1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.hpp"
  34 #include "memory/allocation.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/java.hpp"
  37 #include "runtime/jniHandles.hpp"
  38 
  39 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  40 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  41 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  42 
  43 void referenceProcessor_init() {
  44   ReferenceProcessor::init_statics();
  45 }
  46 
  47 void ReferenceProcessor::init_statics() {
  48   // We need a monotonically non-decreasing time in ms but
  49   // os::javaTimeMillis() does not guarantee monotonicity.
  50   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  51 
  52   // Initialize the soft ref timestamp clock.
  53   _soft_ref_timestamp_clock = now;
  54   // Also update the soft ref clock in j.l.r.SoftReference
  55   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  56 
  57   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  58   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  59                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  60   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  61     vm_exit_during_initialization("Could not allocate reference policy object");
  62   }
  63   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  64             RefDiscoveryPolicy == ReferentBasedDiscovery,
  65             "Unrecognized RefDiscoveryPolicy");
  66 }
  67 
  68 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  69 #ifdef ASSERT
  70   // Verify that we're not currently discovering refs
  71   assert(!_discovering_refs, "nested call?");
  72 
  73   if (check_no_refs) {
  74     // Verify that the discovered lists are empty
  75     verify_no_references_recorded();
  76   }
  77 #endif // ASSERT
  78 
  79   // Someone could have modified the value of the static
  80   // field in the j.l.r.SoftReference class that holds the
  81   // soft reference timestamp clock using reflection or
  82   // Unsafe between GCs. Unconditionally update the static
  83   // field in ReferenceProcessor here so that we use the new
  84   // value during reference discovery.
  85 
  86   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  87   _discovering_refs = true;
  88 }
  89 
  90 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  91                                        bool      mt_processing,
  92                                        uint      mt_processing_degree,
  93                                        bool      mt_discovery,
  94                                        uint      mt_discovery_degree,
  95                                        bool      atomic_discovery,
  96                                        BoolObjectClosure* is_alive_non_header)  :
  97   _discovering_refs(false),
  98   _enqueuing_is_done(false),
  99   _is_alive_non_header(is_alive_non_header),
 100   _processing_is_mt(mt_processing),
 101   _next_id(0)
 102 {
 103   _span = span;
 104   _discovery_is_atomic = atomic_discovery;
 105   _discovery_is_mt     = mt_discovery;
 106   _num_q               = MAX2(1U, mt_processing_degree);
 107   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 108   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 109             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 110 
 111   if (_discovered_refs == NULL) {
 112     vm_exit_during_initialization("Could not allocated RefProc Array");
 113   }
 114   _discoveredSoftRefs    = &_discovered_refs[0];
 115   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 116   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 117   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 118   _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
 119 
 120   // Initialize all entries to NULL
 121   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 122     _discovered_refs[i].set_head(NULL);
 123     _discovered_refs[i].set_length(0);
 124   }
 125 
 126   setup_policy(false /* default soft ref policy */);
 127 }
 128 
 129 #ifndef PRODUCT
 130 void ReferenceProcessor::verify_no_references_recorded() {
 131   guarantee(!_discovering_refs, "Discovering refs?");
 132   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 133     guarantee(_discovered_refs[i].is_empty(),
 134               "Found non-empty discovered list");
 135   }
 136 }
 137 #endif
 138 
 139 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 140   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 141     if (UseCompressedOops) {
 142       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 143     } else {
 144       f->do_oop((oop*)_discovered_refs[i].adr_head());
 145     }
 146   }
 147 }
 148 
 149 void ReferenceProcessor::update_soft_ref_master_clock() {
 150   // Update (advance) the soft ref master clock field. This must be done
 151   // after processing the soft ref list.
 152 
 153   // We need a monotonically non-decreasing time in ms but
 154   // os::javaTimeMillis() does not guarantee monotonicity.
 155   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 156   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 157   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 158 
 159   NOT_PRODUCT(
 160   if (now < _soft_ref_timestamp_clock) {
 161     warning("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 162             _soft_ref_timestamp_clock, now);
 163   }
 164   )
 165   // The values of now and _soft_ref_timestamp_clock are set using
 166   // javaTimeNanos(), which is guaranteed to be monotonically
 167   // non-decreasing provided the underlying platform provides such
 168   // a time source (and it is bug free).
 169   // In product mode, however, protect ourselves from non-monotonicity.
 170   if (now > _soft_ref_timestamp_clock) {
 171     _soft_ref_timestamp_clock = now;
 172     java_lang_ref_SoftReference::set_clock(now);
 173   }
 174   // Else leave clock stalled at its old value until time progresses
 175   // past clock value.
 176 }
 177 
 178 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 179   size_t total = 0;
 180   for (uint i = 0; i < _max_num_q; ++i) {
 181     total += lists[i].length();
 182   }
 183   return total;
 184 }
 185 
 186 static void log_ref_count(size_t count, bool doit) {
 187   if (doit) {
 188     gclog_or_tty->print(", " SIZE_FORMAT " refs", count);
 189   }
 190 }
 191 
 192 class GCRefTraceTime : public StackObj {
 193   GCTraceTimeImpl _gc_trace_time;
 194  public:
 195   GCRefTraceTime(const char* title, bool doit, GCTimer* timer, size_t count) :
 196     _gc_trace_time(title, doit, false, timer) {
 197     log_ref_count(count, doit);
 198   }
 199 };
 200 
 201 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 202   BoolObjectClosure*           is_alive,
 203   OopClosure*                  keep_alive,
 204   VoidClosure*                 complete_gc,
 205   AbstractRefProcTaskExecutor* task_executor,
 206   GCTimer*                     gc_timer) {
 207 
 208   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 209   // Stop treating discovered references specially.
