all_queues();
5478     CMSRefProcTaskExecutor task_executor(*this);
5479     rp->enqueue_discovered_references(&task_executor);
5480   } else {
5481     rp->enqueue_discovered_references(NULL);
5482   }
5483   rp->verify_no_references_recorded();
5484   assert(!rp->discovery_enabled(), "should have been disabled");
5485 }
5486 
5487 #ifndef PRODUCT
5488 void CMSCollector::check_correct_thread_executing() {
5489   Thread* t = Thread::current();
5490   // Only the VM thread or the CMS thread should be here.
5491   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5492          "Unexpected thread type");
5493   // If this is the vm thread, the foreground process
5494   // should not be waiting.  Note that _foregroundGCIsActive is
5495   // true while the foreground collector is waiting.
5496   if (_foregroundGCShouldWait) {
5497     // We cannot be the VM thread
5498     assert(t->is_ConcurrentGC_thread(),
5499            "Should be CMS thread");
5500   } else {
5501     // We can be the CMS thread only if we are in a stop-world
5502     // phase of CMS collection.
5503     if (t->is_ConcurrentGC_thread()) {
5504       assert(_collectorState == InitialMarking ||
5505              _collectorState == FinalMarking,
5506              "Should be a stop-world phase");
5507       // The CMS thread should be holding the CMS_token.
5508       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5509              "Potential interference with concurrently "
5510              "executing VM thread");
5511     }
5512   }
5513 }
5514 #endif
5515 
5516 void CMSCollector::sweep() {
5517   assert(_collectorState == Sweeping, "just checking");
5518   check_correct_thread_executing();
5519   verify_work_stacks_empty();
5520   verify_overflow_empty();
5521   increment_sweep_count();
5522   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5523 
5524   _inter_sweep_timer.stop();
5525   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5526 
5527   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5528   _intra_sweep_timer.reset();
5529   _intra_sweep_timer.start();
5530   {
5531     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5532     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
5533     // First sweep the old gen
5534     {
5535       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5536                                bitMapLock());
5537       sweepWork(_cmsGen);
5538     }
5539 
5540     // Update Universe::_heap_*_at_gc figures.
5541     // We need all the free list locks to make the abstract state
5542     // transition from Sweeping to Resetting. See detailed note
5543     // further below.
5544     {
5545       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5546       // Update heap occupancy information which is used as
5547       // input to soft ref clearing policy at the next gc.
5548       Universe::update_heap_info_at_gc();
5549       _collectorState = Resizing;
5550     }
5551   }
5552   verify_work_stacks_empty();
5553   verify_overflow_empty();
5554 
5555   if (should_unload_classes()) {
5556     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5557     // requires that the virtual spaces are stable and not deleted.
5558     ClassLoaderDataGraph::set_should_purge(true);
5559   }
5560 
5561   _intra_sweep_timer.stop();
5562   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5563 
5564   _inter_sweep_timer.reset();
5565   _inter_sweep_timer.start();
5566 
5567   // We need to use a monotonically non-decreasing time in ms
5568   // or we will see time-warp warnings and os::javaTimeMillis()
5569   // does not guarantee monotonicity.
5570   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5571   update_time_of_last_gc(now);
5572 
5573   // NOTE on abstract state transitions:
5574   // Mutators allocate-live and/or mark the mod-union table dirty
5575   // based on the state of the collection.  The former is done in
5576   // the interval [Marking, Sweeping] and the latter in the interval
5577   // [Marking, Sweeping).  Thus the transitions into the Marking state
5578   // and out of the Sweeping state must be synchronously visible
5579   // globally to the mutators.
5580   // The transition into the Marking state happens with the world
5581   // stopped so the mutators will globally see it.  Sweeping is
5582   // done asynchronously by the background collector so the transition
5583   // from the Sweeping state to the Resizing state must be done
5584   // under the freelistLock (as is the check for whether to
5585   // allocate-live and whether to dirty the mod-union table).
5586   assert(_collectorState == Resizing, "Change of collector state to"
5587     " Resizing must be done under the freelistLocks (plural)");
5588 
5589   // Now that sweeping has been completed, we clear
5590   // the incremental_collection_failed flag,
5591   // thus inviting a younger gen collection to promote into
5592   // this generation. If such a promotion may still fail,
5593   // the flag will be set again when a young collection is
5594   // attempted.
5595   GenCollectedHeap* gch = GenCollectedHeap::heap();
5596   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5597   gch->update_full_collections_completed(_collection_count_start);
5598 }
5599 
5600 // FIX ME!!! Looks like this belongs in CFLSpace, with
5601 // CMSGen merely delegating to it.
5602 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5603   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5604   HeapWord*  minAddr        = _cmsSpace->bottom();
5605   HeapWord*  largestAddr    =
5606     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5607   if (largestAddr == NULL) {
5608     // The dictionary appears to be empty.  In this case
5609     // try to coalesce at the end of the heap.
5610     largestAddr = _cmsSpace->end();
5611   }
5612   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5613   size_t nearLargestOffset =
5614     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5615   if (PrintFLSStatistics != 0) {
5616     gclog_or_tty->print_cr(
5617       "CMS: Large Block: " PTR_FORMAT ";"
5618       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5619       p2i(largestAddr),
5620       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5621   }
5622   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5623 }
5624 
5625 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5626   return addr >= _cmsSpace->nearLargestChunk();
5627 }
5628 
5629 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5630   return _cmsSpace->find_chunk_at_end();
5631 }
5632 
5633 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5634                                                     bool full) {
5635   // If the young generation has been collected, gather any statistics
5636   // that are of interest at this point.
5637   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5638   if (!full && current_is_young) {
5639     // Gather statistics on the young generation collection.
5640     collector()->stats().record_gc0_end(used());
5641   }
5642 }
5643 
5644 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5645   // We iterate over the space(s) underlying this generation,
5646   // checking the mark bit map to see if the bits corresponding
5647   // to specific blocks are marked or not. Blocks that are
5648   // marked are live and are not swept up. All remaining blocks
5649   // are swept up, with coalescing on-the-fly as we sweep up
5650   // contiguous free and/or garbage blocks:
5651   // We need to ensure that the sweeper synchronizes with allocators
5652   // and stop-the-world collectors. In particular, the following
5653   // locks are used:
5654   // . CMS token: if this is held, a stop the world collection cannot occur
5655   // . freelistLock: if this is held no allocation can occur from this
5656   //                 generation by another thread
5657   // . bitMapLock: if this is held, no other thread can access or update
5658   //
5659 
5660   // Note that we need to hold the freelistLock if we use
5661   // block iterate below; else the iterator might go awry if
5662   // a mutator (or promotion) causes block contents to change
5663   // (for instance if the allocator divvies up a block).
5664   // If we hold the free list lock, for all practical purposes
5665   // young generation GC's can't occur (they'll usually need to
5666   // promote), so we might as well prevent all young generation
5667   // GC's while we do a sweeping step. For the same reason, we might
5668   // as well take the bit map lock for the entire duration
5669 
5670   // check that we hold the requisite locks
5671   assert(have_cms_token(), "Should hold cms token");
5672   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5673   assert_lock_strong(old_gen->freelistLock());
5674   assert_lock_strong(bitMapLock());
5675 
5676   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5677   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5678   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5679                                           _inter_sweep_estimate.padded_average(),
5680                                           _intra_sweep_estimate.padded_average());
5681   old_gen->setNearLargestChunk();
5682 
5683   {
5684     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5685     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5686     // We need to free-up/coalesce garbage/blocks from a
5687     // co-terminal free run. This is done in the SweepClosure
5688     // destructor; so, do not remove this scope, else the
5689     // end-of-sweep-census below will be off by a little bit.
5690   }
5691   old_gen->cmsSpace()->sweep_completed();
5692   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5693   if (should_unload_classes()) {                // unloaded classes this cycle,
5694     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5695   } else {                                      // did not unload classes,
5696     _concurrent_cycles_since_last_unload++;     // ... increment count
5697   }
5698 }
5699 
5700 // Reset CMS data structures (for now just the marking bit map)
5701 // preparatory for the next cycle.
5702 void CMSCollector::reset(bool concurrent) {
5703   if (concurrent) {
5704     CMSTokenSyncWithLocks ts(true, bitMapLock());
5705 
5706     // If the state is not "Resetting", the foreground  thread
5707     // has done a collection and the resetting.
5708     if (_collectorState != Resetting) {
5709       assert(_collectorState == Idling, "The state should only change"
5710         " because the foreground collector has finished the collection");
5711       return;
5712     }
5713 
5714     // Clear the mark bitmap (no grey objects to start with)
5715     // for the next cycle.
5716     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5717     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
5718 
5719     HeapWord* curAddr = _markBitMap.startWord();
5720     while (curAddr < _markBitMap.endWord()) {
5721       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5722       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5723       _markBitMap.clear_large_range(chunk);
5724       if (ConcurrentMarkSweepThread::should_yield() &&
5725           !foregroundGCIsActive() &&
5726           CMSYield) {
5727         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5728                "CMS thread should hold CMS token");
5729         assert_lock_strong(bitMapLock());
5730         bitMapLock()->unlock();
5731         ConcurrentMarkSweepThread::desynchronize(true);
5732         stopTimer();
5733         if (PrintCMSStatistics != 0) {
5734           incrementYields();
5735         }
5736 
5737         // See the comment in coordinator_yield()
5738         for (unsigned i = 0; i < CMSYieldSleepCount &&
5739                          ConcurrentMarkSweepThread::should_yield() &&
5740                          !CMSCollector::foregroundGCIsActive(); ++i) {
5741           os::sleep(Thread::current(), 1, false);
5742         }
5743 
5744         ConcurrentMarkSweepThread::synchronize(true);
5745         bitMapLock()->lock_without_safepoint_check();
5746         startTimer();
5747       }
5748       curAddr = chunk.end();
5749     }
5750     // A successful mostly concurrent collection has been done.
5751     // Because only the full (i.e., concurrent mode failure) collections
5752     // are being measured for gc overhead limits, clean the "near" flag
5753     // and count.
5754     size_policy()->reset_gc_overhead_limit_count();
5755     _collectorState = Idling;
5756   } else {
5757     // already have the lock
5758     assert(_collectorState == Resetting, "just checking");
5759     assert_lock_strong(bitMapLock());
5760     _markBitMap.clear_all();
5761     _collectorState = Idling;
5762   }
5763 
5764   register_gc_end();
5765 }
5766 
5767 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5768   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5769   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
5770   TraceCollectorStats tcs(counters());
5771 
5772   switch (op) {
5773     case CMS_op_checkpointRootsInitial: {
5774       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5775       checkpointRootsInitial();
5776       if (PrintGC) {
5777         _cmsGen->printOccupancy("initial-mark");
5778       }
5779       break;
5780     }
5781     case CMS_op_checkpointRootsFinal: {
5782       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5783       checkpointRootsFinal();
5784       if (PrintGC) {
5785         _cmsGen->printOccupancy("remark");
5786       }
5787       break;
5788     }
5789     default:
5790       fatal("No such CMS_op");
5791   }
5792 }
5793 
5794 #ifndef PRODUCT
5795 size_t const CMSCollector::skip_header_HeapWords() {
5796   return FreeChunk::header_size();
5797 }
5798 
5799 // Try and collect here conditions that should hold when
5800 // CMS thread is exiting. The idea is that the foreground GC
5801 // thread should not be blocked if it wants to terminate
5802 // the CMS thread and yet continue to run the VM for a while
5803 // after that.
5804 void CMSCollector::verify_ok_to_terminate() const {
5805   assert(Thread::current()->is_ConcurrentGC_thread(),
5806          "should be called by CMS thread");
5807   assert(!_foregroundGCShouldWait, "should be false");
5808   // We could check here that all the various low-level locks
5809   // are not held by the CMS thread, but that is overkill; see
5810   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5811   // is checked.
5812 }
5813 #endif
5814 
5815 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5816    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5817           "missing Printezis mark?");
5818   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5819   size_t size = pointer_delta(nextOneAddr + 1, addr);
5820   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5821          "alignment problem");
5822   assert(size >= 3, "Necessary for Printezis marks to work");
5823   return size;
5824 }
5825 
5826 // A variant of the above (block_size_using_printezis_bits()) except
5827 // that we return 0 if the P-bits are not yet set.
5828 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5829   if (_markBitMap.isMarked(addr + 1)) {
5830     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5831     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5832     size_t size = pointer_delta(nextOneAddr + 1, addr);
5833     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5834            "alignment problem");
5835     assert(size >= 3, "Necessary for Printezis marks to work");
5836     return size;
5837   }
5838   return 0;
5839 }
5840 
5841 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5842   size_t sz = 0;
5843   oop p = (oop)addr;
5844   if (p->klass_or_null() != NULL) {
5845     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5846   } else {
5847     sz = block_size_using_printezis_bits(addr);
5848   }
5849   assert(sz > 0, "size must be nonzero");
5850   HeapWord* next_block = addr + sz;
5851   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5852                                              CardTableModRefBS::card_size);
5853   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5854          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5855          "must be different cards");
5856   return next_card;
5857 }
5858 
5859 
5860 // CMS Bit Map Wrapper /////////////////////////////////////////
5861 
5862 // Construct a CMS bit map infrastructure, but don't create the
5863 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5864 // further below.
5865 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5866   _bm(),
5867   _shifter(shifter),
5868   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5869                                     Monitor::_safepoint_check_sometimes) : NULL)
5870 {
5871   _bmStartWord = 0;
5872   _bmWordSize  = 0;
5873 }
5874 
5875 bool CMSBitMap::allocate(MemRegion mr) {
5876   _bmStartWord = mr.start();
5877   _bmWordSize  = mr.word_size();
5878   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5879                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5880   if (!brs.is_reserved()) {
5881     warning("CMS bit map allocation failure");
5882     return false;
5883   }
5884   // For now we'll just commit all of the bit map up front.
