1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/orderAccess.inline.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #include "utilities/stack.inline.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   bool _concurrent;
  96 public:
  97   RefineCardTableEntryClosure() : _concurrent(true) { }
  98 
  99   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 100     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 101     // This path is executed by the concurrent refine or mutator threads,
 102     // concurrently, and so we do not care if card_ptr contains references
 103     // that point into the collection set.
 104     assert(!oops_into_cset, "should be");
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_processed;
 121 
 122  public:
 123   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     *card_ptr = CardTableModRefBS::dirty_card_val();
 127     _num_processed++;
 128     return true;
 129   }
 130 
 131   size_t num_processed() const { return _num_processed; }
 132 };
 133 
 134 YoungList::YoungList(G1CollectedHeap* g1h) :
 135     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 136     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 137   guarantee(check_list_empty(false), "just making sure...");
 138 }
 139 
 140 void YoungList::push_region(HeapRegion *hr) {
 141   assert(!hr->is_young(), "should not already be young");
 142   assert(hr->get_next_young_region() == NULL, "cause it should!");
 143 
 144   hr->set_next_young_region(_head);
 145   _head = hr;
 146 
 147   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 148   ++_length;
 149 }
 150 
 151 void YoungList::add_survivor_region(HeapRegion* hr) {
 152   assert(hr->is_survivor(), "should be flagged as survivor region");
 153   assert(hr->get_next_young_region() == NULL, "cause it should!");
 154 
 155   hr->set_next_young_region(_survivor_head);
 156   if (_survivor_head == NULL) {
 157     _survivor_tail = hr;
 158   }
 159   _survivor_head = hr;
 160   ++_survivor_length;
 161 }
 162 
 163 void YoungList::empty_list(HeapRegion* list) {
 164   while (list != NULL) {
 165     HeapRegion* next = list->get_next_young_region();
 166     list->set_next_young_region(NULL);
 167     list->uninstall_surv_rate_group();
 168     // This is called before a Full GC and all the non-empty /
 169     // non-humongous regions at the end of the Full GC will end up as
 170     // old anyway.
 171     list->set_old();
 172     list = next;
 173   }
 174 }
 175 
 176 void YoungList::empty_list() {
 177   assert(check_list_well_formed(), "young list should be well formed");
 178 
 179   empty_list(_head);
 180   _head = NULL;
 181   _length = 0;
 182 
 183   empty_list(_survivor_head);
 184   _survivor_head = NULL;
 185   _survivor_tail = NULL;
 186   _survivor_length = 0;
 187 
 188   _last_sampled_rs_lengths = 0;
 189 
 190   assert(check_list_empty(false), "just making sure...");
 191 }
 192 
 193 bool YoungList::check_list_well_formed() {
 194   bool ret = true;
 195 
 196   uint length = 0;
 197   HeapRegion* curr = _head;
 198   HeapRegion* last = NULL;
 199   while (curr != NULL) {
 200     if (!curr->is_young()) {
 201       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 202                              "incorrectly tagged (y: %d, surv: %d)",
 203                              p2i(curr->bottom()), p2i(curr->end()),
 204                              curr->is_young(), curr->is_survivor());
 205       ret = false;
 206     }
 207     ++length;
 208     last = curr;
 209     curr = curr->get_next_young_region();
 210   }
 211   ret = ret && (length == _length);
 212 
 213   if (!ret) {
 214     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 215     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 216                            length, _length);
 217   }
 218 
 219   return ret;
 220 }
 221 
 222 bool YoungList::check_list_empty(bool check_sample) {
 223   bool ret = true;
 224 
 225   if (_length != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 227                   _length);
 228     ret = false;
 229   }
 230   if (check_sample && _last_sampled_rs_lengths != 0) {
 231     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 232     ret = false;
 233   }
 234   if (_head != NULL) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 236     ret = false;
 237   }
 238   if (!ret) {
 239     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 240   }
 241 
 242   return ret;
 243 }
 244 
 245 void
 246 YoungList::rs_length_sampling_init() {
 247   _sampled_rs_lengths = 0;
 248   _curr               = _head;
 249 }
 250 
 251 bool
 252 YoungList::rs_length_sampling_more() {
 253   return _curr != NULL;
 254 }
 255 
 256 void
 257 YoungList::rs_length_sampling_next() {
 258   assert( _curr != NULL, "invariant" );
 259   size_t rs_length = _curr->rem_set()->occupied();
 260 
 261   _sampled_rs_lengths += rs_length;
 262 
 263   // The current region may not yet have been added to the
 264   // incremental collection set (it gets added when it is
 265   // retired as the current allocation region).
 266   if (_curr->in_collection_set()) {
 267     // Update the collection set policy information for this region
 268     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 269   }
 270 
 271   _curr = _curr->get_next_young_region();
 272   if (_curr == NULL) {
 273     _last_sampled_rs_lengths = _sampled_rs_lengths;
 274     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 275   }
 276 }
 277 
 278 void
 279 YoungList::reset_auxilary_lists() {
 280   guarantee( is_empty(), "young list should be empty" );
 281   assert(check_list_well_formed(), "young list should be well formed");
 282 
 283   // Add survivor regions to SurvRateGroup.
 284   _g1h->g1_policy()->note_start_adding_survivor_regions();
 285   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 286 
 287   int young_index_in_cset = 0;
 288   for (HeapRegion* curr = _survivor_head;
 289        curr != NULL;
 290        curr = curr->get_next_young_region()) {
 291     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 292 
 293     // The region is a non-empty survivor so let's add it to
 294     // the incremental collection set for the next evacuation
 295     // pause.
 296     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 297     young_index_in_cset += 1;
 298   }
 299   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 300   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 301 
 302   _head   = _survivor_head;
 303   _length = _survivor_length;
 304   if (_survivor_head != NULL) {
 305     assert(_survivor_tail != NULL, "cause it shouldn't be");
 306     assert(_survivor_length > 0, "invariant");
 307     _survivor_tail->set_next_young_region(NULL);
 308   }
 309 
 310   // Don't clear the survivor list handles until the start of
 311   // the next evacuation pause - we need it in order to re-tag
 312   // the survivor regions from this evacuation pause as 'young'
 313   // at the start of the next.
 314 
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 316 
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 }
 319 
 320 void YoungList::print() {
 321   HeapRegion* lists[] = {_head,   _survivor_head};
 322   const char* names[] = {"YOUNG", "SURVIVOR"};
 323 
 324   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 325     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 326     HeapRegion *curr = lists[list];
 327     if (curr == NULL)
 328       gclog_or_tty->print_cr("  empty");
 329     while (curr != NULL) {
 330       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 331                              HR_FORMAT_PARAMS(curr),
 332                              p2i(curr->prev_top_at_mark_start()),
 333                              p2i(curr->next_top_at_mark_start()),
 334                              curr->age_in_surv_rate_group_cond());
 335       curr = curr->get_next_young_region();
 336     }
 337   }
 338 
 339   gclog_or_tty->cr();
 340 }
 341 
 342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 343   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 344 }
 345 
 346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 347   // The from card cache is not the memory that is actually committed. So we cannot
 348   // take advantage of the zero_filled parameter.
 349   reset_from_card_cache(start_idx, num_regions);
 350 }
 351 
 352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 353 {
 354   // Claim the right to put the region on the dirty cards region list
 355   // by installing a self pointer.
 356   HeapRegion* next = hr->get_next_dirty_cards_region();
 357   if (next == NULL) {
 358     HeapRegion* res = (HeapRegion*)
 359       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 360                           NULL);
 361     if (res == NULL) {
 362       HeapRegion* head;
 363       do {
 364         // Put the region to the dirty cards region list.
 365         head = _dirty_cards_region_list;
 366         next = (HeapRegion*)
 367           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 368         if (next == head) {
 369           assert(hr->get_next_dirty_cards_region() == hr,
 370                  "hr->get_next_dirty_cards_region() != hr");
 371           if (next == NULL) {
 372             // The last region in the list points to itself.
 373             hr->set_next_dirty_cards_region(hr);
 374           } else {
 375             hr->set_next_dirty_cards_region(next);
 376           }
 377         }
 378       } while (next != head);
 379     }
 380   }
 381 }
 382 
 383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 384 {
 385   HeapRegion* head;
 386   HeapRegion* hr;
 387   do {
 388     head = _dirty_cards_region_list;
 389     if (head == NULL) {
 390       return NULL;
 391     }
 392     HeapRegion* new_head = head->get_next_dirty_cards_region();
 393     if (head == new_head) {
 394       // The last region.
 395       new_head = NULL;
 396     }
 397     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 398                                           head);
 399   } while (hr != head);
 400   assert(hr != NULL, "invariant");
 401   hr->set_next_dirty_cards_region(NULL);
 402   return hr;
 403 }
 404 
 405 // Returns true if the reference points to an object that
 406 // can move in an incremental collection.
 407 bool G1CollectedHeap::is_scavengable(const void* p) {
 408   HeapRegion* hr = heap_region_containing(p);
 409   return !hr->is_pinned();
 410 }
 411 
 412 // Private methods.
 413 
 414 HeapRegion*
 415 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 416   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 417   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 418     if (!_secondary_free_list.is_empty()) {
 419       if (G1ConcRegionFreeingVerbose) {
 420         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 421                                "secondary_free_list has %u entries",
 422                                _secondary_free_list.length());
 423       }
 424       // It looks as if there are free regions available on the
 425       // secondary_free_list. Let's move them to the free_list and try
 426       // again to allocate from it.
 427       append_secondary_free_list();
 428 
 429       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 430              "empty we should have moved at least one entry to the free_list");
 431       HeapRegion* res = _hrm.allocate_free_region(is_old);
 432       if (G1ConcRegionFreeingVerbose) {
 433         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 434                                "allocated " HR_FORMAT " from secondary_free_list",
 435                                HR_FORMAT_PARAMS(res));
 436       }
 437       return res;
 438     }
 439 
 440     // Wait here until we get notified either when (a) there are no
 441     // more free regions coming or (b) some regions have been moved on
 442     // the secondary_free_list.
 443     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 444   }
 445 
 446   if (G1ConcRegionFreeingVerbose) {
 447     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 448                            "could not allocate from secondary_free_list");
 449   }
 450   return NULL;
 451 }
 452 
 453 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 454   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 455          "the only time we use this to allocate a humongous region is "
 456          "when we are allocating a single humongous region");
 457 
 458   HeapRegion* res;
 459   if (G1StressConcRegionFreeing) {
 460     if (!_secondary_free_list.is_empty()) {
 461       if (G1ConcRegionFreeingVerbose) {
 462         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 463                                "forced to look at the secondary_free_list");
 464       }
 465       res = new_region_try_secondary_free_list(is_old);
 466       if (res != NULL) {
 467         return res;
 468       }
 469     }
 470   }
 471 
 472   res = _hrm.allocate_free_region(is_old);
 473 
 474   if (res == NULL) {
 475     if (G1ConcRegionFreeingVerbose) {
 476       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 477                              "res == NULL, trying the secondary_free_list");
 478     }
 479     res = new_region_try_secondary_free_list(is_old);
 480   }
 481   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 482     // Currently, only attempts to allocate GC alloc regions set
 483     // do_expand to true. So, we should only reach here during a
 484     // safepoint. If this assumption changes we might have to
 485     // reconsider the use of _expand_heap_after_alloc_failure.
 486     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 487 
 488     ergo_verbose1(ErgoHeapSizing,
 489                   "attempt heap expansion",
 490                   ergo_format_reason("region allocation request failed")
 491                   ergo_format_byte("allocation request"),
 492                   word_size * HeapWordSize);
 493     if (expand(word_size * HeapWordSize)) {
 494       // Given that expand() succeeded in expanding the heap, and we
 495       // always expand the heap by an amount aligned to the heap
 496       // region size, the free list should in theory not be empty.
 497       // In either case allocate_free_region() will check for NULL.
 498       res = _hrm.allocate_free_region(is_old);
 499     } else {
 500       _expand_heap_after_alloc_failure = false;
 501     }
 502   }
 503   return res;
 504 }
 505 
 506 HeapWord*
 507 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 508                                                            uint num_regions,
 509                                                            size_t word_size,
 510                                                            AllocationContext_t context) {
 511   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 512   assert(is_humongous(word_size), "word_size should be humongous");
 513   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 514 
 515   // Index of last region in the series + 1.
 516   uint last = first + num_regions;
 517 
 518   // We need to initialize the region(s) we just discovered. This is
 519   // a bit tricky given that it can happen concurrently with
 520   // refinement threads refining cards on these regions and
 521   // potentially wanting to refine the BOT as they are scanning
 522   // those cards (this can happen shortly after a cleanup; see CR
 523   // 6991377). So we have to set up the region(s) carefully and in
 524   // a specific order.
 525 
 526   // The word size sum of all the regions we will allocate.
 527   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 528   assert(word_size <= word_size_sum, "sanity");
 529 
 530   // This will be the "starts humongous" region.
 531   HeapRegion* first_hr = region_at(first);
 532   // The header of the new object will be placed at the bottom of
 533   // the first region.
 534   HeapWord* new_obj = first_hr->bottom();
 535   // This will be the new end of the first region in the series that
 536   // should also match the end of the last region in the series.
 537   HeapWord* new_end = new_obj + word_size_sum;
 538   // This will be the new top of the first region that will reflect
 539   // this allocation.
 540   HeapWord* new_top = new_obj + word_size;
 541 
 542   // First, we need to zero the header of the space that we will be
 543   // allocating. When we update top further down, some refinement
 544   // threads might try to scan the region. By zeroing the header we
 545   // ensure that any thread that will try to scan the region will
 546   // come across the zero klass word and bail out.
 547   //
 548   // NOTE: It would not have been correct to have used
 549   // CollectedHeap::fill_with_object() and make the space look like
 550   // an int array. The thread that is doing the allocation will
 551   // later update the object header to a potentially different array
 552   // type and, for a very short period of time, the klass and length
 553   // fields will be inconsistent. This could cause a refinement
 554   // thread to calculate the object size incorrectly.
 555   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 556 
 557   // We will set up the first region as "starts humongous". This
 558   // will also update the BOT covering all the regions to reflect
 559   // that there is a single object that starts at the bottom of the
 560   // first region.
 561   first_hr->set_starts_humongous(new_top, new_end);
 562   first_hr->set_allocation_context(context);
 563   // Then, if there are any, we will set up the "continues
 564   // humongous" regions.
 565   HeapRegion* hr = NULL;
 566   for (uint i = first + 1; i < last; ++i) {
 567     hr = region_at(i);
 568     hr->set_continues_humongous(first_hr);
 569     hr->set_allocation_context(context);
 570   }
 571   // If we have "continues humongous" regions (hr != NULL), then the
 572   // end of the last one should match new_end.
 573   assert(hr == NULL || hr->end() == new_end, "sanity");
 574 
 575   // Up to this point no concurrent thread would have been able to
 576   // do any scanning on any region in this series. All the top
 577   // fields still point to bottom, so the intersection between
 578   // [bottom,top] and [card_start,card_end] will be empty. Before we
 579   // update the top fields, we'll do a storestore to make sure that
 580   // no thread sees the update to top before the zeroing of the
 581   // object header and the BOT initialization.
 582   OrderAccess::storestore();
 583 
 584   // Now that the BOT and the object header have been initialized,
 585   // we can update top of the "starts humongous" region.
 586   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 587          "new_top should be in this region");
 588   first_hr->set_top(new_top);
 589   if (_hr_printer.is_active()) {
 590     HeapWord* bottom = first_hr->bottom();
 591     HeapWord* end = first_hr->orig_end();
 592     if ((first + 1) == last) {
 593       // the series has a single humongous region
 594       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 595     } else {
 596       // the series has more than one humongous regions
 597       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 598     }
 599   }
 600 
 601   // Now, we will update the top fields of the "continues humongous"
 602   // regions. The reason we need to do this is that, otherwise,
 603   // these regions would look empty and this will confuse parts of
 604   // G1. For example, the code that looks for a consecutive number
 605   // of empty regions will consider them empty and try to
 606   // re-allocate them. We can extend is_empty() to also include
 607   // !is_continues_humongous(), but it is easier to just update the top
 608   // fields here. The way we set top for all regions (i.e., top ==
 609   // end for all regions but the last one, top == new_top for the
 610   // last one) is actually used when we will free up the humongous
 611   // region in free_humongous_region().
 612   hr = NULL;
 613   for (uint i = first + 1; i < last; ++i) {
 614     hr = region_at(i);
 615     if ((i + 1) == last) {
 616       // last continues humongous region
 617       assert(hr->bottom() < new_top && new_top <= hr->end(),
 618              "new_top should fall on this region");
 619       hr->set_top(new_top);
 620       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 621     } else {
 622       // not last one
 623       assert(new_top > hr->end(), "new_top should be above this region");
 624       hr->set_top(hr->end());
 625       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 626     }
 627   }
 628   // If we have continues humongous regions (hr != NULL), then the
 629   // end of the last one should match new_end and its top should
 630   // match new_top.
 631   assert(hr == NULL ||
 632          (hr->end() == new_end && hr->top() == new_top), "sanity");
 633   check_bitmaps("Humongous Region Allocation", first_hr);
 634 
 635   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 636   increase_used(first_hr->used());
 637   _humongous_set.add(first_hr);
 638 
 639   return new_obj;
 640 }
 641 
 642 // If could fit into free regions w/o expansion, try.
 643 // Otherwise, if can expand, do so.
 644 // Otherwise, if using ex regions might help, try with ex given back.
 645 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 646   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 647 
 648   verify_region_sets_optional();
 649 
 650   uint first = G1_NO_HRM_INDEX;
 651   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 652 
 653   if (obj_regions == 1) {
 654     // Only one region to allocate, try to use a fast path by directly allocating
 655     // from the free lists. Do not try to expand here, we will potentially do that
 656     // later.
 657     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 658     if (hr != NULL) {
 659       first = hr->hrm_index();
 660     }
 661   } else {
 662     // We can't allocate humongous regions spanning more than one region while
 663     // cleanupComplete() is running, since some of the regions we find to be
 664     // empty might not yet be added to the free list. It is not straightforward
 665     // to know in which list they are on so that we can remove them. We only
 666     // need to do this if we need to allocate more than one region to satisfy the
 667     // current humongous allocation request. If we are only allocating one region
 668     // we use the one-region region allocation code (see above), that already
 669     // potentially waits for regions from the secondary free list.
 670     wait_while_free_regions_coming();
 671     append_secondary_free_list_if_not_empty_with_lock();
 672 
 673     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 674     // are lucky enough to find some.
 675     first = _hrm.find_contiguous_only_empty(obj_regions);
 676     if (first != G1_NO_HRM_INDEX) {
 677       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 678     }
 679   }
 680 
 681   if (first == G1_NO_HRM_INDEX) {
 682     // Policy: We could not find enough regions for the humongous object in the
 683     // free list. Look through the heap to find a mix of free and uncommitted regions.
 684     // If so, try expansion.
 685     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 686     if (first != G1_NO_HRM_INDEX) {
 687       // We found something. Make sure these regions are committed, i.e. expand
 688       // the heap. Alternatively we could do a defragmentation GC.
 689       ergo_verbose1(ErgoHeapSizing,
 690                     "attempt heap expansion",
 691                     ergo_format_reason("humongous allocation request failed")
 692                     ergo_format_byte("allocation request"),
 693                     word_size * HeapWordSize);
 694 
 695       _hrm.expand_at(first, obj_regions);
 696       g1_policy()->record_new_heap_size(num_regions());
 697 
 698 #ifdef ASSERT
 699       for (uint i = first; i < first + obj_regions; ++i) {
 700         HeapRegion* hr = region_at(i);
 701         assert(hr->is_free(), "sanity");
 702         assert(hr->is_empty(), "sanity");
 703         assert(is_on_master_free_list(hr), "sanity");
 704       }
 705 #endif
 706       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 707     } else {
 708       // Policy: Potentially trigger a defragmentation GC.
 709     }
 710   }
 711 
 712   HeapWord* result = NULL;
 713   if (first != G1_NO_HRM_INDEX) {
 714     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 715                                                        word_size, context);
 716     assert(result != NULL, "it should always return a valid result");
 717 
 718     // A successful humongous object allocation changes the used space
 719     // information of the old generation so we need to recalculate the
 720     // sizes and update the jstat counters here.
 721     g1mm()->update_sizes();
 722   }
 723 
 724   verify_region_sets_optional();
 725 
 726   return result;
 727 }
 728 
 729 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 730   assert_heap_not_locked_and_not_at_safepoint();
 731   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 732 
 733   uint dummy_gc_count_before;
 734   uint dummy_gclocker_retry_count = 0;
 735   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 736 }
 737 
 738 HeapWord*
 739 G1CollectedHeap::mem_allocate(size_t word_size,
 740                               bool*  gc_overhead_limit_was_exceeded) {
 741   assert_heap_not_locked_and_not_at_safepoint();
 742 
 743   // Loop until the allocation is satisfied, or unsatisfied after GC.
 744   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 745     uint gc_count_before;
 746 
 747     HeapWord* result = NULL;
 748     if (!is_humongous(word_size)) {
 749       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 750     } else {
 751       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 752     }
 753     if (result != NULL) {
 754       return result;
 755     }
 756 
 757     // Create the garbage collection operation...
 758     VM_G1CollectForAllocation op(gc_count_before, word_size);
 759     op.set_allocation_context(AllocationContext::current());
 760 
 761     // ...and get the VM thread to execute it.
 762     VMThread::execute(&op);
 763 
 764     if (op.prologue_succeeded() && op.pause_succeeded()) {
 765       // If the operation was successful we'll return the result even
 766       // if it is NULL. If the allocation attempt failed immediately
 767       // after a Full GC, it's unlikely we'll be able to allocate now.
 768       HeapWord* result = op.result();
 769       if (result != NULL && !is_humongous(word_size)) {
 770         // Allocations that take place on VM operations do not do any
 771         // card dirtying and we have to do it here. We only have to do
 772         // this for non-humongous allocations, though.
 773         dirty_young_block(result, word_size);
 774       }
 775       return result;
 776     } else {
 777       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 778         return NULL;
 779       }
 780       assert(op.result() == NULL,
 781              "the result should be NULL if the VM op did not succeed");
 782     }
 783 
 784     // Give a warning if we seem to be looping forever.
 785     if ((QueuedAllocationWarningCount > 0) &&
 786         (try_count % QueuedAllocationWarningCount == 0)) {
 787       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 788     }
 789   }
 790 
 791   ShouldNotReachHere();
 792   return NULL;
 793 }
 794 
 795 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 796                                                    AllocationContext_t context,
 797                                                    uint* gc_count_before_ret,
 798                                                    uint* gclocker_retry_count_ret) {
 799   // Make sure you read the note in attempt_allocation_humongous().
 800 
 801   assert_heap_not_locked_and_not_at_safepoint();
 802   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 803          "be called for humongous allocation requests");
 804 
 805   // We should only get here after the first-level allocation attempt
 806   // (attempt_allocation()) failed to allocate.
 807 
 808   // We will loop until a) we manage to successfully perform the
 809   // allocation or b) we successfully schedule a collection which
 810   // fails to perform the allocation. b) is the only case when we'll
 811   // return NULL.
 812   HeapWord* result = NULL;
 813   for (int try_count = 1; /* we'll return */; try_count += 1) {
 814     bool should_try_gc;
 815     uint gc_count_before;
 816 
 817     {
 818       MutexLockerEx x(Heap_lock);
 819       result = _allocator->attempt_allocation_locked(word_size, context);
 820       if (result != NULL) {
 821         return result;
 822       }
 823 
 824       if (GC_locker::is_active_and_needs_gc()) {
 825         if (g1_policy()->can_expand_young_list()) {
 826           // No need for an ergo verbose message here,
 827           // can_expand_young_list() does this when it returns true.
 828           result = _allocator->attempt_allocation_force(word_size, context);
 829           if (result != NULL) {
 830             return result;
 831           }
 832         }
 833         should_try_gc = false;
 834       } else {
 835         // The GCLocker may not be active but the GCLocker initiated
 836         // GC may not yet have been performed (GCLocker::needs_gc()
 837         // returns true). In this case we do not try this GC and
 838         // wait until the GCLocker initiated GC is performed, and
 839         // then retry the allocation.
 840         if (GC_locker::needs_gc()) {
 841           should_try_gc = false;
 842         } else {
 843           // Read the GC count while still holding the Heap_lock.
 844           gc_count_before = total_collections();
 845           should_try_gc = true;
 846         }
 847       }
 848     }
 849 
 850     if (should_try_gc) {
 851       bool succeeded;
 852       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 853                                    GCCause::_g1_inc_collection_pause);
 854       if (result != NULL) {
 855         assert(succeeded, "only way to get back a non-NULL result");
 856         return result;
 857       }
 858 
 859       if (succeeded) {
 860         // If we get here we successfully scheduled a collection which
 861         // failed to allocate. No point in trying to allocate
 862         // further. We'll just return NULL.
 863         MutexLockerEx x(Heap_lock);
 864         *gc_count_before_ret = total_collections();
 865         return NULL;
 866       }
 867     } else {
 868       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 869         MutexLockerEx x(Heap_lock);
 870         *gc_count_before_ret = total_collections();
 871         return NULL;
 872       }
 873       // The GCLocker is either active or the GCLocker initiated
 874       // GC has not yet been performed. Stall until it is and
 875       // then retry the allocation.
 876       GC_locker::stall_until_clear();
 877       (*gclocker_retry_count_ret) += 1;
 878     }
 879 
 880     // We can reach here if we were unsuccessful in scheduling a
 881     // collection (because another thread beat us to it) or if we were
 882     // stalled due to the GC locker. In either can we should retry the
 883     // allocation attempt in case another thread successfully
 884     // performed a collection and reclaimed enough space. We do the
 885     // first attempt (without holding the Heap_lock) here and the
 886     // follow-on attempt will be at the start of the next loop
 887     // iteration (after taking the Heap_lock).
 888     result = _allocator->attempt_allocation(word_size, context);
 889     if (result != NULL) {
 890       return result;
 891     }
 892 
 893     // Give a warning if we seem to be looping forever.
 894     if ((QueuedAllocationWarningCount > 0) &&
 895         (try_count % QueuedAllocationWarningCount == 0)) {
 896       warning("G1CollectedHeap::attempt_allocation_slow() "
 897               "retries %d times", try_count);
 898     }
 899   }
 900 
 901   ShouldNotReachHere();
 902   return NULL;
 903 }
 904 
 905 void G1CollectedHeap::begin_archive_alloc_range() {
 906   assert_at_safepoint(true /* should_be_vm_thread */);
 907   if (_archive_allocator == NULL) {
 908     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 909   }
 910 }
 911 
 912 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 913   // Allocations in archive regions cannot be of a size that would be considered
 914   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 915   // may be different at archive-restore time.
 916   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 917 }
 918 
 919 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 920   assert_at_safepoint(true /* should_be_vm_thread */);
 921   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 922   if (is_archive_alloc_too_large(word_size)) {
 923     return NULL;
 924   }
 925   return _archive_allocator->archive_mem_allocate(word_size);
 926 }
 927 
 928 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 929                                               size_t end_alignment_in_bytes) {
 930   assert_at_safepoint(true /* should_be_vm_thread */);
 931   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 932 
 933   // Call complete_archive to do the real work, filling in the MemRegion
 934   // array with the archive regions.