 210   disable_discovery();
 211 
 212   // If discovery was concurrent, someone could have modified
 213   // the value of the static field in the j.l.r.SoftReference
 214   // class that holds the soft reference timestamp clock using
 215   // reflection or Unsafe between when discovery was enabled and
 216   // now. Unconditionally update the static field in ReferenceProcessor
 217   // here so that we use the new value during processing of the
 218   // discovered soft refs.
 219 
 220   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 221 
 222   bool trace_time = PrintGCDetails && PrintReferenceGC;
 223 
 224   // Include cleaners in phantom statistics.  We expect Cleaner
 225   // references to be temporary, and don't want to deal with
 226   // possible incompatibilities arising from making it more visible.
 227   ReferenceProcessorStats stats(
 228       total_count(_discoveredSoftRefs),
 229       total_count(_discoveredWeakRefs),
 230       total_count(_discoveredFinalRefs),
 231       total_count(_discoveredPhantomRefs) + total_count(_discoveredCleanerRefs));
 232 
 233   // Soft references
 234   {
 235     GCRefTraceTime tt("SoftReference", trace_time, gc_timer, stats.soft_count());
 236     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 237                                is_alive, keep_alive, complete_gc, task_executor);
 238   }
 239 
 240   update_soft_ref_master_clock();
 241 
 242   // Weak references
 243   {
 244     GCRefTraceTime tt("WeakReference", trace_time, gc_timer, stats.weak_count());
 245     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 246                                is_alive, keep_alive, complete_gc, task_executor);
 247   }
 248 
 249   // Final references
 250   {
 251     GCRefTraceTime tt("FinalReference", trace_time, gc_timer, stats.final_count());
 252     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 253                                is_alive, keep_alive, complete_gc, task_executor);
 254   }
 255 
 256   // Phantom references
 257   {
 258     GCRefTraceTime tt("PhantomReference", trace_time, gc_timer, stats.phantom_count());
 259     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 260                                is_alive, keep_alive, complete_gc, task_executor);
 261 
 262     // Process cleaners, but include them in phantom timing.  We expect
 263     // Cleaner references to be temporary, and don't want to deal with
 264     // possible incompatibilities arising from making it more visible.
 265     process_discovered_reflist(_discoveredCleanerRefs, NULL, true,
 266                                  is_alive, keep_alive, complete_gc, task_executor);
 267   }
 268 
 269   // Weak global JNI references. It would make more sense (semantically) to
 270   // traverse these simultaneously with the regular weak references above, but
 271   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 272   // thus use JNI weak references to circumvent the phantom references and
 273   // resurrect a "post-mortem" object.
 274   {
 275     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer);
 276     NOT_PRODUCT(log_ref_count(count_jni_refs(), trace_time);)
 277     if (task_executor != NULL) {
 278       task_executor->set_single_threaded_mode();
 279     }
 280     process_phaseJNI(is_alive, keep_alive, complete_gc);
 281   }
 282 
 283   return stats;
 284 }
 285 
 286 #ifndef PRODUCT
 287 // Calculate the number of jni handles.
 288 uint ReferenceProcessor::count_jni_refs() {
 289   class AlwaysAliveClosure: public BoolObjectClosure {
 290   public:
 291     virtual bool do_object_b(oop obj) { return true; }
 292   };
 293 
 294   class CountHandleClosure: public OopClosure {
 295   private:
 296     int _count;
 297   public:
 298     CountHandleClosure(): _count(0) {}
 299     void do_oop(oop* unused)       { _count++; }
 300     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 301     int count() { return _count; }
 302   };
 303   CountHandleClosure global_handle_count;
 304   AlwaysAliveClosure always_alive;
 305   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 306   return global_handle_count.count();
 307 }
 308 #endif
 309 
 310 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 311                                           OopClosure*        keep_alive,
 312                                           VoidClosure*       complete_gc) {
 313   JNIHandles::weak_oops_do(is_alive, keep_alive);
 314   complete_gc->do_void();
 315 }
 316 
 317 
 318 template <class T>
 319 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 320                                    AbstractRefProcTaskExecutor* task_executor) {
 321 
 322   // Remember old value of pending references list
 323   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 324   T old_pending_list_value = *pending_list_addr;
 325 
 326   // Enqueue references that are not made active again, and
 327   // clear the decks for the next collection (cycle).
 328   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 329   // Do the post-barrier on pending_list_addr missed in
 330   // enqueue_discovered_reflist.
 331   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 332 
 333   // Stop treating discovered references specially.
 334   ref->disable_discovery();
 335 
 336   // Return true if new pending references were added
 337   return old_pending_list_value != *pending_list_addr;
 338 }
 339 
 340 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 341   if (UseCompressedOops) {
 342     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 343   } else {
 344     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 345   }
 346 }
 347 
 348 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 349                                                     HeapWord* pending_list_addr) {
 350   // Given a list of refs linked through the "discovered" field
 351   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 352   // thus distinguishing them from active References, then
 353   // prepend them to the pending list.