5885   // Later on we'll try to be more parsimonious with swap.
5886   if (!_virtual_space.initialize(brs, brs.size())) {
5887     warning("CMS bit map backing store failure");
5888     return false;
5889   }
5890   assert(_virtual_space.committed_size() == brs.size(),
5891          "didn't reserve backing store for all of CMS bit map?");
5892   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5893   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5894          _bmWordSize, "inconsistency in bit map sizing");
5895   _bm.set_size(_bmWordSize >> _shifter);
5896 
5897   // bm.clear(); // can we rely on getting zero'd memory? verify below
5898   assert(isAllClear(),
5899          "Expected zero'd memory from ReservedSpace constructor");
5900   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5901          "consistency check");
5902   return true;
5903 }
5904 
5905 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5906   HeapWord *next_addr, *end_addr, *last_addr;
5907   assert_locked();
5908   assert(covers(mr), "out-of-range error");
5909   // XXX assert that start and end are appropriately aligned
5910   for (next_addr = mr.start(), end_addr = mr.end();
5911        next_addr < end_addr; next_addr = last_addr) {
5912     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5913     last_addr = dirty_region.end();
5914     if (!dirty_region.is_empty()) {
5915       cl->do_MemRegion(dirty_region);
5916     } else {
5917       assert(last_addr == end_addr, "program logic");
5918       return;
5919     }
5920   }
5921 }
5922 
5923 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5924   _bm.print_on_error(st, prefix);
5925 }
5926 
5927 #ifndef PRODUCT
5928 void CMSBitMap::assert_locked() const {
5929   CMSLockVerifier::assert_locked(lock());
5930 }
5931 
5932 bool CMSBitMap::covers(MemRegion mr) const {
5933   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5934   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5935          "size inconsistency");
5936   return (mr.start() >= _bmStartWord) &&
5937          (mr.end()   <= endWord());
5938 }
5939 
5940 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5941     return (start >= _bmStartWord && (start + size) <= endWord());
5942 }
5943 
5944 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5945   // verify that there are no 1 bits in the interval [left, right)
5946   FalseBitMapClosure falseBitMapClosure;
5947   iterate(&falseBitMapClosure, left, right);
5948 }
5949 
5950 void CMSBitMap::region_invariant(MemRegion mr)
5951 {
5952   assert_locked();
5953   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5954   assert(!mr.is_empty(), "unexpected empty region");
5955   assert(covers(mr), "mr should be covered by bit map");
5956   // convert address range into offset range
5957   size_t start_ofs = heapWordToOffset(mr.start());
5958   // Make sure that end() is appropriately aligned
5959   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5960                         (1 << (_shifter+LogHeapWordSize))),
5961          "Misaligned mr.end()");
5962   size_t end_ofs   = heapWordToOffset(mr.end());
5963   assert(end_ofs > start_ofs, "Should mark at least one bit");
5964 }
5965 
5966 #endif
5967 
5968 bool CMSMarkStack::allocate(size_t size) {
5969   // allocate a stack of the requisite depth
5970   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5971                    size * sizeof(oop)));
5972   if (!rs.is_reserved()) {
5973     warning("CMSMarkStack allocation failure");
5974     return false;
5975   }
5976   if (!_virtual_space.initialize(rs, rs.size())) {
5977     warning("CMSMarkStack backing store failure");
5978     return false;
5979   }
5980   assert(_virtual_space.committed_size() == rs.size(),
5981          "didn't reserve backing store for all of CMS stack?");
5982   _base = (oop*)(_virtual_space.low());
5983   _index = 0;
5984   _capacity = size;
5985   NOT_PRODUCT(_max_depth = 0);
5986   return true;
5987 }
5988 
5989 // XXX FIX ME !!! In the MT case we come in here holding a
5990 // leaf lock. For printing we need to take a further lock
5991 // which has lower rank. We need to recalibrate the two
5992 // lock-ranks involved in order to be able to print the
5993 // messages below. (Or defer the printing to the caller.
5994 // For now we take the expedient path of just disabling the
5995 // messages for the problematic case.)
5996 void CMSMarkStack::expand() {
5997   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5998   if (_capacity == MarkStackSizeMax) {
5999     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6000       // We print a warning message only once per CMS cycle.
6001       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6002     }
6003     return;
6004   }
6005   // Double capacity if possible
6006   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6007   // Do not give up existing stack until we have managed to
6008   // get the double capacity that we desired.
6009   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6010                    new_capacity * sizeof(oop)));
6011   if (rs.is_reserved()) {
6012     // Release the backing store associated with old stack
6013     _virtual_space.release();
6014     // Reinitialize virtual space for new stack
6015     if (!_virtual_space.initialize(rs, rs.size())) {
6016       fatal("Not enough swap for expanded marking stack");
6017     }
6018     _base = (oop*)(_virtual_space.low());
6019     _index = 0;
6020     _capacity = new_capacity;
6021   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6022     // Failed to double capacity, continue;
6023     // we print a detail message only once per CMS cycle.
6024     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6025             SIZE_FORMAT "K",
6026             _capacity / K, new_capacity / K);
6027   }
6028 }
6029 
6030 
6031 // Closures
6032 // XXX: there seems to be a lot of code  duplication here;
6033 // should refactor and consolidate common code.
6034 
6035 // This closure is used to mark refs into the CMS generation in
6036 // the CMS bit map. Called at the first checkpoint. This closure
6037 // assumes that we do not need to re-mark dirty cards; if the CMS
6038 // generation on which this is used is not an oldest
6039 // generation then this will lose younger_gen cards!
6040 
6041 MarkRefsIntoClosure::MarkRefsIntoClosure(
6042   MemRegion span, CMSBitMap* bitMap):
6043     _span(span),
6044     _bitMap(bitMap)
6045 {
6046     assert(_ref_processor == NULL, "deliberately left NULL");
6047     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6048 }
6049 
6050 void MarkRefsIntoClosure::do_oop(oop obj) {
6051   // if p points into _span, then mark corresponding bit in _markBitMap
6052   assert(obj->is_oop(), "expected an oop");
6053   HeapWord* addr = (HeapWord*)obj;
6054   if (_span.contains(addr)) {
6055     // this should be made more efficient
6056     _bitMap->mark(addr);
6057   }
6058 }
6059 
6060 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6061 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6062 
6063 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6064   MemRegion span, CMSBitMap* bitMap):
6065     _span(span),
6066     _bitMap(bitMap)
6067 {
6068     assert(_ref_processor == NULL, "deliberately left NULL");
6069     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6070 }
6071 
6072 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6073   // if p points into _span, then mark corresponding bit in _markBitMap
6074   assert(obj->is_oop(), "expected an oop");
6075   HeapWord* addr = (HeapWord*)obj;
6076   if (_span.contains(addr)) {
6077     // this should be made more efficient
6078     _bitMap->par_mark(addr);
6079   }
6080 }
6081 
6082 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6083 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6084 
6085 // A variant of the above, used for CMS marking verification.
6086 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6087   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6088     _span(span),
6089     _verification_bm(verification_bm),
6090     _cms_bm(cms_bm)
6091 {
6092     assert(_ref_processor == NULL, "deliberately left NULL");
6093     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6094 }
6095 
6096 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6097   // if p points into _span, then mark corresponding bit in _markBitMap
6098   assert(obj->is_oop(), "expected an oop");
6099   HeapWord* addr = (HeapWord*)obj;
6100   if (_span.contains(addr)) {
6101     _verification_bm->mark(addr);
6102     if (!_cms_bm->isMarked(addr)) {
6103       oop(addr)->print();
6104       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6105       fatal("... aborting");
6106     }
6107   }
6108 }
6109 
6110 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6111 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6112 
6113 //////////////////////////////////////////////////
6114 // MarkRefsIntoAndScanClosure
6115 //////////////////////////////////////////////////
6116 
6117 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6118                                                        ReferenceProcessor* rp,
6119                                                        CMSBitMap* bit_map,
6120                                                        CMSBitMap* mod_union_table,
6121                                                        CMSMarkStack*  mark_stack,
6122                                                        CMSCollector* collector,
6123                                                        bool should_yield,
6124                                                        bool concurrent_precleaning):
6125   _collector(collector),
6126   _span(span),
6127   _bit_map(bit_map),
6128   _mark_stack(mark_stack),
6129   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6130                       mark_stack, concurrent_precleaning),
6131   _yield(should_yield),
6132   _concurrent_precleaning(concurrent_precleaning),
6133   _freelistLock(NULL)
6134 {
6135   _ref_processor = rp;
6136   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6137 }
6138 
6139 // This closure is used to mark refs into the CMS generation at the
6140 // second (final) checkpoint, and to scan and transitively follow
6141 // the unmarked oops. It is also used during the concurrent precleaning
6142 // phase while scanning objects on dirty cards in the CMS generation.
6143 // The marks are made in the marking bit map and the marking stack is
6144 // used for keeping the (newly) grey objects during the scan.
6145 // The parallel version (Par_...) appears further below.
6146 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6147   if (obj != NULL) {
6148     assert(obj->is_oop(), "expected an oop");
6149     HeapWord* addr = (HeapWord*)obj;
6150     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6151     assert(_collector->overflow_list_is_empty(),
6152            "overflow list should be empty");
6153     if (_span.contains(addr) &&
6154         !_bit_map->isMarked(addr)) {
6155       // mark bit map (object is now grey)
6156       _bit_map->mark(addr);
6157       // push on marking stack (stack should be empty), and drain the
6158       // stack by applying this closure to the oops in the oops popped
6159       // from the stack (i.e. blacken the grey objects)
6160       bool res = _mark_stack->push(obj);
6161       assert(res, "Should have space to push on empty stack");
6162       do {
6163         oop new_oop = _mark_stack->pop();
6164         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6165         assert(_bit_map->isMarked((HeapWord*)new_oop),
6166                "only grey objects on this stack");
6167         // iterate over the oops in this oop, marking and pushing
6168         // the ones in CMS heap (i.e. in _span).
6169         new_oop->oop_iterate(&_pushAndMarkClosure);
6170         // check if it's time to yield
6171         do_yield_check();
6172       } while (!_mark_stack->isEmpty() ||
6173                (!_concurrent_precleaning && take_from_overflow_list()));
6174         // if marking stack is empty, and we are not doing this
6175         // during precleaning, then check the overflow list
6176     }
6177     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6178     assert(_collector->overflow_list_is_empty(),
6179            "overflow list was drained above");
6180     // We could restore evacuated mark words, if any, used for
6181     // overflow list links here because the overflow list is
6182     // provably empty here. That would reduce the maximum
6183     // size requirements for preserved_{oop,mark}_stack.
6184     // But we'll just postpone it until we are all done
6185     // so we can just stream through.
6186     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6187       _collector->restore_preserved_marks_if_any();
6188       assert(_collector->no_preserved_marks(), "No preserved marks");
6189     }
6190     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6191            "All preserved marks should have been restored above");
6192   }
6193 }
6194 
6195 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6196 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6197 
6198 void MarkRefsIntoAndScanClosure::do_yield_work() {
6199   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6200          "CMS thread should hold CMS token");
6201   assert_lock_strong(_freelistLock);
6202   assert_lock_strong(_bit_map->lock());
6203   // relinquish the free_list_lock and bitMaplock()
6204   _bit_map->lock()->unlock();
6205   _freelistLock->unlock();
6206   ConcurrentMarkSweepThread::desynchronize(true);
6207   _collector->stopTimer();
6208   if (PrintCMSStatistics != 0) {
6209     _collector->incrementYields();
6210   }
6211 
6212   // See the comment in coordinator_yield()
6213   for (unsigned i = 0;
6214        i < CMSYieldSleepCount &&
6215        ConcurrentMarkSweepThread::should_yield() &&
6216        !CMSCollector::foregroundGCIsActive();
6217        ++i) {
6218     os::sleep(Thread::current(), 1, false);
6219   }
6220 
6221   ConcurrentMarkSweepThread::synchronize(true);
6222   _freelistLock->lock_without_safepoint_check();
6223   _bit_map->lock()->lock_without_safepoint_check();
6224   _collector->startTimer();
6225 }
6226 
6227 ///////////////////////////////////////////////////////////
6228 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6229 //                                 MarkRefsIntoAndScanClosure
6230 ///////////////////////////////////////////////////////////
6231 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6232   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6233   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6234   _span(span),
6235   _bit_map(bit_map),
6236   _work_queue(work_queue),
6237   _low_water_mark(MIN2((work_queue->max_elems()/4),
6238                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6239   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6240 {
6241   _ref_processor = rp;
6242   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6243 }
6244 
6245 // This closure is used to mark refs into the CMS generation at the
6246 // second (final) checkpoint, and to scan and transitively follow
6247 // the unmarked oops. The marks are made in the marking bit map and
6248 // the work_queue is used for keeping the (newly) grey objects during
6249 // the scan phase whence they are also available for stealing by parallel
6250 // threads. Since the marking bit map is shared, updates are
6251 // synchronized (via CAS).
6252 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6253   if (obj != NULL) {
6254     // Ignore mark word because this could be an already marked oop
6255     // that may be chained at the end of the overflow list.
6256     assert(obj->is_oop(true), "expected an oop");
6257     HeapWord* addr = (HeapWord*)obj;
6258     if (_span.contains(addr) &&
6259         !_bit_map->isMarked(addr)) {
6260       // mark bit map (object will become grey):
6261       // It is possible for several threads to be
6262       // trying to "claim" this object concurrently;
6263       // the unique thread that succeeds in marking the
6264       // object first will do the subsequent push on
6265       // to the work queue (or overflow list).