 935   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 936   delete _archive_allocator;
 937   _archive_allocator = NULL;
 938 }
 939 
 940 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 941   assert(ranges != NULL, "MemRegion array NULL");
 942   assert(count != 0, "No MemRegions provided");
 943   MemRegion reserved = _hrm.reserved();
 944   for (size_t i = 0; i < count; i++) {
 945     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 946       return false;
 947     }
 948   }
 949   return true;
 950 }
 951 
 952 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 953   assert(!is_init_completed(), "Expect to be called at JVM init time");
 954   assert(ranges != NULL, "MemRegion array NULL");
 955   assert(count != 0, "No MemRegions provided");
 956   MutexLockerEx x(Heap_lock);
 957 
 958   MemRegion reserved = _hrm.reserved();
 959   HeapWord* prev_last_addr = NULL;
 960   HeapRegion* prev_last_region = NULL;
 961 
 962   // Temporarily disable pretouching of heap pages. This interface is used
 963   // when mmap'ing archived heap data in, so pre-touching is wasted.
 964   FlagSetting fs(AlwaysPreTouch, false);
 965 
 966   // Enable archive object checking in G1MarkSweep. We have to let it know
 967   // about each archive range, so that objects in those ranges aren't marked.
 968   G1MarkSweep::enable_archive_object_check();
 969 
 970   // For each specified MemRegion range, allocate the corresponding G1
 971   // regions and mark them as archive regions. We expect the ranges in
 972   // ascending starting address order, without overlap.
 973   for (size_t i = 0; i < count; i++) {
 974     MemRegion curr_range = ranges[i];
 975     HeapWord* start_address = curr_range.start();
 976     size_t word_size = curr_range.word_size();
 977     HeapWord* last_address = curr_range.last();
 978     size_t commits = 0;
 979 
 980     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 981               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 982               p2i(start_address), p2i(last_address)));
 983     guarantee(start_address > prev_last_addr,
 984               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 985               p2i(start_address), p2i(prev_last_addr)));
 986     prev_last_addr = last_address;
 987 
 988     // Check for ranges that start in the same G1 region in which the previous
 989     // range ended, and adjust the start address so we don't try to allocate
 990     // the same region again. If the current range is entirely within that
 991     // region, skip it, just adjusting the recorded top.
 992     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 993     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 994       start_address = start_region->end();
 995       if (start_address > last_address) {
 996         increase_used(word_size * HeapWordSize);
 997         start_region->set_top(last_address + 1);
 998         continue;
 999       }
1000       start_region->set_top(start_address);
1001       curr_range = MemRegion(start_address, last_address + 1);
1002       start_region = _hrm.addr_to_region(start_address);
1003     }
1004 
1005     // Perform the actual region allocation, exiting if it fails.
1006     // Then note how much new space we have allocated.
1007     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1008       return false;
1009     }
1010     increase_used(word_size * HeapWordSize);
1011     if (commits != 0) {
1012       ergo_verbose1(ErgoHeapSizing,
1013                     "attempt heap expansion",
1014                     ergo_format_reason("allocate archive regions")
1015                     ergo_format_byte("total size"),
1016                     HeapRegion::GrainWords * HeapWordSize * commits);
1017     }
1018 
1019     // Mark each G1 region touched by the range as archive, add it to the old set,
1020     // and set the allocation context and top.
1021     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1022     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1023     prev_last_region = last_region;
1024 
1025     while (curr_region != NULL) {
1026       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1027              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1028       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1029       curr_region->set_allocation_context(AllocationContext::system());
1030       curr_region->set_archive();
1031       _old_set.add(curr_region);
1032       if (curr_region != last_region) {
1033         curr_region->set_top(curr_region->end());
1034         curr_region = _hrm.next_region_in_heap(curr_region);
1035       } else {
1036         curr_region->set_top(last_address + 1);
1037         curr_region = NULL;
1038       }
1039     }
1040 
1041     // Notify mark-sweep of the archive range.
1042     G1MarkSweep::set_range_archive(curr_range, true);
1043   }
1044   return true;
1045 }
1046 
1047 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1048   assert(!is_init_completed(), "Expect to be called at JVM init time");
1049   assert(ranges != NULL, "MemRegion array NULL");
1050   assert(count != 0, "No MemRegions provided");
1051   MemRegion reserved = _hrm.reserved();
1052   HeapWord *prev_last_addr = NULL;
1053   HeapRegion* prev_last_region = NULL;
1054 
1055   // For each MemRegion, create filler objects, if needed, in the G1 regions
1056   // that contain the address range. The address range actually within the
1057   // MemRegion will not be modified. That is assumed to have been initialized
1058   // elsewhere, probably via an mmap of archived heap data.
1059   MutexLockerEx x(Heap_lock);
1060   for (size_t i = 0; i < count; i++) {
1061     HeapWord* start_address = ranges[i].start();
1062     HeapWord* last_address = ranges[i].last();
1063 
1064     assert(reserved.contains(start_address) && reserved.contains(last_address),
1065            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1066                    p2i(start_address), p2i(last_address)));
1067     assert(start_address > prev_last_addr,
1068            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1069                    p2i(start_address), p2i(prev_last_addr)));
1070 
1071     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1072     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1073     HeapWord* bottom_address = start_region->bottom();
1074 
1075     // Check for a range beginning in the same region in which the
1076     // previous one ended.
1077     if (start_region == prev_last_region) {
1078       bottom_address = prev_last_addr + 1;
1079     }
1080 
1081     // Verify that the regions were all marked as archive regions by
1082     // alloc_archive_regions.
1083     HeapRegion* curr_region = start_region;
1084     while (curr_region != NULL) {
1085       guarantee(curr_region->is_archive(),
1086                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1087       if (curr_region != last_region) {
1088         curr_region = _hrm.next_region_in_heap(curr_region);
1089       } else {
1090         curr_region = NULL;
1091       }
1092     }
1093 
1094     prev_last_addr = last_address;
1095     prev_last_region = last_region;
1096 
1097     // Fill the memory below the allocated range with dummy object(s),
1098     // if the region bottom does not match the range start, or if the previous
1099     // range ended within the same G1 region, and there is a gap.
1100     if (start_address != bottom_address) {
1101       size_t fill_size = pointer_delta(start_address, bottom_address);
1102       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1103       increase_used(fill_size * HeapWordSize);
1104     }
1105   }
1106 }
1107 
1108 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
1109                                                      uint* gc_count_before_ret,
1110                                                      uint* gclocker_retry_count_ret) {
1111   assert_heap_not_locked_and_not_at_safepoint();
1112   assert(!is_humongous(word_size), "attempt_allocation() should not "
1113          "be called for humongous allocation requests");
1114 
1115   AllocationContext_t context = AllocationContext::current();
1116   HeapWord* result = _allocator->attempt_allocation(word_size, context);
1117 
1118   if (result == NULL) {
1119     result = attempt_allocation_slow(word_size,
1120                                      context,
1121                                      gc_count_before_ret,
1122                                      gclocker_retry_count_ret);
1123   }
1124   assert_heap_not_locked();
1125   if (result != NULL) {
1126     dirty_young_block(result, word_size);
1127   }
1128   return result;
1129 }
1130 
1131 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
1132   assert(!is_init_completed(), "Expect to be called at JVM init time");
1133   assert(ranges != NULL, "MemRegion array NULL");
1134   assert(count != 0, "No MemRegions provided");
1135   MemRegion reserved = _hrm.reserved();
1136   HeapWord* prev_last_addr = NULL;
1137   HeapRegion* prev_last_region = NULL;
1138   size_t size_used = 0;
1139   size_t uncommitted_regions = 0;
1140 
1141   // For each Memregion, free the G1 regions that constitute it, and
1142   // notify mark-sweep that the range is no longer to be considered 'archive.'
1143   MutexLockerEx x(Heap_lock);
1144   for (size_t i = 0; i < count; i++) {
1145     HeapWord* start_address = ranges[i].start();
1146     HeapWord* last_address = ranges[i].last();
1147 
1148     assert(reserved.contains(start_address) && reserved.contains(last_address),
1149            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1150                    p2i(start_address), p2i(last_address)));
1151     assert(start_address > prev_last_addr,
1152            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1153                    p2i(start_address), p2i(prev_last_addr)));
1154     size_used += ranges[i].byte_size();
1155     prev_last_addr = last_address;
1156 
1157     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1158     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1159 
1160     // Check for ranges that start in the same G1 region in which the previous
1161     // range ended, and adjust the start address so we don't try to free
1162     // the same region again. If the current range is entirely within that
1163     // region, skip it.
1164     if (start_region == prev_last_region) {
1165       start_address = start_region->end();
1166       if (start_address > last_address) {
1167         continue;
1168       }
1169       start_region = _hrm.addr_to_region(start_address);
1170     }
1171     prev_last_region = last_region;
1172 
1173     // After verifying that each region was marked as an archive region by
1174     // alloc_archive_regions, set it free and empty and uncommit it.
1175     HeapRegion* curr_region = start_region;
1176     while (curr_region != NULL) {
1177       guarantee(curr_region->is_archive(),
1178                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1179       uint curr_index = curr_region->hrm_index();
1180       _old_set.remove(curr_region);
1181       curr_region->set_free();
1182       curr_region->set_top(curr_region->bottom());
1183       if (curr_region != last_region) {
1184         curr_region = _hrm.next_region_in_heap(curr_region);
1185       } else {
1186         curr_region = NULL;
1187       }
1188       _hrm.shrink_at(curr_index, 1);
1189       uncommitted_regions++;
1190     }
1191 
1192     // Notify mark-sweep that this is no longer an archive range.
1193     G1MarkSweep::set_range_archive(ranges[i], false);
1194   }
1195 
1196   if (uncommitted_regions != 0) {
1197     ergo_verbose1(ErgoHeapSizing,
1198                   "attempt heap shrinking",
1199                   ergo_format_reason("uncommitted archive regions")
1200                   ergo_format_byte("total size"),
1201                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
1202   }
1203   decrease_used(size_used);
1204 }
1205 
1206 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1207                                                         uint* gc_count_before_ret,
1208                                                         uint* gclocker_retry_count_ret) {
1209   // The structure of this method has a lot of similarities to
1210   // attempt_allocation_slow(). The reason these two were not merged
1211   // into a single one is that such a method would require several "if
1212   // allocation is not humongous do this, otherwise do that"
1213   // conditional paths which would obscure its flow. In fact, an early
1214   // version of this code did use a unified method which was harder to
1215   // follow and, as a result, it had subtle bugs that were hard to
1216   // track down. So keeping these two methods separate allows each to
1217   // be more readable. It will be good to keep these two in sync as
1218   // much as possible.
1219 
1220   assert_heap_not_locked_and_not_at_safepoint();
1221   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1222          "should only be called for humongous allocations");
1223 
1224   // Humongous objects can exhaust the heap quickly, so we should check if we
1225   // need to start a marking cycle at each humongous object allocation. We do
1226   // the check before we do the actual allocation. The reason for doing it
1227   // before the allocation is that we avoid having to keep track of the newly
1228   // allocated memory while we do a GC.
1229   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1230                                            word_size)) {
1231     collect(GCCause::_g1_humongous_allocation);
1232   }
1233 
1234   // We will loop until a) we manage to successfully perform the
1235   // allocation or b) we successfully schedule a collection which
1236   // fails to perform the allocation. b) is the only case when we'll
1237   // return NULL.
1238   HeapWord* result = NULL;
1239   for (int try_count = 1; /* we'll return */; try_count += 1) {
1240     bool should_try_gc;
1241     uint gc_count_before;
1242 
1243     {
1244       MutexLockerEx x(Heap_lock);
1245 
1246       // Given that humongous objects are not allocated in young
1247       // regions, we'll first try to do the allocation without doing a
1248       // collection hoping that there's enough space in the heap.
1249       result = humongous_obj_allocate(word_size, AllocationContext::current());
1250       if (result != NULL) {
1251         return result;
1252       }
1253 
1254       if (GC_locker::is_active_and_needs_gc()) {
1255         should_try_gc = false;
1256       } else {
1257          // The GCLocker may not be active but the GCLocker initiated
1258         // GC may not yet have been performed (GCLocker::needs_gc()
1259         // returns true). In this case we do not try this GC and
1260         // wait until the GCLocker initiated GC is performed, and
1261         // then retry the allocation.
1262         if (GC_locker::needs_gc()) {
1263           should_try_gc = false;
1264         } else {
1265           // Read the GC count while still holding the Heap_lock.
1266           gc_count_before = total_collections();
1267           should_try_gc = true;
1268         }
1269       }
1270     }
1271 
1272     if (should_try_gc) {
1273       // If we failed to allocate the humongous object, we should try to
1274       // do a collection pause (if we're allowed) in case it reclaims
1275       // enough space for the allocation to succeed after the pause.
1276 
1277       bool succeeded;
1278       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1279                                    GCCause::_g1_humongous_allocation);
1280       if (result != NULL) {
1281         assert(succeeded, "only way to get back a non-NULL result");
1282         return result;
1283       }
1284 
1285       if (succeeded) {
1286         // If we get here we successfully scheduled a collection which
1287         // failed to allocate. No point in trying to allocate
1288         // further. We'll just return NULL.
1289         MutexLockerEx x(Heap_lock);
1290         *gc_count_before_ret = total_collections();
1291         return NULL;
1292       }
1293     } else {
1294       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1295         MutexLockerEx x(Heap_lock);
1296         *gc_count_before_ret = total_collections();
1297         return NULL;
1298       }
1299       // The GCLocker is either active or the GCLocker initiated
1300       // GC has not yet been performed. Stall until it is and
1301       // then retry the allocation.
1302       GC_locker::stall_until_clear();
1303       (*gclocker_retry_count_ret) += 1;
1304     }
1305 
1306     // We can reach here if we were unsuccessful in scheduling a
1307     // collection (because another thread beat us to it) or if we were
1308     // stalled due to the GC locker. In either can we should retry the
1309     // allocation attempt in case another thread successfully
1310     // performed a collection and reclaimed enough space.  Give a
1311     // warning if we seem to be looping forever.
1312 
1313     if ((QueuedAllocationWarningCount > 0) &&
1314         (try_count % QueuedAllocationWarningCount == 0)) {
1315       warning("G1CollectedHeap::attempt_allocation_humongous() "
1316               "retries %d times", try_count);
1317     }
1318   }
1319 
1320   ShouldNotReachHere();
1321   return NULL;
1322 }
1323 
1324 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1325                                                            AllocationContext_t context,
1326                                                            bool expect_null_mutator_alloc_region) {
1327   assert_at_safepoint(true /* should_be_vm_thread */);
1328   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1329          "the current alloc region was unexpectedly found to be non-NULL");
1330 
1331   if (!is_humongous(word_size)) {
1332     return _allocator->attempt_allocation_locked(word_size, context);
1333   } else {
1334     HeapWord* result = humongous_obj_allocate(word_size, context);
1335     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1336       collector_state()->set_initiate_conc_mark_if_possible(true);
1337     }
1338     return result;
1339   }
1340 
1341   ShouldNotReachHere();
1342 }
1343 
1344 class PostMCRemSetClearClosure: public HeapRegionClosure {
1345   G1CollectedHeap* _g1h;
1346   ModRefBarrierSet* _mr_bs;
1347 public:
1348   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1349     _g1h(g1h), _mr_bs(mr_bs) {}
1350 
1351   bool doHeapRegion(HeapRegion* r) {
1352     HeapRegionRemSet* hrrs = r->rem_set();
1353 
1354     if (r->is_continues_humongous()) {
1355       // We'll assert that the strong code root list and RSet is empty
1356       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1357       assert(hrrs->occupied() == 0, "RSet should be empty");
1358       return false;
1359     }
1360 
1361     _g1h->reset_gc_time_stamps(r);
1362     hrrs->clear();
1363     // You might think here that we could clear just the cards
1364     // corresponding to the used region.  But no: if we leave a dirty card
1365     // in a region we might allocate into, then it would prevent that card
1366     // from being enqueued, and cause it to be missed.
1367     // Re: the performance cost: we shouldn't be doing full GC anyway!
1368     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1369 
1370     return false;
1371   }
1372 };
1373 
1374 void G1CollectedHeap::clear_rsets_post_compaction() {
1375   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1376   heap_region_iterate(&rs_clear);
1377 }
1378 
1379 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1380   G1CollectedHeap*   _g1h;
1381   UpdateRSOopClosure _cl;
1382 public:
1383   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1384     _cl(g1->g1_rem_set(), worker_i),
1385     _g1h(g1)
1386   { }
1387 
1388   bool doHeapRegion(HeapRegion* r) {
1389     if (!r->is_continues_humongous()) {
1390       _cl.set_from(r);
1391       r->oop_iterate(&_cl);
1392     }
1393     return false;
1394   }
1395 };
1396 
1397 class ParRebuildRSTask: public AbstractGangTask {
1398   G1CollectedHeap* _g1;
1399   HeapRegionClaimer _hrclaimer;
1400 
1401 public:
1402   ParRebuildRSTask(G1CollectedHeap* g1) :
1403       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1404 
1405   void work(uint worker_id) {
1406     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1407     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1408   }
1409 };
1410 
1411 class PostCompactionPrinterClosure: public HeapRegionClosure {
1412 private:
1413   G1HRPrinter* _hr_printer;
1414 public:
1415   bool doHeapRegion(HeapRegion* hr) {
1416     assert(!hr->is_young(), "not expecting to find young regions");
1417     if (hr->is_free()) {
1418       // We only generate output for non-empty regions.
1419     } else if (hr->is_starts_humongous()) {
1420       if (hr->region_num() == 1) {
1421         // single humongous region
1422         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1423       } else {
1424         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1425       }
1426     } else if (hr->is_continues_humongous()) {
1427       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1428     } else if (hr->is_archive()) {
1429       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1430     } else if (hr->is_old()) {
1431       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1432     } else {
1433       ShouldNotReachHere();
1434     }
1435     return false;
1436   }
1437 
1438   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1439     : _hr_printer(hr_printer) { }
1440 };
1441 
1442 void G1CollectedHeap::print_hrm_post_compaction() {
1443   PostCompactionPrinterClosure cl(hr_printer());
1444   heap_region_iterate(&cl);
1445 }
1446 
1447 bool G1CollectedHeap::do_collection(bool explicit_gc,
1448                                     bool clear_all_soft_refs,
1449                                     size_t word_size) {
1450   assert_at_safepoint(true /* should_be_vm_thread */);
1451 
1452   if (GC_locker::check_active_before_gc()) {
1453     return false;
1454   }
1455 
1456   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1457   gc_timer->register_gc_start();
1458 
1459   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1460   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1461 
1462   SvcGCMarker sgcm(SvcGCMarker::FULL);
1463   ResourceMark rm;
1464 
1465   G1Log::update_level();
1466   print_heap_before_gc();
1467   trace_heap_before_gc(gc_tracer);
1468 
1469   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1470 
1471   verify_region_sets_optional();
1472 
1473   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1474                            collector_policy()->should_clear_all_soft_refs();
1475 
1476   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1477 
1478   {
1479     IsGCActiveMark x;
1480 
1481     // Timing
1482     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1483     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1484 
1485     {
1486       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1487       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1488       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1489 
1490       g1_policy()->record_full_collection_start();
1491 
1492       // Note: When we have a more flexible GC logging framework that
1493       // allows us to add optional attributes to a GC log record we
1494       // could consider timing and reporting how long we wait in the
1495       // following two methods.
1496       wait_while_free_regions_coming();
1497       // If we start the compaction before the CM threads finish
1498       // scanning the root regions we might trip them over as we'll
1499       // be moving objects / updating references. So let's wait until
1500       // they are done. By telling them to abort, they should complete
1501       // early.
1502       _cm->root_regions()->abort();
1503       _cm->root_regions()->wait_until_scan_finished();
1504       append_secondary_free_list_if_not_empty_with_lock();
1505 
1506       gc_prologue(true);
1507       increment_total_collections(true /* full gc */);
1508       increment_old_marking_cycles_started();
1509 
1510       assert(used() == recalculate_used(), "Should be equal");
1511 
1512       verify_before_gc();
1513 
1514       check_bitmaps("Full GC Start");
1515       pre_full_gc_dump(gc_timer);
1516 
1517       COMPILER2_PRESENT(DerivedPointerTable::clear());
1518 
1519       // Disable discovery and empty the discovered lists
1520       // for the CM ref processor.
1521       ref_processor_cm()->disable_discovery();
1522       ref_processor_cm()->abandon_partial_discovery();
1523       ref_processor_cm()->verify_no_references_recorded();
1524 
1525       // Abandon current iterations of concurrent marking and concurrent
1526       // refinement, if any are in progress. We have to do this before
1527       // wait_until_scan_finished() below.
1528       concurrent_mark()->abort();
1529 
1530       // Make sure we'll choose a new allocation region afterwards.
1531       _allocator->release_mutator_alloc_region();
1532       _allocator->abandon_gc_alloc_regions();
1533       g1_rem_set()->cleanupHRRS();
1534 
1535       // We should call this after we retire any currently active alloc
1536       // regions so that all the ALLOC / RETIRE events are generated
1537       // before the start GC event.
1538       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1539 
1540       // We may have added regions to the current incremental collection
1541       // set between the last GC or pause and now. We need to clear the
1542       // incremental collection set and then start rebuilding it afresh
1543       // after this full GC.
1544       abandon_collection_set(g1_policy()->inc_cset_head());
1545       g1_policy()->clear_incremental_cset();
1546       g1_policy()->stop_incremental_cset_building();
1547 
1548       tear_down_region_sets(false /* free_list_only */);
1549       collector_state()->set_gcs_are_young(true);
1550 
1551       // See the comments in g1CollectedHeap.hpp and
1552       // G1CollectedHeap::ref_processing_init() about
1553       // how reference processing currently works in G1.
1554 
1555       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1556       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1557 
1558       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1559       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1560 
1561       ref_processor_stw()->enable_discovery();
1562       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1563 
1564       // Do collection work
1565       {
1566         HandleMark hm;  // Discard invalid handles created during gc
1567         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1568       }
1569 
1570       assert(num_free_regions() == 0, "we should not have added any free regions");
1571       rebuild_region_sets(false /* free_list_only */);
1572 
1573       // Enqueue any discovered reference objects that have
1574       // not been removed from the discovered lists.
1575       ref_processor_stw()->enqueue_discovered_references();
1576 
1577       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1578 
1579       MemoryService::track_memory_usage();
1580 
1581       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1582       ref_processor_stw()->verify_no_references_recorded();
1583 
1584       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1585       ClassLoaderDataGraph::purge();
1586       MetaspaceAux::verify_metrics();
1587 
1588       // Note: since we've just done a full GC, concurrent
1589       // marking is no longer active. Therefore we need not
1590       // re-enable reference discovery for the CM ref processor.
1591       // That will be done at the start of the next marking cycle.
1592       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1593       ref_processor_cm()->verify_no_references_recorded();
1594 
1595       reset_gc_time_stamp();
1596       // Since everything potentially moved, we will clear all remembered
1597       // sets, and clear all cards.  Later we will rebuild remembered
1598       // sets. We will also reset the GC time stamps of the regions.
1599       clear_rsets_post_compaction();
1600       check_gc_time_stamps();
1601 
1602       // Resize the heap if necessary.
1603       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1604 
1605       if (_hr_printer.is_active()) {
1606         // We should do this after we potentially resize the heap so
1607         // that all the COMMIT / UNCOMMIT events are generated before
1608         // the end GC event.
1609 
1610         print_hrm_post_compaction();
1611         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1612       }
1613 
1614       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1615       if (hot_card_cache->use_cache()) {
1616         hot_card_cache->reset_card_counts();
1617         hot_card_cache->reset_hot_cache();
1618       }
1619 
1620       // Rebuild remembered sets of all regions.
1621       uint n_workers =
1622         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1623                                                 workers()->active_workers(),
1624                                                 Threads::number_of_non_daemon_threads());
1625       workers()->set_active_workers(n_workers);
1626 
1627       ParRebuildRSTask rebuild_rs_task(this);
1628       workers()->run_task(&rebuild_rs_task);
1629 
1630       // Rebuild the strong code root lists for each region
1631       rebuild_strong_code_roots();
1632 
1633       if (true) { // FIXME
1634         MetaspaceGC::compute_new_size();
1635       }
1636 
1637 #ifdef TRACESPINNING
1638       ParallelTaskTerminator::print_termination_counts();
1639 #endif
1640 
1641       // Discard all rset updates
1642       JavaThread::dirty_card_queue_set().abandon_logs();
1643       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1644 
1645       _young_list->reset_sampled_info();
1646       // At this point there should be no regions in the
1647       // entire heap tagged as young.
1648       assert(check_young_list_empty(true /* check_heap */),
1649              "young list should be empty at this point");
1650 
1651       // Update the number of full collections that have been completed.
1652       increment_old_marking_cycles_completed(false /* concurrent */);
1653 
1654       _hrm.verify_optional();
1655       verify_region_sets_optional();
1656 
1657       verify_after_gc();
1658 
1659       // Clear the previous marking bitmap, if needed for bitmap verification.
1660       // Note we cannot do this when we clear the next marking bitmap in
1661       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1662       // objects marked during a full GC against the previous bitmap.
1663       // But we need to clear it before calling check_bitmaps below since
1664       // the full GC has compacted objects and updated TAMS but not updated
1665       // the prev bitmap.
1666       if (G1VerifyBitmaps) {
1667         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1668       }
1669       check_bitmaps("Full GC End");
1670 
1671       // Start a new incremental collection set for the next pause
1672       assert(g1_policy()->collection_set() == NULL, "must be");
1673       g1_policy()->start_incremental_cset_building();
1674 
1675       clear_cset_fast_test();
1676 
1677       _allocator->init_mutator_alloc_region();
1678 
1679       g1_policy()->record_full_collection_end();
1680 
1681       if (G1Log::fine()) {
1682         g1_policy()->print_heap_transition();
1683       }
1684 
1685       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1686       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1687       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1688       // before any GC notifications are raised.
1689       g1mm()->update_sizes();
1690 
1691       gc_epilogue(true);
1692     }
1693 
1694     if (G1Log::finer()) {
1695       g1_policy()->print_detailed_heap_transition(true /* full */);
1696     }
1697 
1698     print_heap_after_gc();
1699     trace_heap_after_gc(gc_tracer);
1700 
1701     post_full_gc_dump(gc_timer);
1702 
1703     gc_timer->register_gc_end();
1704     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1705   }
1706 
1707   return true;
1708 }
1709 
1710 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1711   // do_collection() will return whether it succeeded in performing
1712   // the GC. Currently, there is no facility on the
1713   // do_full_collection() API to notify the caller than the collection
1714   // did not succeed (e.g., because it was locked out by the GC
1715   // locker). So, right now, we'll ignore the return value.
1716   bool dummy = do_collection(true,                /* explicit_gc */
1717                              clear_all_soft_refs,
1718                              0                    /* word_size */);
1719 }
1720 
1721 // This code is mostly copied from TenuredGeneration.
