1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1GCPhaseTimes.hpp"
  32 #include "gc/g1/heapRegion.inline.hpp"
  33 #include "gc/g1/heapRegionRemSet.hpp"
  34 #include "gc/shared/gcPolicyCounters.hpp"
  35 #include "logging/log.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _predictor(G1ConfidencePercent / 100.0),
  83   _parallel_gc_threads(ParallelGCThreads),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _non_young_other_cost_per_region_ms_seq(
 105                                          new TruncatedSeq(TruncatedSeqLength)),
 106 
 107   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 108   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 109 
 110   _pause_time_target_ms((double) MaxGCPauseMillis),
 111 
 112   _recent_prev_end_times_for_all_gcs_sec(
 113                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 114 
 115   _recent_avg_pause_time_ratio(0.0),
 116   _rs_lengths_prediction(0),
 117   _max_survivor_regions(0),
 118 
 119   _eden_used_bytes_before_gc(0),
 120   _survivor_used_bytes_before_gc(0),
 121   _old_used_bytes_before_gc(0),
 122   _heap_used_bytes_before_gc(0),
 123   _metaspace_used_bytes_before_gc(0),
 124   _eden_capacity_bytes_before_gc(0),
 125   _heap_capacity_bytes_before_gc(0),
 126 
 127   _eden_cset_region_length(0),
 128   _survivor_cset_region_length(0),
 129   _old_cset_region_length(0),
 130 
 131   _collection_set(NULL),
 132   _collection_set_bytes_used_before(0),
 133 
 134   // Incremental CSet attributes
 135   _inc_cset_build_state(Inactive),
 136   _inc_cset_head(NULL),
 137   _inc_cset_tail(NULL),
 138   _inc_cset_bytes_used_before(0),
 139   _inc_cset_max_finger(NULL),
 140   _inc_cset_recorded_rs_lengths(0),
 141   _inc_cset_recorded_rs_lengths_diffs(0),
 142   _inc_cset_predicted_elapsed_time_ms(0.0),
 143   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 144 
 145   // add here any more surv rate groups
 146   _recorded_survivor_regions(0),
 147   _recorded_survivor_head(NULL),
 148   _recorded_survivor_tail(NULL),
 149   _survivors_age_table(true),
 150 
 151   _gc_overhead_perc(0.0) {
 152 
 153   // SurvRateGroups below must be initialized after the predictor because they
 154   // indirectly use it through this object passed to their constructor.
 155   _short_lived_surv_rate_group =
 156     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 157   _survivor_surv_rate_group =
 158     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 159 
 160   // Set up the region size and associated fields. Given that the
 161   // policy is created before the heap, we have to set this up here,
 162   // so it's done as soon as possible.
 163 
 164   // It would have been natural to pass initial_heap_byte_size() and
 165   // max_heap_byte_size() to setup_heap_region_size() but those have
 166   // not been set up at this point since they should be aligned with
 167   // the region size. So, there is a circular dependency here. We base
 168   // the region size on the heap size, but the heap size should be
 169   // aligned with the region size. To get around this we use the
 170   // unaligned values for the heap.
 171   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 172   HeapRegionRemSet::setup_remset_size();
 173 
 174   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 175   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 176 
 177   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 178 
 179   int index = MIN2(_parallel_gc_threads - 1, 7);
 180 
 181   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 182   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 183   _cost_scan_hcc_seq->add(0.0);
 184   _young_cards_per_entry_ratio_seq->add(
 185                                   young_cards_per_entry_ratio_defaults[index]);
 186   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 187   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 188   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 189   _young_other_cost_per_region_ms_seq->add(
 190                                young_other_cost_per_region_ms_defaults[index]);
 191   _non_young_other_cost_per_region_ms_seq->add(
 192                            non_young_other_cost_per_region_ms_defaults[index]);
 193 
 194   // Below, we might need to calculate the pause time target based on
 195   // the pause interval. When we do so we are going to give G1 maximum
 196   // flexibility and allow it to do pauses when it needs to. So, we'll
 197   // arrange that the pause interval to be pause time target + 1 to
 198   // ensure that a) the pause time target is maximized with respect to
 199   // the pause interval and b) we maintain the invariant that pause
 200   // time target < pause interval. If the user does not want this
 201   // maximum flexibility, they will have to set the pause interval
 202   // explicitly.
