1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/java.hpp"
  36 #include "runtime/jniHandles.hpp"
  37 
  38 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  39 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  40 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  41 
  42 void referenceProcessor_init() {
  43   ReferenceProcessor::init_statics();
  44 }
  45 
  46 void ReferenceProcessor::init_statics() {
  47   // We need a monotonically non-decreasing time in ms but
  48   // os::javaTimeMillis() does not guarantee monotonicity.
  49   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  50 
  51   // Initialize the soft ref timestamp clock.
  52   _soft_ref_timestamp_clock = now;
  53   // Also update the soft ref clock in j.l.r.SoftReference
  54   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  55 
  56   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  57   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  58                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  59   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  60     vm_exit_during_initialization("Could not allocate reference policy object");
  61   }
  62   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  63             RefDiscoveryPolicy == ReferentBasedDiscovery,
  64             "Unrecognized RefDiscoveryPolicy");
  65 }
  66 
  67 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  68 #ifdef ASSERT
  69   // Verify that we're not currently discovering refs
  70   assert(!_discovering_refs, "nested call?");
  71 
  72   if (check_no_refs) {
  73     // Verify that the discovered lists are empty
  74     verify_no_references_recorded();
  75   }
  76 #endif // ASSERT
  77 
  78   // Someone could have modified the value of the static
  79   // field in the j.l.r.SoftReference class that holds the
  80   // soft reference timestamp clock using reflection or
  81   // Unsafe between GCs. Unconditionally update the static
  82   // field in ReferenceProcessor here so that we use the new
  83   // value during reference discovery.
  84 
  85   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  86   _discovering_refs = true;
  87 }
  88 
  89 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  90                                        bool      mt_processing,
  91                                        uint      mt_processing_degree,
  92                                        bool      mt_discovery,
  93                                        uint      mt_discovery_degree,
  94                                        bool      atomic_discovery,
  95                                        BoolObjectClosure* is_alive_non_header)  :
  96   _discovering_refs(false),
  97   _enqueuing_is_done(false),
  98   _is_alive_non_header(is_alive_non_header),
  99   _processing_is_mt(mt_processing),
 100   _next_id(0)
 101 {
 102   _span = span;
 103   _discovery_is_atomic = atomic_discovery;
 104   _discovery_is_mt     = mt_discovery;
 105   _num_q               = MAX2(1U, mt_processing_degree);
 106   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 107   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 108             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 109 
 110   if (_discovered_refs == NULL) {
 111     vm_exit_during_initialization("Could not allocated RefProc Array");
 112   }
 113   _discoveredSoftRefs    = &_discovered_refs[0];
 114   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 115   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 116   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 117   _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
 118 
 119   // Initialize all entries to NULL
 120   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 121     _discovered_refs[i].set_head(NULL);
 122     _discovered_refs[i].set_length(0);
 123   }
 124 
 125   setup_policy(false /* default soft ref policy */);
 126 }
 127 
 128 #ifndef PRODUCT
 129 void ReferenceProcessor::verify_no_references_recorded() {
 130   guarantee(!_discovering_refs, "Discovering refs?");
 131   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 132     guarantee(_discovered_refs[i].is_empty(),
 133               "Found non-empty discovered list");
 134   }
 135 }
 136 #endif
 137 
 138 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 139   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 140     if (UseCompressedOops) {
 141       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 142     } else {
 143       f->do_oop((oop*)_discovered_refs[i].adr_head());
 144     }
 145   }
 146 }
 147 
 148 void ReferenceProcessor::update_soft_ref_master_clock() {
 149   // Update (advance) the soft ref master clock field. This must be done
 150   // after processing the soft ref list.
 151 
 152   // We need a monotonically non-decreasing time in ms but
 153   // os::javaTimeMillis() does not guarantee monotonicity.
 154   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 155   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 156   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 157 
 158   NOT_PRODUCT(
 159   if (now < _soft_ref_timestamp_clock) {
 160     warning("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 161             _soft_ref_timestamp_clock, now);
 162   }
 163   )
 164   // The values of now and _soft_ref_timestamp_clock are set using
 165   // javaTimeNanos(), which is guaranteed to be monotonically
 166   // non-decreasing provided the underlying platform provides such
 167   // a time source (and it is bug free).
 168   // In product mode, however, protect ourselves from non-monotonicity.
 169   if (now > _soft_ref_timestamp_clock) {
 170     _soft_ref_timestamp_clock = now;
 171     java_lang_ref_SoftReference::set_clock(now);
 172   }
 173   // Else leave clock stalled at its old value until time progresses
 174   // past clock value.
 175 }
 176 
 177 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 178   size_t total = 0;
 179   for (uint i = 0; i < _max_num_q; ++i) {
 180     total += lists[i].length();
 181   }
 182   return total;
 183 }
 184 
 185 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 186   BoolObjectClosure*           is_alive,
 187   OopClosure*                  keep_alive,
 188   VoidClosure*                 complete_gc,
 189   AbstractRefProcTaskExecutor* task_executor,
 190   GCTimer*                     gc_timer) {
 191 
 192   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 193   // Stop treating discovered references specially.