6266       if (_bit_map->par_mark(addr)) {
6267         // push on work_queue (which may not be empty), and trim the
6268         // queue to an appropriate length by applying this closure to
6269         // the oops in the oops popped from the stack (i.e. blacken the
6270         // grey objects)
6271         bool res = _work_queue->push(obj);
6272         assert(res, "Low water mark should be less than capacity?");
6273         trim_queue(_low_water_mark);
6274       } // Else, another thread claimed the object
6275     }
6276   }
6277 }
6278 
6279 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6280 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6281 
6282 // This closure is used to rescan the marked objects on the dirty cards
6283 // in the mod union table and the card table proper.
6284 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6285   oop p, MemRegion mr) {
6286 
6287   size_t size = 0;
6288   HeapWord* addr = (HeapWord*)p;
6289   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6290   assert(_span.contains(addr), "we are scanning the CMS generation");
6291   // check if it's time to yield
6292   if (do_yield_check()) {
6293     // We yielded for some foreground stop-world work,
6294     // and we have been asked to abort this ongoing preclean cycle.
6295     return 0;
6296   }
6297   if (_bitMap->isMarked(addr)) {
6298     // it's marked; is it potentially uninitialized?
6299     if (p->klass_or_null() != NULL) {
6300         // an initialized object; ignore mark word in verification below
6301         // since we are running concurrent with mutators
6302         assert(p->is_oop(true), "should be an oop");
6303         if (p->is_objArray()) {
6304           // objArrays are precisely marked; restrict scanning
6305           // to dirty cards only.
6306           size = CompactibleFreeListSpace::adjustObjectSize(
6307                    p->oop_iterate_size(_scanningClosure, mr));
6308         } else {
6309           // A non-array may have been imprecisely marked; we need
6310           // to scan object in its entirety.
6311           size = CompactibleFreeListSpace::adjustObjectSize(
6312                    p->oop_iterate_size(_scanningClosure));
6313         }
6314         #ifdef ASSERT
6315           size_t direct_size =
6316             CompactibleFreeListSpace::adjustObjectSize(p->size());
6317           assert(size == direct_size, "Inconsistency in size");
6318           assert(size >= 3, "Necessary for Printezis marks to work");
6319           if (!_bitMap->isMarked(addr+1)) {
6320             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6321           } else {
6322             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6323             assert(_bitMap->isMarked(addr+size-1),
6324                    "inconsistent Printezis mark");
6325           }
6326         #endif // ASSERT
6327     } else {
6328       // An uninitialized object.
6329       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6330       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6331       size = pointer_delta(nextOneAddr + 1, addr);
6332       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6333              "alignment problem");
6334       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6335       // will dirty the card when the klass pointer is installed in the
6336       // object (signaling the completion of initialization).
6337     }
6338   } else {
6339     // Either a not yet marked object or an uninitialized object
6340     if (p->klass_or_null() == NULL) {
6341       // An uninitialized object, skip to the next card, since
6342       // we may not be able to read its P-bits yet.
6343       assert(size == 0, "Initial value");
6344     } else {
6345       // An object not (yet) reached by marking: we merely need to
6346       // compute its size so as to go look at the next block.
6347       assert(p->is_oop(true), "should be an oop");
6348       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6349     }
6350   }
6351   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6352   return size;
6353 }
6354 
6355 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6356   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6357          "CMS thread should hold CMS token");
6358   assert_lock_strong(_freelistLock);
6359   assert_lock_strong(_bitMap->lock());
6360   // relinquish the free_list_lock and bitMaplock()
6361   _bitMap->lock()->unlock();
6362   _freelistLock->unlock();
6363   ConcurrentMarkSweepThread::desynchronize(true);
6364   _collector->stopTimer();
6365   if (PrintCMSStatistics != 0) {
6366     _collector->incrementYields();
6367   }
6368 
6369   // See the comment in coordinator_yield()
6370   for (unsigned i = 0; i < CMSYieldSleepCount &&
6371                    ConcurrentMarkSweepThread::should_yield() &&
6372                    !CMSCollector::foregroundGCIsActive(); ++i) {
6373     os::sleep(Thread::current(), 1, false);
6374   }
6375 
6376   ConcurrentMarkSweepThread::synchronize(true);
6377   _freelistLock->lock_without_safepoint_check();
6378   _bitMap->lock()->lock_without_safepoint_check();
6379   _collector->startTimer();
6380 }
6381 
6382 
6383 //////////////////////////////////////////////////////////////////
6384 // SurvivorSpacePrecleanClosure
6385 //////////////////////////////////////////////////////////////////
6386 // This (single-threaded) closure is used to preclean the oops in
6387 // the survivor spaces.
6388 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6389 
6390   HeapWord* addr = (HeapWord*)p;
6391   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6392   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6393   assert(p->klass_or_null() != NULL, "object should be initialized");
6394   // an initialized object; ignore mark word in verification below
6395   // since we are running concurrent with mutators
6396   assert(p->is_oop(true), "should be an oop");
6397   // Note that we do not yield while we iterate over
6398   // the interior oops of p, pushing the relevant ones
6399   // on our marking stack.
6400   size_t size = p->oop_iterate_size(_scanning_closure);
6401   do_yield_check();
6402   // Observe that below, we do not abandon the preclean
6403   // phase as soon as we should; rather we empty the
6404   // marking stack before returning. This is to satisfy
6405   // some existing assertions. In general, it may be a
6406   // good idea to abort immediately and complete the marking
6407   // from the grey objects at a later time.
6408   while (!_mark_stack->isEmpty()) {
6409     oop new_oop = _mark_stack->pop();
6410     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6411     assert(_bit_map->isMarked((HeapWord*)new_oop),
6412            "only grey objects on this stack");
6413     // iterate over the oops in this oop, marking and pushing
6414     // the ones in CMS heap (i.e. in _span).
6415     new_oop->oop_iterate(_scanning_closure);
6416     // check if it's time to yield
6417     do_yield_check();
6418   }
6419   unsigned int after_count =
6420     GenCollectedHeap::heap()->total_collections();
6421   bool abort = (_before_count != after_count) ||
6422                _collector->should_abort_preclean();
6423   return abort ? 0 : size;
6424 }
6425 
6426 void SurvivorSpacePrecleanClosure::do_yield_work() {
6427   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6428          "CMS thread should hold CMS token");
6429   assert_lock_strong(_bit_map->lock());
6430   // Relinquish the bit map lock
6431   _bit_map->lock()->unlock();
6432   ConcurrentMarkSweepThread::desynchronize(true);
6433   _collector->stopTimer();
6434   if (PrintCMSStatistics != 0) {
6435     _collector->incrementYields();
6436   }
6437 
6438   // See the comment in coordinator_yield()
6439   for (unsigned i = 0; i < CMSYieldSleepCount &&
6440                        ConcurrentMarkSweepThread::should_yield() &&
6441                        !CMSCollector::foregroundGCIsActive(); ++i) {
6442     os::sleep(Thread::current(), 1, false);
6443   }
6444 
6445   ConcurrentMarkSweepThread::synchronize(true);
6446   _bit_map->lock()->lock_without_safepoint_check();
6447   _collector->startTimer();
6448 }
6449 
6450 // This closure is used to rescan the marked objects on the dirty cards
6451 // in the mod union table and the card table proper. In the parallel
6452 // case, although the bitMap is shared, we do a single read so the
6453 // isMarked() query is "safe".
6454 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6455   // Ignore mark word because we are running concurrent with mutators
6456   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6457   HeapWord* addr = (HeapWord*)p;
6458   assert(_span.contains(addr), "we are scanning the CMS generation");
6459   bool is_obj_array = false;
6460   #ifdef ASSERT
6461     if (!_parallel) {
6462       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6463       assert(_collector->overflow_list_is_empty(),
6464              "overflow list should be empty");
6465 
6466     }
6467   #endif // ASSERT
6468   if (_bit_map->isMarked(addr)) {
6469     // Obj arrays are precisely marked, non-arrays are not;
6470     // so we scan objArrays precisely and non-arrays in their
6471     // entirety.
6472     if (p->is_objArray()) {
6473       is_obj_array = true;
6474       if (_parallel) {
6475         p->oop_iterate(_par_scan_closure, mr);
6476       } else {
6477         p->oop_iterate(_scan_closure, mr);
6478       }
6479     } else {
6480       if (_parallel) {
6481         p->oop_iterate(_par_scan_closure);
6482       } else {
6483         p->oop_iterate(_scan_closure);
6484       }
6485     }
6486   }
6487   #ifdef ASSERT
6488     if (!_parallel) {
6489       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6490       assert(_collector->overflow_list_is_empty(),
6491              "overflow list should be empty");
6492 
6493     }
6494   #endif // ASSERT
6495   return is_obj_array;
6496 }
6497 
6498 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6499                         MemRegion span,
6500                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6501                         bool should_yield, bool verifying):
6502   _collector(collector),
6503   _span(span),
6504   _bitMap(bitMap),
6505   _mut(&collector->_modUnionTable),
6506   _markStack(markStack),
6507   _yield(should_yield),
6508   _skipBits(0)
6509 {
6510   assert(_markStack->isEmpty(), "stack should be empty");
6511   _finger = _bitMap->startWord();
6512   _threshold = _finger;
6513   assert(_collector->_restart_addr == NULL, "Sanity check");
6514   assert(_span.contains(_finger), "Out of bounds _finger?");
6515   DEBUG_ONLY(_verifying = verifying;)
6516 }
6517 
6518 void MarkFromRootsClosure::reset(HeapWord* addr) {
6519   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6520   assert(_span.contains(addr), "Out of bounds _finger?");
6521   _finger = addr;
6522   _threshold = (HeapWord*)round_to(
6523                  (intptr_t)_finger, CardTableModRefBS::card_size);
6524 }
6525 
6526 // Should revisit to see if this should be restructured for
6527 // greater efficiency.
6528 bool MarkFromRootsClosure::do_bit(size_t offset) {
6529   if (_skipBits > 0) {
6530     _skipBits--;
6531     return true;
6532   }
6533   // convert offset into a HeapWord*
6534   HeapWord* addr = _bitMap->startWord() + offset;
6535   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6536          "address out of range");
6537   assert(_bitMap->isMarked(addr), "tautology");
6538   if (_bitMap->isMarked(addr+1)) {
6539     // this is an allocated but not yet initialized object
6540     assert(_skipBits == 0, "tautology");
6541     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6542     oop p = oop(addr);
6543     if (p->klass_or_null() == NULL) {
6544       DEBUG_ONLY(if (!_verifying) {)
6545         // We re-dirty the cards on which this object lies and increase
6546         // the _threshold so that we'll come back to scan this object
6547         // during the preclean or remark phase. (CMSCleanOnEnter)
6548         if (CMSCleanOnEnter) {
6549           size_t sz = _collector->block_size_using_printezis_bits(addr);
6550           HeapWord* end_card_addr   = (HeapWord*)round_to(
6551                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6552           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6553           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6554           // Bump _threshold to end_card_addr; note that
6555           // _threshold cannot possibly exceed end_card_addr, anyhow.
6556           // This prevents future clearing of the card as the scan proceeds
6557           // to the right.
6558           assert(_threshold <= end_card_addr,
6559                  "Because we are just scanning into this object");
6560           if (_threshold < end_card_addr) {
6561             _threshold = end_card_addr;
6562           }
6563           if (p->klass_or_null() != NULL) {
6564             // Redirty the range of cards...
6565             _mut->mark_range(redirty_range);
6566           } // ...else the setting of klass will dirty the card anyway.
6567         }
6568       DEBUG_ONLY(})
6569       return true;
6570     }
6571   }
6572   scanOopsInOop(addr);
6573   return true;
6574 }
6575 
6576 // We take a break if we've been at this for a while,
6577 // so as to avoid monopolizing the locks involved.
6578 void MarkFromRootsClosure::do_yield_work() {
6579   // First give up the locks, then yield, then re-lock
6580   // We should probably use a constructor/destructor idiom to
6581   // do this unlock/lock or modify the MutexUnlocker class to
6582   // serve our purpose. XXX
6583   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6584          "CMS thread should hold CMS token");
6585   assert_lock_strong(_bitMap->lock());
6586   _bitMap->lock()->unlock();
6587   ConcurrentMarkSweepThread::desynchronize(true);
6588   _collector->stopTimer();
6589   if (PrintCMSStatistics != 0) {
6590     _collector->incrementYields();
6591   }
6592 
6593   // See the comment in coordinator_yield()
6594   for (unsigned i = 0; i < CMSYieldSleepCount &&
6595                        ConcurrentMarkSweepThread::should_yield() &&
6596                        !CMSCollector::foregroundGCIsActive(); ++i) {
6597     os::sleep(Thread::current(), 1, false);
6598   }
6599 
6600   ConcurrentMarkSweepThread::synchronize(true);
6601   _bitMap->lock()->lock_without_safepoint_check();
6602   _collector->startTimer();
6603 }
6604 
6605 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6606   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6607   assert(_markStack->isEmpty(),
6608          "should drain stack to limit stack usage");
6609   // convert ptr to an oop preparatory to scanning
6610   oop obj = oop(ptr);
6611   // Ignore mark word in verification below, since we
6612   // may be running concurrent with mutators.
6613   assert(obj->is_oop(true), "should be an oop");
6614   assert(_finger <= ptr, "_finger runneth ahead");
6615   // advance the finger to right end of this object
6616   _finger = ptr + obj->size();
6617   assert(_finger > ptr, "we just incremented it above");
6618   // On large heaps, it may take us some time to get through
6619   // the marking phase. During
6620   // this time it's possible that a lot of mutations have
6621   // accumulated in the card table and the mod union table --
6622   // these mutation records are redundant until we have
6623   // actually traced into the corresponding card.
6624   // Here, we check whether advancing the finger would make
6625   // us cross into a new card, and if so clear corresponding
6626   // cards in the MUT (preclean them in the card-table in the
6627   // future).
6628 
6629   DEBUG_ONLY(if (!_verifying) {)
6630     // The clean-on-enter optimization is disabled by default,
6631     // until we fix 6178663.