 203 
 204   // First make sure that, if either parameter is set, its value is
 205   // reasonable.
 206   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 207     if (MaxGCPauseMillis < 1) {
 208       vm_exit_during_initialization("MaxGCPauseMillis should be "
 209                                     "greater than 0");
 210     }
 211   }
 212   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 213     if (GCPauseIntervalMillis < 1) {
 214       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 215                                     "greater than 0");
 216     }
 217   }
 218 
 219   // Then, if the pause time target parameter was not set, set it to
 220   // the default value.
 221   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 222     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 223       // The default pause time target in G1 is 200ms
 224       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 225     } else {
 226       // We do not allow the pause interval to be set without the
 227       // pause time target
 228       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 229                                     "without setting MaxGCPauseMillis");
 230     }
 231   }
 232 
 233   // Then, if the interval parameter was not set, set it according to
 234   // the pause time target (this will also deal with the case when the
 235   // pause time target is the default value).
 236   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 237     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 238   }
 239 
 240   // Finally, make sure that the two parameters are consistent.
 241   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 242     char buffer[256];
 243     jio_snprintf(buffer, 256,
 244                  "MaxGCPauseMillis (%u) should be less than "
 245                  "GCPauseIntervalMillis (%u)",
 246                  MaxGCPauseMillis, GCPauseIntervalMillis);
 247     vm_exit_during_initialization(buffer);
 248   }
 249 
 250   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 251   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 252   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 253 
 254   // start conservatively (around 50ms is about right)
 255   _concurrent_mark_remark_times_ms->add(0.05);
 256   _concurrent_mark_cleanup_times_ms->add(0.20);
 257   _tenuring_threshold = MaxTenuringThreshold;
 258 
 259   assert(GCTimeRatio > 0,
 260          "we should have set it to a default value set_g1_gc_flags() "
 261          "if a user set it to 0");
 262   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 263 
 264   uintx reserve_perc = G1ReservePercent;
 265   // Put an artificial ceiling on this so that it's not set to a silly value.
 266   if (reserve_perc > 50) {
 267     reserve_perc = 50;
 268     warning("G1ReservePercent is set to a value that is too large, "
 269             "it's been updated to " UINTX_FORMAT, reserve_perc);
 270   }
 271   _reserve_factor = (double) reserve_perc / 100.0;
 272   // This will be set when the heap is expanded
 273   // for the first time during initialization.
 274   _reserve_regions = 0;
 275 
 276   _collectionSetChooser = new CollectionSetChooser();
 277 }
 278 
 279 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 280   return _predictor.get_new_prediction(seq);
 281 }
 282 
 283 void G1CollectorPolicy::initialize_alignments() {
 284   _space_alignment = HeapRegion::GrainBytes;
 285   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 286   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 287   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 288 }
 289 
 290 void G1CollectorPolicy::initialize_flags() {
 291   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 292     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 293   }
 294 
 295   if (SurvivorRatio < 1) {
 296     vm_exit_during_initialization("Invalid survivor ratio specified");
 297   }
 298   CollectorPolicy::initialize_flags();
 299   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 300 }
 301 
 302 void G1CollectorPolicy::post_heap_initialize() {
 303   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 304   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 305   if (max_young_size != MaxNewSize) {
 306     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 307   }
 308 }
 309 
 310 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 311 
 312 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 313         _min_desired_young_length(0), _max_desired_young_length(0) {
 314   if (FLAG_IS_CMDLINE(NewRatio)) {
 315     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 316       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 317     } else {
 318       _sizer_kind = SizerNewRatio;
 319       _adaptive_size = false;
 320       return;
 321     }
 322   }
 323 
 324   if (NewSize > MaxNewSize) {
 325     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 326       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 327               "A new max generation size of " SIZE_FORMAT "k will be used.",
 328               NewSize/K, MaxNewSize/K, NewSize/K);
 329     }
 330     MaxNewSize = NewSize;
 331   }
 332 
 333   if (FLAG_IS_CMDLINE(NewSize)) {
 334     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 335                                      1U);
 336     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 337       _max_desired_young_length =
 338                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 339                                   1U);
 340       _sizer_kind = SizerMaxAndNewSize;
 341       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 342     } else {
 343       _sizer_kind = SizerNewSizeOnly;
 344     }
 345   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 346     _max_desired_young_length =
 347                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 348                                   1U);
 349     _sizer_kind = SizerMaxNewSizeOnly;
 350   }
 351 }
 352 
 353 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 354   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 355   return MAX2(1U, default_value);
 356 }
 357 
 358 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 359   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 360   return MAX2(1U, default_value);
 361 }
 362 
 363 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 364   assert(number_of_heap_regions > 0, "Heap must be initialized");
 365 
 366   switch (_sizer_kind) {
 367     case SizerDefaults:
 368       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 369       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 370       break;
 371     case SizerNewSizeOnly:
 372       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 373       *max_young_length = MAX2(*min_young_length, *max_young_length);
 374       break;
 375     case SizerMaxNewSizeOnly:
 376       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 377       *min_young_length = MIN2(*min_young_length, *max_young_length);
 378       break;
 379     case SizerMaxAndNewSize:
 380       // Do nothing. Values set on the command line, don't update them at runtime.