 194   disable_discovery();
 195 
 196   // If discovery was concurrent, someone could have modified
 197   // the value of the static field in the j.l.r.SoftReference
 198   // class that holds the soft reference timestamp clock using
 199   // reflection or Unsafe between when discovery was enabled and
 200   // now. Unconditionally update the static field in ReferenceProcessor
 201   // here so that we use the new value during processing of the
 202   // discovered soft refs.
 203 
 204   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 205 
 206   bool trace_time = PrintGCDetails && PrintReferenceGC;
 207 
 208   // Soft references
 209   size_t soft_count = 0;
 210   {
 211     GCTraceTime tt("SoftReference", trace_time, false, gc_timer);
 212     soft_count =
 213       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 214                                  is_alive, keep_alive, complete_gc, task_executor);
 215   }
 216 
 217   update_soft_ref_master_clock();
 218 
 219   // Weak references
 220   size_t weak_count = 0;
 221   {
 222     GCTraceTime tt("WeakReference", trace_time, false, gc_timer);
 223     weak_count =
 224       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 225                                  is_alive, keep_alive, complete_gc, task_executor);
 226   }
 227 
 228   // Final references
 229   size_t final_count = 0;
 230   {
 231     GCTraceTime tt("FinalReference", trace_time, false, gc_timer);
 232     final_count =
 233       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 234                                  is_alive, keep_alive, complete_gc, task_executor);
 235   }
 236 
 237   // Phantom references
 238   size_t phantom_count = 0;
 239   {
 240     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer);
 241     phantom_count =
 242       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 243                                  is_alive, keep_alive, complete_gc, task_executor);
 244 
 245   }
 246 
 247   // Cleaners
 248   size_t cleaner_count = 0;
 249   {
 250     GCTraceTime tt("Cleaners", trace_time, false, gc_timer, gc_id);
 251     cleaner_count =
 252       process_discovered_reflist(_discoveredCleanerRefs, NULL, true,
 253                                  is_alive, keep_alive, complete_gc, task_executor);
 254   }
 255 
 256   // Weak global JNI references. It would make more sense (semantically) to
 257   // traverse these simultaneously with the regular weak references above, but
 258   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 259   // thus use JNI weak references to circumvent the phantom references and
 260   // resurrect a "post-mortem" object.
 261   size_t jni_weak_ref_count = 0;
 262   {
 263     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer);
 264     if (task_executor != NULL) {
 265       task_executor->set_single_threaded_mode();
 266     }
 267     jni_weak_ref_count =
 268       process_phaseJNI(is_alive, keep_alive, complete_gc);
 269   }
 270 
 271   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count, cleaner_count, jni_weak_ref_count);
 272 }
 273 
 274 #ifndef PRODUCT
 275 // Calculate the number of jni handles.
 276 uint ReferenceProcessor::count_jni_refs() {
 277   class AlwaysAliveClosure: public BoolObjectClosure {
 278   public:
 279     virtual bool do_object_b(oop obj) { return true; }
 280   };
 281 
 282   class CountHandleClosure: public OopClosure {
 283   private:
 284     int _count;
 285   public:
 286     CountHandleClosure(): _count(0) {}
 287     void do_oop(oop* unused)       { _count++; }
 288     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 289     int count() { return _count; }
 290   };
 291   CountHandleClosure global_handle_count;
 292   AlwaysAliveClosure always_alive;
 293   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 294   return global_handle_count.count();
 295 }
 296 #endif
 297 
 298 size_t ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 299                                             OopClosure*        keep_alive,
 300                                             VoidClosure*       complete_gc) {
 301   DEBUG_ONLY(size_t check_count = count_jni_refs();)
 302   size_t count = JNIHandles::weak_oops_do(is_alive, keep_alive);
 303   assert(count == check_count, "Counts didn't match");
 304   complete_gc->do_void();
 305   if (PrintGCDetails && PrintReferenceGC) {
 306     gclog_or_tty->print(", " SIZE_FORMAT " refs", count);
 307   }
 308   return count;
 309 }
 310 
 311 
 312 template <class T>
 313 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 314                                    AbstractRefProcTaskExecutor* task_executor) {
 315 
 316   // Remember old value of pending references list
 317   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 318   T old_pending_list_value = *pending_list_addr;
 319 
 320   // Enqueue references that are not made active again, and
 321   // clear the decks for the next collection (cycle).
 322   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 323   // Do the post-barrier on pending_list_addr missed in
 324   // enqueue_discovered_reflist.
 325   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 326 
 327   // Stop treating discovered references specially.
 328   ref->disable_discovery();
 329 
 330   // Return true if new pending references were added
 331   return old_pending_list_value != *pending_list_addr;
 332 }
 333 
 334 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 335   if (UseCompressedOops) {
 336     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 337   } else {
 338     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 339   }
 340 }
 341 
 342 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 343                                                     HeapWord* pending_list_addr) {
 344   // Given a list of refs linked through the "discovered" field
 345   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 346   // thus distinguishing them from active References, then
 347   // prepend them to the pending list.
 348   //
 349   // The Java threads will see the Reference objects linked together through
 350   // the discovered field. Instead of trying to do the write barrier updates
 351   // in all places in the reference processor where we manipulate the discovered
 352   // field we make sure to do the barrier here where we anyway iterate through
 353   // all linked Reference objects. Note that it is important to not dirty any
 354   // cards during reference processing since this will cause card table
 355   // verification to fail for G1.