1722 void
1723 G1CollectedHeap::
1724 resize_if_necessary_after_full_collection(size_t word_size) {
1725   // Include the current allocation, if any, and bytes that will be
1726   // pre-allocated to support collections, as "used".
1727   const size_t used_after_gc = used();
1728   const size_t capacity_after_gc = capacity();
1729   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1730 
1731   // This is enforced in arguments.cpp.
1732   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1733          "otherwise the code below doesn't make sense");
1734 
1735   // We don't have floating point command-line arguments
1736   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1737   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1738   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1739   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1740 
1741   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1742   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1743 
1744   // We have to be careful here as these two calculations can overflow
1745   // 32-bit size_t's.
1746   double used_after_gc_d = (double) used_after_gc;
1747   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1748   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1749 
1750   // Let's make sure that they are both under the max heap size, which
1751   // by default will make them fit into a size_t.
1752   double desired_capacity_upper_bound = (double) max_heap_size;
1753   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1754                                     desired_capacity_upper_bound);
1755   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1756                                     desired_capacity_upper_bound);
1757 
1758   // We can now safely turn them into size_t's.
1759   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1760   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1761 
1762   // This assert only makes sense here, before we adjust them
1763   // with respect to the min and max heap size.
1764   assert(minimum_desired_capacity <= maximum_desired_capacity,
1765          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1766                  "maximum_desired_capacity = " SIZE_FORMAT,
1767                  minimum_desired_capacity, maximum_desired_capacity));
1768 
1769   // Should not be greater than the heap max size. No need to adjust
1770   // it with respect to the heap min size as it's a lower bound (i.e.,
1771   // we'll try to make the capacity larger than it, not smaller).
1772   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1773   // Should not be less than the heap min size. No need to adjust it
1774   // with respect to the heap max size as it's an upper bound (i.e.,
1775   // we'll try to make the capacity smaller than it, not greater).
1776   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1777 
1778   if (capacity_after_gc < minimum_desired_capacity) {
1779     // Don't expand unless it's significant
1780     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1781     ergo_verbose4(ErgoHeapSizing,
1782                   "attempt heap expansion",
1783                   ergo_format_reason("capacity lower than "
1784                                      "min desired capacity after Full GC")
1785                   ergo_format_byte("capacity")
1786                   ergo_format_byte("occupancy")
1787                   ergo_format_byte_perc("min desired capacity"),
1788                   capacity_after_gc, used_after_gc,
1789                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1790     expand(expand_bytes);
1791 
1792     // No expansion, now see if we want to shrink
1793   } else if (capacity_after_gc > maximum_desired_capacity) {
1794     // Capacity too large, compute shrinking size
1795     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1796     ergo_verbose4(ErgoHeapSizing,
1797                   "attempt heap shrinking",
1798                   ergo_format_reason("capacity higher than "
1799                                      "max desired capacity after Full GC")
1800                   ergo_format_byte("capacity")
1801                   ergo_format_byte("occupancy")
1802                   ergo_format_byte_perc("max desired capacity"),
1803                   capacity_after_gc, used_after_gc,
1804                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1805     shrink(shrink_bytes);
1806   }
1807 }
1808 
1809 
1810 HeapWord*
1811 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1812                                            AllocationContext_t context,
1813                                            bool* succeeded) {
1814   assert_at_safepoint(true /* should_be_vm_thread */);
1815 
1816   *succeeded = true;
1817   // Let's attempt the allocation first.
1818   HeapWord* result =
1819     attempt_allocation_at_safepoint(word_size,
1820                                     context,
1821                                     false /* expect_null_mutator_alloc_region */);
1822   if (result != NULL) {
1823     assert(*succeeded, "sanity");
1824     return result;
1825   }
1826 
1827   // In a G1 heap, we're supposed to keep allocation from failing by
1828   // incremental pauses.  Therefore, at least for now, we'll favor
1829   // expansion over collection.  (This might change in the future if we can
1830   // do something smarter than full collection to satisfy a failed alloc.)
1831   result = expand_and_allocate(word_size, context);
1832   if (result != NULL) {
1833     assert(*succeeded, "sanity");
1834     return result;
1835   }
1836 
1837   // Expansion didn't work, we'll try to do a Full GC.
1838   bool gc_succeeded = do_collection(false, /* explicit_gc */
1839                                     false, /* clear_all_soft_refs */
1840                                     word_size);
1841   if (!gc_succeeded) {
1842     *succeeded = false;
1843     return NULL;
1844   }
1845 
1846   // Retry the allocation
1847   result = attempt_allocation_at_safepoint(word_size,
1848                                            context,
1849                                            true /* expect_null_mutator_alloc_region */);
1850   if (result != NULL) {
1851     assert(*succeeded, "sanity");
1852     return result;
1853   }
1854 
1855   // Then, try a Full GC that will collect all soft references.
1856   gc_succeeded = do_collection(false, /* explicit_gc */
1857                                true,  /* clear_all_soft_refs */
1858                                word_size);
1859   if (!gc_succeeded) {
1860     *succeeded = false;
1861     return NULL;
1862   }
1863 
1864   // Retry the allocation once more
1865   result = attempt_allocation_at_safepoint(word_size,
1866                                            context,
1867                                            true /* expect_null_mutator_alloc_region */);
1868   if (result != NULL) {
1869     assert(*succeeded, "sanity");
1870     return result;
1871   }
1872 
1873   assert(!collector_policy()->should_clear_all_soft_refs(),
1874          "Flag should have been handled and cleared prior to this point");
1875 
1876   // What else?  We might try synchronous finalization later.  If the total
1877   // space available is large enough for the allocation, then a more
1878   // complete compaction phase than we've tried so far might be
1879   // appropriate.
1880   assert(*succeeded, "sanity");
1881   return NULL;
1882 }
1883 
1884 // Attempting to expand the heap sufficiently
1885 // to support an allocation of the given "word_size".  If
1886 // successful, perform the allocation and return the address of the
1887 // allocated block, or else "NULL".
1888 
1889 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1890   assert_at_safepoint(true /* should_be_vm_thread */);
1891 
1892   verify_region_sets_optional();
1893 
1894   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1895   ergo_verbose1(ErgoHeapSizing,
1896                 "attempt heap expansion",
1897                 ergo_format_reason("allocation request failed")
1898                 ergo_format_byte("allocation request"),
1899                 word_size * HeapWordSize);
1900   if (expand(expand_bytes)) {
1901     _hrm.verify_optional();
1902     verify_region_sets_optional();
1903     return attempt_allocation_at_safepoint(word_size,
1904                                            context,
1905                                            false /* expect_null_mutator_alloc_region */);
1906   }
1907   return NULL;
1908 }
1909 
1910 bool G1CollectedHeap::expand(size_t expand_bytes) {
1911   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1912   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1913                                        HeapRegion::GrainBytes);
1914   ergo_verbose2(ErgoHeapSizing,
1915                 "expand the heap",
1916                 ergo_format_byte("requested expansion amount")
1917                 ergo_format_byte("attempted expansion amount"),
1918                 expand_bytes, aligned_expand_bytes);
1919 
1920   if (is_maximal_no_gc()) {
1921     ergo_verbose0(ErgoHeapSizing,
1922                       "did not expand the heap",
1923                       ergo_format_reason("heap already fully expanded"));
1924     return false;
1925   }
1926 
1927   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1928   assert(regions_to_expand > 0, "Must expand by at least one region");
1929 
1930   uint expanded_by = _hrm.expand_by(regions_to_expand);
1931 
1932   if (expanded_by > 0) {
1933     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1934     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1935     g1_policy()->record_new_heap_size(num_regions());
1936   } else {
1937     ergo_verbose0(ErgoHeapSizing,
1938                   "did not expand the heap",
1939                   ergo_format_reason("heap expansion operation failed"));
1940     // The expansion of the virtual storage space was unsuccessful.
1941     // Let's see if it was because we ran out of swap.
1942     if (G1ExitOnExpansionFailure &&
1943         _hrm.available() >= regions_to_expand) {
1944       // We had head room...
1945       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1946     }
1947   }
1948   return regions_to_expand > 0;
1949 }
1950 
1951 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1952   size_t aligned_shrink_bytes =
1953     ReservedSpace::page_align_size_down(shrink_bytes);
1954   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1955                                          HeapRegion::GrainBytes);
1956   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1957 
1958   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1959   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1960 
1961   ergo_verbose3(ErgoHeapSizing,
1962                 "shrink the heap",
1963                 ergo_format_byte("requested shrinking amount")
1964                 ergo_format_byte("aligned shrinking amount")
1965                 ergo_format_byte("attempted shrinking amount"),
1966                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1967   if (num_regions_removed > 0) {
1968     g1_policy()->record_new_heap_size(num_regions());
1969   } else {
1970     ergo_verbose0(ErgoHeapSizing,
1971                   "did not shrink the heap",
1972                   ergo_format_reason("heap shrinking operation failed"));
1973   }
1974 }
1975 
1976 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1977   verify_region_sets_optional();
1978 
1979   // We should only reach here at the end of a Full GC which means we
1980   // should not not be holding to any GC alloc regions. The method
1981   // below will make sure of that and do any remaining clean up.
1982   _allocator->abandon_gc_alloc_regions();
1983 
1984   // Instead of tearing down / rebuilding the free lists here, we
1985   // could instead use the remove_all_pending() method on free_list to
1986   // remove only the ones that we need to remove.
1987   tear_down_region_sets(true /* free_list_only */);
1988   shrink_helper(shrink_bytes);
1989   rebuild_region_sets(true /* free_list_only */);
1990 
1991   _hrm.verify_optional();
1992   verify_region_sets_optional();
1993 }
1994 
1995 // Public methods.
1996 
1997 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1998 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1999 #endif // _MSC_VER
2000 
2001 
2002 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
2003   CollectedHeap(),
2004   _g1_policy(policy_),
2005   _dirty_card_queue_set(false),
2006   _into_cset_dirty_card_queue_set(false),
2007   _is_alive_closure_cm(this),
2008   _is_alive_closure_stw(this),
2009   _ref_processor_cm(NULL),
2010   _ref_processor_stw(NULL),
2011   _bot_shared(NULL),
2012   _cg1r(NULL),
2013   _g1mm(NULL),
2014   _refine_cte_cl(NULL),
2015   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
2016   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
2017   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
2018   _humongous_reclaim_candidates(),
2019   _has_humongous_reclaim_candidates(false),
2020   _archive_allocator(NULL),
2021   _free_regions_coming(false),
2022   _young_list(new YoungList(this)),
2023   _gc_time_stamp(0),
2024   _summary_bytes_used(0),
2025   _survivor_evac_stats(YoungPLABSize, PLABWeight),
2026   _old_evac_stats(OldPLABSize, PLABWeight),
2027   _expand_heap_after_alloc_failure(true),
2028   _surviving_young_words(NULL),
2029   _old_marking_cycles_started(0),
2030   _old_marking_cycles_completed(0),
2031   _heap_summary_sent(false),
2032   _in_cset_fast_test(),
2033   _dirty_cards_region_list(NULL),
2034   _worker_cset_start_region(NULL),
2035   _worker_cset_start_region_time_stamp(NULL),
2036   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
2037   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
2038   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
2039   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
2040 
2041   _workers = new WorkGang("GC Thread", ParallelGCThreads,
2042                           /* are_GC_task_threads */true,
2043                           /* are_ConcurrentGC_threads */false);
2044   _workers->initialize_workers();
2045 
2046   _allocator = G1Allocator::create_allocator(this);
2047   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
2048 
2049   // Override the default _filler_array_max_size so that no humongous filler
2050   // objects are created.
2051   _filler_array_max_size = _humongous_object_threshold_in_words;
2052 
2053   uint n_queues = ParallelGCThreads;
2054   _task_queues = new RefToScanQueueSet(n_queues);
2055 
2056   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
2057   assert(n_rem_sets > 0, "Invariant.");
2058 
2059   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
2060   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
2061   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
2062 
2063   for (uint i = 0; i < n_queues; i++) {
2064     RefToScanQueue* q = new RefToScanQueue();
2065     q->initialize();
2066     _task_queues->register_queue(i, q);
2067     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
2068   }
2069   clear_cset_start_regions();
2070 
2071   // Initialize the G1EvacuationFailureALot counters and flags.
2072   NOT_PRODUCT(reset_evacuation_should_fail();)
2073 
2074   guarantee(_task_queues != NULL, "task_queues allocation failure.");
2075 }
2076 
2077 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
2078                                                                  size_t size,
2079                                                                  size_t translation_factor) {
2080   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
2081   // Allocate a new reserved space, preferring to use large pages.
2082   ReservedSpace rs(size, preferred_page_size);
2083   G1RegionToSpaceMapper* result  =
2084     G1RegionToSpaceMapper::create_mapper(rs,
2085                                          size,
2086                                          rs.alignment(),
2087                                          HeapRegion::GrainBytes,
2088                                          translation_factor,
2089                                          mtGC);
2090   if (TracePageSizes) {
2091     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2092                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2093   }
2094   return result;
2095 }
2096 
2097 jint G1CollectedHeap::initialize() {
2098   CollectedHeap::pre_initialize();
2099   os::enable_vtime();
2100 
2101   G1Log::init();
2102 
2103   // Necessary to satisfy locking discipline assertions.
2104 
2105   MutexLocker x(Heap_lock);
2106 
2107   // We have to initialize the printer before committing the heap, as
2108   // it will be used then.
2109   _hr_printer.set_active(G1PrintHeapRegions);
2110 
2111   // While there are no constraints in the GC code that HeapWordSize
2112   // be any particular value, there are multiple other areas in the
2113   // system which believe this to be true (e.g. oop->object_size in some
2114   // cases incorrectly returns the size in wordSize units rather than
2115   // HeapWordSize).
2116   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2117 
2118   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2119   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2120   size_t heap_alignment = collector_policy()->heap_alignment();
2121 
2122   // Ensure that the sizes are properly aligned.
2123   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2124   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2125   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2126 
2127   _refine_cte_cl = new RefineCardTableEntryClosure();
2128 
2129   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2130 
2131   // Reserve the maximum.
2132 
2133   // When compressed oops are enabled, the preferred heap base
2134   // is calculated by subtracting the requested size from the
2135   // 32Gb boundary and using the result as the base address for
2136   // heap reservation. If the requested size is not aligned to
2137   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2138   // into the ReservedHeapSpace constructor) then the actual
2139   // base of the reserved heap may end up differing from the
2140   // address that was requested (i.e. the preferred heap base).
2141   // If this happens then we could end up using a non-optimal
2142   // compressed oops mode.
2143 
2144   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2145                                                  heap_alignment);
2146 
2147   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2148 
2149   // Create the barrier set for the entire reserved region.
2150   G1SATBCardTableLoggingModRefBS* bs
2151     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2152   bs->initialize();
2153   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2154   set_barrier_set(bs);
2155 
2156   // Also create a G1 rem set.
2157   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2158 
2159   // Carve out the G1 part of the heap.
2160 
2161   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2162   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2163   G1RegionToSpaceMapper* heap_storage =
2164     G1RegionToSpaceMapper::create_mapper(g1_rs,
2165                                          g1_rs.size(),
2166                                          page_size,
2167                                          HeapRegion::GrainBytes,
2168                                          1,
2169                                          mtJavaHeap);
2170   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2171                        max_byte_size, page_size,
2172                        heap_rs.base(),
2173                        heap_rs.size());
2174   heap_storage->set_mapping_changed_listener(&_listener);
2175 
2176   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2177   G1RegionToSpaceMapper* bot_storage =
2178     create_aux_memory_mapper("Block offset table",
2179                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2180                              G1BlockOffsetSharedArray::heap_map_factor());
2181 
2182   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2183   G1RegionToSpaceMapper* cardtable_storage =
2184     create_aux_memory_mapper("Card table",
2185                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2186                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2187 
2188   G1RegionToSpaceMapper* card_counts_storage =
2189     create_aux_memory_mapper("Card counts table",
2190                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2191                              G1CardCounts::heap_map_factor());
2192 
2193   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2194   G1RegionToSpaceMapper* prev_bitmap_storage =
2195     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2196   G1RegionToSpaceMapper* next_bitmap_storage =
2197     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2198 
2199   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2200   g1_barrier_set()->initialize(cardtable_storage);
2201    // Do later initialization work for concurrent refinement.
2202   _cg1r->init(card_counts_storage);
2203 
2204   // 6843694 - ensure that the maximum region index can fit
2205   // in the remembered set structures.
2206   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2207   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2208 
2209   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2210   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2211   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2212             "too many cards per region");
2213 
2214   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2215 
2216   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2217 
2218   {
2219     HeapWord* start = _hrm.reserved().start();
2220     HeapWord* end = _hrm.reserved().end();
2221     size_t granularity = HeapRegion::GrainBytes;
2222 
2223     _in_cset_fast_test.initialize(start, end, granularity);
2224     _humongous_reclaim_candidates.initialize(start, end, granularity);
2225   }
2226 
2227   // Create the ConcurrentMark data structure and thread.
2228   // (Must do this late, so that "max_regions" is defined.)
2229   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2230   if (_cm == NULL || !_cm->completed_initialization()) {
2231     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2232     return JNI_ENOMEM;
2233   }
2234   _cmThread = _cm->cmThread();
2235 
2236   // Initialize the from_card cache structure of HeapRegionRemSet.
2237   HeapRegionRemSet::init_heap(max_regions());
2238 
2239   // Now expand into the initial heap size.
2240   if (!expand(init_byte_size)) {
2241     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2242     return JNI_ENOMEM;
2243   }
2244 
2245   // Perform any initialization actions delegated to the policy.
2246   g1_policy()->init();
2247 
2248   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2249                                                SATB_Q_FL_lock,
2250                                                G1SATBProcessCompletedThreshold,
2251                                                Shared_SATB_Q_lock);
2252 
2253   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2254                                                 DirtyCardQ_CBL_mon,
2255                                                 DirtyCardQ_FL_lock,
2256                                                 concurrent_g1_refine()->yellow_zone(),
2257                                                 concurrent_g1_refine()->red_zone(),
2258                                                 Shared_DirtyCardQ_lock);
2259 
2260   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2261                                     DirtyCardQ_CBL_mon,
2262                                     DirtyCardQ_FL_lock,
2263                                     -1, // never trigger processing
2264                                     -1, // no limit on length
2265                                     Shared_DirtyCardQ_lock,
2266                                     &JavaThread::dirty_card_queue_set());
2267 
2268   // Initialize the card queue set used to hold cards containing
2269   // references into the collection set.
2270   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2271                                              DirtyCardQ_CBL_mon,
2272                                              DirtyCardQ_FL_lock,
2273                                              -1, // never trigger processing
2274                                              -1, // no limit on length
2275                                              Shared_DirtyCardQ_lock,
2276                                              &JavaThread::dirty_card_queue_set());
2277 
2278   // Here we allocate the dummy HeapRegion that is required by the
2279   // G1AllocRegion class.
2280   HeapRegion* dummy_region = _hrm.get_dummy_region();
2281 
2282   // We'll re-use the same region whether the alloc region will
2283   // require BOT updates or not and, if it doesn't, then a non-young
2284   // region will complain that it cannot support allocations without
2285   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2286   dummy_region->set_eden();
2287   // Make sure it's full.
2288   dummy_region->set_top(dummy_region->end());
2289   G1AllocRegion::setup(this, dummy_region);
2290 
2291   _allocator->init_mutator_alloc_region();
2292 
2293   // Do create of the monitoring and management support so that
2294   // values in the heap have been properly initialized.
2295   _g1mm = new G1MonitoringSupport(this);
2296 
2297   G1StringDedup::initialize();
2298 
2299   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2300   for (uint i = 0; i < ParallelGCThreads; i++) {
2301     new (&_preserved_objs[i]) OopAndMarkOopStack();
2302   }
2303 
2304   return JNI_OK;
2305 }
2306 
2307 void G1CollectedHeap::stop() {
2308   // Stop all concurrent threads. We do this to make sure these threads
2309   // do not continue to execute and access resources (e.g. gclog_or_tty)
2310   // that are destroyed during shutdown.
2311   _cg1r->stop();
2312   _cmThread->stop();
2313   if (G1StringDedup::is_enabled()) {
2314     G1StringDedup::stop();
2315   }
2316 }
2317 
2318 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2319   return HeapRegion::max_region_size();
2320 }
2321 
2322 void G1CollectedHeap::post_initialize() {
2323   CollectedHeap::post_initialize();
2324   ref_processing_init();
2325 }
2326 
2327 void G1CollectedHeap::ref_processing_init() {
2328   // Reference processing in G1 currently works as follows:
2329   //
2330   // * There are two reference processor instances. One is
2331   //   used to record and process discovered references
2332   //   during concurrent marking; the other is used to
2333   //   record and process references during STW pauses
2334   //   (both full and incremental).
2335   // * Both ref processors need to 'span' the entire heap as
2336   //   the regions in the collection set may be dotted around.
2337   //
2338   // * For the concurrent marking ref processor:
2339   //   * Reference discovery is enabled at initial marking.
2340   //   * Reference discovery is disabled and the discovered
2341   //     references processed etc during remarking.
2342   //   * Reference discovery is MT (see below).
2343   //   * Reference discovery requires a barrier (see below).
2344   //   * Reference processing may or may not be MT
2345   //     (depending on the value of ParallelRefProcEnabled
2346   //     and ParallelGCThreads).
2347   //   * A full GC disables reference discovery by the CM
2348   //     ref processor and abandons any entries on it's
2349   //     discovered lists.
2350   //
2351   // * For the STW processor:
2352   //   * Non MT discovery is enabled at the start of a full GC.
2353   //   * Processing and enqueueing during a full GC is non-MT.
2354   //   * During a full GC, references are processed after marking.
2355   //
2356   //   * Discovery (may or may not be MT) is enabled at the start
2357   //     of an incremental evacuation pause.
2358   //   * References are processed near the end of a STW evacuation pause.
2359   //   * For both types of GC:
2360   //     * Discovery is atomic - i.e. not concurrent.
2361   //     * Reference discovery will not need a barrier.
2362 
2363   MemRegion mr = reserved_region();
2364 
2365   // Concurrent Mark ref processor
2366   _ref_processor_cm =
2367     new ReferenceProcessor(mr,    // span
2368                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2369                                 // mt processing
2370                            ParallelGCThreads,
2371                                 // degree of mt processing
2372                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2373                                 // mt discovery
2374                            MAX2(ParallelGCThreads, ConcGCThreads),
2375                                 // degree of mt discovery
2376                            false,
2377                                 // Reference discovery is not atomic
2378                            &_is_alive_closure_cm);
2379                                 // is alive closure
2380                                 // (for efficiency/performance)
2381 
2382   // STW ref processor
2383   _ref_processor_stw =
2384     new ReferenceProcessor(mr,    // span
2385                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2386                                 // mt processing
2387                            ParallelGCThreads,
2388                                 // degree of mt processing
2389                            (ParallelGCThreads > 1),
2390                                 // mt discovery
2391                            ParallelGCThreads,
2392                                 // degree of mt discovery
2393                            true,
2394                                 // Reference discovery is atomic
2395                            &_is_alive_closure_stw);
2396                                 // is alive closure
2397                                 // (for efficiency/performance)
2398 }
2399 
2400 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2401   return g1_policy();
2402 }
2403 
2404 size_t G1CollectedHeap::capacity() const {
2405   return _hrm.length() * HeapRegion::GrainBytes;
2406 }
2407 
2408 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2409   assert(!hr->is_continues_humongous(), "pre-condition");
2410   hr->reset_gc_time_stamp();
2411   if (hr->is_starts_humongous()) {
2412     uint first_index = hr->hrm_index() + 1;
2413     uint last_index = hr->last_hc_index();
2414     for (uint i = first_index; i < last_index; i += 1) {
2415       HeapRegion* chr = region_at(i);
2416       assert(chr->is_continues_humongous(), "sanity");
2417       chr->reset_gc_time_stamp();
2418     }
2419   }
2420 }
2421 
2422 #ifndef PRODUCT
2423 
2424 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2425 private:
2426   unsigned _gc_time_stamp;
2427   bool _failures;
2428 
2429 public:
2430   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2431     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2432 
2433   virtual bool doHeapRegion(HeapRegion* hr) {
2434     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2435     if (_gc_time_stamp != region_gc_time_stamp) {
2436       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2437                              "expected %d", HR_FORMAT_PARAMS(hr),
2438                              region_gc_time_stamp, _gc_time_stamp);
2439       _failures = true;
2440     }
2441     return false;
2442   }
2443 
2444   bool failures() { return _failures; }
2445 };
2446 
2447 void G1CollectedHeap::check_gc_time_stamps() {
2448   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2449   heap_region_iterate(&cl);
2450   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2451 }
2452 #endif // PRODUCT
2453 
2454 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2455                                                  DirtyCardQueue* into_cset_dcq,
2456                                                  bool concurrent,
2457                                                  uint worker_i) {
2458   // Clean cards in the hot card cache
2459   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2460   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2461 
2462   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2463   size_t n_completed_buffers = 0;
2464   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2465     n_completed_buffers++;
2466   }
2467   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2468   dcqs.clear_n_completed_buffers();
2469   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2470 }
2471 
2472 // Computes the sum of the storage used by the various regions.
2473 size_t G1CollectedHeap::used() const {
2474   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2475   if (_archive_allocator != NULL) {
2476     result += _archive_allocator->used();
2477   }
2478   return result;
2479 }
2480 
2481 size_t G1CollectedHeap::used_unlocked() const {
2482   return _summary_bytes_used;
2483 }
2484 
2485 class SumUsedClosure: public HeapRegionClosure {
2486   size_t _used;
2487 public:
2488   SumUsedClosure() : _used(0) {}
2489   bool doHeapRegion(HeapRegion* r) {
2490     if (!r->is_continues_humongous()) {
2491       _used += r->used();
2492     }
2493     return false;
2494   }
2495   size_t result() { return _used; }
2496 };
2497 
2498 size_t G1CollectedHeap::recalculate_used() const {
2499   double recalculate_used_start = os::elapsedTime();
2500 
2501   SumUsedClosure blk;
2502   heap_region_iterate(&blk);
2503 
2504   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2505   return blk.result();
2506 }
2507 
2508 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2509   switch (cause) {
2510     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2511     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2512     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2513     case GCCause::_g1_humongous_allocation: return true;
2514     case GCCause::_update_allocation_context_stats_inc: return true;
2515     case GCCause::_wb_conc_mark:            return true;
2516     default:                                return false;
2517   }
2518 }
2519 
2520 #ifndef PRODUCT
2521 void G1CollectedHeap::allocate_dummy_regions() {
2522   // Let's fill up most of the region
2523   size_t word_size = HeapRegion::GrainWords - 1024;
2524   // And as a result the region we'll allocate will be humongous.
2525   guarantee(is_humongous(word_size), "sanity");
2526 
2527   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2528     // Let's use the existing mechanism for the allocation
2529     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2530                                                  AllocationContext::system());
2531     if (dummy_obj != NULL) {
2532       MemRegion mr(dummy_obj, word_size);
2533       CollectedHeap::fill_with_object(mr);
2534     } else {
2535       // If we can't allocate once, we probably cannot allocate
2536       // again. Let's get out of the loop.