6632     if (CMSCleanOnEnter && (_finger > _threshold)) {
6633       // [_threshold, _finger) represents the interval
6634       // of cards to be cleared  in MUT (or precleaned in card table).
6635       // The set of cards to be cleared is all those that overlap
6636       // with the interval [_threshold, _finger); note that
6637       // _threshold is always kept card-aligned but _finger isn't
6638       // always card-aligned.
6639       HeapWord* old_threshold = _threshold;
6640       assert(old_threshold == (HeapWord*)round_to(
6641               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6642              "_threshold should always be card-aligned");
6643       _threshold = (HeapWord*)round_to(
6644                      (intptr_t)_finger, CardTableModRefBS::card_size);
6645       MemRegion mr(old_threshold, _threshold);
6646       assert(!mr.is_empty(), "Control point invariant");
6647       assert(_span.contains(mr), "Should clear within span");
6648       _mut->clear_range(mr);
6649     }
6650   DEBUG_ONLY(})
6651   // Note: the finger doesn't advance while we drain
6652   // the stack below.
6653   PushOrMarkClosure pushOrMarkClosure(_collector,
6654                                       _span, _bitMap, _markStack,
6655                                       _finger, this);
6656   bool res = _markStack->push(obj);
6657   assert(res, "Empty non-zero size stack should have space for single push");
6658   while (!_markStack->isEmpty()) {
6659     oop new_oop = _markStack->pop();
6660     // Skip verifying header mark word below because we are
6661     // running concurrent with mutators.
6662     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6663     // now scan this oop's oops
6664     new_oop->oop_iterate(&pushOrMarkClosure);
6665     do_yield_check();
6666   }
6667   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6668 }
6669 
6670 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6671                        CMSCollector* collector, MemRegion span,
6672                        CMSBitMap* bit_map,
6673                        OopTaskQueue* work_queue,
6674                        CMSMarkStack*  overflow_stack):
6675   _collector(collector),
6676   _whole_span(collector->_span),
6677   _span(span),
6678   _bit_map(bit_map),
6679   _mut(&collector->_modUnionTable),
6680   _work_queue(work_queue),
6681   _overflow_stack(overflow_stack),
6682   _skip_bits(0),
6683   _task(task)
6684 {
6685   assert(_work_queue->size() == 0, "work_queue should be empty");
6686   _finger = span.start();
6687   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6688   assert(_span.contains(_finger), "Out of bounds _finger?");
6689 }
6690 
6691 // Should revisit to see if this should be restructured for
6692 // greater efficiency.
6693 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6694   if (_skip_bits > 0) {
6695     _skip_bits--;
6696     return true;
6697   }
6698   // convert offset into a HeapWord*
6699   HeapWord* addr = _bit_map->startWord() + offset;
6700   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6701          "address out of range");
6702   assert(_bit_map->isMarked(addr), "tautology");
6703   if (_bit_map->isMarked(addr+1)) {
6704     // this is an allocated object that might not yet be initialized
6705     assert(_skip_bits == 0, "tautology");
6706     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6707     oop p = oop(addr);
6708     if (p->klass_or_null() == NULL) {
6709       // in the case of Clean-on-Enter optimization, redirty card
6710       // and avoid clearing card by increasing  the threshold.
6711       return true;
6712     }
6713   }
6714   scan_oops_in_oop(addr);
6715   return true;
6716 }
6717 
6718 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6719   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6720   // Should we assert that our work queue is empty or
6721   // below some drain limit?
6722   assert(_work_queue->size() == 0,
6723          "should drain stack to limit stack usage");
6724   // convert ptr to an oop preparatory to scanning
6725   oop obj = oop(ptr);
6726   // Ignore mark word in verification below, since we
6727   // may be running concurrent with mutators.
6728   assert(obj->is_oop(true), "should be an oop");
6729   assert(_finger <= ptr, "_finger runneth ahead");
6730   // advance the finger to right end of this object
6731   _finger = ptr + obj->size();
6732   assert(_finger > ptr, "we just incremented it above");
6733   // On large heaps, it may take us some time to get through
6734   // the marking phase. During
6735   // this time it's possible that a lot of mutations have
6736   // accumulated in the card table and the mod union table --
6737   // these mutation records are redundant until we have
6738   // actually traced into the corresponding card.
6739   // Here, we check whether advancing the finger would make
6740   // us cross into a new card, and if so clear corresponding
6741   // cards in the MUT (preclean them in the card-table in the
6742   // future).
6743 
6744   // The clean-on-enter optimization is disabled by default,
6745   // until we fix 6178663.
6746   if (CMSCleanOnEnter && (_finger > _threshold)) {
6747     // [_threshold, _finger) represents the interval
6748     // of cards to be cleared  in MUT (or precleaned in card table).
6749     // The set of cards to be cleared is all those that overlap
6750     // with the interval [_threshold, _finger); note that
6751     // _threshold is always kept card-aligned but _finger isn't
6752     // always card-aligned.
6753     HeapWord* old_threshold = _threshold;
6754     assert(old_threshold == (HeapWord*)round_to(
6755             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6756            "_threshold should always be card-aligned");
6757     _threshold = (HeapWord*)round_to(
6758                    (intptr_t)_finger, CardTableModRefBS::card_size);
6759     MemRegion mr(old_threshold, _threshold);
6760     assert(!mr.is_empty(), "Control point invariant");
6761     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6762     _mut->clear_range(mr);
6763   }
6764 
6765   // Note: the local finger doesn't advance while we drain
6766   // the stack below, but the global finger sure can and will.
6767   HeapWord** gfa = _task->global_finger_addr();
6768   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6769                                       _span, _bit_map,
6770                                       _work_queue,
6771                                       _overflow_stack,
6772                                       _finger,
6773                                       gfa, this);
6774   bool res = _work_queue->push(obj);   // overflow could occur here
6775   assert(res, "Will hold once we use workqueues");
6776   while (true) {
6777     oop new_oop;
6778     if (!_work_queue->pop_local(new_oop)) {
6779       // We emptied our work_queue; check if there's stuff that can
6780       // be gotten from the overflow stack.
6781       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6782             _overflow_stack, _work_queue)) {
6783         do_yield_check();
6784         continue;
6785       } else {  // done
6786         break;
6787       }
6788     }
6789     // Skip verifying header mark word below because we are
6790     // running concurrent with mutators.
6791     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6792     // now scan this oop's oops
6793     new_oop->oop_iterate(&pushOrMarkClosure);
6794     do_yield_check();
6795   }
6796   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6797 }
6798 
6799 // Yield in response to a request from VM Thread or
6800 // from mutators.
6801 void Par_MarkFromRootsClosure::do_yield_work() {
6802   assert(_task != NULL, "sanity");
6803   _task->yield();
6804 }
6805 
6806 // A variant of the above used for verifying CMS marking work.
6807 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6808                         MemRegion span,
6809                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6810                         CMSMarkStack*  mark_stack):
6811   _collector(collector),
6812   _span(span),
6813   _verification_bm(verification_bm),
6814   _cms_bm(cms_bm),
6815   _mark_stack(mark_stack),
6816   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6817                       mark_stack)
6818 {
6819   assert(_mark_stack->isEmpty(), "stack should be empty");
6820   _finger = _verification_bm->startWord();
6821   assert(_collector->_restart_addr == NULL, "Sanity check");
6822   assert(_span.contains(_finger), "Out of bounds _finger?");
6823 }
6824 
6825 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6826   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6827   assert(_span.contains(addr), "Out of bounds _finger?");
6828   _finger = addr;
6829 }
6830 
6831 // Should revisit to see if this should be restructured for
6832 // greater efficiency.
6833 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6834   // convert offset into a HeapWord*
6835   HeapWord* addr = _verification_bm->startWord() + offset;
6836   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6837          "address out of range");
6838   assert(_verification_bm->isMarked(addr), "tautology");
6839   assert(_cms_bm->isMarked(addr), "tautology");
6840 
6841   assert(_mark_stack->isEmpty(),
6842          "should drain stack to limit stack usage");
6843   // convert addr to an oop preparatory to scanning
6844   oop obj = oop(addr);
6845   assert(obj->is_oop(), "should be an oop");
6846   assert(_finger <= addr, "_finger runneth ahead");
6847   // advance the finger to right end of this object
6848   _finger = addr + obj->size();
6849   assert(_finger > addr, "we just incremented it above");
6850   // Note: the finger doesn't advance while we drain
6851   // the stack below.
6852   bool res = _mark_stack->push(obj);
6853   assert(res, "Empty non-zero size stack should have space for single push");
6854   while (!_mark_stack->isEmpty()) {
6855     oop new_oop = _mark_stack->pop();
6856     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6857     // now scan this oop's oops
6858     new_oop->oop_iterate(&_pam_verify_closure);
6859   }
6860   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6861   return true;
6862 }
6863 
6864 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6865   CMSCollector* collector, MemRegion span,
6866   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6867   CMSMarkStack*  mark_stack):
6868   MetadataAwareOopClosure(collector->ref_processor()),
6869   _collector(collector),
6870   _span(span),
6871   _verification_bm(verification_bm),
6872   _cms_bm(cms_bm),
6873   _mark_stack(mark_stack)
6874 { }
6875 
6876 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6877 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6878 
6879 // Upon stack overflow, we discard (part of) the stack,
6880 // remembering the least address amongst those discarded
6881 // in CMSCollector's _restart_address.
6882 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6883   // Remember the least grey address discarded
6884   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6885   _collector->lower_restart_addr(ra);
6886   _mark_stack->reset();  // discard stack contents
6887   _mark_stack->expand(); // expand the stack if possible
6888 }
6889 
6890 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6891   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6892   HeapWord* addr = (HeapWord*)obj;
6893   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6894     // Oop lies in _span and isn't yet grey or black
6895     _verification_bm->mark(addr);            // now grey
6896     if (!_cms_bm->isMarked(addr)) {
6897       oop(addr)->print();
6898       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6899                              p2i(addr));
6900       fatal("... aborting");
6901     }
6902 
6903     if (!_mark_stack->push(obj)) { // stack overflow
6904       if (PrintCMSStatistics != 0) {
6905         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6906                                SIZE_FORMAT, _mark_stack->capacity());
6907       }
6908       assert(_mark_stack->isFull(), "Else push should have succeeded");
6909       handle_stack_overflow(addr);
6910     }
6911     // anything including and to the right of _finger
6912     // will be scanned as we iterate over the remainder of the
6913     // bit map
6914   }
6915 }
6916 
6917 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6918                      MemRegion span,
6919                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6920                      HeapWord* finger, MarkFromRootsClosure* parent) :
6921   MetadataAwareOopClosure(collector->ref_processor()),
6922   _collector(collector),
6923   _span(span),
6924   _bitMap(bitMap),
6925   _markStack(markStack),
6926   _finger(finger),
6927   _parent(parent)
6928 { }
6929 
6930 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6931                      MemRegion span,
6932                      CMSBitMap* bit_map,
6933                      OopTaskQueue* work_queue,
6934                      CMSMarkStack*  overflow_stack,
6935                      HeapWord* finger,
6936                      HeapWord** global_finger_addr,
6937                      Par_MarkFromRootsClosure* parent) :
6938   MetadataAwareOopClosure(collector->ref_processor()),
6939   _collector(collector),
6940   _whole_span(collector->_span),
6941   _span(span),
6942   _bit_map(bit_map),
6943   _work_queue(work_queue),
6944   _overflow_stack(overflow_stack),
6945   _finger(finger),
6946   _global_finger_addr(global_finger_addr),
6947   _parent(parent)
6948 { }
6949 
6950 // Assumes thread-safe access by callers, who are
6951 // responsible for mutual exclusion.
6952 void CMSCollector::lower_restart_addr(HeapWord* low) {
6953   assert(_span.contains(low), "Out of bounds addr");
6954   if (_restart_addr == NULL) {
6955     _restart_addr = low;
6956   } else {
6957     _restart_addr = MIN2(_restart_addr, low);
6958   }
6959 }
6960 
6961 // Upon stack overflow, we discard (part of) the stack,
6962 // remembering the least address amongst those discarded
6963 // in CMSCollector's _restart_address.
6964 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6965   // Remember the least grey address discarded
6966   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6967   _collector->lower_restart_addr(ra);
6968   _markStack->reset();  // discard stack contents
6969   _markStack->expand(); // expand the stack if possible
6970 }
6971 
6972 // Upon stack overflow, we discard (part of) the stack,
6973 // remembering the least address amongst those discarded
6974 // in CMSCollector's _restart_address.
6975 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6976   // We need to do this under a mutex to prevent other
6977   // workers from interfering with the work done below.
6978   MutexLockerEx ml(_overflow_stack->par_lock(),
6979                    Mutex::_no_safepoint_check_flag);
6980   // Remember the least grey address discarded
6981   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6982   _collector->lower_restart_addr(ra);
6983   _overflow_stack->reset();  // discard stack contents
6984   _overflow_stack->expand(); // expand the stack if possible
6985 }
6986 
6987 void PushOrMarkClosure::do_oop(oop obj) {
6988   // Ignore mark word because we are running concurrent with mutators.
6989   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6990   HeapWord* addr = (HeapWord*)obj;
6991   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6992     // Oop lies in _span and isn't yet grey or black
6993     _bitMap->mark(addr);            // now grey
6994     if (addr < _finger) {
6995       // the bit map iteration has already either passed, or
6996       // sampled, this bit in the bit map; we'll need to
6997       // use the marking stack to scan this oop's oops.
6998       bool simulate_overflow = false;
6999       NOT_PRODUCT(
7000         if (CMSMarkStackOverflowALot &&
7001             _collector->simulate_overflow()) {
7002           // simulate a stack overflow
7003           simulate_overflow = true;
7004         }
7005       )
7006       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7007         if (PrintCMSStatistics != 0) {
7008           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7009                                  SIZE_FORMAT, _markStack->capacity());
7010         }
7011         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7012         handle_stack_overflow(addr);
7013       }
7014     }
7015     // anything including and to the right of _finger
7016     // will be scanned as we iterate over the remainder of the
7017     // bit map
7018     do_yield_check();
7019   }
7020 }
7021 
7022 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7023 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7024 
7025 void Par_PushOrMarkClosure::do_oop(oop obj) {
7026   // Ignore mark word because we are running concurrent with mutators.