 356   if (TraceReferenceGC && PrintGCDetails) {
 357     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 358                            INTPTR_FORMAT, p2i(refs_list.head()));
 359   }
 360 
 361   oop obj = NULL;
 362   oop next_d = refs_list.head();
 363   // Walk down the list, self-looping the next field
 364   // so that the References are not considered active.
 365   while (obj != next_d) {
 366     obj = next_d;
 367     assert(obj->is_instanceRef(), "should be reference object");
 368     next_d = java_lang_ref_Reference::discovered(obj);
 369     if (TraceReferenceGC && PrintGCDetails) {
 370       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 371                              p2i(obj), p2i(next_d));
 372     }
 373     assert(java_lang_ref_Reference::next(obj) == NULL,
 374            "Reference not active; should not be discovered");
 375     // Self-loop next, so as to make Ref not active.
 376     java_lang_ref_Reference::set_next_raw(obj, obj);
 377     if (next_d != obj) {
 378       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 379     } else {
 380       // This is the last object.
 381       // Swap refs_list into pending_list_addr and
 382       // set obj's discovered to what we read from pending_list_addr.
 383       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 384       // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
 385       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 386       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 387     }
 388   }
 389 }
 390 
 391 // Parallel enqueue task
 392 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 393 public:
 394   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 395                      DiscoveredList      discovered_refs[],
 396                      HeapWord*           pending_list_addr,
 397                      int                 n_queues)
 398     : EnqueueTask(ref_processor, discovered_refs,
 399                   pending_list_addr, n_queues)
 400   { }
 401 
 402   virtual void work(unsigned int work_id) {
 403     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 404     // Simplest first cut: static partitioning.
 405     int index = work_id;
 406     // The increment on "index" must correspond to the maximum number of queues
 407     // (n_queues) with which that ReferenceProcessor was created.  That
 408     // is because of the "clever" way the discovered references lists were
 409     // allocated and are indexed into.
 410     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 411     for (int j = 0;
 412          j < ReferenceProcessor::number_of_subclasses_of_ref();
 413          j++, index += _n_queues) {
 414       _ref_processor.enqueue_discovered_reflist(
 415         _refs_lists[index], _pending_list_addr);
 416       _refs_lists[index].set_head(NULL);
 417       _refs_lists[index].set_length(0);
 418     }
 419   }
 420 };
 421 
 422 // Enqueue references that are not made active again
 423 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 424   AbstractRefProcTaskExecutor* task_executor) {
 425   if (_processing_is_mt && task_executor != NULL) {
 426     // Parallel code
 427     RefProcEnqueueTask tsk(*this, _discovered_refs,
 428                            pending_list_addr, _max_num_q);
 429     task_executor->execute(tsk);
 430   } else {
 431     // Serial code: call the parent class's implementation
 432     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 433       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 434       _discovered_refs[i].set_head(NULL);
 435       _discovered_refs[i].set_length(0);
 436     }
 437   }
 438 }
 439 
 440 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 441   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 442   oop discovered = java_lang_ref_Reference::discovered(_ref);
 443   assert(_discovered_addr && discovered->is_oop_or_null(),
 444          err_msg("Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)));
 445   _next = discovered;
 446   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 447   _referent = java_lang_ref_Reference::referent(_ref);
 448   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 449          "Wrong oop found in java.lang.Reference object");
 450   assert(allow_null_referent ?
 451              _referent->is_oop_or_null()
 452            : _referent->is_oop(),
 453          err_msg("Expected an oop%s for referent field at " PTR_FORMAT,
 454                  (allow_null_referent ? " or NULL" : ""),
 455                  p2i(_referent)));
 456 }
 457 
 458 void DiscoveredListIterator::remove() {
 459   assert(_ref->is_oop(), "Dropping a bad reference");
 460   oop_store_raw(_discovered_addr, NULL);
 461 
 462   // First _prev_next ref actually points into DiscoveredList (gross).
 463   oop new_next;
 464   if (_next == _ref) {
 465     // At the end of the list, we should make _prev point to itself.
 466     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 467     // and _prev will be NULL.
 468     new_next = _prev;
 469   } else {
 470     new_next = _next;
 471   }
 472   // Remove Reference object from discovered list. Note that G1 does not need a
 473   // pre-barrier here because we know the Reference has already been found/marked,
 474   // that's how it ended up in the discovered list in the first place.
 475   oop_store_raw(_prev_next, new_next);
 476   NOT_PRODUCT(_removed++);
 477   _refs_list.dec_length(1);
 478 }
 479 
 480 void DiscoveredListIterator::clear_referent() {
 481   oop_store_raw(_referent_addr, NULL);
 482 }
 483 
 484 // NOTE: process_phase*() are largely similar, and at a high level
 485 // merely iterate over the extant list applying a predicate to
 486 // each of its elements and possibly removing that element from the
 487 // list and applying some further closures to that element.
 488 // We should consider the possibility of replacing these
 489 // process_phase*() methods by abstracting them into
 490 // a single general iterator invocation that receives appropriate
 491 // closures that accomplish this work.
 492 
 493 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 494 // referents are not alive, but that should be kept alive for policy reasons.
 495 // Keep alive the transitive closure of all such referents.
 496 void
 497 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 498                                    ReferencePolicy*   policy,
 499                                    BoolObjectClosure* is_alive,
 500                                    OopClosure*        keep_alive,
 501                                    VoidClosure*       complete_gc) {
 502   assert(policy != NULL, "Must have a non-NULL policy");
 503   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 504   // Decide which softly reachable refs should be kept alive.