 381       break;
 382     case SizerNewRatio:
 383       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 384       *max_young_length = *min_young_length;
 385       break;
 386     default:
 387       ShouldNotReachHere();
 388   }
 389 
 390   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 391 }
 392 
 393 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 394   // We need to pass the desired values because recalculation may not update these
 395   // values in some cases.
 396   uint temp = _min_desired_young_length;
 397   uint result = _max_desired_young_length;
 398   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 399   return result;
 400 }
 401 
 402 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 403   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 404           &_max_desired_young_length);
 405 }
 406 
 407 void G1CollectorPolicy::init() {
 408   // Set aside an initial future to_space.
 409   _g1 = G1CollectedHeap::heap();
 410 
 411   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 412 
 413   initialize_gc_policy_counters();
 414 
 415   if (adaptive_young_list_length()) {
 416     _young_list_fixed_length = 0;
 417   } else {
 418     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 419   }
 420   _free_regions_at_end_of_collection = _g1->num_free_regions();
 421 
 422   update_young_list_max_and_target_length();
 423   // We may immediately start allocating regions and placing them on the
 424   // collection set list. Initialize the per-collection set info
 425   start_incremental_cset_building();
 426 }
 427 
 428 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 429   phase_times()->note_gc_start(num_active_workers);
 430 }
 431 
 432 // Create the jstat counters for the policy.
 433 void G1CollectorPolicy::initialize_gc_policy_counters() {
 434   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 435 }
 436 
 437 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 438                                          double base_time_ms,
 439                                          uint base_free_regions,
 440                                          double target_pause_time_ms) const {
 441   if (young_length >= base_free_regions) {
 442     // end condition 1: not enough space for the young regions
 443     return false;
 444   }
 445 
 446   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 447   size_t bytes_to_copy =
 448                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 449   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 450   double young_other_time_ms = predict_young_other_time_ms(young_length);
 451   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 452   if (pause_time_ms > target_pause_time_ms) {
 453     // end condition 2: prediction is over the target pause time
 454     return false;
 455   }
 456 
 457   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 458   if ((2.0 /* magic */ * _predictor.sigma()) * bytes_to_copy > free_bytes) {
 459     // end condition 3: out-of-space (conservatively!)
 460     return false;
 461   }
 462 
 463   // success!
 464   return true;
 465 }
 466 
 467 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 468   // re-calculate the necessary reserve
 469   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 470   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 471   // smaller than 1.0) we'll get 1.
 472   _reserve_regions = (uint) ceil(reserve_regions_d);
 473 
 474   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 475 }
 476 
 477 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 478                                                        uint base_min_length) const {
 479   uint desired_min_length = 0;
 480   if (adaptive_young_list_length()) {
 481     if (_alloc_rate_ms_seq->num() > 3) {
 482       double now_sec = os::elapsedTime();
 483       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 484       double alloc_rate_ms = predict_alloc_rate_ms();
 485       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 486     } else {
 487       // otherwise we don't have enough info to make the prediction
 488     }
 489   }
 490   desired_min_length += base_min_length;
 491   // make sure we don't go below any user-defined minimum bound
 492   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 493 }
 494 
 495 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 496   // Here, we might want to also take into account any additional
 497   // constraints (i.e., user-defined minimum bound). Currently, we
 498   // effectively don't set this bound.