 354   //
 355   // The Java threads will see the Reference objects linked together through
 356   // the discovered field. Instead of trying to do the write barrier updates
 357   // in all places in the reference processor where we manipulate the discovered
 358   // field we make sure to do the barrier here where we anyway iterate through
 359   // all linked Reference objects. Note that it is important to not dirty any
 360   // cards during reference processing since this will cause card table
 361   // verification to fail for G1.
 362   if (TraceReferenceGC && PrintGCDetails) {
 363     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 364                            INTPTR_FORMAT, p2i(refs_list.head()));
 365   }
 366 
 367   oop obj = NULL;
 368   oop next_d = refs_list.head();
 369   // Walk down the list, self-looping the next field
 370   // so that the References are not considered active.
 371   while (obj != next_d) {
 372     obj = next_d;
 373     assert(obj->is_instanceRef(), "should be reference object");
 374     next_d = java_lang_ref_Reference::discovered(obj);
 375     if (TraceReferenceGC && PrintGCDetails) {
 376       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 377                              p2i(obj), p2i(next_d));
 378     }
 379     assert(java_lang_ref_Reference::next(obj) == NULL,
 380            "Reference not active; should not be discovered");
 381     // Self-loop next, so as to make Ref not active.
 382     java_lang_ref_Reference::set_next_raw(obj, obj);
 383     if (next_d != obj) {
 384       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 385     } else {
 386       // This is the last object.
 387       // Swap refs_list into pending_list_addr and
 388       // set obj's discovered to what we read from pending_list_addr.
 389       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 390       // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
 391       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 392       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 393     }
 394   }
 395 }
 396 
 397 // Parallel enqueue task
 398 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 399 public:
 400   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 401                      DiscoveredList      discovered_refs[],
 402                      HeapWord*           pending_list_addr,
 403                      int                 n_queues)
 404     : EnqueueTask(ref_processor, discovered_refs,
 405                   pending_list_addr, n_queues)
 406   { }
 407 
 408   virtual void work(unsigned int work_id) {
 409     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 410     // Simplest first cut: static partitioning.
 411     int index = work_id;
 412     // The increment on "index" must correspond to the maximum number of queues
 413     // (n_queues) with which that ReferenceProcessor was created.  That
 414     // is because of the "clever" way the discovered references lists were
 415     // allocated and are indexed into.
 416     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 417     for (int j = 0;
 418          j < ReferenceProcessor::number_of_subclasses_of_ref();
 419          j++, index += _n_queues) {
 420       _ref_processor.enqueue_discovered_reflist(
 421         _refs_lists[index], _pending_list_addr);
 422       _refs_lists[index].set_head(NULL);
 423       _refs_lists[index].set_length(0);
 424     }
 425   }
 426 };
 427 
 428 // Enqueue references that are not made active again
 429 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 430   AbstractRefProcTaskExecutor* task_executor) {
 431   if (_processing_is_mt && task_executor != NULL) {
 432     // Parallel code
 433     RefProcEnqueueTask tsk(*this, _discovered_refs,
 434                            pending_list_addr, _max_num_q);
 435     task_executor->execute(tsk);
 436   } else {
 437     // Serial code: call the parent class's implementation
 438     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 439       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 440       _discovered_refs[i].set_head(NULL);
 441       _discovered_refs[i].set_length(0);
 442     }
 443   }
 444 }
 445 
 446 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 447   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 448   oop discovered = java_lang_ref_Reference::discovered(_ref);
 449   assert(_discovered_addr && discovered->is_oop_or_null(),
 450          err_msg("Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)));
 451   _next = discovered;
 452   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 453   _referent = java_lang_ref_Reference::referent(_ref);
 454   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 455          "Wrong oop found in java.lang.Reference object");
 456   assert(allow_null_referent ?
 457              _referent->is_oop_or_null()
 458            : _referent->is_oop(),
 459          err_msg("Expected an oop%s for referent field at " PTR_FORMAT,
 460                  (allow_null_referent ? " or NULL" : ""),
 461                  p2i(_referent)));
 462 }
 463 
 464 void DiscoveredListIterator::remove() {
 465   assert(_ref->is_oop(), "Dropping a bad reference");
 466   oop_store_raw(_discovered_addr, NULL);
 467 
 468   // First _prev_next ref actually points into DiscoveredList (gross).
 469   oop new_next;
 470   if (_next == _ref) {
 471     // At the end of the list, we should make _prev point to itself.
 472     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 473     // and _prev will be NULL.
 474     new_next = _prev;
 475   } else {
 476     new_next = _next;
 477   }
 478   // Remove Reference object from discovered list. Note that G1 does not need a
 479   // pre-barrier here because we know the Reference has already been found/marked,
 480   // that's how it ended up in the discovered list in the first place.
 481   oop_store_raw(_prev_next, new_next);
 482   NOT_PRODUCT(_removed++);
 483   _refs_list.dec_length(1);
 484 }
 485 
 486 void DiscoveredListIterator::clear_referent() {
 487   oop_store_raw(_referent_addr, NULL);
 488 }
 489 
 490 // NOTE: process_phase*() are largely similar, and at a high level
 491 // merely iterate over the extant list applying a predicate to
 492 // each of its elements and possibly removing that element from the
 493 // list and applying some further closures to that element.