 505   while (iter.has_next()) {
 506     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 507     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 508     if (referent_is_dead &&
 509         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 510       if (TraceReferenceGC) {
 511         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 512                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
 513       }
 514       // Remove Reference object from list
 515       iter.remove();
 516       // keep the referent around
 517       iter.make_referent_alive();
 518       iter.move_to_next();
 519     } else {
 520       iter.next();
 521     }
 522   }
 523   // Close the reachable set
 524   complete_gc->do_void();
 525   NOT_PRODUCT(
 526     if (PrintGCDetails && TraceReferenceGC) {
 527       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT
 528         " discovered Refs by policy, from list " INTPTR_FORMAT,
 529         iter.removed(), iter.processed(), p2i(refs_list.head()));
 530     }
 531   )
 532 }
 533 
 534 // Traverse the list and remove any Refs that are not active, or
 535 // whose referents are either alive or NULL.
 536 void
 537 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 538                              BoolObjectClosure* is_alive,
 539                              OopClosure*        keep_alive) {
 540   assert(discovery_is_atomic(), "Error");
 541   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 542   while (iter.has_next()) {
 543     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 544     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 545     assert(next == NULL, "Should not discover inactive Reference");
 546     if (iter.is_referent_alive()) {
 547       if (TraceReferenceGC) {
 548         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 549                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
 550       }
 551       // The referent is reachable after all.
 552       // Remove Reference object from list.
 553       iter.remove();
 554       // Update the referent pointer as necessary: Note that this
 555       // should not entail any recursive marking because the
 556       // referent must already have been traversed.
 557       iter.make_referent_alive();
 558       iter.move_to_next();
 559     } else {
 560       iter.next();
 561     }
 562   }
 563   NOT_PRODUCT(
 564     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 565       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 566         " Refs in discovered list " INTPTR_FORMAT,
 567         iter.removed(), iter.processed(), p2i(refs_list.head()));
 568     }
 569   )
 570 }
 571 
 572 void
 573 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 574                                                   BoolObjectClosure* is_alive,
 575                                                   OopClosure*        keep_alive,
 576                                                   VoidClosure*       complete_gc) {
 577   assert(!discovery_is_atomic(), "Error");
 578   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 579   while (iter.has_next()) {
 580     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 581     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 582     oop next = java_lang_ref_Reference::next(iter.obj());
 583     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 584          next != NULL)) {
 585       assert(next->is_oop_or_null(), err_msg("Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next)));
 586       // Remove Reference object from list
 587       iter.remove();
 588       // Trace the cohorts
 589       iter.make_referent_alive();
 590       if (UseCompressedOops) {
 591         keep_alive->do_oop((narrowOop*)next_addr);
 592       } else {
 593         keep_alive->do_oop((oop*)next_addr);
 594       }
 595       iter.move_to_next();
 596     } else {
 597       iter.next();
 598     }
 599   }
 600   // Now close the newly reachable set
 601   complete_gc->do_void();
 602   NOT_PRODUCT(
 603     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 604       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 605         " Refs in discovered list " INTPTR_FORMAT,
 606         iter.removed(), iter.processed(), p2i(refs_list.head()));
 607     }
 608   )
 609 }
 610 
 611 // Traverse the list and process the referents, by either
 612 // clearing them or keeping them (and their reachable
 613 // closure) alive.
 614 void
 615 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 616                                    bool               clear_referent,
 617                                    BoolObjectClosure* is_alive,
 618                                    OopClosure*        keep_alive,
 619                                    VoidClosure*       complete_gc) {
 620   ResourceMark rm;
 621   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 622   while (iter.has_next()) {
 623     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 624     if (clear_referent) {
 625       // NULL out referent pointer
 626       iter.clear_referent();
 627     } else {
 628       // keep the referent around
 629       iter.make_referent_alive();
 630     }
 631     if (TraceReferenceGC) {
 632       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 633                              clear_referent ? "cleared " : "",
 634                              p2i(iter.obj()), iter.obj()->klass()->internal_name());
 635     }
 636     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 637     iter.next();
 638   }
 639   // Close the reachable set
 640   complete_gc->do_void();
 641 }
 642 
 643 void
 644 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 645   oop obj = NULL;
 646   oop next = refs_list.head();
 647   while (next != obj) {
 648     obj = next;
 649     next = java_lang_ref_Reference::discovered(obj);
 650     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 651   }
 652   refs_list.set_head(NULL);
 653   refs_list.set_length(0);
 654 }
 655 
 656 void ReferenceProcessor::abandon_partial_discovery() {
 657   // loop over the lists
 658   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 659     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 660       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 661     }
 662     clear_discovered_references(_discovered_refs[i]);
 663   }
 664 }
 665 
 666 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 667 public:
 668   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 669                     DiscoveredList      refs_lists[],
 670                     ReferencePolicy*    policy,
 671                     bool                marks_oops_alive)
 672     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 673       _policy(policy)
 674   { }
 675   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 676                     OopClosure& keep_alive,
 677                     VoidClosure& complete_gc)
 678   {
 679     Thread* thr = Thread::current();
 680     int refs_list_index = ((WorkerThread*)thr)->id();
 681     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 682                                   &is_alive, &keep_alive, &complete_gc);
 683   }
 684 private:
 685   ReferencePolicy* _policy;
 686 };
 687 
 688 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 689 public:
 690   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 691                     DiscoveredList      refs_lists[],
 692                     bool                marks_oops_alive)
 693     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 694   { }
 695   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 696                     OopClosure& keep_alive,
 697                     VoidClosure& complete_gc)
 698   {
 699     _ref_processor.process_phase2(_refs_lists[i],
 700                                   &is_alive, &keep_alive, &complete_gc);
 701   }
 702 };
 703 
 704 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 705 public:
 706   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 707                     DiscoveredList      refs_lists[],
 708                     bool                clear_referent,
 709                     bool                marks_oops_alive)
 710     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 711       _clear_referent(clear_referent)
 712   { }
 713   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 714                     OopClosure& keep_alive,
 715                     VoidClosure& complete_gc)
 716   {
 717     // Don't use "refs_list_index" calculated in this way because
 718     // balance_queues() has moved the Ref's into the first n queues.