2537       break;
2538     }
2539   }
2540 }
2541 #endif // !PRODUCT
2542 
2543 void G1CollectedHeap::increment_old_marking_cycles_started() {
2544   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2545     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2546     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2547     _old_marking_cycles_started, _old_marking_cycles_completed));
2548 
2549   _old_marking_cycles_started++;
2550 }
2551 
2552 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2553   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2554 
2555   // We assume that if concurrent == true, then the caller is a
2556   // concurrent thread that was joined the Suspendible Thread
2557   // Set. If there's ever a cheap way to check this, we should add an
2558   // assert here.
2559 
2560   // Given that this method is called at the end of a Full GC or of a
2561   // concurrent cycle, and those can be nested (i.e., a Full GC can
2562   // interrupt a concurrent cycle), the number of full collections
2563   // completed should be either one (in the case where there was no
2564   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2565   // behind the number of full collections started.
2566 
2567   // This is the case for the inner caller, i.e. a Full GC.
2568   assert(concurrent ||
2569          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2570          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2571          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2572                  "is inconsistent with _old_marking_cycles_completed = %u",
2573                  _old_marking_cycles_started, _old_marking_cycles_completed));
2574 
2575   // This is the case for the outer caller, i.e. the concurrent cycle.
2576   assert(!concurrent ||
2577          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2578          err_msg("for outer caller (concurrent cycle): "
2579                  "_old_marking_cycles_started = %u "
2580                  "is inconsistent with _old_marking_cycles_completed = %u",
2581                  _old_marking_cycles_started, _old_marking_cycles_completed));
2582 
2583   _old_marking_cycles_completed += 1;
2584 
2585   // We need to clear the "in_progress" flag in the CM thread before
2586   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2587   // is set) so that if a waiter requests another System.gc() it doesn't
2588   // incorrectly see that a marking cycle is still in progress.
2589   if (concurrent) {
2590     _cmThread->set_idle();
2591   }
2592 
2593   // This notify_all() will ensure that a thread that called
2594   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2595   // and it's waiting for a full GC to finish will be woken up. It is
2596   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2597   FullGCCount_lock->notify_all();
2598 }
2599 
2600 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2601   collector_state()->set_concurrent_cycle_started(true);
2602   _gc_timer_cm->register_gc_start(start_time);
2603 
2604   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2605   trace_heap_before_gc(_gc_tracer_cm);
2606 }
2607 
2608 void G1CollectedHeap::register_concurrent_cycle_end() {
2609   if (collector_state()->concurrent_cycle_started()) {
2610     if (_cm->has_aborted()) {
2611       _gc_tracer_cm->report_concurrent_mode_failure();
2612     }
2613 
2614     _gc_timer_cm->register_gc_end();
2615     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2616 
2617     // Clear state variables to prepare for the next concurrent cycle.
2618      collector_state()->set_concurrent_cycle_started(false);
2619     _heap_summary_sent = false;
2620   }
2621 }
2622 
2623 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2624   if (collector_state()->concurrent_cycle_started()) {
2625     // This function can be called when:
2626     //  the cleanup pause is run
2627     //  the concurrent cycle is aborted before the cleanup pause.
2628     //  the concurrent cycle is aborted after the cleanup pause,
2629     //   but before the concurrent cycle end has been registered.
2630     // Make sure that we only send the heap information once.
2631     if (!_heap_summary_sent) {
2632       trace_heap_after_gc(_gc_tracer_cm);
2633       _heap_summary_sent = true;
2634     }
2635   }
2636 }
2637 
2638 void G1CollectedHeap::collect(GCCause::Cause cause) {
2639   assert_heap_not_locked();
2640 
2641   uint gc_count_before;
2642   uint old_marking_count_before;
2643   uint full_gc_count_before;
2644   bool retry_gc;
2645 
2646   do {
2647     retry_gc = false;
2648 
2649     {
2650       MutexLocker ml(Heap_lock);
2651 
2652       // Read the GC count while holding the Heap_lock
2653       gc_count_before = total_collections();
2654       full_gc_count_before = total_full_collections();
2655       old_marking_count_before = _old_marking_cycles_started;
2656     }
2657 
2658     if (should_do_concurrent_full_gc(cause)) {
2659       // Schedule an initial-mark evacuation pause that will start a
2660       // concurrent cycle. We're setting word_size to 0 which means that
2661       // we are not requesting a post-GC allocation.
2662       VM_G1IncCollectionPause op(gc_count_before,
2663                                  0,     /* word_size */
2664                                  true,  /* should_initiate_conc_mark */
2665                                  g1_policy()->max_pause_time_ms(),
2666                                  cause);
2667       op.set_allocation_context(AllocationContext::current());
2668 
2669       VMThread::execute(&op);
2670       if (!op.pause_succeeded()) {
2671         if (old_marking_count_before == _old_marking_cycles_started) {
2672           retry_gc = op.should_retry_gc();
2673         } else {
2674           // A Full GC happened while we were trying to schedule the
2675           // initial-mark GC. No point in starting a new cycle given
2676           // that the whole heap was collected anyway.
2677         }
2678 
2679         if (retry_gc) {
2680           if (GC_locker::is_active_and_needs_gc()) {
2681             GC_locker::stall_until_clear();
2682           }
2683         }
2684       }
2685     } else {
2686       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2687           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2688 
2689         // Schedule a standard evacuation pause. We're setting word_size
2690         // to 0 which means that we are not requesting a post-GC allocation.
2691         VM_G1IncCollectionPause op(gc_count_before,
2692                                    0,     /* word_size */
2693                                    false, /* should_initiate_conc_mark */
2694                                    g1_policy()->max_pause_time_ms(),
2695                                    cause);
2696         VMThread::execute(&op);
2697       } else {
2698         // Schedule a Full GC.
2699         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2700         VMThread::execute(&op);
2701       }
2702     }
2703   } while (retry_gc);
2704 }
2705 
2706 bool G1CollectedHeap::is_in(const void* p) const {
2707   if (_hrm.reserved().contains(p)) {
2708     // Given that we know that p is in the reserved space,
2709     // heap_region_containing_raw() should successfully
2710     // return the containing region.
2711     HeapRegion* hr = heap_region_containing_raw(p);
2712     return hr->is_in(p);
2713   } else {
2714     return false;
2715   }
2716 }
2717 
2718 #ifdef ASSERT
2719 bool G1CollectedHeap::is_in_exact(const void* p) const {
2720   bool contains = reserved_region().contains(p);
2721   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2722   if (contains && available) {
2723     return true;
2724   } else {
2725     return false;
2726   }
2727 }
2728 #endif
2729 
2730 bool G1CollectedHeap::obj_in_cs(oop obj) {
2731   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2732   return r != NULL && r->in_collection_set();
2733 }
2734 
2735 // Iteration functions.
2736 
2737 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2738 
2739 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2740   ExtendedOopClosure* _cl;
2741 public:
2742   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2743   bool doHeapRegion(HeapRegion* r) {
2744     if (!r->is_continues_humongous()) {
2745       r->oop_iterate(_cl);
2746     }
2747     return false;
2748   }
2749 };
2750 
2751 // Iterates an ObjectClosure over all objects within a HeapRegion.
2752 
2753 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2754   ObjectClosure* _cl;
2755 public:
2756   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2757   bool doHeapRegion(HeapRegion* r) {
2758     if (!r->is_continues_humongous()) {
2759       r->object_iterate(_cl);
2760     }
2761     return false;
2762   }
2763 };
2764 
2765 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2766   IterateObjectClosureRegionClosure blk(cl);
2767   heap_region_iterate(&blk);
2768 }
2769 
2770 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2771   _hrm.iterate(cl);
2772 }
2773 
2774 void
2775 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2776                                          uint worker_id,
2777                                          HeapRegionClaimer *hrclaimer,
2778                                          bool concurrent) const {
2779   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2780 }
2781 
2782 // Clear the cached CSet starting regions and (more importantly)
2783 // the time stamps. Called when we reset the GC time stamp.
2784 void G1CollectedHeap::clear_cset_start_regions() {
2785   assert(_worker_cset_start_region != NULL, "sanity");
2786   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2787 
2788   for (uint i = 0; i < ParallelGCThreads; i++) {
2789     _worker_cset_start_region[i] = NULL;
2790     _worker_cset_start_region_time_stamp[i] = 0;
2791   }
2792 }
2793 
2794 // Given the id of a worker, obtain or calculate a suitable
2795 // starting region for iterating over the current collection set.
2796 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2797   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2798 
2799   HeapRegion* result = NULL;
2800   unsigned gc_time_stamp = get_gc_time_stamp();
2801 
2802   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2803     // Cached starting region for current worker was set
2804     // during the current pause - so it's valid.
2805     // Note: the cached starting heap region may be NULL
2806     // (when the collection set is empty).
2807     result = _worker_cset_start_region[worker_i];
2808     assert(result == NULL || result->in_collection_set(), "sanity");
2809     return result;
2810   }
2811 
2812   // The cached entry was not valid so let's calculate
2813   // a suitable starting heap region for this worker.
2814 
2815   // We want the parallel threads to start their collection
2816   // set iteration at different collection set regions to
2817   // avoid contention.
2818   // If we have:
2819   //          n collection set regions
2820   //          p threads
2821   // Then thread t will start at region floor ((t * n) / p)
2822 
2823   result = g1_policy()->collection_set();
2824   uint cs_size = g1_policy()->cset_region_length();
2825   uint active_workers = workers()->active_workers();
2826 
2827   uint end_ind   = (cs_size * worker_i) / active_workers;
2828   uint start_ind = 0;
2829 
2830   if (worker_i > 0 &&
2831       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2832     // Previous workers starting region is valid
2833     // so let's iterate from there
2834     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2835     result = _worker_cset_start_region[worker_i - 1];
2836   }
2837 
2838   for (uint i = start_ind; i < end_ind; i++) {
2839     result = result->next_in_collection_set();
2840   }
2841 
2842   // Note: the calculated starting heap region may be NULL
2843   // (when the collection set is empty).
2844   assert(result == NULL || result->in_collection_set(), "sanity");
2845   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2846          "should be updated only once per pause");
2847   _worker_cset_start_region[worker_i] = result;
2848   OrderAccess::storestore();
2849   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2850   return result;
2851 }
2852 
2853 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2854   HeapRegion* r = g1_policy()->collection_set();
2855   while (r != NULL) {
2856     HeapRegion* next = r->next_in_collection_set();
2857     if (cl->doHeapRegion(r)) {
2858       cl->incomplete();
2859       return;
2860     }
2861     r = next;
2862   }
2863 }
2864 
2865 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2866                                                   HeapRegionClosure *cl) {
2867   if (r == NULL) {
2868     // The CSet is empty so there's nothing to do.
2869     return;
2870   }
2871 
2872   assert(r->in_collection_set(),
2873          "Start region must be a member of the collection set.");
2874   HeapRegion* cur = r;
2875   while (cur != NULL) {
2876     HeapRegion* next = cur->next_in_collection_set();
2877     if (cl->doHeapRegion(cur) && false) {
2878       cl->incomplete();
2879       return;
2880     }
2881     cur = next;
2882   }
2883   cur = g1_policy()->collection_set();
2884   while (cur != r) {
2885     HeapRegion* next = cur->next_in_collection_set();
2886     if (cl->doHeapRegion(cur) && false) {
2887       cl->incomplete();
2888       return;
2889     }
2890     cur = next;
2891   }
2892 }
2893 
2894 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2895   HeapRegion* result = _hrm.next_region_in_heap(from);
2896   while (result != NULL && result->is_pinned()) {
2897     result = _hrm.next_region_in_heap(result);
2898   }
2899   return result;
2900 }
2901 
2902 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2903   HeapRegion* hr = heap_region_containing(addr);
2904   return hr->block_start(addr);
2905 }
2906 
2907 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2908   HeapRegion* hr = heap_region_containing(addr);
2909   return hr->block_size(addr);
2910 }
2911 
2912 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2913   HeapRegion* hr = heap_region_containing(addr);
2914   return hr->block_is_obj(addr);
2915 }
2916 
2917 bool G1CollectedHeap::supports_tlab_allocation() const {
2918   return true;
2919 }
2920 
2921 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2922   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2923 }
2924 
2925 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2926   return young_list()->eden_used_bytes();
2927 }
2928 
2929 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2930 // must be equal to the humongous object limit.
2931 size_t G1CollectedHeap::max_tlab_size() const {
2932   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2933 }
2934 
2935 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2936   AllocationContext_t context = AllocationContext::current();
2937   return _allocator->unsafe_max_tlab_alloc(context);
2938 }
2939 
2940 size_t G1CollectedHeap::max_capacity() const {
2941   return _hrm.reserved().byte_size();
2942 }
2943 
2944 jlong G1CollectedHeap::millis_since_last_gc() {
2945   // assert(false, "NYI");
2946   return 0;
2947 }
2948 
2949 void G1CollectedHeap::prepare_for_verify() {
2950   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2951     ensure_parsability(false);
2952   }
2953   g1_rem_set()->prepare_for_verify();
2954 }
2955 
2956 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2957                                               VerifyOption vo) {
2958   switch (vo) {
2959   case VerifyOption_G1UsePrevMarking:
2960     return hr->obj_allocated_since_prev_marking(obj);
2961   case VerifyOption_G1UseNextMarking:
2962     return hr->obj_allocated_since_next_marking(obj);
2963   case VerifyOption_G1UseMarkWord:
2964     return false;
2965   default:
2966     ShouldNotReachHere();
2967   }
2968   return false; // keep some compilers happy
2969 }
2970 
2971 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2972   switch (vo) {
2973   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2974   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2975   case VerifyOption_G1UseMarkWord:    return NULL;
2976   default:                            ShouldNotReachHere();
2977   }
2978   return NULL; // keep some compilers happy
2979 }
2980 
2981 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2982   switch (vo) {
2983   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2984   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2985   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2986   default:                            ShouldNotReachHere();
2987   }
2988   return false; // keep some compilers happy
2989 }
2990 
2991 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2992   switch (vo) {
2993   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2994   case VerifyOption_G1UseNextMarking: return "NTAMS";
2995   case VerifyOption_G1UseMarkWord:    return "NONE";
2996   default:                            ShouldNotReachHere();
2997   }
2998   return NULL; // keep some compilers happy
2999 }
3000 
3001 class VerifyRootsClosure: public OopClosure {
3002 private:
3003   G1CollectedHeap* _g1h;
3004   VerifyOption     _vo;
3005   bool             _failures;
3006 public:
3007   // _vo == UsePrevMarking -> use "prev" marking information,
3008   // _vo == UseNextMarking -> use "next" marking information,
3009   // _vo == UseMarkWord    -> use mark word from object header.
3010   VerifyRootsClosure(VerifyOption vo) :
3011     _g1h(G1CollectedHeap::heap()),
3012     _vo(vo),
3013     _failures(false) { }
3014 
3015   bool failures() { return _failures; }
3016 
3017   template <class T> void do_oop_nv(T* p) {
3018     T heap_oop = oopDesc::load_heap_oop(p);
3019     if (!oopDesc::is_null(heap_oop)) {
3020       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3021       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3022         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
3023                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
3024         if (_vo == VerifyOption_G1UseMarkWord) {
3025           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
3026         }
3027         obj->print_on(gclog_or_tty);
3028         _failures = true;
3029       }
3030     }
3031   }
3032 
3033   void do_oop(oop* p)       { do_oop_nv(p); }
3034   void do_oop(narrowOop* p) { do_oop_nv(p); }
3035 };
3036 
3037 class G1VerifyCodeRootOopClosure: public OopClosure {
3038   G1CollectedHeap* _g1h;
3039   OopClosure* _root_cl;
3040   nmethod* _nm;
3041   VerifyOption _vo;
3042   bool _failures;
3043 
3044   template <class T> void do_oop_work(T* p) {
3045     // First verify that this root is live
3046     _root_cl->do_oop(p);
3047 
3048     if (!G1VerifyHeapRegionCodeRoots) {
3049       // We're not verifying the code roots attached to heap region.
3050       return;
3051     }
3052 
3053     // Don't check the code roots during marking verification in a full GC
3054     if (_vo == VerifyOption_G1UseMarkWord) {
3055       return;
3056     }
3057 
3058     // Now verify that the current nmethod (which contains p) is
3059     // in the code root list of the heap region containing the
3060     // object referenced by p.
3061 
3062     T heap_oop = oopDesc::load_heap_oop(p);
3063     if (!oopDesc::is_null(heap_oop)) {
3064       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3065 
3066       // Now fetch the region containing the object
3067       HeapRegion* hr = _g1h->heap_region_containing(obj);
3068       HeapRegionRemSet* hrrs = hr->rem_set();
3069       // Verify that the strong code root list for this region
3070       // contains the nmethod
3071       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3072         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
3073                                "from nmethod " PTR_FORMAT " not in strong "
3074                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
3075                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3076         _failures = true;
3077       }
3078     }
3079   }
3080 
3081 public:
3082   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3083     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3084 
3085   void do_oop(oop* p) { do_oop_work(p); }
3086   void do_oop(narrowOop* p) { do_oop_work(p); }
3087 
3088   void set_nmethod(nmethod* nm) { _nm = nm; }
3089   bool failures() { return _failures; }
3090 };
3091 
3092 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3093   G1VerifyCodeRootOopClosure* _oop_cl;
3094 
3095 public:
3096   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3097     _oop_cl(oop_cl) {}
3098 
3099   void do_code_blob(CodeBlob* cb) {
3100     nmethod* nm = cb->as_nmethod_or_null();
3101     if (nm != NULL) {
3102       _oop_cl->set_nmethod(nm);
3103       nm->oops_do(_oop_cl);
3104     }
3105   }
3106 };
3107 
3108 class YoungRefCounterClosure : public OopClosure {
3109   G1CollectedHeap* _g1h;
3110   int              _count;
3111  public:
3112   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3113   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3114   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3115 
3116   int count() { return _count; }
3117   void reset_count() { _count = 0; };
3118 };
3119 
3120 class VerifyKlassClosure: public KlassClosure {
3121   YoungRefCounterClosure _young_ref_counter_closure;
3122   OopClosure *_oop_closure;
3123  public:
3124   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3125   void do_klass(Klass* k) {
3126     k->oops_do(_oop_closure);
3127 
3128     _young_ref_counter_closure.reset_count();
3129     k->oops_do(&_young_ref_counter_closure);
3130     if (_young_ref_counter_closure.count() > 0) {
3131       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3132     }
3133   }
3134 };
3135 
3136 class VerifyLivenessOopClosure: public OopClosure {
3137   G1CollectedHeap* _g1h;
3138   VerifyOption _vo;
3139 public:
3140   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3141     _g1h(g1h), _vo(vo)
3142   { }
3143   void do_oop(narrowOop *p) { do_oop_work(p); }
3144   void do_oop(      oop *p) { do_oop_work(p); }
3145 
3146   template <class T> void do_oop_work(T *p) {
3147     oop obj = oopDesc::load_decode_heap_oop(p);
3148     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3149               "Dead object referenced by a not dead object");
3150   }
3151 };
3152 
3153 class VerifyObjsInRegionClosure: public ObjectClosure {
3154 private:
3155   G1CollectedHeap* _g1h;
3156   size_t _live_bytes;
3157   HeapRegion *_hr;
3158   VerifyOption _vo;
3159 public:
3160   // _vo == UsePrevMarking -> use "prev" marking information,
3161   // _vo == UseNextMarking -> use "next" marking information,
3162   // _vo == UseMarkWord    -> use mark word from object header.
3163   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3164     : _live_bytes(0), _hr(hr), _vo(vo) {
3165     _g1h = G1CollectedHeap::heap();
3166   }
3167   void do_object(oop o) {
3168     VerifyLivenessOopClosure isLive(_g1h, _vo);
3169     assert(o != NULL, "Huh?");
3170     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3171       // If the object is alive according to the mark word,
3172       // then verify that the marking information agrees.
3173       // Note we can't verify the contra-positive of the
3174       // above: if the object is dead (according to the mark
3175       // word), it may not be marked, or may have been marked
3176       // but has since became dead, or may have been allocated
3177       // since the last marking.
3178       if (_vo == VerifyOption_G1UseMarkWord) {
3179         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3180       }
3181 
3182       o->oop_iterate_no_header(&isLive);
3183       if (!_hr->obj_allocated_since_prev_marking(o)) {
3184         size_t obj_size = o->size();    // Make sure we don't overflow
3185         _live_bytes += (obj_size * HeapWordSize);
3186       }
3187     }
3188   }
3189   size_t live_bytes() { return _live_bytes; }
3190 };
3191 
3192 class VerifyArchiveOopClosure: public OopClosure {
3193 public:
3194   VerifyArchiveOopClosure(HeapRegion *hr) { }
3195   void do_oop(narrowOop *p) { do_oop_work(p); }
3196   void do_oop(      oop *p) { do_oop_work(p); }
3197 
3198   template <class T> void do_oop_work(T *p) {
3199     oop obj = oopDesc::load_decode_heap_oop(p);
3200     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3201               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3202                       p2i(p), p2i(obj)));
3203   }
3204 };
3205 
3206 class VerifyArchiveRegionClosure: public ObjectClosure {
3207 public:
3208   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3209   // Verify that all object pointers are to archive regions.
3210   void do_object(oop o) {
3211     VerifyArchiveOopClosure checkOop(NULL);
3212     assert(o != NULL, "Should not be here for NULL oops");
3213     o->oop_iterate_no_header(&checkOop);
3214   }
3215 };
3216 
3217 class VerifyRegionClosure: public HeapRegionClosure {
3218 private:
3219   bool             _par;
3220   VerifyOption     _vo;
3221   bool             _failures;
3222 public:
3223   // _vo == UsePrevMarking -> use "prev" marking information,
3224   // _vo == UseNextMarking -> use "next" marking information,
3225   // _vo == UseMarkWord    -> use mark word from object header.
3226   VerifyRegionClosure(bool par, VerifyOption vo)
3227     : _par(par),
3228       _vo(vo),
3229       _failures(false) {}
3230 
3231   bool failures() {
3232     return _failures;
3233   }
3234 
3235   bool doHeapRegion(HeapRegion* r) {
3236     // For archive regions, verify there are no heap pointers to
3237     // non-pinned regions. For all others, verify liveness info.
3238     if (r->is_archive()) {
3239       VerifyArchiveRegionClosure verify_oop_pointers(r);
3240       r->object_iterate(&verify_oop_pointers);
3241       return true;
3242     }
3243     if (!r->is_continues_humongous()) {
3244       bool failures = false;
3245       r->verify(_vo, &failures);
3246       if (failures) {
3247         _failures = true;
3248       } else {
3249         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3250         r->object_iterate(&not_dead_yet_cl);
3251         if (_vo != VerifyOption_G1UseNextMarking) {
3252           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3253             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3254                                    "max_live_bytes " SIZE_FORMAT " "
3255                                    "< calculated " SIZE_FORMAT,
3256                                    p2i(r->bottom()), p2i(r->end()),
3257                                    r->max_live_bytes(),
3258                                  not_dead_yet_cl.live_bytes());
3259             _failures = true;
3260           }
3261         } else {
3262           // When vo == UseNextMarking we cannot currently do a sanity
3263           // check on the live bytes as the calculation has not been
3264           // finalized yet.
3265         }
3266       }
3267     }
3268     return false; // stop the region iteration if we hit a failure
3269   }
3270 };
3271 
3272 // This is the task used for parallel verification of the heap regions
3273 
3274 class G1ParVerifyTask: public AbstractGangTask {
3275 private:
3276   G1CollectedHeap*  _g1h;
3277   VerifyOption      _vo;
3278   bool              _failures;
3279   HeapRegionClaimer _hrclaimer;
3280 
3281 public:
3282   // _vo == UsePrevMarking -> use "prev" marking information,
3283   // _vo == UseNextMarking -> use "next" marking information,
3284   // _vo == UseMarkWord    -> use mark word from object header.
3285   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3286       AbstractGangTask("Parallel verify task"),
3287       _g1h(g1h),
3288       _vo(vo),
3289       _failures(false),
3290       _hrclaimer(g1h->workers()->active_workers()) {}
3291 
3292   bool failures() {
3293     return _failures;
3294   }
3295 
3296   void work(uint worker_id) {
3297     HandleMark hm;
3298     VerifyRegionClosure blk(true, _vo);
3299     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3300     if (blk.failures()) {
3301       _failures = true;
3302     }
3303   }
3304 };
3305 
3306 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3307   if (SafepointSynchronize::is_at_safepoint()) {
3308     assert(Thread::current()->is_VM_thread(),
3309            "Expected to be executed serially by the VM thread at this point");
3310 
3311     if (!silent) { gclog_or_tty->print("Roots "); }
3312     VerifyRootsClosure rootsCl(vo);
3313     VerifyKlassClosure klassCl(this, &rootsCl);
3314     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3315 
3316     // We apply the relevant closures to all the oops in the
3317     // system dictionary, class loader data graph, the string table
3318     // and the nmethods in the code cache.
3319     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3320     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3321 
3322     {
3323       G1RootProcessor root_processor(this, 1);
3324       root_processor.process_all_roots(&rootsCl,
3325                                        &cldCl,
3326                                        &blobsCl);
3327     }
3328 
3329     bool failures = rootsCl.failures() || codeRootsCl.failures();
3330 
3331     if (vo != VerifyOption_G1UseMarkWord) {
3332       // If we're verifying during a full GC then the region sets
3333       // will have been torn down at the start of the GC. Therefore
3334       // verifying the region sets will fail. So we only verify
3335       // the region sets when not in a full GC.
3336       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3337       verify_region_sets();
3338     }
3339 
3340     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3341     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3342 
3343       G1ParVerifyTask task(this, vo);
3344       workers()->run_task(&task);
3345       if (task.failures()) {
3346         failures = true;
3347       }
3348 
3349     } else {
3350       VerifyRegionClosure blk(false, vo);
3351       heap_region_iterate(&blk);
3352       if (blk.failures()) {
3353         failures = true;
3354       }
3355     }
3356 
3357     if (G1StringDedup::is_enabled()) {
3358       if (!silent) gclog_or_tty->print("StrDedup ");
3359       G1StringDedup::verify();
3360     }
3361 
3362     if (failures) {
3363       gclog_or_tty->print_cr("Heap:");
3364       // It helps to have the per-region information in the output to
3365       // help us track down what went wrong. This is why we call
3366       // print_extended_on() instead of print_on().