7027   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7028   HeapWord* addr = (HeapWord*)obj;
7029   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7030     // Oop lies in _span and isn't yet grey or black
7031     // We read the global_finger (volatile read) strictly after marking oop
7032     bool res = _bit_map->par_mark(addr);    // now grey
7033     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7034     // Should we push this marked oop on our stack?
7035     // -- if someone else marked it, nothing to do
7036     // -- if target oop is above global finger nothing to do
7037     // -- if target oop is in chunk and above local finger
7038     //      then nothing to do
7039     // -- else push on work queue
7040     if (   !res       // someone else marked it, they will deal with it
7041         || (addr >= *gfa)  // will be scanned in a later task
7042         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7043       return;
7044     }
7045     // the bit map iteration has already either passed, or
7046     // sampled, this bit in the bit map; we'll need to
7047     // use the marking stack to scan this oop's oops.
7048     bool simulate_overflow = false;
7049     NOT_PRODUCT(
7050       if (CMSMarkStackOverflowALot &&
7051           _collector->simulate_overflow()) {
7052         // simulate a stack overflow
7053         simulate_overflow = true;
7054       }
7055     )
7056     if (simulate_overflow ||
7057         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7058       // stack overflow
7059       if (PrintCMSStatistics != 0) {
7060         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7061                                SIZE_FORMAT, _overflow_stack->capacity());
7062       }
7063       // We cannot assert that the overflow stack is full because
7064       // it may have been emptied since.
7065       assert(simulate_overflow ||
7066              _work_queue->size() == _work_queue->max_elems(),
7067             "Else push should have succeeded");
7068       handle_stack_overflow(addr);
7069     }
7070     do_yield_check();
7071   }
7072 }
7073 
7074 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7075 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7076 
7077 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7078                                        MemRegion span,
7079                                        ReferenceProcessor* rp,
7080                                        CMSBitMap* bit_map,
7081                                        CMSBitMap* mod_union_table,
7082                                        CMSMarkStack*  mark_stack,
7083                                        bool           concurrent_precleaning):
7084   MetadataAwareOopClosure(rp),
7085   _collector(collector),
7086   _span(span),
7087   _bit_map(bit_map),
7088   _mod_union_table(mod_union_table),
7089   _mark_stack(mark_stack),
7090   _concurrent_precleaning(concurrent_precleaning)
7091 {
7092   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7093 }
7094 
7095 // Grey object rescan during pre-cleaning and second checkpoint phases --
7096 // the non-parallel version (the parallel version appears further below.)
7097 void PushAndMarkClosure::do_oop(oop obj) {
7098   // Ignore mark word verification. If during concurrent precleaning,
7099   // the object monitor may be locked. If during the checkpoint
7100   // phases, the object may already have been reached by a  different
7101   // path and may be at the end of the global overflow list (so
7102   // the mark word may be NULL).
7103   assert(obj->is_oop_or_null(true /* ignore mark word */),
7104          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7105   HeapWord* addr = (HeapWord*)obj;
7106   // Check if oop points into the CMS generation
7107   // and is not marked
7108   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7109     // a white object ...
7110     _bit_map->mark(addr);         // ... now grey
7111     // push on the marking stack (grey set)
7112     bool simulate_overflow = false;
7113     NOT_PRODUCT(
7114       if (CMSMarkStackOverflowALot &&
7115           _collector->simulate_overflow()) {
7116         // simulate a stack overflow
7117         simulate_overflow = true;
7118       }
7119     )
7120     if (simulate_overflow || !_mark_stack->push(obj)) {
7121       if (_concurrent_precleaning) {
7122          // During precleaning we can just dirty the appropriate card(s)
7123          // in the mod union table, thus ensuring that the object remains
7124          // in the grey set  and continue. In the case of object arrays
7125          // we need to dirty all of the cards that the object spans,
7126          // since the rescan of object arrays will be limited to the
7127          // dirty cards.
7128          // Note that no one can be interfering with us in this action
7129          // of dirtying the mod union table, so no locking or atomics
7130          // are required.
7131          if (obj->is_objArray()) {
7132            size_t sz = obj->size();
7133            HeapWord* end_card_addr = (HeapWord*)round_to(
7134                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7135            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7136            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7137            _mod_union_table->mark_range(redirty_range);
7138          } else {
7139            _mod_union_table->mark(addr);
7140          }
7141          _collector->_ser_pmc_preclean_ovflw++;
7142       } else {
7143          // During the remark phase, we need to remember this oop
7144          // in the overflow list.
7145          _collector->push_on_overflow_list(obj);
7146          _collector->_ser_pmc_remark_ovflw++;
7147       }
7148     }
7149   }
7150 }
7151 
7152 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7153                                                MemRegion span,
7154                                                ReferenceProcessor* rp,
7155                                                CMSBitMap* bit_map,
7156                                                OopTaskQueue* work_queue):
7157   MetadataAwareOopClosure(rp),
7158   _collector(collector),
7159   _span(span),
7160   _bit_map(bit_map),
7161   _work_queue(work_queue)
7162 {
7163   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7164 }
7165 
7166 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7167 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7168 
7169 // Grey object rescan during second checkpoint phase --
7170 // the parallel version.
7171 void Par_PushAndMarkClosure::do_oop(oop obj) {
7172   // In the assert below, we ignore the mark word because
7173   // this oop may point to an already visited object that is
7174   // on the overflow stack (in which case the mark word has
7175   // been hijacked for chaining into the overflow stack --
7176   // if this is the last object in the overflow stack then
7177   // its mark word will be NULL). Because this object may
7178   // have been subsequently popped off the global overflow
7179   // stack, and the mark word possibly restored to the prototypical
7180   // value, by the time we get to examined this failing assert in
7181   // the debugger, is_oop_or_null(false) may subsequently start
7182   // to hold.
7183   assert(obj->is_oop_or_null(true),
7184          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7185   HeapWord* addr = (HeapWord*)obj;
7186   // Check if oop points into the CMS generation
7187   // and is not marked
7188   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7189     // a white object ...
7190     // If we manage to "claim" the object, by being the
7191     // first thread to mark it, then we push it on our
7192     // marking stack
7193     if (_bit_map->par_mark(addr)) {     // ... now grey
7194       // push on work queue (grey set)
7195       bool simulate_overflow = false;
7196       NOT_PRODUCT(
7197         if (CMSMarkStackOverflowALot &&
7198             _collector->par_simulate_overflow()) {
7199           // simulate a stack overflow
7200           simulate_overflow = true;
7201         }
7202       )
7203       if (simulate_overflow || !_work_queue->push(obj)) {
7204         _collector->par_push_on_overflow_list(obj);
7205         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7206       }
7207     } // Else, some other thread got there first
7208   }
7209 }
7210 
7211 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7212 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7213 
7214 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7215   Mutex* bml = _collector->bitMapLock();
7216   assert_lock_strong(bml);
7217   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7218          "CMS thread should hold CMS token");
7219 
7220   bml->unlock();
7221   ConcurrentMarkSweepThread::desynchronize(true);
7222 
7223   _collector->stopTimer();
7224   if (PrintCMSStatistics != 0) {
7225     _collector->incrementYields();
7226   }
7227 
7228   // See the comment in coordinator_yield()
7229   for (unsigned i = 0; i < CMSYieldSleepCount &&
7230                        ConcurrentMarkSweepThread::should_yield() &&
7231                        !CMSCollector::foregroundGCIsActive(); ++i) {
7232     os::sleep(Thread::current(), 1, false);
7233   }
7234 
7235   ConcurrentMarkSweepThread::synchronize(true);
7236   bml->lock();
7237 
7238   _collector->startTimer();
7239 }
7240 
7241 bool CMSPrecleanRefsYieldClosure::should_return() {
7242   if (ConcurrentMarkSweepThread::should_yield()) {
7243     do_yield_work();
7244   }
7245   return _collector->foregroundGCIsActive();
7246 }
7247 
7248 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7249   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7250          "mr should be aligned to start at a card boundary");
7251   // We'd like to assert:
7252   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7253   //        "mr should be a range of cards");
7254   // However, that would be too strong in one case -- the last
7255   // partition ends at _unallocated_block which, in general, can be
7256   // an arbitrary boundary, not necessarily card aligned.
7257   if (PrintCMSStatistics != 0) {
7258     _num_dirty_cards +=
7259          mr.word_size()/CardTableModRefBS::card_size_in_words;
7260   }
7261   _space->object_iterate_mem(mr, &_scan_cl);
7262 }
7263 
7264 SweepClosure::SweepClosure(CMSCollector* collector,
7265                            ConcurrentMarkSweepGeneration* g,
7266                            CMSBitMap* bitMap, bool should_yield) :
7267   _collector(collector),
7268   _g(g),
7269   _sp(g->cmsSpace()),
7270   _limit(_sp->sweep_limit()),
7271   _freelistLock(_sp->freelistLock()),
7272   _bitMap(bitMap),
7273   _yield(should_yield),
7274   _inFreeRange(false),           // No free range at beginning of sweep
7275   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7276   _lastFreeRangeCoalesced(false),
7277   _freeFinger(g->used_region().start())
7278 {
7279   NOT_PRODUCT(
7280     _numObjectsFreed = 0;
7281     _numWordsFreed   = 0;
7282     _numObjectsLive = 0;
7283     _numWordsLive = 0;
7284     _numObjectsAlreadyFree = 0;
7285     _numWordsAlreadyFree = 0;
7286     _last_fc = NULL;
7287 
7288     _sp->initializeIndexedFreeListArrayReturnedBytes();
7289     _sp->dictionary()->initialize_dict_returned_bytes();
7290   )
7291   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7292          "sweep _limit out of bounds");
7293   if (CMSTraceSweeper) {
7294     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7295                         p2i(_limit));
7296   }
7297 }
7298 
7299 void SweepClosure::print_on(outputStream* st) const {
7300   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7301                 p2i(_sp->bottom()), p2i(_sp->end()));
7302   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7303   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7304   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7305   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7306                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7307 }
7308 
7309 #ifndef PRODUCT
7310 // Assertion checking only:  no useful work in product mode --
7311 // however, if any of the flags below become product flags,
7312 // you may need to review this code to see if it needs to be
7313 // enabled in product mode.
7314 SweepClosure::~SweepClosure() {
7315   assert_lock_strong(_freelistLock);
7316   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7317          "sweep _limit out of bounds");
7318   if (inFreeRange()) {
7319     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7320     print();
7321     ShouldNotReachHere();
7322   }
7323   if (Verbose && PrintGC) {
7324     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7325                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7326     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7327                            SIZE_FORMAT " bytes  "
7328       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7329       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7330       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7331     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7332                         * sizeof(HeapWord);
7333     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7334 
7335     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7336       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7337       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7338       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7339       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7340       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7341         indexListReturnedBytes);
7342       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7343         dict_returned_bytes);
7344     }
7345   }
7346   if (CMSTraceSweeper) {
7347     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7348                            p2i(_limit));
7349   }
7350 }
7351 #endif  // PRODUCT
7352 
7353 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7354     bool freeRangeInFreeLists) {
7355   if (CMSTraceSweeper) {
7356     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7357                p2i(freeFinger), freeRangeInFreeLists);
7358   }
7359   assert(!inFreeRange(), "Trampling existing free range");
7360   set_inFreeRange(true);
7361   set_lastFreeRangeCoalesced(false);
7362 
7363   set_freeFinger(freeFinger);
7364   set_freeRangeInFreeLists(freeRangeInFreeLists);
7365   if (CMSTestInFreeList) {
7366     if (freeRangeInFreeLists) {
7367       FreeChunk* fc = (FreeChunk*) freeFinger;
7368       assert(fc->is_free(), "A chunk on the free list should be free.");
7369       assert(fc->size() > 0, "Free range should have a size");
7370       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7371     }
7372   }
7373 }
7374 
7375 // Note that the sweeper runs concurrently with mutators. Thus,
7376 // it is possible for direct allocation in this generation to happen
7377 // in the middle of the sweep. Note that the sweeper also coalesces
7378 // contiguous free blocks. Thus, unless the sweeper and the allocator
7379 // synchronize appropriately freshly allocated blocks may get swept up.
7380 // This is accomplished by the sweeper locking the free lists while
7381 // it is sweeping. Thus blocks that are determined to be free are
7382 // indeed free. There is however one additional complication:
7383 // blocks that have been allocated since the final checkpoint and
7384 // mark, will not have been marked and so would be treated as
7385 // unreachable and swept up. To prevent this, the allocator marks
7386 // the bit map when allocating during the sweep phase. This leads,
7387 // however, to a further complication -- objects may have been allocated
7388 // but not yet initialized -- in the sense that the header isn't yet
7389 // installed. The sweeper can not then determine the size of the block
7390 // in order to skip over it. To deal with this case, we use a technique
7391 // (due to Printezis) to encode such uninitialized block sizes in the
7392 // bit map. Since the bit map uses a bit per every HeapWord, but the
7393 // CMS generation has a minimum object size of 3 HeapWords, it follows
7394 // that "normal marks" won't be adjacent in the bit map (there will
7395 // always be at least two 0 bits between successive 1 bits). We make use
7396 // of these "unused" bits to represent uninitialized blocks -- the bit
7397 // corresponding to the start of the uninitialized object and the next
7398 // bit are both set. Finally, a 1 bit marks the end of the object that
7399 // started with the two consecutive 1 bits to indicate its potentially
7400 // uninitialized state.