 494 // We should consider the possibility of replacing these
 495 // process_phase*() methods by abstracting them into
 496 // a single general iterator invocation that receives appropriate
 497 // closures that accomplish this work.
 498 
 499 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 500 // referents are not alive, but that should be kept alive for policy reasons.
 501 // Keep alive the transitive closure of all such referents.
 502 void
 503 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 504                                    ReferencePolicy*   policy,
 505                                    BoolObjectClosure* is_alive,
 506                                    OopClosure*        keep_alive,
 507                                    VoidClosure*       complete_gc) {
 508   assert(policy != NULL, "Must have a non-NULL policy");
 509   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 510   // Decide which softly reachable refs should be kept alive.
 511   while (iter.has_next()) {
 512     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 513     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 514     if (referent_is_dead &&
 515         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 516       if (TraceReferenceGC) {
 517         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 518                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
 519       }
 520       // Remove Reference object from list
 521       iter.remove();
 522       // keep the referent around
 523       iter.make_referent_alive();
 524       iter.move_to_next();
 525     } else {
 526       iter.next();
 527     }
 528   }
 529   // Close the reachable set
 530   complete_gc->do_void();
 531   NOT_PRODUCT(
 532     if (PrintGCDetails && TraceReferenceGC) {
 533       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT
 534         " discovered Refs by policy, from list " INTPTR_FORMAT,
 535         iter.removed(), iter.processed(), p2i(refs_list.head()));
 536     }
 537   )
 538 }
 539 
 540 // Traverse the list and remove any Refs that are not active, or
 541 // whose referents are either alive or NULL.
 542 void
 543 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 544                              BoolObjectClosure* is_alive,
 545                              OopClosure*        keep_alive) {
 546   assert(discovery_is_atomic(), "Error");
 547   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 548   while (iter.has_next()) {
 549     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 550     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 551     assert(next == NULL, "Should not discover inactive Reference");
 552     if (iter.is_referent_alive()) {
 553       if (TraceReferenceGC) {
 554         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 555                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
 556       }
 557       // The referent is reachable after all.
 558       // Remove Reference object from list.
 559       iter.remove();
 560       // Update the referent pointer as necessary: Note that this
 561       // should not entail any recursive marking because the
 562       // referent must already have been traversed.
 563       iter.make_referent_alive();
 564       iter.move_to_next();
 565     } else {
 566       iter.next();
 567     }
 568   }
 569   NOT_PRODUCT(
 570     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 571       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 572         " Refs in discovered list " INTPTR_FORMAT,
 573         iter.removed(), iter.processed(), p2i(refs_list.head()));
 574     }
 575   )
 576 }
 577 
 578 void
 579 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 580                                                   BoolObjectClosure* is_alive,
 581                                                   OopClosure*        keep_alive,
 582                                                   VoidClosure*       complete_gc) {
 583   assert(!discovery_is_atomic(), "Error");
 584   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 585   while (iter.has_next()) {
 586     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 587     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 588     oop next = java_lang_ref_Reference::next(iter.obj());
 589     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 590          next != NULL)) {
 591       assert(next->is_oop_or_null(), err_msg("Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next)));
 592       // Remove Reference object from list
 593       iter.remove();
 594       // Trace the cohorts
 595       iter.make_referent_alive();
 596       if (UseCompressedOops) {
 597         keep_alive->do_oop((narrowOop*)next_addr);
 598       } else {
 599         keep_alive->do_oop((oop*)next_addr);
 600       }
 601       iter.move_to_next();
 602     } else {
 603       iter.next();
 604     }
 605   }
 606   // Now close the newly reachable set
 607   complete_gc->do_void();
 608   NOT_PRODUCT(
 609     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 610       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 611         " Refs in discovered list " INTPTR_FORMAT,
 612         iter.removed(), iter.processed(), p2i(refs_list.head()));
 613     }
 614   )
 615 }
 616 
 617 // Traverse the list and process the referents, by either
 618 // clearing them or keeping them (and their reachable
 619 // closure) alive.