 719     // Thread* thr = Thread::current();
 720     // int refs_list_index = ((WorkerThread*)thr)->id();
 721     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 722     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 723                                   &is_alive, &keep_alive, &complete_gc);
 724   }
 725 private:
 726   bool _clear_referent;
 727 };
 728 
 729 // Balances reference queues.
 730 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 731 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 732 // corresponding to the active workers will be processed.
 733 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 734 {
 735   // calculate total length
 736   size_t total_refs = 0;
 737   if (TraceReferenceGC && PrintGCDetails) {
 738     gclog_or_tty->print_cr("\nBalance ref_lists ");
 739   }
 740 
 741   for (uint i = 0; i < _max_num_q; ++i) {
 742     total_refs += ref_lists[i].length();
 743     if (TraceReferenceGC && PrintGCDetails) {
 744       gclog_or_tty->print(SIZE_FORMAT " ", ref_lists[i].length());
 745     }
 746   }
 747   if (TraceReferenceGC && PrintGCDetails) {
 748     gclog_or_tty->print_cr(" = " SIZE_FORMAT, total_refs);
 749   }
 750   size_t avg_refs = total_refs / _num_q + 1;
 751   uint to_idx = 0;
 752   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 753     bool move_all = false;
 754     if (from_idx >= _num_q) {
 755       move_all = ref_lists[from_idx].length() > 0;
 756     }
 757     while ((ref_lists[from_idx].length() > avg_refs) ||
 758            move_all) {
 759       assert(to_idx < _num_q, "Sanity Check!");
 760       if (ref_lists[to_idx].length() < avg_refs) {
 761         // move superfluous refs
 762         size_t refs_to_move;
 763         // Move all the Ref's if the from queue will not be processed.
 764         if (move_all) {
 765           refs_to_move = MIN2(ref_lists[from_idx].length(),
 766                               avg_refs - ref_lists[to_idx].length());
 767         } else {
 768           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 769                               avg_refs - ref_lists[to_idx].length());
 770         }
 771 
 772         assert(refs_to_move > 0, "otherwise the code below will fail");
 773 
 774         oop move_head = ref_lists[from_idx].head();
 775         oop move_tail = move_head;
 776         oop new_head  = move_head;
 777         // find an element to split the list on
 778         for (size_t j = 0; j < refs_to_move; ++j) {
 779           move_tail = new_head;
 780           new_head = java_lang_ref_Reference::discovered(new_head);
 781         }
 782 
 783         // Add the chain to the to list.
 784         if (ref_lists[to_idx].head() == NULL) {
 785           // to list is empty. Make a loop at the end.
 786           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 787         } else {
 788           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 789         }
 790         ref_lists[to_idx].set_head(move_head);
 791         ref_lists[to_idx].inc_length(refs_to_move);
 792 
 793         // Remove the chain from the from list.
 794         if (move_tail == new_head) {
 795           // We found the end of the from list.
 796           ref_lists[from_idx].set_head(NULL);
 797         } else {
 798           ref_lists[from_idx].set_head(new_head);
 799         }
 800         ref_lists[from_idx].dec_length(refs_to_move);
 801         if (ref_lists[from_idx].length() == 0) {
 802           break;
 803         }
 804       } else {
 805         to_idx = (to_idx + 1) % _num_q;
 806       }
 807     }
 808   }
 809 #ifdef ASSERT
 810   size_t balanced_total_refs = 0;
 811   for (uint i = 0; i < _max_num_q; ++i) {
 812     balanced_total_refs += ref_lists[i].length();
 813     if (TraceReferenceGC && PrintGCDetails) {
 814       gclog_or_tty->print(SIZE_FORMAT " ", ref_lists[i].length());
 815     }
 816   }
 817   if (TraceReferenceGC && PrintGCDetails) {
 818     gclog_or_tty->print_cr(" = " SIZE_FORMAT, balanced_total_refs);
 819     gclog_or_tty->flush();
 820   }
 821   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 822 #endif
 823 }
 824 
 825 void ReferenceProcessor::balance_all_queues() {
 826   balance_queues(_discoveredSoftRefs);
 827   balance_queues(_discoveredWeakRefs);
 828   balance_queues(_discoveredFinalRefs);
 829   balance_queues(_discoveredPhantomRefs);
 830   balance_queues(_discoveredCleanerRefs);
 831 }
 832 
 833 size_t
 834 ReferenceProcessor::process_discovered_reflist(
 835   DiscoveredList               refs_lists[],
 836   ReferencePolicy*             policy,
 837   bool                         clear_referent,
 838   BoolObjectClosure*           is_alive,
 839   OopClosure*                  keep_alive,
 840   VoidClosure*                 complete_gc,
 841   AbstractRefProcTaskExecutor* task_executor)
 842 {
 843   bool mt_processing = task_executor != NULL && _processing_is_mt;
 844   // If discovery used MT and a dynamic number of GC threads, then
 845   // the queues must be balanced for correctness if fewer than the
 846   // maximum number of queues were used.  The number of queue used
 847   // during discovery may be different than the number to be used
 848   // for processing so don't depend of _num_q < _max_num_q as part
 849   // of the test.