 499   return _young_gen_sizer->max_desired_young_length();
 500 }
 501 
 502 void G1CollectorPolicy::update_young_list_max_and_target_length() {
 503   update_young_list_max_and_target_length(get_new_prediction(_rs_lengths_seq));
 504 }
 505 
 506 void G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 507   update_young_list_target_length(rs_lengths);
 508   update_max_gc_locker_expansion();
 509 }
 510 
 511 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 512   _young_list_target_length = bounded_young_list_target_length(rs_lengths);
 513 }
 514 
 515 void G1CollectorPolicy::update_young_list_target_length() {
 516   update_young_list_target_length(get_new_prediction(_rs_lengths_seq));
 517 }
 518 
 519 uint G1CollectorPolicy::bounded_young_list_target_length(size_t rs_lengths) const {
 520   // Calculate the absolute and desired min bounds.
 521 
 522   // This is how many young regions we already have (currently: the survivors).
 523   uint base_min_length = recorded_survivor_regions();
 524   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 525   // This is the absolute minimum young length. Ensure that we
 526   // will at least have one eden region available for allocation.
 527   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 528   // If we shrank the young list target it should not shrink below the current size.
 529   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 530   // Calculate the absolute and desired max bounds.
 531 
 532   // We will try our best not to "eat" into the reserve.
 533   uint absolute_max_length = 0;
 534   if (_free_regions_at_end_of_collection > _reserve_regions) {
 535     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 536   }
 537   uint desired_max_length = calculate_young_list_desired_max_length();
 538   if (desired_max_length > absolute_max_length) {
 539     desired_max_length = absolute_max_length;
 540   }
 541 
 542   uint young_list_target_length = 0;
 543   if (adaptive_young_list_length()) {
 544     if (collector_state()->gcs_are_young()) {
 545       young_list_target_length =
 546                         calculate_young_list_target_length(rs_lengths,
 547                                                            base_min_length,
 548                                                            desired_min_length,
 549                                                            desired_max_length);
 550     } else {
 551       // Don't calculate anything and let the code below bound it to
 552       // the desired_min_length, i.e., do the next GC as soon as
 553       // possible to maximize how many old regions we can add to it.
 554     }
 555   } else {
 556     // The user asked for a fixed young gen so we'll fix the young gen
 557     // whether the next GC is young or mixed.
 558     young_list_target_length = _young_list_fixed_length;
 559   }
 560 
 561   // Make sure we don't go over the desired max length, nor under the
 562   // desired min length. In case they clash, desired_min_length wins
 563   // which is why that test is second.
 564   if (young_list_target_length > desired_max_length) {
 565     young_list_target_length = desired_max_length;
 566   }
 567   if (young_list_target_length < desired_min_length) {
 568     young_list_target_length = desired_min_length;
 569   }
 570 
 571   assert(young_list_target_length > recorded_survivor_regions(),
 572          "we should be able to allocate at least one eden region");
 573   assert(young_list_target_length >= absolute_min_length, "post-condition");
 574 
 575   return young_list_target_length;
 576 }
 577 
 578 uint
 579 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 580                                                      uint base_min_length,
 581                                                      uint desired_min_length,
 582                                                      uint desired_max_length) const {
 583   assert(adaptive_young_list_length(), "pre-condition");
 584   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 585 
 586   // In case some edge-condition makes the desired max length too small...
 587   if (desired_max_length <= desired_min_length) {
 588     return desired_min_length;
 589   }
 590 
 591   // We'll adjust min_young_length and max_young_length not to include
 592   // the already allocated young regions (i.e., so they reflect the
 593   // min and max eden regions we'll allocate). The base_min_length
 594   // will be reflected in the predictions by the
 595   // survivor_regions_evac_time prediction.
 596   assert(desired_min_length > base_min_length, "invariant");
 597   uint min_young_length = desired_min_length - base_min_length;
 598   assert(desired_max_length > base_min_length, "invariant");
 599   uint max_young_length = desired_max_length - base_min_length;
 600 
 601   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 602   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 603   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 604   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 605   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 606   double base_time_ms =
 607     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 608     survivor_regions_evac_time;
 609   uint available_free_regions = _free_regions_at_end_of_collection;
 610   uint base_free_regions = 0;
 611   if (available_free_regions > _reserve_regions) {
 612     base_free_regions = available_free_regions - _reserve_regions;
 613   }
 614 
 615   // Here, we will make sure that the shortest young length that
 616   // makes sense fits within the target pause time.