7401 
7402 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7403   FreeChunk* fc = (FreeChunk*)addr;
7404   size_t res;
7405 
7406   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7407   // than "addr == _limit" because although _limit was a block boundary when
7408   // we started the sweep, it may no longer be one because heap expansion
7409   // may have caused us to coalesce the block ending at the address _limit
7410   // with a newly expanded chunk (this happens when _limit was set to the
7411   // previous _end of the space), so we may have stepped past _limit:
7412   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7413   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7414     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7415            "sweep _limit out of bounds");
7416     assert(addr < _sp->end(), "addr out of bounds");
7417     // Flush any free range we might be holding as a single
7418     // coalesced chunk to the appropriate free list.
7419     if (inFreeRange()) {
7420       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7421              err_msg("freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger())));
7422       flush_cur_free_chunk(freeFinger(),
7423                            pointer_delta(addr, freeFinger()));
7424       if (CMSTraceSweeper) {
7425         gclog_or_tty->print("Sweep: last chunk: ");
7426         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7427                    "[coalesced:%d]\n",
7428                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7429                    lastFreeRangeCoalesced() ? 1 : 0);
7430       }
7431     }
7432 
7433     // help the iterator loop finish
7434     return pointer_delta(_sp->end(), addr);
7435   }
7436 
7437   assert(addr < _limit, "sweep invariant");
7438   // check if we should yield
7439   do_yield_check(addr);
7440   if (fc->is_free()) {
7441     // Chunk that is already free
7442     res = fc->size();
7443     do_already_free_chunk(fc);
7444     debug_only(_sp->verifyFreeLists());
7445     // If we flush the chunk at hand in lookahead_and_flush()
7446     // and it's coalesced with a preceding chunk, then the
7447     // process of "mangling" the payload of the coalesced block
7448     // will cause erasure of the size information from the
7449     // (erstwhile) header of all the coalesced blocks but the
7450     // first, so the first disjunct in the assert will not hold
7451     // in that specific case (in which case the second disjunct
7452     // will hold).
7453     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7454            "Otherwise the size info doesn't change at this step");
7455     NOT_PRODUCT(
7456       _numObjectsAlreadyFree++;
7457       _numWordsAlreadyFree += res;
7458     )
7459     NOT_PRODUCT(_last_fc = fc;)
7460   } else if (!_bitMap->isMarked(addr)) {
7461     // Chunk is fresh garbage
7462     res = do_garbage_chunk(fc);
7463     debug_only(_sp->verifyFreeLists());
7464     NOT_PRODUCT(
7465       _numObjectsFreed++;
7466       _numWordsFreed += res;
7467     )
7468   } else {
7469     // Chunk that is alive.
7470     res = do_live_chunk(fc);
7471     debug_only(_sp->verifyFreeLists());
7472     NOT_PRODUCT(
7473         _numObjectsLive++;
7474         _numWordsLive += res;
7475     )
7476   }
7477   return res;
7478 }
7479 
7480 // For the smart allocation, record following
7481 //  split deaths - a free chunk is removed from its free list because
7482 //      it is being split into two or more chunks.
7483 //  split birth - a free chunk is being added to its free list because
7484 //      a larger free chunk has been split and resulted in this free chunk.
7485 //  coal death - a free chunk is being removed from its free list because
7486 //      it is being coalesced into a large free chunk.
7487 //  coal birth - a free chunk is being added to its free list because
7488 //      it was created when two or more free chunks where coalesced into
7489 //      this free chunk.
7490 //
7491 // These statistics are used to determine the desired number of free
7492 // chunks of a given size.  The desired number is chosen to be relative
7493 // to the end of a CMS sweep.  The desired number at the end of a sweep
7494 // is the
7495 //      count-at-end-of-previous-sweep (an amount that was enough)
7496 //              - count-at-beginning-of-current-sweep  (the excess)
7497 //              + split-births  (gains in this size during interval)
7498 //              - split-deaths  (demands on this size during interval)
7499 // where the interval is from the end of one sweep to the end of the
7500 // next.
7501 //
7502 // When sweeping the sweeper maintains an accumulated chunk which is
7503 // the chunk that is made up of chunks that have been coalesced.  That
7504 // will be termed the left-hand chunk.  A new chunk of garbage that
7505 // is being considered for coalescing will be referred to as the
7506 // right-hand chunk.
7507 //
7508 // When making a decision on whether to coalesce a right-hand chunk with
7509 // the current left-hand chunk, the current count vs. the desired count
7510 // of the left-hand chunk is considered.  Also if the right-hand chunk
7511 // is near the large chunk at the end of the heap (see
7512 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7513 // left-hand chunk is coalesced.
7514 //
7515 // When making a decision about whether to split a chunk, the desired count
7516 // vs. the current count of the candidate to be split is also considered.
7517 // If the candidate is underpopulated (currently fewer chunks than desired)
7518 // a chunk of an overpopulated (currently more chunks than desired) size may
7519 // be chosen.  The "hint" associated with a free list, if non-null, points
7520 // to a free list which may be overpopulated.
7521 //
7522 
7523 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7524   const size_t size = fc->size();
7525   // Chunks that cannot be coalesced are not in the
7526   // free lists.
7527   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7528     assert(_sp->verify_chunk_in_free_list(fc),
7529       "free chunk should be in free lists");
7530   }
7531   // a chunk that is already free, should not have been
7532   // marked in the bit map
7533   HeapWord* const addr = (HeapWord*) fc;
7534   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7535   // Verify that the bit map has no bits marked between
7536   // addr and purported end of this block.
7537   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7538 
7539   // Some chunks cannot be coalesced under any circumstances.
7540   // See the definition of cantCoalesce().
7541   if (!fc->cantCoalesce()) {
7542     // This chunk can potentially be coalesced.
7543     if (_sp->adaptive_freelists()) {
7544       // All the work is done in
7545       do_post_free_or_garbage_chunk(fc, size);
7546     } else {  // Not adaptive free lists
7547       // this is a free chunk that can potentially be coalesced by the sweeper;
7548       if (!inFreeRange()) {
7549         // if the next chunk is a free block that can't be coalesced
7550         // it doesn't make sense to remove this chunk from the free lists
7551         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7552         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7553         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7554             nextChunk->is_free()               &&     // ... which is free...
7555             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7556           // nothing to do
7557         } else {
7558           // Potentially the start of a new free range:
7559           // Don't eagerly remove it from the free lists.
7560           // No need to remove it if it will just be put
7561           // back again.  (Also from a pragmatic point of view
7562           // if it is a free block in a region that is beyond
7563           // any allocated blocks, an assertion will fail)
7564           // Remember the start of a free run.
7565           initialize_free_range(addr, true);
7566           // end - can coalesce with next chunk
7567         }
7568       } else {
7569         // the midst of a free range, we are coalescing
7570         print_free_block_coalesced(fc);
7571         if (CMSTraceSweeper) {
7572           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7573         }
7574         // remove it from the free lists
7575         _sp->removeFreeChunkFromFreeLists(fc);
7576         set_lastFreeRangeCoalesced(true);
7577         // If the chunk is being coalesced and the current free range is
7578         // in the free lists, remove the current free range so that it
7579         // will be returned to the free lists in its entirety - all
7580         // the coalesced pieces included.
7581         if (freeRangeInFreeLists()) {
7582           FreeChunk* ffc = (FreeChunk*) freeFinger();
7583           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7584             "Size of free range is inconsistent with chunk size.");
7585           if (CMSTestInFreeList) {
7586             assert(_sp->verify_chunk_in_free_list(ffc),
7587               "free range is not in free lists");
7588           }
7589           _sp->removeFreeChunkFromFreeLists(ffc);
7590           set_freeRangeInFreeLists(false);
7591         }
7592       }
7593     }
7594     // Note that if the chunk is not coalescable (the else arm
7595     // below), we unconditionally flush, without needing to do
7596     // a "lookahead," as we do below.
7597     if (inFreeRange()) lookahead_and_flush(fc, size);
7598   } else {
7599     // Code path common to both original and adaptive free lists.
7600 
7601     // cant coalesce with previous block; this should be treated
7602     // as the end of a free run if any
7603     if (inFreeRange()) {
7604       // we kicked some butt; time to pick up the garbage
7605       assert(freeFinger() < addr, "freeFinger points too high");
7606       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7607     }
7608     // else, nothing to do, just continue
7609   }
7610 }
7611 
7612 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7613   // This is a chunk of garbage.  It is not in any free list.
7614   // Add it to a free list or let it possibly be coalesced into
7615   // a larger chunk.
7616   HeapWord* const addr = (HeapWord*) fc;
7617   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7618 
7619   if (_sp->adaptive_freelists()) {
7620     // Verify that the bit map has no bits marked between
7621     // addr and purported end of just dead object.
7622     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7623 
7624     do_post_free_or_garbage_chunk(fc, size);
7625   } else {
7626     if (!inFreeRange()) {
7627       // start of a new free range
7628       assert(size > 0, "A free range should have a size");
7629       initialize_free_range(addr, false);
7630     } else {
7631       // this will be swept up when we hit the end of the
7632       // free range
7633       if (CMSTraceSweeper) {
7634         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7635       }
7636       // If the chunk is being coalesced and the current free range is
7637       // in the free lists, remove the current free range so that it
7638       // will be returned to the free lists in its entirety - all
7639       // the coalesced pieces included.
7640       if (freeRangeInFreeLists()) {
7641         FreeChunk* ffc = (FreeChunk*)freeFinger();
7642         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7643           "Size of free range is inconsistent with chunk size.");
7644         if (CMSTestInFreeList) {
7645           assert(_sp->verify_chunk_in_free_list(ffc),
7646             "free range is not in free lists");
7647         }
7648         _sp->removeFreeChunkFromFreeLists(ffc);
7649         set_freeRangeInFreeLists(false);
7650       }
7651       set_lastFreeRangeCoalesced(true);
7652     }
7653     // this will be swept up when we hit the end of the free range
7654 
7655     // Verify that the bit map has no bits marked between
7656     // addr and purported end of just dead object.
7657     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7658   }
7659   assert(_limit >= addr + size,
7660          "A freshly garbage chunk can't possibly straddle over _limit");
7661   if (inFreeRange()) lookahead_and_flush(fc, size);
7662   return size;
7663 }
7664 
7665 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7666   HeapWord* addr = (HeapWord*) fc;
7667   // The sweeper has just found a live object. Return any accumulated
7668   // left hand chunk to the free lists.
7669   if (inFreeRange()) {
7670     assert(freeFinger() < addr, "freeFinger points too high");
7671     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7672   }
7673 
7674   // This object is live: we'd normally expect this to be
7675   // an oop, and like to assert the following:
7676   // assert(oop(addr)->is_oop(), "live block should be an oop");
7677   // However, as we commented above, this may be an object whose
7678   // header hasn't yet been initialized.
7679   size_t size;
7680   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7681   if (_bitMap->isMarked(addr + 1)) {
7682     // Determine the size from the bit map, rather than trying to
7683     // compute it from the object header.
7684     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7685     size = pointer_delta(nextOneAddr + 1, addr);
7686     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7687            "alignment problem");
7688 
7689 #ifdef ASSERT
7690       if (oop(addr)->klass_or_null() != NULL) {
7691         // Ignore mark word because we are running concurrent with mutators
7692         assert(oop(addr)->is_oop(true), "live block should be an oop");
7693         assert(size ==
7694                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7695                "P-mark and computed size do not agree");
7696       }
7697 #endif
7698 
7699   } else {
7700     // This should be an initialized object that's alive.
7701     assert(oop(addr)->klass_or_null() != NULL,
7702            "Should be an initialized object");
7703     // Ignore mark word because we are running concurrent with mutators
7704     assert(oop(addr)->is_oop(true), "live block should be an oop");
7705     // Verify that the bit map has no bits marked between
7706     // addr and purported end of this block.
7707     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7708     assert(size >= 3, "Necessary for Printezis marks to work");
7709     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7710     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7711   }
7712   return size;
7713 }
7714 
7715 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7716                                                  size_t chunkSize) {
7717   // do_post_free_or_garbage_chunk() should only be called in the case
7718   // of the adaptive free list allocator.
7719   const bool fcInFreeLists = fc->is_free();
7720   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7721   assert((HeapWord*)fc <= _limit, "sweep invariant");
7722   if (CMSTestInFreeList && fcInFreeLists) {
7723     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7724   }
7725 
7726   if (CMSTraceSweeper) {
7727     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7728   }
7729 
7730   HeapWord* const fc_addr = (HeapWord*) fc;
7731 
7732   bool coalesce;
7733   const size_t left  = pointer_delta(fc_addr, freeFinger());
7734   const size_t right = chunkSize;
7735   switch (FLSCoalescePolicy) {
7736     // numeric value forms a coalition aggressiveness metric
7737     case 0:  { // never coalesce
7738       coalesce = false;
7739       break;
7740     }
7741     case 1: { // coalesce if left & right chunks on overpopulated lists
7742       coalesce = _sp->coalOverPopulated(left) &&
7743                  _sp->coalOverPopulated(right);
7744       break;
7745     }
7746     case 2: { // coalesce if left chunk on overpopulated list (default)
7747       coalesce = _sp->coalOverPopulated(left);
7748       break;
7749     }
7750     case 3: { // coalesce if left OR right chunk on overpopulated list
7751       coalesce = _sp->coalOverPopulated(left) ||
7752                  _sp->coalOverPopulated(right);
7753       break;
7754     }
7755     case 4: { // always coalesce
7756       coalesce = true;
7757       break;
7758     }
7759     default:
7760      ShouldNotReachHere();
7761   }
7762 
7763   // Should the current free range be coalesced?
7764   // If the chunk is in a free range and either we decided to coalesce above
7765   // or the chunk is near the large block at the end of the heap
7766   // (isNearLargestChunk() returns true), then coalesce this chunk.