 850   bool must_balance = _discovery_is_mt;
 851 
 852   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 853       must_balance) {
 854     balance_queues(refs_lists);
 855   }
 856 
 857   size_t total_list_count = total_count(refs_lists);
 858 
 859   if (PrintReferenceGC && PrintGCDetails) {
 860     gclog_or_tty->print(", " SIZE_FORMAT " refs", total_list_count);
 861   }
 862 
 863   // Phase 1 (soft refs only):
 864   // . Traverse the list and remove any SoftReferences whose
 865   //   referents are not alive, but that should be kept alive for
 866   //   policy reasons. Keep alive the transitive closure of all
 867   //   such referents.
 868   if (policy != NULL) {
 869     if (mt_processing) {
 870       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 871       task_executor->execute(phase1);
 872     } else {
 873       for (uint i = 0; i < _max_num_q; i++) {
 874         process_phase1(refs_lists[i], policy,
 875                        is_alive, keep_alive, complete_gc);
 876       }
 877     }
 878   } else { // policy == NULL
 879     assert(refs_lists != _discoveredSoftRefs,
 880            "Policy must be specified for soft references.");
 881   }
 882 
 883   // Phase 2:
 884   // . Traverse the list and remove any refs whose referents are alive.
 885   if (mt_processing) {
 886     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 887     task_executor->execute(phase2);
 888   } else {
 889     for (uint i = 0; i < _max_num_q; i++) {
 890       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 891     }
 892   }
 893 
 894   // Phase 3:
 895   // . Traverse the list and process referents as appropriate.
 896   if (mt_processing) {
 897     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 898     task_executor->execute(phase3);
 899   } else {
 900     for (uint i = 0; i < _max_num_q; i++) {
 901       process_phase3(refs_lists[i], clear_referent,
 902                      is_alive, keep_alive, complete_gc);
 903     }
 904   }
 905 
 906   return total_list_count;
 907 }
 908 
 909 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 910   uint id = 0;
 911   // Determine the queue index to use for this object.
 912   if (_discovery_is_mt) {
 913     // During a multi-threaded discovery phase,
 914     // each thread saves to its "own" list.
 915     Thread* thr = Thread::current();
 916     id = thr->as_Worker_thread()->id();
 917   } else {
 918     // single-threaded discovery, we save in round-robin
 919     // fashion to each of the lists.
 920     if (_processing_is_mt) {
 921       id = next_id();
 922     }
 923   }
 924   assert(id < _max_num_q, "Id is out-of-bounds (call Freud?)");
 925 
 926   // Get the discovered queue to which we will add
 927   DiscoveredList* list = NULL;
 928   switch (rt) {
 929     case REF_OTHER:
 930       // Unknown reference type, no special treatment
 931       break;
 932     case REF_SOFT:
 933       list = &_discoveredSoftRefs[id];
 934       break;
 935     case REF_WEAK:
 936       list = &_discoveredWeakRefs[id];
 937       break;
 938     case REF_FINAL:
 939       list = &_discoveredFinalRefs[id];
 940       break;
 941     case REF_PHANTOM:
 942       list = &_discoveredPhantomRefs[id];
 943       break;
 944     case REF_CLEANER:
 945       list = &_discoveredCleanerRefs[id];
 946       break;
 947     case REF_NONE:
 948     case REF_JNI:
 949       // we should not reach here if we are an InstanceRefKlass
 950     default:
 951       guarantee(false, err_msg("rt should not be %d", rt));
 952   }
 953   if (TraceReferenceGC && PrintGCDetails) {
 954     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 955   }
 956   return list;
 957 }
 958 
 959 inline void
 960 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 961                                               oop             obj,
 962                                               HeapWord*       discovered_addr) {
 963   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 964   // First we must make sure this object is only enqueued once. CAS in a non null
 965   // discovered_addr.
 966   oop current_head = refs_list.head();
 967   // The last ref must have its discovered field pointing to itself.
 968   oop next_discovered = (current_head != NULL) ? current_head : obj;
 969 
 970   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 971                                                     NULL);
 972   if (retest == NULL) {
 973     // This thread just won the right to enqueue the object.
 974     // We have separate lists for enqueueing, so no synchronization
 975     // is necessary.
 976     refs_list.set_head(obj);
 977     refs_list.inc_length(1);
 978 
 979     if (TraceReferenceGC) {
 980       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 981                              p2i(obj), obj->klass()->internal_name());
 982     }
 983   } else {
 984     // If retest was non NULL, another thread beat us to it:
 985     // The reference has already been discovered...