3367       print_extended_on(gclog_or_tty);
3368       gclog_or_tty->cr();
3369       gclog_or_tty->flush();
3370     }
3371     guarantee(!failures, "there should not have been any failures");
3372   } else {
3373     if (!silent) {
3374       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3375       if (G1StringDedup::is_enabled()) {
3376         gclog_or_tty->print(", StrDedup");
3377       }
3378       gclog_or_tty->print(") ");
3379     }
3380   }
3381 }
3382 
3383 void G1CollectedHeap::verify(bool silent) {
3384   verify(silent, VerifyOption_G1UsePrevMarking);
3385 }
3386 
3387 double G1CollectedHeap::verify(bool guard, const char* msg) {
3388   double verify_time_ms = 0.0;
3389 
3390   if (guard && total_collections() >= VerifyGCStartAt) {
3391     double verify_start = os::elapsedTime();
3392     HandleMark hm;  // Discard invalid handles created during verification
3393     prepare_for_verify();
3394     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3395     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3396   }
3397 
3398   return verify_time_ms;
3399 }
3400 
3401 void G1CollectedHeap::verify_before_gc() {
3402   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3403   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3404 }
3405 
3406 void G1CollectedHeap::verify_after_gc() {
3407   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3408   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3409 }
3410 
3411 class PrintRegionClosure: public HeapRegionClosure {
3412   outputStream* _st;
3413 public:
3414   PrintRegionClosure(outputStream* st) : _st(st) {}
3415   bool doHeapRegion(HeapRegion* r) {
3416     r->print_on(_st);
3417     return false;
3418   }
3419 };
3420 
3421 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3422                                        const HeapRegion* hr,
3423                                        const VerifyOption vo) const {
3424   switch (vo) {
3425   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3426   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3427   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3428   default:                            ShouldNotReachHere();
3429   }
3430   return false; // keep some compilers happy
3431 }
3432 
3433 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3434                                        const VerifyOption vo) const {
3435   switch (vo) {
3436   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3437   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3438   case VerifyOption_G1UseMarkWord: {
3439     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3440     return !obj->is_gc_marked() && !hr->is_archive();
3441   }
3442   default:                            ShouldNotReachHere();
3443   }
3444   return false; // keep some compilers happy
3445 }
3446 
3447 void G1CollectedHeap::print_on(outputStream* st) const {
3448   st->print(" %-20s", "garbage-first heap");
3449   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3450             capacity()/K, used_unlocked()/K);
3451   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3452             p2i(_hrm.reserved().start()),
3453             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3454             p2i(_hrm.reserved().end()));
3455   st->cr();
3456   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3457   uint young_regions = _young_list->length();
3458   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3459             (size_t) young_regions * HeapRegion::GrainBytes / K);
3460   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3461   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3462             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3463   st->cr();
3464   MetaspaceAux::print_on(st);
3465 }
3466 
3467 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3468   print_on(st);
3469 
3470   // Print the per-region information.
3471   st->cr();
3472   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3473                "HS=humongous(starts), HC=humongous(continues), "
3474                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3475                "PTAMS=previous top-at-mark-start, "
3476                "NTAMS=next top-at-mark-start)");
3477   PrintRegionClosure blk(st);
3478   heap_region_iterate(&blk);
3479 }
3480 
3481 void G1CollectedHeap::print_on_error(outputStream* st) const {
3482   this->CollectedHeap::print_on_error(st);
3483 
3484   if (_cm != NULL) {
3485     st->cr();
3486     _cm->print_on_error(st);
3487   }
3488 }
3489 
3490 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3491   workers()->print_worker_threads_on(st);
3492   _cmThread->print_on(st);
3493   st->cr();
3494   _cm->print_worker_threads_on(st);
3495   _cg1r->print_worker_threads_on(st);
3496   if (G1StringDedup::is_enabled()) {
3497     G1StringDedup::print_worker_threads_on(st);
3498   }
3499 }
3500 
3501 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3502   workers()->threads_do(tc);
3503   tc->do_thread(_cmThread);
3504   _cg1r->threads_do(tc);
3505   if (G1StringDedup::is_enabled()) {
3506     G1StringDedup::threads_do(tc);
3507   }
3508 }
3509 
3510 void G1CollectedHeap::print_tracing_info() const {
3511   // We'll overload this to mean "trace GC pause statistics."
3512   if (TraceYoungGenTime || TraceOldGenTime) {
3513     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3514     // to that.
3515     g1_policy()->print_tracing_info();
3516   }
3517   if (G1SummarizeRSetStats) {
3518     g1_rem_set()->print_summary_info();
3519   }
3520   if (G1SummarizeConcMark) {
3521     concurrent_mark()->print_summary_info();
3522   }
3523   g1_policy()->print_yg_surv_rate_info();
3524 }
3525 
3526 #ifndef PRODUCT
3527 // Helpful for debugging RSet issues.
3528 
3529 class PrintRSetsClosure : public HeapRegionClosure {
3530 private:
3531   const char* _msg;
3532   size_t _occupied_sum;
3533 
3534 public:
3535   bool doHeapRegion(HeapRegion* r) {
3536     HeapRegionRemSet* hrrs = r->rem_set();
3537     size_t occupied = hrrs->occupied();
3538     _occupied_sum += occupied;
3539 
3540     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3541                            HR_FORMAT_PARAMS(r));
3542     if (occupied == 0) {
3543       gclog_or_tty->print_cr("  RSet is empty");
3544     } else {
3545       hrrs->print();
3546     }
3547     gclog_or_tty->print_cr("----------");
3548     return false;
3549   }
3550 
3551   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3552     gclog_or_tty->cr();
3553     gclog_or_tty->print_cr("========================================");
3554     gclog_or_tty->print_cr("%s", msg);
3555     gclog_or_tty->cr();
3556   }
3557 
3558   ~PrintRSetsClosure() {
3559     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3560     gclog_or_tty->print_cr("========================================");
3561     gclog_or_tty->cr();
3562   }
3563 };
3564 
3565 void G1CollectedHeap::print_cset_rsets() {
3566   PrintRSetsClosure cl("Printing CSet RSets");
3567   collection_set_iterate(&cl);
3568 }
3569 
3570 void G1CollectedHeap::print_all_rsets() {
3571   PrintRSetsClosure cl("Printing All RSets");;
3572   heap_region_iterate(&cl);
3573 }
3574 #endif // PRODUCT
3575 
3576 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3577   YoungList* young_list = heap()->young_list();
3578 
3579   size_t eden_used_bytes = young_list->eden_used_bytes();
3580   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3581 
3582   size_t eden_capacity_bytes =
3583     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3584 
3585   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3586   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3587 }
3588 
3589 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3590   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3591                        stats->unused(), stats->used(), stats->region_end_waste(),
3592                        stats->regions_filled(), stats->direct_allocated(),
3593                        stats->failure_used(), stats->failure_waste());
3594 }
3595 
3596 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3597   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3598   gc_tracer->report_gc_heap_summary(when, heap_summary);
3599 
3600   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3601   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3602 }
3603 
3604 
3605 G1CollectedHeap* G1CollectedHeap::heap() {
3606   CollectedHeap* heap = Universe::heap();
3607   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3608   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3609   return (G1CollectedHeap*)heap;
3610 }
3611 
3612 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3613   // always_do_update_barrier = false;
3614   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3615   // Fill TLAB's and such
3616   accumulate_statistics_all_tlabs();
3617   ensure_parsability(true);
3618 
3619   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3620       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3621     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3622   }
3623 }
3624 
3625 void G1CollectedHeap::gc_epilogue(bool full) {
3626 
3627   if (G1SummarizeRSetStats &&
3628       (G1SummarizeRSetStatsPeriod > 0) &&
3629       // we are at the end of the GC. Total collections has already been increased.
3630       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3631     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3632   }
3633 
3634   // FIXME: what is this about?
3635   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3636   // is set.
3637   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3638                         "derived pointer present"));
3639   // always_do_update_barrier = true;
3640 
3641   resize_all_tlabs();
3642   allocation_context_stats().update(full);
3643 
3644   // We have just completed a GC. Update the soft reference
3645   // policy with the new heap occupancy
3646   Universe::update_heap_info_at_gc();
3647 }
3648 
3649 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3650                                                uint gc_count_before,
3651                                                bool* succeeded,
3652                                                GCCause::Cause gc_cause) {
3653   assert_heap_not_locked_and_not_at_safepoint();
3654   g1_policy()->record_stop_world_start();
3655   VM_G1IncCollectionPause op(gc_count_before,
3656                              word_size,
3657                              false, /* should_initiate_conc_mark */
3658                              g1_policy()->max_pause_time_ms(),
3659                              gc_cause);
3660 
3661   op.set_allocation_context(AllocationContext::current());
3662   VMThread::execute(&op);
3663 
3664   HeapWord* result = op.result();
3665   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3666   assert(result == NULL || ret_succeeded,
3667          "the result should be NULL if the VM did not succeed");
3668   *succeeded = ret_succeeded;
3669 
3670   assert_heap_not_locked();
3671   return result;
3672 }
3673 
3674 void
3675 G1CollectedHeap::doConcurrentMark() {
3676   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3677   if (!_cmThread->in_progress()) {
3678     _cmThread->set_started();
3679     CGC_lock->notify();
3680   }
3681 }
3682 
3683 size_t G1CollectedHeap::pending_card_num() {
3684   size_t extra_cards = 0;
3685   JavaThread *curr = Threads::first();
3686   while (curr != NULL) {
3687     DirtyCardQueue& dcq = curr->dirty_card_queue();
3688     extra_cards += dcq.size();
3689     curr = curr->next();
3690   }
3691   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3692   size_t buffer_size = dcqs.buffer_size();
3693   size_t buffer_num = dcqs.completed_buffers_num();
3694 
3695   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3696   // in bytes - not the number of 'entries'. We need to convert
3697   // into a number of cards.
3698   return (buffer_size * buffer_num + extra_cards) / oopSize;
3699 }
3700 
3701 size_t G1CollectedHeap::cards_scanned() {
3702   return g1_rem_set()->cardsScanned();
3703 }
3704 
3705 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3706  private:
3707   size_t _total_humongous;
3708   size_t _candidate_humongous;
3709 
3710   DirtyCardQueue _dcq;
3711 
3712   // We don't nominate objects with many remembered set entries, on
3713   // the assumption that such objects are likely still live.
3714   bool is_remset_small(HeapRegion* region) const {
3715     HeapRegionRemSet* const rset = region->rem_set();
3716     return G1EagerReclaimHumongousObjectsWithStaleRefs
3717       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3718       : rset->is_empty();
3719   }
3720 
3721   bool is_typeArray_region(HeapRegion* region) const {
3722     return oop(region->bottom())->is_typeArray();
3723   }
3724 
3725   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3726     assert(region->is_starts_humongous(), "Must start a humongous object");
3727 
3728     // Candidate selection must satisfy the following constraints
3729     // while concurrent marking is in progress:
3730     //
3731     // * In order to maintain SATB invariants, an object must not be
3732     // reclaimed if it was allocated before the start of marking and
3733     // has not had its references scanned.  Such an object must have
3734     // its references (including type metadata) scanned to ensure no
3735     // live objects are missed by the marking process.  Objects
3736     // allocated after the start of concurrent marking don't need to
3737     // be scanned.
3738     //
3739     // * An object must not be reclaimed if it is on the concurrent
3740     // mark stack.  Objects allocated after the start of concurrent
3741     // marking are never pushed on the mark stack.
3742     //
3743     // Nominating only objects allocated after the start of concurrent
3744     // marking is sufficient to meet both constraints.  This may miss
3745     // some objects that satisfy the constraints, but the marking data
3746     // structures don't support efficiently performing the needed
3747     // additional tests or scrubbing of the mark stack.
3748     //
3749     // However, we presently only nominate is_typeArray() objects.
3750     // A humongous object containing references induces remembered
3751     // set entries on other regions.  In order to reclaim such an
3752     // object, those remembered sets would need to be cleaned up.
3753     //
3754     // We also treat is_typeArray() objects specially, allowing them
3755     // to be reclaimed even if allocated before the start of
3756     // concurrent mark.  For this we rely on mark stack insertion to
3757     // exclude is_typeArray() objects, preventing reclaiming an object
3758     // that is in the mark stack.  We also rely on the metadata for
3759     // such objects to be built-in and so ensured to be kept live.
3760     // Frequent allocation and drop of large binary blobs is an
3761     // important use case for eager reclaim, and this special handling
3762     // may reduce needed headroom.
3763 
3764     return is_typeArray_region(region) && is_remset_small(region);
3765   }
3766 
3767  public:
3768   RegisterHumongousWithInCSetFastTestClosure()
3769   : _total_humongous(0),
3770     _candidate_humongous(0),
3771     _dcq(&JavaThread::dirty_card_queue_set()) {
3772   }
3773 
3774   virtual bool doHeapRegion(HeapRegion* r) {
3775     if (!r->is_starts_humongous()) {
3776       return false;
3777     }
3778     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3779 
3780     bool is_candidate = humongous_region_is_candidate(g1h, r);
3781     uint rindex = r->hrm_index();
3782     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3783     if (is_candidate) {
3784       _candidate_humongous++;
3785       g1h->register_humongous_region_with_cset(rindex);
3786       // Is_candidate already filters out humongous object with large remembered sets.
3787       // If we have a humongous object with a few remembered sets, we simply flush these
3788       // remembered set entries into the DCQS. That will result in automatic
3789       // re-evaluation of their remembered set entries during the following evacuation
3790       // phase.
3791       if (!r->rem_set()->is_empty()) {
3792         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3793                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3794         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3795         HeapRegionRemSetIterator hrrs(r->rem_set());
3796         size_t card_index;
3797         while (hrrs.has_next(card_index)) {
3798           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3799           // The remembered set might contain references to already freed
3800           // regions. Filter out such entries to avoid failing card table
3801           // verification.
3802           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3803             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3804               *card_ptr = CardTableModRefBS::dirty_card_val();
3805               _dcq.enqueue(card_ptr);
3806             }
3807           }
3808         }
3809         r->rem_set()->clear_locked();
3810       }
3811       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3812     }
3813     _total_humongous++;
3814 
3815     return false;
3816   }
3817 
3818   size_t total_humongous() const { return _total_humongous; }
3819   size_t candidate_humongous() const { return _candidate_humongous; }
3820 
3821   void flush_rem_set_entries() { _dcq.flush(); }
3822 };
3823 
3824 void G1CollectedHeap::register_humongous_regions_with_cset() {
3825   if (!G1EagerReclaimHumongousObjects) {
3826     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3827     return;
3828   }
3829   double time = os::elapsed_counter();
3830 
3831   // Collect reclaim candidate information and register candidates with cset.
3832   RegisterHumongousWithInCSetFastTestClosure cl;
3833   heap_region_iterate(&cl);
3834 
3835   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3836   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3837                                                                   cl.total_humongous(),
3838                                                                   cl.candidate_humongous());
3839   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3840 
3841   // Finally flush all remembered set entries to re-check into the global DCQS.
3842   cl.flush_rem_set_entries();
3843 }
3844 
3845 void G1CollectedHeap::setup_surviving_young_words() {
3846   assert(_surviving_young_words == NULL, "pre-condition");
3847   uint array_length = g1_policy()->young_cset_region_length();
3848   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3849   if (_surviving_young_words == NULL) {
3850     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3851                           "Not enough space for young surv words summary.");
3852   }
3853   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3854 #ifdef ASSERT
3855   for (uint i = 0;  i < array_length; ++i) {
3856     assert( _surviving_young_words[i] == 0, "memset above" );
3857   }
3858 #endif // !ASSERT
3859 }
3860 
3861 void G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3862   assert_at_safepoint(true);
3863   uint array_length = g1_policy()->young_cset_region_length();
3864   for (uint i = 0; i < array_length; ++i) {
3865     _surviving_young_words[i] += surv_young_words[i];
3866   }
3867 }
3868 
3869 void G1CollectedHeap::cleanup_surviving_young_words() {
3870   guarantee( _surviving_young_words != NULL, "pre-condition" );
3871   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3872   _surviving_young_words = NULL;
3873 }
3874 
3875 #ifdef ASSERT
3876 class VerifyCSetClosure: public HeapRegionClosure {
3877 public:
3878   bool doHeapRegion(HeapRegion* hr) {
3879     // Here we check that the CSet region's RSet is ready for parallel
3880     // iteration. The fields that we'll verify are only manipulated
3881     // when the region is part of a CSet and is collected. Afterwards,
3882     // we reset these fields when we clear the region's RSet (when the
3883     // region is freed) so they are ready when the region is
3884     // re-allocated. The only exception to this is if there's an
3885     // evacuation failure and instead of freeing the region we leave
3886     // it in the heap. In that case, we reset these fields during
3887     // evacuation failure handling.
3888     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3889 
3890     // Here's a good place to add any other checks we'd like to
3891     // perform on CSet regions.
3892     return false;
3893   }
3894 };
3895 #endif // ASSERT
3896 
3897 uint G1CollectedHeap::num_task_queues() const {
3898   return _task_queues->size();
3899 }
3900 
3901 #if TASKQUEUE_STATS
3902 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3903   st->print_raw_cr("GC Task Stats");
3904   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3905   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3906 }
3907 
3908 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3909   print_taskqueue_stats_hdr(st);
3910 
3911   TaskQueueStats totals;
3912   const uint n = num_task_queues();
3913   for (uint i = 0; i < n; ++i) {
3914     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3915     totals += task_queue(i)->stats;
3916   }
3917   st->print_raw("tot "); totals.print(st); st->cr();
3918 
3919   DEBUG_ONLY(totals.verify());
3920 }
3921 
3922 void G1CollectedHeap::reset_taskqueue_stats() {
3923   const uint n = num_task_queues();
3924   for (uint i = 0; i < n; ++i) {
3925     task_queue(i)->stats.reset();
3926   }
3927 }
3928 #endif // TASKQUEUE_STATS
3929 
3930 void G1CollectedHeap::log_gc_header() {
3931   if (!G1Log::fine()) {
3932     return;
3933   }
3934 
3935   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3936 
3937   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3938     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3939     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3940 
3941   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3942 }
3943 
3944 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3945   if (!G1Log::fine()) {
3946     return;
3947   }
3948 
3949   if (G1Log::finer()) {
3950     if (evacuation_failed()) {
3951       gclog_or_tty->print(" (to-space exhausted)");
3952     }
3953     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3954     g1_policy()->phase_times()->note_gc_end();
3955     g1_policy()->phase_times()->print(pause_time_sec);
3956     g1_policy()->print_detailed_heap_transition();
3957   } else {
3958     if (evacuation_failed()) {
3959       gclog_or_tty->print("--");
3960     }
3961     g1_policy()->print_heap_transition();
3962     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3963   }
3964   gclog_or_tty->flush();
3965 }
3966 
3967 void G1CollectedHeap::wait_for_root_region_scanning() {
3968   double scan_wait_start = os::elapsedTime();
3969   // We have to wait until the CM threads finish scanning the
3970   // root regions as it's the only way to ensure that all the
3971   // objects on them have been correctly scanned before we start
3972   // moving them during the GC.
3973   bool waited = _cm->root_regions()->wait_until_scan_finished();
3974   double wait_time_ms = 0.0;
3975   if (waited) {
3976     double scan_wait_end = os::elapsedTime();
3977     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3978   }
3979   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3980 }
3981 
3982 bool
3983 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3984   assert_at_safepoint(true /* should_be_vm_thread */);
3985   guarantee(!is_gc_active(), "collection is not reentrant");
3986 
3987   if (GC_locker::check_active_before_gc()) {
3988     return false;
3989   }
3990 
3991   _gc_timer_stw->register_gc_start();
3992 
3993   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3994 
3995   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3996   ResourceMark rm;
3997 
3998   wait_for_root_region_scanning();
3999 
4000   G1Log::update_level();
4001   print_heap_before_gc();
4002   trace_heap_before_gc(_gc_tracer_stw);
4003 
4004   verify_region_sets_optional();
4005   verify_dirty_young_regions();
4006 
4007   // This call will decide whether this pause is an initial-mark
4008   // pause. If it is, during_initial_mark_pause() will return true
4009   // for the duration of this pause.
4010   g1_policy()->decide_on_conc_mark_initiation();
4011 
4012   // We do not allow initial-mark to be piggy-backed on a mixed GC.
4013   assert(!collector_state()->during_initial_mark_pause() ||
4014           collector_state()->gcs_are_young(), "sanity");
4015 
4016   // We also do not allow mixed GCs during marking.
4017   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
4018 
4019   // Record whether this pause is an initial mark. When the current
4020   // thread has completed its logging output and it's safe to signal
4021   // the CM thread, the flag's value in the policy has been reset.
4022   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
4023 
4024   // Inner scope for scope based logging, timers, and stats collection
4025   {
4026     EvacuationInfo evacuation_info;
4027 
4028     if (collector_state()->during_initial_mark_pause()) {
4029       // We are about to start a marking cycle, so we increment the
4030       // full collection counter.
4031       increment_old_marking_cycles_started();
4032       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
4033     }
4034 
4035     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
4036 
4037     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
4038 
4039     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
4040                                                                   workers()->active_workers(),
4041                                                                   Threads::number_of_non_daemon_threads());
4042     workers()->set_active_workers(active_workers);
4043 
4044     double pause_start_sec = os::elapsedTime();
4045     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
4046     log_gc_header();
4047 
4048     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
4049     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
4050 
4051     // If the secondary_free_list is not empty, append it to the
4052     // free_list. No need to wait for the cleanup operation to finish;
4053     // the region allocation code will check the secondary_free_list
4054     // and wait if necessary. If the G1StressConcRegionFreeing flag is
4055     // set, skip this step so that the region allocation code has to
4056     // get entries from the secondary_free_list.
4057     if (!G1StressConcRegionFreeing) {
4058       append_secondary_free_list_if_not_empty_with_lock();
4059     }
4060 
4061     assert(check_young_list_well_formed(), "young list should be well formed");
4062 
4063     // Don't dynamically change the number of GC threads this early.  A value of
4064     // 0 is used to indicate serial work.  When parallel work is done,
4065     // it will be set.
4066 
4067     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
4068       IsGCActiveMark x;
4069 
4070       gc_prologue(false);
4071       increment_total_collections(false /* full gc */);
4072       increment_gc_time_stamp();
4073 
4074       verify_before_gc();
4075 
4076       check_bitmaps("GC Start");
4077 
4078       COMPILER2_PRESENT(DerivedPointerTable::clear());
4079 
4080       // Please see comment in g1CollectedHeap.hpp and
4081       // G1CollectedHeap::ref_processing_init() to see how
4082       // reference processing currently works in G1.
4083 
4084       // Enable discovery in the STW reference processor
4085       ref_processor_stw()->enable_discovery();
4086 
4087       {
4088         // We want to temporarily turn off discovery by the
4089         // CM ref processor, if necessary, and turn it back on
4090         // on again later if we do. Using a scoped
4091         // NoRefDiscovery object will do this.
4092         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4093 
4094         // Forget the current alloc region (we might even choose it to be part
4095         // of the collection set!).
4096         _allocator->release_mutator_alloc_region();
4097 
4098         // We should call this after we retire the mutator alloc
4099         // region(s) so that all the ALLOC / RETIRE events are generated
4100         // before the start GC event.
4101         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4102 
4103         // This timing is only used by the ergonomics to handle our pause target.
4104         // It is unclear why this should not include the full pause. We will
4105         // investigate this in CR 7178365.
4106         //
4107         // Preserving the old comment here if that helps the investigation:
4108         //
4109         // The elapsed time induced by the start time below deliberately elides
4110         // the possible verification above.
4111         double sample_start_time_sec = os::elapsedTime();
4112 
4113 #if YOUNG_LIST_VERBOSE
4114         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4115         _young_list->print();
4116         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4117 #endif // YOUNG_LIST_VERBOSE
4118 
4119         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4120 
4121 #if YOUNG_LIST_VERBOSE
4122         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4123         _young_list->print();
4124 #endif // YOUNG_LIST_VERBOSE
4125 
4126         if (collector_state()->during_initial_mark_pause()) {
4127           concurrent_mark()->checkpointRootsInitialPre();
4128         }
4129 
4130 #if YOUNG_LIST_VERBOSE
4131         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4132         _young_list->print();
4133         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4134 #endif // YOUNG_LIST_VERBOSE
4135 
4136         g1_policy()->finalize_cset(target_pause_time_ms);
4137 
4138         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
4139 
4140         register_humongous_regions_with_cset();
4141 
4142         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4143 
4144         _cm->note_start_of_gc();
4145         // We call this after finalize_cset() to
4146         // ensure that the CSet has been finalized.
4147         _cm->verify_no_cset_oops();
4148 
4149         if (_hr_printer.is_active()) {
4150           HeapRegion* hr = g1_policy()->collection_set();
4151           while (hr != NULL) {
4152             _hr_printer.cset(hr);
4153             hr = hr->next_in_collection_set();
4154           }
4155         }
4156 
4157 #ifdef ASSERT
4158         VerifyCSetClosure cl;
4159         collection_set_iterate(&cl);
4160 #endif // ASSERT
4161 
4162         setup_surviving_young_words();
4163 
4164         // Initialize the GC alloc regions.
4165         _allocator->init_gc_alloc_regions(evacuation_info);
4166 
4167         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers());
4168         // Actually do the work...
4169         evacuate_collection_set(evacuation_info, &per_thread_states);
4170 
4171         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4172 
4173         eagerly_reclaim_humongous_regions();
4174 
4175         g1_policy()->clear_collection_set();
4176 
4177         cleanup_surviving_young_words();
4178 
4179         // Start a new incremental collection set for the next pause.
4180         g1_policy()->start_incremental_cset_building();
4181 
4182         clear_cset_fast_test();
4183 
4184         _young_list->reset_sampled_info();
4185 
4186         // Don't check the whole heap at this point as the
4187         // GC alloc regions from this pause have been tagged
4188         // as survivors and moved on to the survivor list.
4189         // Survivor regions will fail the !is_young() check.
4190         assert(check_young_list_empty(false /* check_heap */),
4191           "young list should be empty");
4192 
4193 #if YOUNG_LIST_VERBOSE
4194         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4195         _young_list->print();
4196 #endif // YOUNG_LIST_VERBOSE
4197 
4198         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4199                                              _young_list->first_survivor_region(),
4200                                              _young_list->last_survivor_region());
4201 
4202         _young_list->reset_auxilary_lists();
4203 
4204         if (evacuation_failed()) {
4205           set_used(recalculate_used());
4206           if (_archive_allocator != NULL) {
4207             _archive_allocator->clear_used();
4208           }
4209           for (uint i = 0; i < ParallelGCThreads; i++) {
4210             if (_evacuation_failed_info_array[i].has_failed()) {
4211               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4212             }
4213           }
4214         } else {
4215           // The "used" of the the collection set have already been subtracted
4216           // when they were freed.  Add in the bytes evacuated.
4217           increase_used(g1_policy()->bytes_copied_during_gc());
4218         }
4219 
4220         if (collector_state()->during_initial_mark_pause()) {
4221           // We have to do this before we notify the CM threads that
4222           // they can start working to make sure that all the
4223           // appropriate initialization is done on the CM object.
4224           concurrent_mark()->checkpointRootsInitialPost();
4225           collector_state()->set_mark_in_progress(true);
4226           // Note that we don't actually trigger the CM thread at
4227           // this point. We do that later when we're sure that
4228           // the current thread has completed its logging output.