 620 void
 621 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 622                                    bool               clear_referent,
 623                                    BoolObjectClosure* is_alive,
 624                                    OopClosure*        keep_alive,
 625                                    VoidClosure*       complete_gc) {
 626   ResourceMark rm;
 627   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 628   while (iter.has_next()) {
 629     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 630     if (clear_referent) {
 631       // NULL out referent pointer
 632       iter.clear_referent();
 633     } else {
 634       // keep the referent around
 635       iter.make_referent_alive();
 636     }
 637     if (TraceReferenceGC) {
 638       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 639                              clear_referent ? "cleared " : "",
 640                              p2i(iter.obj()), iter.obj()->klass()->internal_name());
 641     }
 642     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 643     iter.next();
 644   }
 645   // Close the reachable set
 646   complete_gc->do_void();
 647 }
 648 
 649 void
 650 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 651   oop obj = NULL;
 652   oop next = refs_list.head();
 653   while (next != obj) {
 654     obj = next;
 655     next = java_lang_ref_Reference::discovered(obj);
 656     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 657   }
 658   refs_list.set_head(NULL);
 659   refs_list.set_length(0);
 660 }
 661 
 662 void ReferenceProcessor::abandon_partial_discovery() {
 663   // loop over the lists
 664   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 665     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 666       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 667     }
 668     clear_discovered_references(_discovered_refs[i]);
 669   }
 670 }
 671 
 672 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 673 public:
 674   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 675                     DiscoveredList      refs_lists[],
 676                     ReferencePolicy*    policy,
 677                     bool                marks_oops_alive)
 678     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 679       _policy(policy)
 680   { }
 681   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 682                     OopClosure& keep_alive,
 683                     VoidClosure& complete_gc)
 684   {
 685     Thread* thr = Thread::current();
 686     int refs_list_index = ((WorkerThread*)thr)->id();
 687     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 688                                   &is_alive, &keep_alive, &complete_gc);
 689   }
 690 private:
 691   ReferencePolicy* _policy;
 692 };
 693 
 694 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 695 public:
 696   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 697                     DiscoveredList      refs_lists[],
 698                     bool                marks_oops_alive)
 699     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 700   { }
 701   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 702                     OopClosure& keep_alive,
 703                     VoidClosure& complete_gc)
 704   {
 705     _ref_processor.process_phase2(_refs_lists[i],
 706                                   &is_alive, &keep_alive, &complete_gc);
 707   }
 708 };
 709 
 710 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 711 public:
 712   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 713                     DiscoveredList      refs_lists[],
 714                     bool                clear_referent,
 715                     bool                marks_oops_alive)
 716     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 717       _clear_referent(clear_referent)
 718   { }
 719   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 720                     OopClosure& keep_alive,
 721                     VoidClosure& complete_gc)
 722   {
 723     // Don't use "refs_list_index" calculated in this way because
 724     // balance_queues() has moved the Ref's into the first n queues.
 725     // Thread* thr = Thread::current();
 726     // int refs_list_index = ((WorkerThread*)thr)->id();
 727     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 728     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 729                                   &is_alive, &keep_alive, &complete_gc);
 730   }
 731 private:
 732   bool _clear_referent;
 733 };
 734 
 735 // Balances reference queues.
 736 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 737 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 738 // corresponding to the active workers will be processed.
 739 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 740 {
 741   // calculate total length
 742   size_t total_refs = 0;
 743   if (TraceReferenceGC && PrintGCDetails) {
 744     gclog_or_tty->print_cr("\nBalance ref_lists ");
 745   }
 746 
 747   for (uint i = 0; i < _max_num_q; ++i) {
 748     total_refs += ref_lists[i].length();
 749     if (TraceReferenceGC && PrintGCDetails) {
 750       gclog_or_tty->print(SIZE_FORMAT " ", ref_lists[i].length());
 751     }
 752   }
 753   if (TraceReferenceGC && PrintGCDetails) {
 754     gclog_or_tty->print_cr(" = " SIZE_FORMAT, total_refs);
 755   }
 756   size_t avg_refs = total_refs / _num_q + 1;
 757   uint to_idx = 0;
 758   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 759     bool move_all = false;
 760     if (from_idx >= _num_q) {
 761       move_all = ref_lists[from_idx].length() > 0;
 762     }
 763     while ((ref_lists[from_idx].length() > avg_refs) ||
 764            move_all) {
 765       assert(to_idx < _num_q, "Sanity Check!");
 766       if (ref_lists[to_idx].length() < avg_refs) {
 767         // move superfluous refs
 768         size_t refs_to_move;
 769         // Move all the Ref's if the from queue will not be processed.
 770         if (move_all) {
 771           refs_to_move = MIN2(ref_lists[from_idx].length(),
 772                               avg_refs - ref_lists[to_idx].length());
 773         } else {
 774           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 775                               avg_refs - ref_lists[to_idx].length());
 776         }
 777 
 778         assert(refs_to_move > 0, "otherwise the code below will fail");
 779 
 780         oop move_head = ref_lists[from_idx].head();
 781         oop move_tail = move_head;
 782         oop new_head  = move_head;
 783         // find an element to split the list on
 784         for (size_t j = 0; j < refs_to_move; ++j) {
 785           move_tail = new_head;
 786           new_head = java_lang_ref_Reference::discovered(new_head);
 787         }
 788 
 789         // Add the chain to the to list.
 790         if (ref_lists[to_idx].head() == NULL) {
 791           // to list is empty. Make a loop at the end.
 792           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 793         } else {
 794           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 795         }
 796         ref_lists[to_idx].set_head(move_head);
 797         ref_lists[to_idx].inc_length(refs_to_move);
 798 
 799         // Remove the chain from the from list.
 800         if (move_tail == new_head) {
 801           // We found the end of the from list.