 986     if (TraceReferenceGC) {
 987       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
 988                              p2i(obj), obj->klass()->internal_name());
 989     }
 990   }
 991 }
 992 
 993 #ifndef PRODUCT
 994 // Non-atomic (i.e. concurrent) discovery might allow us
 995 // to observe j.l.References with NULL referents, being those
 996 // cleared concurrently by mutators during (or after) discovery.
 997 void ReferenceProcessor::verify_referent(oop obj) {
 998   bool da = discovery_is_atomic();
 999   oop referent = java_lang_ref_Reference::referent(obj);
1000   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1001          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1002                  INTPTR_FORMAT " during %satomic discovery ",
1003                  p2i(referent), p2i(obj), da ? "" : "non-"));
1004 }
1005 #endif
1006 
1007 // We mention two of several possible choices here:
1008 // #0: if the reference object is not in the "originating generation"
1009 //     (or part of the heap being collected, indicated by our "span"
1010 //     we don't treat it specially (i.e. we scan it as we would
1011 //     a normal oop, treating its references as strong references).
1012 //     This means that references can't be discovered unless their
1013 //     referent is also in the same span. This is the simplest,
1014 //     most "local" and most conservative approach, albeit one
1015 //     that may cause weak references to be enqueued least promptly.
1016 //     We call this choice the "ReferenceBasedDiscovery" policy.
1017 // #1: the reference object may be in any generation (span), but if
1018 //     the referent is in the generation (span) being currently collected
1019 //     then we can discover the reference object, provided
1020 //     the object has not already been discovered by
1021 //     a different concurrently running collector (as may be the
1022 //     case, for instance, if the reference object is in CMS and
1023 //     the referent in DefNewGeneration), and provided the processing
1024 //     of this reference object by the current collector will
1025 //     appear atomic to every other collector in the system.
1026 //     (Thus, for instance, a concurrent collector may not
1027 //     discover references in other generations even if the
1028 //     referent is in its own generation). This policy may,
1029 //     in certain cases, enqueue references somewhat sooner than
1030 //     might Policy #0 above, but at marginally increased cost
1031 //     and complexity in processing these references.
1032 //     We call this choice the "RefeferentBasedDiscovery" policy.
1033 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1034   // Make sure we are discovering refs (rather than processing discovered refs).
1035   if (!_discovering_refs || !RegisterReferences) {
1036     return false;
1037   }
1038   // We only discover active references.
1039   oop next = java_lang_ref_Reference::next(obj);
1040   if (next != NULL) {   // Ref is no longer active
1041     return false;
1042   }
1043 
1044   HeapWord* obj_addr = (HeapWord*)obj;
1045   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1046       !_span.contains(obj_addr)) {
1047     // Reference is not in the originating generation;
1048     // don't treat it specially (i.e. we want to scan it as a normal
1049     // object with strong references).
1050     return false;
1051   }
1052 
1053   // We only discover references whose referents are not (yet)
1054   // known to be strongly reachable.
1055   if (is_alive_non_header() != NULL) {
1056     verify_referent(obj);
1057     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1058       return false;  // referent is reachable
1059     }
1060   }
1061   if (rt == REF_SOFT) {
1062     // For soft refs we can decide now if these are not
1063     // current candidates for clearing, in which case we
1064     // can mark through them now, rather than delaying that
1065     // to the reference-processing phase. Since all current
1066     // time-stamp policies advance the soft-ref clock only
1067     // at a full collection cycle, this is always currently
1068     // accurate.
1069     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1070       return false;
1071     }
1072   }
1073 
1074   ResourceMark rm;      // Needed for tracing.
1075 
1076   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1077   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1078   assert(discovered->is_oop_or_null(), err_msg("Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)));
1079   if (discovered != NULL) {
1080     // The reference has already been discovered...
1081     if (TraceReferenceGC) {
1082       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1083                              p2i(obj), obj->klass()->internal_name());
1084     }
1085     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1086       // assumes that an object is not processed twice;
1087       // if it's been already discovered it must be on another
1088       // generation's discovered list; so we won't discover it.
1089       return false;
1090     } else {
1091       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1092              "Unrecognized policy");
1093       // Check assumption that an object is not potentially
1094       // discovered twice except by concurrent collectors that potentially
1095       // trace the same Reference object twice.
1096       assert(UseConcMarkSweepGC || UseG1GC,
1097              "Only possible with a concurrent marking collector");
1098       return true;
1099     }
1100   }
1101 
1102   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1103     verify_referent(obj);
1104     // Discover if and only if EITHER:
1105     // .. reference is in our span, OR
1106     // .. we are an atomic collector and referent is in our span
1107     if (_span.contains(obj_addr) ||
1108         (discovery_is_atomic() &&
1109          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1110       // should_enqueue = true;
1111     } else {
1112       return false;
1113     }
1114   } else {
1115     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1116            _span.contains(obj_addr), "code inconsistency");
1117   }
1118 
1119   // Get the right type of discovered queue head.
1120   DiscoveredList* list = get_discovered_list(rt);
1121   if (list == NULL) {
1122     return false;   // nothing special needs to be done
1123   }
1124 
1125   if (_discovery_is_mt) {
1126     add_to_discovered_list_mt(*list, obj, discovered_addr);
1127   } else {
1128     // We do a raw store here: the field will be visited later when processing
1129     // the discovered references.