7767   const bool doCoalesce = inFreeRange()
7768                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7769   if (doCoalesce) {
7770     // Coalesce the current free range on the left with the new
7771     // chunk on the right.  If either is on a free list,
7772     // it must be removed from the list and stashed in the closure.
7773     if (freeRangeInFreeLists()) {
7774       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7775       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7776         "Size of free range is inconsistent with chunk size.");
7777       if (CMSTestInFreeList) {
7778         assert(_sp->verify_chunk_in_free_list(ffc),
7779           "Chunk is not in free lists");
7780       }
7781       _sp->coalDeath(ffc->size());
7782       _sp->removeFreeChunkFromFreeLists(ffc);
7783       set_freeRangeInFreeLists(false);
7784     }
7785     if (fcInFreeLists) {
7786       _sp->coalDeath(chunkSize);
7787       assert(fc->size() == chunkSize,
7788         "The chunk has the wrong size or is not in the free lists");
7789       _sp->removeFreeChunkFromFreeLists(fc);
7790     }
7791     set_lastFreeRangeCoalesced(true);
7792     print_free_block_coalesced(fc);
7793   } else {  // not in a free range and/or should not coalesce
7794     // Return the current free range and start a new one.
7795     if (inFreeRange()) {
7796       // In a free range but cannot coalesce with the right hand chunk.
7797       // Put the current free range into the free lists.
7798       flush_cur_free_chunk(freeFinger(),
7799                            pointer_delta(fc_addr, freeFinger()));
7800     }
7801     // Set up for new free range.  Pass along whether the right hand
7802     // chunk is in the free lists.
7803     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7804   }
7805 }
7806 
7807 // Lookahead flush:
7808 // If we are tracking a free range, and this is the last chunk that
7809 // we'll look at because its end crosses past _limit, we'll preemptively
7810 // flush it along with any free range we may be holding on to. Note that
7811 // this can be the case only for an already free or freshly garbage
7812 // chunk. If this block is an object, it can never straddle
7813 // over _limit. The "straddling" occurs when _limit is set at
7814 // the previous end of the space when this cycle started, and
7815 // a subsequent heap expansion caused the previously co-terminal
7816 // free block to be coalesced with the newly expanded portion,
7817 // thus rendering _limit a non-block-boundary making it dangerous
7818 // for the sweeper to step over and examine.
7819 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7820   assert(inFreeRange(), "Should only be called if currently in a free range.");
7821   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7822   assert(_sp->used_region().contains(eob - 1),
7823          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7824                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7825                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7826                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7827   if (eob >= _limit) {
7828     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7829     if (CMSTraceSweeper) {
7830       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7831                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7832                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7833                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7834     }
7835     // Return the storage we are tracking back into the free lists.
7836     if (CMSTraceSweeper) {
7837       gclog_or_tty->print_cr("Flushing ... ");
7838     }
7839     assert(freeFinger() < eob, "Error");
7840     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7841   }
7842 }
7843 
7844 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7845   assert(inFreeRange(), "Should only be called if currently in a free range.");
7846   assert(size > 0,
7847     "A zero sized chunk cannot be added to the free lists.");
7848   if (!freeRangeInFreeLists()) {
7849     if (CMSTestInFreeList) {
7850       FreeChunk* fc = (FreeChunk*) chunk;
7851       fc->set_size(size);
7852       assert(!_sp->verify_chunk_in_free_list(fc),
7853         "chunk should not be in free lists yet");
7854     }
7855     if (CMSTraceSweeper) {
7856       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7857                     p2i(chunk), size);
7858     }
7859     // A new free range is going to be starting.  The current
7860     // free range has not been added to the free lists yet or
7861     // was removed so add it back.
7862     // If the current free range was coalesced, then the death
7863     // of the free range was recorded.  Record a birth now.
7864     if (lastFreeRangeCoalesced()) {
7865       _sp->coalBirth(size);
7866     }
7867     _sp->addChunkAndRepairOffsetTable(chunk, size,
7868             lastFreeRangeCoalesced());
7869   } else if (CMSTraceSweeper) {
7870     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7871   }
7872   set_inFreeRange(false);
7873   set_freeRangeInFreeLists(false);
7874 }
7875 
7876 // We take a break if we've been at this for a while,
7877 // so as to avoid monopolizing the locks involved.
7878 void SweepClosure::do_yield_work(HeapWord* addr) {
7879   // Return current free chunk being used for coalescing (if any)
7880   // to the appropriate freelist.  After yielding, the next
7881   // free block encountered will start a coalescing range of
7882   // free blocks.  If the next free block is adjacent to the
7883   // chunk just flushed, they will need to wait for the next
7884   // sweep to be coalesced.
7885   if (inFreeRange()) {
7886     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7887   }
7888 
7889   // First give up the locks, then yield, then re-lock.
7890   // We should probably use a constructor/destructor idiom to
7891   // do this unlock/lock or modify the MutexUnlocker class to
7892   // serve our purpose. XXX
7893   assert_lock_strong(_bitMap->lock());
7894   assert_lock_strong(_freelistLock);
7895   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7896          "CMS thread should hold CMS token");
7897   _bitMap->lock()->unlock();
7898   _freelistLock->unlock();
7899   ConcurrentMarkSweepThread::desynchronize(true);
7900   _collector->stopTimer();
7901   if (PrintCMSStatistics != 0) {
7902     _collector->incrementYields();
7903   }
7904 
7905   // See the comment in coordinator_yield()
7906   for (unsigned i = 0; i < CMSYieldSleepCount &&
7907                        ConcurrentMarkSweepThread::should_yield() &&
7908                        !CMSCollector::foregroundGCIsActive(); ++i) {
7909     os::sleep(Thread::current(), 1, false);
7910   }
7911 
7912   ConcurrentMarkSweepThread::synchronize(true);
7913   _freelistLock->lock();
7914   _bitMap->lock()->lock_without_safepoint_check();
7915   _collector->startTimer();
7916 }
7917 
7918 #ifndef PRODUCT
7919 // This is actually very useful in a product build if it can
7920 // be called from the debugger.  Compile it into the product
7921 // as needed.
7922 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7923   return debug_cms_space->verify_chunk_in_free_list(fc);
7924 }
7925 #endif
7926 
7927 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7928   if (CMSTraceSweeper) {
7929     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7930                            p2i(fc), fc->size());
7931   }
7932 }
7933 
7934 // CMSIsAliveClosure
7935 bool CMSIsAliveClosure::do_object_b(oop obj) {
7936   HeapWord* addr = (HeapWord*)obj;
7937   return addr != NULL &&
7938          (!_span.contains(addr) || _bit_map->isMarked(addr));
7939 }
7940 
7941 
7942 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7943                       MemRegion span,
7944                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7945                       bool cpc):
7946   _collector(collector),
7947   _span(span),
7948   _bit_map(bit_map),
7949   _mark_stack(mark_stack),
7950   _concurrent_precleaning(cpc) {
7951   assert(!_span.is_empty(), "Empty span could spell trouble");
7952 }
7953 
7954 
7955 // CMSKeepAliveClosure: the serial version
7956 void CMSKeepAliveClosure::do_oop(oop obj) {
7957   HeapWord* addr = (HeapWord*)obj;
7958   if (_span.contains(addr) &&
7959       !_bit_map->isMarked(addr)) {
7960     _bit_map->mark(addr);
7961     bool simulate_overflow = false;
7962     NOT_PRODUCT(
7963       if (CMSMarkStackOverflowALot &&
7964           _collector->simulate_overflow()) {
7965         // simulate a stack overflow
7966         simulate_overflow = true;
7967       }
7968     )
7969     if (simulate_overflow || !_mark_stack->push(obj)) {
7970       if (_concurrent_precleaning) {
7971         // We dirty the overflown object and let the remark
7972         // phase deal with it.
7973         assert(_collector->overflow_list_is_empty(), "Error");
7974         // In the case of object arrays, we need to dirty all of
7975         // the cards that the object spans. No locking or atomics
7976         // are needed since no one else can be mutating the mod union
7977         // table.
7978         if (obj->is_objArray()) {
7979           size_t sz = obj->size();
7980           HeapWord* end_card_addr =
7981             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7982           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7983           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7984           _collector->_modUnionTable.mark_range(redirty_range);
7985         } else {
7986           _collector->_modUnionTable.mark(addr);
7987         }
7988         _collector->_ser_kac_preclean_ovflw++;
7989       } else {
7990         _collector->push_on_overflow_list(obj);
7991         _collector->_ser_kac_ovflw++;
7992       }
7993     }
7994   }
7995 }
7996 
7997 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7998 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7999 
8000 // CMSParKeepAliveClosure: a parallel version of the above.
8001 // The work queues are private to each closure (thread),
8002 // but (may be) available for stealing by other threads.
8003 void CMSParKeepAliveClosure::do_oop(oop obj) {
8004   HeapWord* addr = (HeapWord*)obj;
8005   if (_span.contains(addr) &&
8006       !_bit_map->isMarked(addr)) {
8007     // In general, during recursive tracing, several threads
8008     // may be concurrently getting here; the first one to
8009     // "tag" it, claims it.
8010     if (_bit_map->par_mark(addr)) {
8011       bool res = _work_queue->push(obj);
8012       assert(res, "Low water mark should be much less than capacity");
8013       // Do a recursive trim in the hope that this will keep
8014       // stack usage lower, but leave some oops for potential stealers
8015       trim_queue(_low_water_mark);
8016     } // Else, another thread got there first
8017   }
8018 }
8019 
8020 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8021 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8022 
8023 void CMSParKeepAliveClosure::trim_queue(uint max) {
8024   while (_work_queue->size() > max) {
8025     oop new_oop;
8026     if (_work_queue->pop_local(new_oop)) {
8027       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8028       assert(_bit_map->isMarked((HeapWord*)new_oop),
8029              "no white objects on this stack!");
8030       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8031       // iterate over the oops in this oop, marking and pushing
8032       // the ones in CMS heap (i.e. in _span).
8033       new_oop->oop_iterate(&_mark_and_push);
8034     }
8035   }
8036 }
8037 
8038 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8039                                 CMSCollector* collector,
8040                                 MemRegion span, CMSBitMap* bit_map,
8041                                 OopTaskQueue* work_queue):
8042   _collector(collector),
8043   _span(span),
8044   _bit_map(bit_map),
8045   _work_queue(work_queue) { }
8046 
8047 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8048   HeapWord* addr = (HeapWord*)obj;
8049   if (_span.contains(addr) &&
8050       !_bit_map->isMarked(addr)) {
8051     if (_bit_map->par_mark(addr)) {
8052       bool simulate_overflow = false;
8053       NOT_PRODUCT(
8054         if (CMSMarkStackOverflowALot &&
8055             _collector->par_simulate_overflow()) {
8056           // simulate a stack overflow
8057           simulate_overflow = true;
8058         }
8059       )
8060       if (simulate_overflow || !_work_queue->push(obj)) {
8061         _collector->par_push_on_overflow_list(obj);
8062         _collector->_par_kac_ovflw++;
8063       }
8064     } // Else another thread got there already
8065   }
8066 }
8067 
8068 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8069 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8070 
8071 //////////////////////////////////////////////////////////////////
8072 //  CMSExpansionCause                /////////////////////////////
8073 //////////////////////////////////////////////////////////////////
8074 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8075   switch (cause) {
8076     case _no_expansion:
8077       return "No expansion";
8078     case _satisfy_free_ratio:
8079       return "Free ratio";
8080     case _satisfy_promotion:
8081       return "Satisfy promotion";
8082     case _satisfy_allocation:
8083       return "allocation";
8084     case _allocate_par_lab:
8085       return "Par LAB";
8086     case _allocate_par_spooling_space:
8087       return "Par Spooling Space";
8088     case _adaptive_size_policy:
8089       return "Ergonomics";
8090     default:
8091       return "unknown";
8092   }
8093 }
8094 
8095 void CMSDrainMarkingStackClosure::do_void() {
8096   // the max number to take from overflow list at a time
8097   const size_t num = _mark_stack->capacity()/4;
8098   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8099          "Overflow list should be NULL during concurrent phases");
8100   while (!_mark_stack->isEmpty() ||
8101          // if stack is empty, check the overflow list
8102          _collector->take_from_overflow_list(num, _mark_stack)) {
8103     oop obj = _mark_stack->pop();
8104     HeapWord* addr = (HeapWord*)obj;
8105     assert(_span.contains(addr), "Should be within span");
8106     assert(_bit_map->isMarked(addr), "Should be marked");
8107     assert(obj->is_oop(), "Should be an oop");
8108     obj->oop_iterate(_keep_alive);
8109   }
8110 }
8111 
8112 void CMSParDrainMarkingStackClosure::do_void() {
8113   // drain queue
8114   trim_queue(0);
8115 }
8116 
8117 // Trim our work_queue so its length is below max at return
8118 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8119   while (_work_queue->size() > max) {
8120     oop new_oop;
8121     if (_work_queue->pop_local(new_oop)) {
8122       assert(new_oop->is_oop(), "Expected an oop");
8123       assert(_bit_map->isMarked((HeapWord*)new_oop),
8124              "no white objects on this stack!");
8125       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8126       // iterate over the oops in this oop, marking and pushing
8127       // the ones in CMS heap (i.e. in _span).
8128       new_oop->oop_iterate(&_mark_and_push);
8129     }
8130   }
8131 }
8132 
8133 ////////////////////////////////////////////////////////////////////
8134 // Support for Marking Stack Overflow list handling and related code
8135 ////////////////////////////////////////////////////////////////////
8136 // Much of the following code is similar in shape and spirit to the
8137 // code used in ParNewGC. We should try and share that code
8138 // as much as possible in the future.
8139 
8140 #ifndef PRODUCT
8141 // Debugging support for CMSStackOverflowALot
8142 
8143 // It's OK to call this multi-threaded;  the worst thing
8144 // that can happen is that we'll get a bunch of closely
8145 // spaced simulated overflows, but that's OK, in fact
8146 // probably good as it would exercise the overflow code
8147 // under contention.