4229         }
4230 
4231         allocate_dummy_regions();
4232 
4233 #if YOUNG_LIST_VERBOSE
4234         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4235         _young_list->print();
4236         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4237 #endif // YOUNG_LIST_VERBOSE
4238 
4239         _allocator->init_mutator_alloc_region();
4240 
4241         {
4242           size_t expand_bytes = g1_policy()->expansion_amount();
4243           if (expand_bytes > 0) {
4244             size_t bytes_before = capacity();
4245             // No need for an ergo verbose message here,
4246             // expansion_amount() does this when it returns a value > 0.
4247             if (!expand(expand_bytes)) {
4248               // We failed to expand the heap. Cannot do anything about it.
4249             }
4250           }
4251         }
4252 
4253         // We redo the verification but now wrt to the new CSet which
4254         // has just got initialized after the previous CSet was freed.
4255         _cm->verify_no_cset_oops();
4256         _cm->note_end_of_gc();
4257 
4258         // This timing is only used by the ergonomics to handle our pause target.
4259         // It is unclear why this should not include the full pause. We will
4260         // investigate this in CR 7178365.
4261         double sample_end_time_sec = os::elapsedTime();
4262         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4263         g1_policy()->record_collection_pause_end(pause_time_ms);
4264 
4265         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
4266         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
4267 
4268         MemoryService::track_memory_usage();
4269 
4270         // In prepare_for_verify() below we'll need to scan the deferred
4271         // update buffers to bring the RSets up-to-date if
4272         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4273         // the update buffers we'll probably need to scan cards on the
4274         // regions we just allocated to (i.e., the GC alloc
4275         // regions). However, during the last GC we called
4276         // set_saved_mark() on all the GC alloc regions, so card
4277         // scanning might skip the [saved_mark_word()...top()] area of
4278         // those regions (i.e., the area we allocated objects into
4279         // during the last GC). But it shouldn't. Given that
4280         // saved_mark_word() is conditional on whether the GC time stamp
4281         // on the region is current or not, by incrementing the GC time
4282         // stamp here we invalidate all the GC time stamps on all the
4283         // regions and saved_mark_word() will simply return top() for
4284         // all the regions. This is a nicer way of ensuring this rather
4285         // than iterating over the regions and fixing them. In fact, the
4286         // GC time stamp increment here also ensures that
4287         // saved_mark_word() will return top() between pauses, i.e.,
4288         // during concurrent refinement. So we don't need the
4289         // is_gc_active() check to decided which top to use when
4290         // scanning cards (see CR 7039627).
4291         increment_gc_time_stamp();
4292 
4293         verify_after_gc();
4294         check_bitmaps("GC End");
4295 
4296         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4297         ref_processor_stw()->verify_no_references_recorded();
4298 
4299         // CM reference discovery will be re-enabled if necessary.
4300       }
4301 
4302       // We should do this after we potentially expand the heap so
4303       // that all the COMMIT events are generated before the end GC
4304       // event, and after we retire the GC alloc regions so that all
4305       // RETIRE events are generated before the end GC event.
4306       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4307 
4308 #ifdef TRACESPINNING
4309       ParallelTaskTerminator::print_termination_counts();
4310 #endif
4311 
4312       gc_epilogue(false);
4313     }
4314 
4315     // Print the remainder of the GC log output.
4316     log_gc_footer(os::elapsedTime() - pause_start_sec);
4317 
4318     // It is not yet to safe to tell the concurrent mark to
4319     // start as we have some optional output below. We don't want the
4320     // output from the concurrent mark thread interfering with this
4321     // logging output either.
4322 
4323     _hrm.verify_optional();
4324     verify_region_sets_optional();
4325 
4326     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4327     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4328 
4329     print_heap_after_gc();
4330     trace_heap_after_gc(_gc_tracer_stw);
4331 
4332     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4333     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4334     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4335     // before any GC notifications are raised.
4336     g1mm()->update_sizes();
4337 
4338     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4339     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4340     _gc_timer_stw->register_gc_end();
4341     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4342   }
4343   // It should now be safe to tell the concurrent mark thread to start
4344   // without its logging output interfering with the logging output
4345   // that came from the pause.
4346 
4347   if (should_start_conc_mark) {
4348     // CAUTION: after the doConcurrentMark() call below,
4349     // the concurrent marking thread(s) could be running
4350     // concurrently with us. Make sure that anything after
4351     // this point does not assume that we are the only GC thread
4352     // running. Note: of course, the actual marking work will
4353     // not start until the safepoint itself is released in
4354     // SuspendibleThreadSet::desynchronize().
4355     doConcurrentMark();
4356   }
4357 
4358   return true;
4359 }
4360 
4361 void G1CollectedHeap::remove_self_forwarding_pointers() {
4362   double remove_self_forwards_start = os::elapsedTime();
4363 
4364   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4365   workers()->run_task(&rsfp_task);
4366 
4367   // Now restore saved marks, if any.
4368   for (uint i = 0; i < ParallelGCThreads; i++) {
4369     OopAndMarkOopStack& cur = _preserved_objs[i];
4370     while (!cur.is_empty()) {
4371       OopAndMarkOop elem = cur.pop();
4372       elem.set_mark();
4373     }
4374     cur.clear(true);
4375   }
4376 
4377   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4378 }
4379 
4380 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4381   if (!_evacuation_failed) {
4382     _evacuation_failed = true;
4383   }
4384 
4385   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4386 
4387   // We want to call the "for_promotion_failure" version only in the
4388   // case of a promotion failure.
4389   if (m->must_be_preserved_for_promotion_failure(obj)) {
4390     OopAndMarkOop elem(obj, m);
4391     _preserved_objs[worker_id].push(elem);
4392   }
4393 }
4394 
4395 void G1ParCopyHelper::mark_object(oop obj) {
4396   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4397 
4398   // We know that the object is not moving so it's safe to read its size.
4399   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4400 }
4401 
4402 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4403   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4404   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4405   assert(from_obj != to_obj, "should not be self-forwarded");
4406 
4407   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4408   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4409 
4410   // The object might be in the process of being copied by another
4411   // worker so we cannot trust that its to-space image is
4412   // well-formed. So we have to read its size from its from-space
4413   // image which we know should not be changing.
4414   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4415 }
4416 
4417 template <class T>
4418 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4419   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4420     _scanned_klass->record_modified_oops();
4421   }
4422 }
4423 
4424 template <G1Barrier barrier, G1Mark do_mark_object>
4425 template <class T>
4426 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4427   T heap_oop = oopDesc::load_heap_oop(p);
4428 
4429   if (oopDesc::is_null(heap_oop)) {
4430     return;
4431   }
4432 
4433   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4434 
4435   assert(_worker_id == _par_scan_state->worker_id(), "sanity");
4436 
4437   const InCSetState state = _g1->in_cset_state(obj);
4438   if (state.is_in_cset()) {
4439     oop forwardee;
4440     markOop m = obj->mark();
4441     if (m->is_marked()) {
4442       forwardee = (oop) m->decode_pointer();
4443     } else {
4444       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4445     }
4446     assert(forwardee != NULL, "forwardee should not be NULL");
4447     oopDesc::encode_store_heap_oop(p, forwardee);
4448     if (do_mark_object != G1MarkNone && forwardee != obj) {
4449       // If the object is self-forwarded we don't need to explicitly
4450       // mark it, the evacuation failure protocol will do so.
4451       mark_forwarded_object(obj, forwardee);
4452     }
4453 
4454     if (barrier == G1BarrierKlass) {
4455       do_klass_barrier(p, forwardee);
4456     }
4457   } else {
4458     if (state.is_humongous()) {
4459       _g1->set_humongous_is_live(obj);
4460     }
4461     // The object is not in collection set. If we're a root scanning
4462     // closure during an initial mark pause then attempt to mark the object.
4463     if (do_mark_object == G1MarkFromRoot) {
4464       mark_object(obj);
4465     }
4466   }
4467 }
4468 
4469 class G1ParEvacuateFollowersClosure : public VoidClosure {
4470 private:
4471   double _start_term;
4472   double _term_time;
4473   size_t _term_attempts;
4474 
4475   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4476   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4477 protected:
4478   G1CollectedHeap*              _g1h;
4479   G1ParScanThreadState*         _par_scan_state;
4480   RefToScanQueueSet*            _queues;
4481   ParallelTaskTerminator*       _terminator;
4482 
4483   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4484   RefToScanQueueSet*      queues()         { return _queues; }
4485   ParallelTaskTerminator* terminator()     { return _terminator; }
4486 
4487 public:
4488   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4489                                 G1ParScanThreadState* par_scan_state,
4490                                 RefToScanQueueSet* queues,
4491                                 ParallelTaskTerminator* terminator)
4492     : _g1h(g1h), _par_scan_state(par_scan_state),
4493       _queues(queues), _terminator(terminator),
4494       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4495 
4496   void do_void();
4497 
4498   double term_time() const { return _term_time; }
4499   size_t term_attempts() const { return _term_attempts; }
4500 
4501 private:
4502   inline bool offer_termination();
4503 };
4504 
4505 bool G1ParEvacuateFollowersClosure::offer_termination() {
4506   G1ParScanThreadState* const pss = par_scan_state();
4507   start_term_time();
4508   const bool res = terminator()->offer_termination();
4509   end_term_time();
4510   return res;
4511 }
4512 
4513 void G1ParEvacuateFollowersClosure::do_void() {
4514   G1ParScanThreadState* const pss = par_scan_state();
4515   pss->trim_queue();
4516   do {
4517     pss->steal_and_trim_queue(queues());
4518   } while (!offer_termination());
4519 }
4520 
4521 class G1KlassScanClosure : public KlassClosure {
4522  G1ParCopyHelper* _closure;
4523  bool             _process_only_dirty;
4524  int              _count;
4525  public:
4526   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4527       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4528   void do_klass(Klass* klass) {
4529     // If the klass has not been dirtied we know that there's
4530     // no references into  the young gen and we can skip it.
4531    if (!_process_only_dirty || klass->has_modified_oops()) {
4532       // Clean the klass since we're going to scavenge all the metadata.
4533       klass->clear_modified_oops();
4534 
4535       // Tell the closure that this klass is the Klass to scavenge
4536       // and is the one to dirty if oops are left pointing into the young gen.
4537       _closure->set_scanned_klass(klass);
4538 
4539       klass->oops_do(_closure);
4540 
4541       _closure->set_scanned_klass(NULL);
4542     }
4543     _count++;
4544   }
4545 };
4546 
4547 class G1ParTask : public AbstractGangTask {
4548 protected:
4549   G1CollectedHeap*         _g1h;
4550   G1ParScanThreadStateSet* _pss;
4551   RefToScanQueueSet*       _queues;
4552   G1RootProcessor*         _root_processor;
4553   ParallelTaskTerminator   _terminator;
4554   uint                     _n_workers;
4555 
4556 public:
4557   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4558     : AbstractGangTask("G1 collection"),
4559       _g1h(g1h),
4560       _pss(per_thread_states),
4561       _queues(task_queues),
4562       _root_processor(root_processor),
4563       _terminator(n_workers, _queues),
4564       _n_workers(n_workers)
4565   {}
4566 
4567   RefToScanQueueSet* queues() { return _queues; }
4568 
4569   RefToScanQueue *work_queue(int i) {
4570     return queues()->queue(i);
4571   }
4572 
4573   ParallelTaskTerminator* terminator() { return &_terminator; }
4574 
4575   // Helps out with CLD processing.
4576   //
4577   // During InitialMark we need to:
4578   // 1) Scavenge all CLDs for the young GC.
4579   // 2) Mark all objects directly reachable from strong CLDs.
4580   template <G1Mark do_mark_object>
4581   class G1CLDClosure : public CLDClosure {
4582     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4583     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4584     G1KlassScanClosure                                _klass_in_cld_closure;
4585     bool                                              _claim;
4586 
4587    public:
4588     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4589                  bool only_young, bool claim)
4590         : _oop_closure(oop_closure),
4591           _oop_in_klass_closure(oop_closure->g1(),
4592                                 oop_closure->pss()),
4593           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4594           _claim(claim) {
4595 
4596     }
4597 
4598     void do_cld(ClassLoaderData* cld) {
4599       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4600     }
4601   };
4602 
4603   void work(uint worker_id) {
4604     if (worker_id >= _n_workers) return;  // no work needed this round
4605 
4606     double start_sec = os::elapsedTime();
4607     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4608 
4609     {
4610       ResourceMark rm;
4611       HandleMark   hm;
4612 
4613       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4614 
4615       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4616       pss->set_ref_processor(rp);
4617 
4618       bool only_young = _g1h->collector_state()->gcs_are_young();
4619 
4620       // Non-IM young GC.
4621       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, pss);
4622       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4623                                                                                only_young, // Only process dirty klasses.
4624                                                                                false);     // No need to claim CLDs.
4625       // IM young GC.
4626       //    Strong roots closures.
4627       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, pss);
4628       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4629                                                                                false, // Process all klasses.
4630                                                                                true); // Need to claim CLDs.
4631       //    Weak roots closures.
4632       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, pss);
4633       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4634                                                                                     false, // Process all klasses.
4635                                                                                     true); // Need to claim CLDs.
4636 
4637       OopClosure* strong_root_cl;
4638       OopClosure* weak_root_cl;
4639       CLDClosure* strong_cld_cl;
4640       CLDClosure* weak_cld_cl;
4641 
4642       bool trace_metadata = false;
4643 
4644       if (_g1h->collector_state()->during_initial_mark_pause()) {
4645         // We also need to mark copied objects.
4646         strong_root_cl = &scan_mark_root_cl;
4647         strong_cld_cl  = &scan_mark_cld_cl;
4648         if (ClassUnloadingWithConcurrentMark) {
4649           weak_root_cl = &scan_mark_weak_root_cl;
4650           weak_cld_cl  = &scan_mark_weak_cld_cl;
4651           trace_metadata = true;
4652         } else {
4653           weak_root_cl = &scan_mark_root_cl;
4654           weak_cld_cl  = &scan_mark_cld_cl;
4655         }
4656       } else {
4657         strong_root_cl = &scan_only_root_cl;
4658         weak_root_cl   = &scan_only_root_cl;
4659         strong_cld_cl  = &scan_only_cld_cl;
4660         weak_cld_cl    = &scan_only_cld_cl;
4661       }
4662 
4663       double start_strong_roots_sec = os::elapsedTime();
4664       _root_processor->evacuate_roots(strong_root_cl,
4665                                       weak_root_cl,
4666                                       strong_cld_cl,
4667                                       weak_cld_cl,
4668                                       trace_metadata,
4669                                       worker_id);
4670 
4671       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4672       _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4673                                                       weak_root_cl,
4674                                                       worker_id);
4675       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4676 
4677       double term_sec = 0.0;
4678       size_t evac_term_attempts = 0;
4679       {
4680         double start = os::elapsedTime();
4681         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4682         evac.do_void();
4683 
4684         evac_term_attempts = evac.term_attempts();
4685         term_sec = evac.term_time();
4686         double elapsed_sec = os::elapsedTime() - start;
4687         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4688         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4689         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4690       }
4691 
4692       assert(pss->queue_is_empty(), "should be empty");
4693 
4694       if (PrintTerminationStats) {
4695         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4696         size_t lab_waste;
4697         size_t lab_undo_waste;
4698         pss->waste(lab_waste, lab_undo_waste);
4699         _g1h->print_termination_stats(gclog_or_tty,
4700                                       worker_id,
4701                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4702                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4703                                       term_sec * 1000.0,                          /* evac term time */
4704                                       evac_term_attempts,                         /* evac term attempts */
4705                                       lab_waste,                                  /* alloc buffer waste */
4706                                       lab_undo_waste                              /* undo waste */
4707                                       );
4708       }
4709 
4710       // Close the inner scope so that the ResourceMark and HandleMark
4711       // destructors are executed here and are included as part of the
4712       // "GC Worker Time".
4713     }
4714     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4715   }
4716 };
4717 
4718 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4719   st->print_raw_cr("GC Termination Stats");
4720   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4721   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4722   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4723 }
4724 
4725 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4726                                               uint worker_id,
4727                                               double elapsed_ms,
4728                                               double strong_roots_ms,
4729                                               double term_ms,
4730                                               size_t term_attempts,
4731                                               size_t alloc_buffer_waste,
4732                                               size_t undo_waste) const {
4733   st->print_cr("%3d %9.2f %9.2f %6.2f "
4734                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4735                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4736                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4737                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4738                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4739                alloc_buffer_waste * HeapWordSize / K,
4740                undo_waste * HeapWordSize / K);
4741 }
4742 
4743 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4744 private:
4745   BoolObjectClosure* _is_alive;
4746   int _initial_string_table_size;
4747   int _initial_symbol_table_size;
4748 
4749   bool  _process_strings;
4750   int _strings_processed;
4751   int _strings_removed;
4752 
4753   bool  _process_symbols;
4754   int _symbols_processed;
4755   int _symbols_removed;
4756 
4757 public:
4758   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4759     AbstractGangTask("String/Symbol Unlinking"),
4760     _is_alive(is_alive),
4761     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4762     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4763 
4764     _initial_string_table_size = StringTable::the_table()->table_size();
4765     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4766     if (process_strings) {
4767       StringTable::clear_parallel_claimed_index();
4768     }
4769     if (process_symbols) {
4770       SymbolTable::clear_parallel_claimed_index();
4771     }
4772   }
4773 
4774   ~G1StringSymbolTableUnlinkTask() {
4775     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4776               err_msg("claim value %d after unlink less than initial string table size %d",
4777                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4778     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4779               err_msg("claim value %d after unlink less than initial symbol table size %d",
4780                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4781 
4782     if (G1TraceStringSymbolTableScrubbing) {
4783       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4784                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4785                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4786                              strings_processed(), strings_removed(),
4787                              symbols_processed(), symbols_removed());
4788     }
4789   }
4790 
4791   void work(uint worker_id) {
4792     int strings_processed = 0;
4793     int strings_removed = 0;
4794     int symbols_processed = 0;
4795     int symbols_removed = 0;
4796     if (_process_strings) {
4797       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4798       Atomic::add(strings_processed, &_strings_processed);
4799       Atomic::add(strings_removed, &_strings_removed);
4800     }
4801     if (_process_symbols) {
4802       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4803       Atomic::add(symbols_processed, &_symbols_processed);
4804       Atomic::add(symbols_removed, &_symbols_removed);
4805     }
4806   }
4807 
4808   size_t strings_processed() const { return (size_t)_strings_processed; }
4809   size_t strings_removed()   const { return (size_t)_strings_removed; }
4810 
4811   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4812   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4813 };
4814 
4815 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4816 private:
4817   static Monitor* _lock;
4818 
4819   BoolObjectClosure* const _is_alive;
4820   const bool               _unloading_occurred;
4821   const uint               _num_workers;
4822 
4823   // Variables used to claim nmethods.
4824   nmethod* _first_nmethod;
4825   volatile nmethod* _claimed_nmethod;
4826 
4827   // The list of nmethods that need to be processed by the second pass.
4828   volatile nmethod* _postponed_list;
4829   volatile uint     _num_entered_barrier;
4830 
4831  public:
4832   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4833       _is_alive(is_alive),
4834       _unloading_occurred(unloading_occurred),
4835       _num_workers(num_workers),
4836       _first_nmethod(NULL),
4837       _claimed_nmethod(NULL),
4838       _postponed_list(NULL),
4839       _num_entered_barrier(0)
4840   {
4841     nmethod::increase_unloading_clock();
4842     // Get first alive nmethod
4843     NMethodIterator iter = NMethodIterator();
4844     if(iter.next_alive()) {
4845       _first_nmethod = iter.method();
4846     }
4847     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4848   }
4849 
4850   ~G1CodeCacheUnloadingTask() {
4851     CodeCache::verify_clean_inline_caches();
4852 
4853     CodeCache::set_needs_cache_clean(false);
4854     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4855 
4856     CodeCache::verify_icholder_relocations();
4857   }
4858 
4859  private:
4860   void add_to_postponed_list(nmethod* nm) {
4861       nmethod* old;
4862       do {
4863         old = (nmethod*)_postponed_list;
4864         nm->set_unloading_next(old);
4865       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4866   }
4867 
4868   void clean_nmethod(nmethod* nm) {
4869     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4870 
4871     if (postponed) {
4872       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4873       add_to_postponed_list(nm);
4874     }
4875 
4876     // Mark that this thread has been cleaned/unloaded.
4877     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4878     nm->set_unloading_clock(nmethod::global_unloading_clock());
4879   }
4880 
4881   void clean_nmethod_postponed(nmethod* nm) {
4882     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4883   }
4884 
4885   static const int MaxClaimNmethods = 16;
4886 
4887   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4888     nmethod* first;
4889     NMethodIterator last;
4890 
4891     do {
4892       *num_claimed_nmethods = 0;
4893 
4894       first = (nmethod*)_claimed_nmethod;
4895       last = NMethodIterator(first);
4896 
4897       if (first != NULL) {
4898 
4899         for (int i = 0; i < MaxClaimNmethods; i++) {
4900           if (!last.next_alive()) {
4901             break;
4902           }
4903           claimed_nmethods[i] = last.method();
4904           (*num_claimed_nmethods)++;
4905         }
4906       }
4907 
4908     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4909   }
4910 
4911   nmethod* claim_postponed_nmethod() {
4912     nmethod* claim;
4913     nmethod* next;
4914 
4915     do {
4916       claim = (nmethod*)_postponed_list;
4917       if (claim == NULL) {
4918         return NULL;
4919       }
4920 
4921       next = claim->unloading_next();
4922 
4923     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4924 
4925     return claim;
4926   }
4927 
4928  public:
4929   // Mark that we're done with the first pass of nmethod cleaning.
4930   void barrier_mark(uint worker_id) {
4931     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4932     _num_entered_barrier++;
4933     if (_num_entered_barrier == _num_workers) {
4934       ml.notify_all();
4935     }
4936   }
4937 
4938   // See if we have to wait for the other workers to
4939   // finish their first-pass nmethod cleaning work.
4940   void barrier_wait(uint worker_id) {
4941     if (_num_entered_barrier < _num_workers) {
4942       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4943       while (_num_entered_barrier < _num_workers) {
4944           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4945       }
4946     }
4947   }
4948 
4949   // Cleaning and unloading of nmethods. Some work has to be postponed
4950   // to the second pass, when we know which nmethods survive.
4951   void work_first_pass(uint worker_id) {
4952     // The first nmethods is claimed by the first worker.
4953     if (worker_id == 0 && _first_nmethod != NULL) {
4954       clean_nmethod(_first_nmethod);
4955       _first_nmethod = NULL;
4956     }
4957 
4958     int num_claimed_nmethods;
4959     nmethod* claimed_nmethods[MaxClaimNmethods];
4960 
4961     while (true) {
4962       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4963 
4964       if (num_claimed_nmethods == 0) {
4965         break;
4966       }
4967 
4968       for (int i = 0; i < num_claimed_nmethods; i++) {
4969         clean_nmethod(claimed_nmethods[i]);
4970       }
4971     }
4972   }
4973 
4974   void work_second_pass(uint worker_id) {
4975     nmethod* nm;
4976     // Take care of postponed nmethods.
4977     while ((nm = claim_postponed_nmethod()) != NULL) {
4978       clean_nmethod_postponed(nm);
4979     }
4980   }
4981 };
4982 
4983 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4984 
4985 class G1KlassCleaningTask : public StackObj {
4986   BoolObjectClosure*                      _is_alive;
4987   volatile jint                           _clean_klass_tree_claimed;
4988   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4989 
4990  public:
4991   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4992       _is_alive(is_alive),
4993       _clean_klass_tree_claimed(0),
4994       _klass_iterator() {
4995   }
4996 
4997  private:
4998   bool claim_clean_klass_tree_task() {
4999     if (_clean_klass_tree_claimed) {
5000       return false;
5001     }
5002 
5003     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5004   }
5005 
5006   InstanceKlass* claim_next_klass() {
5007     Klass* klass;
5008     do {
5009       klass =_klass_iterator.next_klass();
5010     } while (klass != NULL && !klass->oop_is_instance());
5011 
5012     return (InstanceKlass*)klass;
5013   }
5014 
5015 public:
5016 
5017   void clean_klass(InstanceKlass* ik) {
5018     ik->clean_implementors_list(_is_alive);
5019     ik->clean_method_data(_is_alive);
5020 
5021     // G1 specific cleanup work that has
5022     // been moved here to be done in parallel.
5023     ik->clean_dependent_nmethods();
5024   }
5025 
5026   void work() {
5027     ResourceMark rm;
5028 
5029     // One worker will clean the subklass/sibling klass tree.
5030     if (claim_clean_klass_tree_task()) {
5031       Klass::clean_subklass_tree(_is_alive);
5032     }
5033 
5034     // All workers will help cleaning the classes,
5035     InstanceKlass* klass;
5036     while ((klass = claim_next_klass()) != NULL) {
5037       clean_klass(klass);
5038     }
5039   }
5040 };
5041 
5042 // To minimize the remark pause times, the tasks below are done in parallel.
5043 class G1ParallelCleaningTask : public AbstractGangTask {
5044 private:
5045   G1StringSymbolTableUnlinkTask _string_symbol_task;
5046   G1CodeCacheUnloadingTask      _code_cache_task;
5047   G1KlassCleaningTask           _klass_cleaning_task;
5048 
5049 public:
5050   // The constructor is run in the VMThread.
5051   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5052       AbstractGangTask("Parallel Cleaning"),
5053       _string_symbol_task(is_alive, process_strings, process_symbols),
5054       _code_cache_task(num_workers, is_alive, unloading_occurred),
5055       _klass_cleaning_task(is_alive) {
5056   }
5057 
5058   // The parallel work done by all worker threads.
5059   void work(uint worker_id) {
5060     // Do first pass of code cache cleaning.
5061     _code_cache_task.work_first_pass(worker_id);
5062 
5063     // Let the threads mark that the first pass is done.
5064     _code_cache_task.barrier_mark(worker_id);
5065 
5066     // Clean the Strings and Symbols.
5067     _string_symbol_task.work(worker_id);
5068 
5069     // Wait for all workers to finish the first code cache cleaning pass.
5070     _code_cache_task.barrier_wait(worker_id);
5071 
5072     // Do the second code cache cleaning work, which realize on
5073     // the liveness information gathered during the first pass.
5074     _code_cache_task.work_second_pass(worker_id);
5075 
5076     // Clean all klasses that were not unloaded.
5077     _klass_cleaning_task.work();
5078   }
5079 };
5080 
5081 
5082 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5083                                         bool process_strings,
5084                                         bool process_symbols,
5085                                         bool class_unloading_occurred) {
5086   uint n_workers = workers()->active_workers();
5087 
5088   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5089                                         n_workers, class_unloading_occurred);
5090   workers()->run_task(&g1_unlink_task);
5091 }
5092 
5093 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5094                                                      bool process_strings, bool process_symbols) {
5095   {
5096     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5097     workers()->run_task(&g1_unlink_task);
5098   }
5099 
5100   if (G1StringDedup::is_enabled()) {
5101     G1StringDedup::unlink(is_alive);
5102   }
5103 }
5104 
5105 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5106  private:
5107   DirtyCardQueueSet* _queue;
5108  public:
5109   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5110 
5111   virtual void work(uint worker_id) {
5112     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5113     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5114 
5115     RedirtyLoggedCardTableEntryClosure cl;
5116     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5117 
5118     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5119   }
5120 };
5121 
5122 void G1CollectedHeap::redirty_logged_cards() {
5123   double redirty_logged_cards_start = os::elapsedTime();
5124 
5125   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5126   dirty_card_queue_set().reset_for_par_iteration();
5127   workers()->run_task(&redirty_task);
5128 
5129   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5130   dcq.merge_bufferlists(&dirty_card_queue_set());
5131   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5132 
5133   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5134 }
5135 
5136 // Weak Reference Processing support
5137 
5138 // An always "is_alive" closure that is used to preserve referents.