1130     oop current_head = list->head();
1131     // The last ref must have its discovered field pointing to itself.
1132     oop next_discovered = (current_head != NULL) ? current_head : obj;
1133 
1134     assert(discovered == NULL, "control point invariant");
1135     oop_store_raw(discovered_addr, next_discovered);
1136     list->set_head(obj);
1137     list->inc_length(1);
1138 
1139     if (TraceReferenceGC) {
1140       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1141                                 p2i(obj), obj->klass()->internal_name());
1142     }
1143   }
1144   assert(obj->is_oop(), "Discovered a bad reference");
1145   verify_referent(obj);
1146   return true;
1147 }
1148 
1149 // Preclean the discovered references by removing those
1150 // whose referents are alive, and by marking from those that
1151 // are not active. These lists can be handled here
1152 // in any order and, indeed, concurrently.
1153 void ReferenceProcessor::preclean_discovered_references(
1154   BoolObjectClosure* is_alive,
1155   OopClosure* keep_alive,
1156   VoidClosure* complete_gc,
1157   YieldClosure* yield,
1158   GCTimer* gc_timer) {
1159 
1160   // Soft references
1161   {
1162     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1163               false, gc_timer);
1164     for (uint i = 0; i < _max_num_q; i++) {
1165       if (yield->should_return()) {
1166         return;
1167       }
1168       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1169                                   keep_alive, complete_gc, yield);
1170     }
1171   }
1172 
1173   // Weak references
1174   {
1175     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1176               false, gc_timer);
1177     for (uint i = 0; i < _max_num_q; i++) {
1178       if (yield->should_return()) {
1179         return;
1180       }
1181       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1182                                   keep_alive, complete_gc, yield);
1183     }
1184   }
1185 
1186   // Final references
1187   {
1188     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1189               false, gc_timer);
1190     for (uint i = 0; i < _max_num_q; i++) {
1191       if (yield->should_return()) {
1192         return;
1193       }
1194       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1195                                   keep_alive, complete_gc, yield);
1196     }
1197   }
1198 
1199   // Phantom references
1200   {
1201     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1202               false, gc_timer);
1203     for (uint i = 0; i < _max_num_q; i++) {
1204       if (yield->should_return()) {
1205         return;
1206       }
1207       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1208                                   keep_alive, complete_gc, yield);
1209     }
1210 
1211     // Cleaner references.  Included in timing for phantom references.  We
1212     // expect Cleaner references to be temporary, and don't want to deal with
1213     // possible incompatibilities arising from making it more visible.
1214     for (uint i = 0; i < _max_num_q; i++) {
1215       if (yield->should_return()) {
1216         return;
1217       }
1218       preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
1219                                   keep_alive, complete_gc, yield);
1220     }
1221   }
1222 }
1223 
1224 // Walk the given discovered ref list, and remove all reference objects
1225 // whose referents are still alive, whose referents are NULL or which
1226 // are not active (have a non-NULL next field). NOTE: When we are
1227 // thus precleaning the ref lists (which happens single-threaded today),
1228 // we do not disable refs discovery to honor the correct semantics of
1229 // java.lang.Reference. As a result, we need to be careful below
1230 // that ref removal steps interleave safely with ref discovery steps
1231 // (in this thread).
1232 void
1233 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1234                                                 BoolObjectClosure* is_alive,
1235                                                 OopClosure*        keep_alive,
1236                                                 VoidClosure*       complete_gc,
1237                                                 YieldClosure*      yield) {
1238   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1239   while (iter.has_next()) {
1240     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1241     oop obj = iter.obj();
1242     oop next = java_lang_ref_Reference::next(obj);
1243     if (iter.referent() == NULL || iter.is_referent_alive() ||
1244         next != NULL) {
1245       // The referent has been cleared, or is alive, or the Reference is not
1246       // active; we need to trace and mark its cohort.
1247       if (TraceReferenceGC) {
1248         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1249                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
1250       }
1251       // Remove Reference object from list
1252       iter.remove();
1253       // Keep alive its cohort.
1254       iter.make_referent_alive();
1255       if (UseCompressedOops) {
1256         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1257         keep_alive->do_oop(next_addr);
1258       } else {
1259         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1260         keep_alive->do_oop(next_addr);
1261       }
1262       iter.move_to_next();
1263     } else {
1264       iter.next();
1265     }
1266   }
1267   // Close the reachable set
1268   complete_gc->do_void();
1269 
1270   NOT_PRODUCT(
1271     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1272       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT
1273         " Refs in discovered list " INTPTR_FORMAT,
1274         iter.removed(), iter.processed(), p2i(refs_list.head()));
1275     }
1276   )
1277 }
1278 
1279 const char* ReferenceProcessor::list_name(uint i) {
1280    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1281           "Out of bounds index");
1282 
1283    int j = i / _max_num_q;
1284    switch (j) {
1285      case 0: return "SoftRef";
1286      case 1: return "WeakRef";
1287      case 2: return "FinalRef";
1288      case 3: return "PhantomRef";
1289      case 4: return "CleanerRef";
1290    }
1291    ShouldNotReachHere();
1292    return NULL;
1293 }
1294