 802           ref_lists[from_idx].set_head(NULL);
 803         } else {
 804           ref_lists[from_idx].set_head(new_head);
 805         }
 806         ref_lists[from_idx].dec_length(refs_to_move);
 807         if (ref_lists[from_idx].length() == 0) {
 808           break;
 809         }
 810       } else {
 811         to_idx = (to_idx + 1) % _num_q;
 812       }
 813     }
 814   }
 815 #ifdef ASSERT
 816   size_t balanced_total_refs = 0;
 817   for (uint i = 0; i < _max_num_q; ++i) {
 818     balanced_total_refs += ref_lists[i].length();
 819     if (TraceReferenceGC && PrintGCDetails) {
 820       gclog_or_tty->print(SIZE_FORMAT " ", ref_lists[i].length());
 821     }
 822   }
 823   if (TraceReferenceGC && PrintGCDetails) {
 824     gclog_or_tty->print_cr(" = " SIZE_FORMAT, balanced_total_refs);
 825     gclog_or_tty->flush();
 826   }
 827   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 828 #endif
 829 }
 830 
 831 void ReferenceProcessor::balance_all_queues() {
 832   balance_queues(_discoveredSoftRefs);
 833   balance_queues(_discoveredWeakRefs);
 834   balance_queues(_discoveredFinalRefs);
 835   balance_queues(_discoveredPhantomRefs);
 836   balance_queues(_discoveredCleanerRefs);
 837 }
 838 
 839 void ReferenceProcessor::process_discovered_reflist(
 840   DiscoveredList               refs_lists[],
 841   ReferencePolicy*             policy,
 842   bool                         clear_referent,
 843   BoolObjectClosure*           is_alive,
 844   OopClosure*                  keep_alive,
 845   VoidClosure*                 complete_gc,
 846   AbstractRefProcTaskExecutor* task_executor)
 847 {
 848   bool mt_processing = task_executor != NULL && _processing_is_mt;
 849   // If discovery used MT and a dynamic number of GC threads, then
 850   // the queues must be balanced for correctness if fewer than the
 851   // maximum number of queues were used.  The number of queue used
 852   // during discovery may be different than the number to be used
 853   // for processing so don't depend of _num_q < _max_num_q as part
 854   // of the test.
 855   bool must_balance = _discovery_is_mt;
 856 
 857   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 858       must_balance) {
 859     balance_queues(refs_lists);
 860   }
 861 
 862   // Phase 1 (soft refs only):
 863   // . Traverse the list and remove any SoftReferences whose
 864   //   referents are not alive, but that should be kept alive for
 865   //   policy reasons. Keep alive the transitive closure of all
 866   //   such referents.
 867   if (policy != NULL) {
 868     if (mt_processing) {
 869       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 870       task_executor->execute(phase1);
 871     } else {
 872       for (uint i = 0; i < _max_num_q; i++) {
 873         process_phase1(refs_lists[i], policy,
 874                        is_alive, keep_alive, complete_gc);
 875       }
 876     }
 877   } else { // policy == NULL
 878     assert(refs_lists != _discoveredSoftRefs,
 879            "Policy must be specified for soft references.");
 880   }
 881 
 882   // Phase 2:
 883   // . Traverse the list and remove any refs whose referents are alive.
 884   if (mt_processing) {
 885     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 886     task_executor->execute(phase2);
 887   } else {
 888     for (uint i = 0; i < _max_num_q; i++) {
 889       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 890     }
 891   }
 892 
 893   // Phase 3:
 894   // . Traverse the list and process referents as appropriate.
 895   if (mt_processing) {
 896     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 897     task_executor->execute(phase3);
 898   } else {
 899     for (uint i = 0; i < _max_num_q; i++) {
 900       process_phase3(refs_lists[i], clear_referent,
 901                      is_alive, keep_alive, complete_gc);
 902     }
 903   }
 904 }
 905 
 906 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 907   uint id = 0;
 908   // Determine the queue index to use for this object.
 909   if (_discovery_is_mt) {
 910     // During a multi-threaded discovery phase,
 911     // each thread saves to its "own" list.
 912     Thread* thr = Thread::current();
 913     id = thr->as_Worker_thread()->id();
 914   } else {
 915     // single-threaded discovery, we save in round-robin
 916     // fashion to each of the lists.
 917     if (_processing_is_mt) {
 918       id = next_id();
 919     }
 920   }
 921   assert(id < _max_num_q, "Id is out-of-bounds (call Freud?)");
 922 
 923   // Get the discovered queue to which we will add
 924   DiscoveredList* list = NULL;
 925   switch (rt) {
 926     case REF_OTHER:
 927       // Unknown reference type, no special treatment
 928       break;
 929     case REF_SOFT:
 930       list = &_discoveredSoftRefs[id];
 931       break;
 932     case REF_WEAK:
 933       list = &_discoveredWeakRefs[id];
 934       break;
 935     case REF_FINAL:
 936       list = &_discoveredFinalRefs[id];
 937       break;
 938     case REF_PHANTOM:
 939       list = &_discoveredPhantomRefs[id];
 940       break;
 941     case REF_CLEANER:
 942       list = &_discoveredCleanerRefs[id];
 943       break;
 944     case REF_NONE:
 945       // we should not reach here if we are an InstanceRefKlass
 946     default:
 947       ShouldNotReachHere();
 948   }
 949   if (TraceReferenceGC && PrintGCDetails) {
 950     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 951   }
 952   return list;
 953 }
 954 
 955 inline void
 956 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 957                                               oop             obj,
 958                                               HeapWord*       discovered_addr) {
 959   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 960   // First we must make sure this object is only enqueued once. CAS in a non null
 961   // discovered_addr.
 962   oop current_head = refs_list.head();
 963   // The last ref must have its discovered field pointing to itself.
 964   oop next_discovered = (current_head != NULL) ? current_head : obj;
 965 
 966   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 967                                                     NULL);
 968   if (retest == NULL) {
 969     // This thread just won the right to enqueue the object.
 970     // We have separate lists for enqueueing, so no synchronization
 971     // is necessary.