5139 // If the object is non-null then it's alive.  Used in the preservation
5140 // of referent objects that are pointed to by reference objects
5141 // discovered by the CM ref processor.
5142 class G1AlwaysAliveClosure: public BoolObjectClosure {
5143   G1CollectedHeap* _g1;
5144 public:
5145   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5146   bool do_object_b(oop p) {
5147     if (p != NULL) {
5148       return true;
5149     }
5150     return false;
5151   }
5152 };
5153 
5154 bool G1STWIsAliveClosure::do_object_b(oop p) {
5155   // An object is reachable if it is outside the collection set,
5156   // or is inside and copied.
5157   return !_g1->is_in_cset(p) || p->is_forwarded();
5158 }
5159 
5160 // Non Copying Keep Alive closure
5161 class G1KeepAliveClosure: public OopClosure {
5162   G1CollectedHeap* _g1;
5163 public:
5164   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5165   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5166   void do_oop(oop* p) {
5167     oop obj = *p;
5168     assert(obj != NULL, "the caller should have filtered out NULL values");
5169 
5170     const InCSetState cset_state = _g1->in_cset_state(obj);
5171     if (!cset_state.is_in_cset_or_humongous()) {
5172       return;
5173     }
5174     if (cset_state.is_in_cset()) {
5175       assert( obj->is_forwarded(), "invariant" );
5176       *p = obj->forwardee();
5177     } else {
5178       assert(!obj->is_forwarded(), "invariant" );
5179       assert(cset_state.is_humongous(),
5180              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5181       _g1->set_humongous_is_live(obj);
5182     }
5183   }
5184 };
5185 
5186 // Copying Keep Alive closure - can be called from both
5187 // serial and parallel code as long as different worker
5188 // threads utilize different G1ParScanThreadState instances
5189 // and different queues.
5190 
5191 class G1CopyingKeepAliveClosure: public OopClosure {
5192   G1CollectedHeap*         _g1h;
5193   OopClosure*              _copy_non_heap_obj_cl;
5194   G1ParScanThreadState*    _par_scan_state;
5195 
5196 public:
5197   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5198                             OopClosure* non_heap_obj_cl,
5199                             G1ParScanThreadState* pss):
5200     _g1h(g1h),
5201     _copy_non_heap_obj_cl(non_heap_obj_cl),
5202     _par_scan_state(pss)
5203   {}
5204 
5205   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5206   virtual void do_oop(      oop* p) { do_oop_work(p); }
5207 
5208   template <class T> void do_oop_work(T* p) {
5209     oop obj = oopDesc::load_decode_heap_oop(p);
5210 
5211     if (_g1h->is_in_cset_or_humongous(obj)) {
5212       // If the referent object has been forwarded (either copied
5213       // to a new location or to itself in the event of an
5214       // evacuation failure) then we need to update the reference
5215       // field and, if both reference and referent are in the G1
5216       // heap, update the RSet for the referent.
5217       //
5218       // If the referent has not been forwarded then we have to keep
5219       // it alive by policy. Therefore we have copy the referent.
5220       //
5221       // If the reference field is in the G1 heap then we can push
5222       // on the PSS queue. When the queue is drained (after each
5223       // phase of reference processing) the object and it's followers
5224       // will be copied, the reference field set to point to the
5225       // new location, and the RSet updated. Otherwise we need to
5226       // use the the non-heap or metadata closures directly to copy
5227       // the referent object and update the pointer, while avoiding
5228       // updating the RSet.
5229 
5230       if (_g1h->is_in_g1_reserved(p)) {
5231         _par_scan_state->push_on_queue(p);
5232       } else {
5233         assert(!Metaspace::contains((const void*)p),
5234                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5235         _copy_non_heap_obj_cl->do_oop(p);
5236       }
5237     }
5238   }
5239 };
5240 
5241 // Serial drain queue closure. Called as the 'complete_gc'
5242 // closure for each discovered list in some of the
5243 // reference processing phases.
5244 
5245 class G1STWDrainQueueClosure: public VoidClosure {
5246 protected:
5247   G1CollectedHeap* _g1h;
5248   G1ParScanThreadState* _par_scan_state;
5249 
5250   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5251 
5252 public:
5253   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5254     _g1h(g1h),
5255     _par_scan_state(pss)
5256   { }
5257 
5258   void do_void() {
5259     G1ParScanThreadState* const pss = par_scan_state();
5260     pss->trim_queue();
5261   }
5262 };
5263 
5264 // Parallel Reference Processing closures
5265 
5266 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5267 // processing during G1 evacuation pauses.
5268 
5269 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5270 private:
5271   G1CollectedHeap*          _g1h;
5272   G1ParScanThreadStateSet*  _pss;
5273   RefToScanQueueSet*        _queues;
5274   WorkGang*                 _workers;
5275   uint                      _active_workers;
5276 
5277 public:
5278   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5279                            G1ParScanThreadStateSet* per_thread_states,
5280                            WorkGang* workers,
5281                            RefToScanQueueSet *task_queues,
5282                            uint n_workers) :
5283     _g1h(g1h),
5284     _pss(per_thread_states),
5285     _queues(task_queues),
5286     _workers(workers),
5287     _active_workers(n_workers)
5288   {
5289     assert(n_workers > 0, "shouldn't call this otherwise");
5290   }
5291 
5292   // Executes the given task using concurrent marking worker threads.
5293   virtual void execute(ProcessTask& task);
5294   virtual void execute(EnqueueTask& task);
5295 };
5296 
5297 // Gang task for possibly parallel reference processing
5298 
5299 class G1STWRefProcTaskProxy: public AbstractGangTask {
5300   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5301   ProcessTask&     _proc_task;
5302   G1CollectedHeap* _g1h;
5303   G1ParScanThreadStateSet* _pss;
5304   RefToScanQueueSet* _task_queues;
5305   ParallelTaskTerminator* _terminator;
5306 
5307 public:
5308   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5309                         G1CollectedHeap* g1h,
5310                         G1ParScanThreadStateSet* per_thread_states,
5311                         RefToScanQueueSet *task_queues,
5312                         ParallelTaskTerminator* terminator) :
5313     AbstractGangTask("Process reference objects in parallel"),
5314     _proc_task(proc_task),
5315     _g1h(g1h),
5316     _pss(per_thread_states),
5317     _task_queues(task_queues),
5318     _terminator(terminator)
5319   {}
5320 
5321   virtual void work(uint worker_id) {
5322     // The reference processing task executed by a single worker.
5323     ResourceMark rm;
5324     HandleMark   hm;
5325 
5326     G1STWIsAliveClosure is_alive(_g1h);
5327 
5328     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
5329     pss->set_ref_processor(NULL);
5330 
5331     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, pss);
5332 
5333     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, pss);
5334 
5335     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5336 
5337     if (_g1h->collector_state()->during_initial_mark_pause()) {
5338       // We also need to mark copied objects.
5339       copy_non_heap_cl = &copy_mark_non_heap_cl;
5340     }
5341 
5342     // Keep alive closure.
5343     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, pss);
5344 
5345     // Complete GC closure
5346     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
5347 
5348     // Call the reference processing task's work routine.
5349     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5350 
5351     // Note we cannot assert that the refs array is empty here as not all
5352     // of the processing tasks (specifically phase2 - pp2_work) execute
5353     // the complete_gc closure (which ordinarily would drain the queue) so
5354     // the queue may not be empty.
5355   }
5356 };
5357 
5358 // Driver routine for parallel reference processing.
5359 // Creates an instance of the ref processing gang
5360 // task and has the worker threads execute it.
5361 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5362   assert(_workers != NULL, "Need parallel worker threads.");
5363 
5364   ParallelTaskTerminator terminator(_active_workers, _queues);
5365   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
5366 
5367   _workers->run_task(&proc_task_proxy);
5368 }
5369 
5370 // Gang task for parallel reference enqueueing.
5371 
5372 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5373   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5374   EnqueueTask& _enq_task;
5375 
5376 public:
5377   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5378     AbstractGangTask("Enqueue reference objects in parallel"),
5379     _enq_task(enq_task)
5380   { }
5381 
5382   virtual void work(uint worker_id) {
5383     _enq_task.work(worker_id);
5384   }
5385 };
5386 
5387 // Driver routine for parallel reference enqueueing.
5388 // Creates an instance of the ref enqueueing gang
5389 // task and has the worker threads execute it.
5390 
5391 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5392   assert(_workers != NULL, "Need parallel worker threads.");
5393 
5394   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5395 
5396   _workers->run_task(&enq_task_proxy);
5397 }
5398 
5399 // End of weak reference support closures
5400 
5401 // Abstract task used to preserve (i.e. copy) any referent objects
5402 // that are in the collection set and are pointed to by reference
5403 // objects discovered by the CM ref processor.
5404 
5405 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5406 protected:
5407   G1CollectedHeap*         _g1h;
5408   G1ParScanThreadStateSet* _pss;
5409   RefToScanQueueSet*       _queues;
5410   ParallelTaskTerminator   _terminator;
5411   uint                     _n_workers;
5412 
5413 public:
5414   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
5415     AbstractGangTask("ParPreserveCMReferents"),
5416     _g1h(g1h),
5417     _pss(per_thread_states),
5418     _queues(task_queues),
5419     _terminator(workers, _queues),
5420     _n_workers(workers)
5421   { }
5422 
5423   void work(uint worker_id) {
5424     ResourceMark rm;
5425     HandleMark   hm;
5426 
5427     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
5428     pss->set_ref_processor(NULL);
5429     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5430 
5431     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, pss);
5432 
5433     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, pss);
5434 
5435     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5436 
5437     if (_g1h->collector_state()->during_initial_mark_pause()) {
5438       // We also need to mark copied objects.
5439       copy_non_heap_cl = &copy_mark_non_heap_cl;
5440     }
5441 
5442     // Is alive closure
5443     G1AlwaysAliveClosure always_alive(_g1h);
5444 
5445     // Copying keep alive closure. Applied to referent objects that need
5446     // to be copied.
5447     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, pss);
5448 
5449     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5450 
5451     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5452     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5453 
5454     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5455     // So this must be true - but assert just in case someone decides to
5456     // change the worker ids.
5457     assert(worker_id < limit, "sanity");
5458     assert(!rp->discovery_is_atomic(), "check this code");
5459 
5460     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5461     for (uint idx = worker_id; idx < limit; idx += stride) {
5462       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5463 
5464       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5465       while (iter.has_next()) {
5466         // Since discovery is not atomic for the CM ref processor, we
5467         // can see some null referent objects.
5468         iter.load_ptrs(DEBUG_ONLY(true));
5469         oop ref = iter.obj();
5470 
5471         // This will filter nulls.
5472         if (iter.is_referent_alive()) {
5473           iter.make_referent_alive();
5474         }
5475         iter.move_to_next();
5476       }
5477     }
5478 
5479     // Drain the queue - which may cause stealing
5480     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5481     drain_queue.do_void();
5482     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5483     assert(pss->queue_is_empty(), "should be");
5484   }
5485 };
5486 
5487 // Weak Reference processing during an evacuation pause (part 1).
5488 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5489   double ref_proc_start = os::elapsedTime();
5490 
5491   ReferenceProcessor* rp = _ref_processor_stw;
5492   assert(rp->discovery_enabled(), "should have been enabled");
5493 
5494   // Any reference objects, in the collection set, that were 'discovered'
5495   // by the CM ref processor should have already been copied (either by
5496   // applying the external root copy closure to the discovered lists, or
5497   // by following an RSet entry).
5498   //
5499   // But some of the referents, that are in the collection set, that these
5500   // reference objects point to may not have been copied: the STW ref
5501   // processor would have seen that the reference object had already
5502   // been 'discovered' and would have skipped discovering the reference,
5503   // but would not have treated the reference object as a regular oop.
5504   // As a result the copy closure would not have been applied to the
5505   // referent object.
5506   //
5507   // We need to explicitly copy these referent objects - the references
5508   // will be processed at the end of remarking.
5509   //
5510   // We also need to do this copying before we process the reference
5511   // objects discovered by the STW ref processor in case one of these
5512   // referents points to another object which is also referenced by an
5513   // object discovered by the STW ref processor.
5514 
5515   uint no_of_gc_workers = workers()->active_workers();
5516 
5517   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5518                                                  per_thread_states,
5519                                                  no_of_gc_workers,
5520                                                  _task_queues);
5521 
5522   workers()->run_task(&keep_cm_referents);
5523 
5524   // Closure to test whether a referent is alive.
5525   G1STWIsAliveClosure is_alive(this);
5526 
5527   // Even when parallel reference processing is enabled, the processing
5528   // of JNI refs is serial and performed serially by the current thread
5529   // rather than by a worker. The following PSS will be used for processing
5530   // JNI refs.
5531 
5532   // Use only a single queue for this PSS.
5533   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5534   pss->set_ref_processor(NULL);
5535   assert(pss->queue_is_empty(), "pre-condition");
5536 
5537   // We do not embed a reference processor in the copying/scanning
5538   // closures while we're actually processing the discovered
5539   // reference objects.
5540 
5541   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, pss);
5542 
5543   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, pss);
5544 
5545   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5546 
5547   if (collector_state()->during_initial_mark_pause()) {
5548     // We also need to mark copied objects.
5549     copy_non_heap_cl = &copy_mark_non_heap_cl;
5550   }
5551 
5552   // Keep alive closure.
5553   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, pss);
5554 
5555   // Serial Complete GC closure
5556   G1STWDrainQueueClosure drain_queue(this, pss);
5557 
5558   // Setup the soft refs policy...
5559   rp->setup_policy(false);
5560 
5561   ReferenceProcessorStats stats;
5562   if (!rp->processing_is_mt()) {
5563     // Serial reference processing...
5564     stats = rp->process_discovered_references(&is_alive,
5565                                               &keep_alive,
5566                                               &drain_queue,
5567                                               NULL,
5568                                               _gc_timer_stw,
5569                                               _gc_tracer_stw->gc_id());
5570   } else {
5571     // Parallel reference processing
5572     assert(rp->num_q() == no_of_gc_workers, "sanity");
5573     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5574 
5575     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5576     stats = rp->process_discovered_references(&is_alive,
5577                                               &keep_alive,
5578                                               &drain_queue,
5579                                               &par_task_executor,
5580                                               _gc_timer_stw,
5581                                               _gc_tracer_stw->gc_id());
5582   }
5583 
5584   _gc_tracer_stw->report_gc_reference_stats(stats);
5585 
5586   // We have completed copying any necessary live referent objects.
5587   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5588 
5589   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5590   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5591 }
5592 
5593 // Weak Reference processing during an evacuation pause (part 2).
5594 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5595   double ref_enq_start = os::elapsedTime();
5596 
5597   ReferenceProcessor* rp = _ref_processor_stw;
5598   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5599 
5600   // Now enqueue any remaining on the discovered lists on to
5601   // the pending list.
5602   if (!rp->processing_is_mt()) {
5603     // Serial reference processing...
5604     rp->enqueue_discovered_references();
5605   } else {
5606     // Parallel reference enqueueing
5607 
5608     uint n_workers = workers()->active_workers();
5609 
5610     assert(rp->num_q() == n_workers, "sanity");
5611     assert(n_workers <= rp->max_num_q(), "sanity");
5612 
5613     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5614     rp->enqueue_discovered_references(&par_task_executor);
5615   }
5616 
5617   rp->verify_no_references_recorded();
5618   assert(!rp->discovery_enabled(), "should have been disabled");
5619 
5620   // FIXME
5621   // CM's reference processing also cleans up the string and symbol tables.
5622   // Should we do that here also? We could, but it is a serial operation
5623   // and could significantly increase the pause time.
5624 
5625   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5626   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5627 }
5628 
5629 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5630   _expand_heap_after_alloc_failure = true;
5631   _evacuation_failed = false;
5632 
5633   // Should G1EvacuationFailureALot be in effect for this GC?
5634   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5635 
5636   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5637 
5638   // Disable the hot card cache.
5639   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5640   hot_card_cache->reset_hot_cache_claimed_index();
5641   hot_card_cache->set_use_cache(false);
5642 
5643   const uint n_workers = workers()->active_workers();
5644 
5645   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5646   double start_par_time_sec = os::elapsedTime();
5647   double end_par_time_sec;
5648 
5649   {
5650     G1RootProcessor root_processor(this, n_workers);
5651     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5652     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5653     if (collector_state()->during_initial_mark_pause()) {
5654       ClassLoaderDataGraph::clear_claimed_marks();
5655     }
5656 
5657     // The individual threads will set their evac-failure closures.
5658     if (PrintTerminationStats) {
5659       print_termination_stats_hdr(gclog_or_tty);
5660     }
5661 
5662     workers()->run_task(&g1_par_task);
5663     end_par_time_sec = os::elapsedTime();
5664 
5665     // Closing the inner scope will execute the destructor
5666     // for the G1RootProcessor object. We record the current
5667     // elapsed time before closing the scope so that time
5668     // taken for the destructor is NOT included in the
5669     // reported parallel time.
5670   }
5671 
5672   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5673 
5674   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5675   phase_times->record_par_time(par_time_ms);
5676 
5677   double code_root_fixup_time_ms =
5678         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5679   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5680 
5681   // Process any discovered reference objects - we have
5682   // to do this _before_ we retire the GC alloc regions
5683   // as we may have to copy some 'reachable' referent
5684   // objects (and their reachable sub-graphs) that were
5685   // not copied during the pause.
5686   process_discovered_references(per_thread_states);
5687 
5688   if (G1StringDedup::is_enabled()) {
5689     double fixup_start = os::elapsedTime();
5690 
5691     G1STWIsAliveClosure is_alive(this);
5692     G1KeepAliveClosure keep_alive(this);
5693     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5694 
5695     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5696     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5697   }
5698 
5699   _allocator->release_gc_alloc_regions(evacuation_info);
5700   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5701 
5702   per_thread_states->flush();
5703 
5704   record_obj_copy_mem_stats();
5705 
5706   // Reset and re-enable the hot card cache.
5707   // Note the counts for the cards in the regions in the
5708   // collection set are reset when the collection set is freed.
5709   hot_card_cache->reset_hot_cache();
5710   hot_card_cache->set_use_cache(true);
5711 
5712   purge_code_root_memory();
5713 
5714   if (evacuation_failed()) {
5715     remove_self_forwarding_pointers();
5716 
5717     // Reset the G1EvacuationFailureALot counters and flags
5718     // Note: the values are reset only when an actual
5719     // evacuation failure occurs.
5720     NOT_PRODUCT(reset_evacuation_should_fail();)
5721   }
5722 
5723   // Enqueue any remaining references remaining on the STW
5724   // reference processor's discovered lists. We need to do
5725   // this after the card table is cleaned (and verified) as
5726   // the act of enqueueing entries on to the pending list
5727   // will log these updates (and dirty their associated
5728   // cards). We need these updates logged to update any
5729   // RSets.
5730   enqueue_discovered_references(per_thread_states);
5731 
5732   redirty_logged_cards();
5733   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5734 }
5735 
5736 void G1CollectedHeap::record_obj_copy_mem_stats() {
5737   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5738                                                create_g1_evac_summary(&_old_evac_stats));
5739 }
5740 
5741 void G1CollectedHeap::free_region(HeapRegion* hr,
5742                                   FreeRegionList* free_list,
5743                                   bool par,
5744                                   bool locked) {
5745   assert(!hr->is_free(), "the region should not be free");
5746   assert(!hr->is_empty(), "the region should not be empty");
5747   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5748   assert(free_list != NULL, "pre-condition");
5749 
5750   if (G1VerifyBitmaps) {
5751     MemRegion mr(hr->bottom(), hr->end());
5752     concurrent_mark()->clearRangePrevBitmap(mr);
5753   }
5754 
5755   // Clear the card counts for this region.
5756   // Note: we only need to do this if the region is not young
5757   // (since we don't refine cards in young regions).
5758   if (!hr->is_young()) {
5759     _cg1r->hot_card_cache()->reset_card_counts(hr);
5760   }
5761   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5762   free_list->add_ordered(hr);
5763 }
5764 
5765 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5766                                      FreeRegionList* free_list,
5767                                      bool par) {
5768   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5769   assert(free_list != NULL, "pre-condition");
5770 
5771   size_t hr_capacity = hr->capacity();
5772   // We need to read this before we make the region non-humongous,
5773   // otherwise the information will be gone.
5774   uint last_index = hr->last_hc_index();
5775   hr->clear_humongous();
5776   free_region(hr, free_list, par);
5777 
5778   uint i = hr->hrm_index() + 1;
5779   while (i < last_index) {
5780     HeapRegion* curr_hr = region_at(i);
5781     assert(curr_hr->is_continues_humongous(), "invariant");
5782     curr_hr->clear_humongous();
5783     free_region(curr_hr, free_list, par);
5784     i += 1;
5785   }
5786 }
5787 
5788 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5789                                        const HeapRegionSetCount& humongous_regions_removed) {
5790   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5791     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5792     _old_set.bulk_remove(old_regions_removed);
5793     _humongous_set.bulk_remove(humongous_regions_removed);
5794   }
5795 
5796 }
5797 
5798 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5799   assert(list != NULL, "list can't be null");
5800   if (!list->is_empty()) {
5801     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5802     _hrm.insert_list_into_free_list(list);
5803   }
5804 }
5805 
5806 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5807   decrease_used(bytes);
5808 }
5809 
5810 class G1ParCleanupCTTask : public AbstractGangTask {
5811   G1SATBCardTableModRefBS* _ct_bs;
5812   G1CollectedHeap* _g1h;
5813   HeapRegion* volatile _su_head;
5814 public:
5815   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5816                      G1CollectedHeap* g1h) :
5817     AbstractGangTask("G1 Par Cleanup CT Task"),
5818     _ct_bs(ct_bs), _g1h(g1h) { }
5819 
5820   void work(uint worker_id) {
5821     HeapRegion* r;
5822     while (r = _g1h->pop_dirty_cards_region()) {
5823       clear_cards(r);
5824     }
5825   }
5826 
5827   void clear_cards(HeapRegion* r) {
5828     // Cards of the survivors should have already been dirtied.
5829     if (!r->is_survivor()) {
5830       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5831     }
5832   }
5833 };
5834 
5835 #ifndef PRODUCT
5836 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5837   G1CollectedHeap* _g1h;
5838   G1SATBCardTableModRefBS* _ct_bs;
5839 public:
5840   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5841     : _g1h(g1h), _ct_bs(ct_bs) { }
5842   virtual bool doHeapRegion(HeapRegion* r) {
5843     if (r->is_survivor()) {
5844       _g1h->verify_dirty_region(r);
5845     } else {
5846       _g1h->verify_not_dirty_region(r);
5847     }
5848     return false;
5849   }
5850 };
5851 
5852 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5853   // All of the region should be clean.
5854   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5855   MemRegion mr(hr->bottom(), hr->end());
5856   ct_bs->verify_not_dirty_region(mr);
5857 }
5858 
5859 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5860   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5861   // dirty allocated blocks as they allocate them. The thread that
5862   // retires each region and replaces it with a new one will do a
5863   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5864   // not dirty that area (one less thing to have to do while holding
5865   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5866   // is dirty.
5867   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5868   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5869   if (hr->is_young()) {
5870     ct_bs->verify_g1_young_region(mr);
5871   } else {
5872     ct_bs->verify_dirty_region(mr);
5873   }
5874 }
5875 
5876 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5877   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5878   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5879     verify_dirty_region(hr);
5880   }
5881 }
5882 
5883 void G1CollectedHeap::verify_dirty_young_regions() {
5884   verify_dirty_young_list(_young_list->first_region());
5885 }
5886 
5887 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5888                                                HeapWord* tams, HeapWord* end) {
5889   guarantee(tams <= end,
5890             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5891   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5892   if (result < end) {
5893     gclog_or_tty->cr();
5894     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5895                            bitmap_name, p2i(result));
5896     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5897                            bitmap_name, p2i(tams), p2i(end));
5898     return false;
5899   }
5900   return true;
5901 }
5902 
5903 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5904   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5905   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5906 
5907   HeapWord* bottom = hr->bottom();
5908   HeapWord* ptams  = hr->prev_top_at_mark_start();
5909   HeapWord* ntams  = hr->next_top_at_mark_start();
5910   HeapWord* end    = hr->end();
5911 
5912   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5913 
5914   bool res_n = true;
5915   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5916   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5917   // if we happen to be in that state.
5918   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5919     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5920   }
5921   if (!res_p || !res_n) {
5922     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5923                            HR_FORMAT_PARAMS(hr));
5924     gclog_or_tty->print_cr("#### Caller: %s", caller);
5925     return false;
5926   }
5927   return true;
5928 }
5929 
5930 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5931   if (!G1VerifyBitmaps) return;
5932 
5933   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5934 }
5935 
5936 class G1VerifyBitmapClosure : public HeapRegionClosure {
5937 private:
5938   const char* _caller;
5939   G1CollectedHeap* _g1h;
5940   bool _failures;
5941 
5942 public:
5943   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5944     _caller(caller), _g1h(g1h), _failures(false) { }
5945 
5946   bool failures() { return _failures; }
5947 
5948   virtual bool doHeapRegion(HeapRegion* hr) {
5949     if (hr->is_continues_humongous()) return false;
5950 
5951     bool result = _g1h->verify_bitmaps(_caller, hr);
5952     if (!result) {
5953       _failures = true;
5954     }
5955     return false;
5956   }
5957 };
5958 
5959 void G1CollectedHeap::check_bitmaps(const char* caller) {
5960   if (!G1VerifyBitmaps) return;
5961 
5962   G1VerifyBitmapClosure cl(caller, this);
5963   heap_region_iterate(&cl);
5964   guarantee(!cl.failures(), "bitmap verification");
5965 }
5966 
5967 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5968  private:
5969   bool _failures;
5970  public:
5971   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5972 
5973   virtual bool doHeapRegion(HeapRegion* hr) {
5974     uint i = hr->hrm_index();
5975     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5976     if (hr->is_humongous()) {
5977       if (hr->in_collection_set()) {
5978         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5979         _failures = true;
5980         return true;
5981       }
5982       if (cset_state.is_in_cset()) {
5983         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5984         _failures = true;
5985         return true;
5986       }
5987       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5988         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5989         _failures = true;
5990         return true;
5991       }
5992     } else {
5993       if (cset_state.is_humongous()) {
5994         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5995         _failures = true;
5996         return true;
5997       }
5998       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5999         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
6000                                hr->in_collection_set(), cset_state.value(), i);
6001         _failures = true;
6002         return true;
6003       }
6004       if (cset_state.is_in_cset()) {
6005         if (hr->is_young() != (cset_state.is_young())) {
6006           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
6007                                  hr->is_young(), cset_state.value(), i);
6008           _failures = true;
6009           return true;
6010         }
6011         if (hr->is_old() != (cset_state.is_old())) {
6012           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
6013                                  hr->is_old(), cset_state.value(), i);
6014           _failures = true;
6015           return true;
6016         }
6017       }
6018     }
6019     return false;
6020   }
6021 
6022   bool failures() const { return _failures; }
6023 };
6024 
6025 bool G1CollectedHeap::check_cset_fast_test() {
6026   G1CheckCSetFastTableClosure cl;
6027   _hrm.iterate(&cl);
6028   return !cl.failures();
6029 }
6030 #endif // PRODUCT
6031 
6032 void G1CollectedHeap::cleanUpCardTable() {
6033   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6034   double start = os::elapsedTime();
6035 
6036   {
6037     // Iterate over the dirty cards region list.