8148 bool CMSCollector::simulate_overflow() {
8149   if (_overflow_counter-- <= 0) { // just being defensive
8150     _overflow_counter = CMSMarkStackOverflowInterval;
8151     return true;
8152   } else {
8153     return false;
8154   }
8155 }
8156 
8157 bool CMSCollector::par_simulate_overflow() {
8158   return simulate_overflow();
8159 }
8160 #endif
8161 
8162 // Single-threaded
8163 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8164   assert(stack->isEmpty(), "Expected precondition");
8165   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8166   size_t i = num;
8167   oop  cur = _overflow_list;
8168   const markOop proto = markOopDesc::prototype();
8169   NOT_PRODUCT(ssize_t n = 0;)
8170   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8171     next = oop(cur->mark());
8172     cur->set_mark(proto);   // until proven otherwise
8173     assert(cur->is_oop(), "Should be an oop");
8174     bool res = stack->push(cur);
8175     assert(res, "Bit off more than can chew?");
8176     NOT_PRODUCT(n++;)
8177   }
8178   _overflow_list = cur;
8179 #ifndef PRODUCT
8180   assert(_num_par_pushes >= n, "Too many pops?");
8181   _num_par_pushes -=n;
8182 #endif
8183   return !stack->isEmpty();
8184 }
8185 
8186 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8187 // (MT-safe) Get a prefix of at most "num" from the list.
8188 // The overflow list is chained through the mark word of
8189 // each object in the list. We fetch the entire list,
8190 // break off a prefix of the right size and return the
8191 // remainder. If other threads try to take objects from
8192 // the overflow list at that time, they will wait for
8193 // some time to see if data becomes available. If (and
8194 // only if) another thread places one or more object(s)
8195 // on the global list before we have returned the suffix
8196 // to the global list, we will walk down our local list
8197 // to find its end and append the global list to
8198 // our suffix before returning it. This suffix walk can
8199 // prove to be expensive (quadratic in the amount of traffic)
8200 // when there are many objects in the overflow list and
8201 // there is much producer-consumer contention on the list.
8202 // *NOTE*: The overflow list manipulation code here and
8203 // in ParNewGeneration:: are very similar in shape,
8204 // except that in the ParNew case we use the old (from/eden)
8205 // copy of the object to thread the list via its klass word.
8206 // Because of the common code, if you make any changes in
8207 // the code below, please check the ParNew version to see if
8208 // similar changes might be needed.
8209 // CR 6797058 has been filed to consolidate the common code.
8210 bool CMSCollector::par_take_from_overflow_list(size_t num,
8211                                                OopTaskQueue* work_q,
8212                                                int no_of_gc_threads) {
8213   assert(work_q->size() == 0, "First empty local work queue");
8214   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8215   if (_overflow_list == NULL) {
8216     return false;
8217   }
8218   // Grab the entire list; we'll put back a suffix
8219   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8220   Thread* tid = Thread::current();
8221   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8222   // set to ParallelGCThreads.
8223   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8224   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8225   // If the list is busy, we spin for a short while,
8226   // sleeping between attempts to get the list.
8227   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8228     os::sleep(tid, sleep_time_millis, false);
8229     if (_overflow_list == NULL) {
8230       // Nothing left to take
8231       return false;
8232     } else if (_overflow_list != BUSY) {
8233       // Try and grab the prefix
8234       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8235     }
8236   }
8237   // If the list was found to be empty, or we spun long
8238   // enough, we give up and return empty-handed. If we leave
8239   // the list in the BUSY state below, it must be the case that
8240   // some other thread holds the overflow list and will set it
8241   // to a non-BUSY state in the future.
8242   if (prefix == NULL || prefix == BUSY) {
8243      // Nothing to take or waited long enough
8244      if (prefix == NULL) {
8245        // Write back the NULL in case we overwrote it with BUSY above
8246        // and it is still the same value.
8247        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8248      }
8249      return false;
8250   }
8251   assert(prefix != NULL && prefix != BUSY, "Error");
8252   size_t i = num;
8253   oop cur = prefix;
8254   // Walk down the first "num" objects, unless we reach the end.
8255   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8256   if (cur->mark() == NULL) {
8257     // We have "num" or fewer elements in the list, so there
8258     // is nothing to return to the global list.
8259     // Write back the NULL in lieu of the BUSY we wrote
8260     // above, if it is still the same value.
8261     if (_overflow_list == BUSY) {
8262       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8263     }
8264   } else {
8265     // Chop off the suffix and return it to the global list.
8266     assert(cur->mark() != BUSY, "Error");
8267     oop suffix_head = cur->mark(); // suffix will be put back on global list
8268     cur->set_mark(NULL);           // break off suffix
8269     // It's possible that the list is still in the empty(busy) state
8270     // we left it in a short while ago; in that case we may be
8271     // able to place back the suffix without incurring the cost
8272     // of a walk down the list.
8273     oop observed_overflow_list = _overflow_list;
8274     oop cur_overflow_list = observed_overflow_list;
8275     bool attached = false;
8276     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8277       observed_overflow_list =
8278         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8279       if (cur_overflow_list == observed_overflow_list) {
8280         attached = true;
8281         break;
8282       } else cur_overflow_list = observed_overflow_list;
8283     }
8284     if (!attached) {
8285       // Too bad, someone else sneaked in (at least) an element; we'll need
8286       // to do a splice. Find tail of suffix so we can prepend suffix to global
8287       // list.
8288       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8289       oop suffix_tail = cur;
8290       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8291              "Tautology");
8292       observed_overflow_list = _overflow_list;
8293       do {
8294         cur_overflow_list = observed_overflow_list;
8295         if (cur_overflow_list != BUSY) {
8296           // Do the splice ...
8297           suffix_tail->set_mark(markOop(cur_overflow_list));
8298         } else { // cur_overflow_list == BUSY
8299           suffix_tail->set_mark(NULL);
8300         }
8301         // ... and try to place spliced list back on overflow_list ...
8302         observed_overflow_list =
8303           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8304       } while (cur_overflow_list != observed_overflow_list);
8305       // ... until we have succeeded in doing so.
8306     }
8307   }
8308 
8309   // Push the prefix elements on work_q
8310   assert(prefix != NULL, "control point invariant");
8311   const markOop proto = markOopDesc::prototype();
8312   oop next;
8313   NOT_PRODUCT(ssize_t n = 0;)
8314   for (cur = prefix; cur != NULL; cur = next) {
8315     next = oop(cur->mark());
8316     cur->set_mark(proto);   // until proven otherwise
8317     assert(cur->is_oop(), "Should be an oop");
8318     bool res = work_q->push(cur);
8319     assert(res, "Bit off more than we can chew?");
8320     NOT_PRODUCT(n++;)
8321   }
8322 #ifndef PRODUCT
8323   assert(_num_par_pushes >= n, "Too many pops?");
8324   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8325 #endif
8326   return true;
8327 }
8328 
8329 // Single-threaded
8330 void CMSCollector::push_on_overflow_list(oop p) {
8331   NOT_PRODUCT(_num_par_pushes++;)
8332   assert(p->is_oop(), "Not an oop");
8333   preserve_mark_if_necessary(p);
8334   p->set_mark((markOop)_overflow_list);
8335   _overflow_list = p;
8336 }
8337 
8338 // Multi-threaded; use CAS to prepend to overflow list
8339 void CMSCollector::par_push_on_overflow_list(oop p) {
8340   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8341   assert(p->is_oop(), "Not an oop");
8342   par_preserve_mark_if_necessary(p);
8343   oop observed_overflow_list = _overflow_list;
8344   oop cur_overflow_list;
8345   do {
8346     cur_overflow_list = observed_overflow_list;
8347     if (cur_overflow_list != BUSY) {
8348       p->set_mark(markOop(cur_overflow_list));
8349     } else {
8350       p->set_mark(NULL);
8351     }
8352     observed_overflow_list =
8353       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8354   } while (cur_overflow_list != observed_overflow_list);
8355 }
8356 #undef BUSY
8357 
8358 // Single threaded
8359 // General Note on GrowableArray: pushes may silently fail
8360 // because we are (temporarily) out of C-heap for expanding
8361 // the stack. The problem is quite ubiquitous and affects
8362 // a lot of code in the JVM. The prudent thing for GrowableArray
8363 // to do (for now) is to exit with an error. However, that may
8364 // be too draconian in some cases because the caller may be
8365 // able to recover without much harm. For such cases, we
8366 // should probably introduce a "soft_push" method which returns
8367 // an indication of success or failure with the assumption that
8368 // the caller may be able to recover from a failure; code in
8369 // the VM can then be changed, incrementally, to deal with such
8370 // failures where possible, thus, incrementally hardening the VM
8371 // in such low resource situations.
8372 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8373   _preserved_oop_stack.push(p);
8374   _preserved_mark_stack.push(m);
8375   assert(m == p->mark(), "Mark word changed");
8376   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8377          "bijection");
8378 }
8379 
8380 // Single threaded
8381 void CMSCollector::preserve_mark_if_necessary(oop p) {
8382   markOop m = p->mark();
8383   if (m->must_be_preserved(p)) {
8384     preserve_mark_work(p, m);
8385   }
8386 }
8387 
8388 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8389   markOop m = p->mark();
8390   if (m->must_be_preserved(p)) {
8391     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8392     // Even though we read the mark word without holding
8393     // the lock, we are assured that it will not change
8394     // because we "own" this oop, so no other thread can
8395     // be trying to push it on the overflow list; see
8396     // the assertion in preserve_mark_work() that checks
8397     // that m == p->mark().
8398     preserve_mark_work(p, m);
8399   }
8400 }
8401 
8402 // We should be able to do this multi-threaded,
8403 // a chunk of stack being a task (this is
8404 // correct because each oop only ever appears
8405 // once in the overflow list. However, it's
8406 // not very easy to completely overlap this with
8407 // other operations, so will generally not be done
8408 // until all work's been completed. Because we
8409 // expect the preserved oop stack (set) to be small,
8410 // it's probably fine to do this single-threaded.
8411 // We can explore cleverer concurrent/overlapped/parallel
8412 // processing of preserved marks if we feel the
8413 // need for this in the future. Stack overflow should
8414 // be so rare in practice and, when it happens, its
8415 // effect on performance so great that this will
8416 // likely just be in the noise anyway.
8417 void CMSCollector::restore_preserved_marks_if_any() {
8418   assert(SafepointSynchronize::is_at_safepoint(),
8419          "world should be stopped");
8420   assert(Thread::current()->is_ConcurrentGC_thread() ||
8421          Thread::current()->is_VM_thread(),
8422          "should be single-threaded");
8423   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8424          "bijection");
8425 
8426   while (!_preserved_oop_stack.is_empty()) {
8427     oop p = _preserved_oop_stack.pop();
8428     assert(p->is_oop(), "Should be an oop");
8429     assert(_span.contains(p), "oop should be in _span");
8430     assert(p->mark() == markOopDesc::prototype(),
8431            "Set when taken from overflow list");
8432     markOop m = _preserved_mark_stack.pop();
8433     p->set_mark(m);
8434   }
8435   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8436          "stacks were cleared above");
8437 }
8438 
8439 #ifndef PRODUCT
8440 bool CMSCollector::no_preserved_marks() const {
8441   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8442 }
8443 #endif
8444 
8445 // Transfer some number of overflown objects to usual marking
8446 // stack. Return true if some objects were transferred.
8447 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8448   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8449                     (size_t)ParGCDesiredObjsFromOverflowList);
8450 
8451   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8452   assert(_collector->overflow_list_is_empty() || res,
8453          "If list is not empty, we should have taken something");
8454   assert(!res || !_mark_stack->isEmpty(),
8455          "If we took something, it should now be on our stack");
8456   return res;
8457 }
8458 
8459 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8460   size_t res = _sp->block_size_no_stall(addr, _collector);
8461   if (_sp->block_is_obj(addr)) {
8462     if (_live_bit_map->isMarked(addr)) {
8463       // It can't have been dead in a previous cycle
8464       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8465     } else {
8466       _dead_bit_map->mark(addr);      // mark the dead object
8467     }
8468   }
8469   // Could be 0, if the block size could not be computed without stalling.
8470   return res;
8471 }
8472 
8473 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8474 
8475   switch (phase) {
8476     case CMSCollector::InitialMarking:
8477       initialize(true  /* fullGC */ ,
8478                  cause /* cause of the GC */,
8479                  true  /* recordGCBeginTime */,
8480                  true  /* recordPreGCUsage */,
8481                  false /* recordPeakUsage */,
8482                  false /* recordPostGCusage */,
8483                  true  /* recordAccumulatedGCTime */,
8484                  false /* recordGCEndTime */,
8485                  false /* countCollection */  );
8486       break;
8487 
8488     case CMSCollector::FinalMarking:
8489       initialize(true  /* fullGC */ ,
8490                  cause /* cause of the GC */,
8491                  false /* recordGCBeginTime */,
8492                  false /* recordPreGCUsage */,
8493                  false /* recordPeakUsage */,
8494                  false /* recordPostGCusage */,
8495                  true  /* recordAccumulatedGCTime */,
8496                  false /* recordGCEndTime */,
8497                  false /* countCollection */  );
8498       break;
8499 
8500     case CMSCollector::Sweeping:
8501       initialize(true  /* fullGC */ ,
8502                  cause /* cause of the GC */,
8503                  false /* recordGCBeginTime */,
8504                  false /* recordPreGCUsage */,
8505                  true  /* recordPeakUsage */,
8506                  true  /* recordPostGCusage */,
8507                  false /* recordAccumulatedGCTime */,
8508                  true  /* recordGCEndTime */,
8509                  true  /* countCollection */  );
8510       break;
8511 
8512     default:
8513       ShouldNotReachHere();
8514   }
8515 }