 972     refs_list.set_head(obj);
 973     refs_list.inc_length(1);
 974 
 975     if (TraceReferenceGC) {
 976       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 977                              p2i(obj), obj->klass()->internal_name());
 978     }
 979   } else {
 980     // If retest was non NULL, another thread beat us to it:
 981     // The reference has already been discovered...
 982     if (TraceReferenceGC) {
 983       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
 984                              p2i(obj), obj->klass()->internal_name());
 985     }
 986   }
 987 }
 988 
 989 #ifndef PRODUCT
 990 // Non-atomic (i.e. concurrent) discovery might allow us
 991 // to observe j.l.References with NULL referents, being those
 992 // cleared concurrently by mutators during (or after) discovery.
 993 void ReferenceProcessor::verify_referent(oop obj) {
 994   bool da = discovery_is_atomic();
 995   oop referent = java_lang_ref_Reference::referent(obj);
 996   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
 997          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
 998                  INTPTR_FORMAT " during %satomic discovery ",
 999                  p2i(referent), p2i(obj), da ? "" : "non-"));
1000 }
1001 #endif
1002 
1003 // We mention two of several possible choices here:
1004 // #0: if the reference object is not in the "originating generation"
1005 //     (or part of the heap being collected, indicated by our "span"
1006 //     we don't treat it specially (i.e. we scan it as we would
1007 //     a normal oop, treating its references as strong references).
1008 //     This means that references can't be discovered unless their
1009 //     referent is also in the same span. This is the simplest,
1010 //     most "local" and most conservative approach, albeit one
1011 //     that may cause weak references to be enqueued least promptly.
1012 //     We call this choice the "ReferenceBasedDiscovery" policy.
1013 // #1: the reference object may be in any generation (span), but if
1014 //     the referent is in the generation (span) being currently collected
1015 //     then we can discover the reference object, provided
1016 //     the object has not already been discovered by
1017 //     a different concurrently running collector (as may be the
1018 //     case, for instance, if the reference object is in CMS and
1019 //     the referent in DefNewGeneration), and provided the processing
1020 //     of this reference object by the current collector will
1021 //     appear atomic to every other collector in the system.
1022 //     (Thus, for instance, a concurrent collector may not
1023 //     discover references in other generations even if the
1024 //     referent is in its own generation). This policy may,
1025 //     in certain cases, enqueue references somewhat sooner than
1026 //     might Policy #0 above, but at marginally increased cost
1027 //     and complexity in processing these references.
1028 //     We call this choice the "RefeferentBasedDiscovery" policy.
1029 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1030   // Make sure we are discovering refs (rather than processing discovered refs).
1031   if (!_discovering_refs || !RegisterReferences) {
1032     return false;
1033   }
1034   // We only discover active references.
1035   oop next = java_lang_ref_Reference::next(obj);
1036   if (next != NULL) {   // Ref is no longer active
1037     return false;
1038   }
1039 
1040   HeapWord* obj_addr = (HeapWord*)obj;
1041   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1042       !_span.contains(obj_addr)) {
1043     // Reference is not in the originating generation;
1044     // don't treat it specially (i.e. we want to scan it as a normal
1045     // object with strong references).
1046     return false;
1047   }
1048 
1049   // We only discover references whose referents are not (yet)
1050   // known to be strongly reachable.
1051   if (is_alive_non_header() != NULL) {
1052     verify_referent(obj);
1053     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1054       return false;  // referent is reachable
1055     }
1056   }
1057   if (rt == REF_SOFT) {
1058     // For soft refs we can decide now if these are not
1059     // current candidates for clearing, in which case we
1060     // can mark through them now, rather than delaying that
1061     // to the reference-processing phase. Since all current
1062     // time-stamp policies advance the soft-ref clock only
1063     // at a full collection cycle, this is always currently
1064     // accurate.
1065     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1066       return false;
1067     }
1068   }
1069 
1070   ResourceMark rm;      // Needed for tracing.
1071 
1072   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1073   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1074   assert(discovered->is_oop_or_null(), err_msg("Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)));
1075   if (discovered != NULL) {
1076     // The reference has already been discovered...
1077     if (TraceReferenceGC) {
1078       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1079                              p2i(obj), obj->klass()->internal_name());
1080     }
1081     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1082       // assumes that an object is not processed twice;
1083       // if it's been already discovered it must be on another
1084       // generation's discovered list; so we won't discover it.
1085       return false;
1086     } else {
1087       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1088              "Unrecognized policy");
1089       // Check assumption that an object is not potentially
1090       // discovered twice except by concurrent collectors that potentially
1091       // trace the same Reference object twice.
1092       assert(UseConcMarkSweepGC || UseG1GC,
1093              "Only possible with a concurrent marking collector");
1094       return true;
1095     }
1096   }
1097 
1098   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1099     verify_referent(obj);
1100     // Discover if and only if EITHER:
1101     // .. reference is in our span, OR
1102     // .. we are an atomic collector and referent is in our span
1103     if (_span.contains(obj_addr) ||
1104         (discovery_is_atomic() &&
1105          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1106       // should_enqueue = true;
1107     } else {
1108       return false;
1109     }
1110   } else {
1111     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1112            _span.contains(obj_addr), "code inconsistency");
1113   }
1114 
1115   // Get the right type of discovered queue head.