6038     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6039 
6040     workers()->run_task(&cleanup_task);
6041 #ifndef PRODUCT
6042     if (G1VerifyCTCleanup || VerifyAfterGC) {
6043       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6044       heap_region_iterate(&cleanup_verifier);
6045     }
6046 #endif
6047   }
6048 
6049   double elapsed = os::elapsedTime() - start;
6050   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6051 }
6052 
6053 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6054   size_t pre_used = 0;
6055   FreeRegionList local_free_list("Local List for CSet Freeing");
6056 
6057   double young_time_ms     = 0.0;
6058   double non_young_time_ms = 0.0;
6059 
6060   // Since the collection set is a superset of the the young list,
6061   // all we need to do to clear the young list is clear its
6062   // head and length, and unlink any young regions in the code below
6063   _young_list->clear();
6064 
6065   G1CollectorPolicy* policy = g1_policy();
6066 
6067   double start_sec = os::elapsedTime();
6068   bool non_young = true;
6069 
6070   HeapRegion* cur = cs_head;
6071   int age_bound = -1;
6072   size_t rs_lengths = 0;
6073 
6074   while (cur != NULL) {
6075     assert(!is_on_master_free_list(cur), "sanity");
6076     if (non_young) {
6077       if (cur->is_young()) {
6078         double end_sec = os::elapsedTime();
6079         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6080         non_young_time_ms += elapsed_ms;
6081 
6082         start_sec = os::elapsedTime();
6083         non_young = false;
6084       }
6085     } else {
6086       if (!cur->is_young()) {
6087         double end_sec = os::elapsedTime();
6088         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6089         young_time_ms += elapsed_ms;
6090 
6091         start_sec = os::elapsedTime();
6092         non_young = true;
6093       }
6094     }
6095 
6096     rs_lengths += cur->rem_set()->occupied_locked();
6097 
6098     HeapRegion* next = cur->next_in_collection_set();
6099     assert(cur->in_collection_set(), "bad CS");
6100     cur->set_next_in_collection_set(NULL);
6101     clear_in_cset(cur);
6102 
6103     if (cur->is_young()) {
6104       int index = cur->young_index_in_cset();
6105       assert(index != -1, "invariant");
6106       assert((uint) index < policy->young_cset_region_length(), "invariant");
6107       size_t words_survived = _surviving_young_words[index];
6108       cur->record_surv_words_in_group(words_survived);
6109 
6110       // At this point the we have 'popped' cur from the collection set
6111       // (linked via next_in_collection_set()) but it is still in the
6112       // young list (linked via next_young_region()). Clear the
6113       // _next_young_region field.
6114       cur->set_next_young_region(NULL);
6115     } else {
6116       int index = cur->young_index_in_cset();
6117       assert(index == -1, "invariant");
6118     }
6119 
6120     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6121             (!cur->is_young() && cur->young_index_in_cset() == -1),
6122             "invariant" );
6123 
6124     if (!cur->evacuation_failed()) {
6125       MemRegion used_mr = cur->used_region();
6126 
6127       // And the region is empty.
6128       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6129       pre_used += cur->used();
6130       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6131     } else {
6132       cur->uninstall_surv_rate_group();
6133       if (cur->is_young()) {
6134         cur->set_young_index_in_cset(-1);
6135       }
6136       cur->set_evacuation_failed(false);
6137       // The region is now considered to be old.
6138       cur->set_old();
6139       // Do some allocation statistics accounting. Regions that failed evacuation
6140       // are always made old, so there is no need to update anything in the young
6141       // gen statistics, but we need to update old gen statistics.
6142       size_t used_words = cur->marked_bytes() / HeapWordSize;
6143       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
6144       _old_set.add(cur);
6145       evacuation_info.increment_collectionset_used_after(cur->used());
6146     }
6147     cur = next;
6148   }
6149 
6150   evacuation_info.set_regions_freed(local_free_list.length());
6151   policy->record_max_rs_lengths(rs_lengths);
6152   policy->cset_regions_freed();
6153 
6154   double end_sec = os::elapsedTime();
6155   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6156 
6157   if (non_young) {
6158     non_young_time_ms += elapsed_ms;
6159   } else {
6160     young_time_ms += elapsed_ms;
6161   }
6162 
6163   prepend_to_freelist(&local_free_list);
6164   decrement_summary_bytes(pre_used);
6165   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6166   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6167 }
6168 
6169 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6170  private:
6171   FreeRegionList* _free_region_list;
6172   HeapRegionSet* _proxy_set;
6173   HeapRegionSetCount _humongous_regions_removed;
6174   size_t _freed_bytes;
6175  public:
6176 
6177   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6178     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6179   }
6180 
6181   virtual bool doHeapRegion(HeapRegion* r) {
6182     if (!r->is_starts_humongous()) {
6183       return false;
6184     }
6185 
6186     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6187 
6188     oop obj = (oop)r->bottom();
6189     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6190 
6191     // The following checks whether the humongous object is live are sufficient.
6192     // The main additional check (in addition to having a reference from the roots
6193     // or the young gen) is whether the humongous object has a remembered set entry.
6194     //
6195     // A humongous object cannot be live if there is no remembered set for it
6196     // because:
6197     // - there can be no references from within humongous starts regions referencing
6198     // the object because we never allocate other objects into them.
6199     // (I.e. there are no intra-region references that may be missed by the
6200     // remembered set)
6201     // - as soon there is a remembered set entry to the humongous starts region
6202     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6203     // until the end of a concurrent mark.
6204     //
6205     // It is not required to check whether the object has been found dead by marking
6206     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6207     // all objects allocated during that time are considered live.
6208     // SATB marking is even more conservative than the remembered set.
6209     // So if at this point in the collection there is no remembered set entry,
6210     // nobody has a reference to it.
6211     // At the start of collection we flush all refinement logs, and remembered sets
6212     // are completely up-to-date wrt to references to the humongous object.
6213     //
6214     // Other implementation considerations:
6215     // - never consider object arrays at this time because they would pose
6216     // considerable effort for cleaning up the the remembered sets. This is
6217     // required because stale remembered sets might reference locations that
6218     // are currently allocated into.
6219     uint region_idx = r->hrm_index();
6220     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6221         !r->rem_set()->is_empty()) {
6222 
6223       if (G1TraceEagerReclaimHumongousObjects) {
6224         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6225                                region_idx,
6226                                (size_t)obj->size() * HeapWordSize,
6227                                p2i(r->bottom()),
6228                                r->region_num(),
6229                                r->rem_set()->occupied(),
6230                                r->rem_set()->strong_code_roots_list_length(),
6231                                next_bitmap->isMarked(r->bottom()),
6232                                g1h->is_humongous_reclaim_candidate(region_idx),
6233                                obj->is_typeArray()
6234                               );
6235       }
6236 
6237       return false;
6238     }
6239 
6240     guarantee(obj->is_typeArray(),
6241               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6242                       PTR_FORMAT " is not.",
6243                       p2i(r->bottom())));
6244 
6245     if (G1TraceEagerReclaimHumongousObjects) {
6246       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6247                              region_idx,
6248                              (size_t)obj->size() * HeapWordSize,
6249                              p2i(r->bottom()),
6250                              r->region_num(),
6251                              r->rem_set()->occupied(),
6252                              r->rem_set()->strong_code_roots_list_length(),
6253                              next_bitmap->isMarked(r->bottom()),
6254                              g1h->is_humongous_reclaim_candidate(region_idx),
6255                              obj->is_typeArray()
6256                             );
6257     }
6258     // Need to clear mark bit of the humongous object if already set.
6259     if (next_bitmap->isMarked(r->bottom())) {
6260       next_bitmap->clear(r->bottom());
6261     }
6262     _freed_bytes += r->used();
6263     r->set_containing_set(NULL);
6264     _humongous_regions_removed.increment(1u, r->capacity());
6265     g1h->free_humongous_region(r, _free_region_list, false);
6266 
6267     return false;
6268   }
6269 
6270   HeapRegionSetCount& humongous_free_count() {
6271     return _humongous_regions_removed;
6272   }
6273 
6274   size_t bytes_freed() const {
6275     return _freed_bytes;
6276   }
6277 
6278   size_t humongous_reclaimed() const {
6279     return _humongous_regions_removed.length();
6280   }
6281 };
6282 
6283 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6284   assert_at_safepoint(true);
6285 
6286   if (!G1EagerReclaimHumongousObjects ||
6287       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6288     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6289     return;
6290   }
6291 
6292   double start_time = os::elapsedTime();
6293 
6294   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6295 
6296   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6297   heap_region_iterate(&cl);
6298 
6299   HeapRegionSetCount empty_set;
6300   remove_from_old_sets(empty_set, cl.humongous_free_count());
6301 
6302   G1HRPrinter* hrp = hr_printer();
6303   if (hrp->is_active()) {
6304     FreeRegionListIterator iter(&local_cleanup_list);
6305     while (iter.more_available()) {
6306       HeapRegion* hr = iter.get_next();
6307       hrp->cleanup(hr);
6308     }
6309   }
6310 
6311   prepend_to_freelist(&local_cleanup_list);
6312   decrement_summary_bytes(cl.bytes_freed());
6313 
6314   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6315                                                                     cl.humongous_reclaimed());
6316 }
6317 
6318 // This routine is similar to the above but does not record
6319 // any policy statistics or update free lists; we are abandoning
6320 // the current incremental collection set in preparation of a
6321 // full collection. After the full GC we will start to build up
6322 // the incremental collection set again.
6323 // This is only called when we're doing a full collection
6324 // and is immediately followed by the tearing down of the young list.
6325 
6326 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6327   HeapRegion* cur = cs_head;
6328 
6329   while (cur != NULL) {
6330     HeapRegion* next = cur->next_in_collection_set();
6331     assert(cur->in_collection_set(), "bad CS");
6332     cur->set_next_in_collection_set(NULL);
6333     clear_in_cset(cur);
6334     cur->set_young_index_in_cset(-1);
6335     cur = next;
6336   }
6337 }
6338 
6339 void G1CollectedHeap::set_free_regions_coming() {
6340   if (G1ConcRegionFreeingVerbose) {
6341     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6342                            "setting free regions coming");
6343   }
6344 
6345   assert(!free_regions_coming(), "pre-condition");
6346   _free_regions_coming = true;
6347 }
6348 
6349 void G1CollectedHeap::reset_free_regions_coming() {
6350   assert(free_regions_coming(), "pre-condition");
6351 
6352   {
6353     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6354     _free_regions_coming = false;
6355     SecondaryFreeList_lock->notify_all();
6356   }
6357 
6358   if (G1ConcRegionFreeingVerbose) {
6359     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6360                            "reset free regions coming");
6361   }
6362 }
6363 
6364 void G1CollectedHeap::wait_while_free_regions_coming() {
6365   // Most of the time we won't have to wait, so let's do a quick test
6366   // first before we take the lock.
6367   if (!free_regions_coming()) {
6368     return;
6369   }
6370 
6371   if (G1ConcRegionFreeingVerbose) {
6372     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6373                            "waiting for free regions");
6374   }
6375 
6376   {
6377     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6378     while (free_regions_coming()) {
6379       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6380     }
6381   }
6382 
6383   if (G1ConcRegionFreeingVerbose) {
6384     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6385                            "done waiting for free regions");
6386   }
6387 }
6388 
6389 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
6390   return _allocator->is_retained_old_region(hr);
6391 }
6392 
6393 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6394   _young_list->push_region(hr);
6395 }
6396 
6397 class NoYoungRegionsClosure: public HeapRegionClosure {
6398 private:
6399   bool _success;
6400 public:
6401   NoYoungRegionsClosure() : _success(true) { }
6402   bool doHeapRegion(HeapRegion* r) {
6403     if (r->is_young()) {
6404       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6405                              p2i(r->bottom()), p2i(r->end()));
6406       _success = false;
6407     }
6408     return false;
6409   }
6410   bool success() { return _success; }
6411 };
6412 
6413 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6414   bool ret = _young_list->check_list_empty(check_sample);
6415 
6416   if (check_heap) {
6417     NoYoungRegionsClosure closure;
6418     heap_region_iterate(&closure);
6419     ret = ret && closure.success();
6420   }
6421 
6422   return ret;
6423 }
6424 
6425 class TearDownRegionSetsClosure : public HeapRegionClosure {
6426 private:
6427   HeapRegionSet *_old_set;
6428 
6429 public:
6430   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6431 
6432   bool doHeapRegion(HeapRegion* r) {
6433     if (r->is_old()) {
6434       _old_set->remove(r);
6435     } else {
6436       // We ignore free regions, we'll empty the free list afterwards.
6437       // We ignore young regions, we'll empty the young list afterwards.
6438       // We ignore humongous regions, we're not tearing down the
6439       // humongous regions set.
6440       assert(r->is_free() || r->is_young() || r->is_humongous(),
6441              "it cannot be another type");
6442     }
6443     return false;
6444   }
6445 
6446   ~TearDownRegionSetsClosure() {
6447     assert(_old_set->is_empty(), "post-condition");
6448   }
6449 };
6450 
6451 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6452   assert_at_safepoint(true /* should_be_vm_thread */);
6453 
6454   if (!free_list_only) {
6455     TearDownRegionSetsClosure cl(&_old_set);
6456     heap_region_iterate(&cl);
6457 
6458     // Note that emptying the _young_list is postponed and instead done as
6459     // the first step when rebuilding the regions sets again. The reason for
6460     // this is that during a full GC string deduplication needs to know if
6461     // a collected region was young or old when the full GC was initiated.
6462   }
6463   _hrm.remove_all_free_regions();
6464 }
6465 
6466 void G1CollectedHeap::increase_used(size_t bytes) {
6467   _summary_bytes_used += bytes;
6468 }
6469 
6470 void G1CollectedHeap::decrease_used(size_t bytes) {
6471   assert(_summary_bytes_used >= bytes,
6472          err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6473                  _summary_bytes_used, bytes));
6474   _summary_bytes_used -= bytes;
6475 }
6476 
6477 void G1CollectedHeap::set_used(size_t bytes) {
6478   _summary_bytes_used = bytes;
6479 }
6480 
6481 class RebuildRegionSetsClosure : public HeapRegionClosure {
6482 private:
6483   bool            _free_list_only;
6484   HeapRegionSet*   _old_set;
6485   HeapRegionManager*   _hrm;
6486   size_t          _total_used;
6487 
6488 public:
6489   RebuildRegionSetsClosure(bool free_list_only,
6490                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6491     _free_list_only(free_list_only),
6492     _old_set(old_set), _hrm(hrm), _total_used(0) {
6493     assert(_hrm->num_free_regions() == 0, "pre-condition");
6494     if (!free_list_only) {
6495       assert(_old_set->is_empty(), "pre-condition");
6496     }
6497   }
6498 
6499   bool doHeapRegion(HeapRegion* r) {
6500     if (r->is_continues_humongous()) {
6501       return false;
6502     }
6503 
6504     if (r->is_empty()) {
6505       // Add free regions to the free list
6506       r->set_free();
6507       r->set_allocation_context(AllocationContext::system());
6508       _hrm->insert_into_free_list(r);
6509     } else if (!_free_list_only) {
6510       assert(!r->is_young(), "we should not come across young regions");
6511 
6512       if (r->is_humongous()) {
6513         // We ignore humongous regions. We left the humongous set unchanged.
6514       } else {
6515         // Objects that were compacted would have ended up on regions
6516         // that were previously old or free.  Archive regions (which are
6517         // old) will not have been touched.
6518         assert(r->is_free() || r->is_old(), "invariant");
6519         // We now consider them old, so register as such. Leave
6520         // archive regions set that way, however, while still adding
6521         // them to the old set.
6522         if (!r->is_archive()) {
6523           r->set_old();
6524         }
6525         _old_set->add(r);
6526       }
6527       _total_used += r->used();
6528     }
6529 
6530     return false;
6531   }
6532 
6533   size_t total_used() {
6534     return _total_used;
6535   }
6536 };
6537 
6538 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6539   assert_at_safepoint(true /* should_be_vm_thread */);
6540 
6541   if (!free_list_only) {
6542     _young_list->empty_list();
6543   }
6544 
6545   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6546   heap_region_iterate(&cl);
6547 
6548   if (!free_list_only) {
6549     set_used(cl.total_used());
6550     if (_archive_allocator != NULL) {
6551       _archive_allocator->clear_used();
6552     }
6553   }
6554   assert(used_unlocked() == recalculate_used(),
6555          err_msg("inconsistent used_unlocked(), "
6556                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6557                  used_unlocked(), recalculate_used()));
6558 }
6559 
6560 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6561   _refine_cte_cl->set_concurrent(concurrent);
6562 }
6563 
6564 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6565   HeapRegion* hr = heap_region_containing(p);
6566   return hr->is_in(p);
6567 }
6568 
6569 // Methods for the mutator alloc region
6570 
6571 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6572                                                       bool force) {
6573   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6574   assert(!force || g1_policy()->can_expand_young_list(),
6575          "if force is true we should be able to expand the young list");
6576   bool young_list_full = g1_policy()->is_young_list_full();
6577   if (force || !young_list_full) {
6578     HeapRegion* new_alloc_region = new_region(word_size,
6579                                               false /* is_old */,
6580                                               false /* do_expand */);
6581     if (new_alloc_region != NULL) {
6582       set_region_short_lived_locked(new_alloc_region);
6583       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6584       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6585       return new_alloc_region;
6586     }
6587   }
6588   return NULL;
6589 }
6590 
6591 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6592                                                   size_t allocated_bytes) {
6593   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6594   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6595 
6596   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6597   increase_used(allocated_bytes);
6598   _hr_printer.retire(alloc_region);
6599   // We update the eden sizes here, when the region is retired,
6600   // instead of when it's allocated, since this is the point that its
6601   // used space has been recored in _summary_bytes_used.
6602   g1mm()->update_eden_size();
6603 }
6604 
6605 // Methods for the GC alloc regions
6606 
6607 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6608                                                  uint count,
6609                                                  InCSetState dest) {
6610   assert(FreeList_lock->owned_by_self(), "pre-condition");
6611 
6612   if (count < g1_policy()->max_regions(dest)) {
6613     const bool is_survivor = (dest.is_young());
6614     HeapRegion* new_alloc_region = new_region(word_size,
6615                                               !is_survivor,
6616                                               true /* do_expand */);
6617     if (new_alloc_region != NULL) {
6618       // We really only need to do this for old regions given that we
6619       // should never scan survivors. But it doesn't hurt to do it
6620       // for survivors too.
6621       new_alloc_region->record_timestamp();
6622       if (is_survivor) {
6623         new_alloc_region->set_survivor();
6624         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6625         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6626       } else {
6627         new_alloc_region->set_old();
6628         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6629         check_bitmaps("Old Region Allocation", new_alloc_region);
6630       }
6631       bool during_im = collector_state()->during_initial_mark_pause();
6632       new_alloc_region->note_start_of_copying(during_im);
6633       return new_alloc_region;
6634     }
6635   }
6636   return NULL;
6637 }
6638 
6639 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6640                                              size_t allocated_bytes,
6641                                              InCSetState dest) {
6642   bool during_im = collector_state()->during_initial_mark_pause();
6643   alloc_region->note_end_of_copying(during_im);
6644   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6645   if (dest.is_young()) {
6646     young_list()->add_survivor_region(alloc_region);
6647   } else {
6648     _old_set.add(alloc_region);
6649   }
6650   _hr_printer.retire(alloc_region);
6651 }
6652 
6653 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6654   bool expanded = false;
6655   uint index = _hrm.find_highest_free(&expanded);
6656 
6657   if (index != G1_NO_HRM_INDEX) {
6658     if (expanded) {
6659       ergo_verbose1(ErgoHeapSizing,
6660                     "attempt heap expansion",
6661                     ergo_format_reason("requested address range outside heap bounds")
6662                     ergo_format_byte("region size"),
6663                     HeapRegion::GrainWords * HeapWordSize);
6664     }
6665     _hrm.allocate_free_regions_starting_at(index, 1);
6666     return region_at(index);
6667   }
6668   return NULL;
6669 }
6670 
6671 // Heap region set verification
6672 
6673 class VerifyRegionListsClosure : public HeapRegionClosure {
6674 private:
6675   HeapRegionSet*   _old_set;
6676   HeapRegionSet*   _humongous_set;
6677   HeapRegionManager*   _hrm;
6678 
6679 public:
6680   HeapRegionSetCount _old_count;
6681   HeapRegionSetCount _humongous_count;
6682   HeapRegionSetCount _free_count;
6683 
6684   VerifyRegionListsClosure(HeapRegionSet* old_set,
6685                            HeapRegionSet* humongous_set,
6686                            HeapRegionManager* hrm) :
6687     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6688     _old_count(), _humongous_count(), _free_count(){ }
6689 
6690   bool doHeapRegion(HeapRegion* hr) {
6691     if (hr->is_continues_humongous()) {
6692       return false;
6693     }
6694 
6695     if (hr->is_young()) {
6696       // TODO
6697     } else if (hr->is_starts_humongous()) {
6698       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6699       _humongous_count.increment(1u, hr->capacity());
6700     } else if (hr->is_empty()) {
6701       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6702       _free_count.increment(1u, hr->capacity());
6703     } else if (hr->is_old()) {
6704       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6705       _old_count.increment(1u, hr->capacity());
6706     } else {
6707       // There are no other valid region types. Check for one invalid
6708       // one we can identify: pinned without old or humongous set.
6709       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6710       ShouldNotReachHere();
6711     }
6712     return false;
6713   }
6714 
6715   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6716     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6717     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6718         old_set->total_capacity_bytes(), _old_count.capacity()));
6719 
6720     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6721     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6722         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6723 
6724     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6725     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6726         free_list->total_capacity_bytes(), _free_count.capacity()));
6727   }
6728 };
6729 
6730 void G1CollectedHeap::verify_region_sets() {
6731   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6732 
6733   // First, check the explicit lists.
6734   _hrm.verify();
6735   {
6736     // Given that a concurrent operation might be adding regions to
6737     // the secondary free list we have to take the lock before
6738     // verifying it.
6739     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6740     _secondary_free_list.verify_list();
6741   }
6742 
6743   // If a concurrent region freeing operation is in progress it will
6744   // be difficult to correctly attributed any free regions we come
6745   // across to the correct free list given that they might belong to
6746   // one of several (free_list, secondary_free_list, any local lists,
6747   // etc.). So, if that's the case we will skip the rest of the
6748   // verification operation. Alternatively, waiting for the concurrent
6749   // operation to complete will have a non-trivial effect on the GC's
6750   // operation (no concurrent operation will last longer than the
6751   // interval between two calls to verification) and it might hide
6752   // any issues that we would like to catch during testing.
6753   if (free_regions_coming()) {
6754     return;
6755   }
6756 
6757   // Make sure we append the secondary_free_list on the free_list so
6758   // that all free regions we will come across can be safely
6759   // attributed to the free_list.
6760   append_secondary_free_list_if_not_empty_with_lock();
6761 
6762   // Finally, make sure that the region accounting in the lists is
6763   // consistent with what we see in the heap.
6764 
6765   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6766   heap_region_iterate(&cl);
6767   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6768 }
6769 
6770 // Optimized nmethod scanning
6771 
6772 class RegisterNMethodOopClosure: public OopClosure {
6773   G1CollectedHeap* _g1h;
6774   nmethod* _nm;
6775 
6776   template <class T> void do_oop_work(T* p) {
6777     T heap_oop = oopDesc::load_heap_oop(p);
6778     if (!oopDesc::is_null(heap_oop)) {
6779       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6780       HeapRegion* hr = _g1h->heap_region_containing(obj);
6781       assert(!hr->is_continues_humongous(),
6782              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6783                      " starting at " HR_FORMAT,
6784                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6785 
6786       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6787       hr->add_strong_code_root_locked(_nm);
6788     }
6789   }
6790 
6791 public:
6792   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6793     _g1h(g1h), _nm(nm) {}
6794 
6795   void do_oop(oop* p)       { do_oop_work(p); }
6796   void do_oop(narrowOop* p) { do_oop_work(p); }
6797 };
6798 
6799 class UnregisterNMethodOopClosure: public OopClosure {
6800   G1CollectedHeap* _g1h;
6801   nmethod* _nm;
6802 
6803   template <class T> void do_oop_work(T* p) {
6804     T heap_oop = oopDesc::load_heap_oop(p);
6805     if (!oopDesc::is_null(heap_oop)) {
6806       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6807       HeapRegion* hr = _g1h->heap_region_containing(obj);
6808       assert(!hr->is_continues_humongous(),
6809              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6810                      " starting at " HR_FORMAT,
6811                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6812 
6813       hr->remove_strong_code_root(_nm);
6814     }
6815   }
6816 
6817 public:
6818   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6819     _g1h(g1h), _nm(nm) {}
6820 
6821   void do_oop(oop* p)       { do_oop_work(p); }
6822   void do_oop(narrowOop* p) { do_oop_work(p); }
6823 };
6824 
6825 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6826   CollectedHeap::register_nmethod(nm);
6827 
6828   guarantee(nm != NULL, "sanity");
6829   RegisterNMethodOopClosure reg_cl(this, nm);
6830   nm->oops_do(&reg_cl);
6831 }
6832 
6833 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6834   CollectedHeap::unregister_nmethod(nm);
6835 
6836   guarantee(nm != NULL, "sanity");
6837   UnregisterNMethodOopClosure reg_cl(this, nm);
6838   nm->oops_do(&reg_cl, true);
6839 }
6840 
6841 void G1CollectedHeap::purge_code_root_memory() {
6842   double purge_start = os::elapsedTime();
6843   G1CodeRootSet::purge();
6844   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6845   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6846 }
6847 
6848 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6849   G1CollectedHeap* _g1h;
6850 
6851 public:
6852   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6853     _g1h(g1h) {}
6854 
6855   void do_code_blob(CodeBlob* cb) {
6856     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6857     if (nm == NULL) {
6858       return;
6859     }
6860 
6861     if (ScavengeRootsInCode) {
6862       _g1h->register_nmethod(nm);
6863     }
6864   }
6865 };
6866 
6867 void G1CollectedHeap::rebuild_strong_code_roots() {
6868   RebuildStrongCodeRootClosure blob_cl(this);
6869   CodeCache::blobs_do(&blob_cl);
6870 }