1116   DiscoveredList* list = get_discovered_list(rt);
1117   if (list == NULL) {
1118     return false;   // nothing special needs to be done
1119   }
1120 
1121   if (_discovery_is_mt) {
1122     add_to_discovered_list_mt(*list, obj, discovered_addr);
1123   } else {
1124     // We do a raw store here: the field will be visited later when processing
1125     // the discovered references.
1126     oop current_head = list->head();
1127     // The last ref must have its discovered field pointing to itself.
1128     oop next_discovered = (current_head != NULL) ? current_head : obj;
1129 
1130     assert(discovered == NULL, "control point invariant");
1131     oop_store_raw(discovered_addr, next_discovered);
1132     list->set_head(obj);
1133     list->inc_length(1);
1134 
1135     if (TraceReferenceGC) {
1136       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1137                                 p2i(obj), obj->klass()->internal_name());
1138     }
1139   }
1140   assert(obj->is_oop(), "Discovered a bad reference");
1141   verify_referent(obj);
1142   return true;
1143 }
1144 
1145 // Preclean the discovered references by removing those
1146 // whose referents are alive, and by marking from those that
1147 // are not active. These lists can be handled here
1148 // in any order and, indeed, concurrently.
1149 void ReferenceProcessor::preclean_discovered_references(
1150   BoolObjectClosure* is_alive,
1151   OopClosure* keep_alive,
1152   VoidClosure* complete_gc,
1153   YieldClosure* yield,
1154   GCTimer* gc_timer) {
1155 
1156   // Soft references
1157   {
1158     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1159               false, gc_timer);
1160     for (uint i = 0; i < _max_num_q; i++) {
1161       if (yield->should_return()) {
1162         return;
1163       }
1164       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1165                                   keep_alive, complete_gc, yield);
1166     }
1167   }
1168 
1169   // Weak references
1170   {
1171     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1172               false, gc_timer);
1173     for (uint i = 0; i < _max_num_q; i++) {
1174       if (yield->should_return()) {
1175         return;
1176       }
1177       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1178                                   keep_alive, complete_gc, yield);
1179     }
1180   }
1181 
1182   // Final references
1183   {
1184     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1185               false, gc_timer);
1186     for (uint i = 0; i < _max_num_q; i++) {
1187       if (yield->should_return()) {
1188         return;
1189       }
1190       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1191                                   keep_alive, complete_gc, yield);
1192     }
1193   }
1194 
1195   // Phantom references
1196   {
1197     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1198               false, gc_timer);
1199     for (uint i = 0; i < _max_num_q; i++) {
1200       if (yield->should_return()) {
1201         return;
1202       }
1203       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1204                                   keep_alive, complete_gc, yield);
1205     }
1206 
1207     // Cleaner references.  Included in timing for phantom references.  We
1208     // expect Cleaner references to be temporary, and don't want to deal with
1209     // possible incompatibilities arising from making it more visible.
1210     for (uint i = 0; i < _max_num_q; i++) {
1211       if (yield->should_return()) {
1212         return;
1213       }
1214       preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
1215                                   keep_alive, complete_gc, yield);
1216     }
1217   }
1218 }
1219 
1220 // Walk the given discovered ref list, and remove all reference objects
1221 // whose referents are still alive, whose referents are NULL or which
1222 // are not active (have a non-NULL next field). NOTE: When we are
1223 // thus precleaning the ref lists (which happens single-threaded today),
1224 // we do not disable refs discovery to honor the correct semantics of
1225 // java.lang.Reference. As a result, we need to be careful below
1226 // that ref removal steps interleave safely with ref discovery steps
1227 // (in this thread).
1228 void
1229 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1230                                                 BoolObjectClosure* is_alive,
1231                                                 OopClosure*        keep_alive,
1232                                                 VoidClosure*       complete_gc,
1233                                                 YieldClosure*      yield) {
1234   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1235   while (iter.has_next()) {
1236     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1237     oop obj = iter.obj();
1238     oop next = java_lang_ref_Reference::next(obj);
1239     if (iter.referent() == NULL || iter.is_referent_alive() ||
1240         next != NULL) {
1241       // The referent has been cleared, or is alive, or the Reference is not
1242       // active; we need to trace and mark its cohort.
1243       if (TraceReferenceGC) {
1244         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1245                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
1246       }
1247       // Remove Reference object from list
1248       iter.remove();
1249       // Keep alive its cohort.
1250       iter.make_referent_alive();
1251       if (UseCompressedOops) {
1252         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1253         keep_alive->do_oop(next_addr);
1254       } else {
1255         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1256         keep_alive->do_oop(next_addr);
1257       }
1258       iter.move_to_next();
1259     } else {
1260       iter.next();
1261     }
1262   }
1263   // Close the reachable set
1264   complete_gc->do_void();
1265 
1266   NOT_PRODUCT(
1267     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1268       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT
1269         " Refs in discovered list " INTPTR_FORMAT,
1270         iter.removed(), iter.processed(), p2i(refs_list.head()));
1271     }
1272   )
1273 }
1274 
1275 const char* ReferenceProcessor::list_name(uint i) {
1276    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1277           "Out of bounds index");
1278 
1279    int j = i / _max_num_q;
1280    switch (j) {
1281      case 0: return "SoftRef";
1282      case 1: return "WeakRef";
1283      case 2: return "FinalRef";
1284      case 3: return "PhantomRef";
1285      case 4: return "CleanerRef";
1286    }
1287    ShouldNotReachHere();
1288    return NULL;
1289 }
1290