 617 
 618   if (predict_will_fit(min_young_length, base_time_ms,
 619                        base_free_regions, target_pause_time_ms)) {
 620     // The shortest young length will fit into the target pause time;
 621     // we'll now check whether the absolute maximum number of young
 622     // regions will fit in the target pause time. If not, we'll do
 623     // a binary search between min_young_length and max_young_length.
 624     if (predict_will_fit(max_young_length, base_time_ms,
 625                          base_free_regions, target_pause_time_ms)) {
 626       // The maximum young length will fit into the target pause time.
 627       // We are done so set min young length to the maximum length (as
 628       // the result is assumed to be returned in min_young_length).
 629       min_young_length = max_young_length;
 630     } else {
 631       // The maximum possible number of young regions will not fit within
 632       // the target pause time so we'll search for the optimal
 633       // length. The loop invariants are:
 634       //
 635       // min_young_length < max_young_length
 636       // min_young_length is known to fit into the target pause time
 637       // max_young_length is known not to fit into the target pause time
 638       //
 639       // Going into the loop we know the above hold as we've just
 640       // checked them. Every time around the loop we check whether
 641       // the middle value between min_young_length and
 642       // max_young_length fits into the target pause time. If it
 643       // does, it becomes the new min. If it doesn't, it becomes
 644       // the new max. This way we maintain the loop invariants.
 645 
 646       assert(min_young_length < max_young_length, "invariant");
 647       uint diff = (max_young_length - min_young_length) / 2;
 648       while (diff > 0) {
 649         uint young_length = min_young_length + diff;
 650         if (predict_will_fit(young_length, base_time_ms,
 651                              base_free_regions, target_pause_time_ms)) {
 652           min_young_length = young_length;
 653         } else {
 654           max_young_length = young_length;
 655         }
 656         assert(min_young_length <  max_young_length, "invariant");
 657         diff = (max_young_length - min_young_length) / 2;
 658       }
 659       // The results is min_young_length which, according to the
 660       // loop invariants, should fit within the target pause time.
 661 
 662       // These are the post-conditions of the binary search above:
 663       assert(min_young_length < max_young_length,
 664              "otherwise we should have discovered that max_young_length "
 665              "fits into the pause target and not done the binary search");
 666       assert(predict_will_fit(min_young_length, base_time_ms,
 667                               base_free_regions, target_pause_time_ms),
 668              "min_young_length, the result of the binary search, should "
 669              "fit into the pause target");
 670       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 671                                base_free_regions, target_pause_time_ms),
 672              "min_young_length, the result of the binary search, should be "
 673              "optimal, so no larger length should fit into the pause target");
 674     }
 675   } else {
 676     // Even the minimum length doesn't fit into the pause time
 677     // target, return it as the result nevertheless.
 678   }
 679   return base_min_length + min_young_length;
 680 }
 681 
 682 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 683   double survivor_regions_evac_time = 0.0;
 684   for (HeapRegion * r = _recorded_survivor_head;
 685        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 686        r = r->get_next_young_region()) {
 687     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 688   }
 689   return survivor_regions_evac_time;
 690 }
 691 
 692 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 693   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 694 
 695   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 696   if (rs_lengths > _rs_lengths_prediction) {
 697     // add 10% to avoid having to recalculate often
 698     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 699     update_rs_lengths_prediction(rs_lengths_prediction);
 700 
 701     update_young_list_max_and_target_length(rs_lengths_prediction);
 702   }
 703 }
 704 
 705 void G1CollectorPolicy::update_rs_lengths_prediction() {
 706   update_rs_lengths_prediction(get_new_prediction(_rs_lengths_seq));
 707 }
 708 
 709 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 710   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 711     _rs_lengths_prediction = prediction;
 712   }
 713 }
 714 
 715 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 716                                                bool is_tlab,
 717                                                bool* gc_overhead_limit_was_exceeded) {
 718   guarantee(false, "Not using this policy feature yet.");
 719   return NULL;
 720 }
 721 
 722 // This method controls how a collector handles one or more
 723 // of its generations being fully allocated.
 724 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 725                                                        bool is_tlab) {
 726   guarantee(false, "Not using this policy feature yet.");
 727   return NULL;
 728 }
 729 
 730 
 731 #ifndef PRODUCT
 732 bool G1CollectorPolicy::verify_young_ages() {
 733   HeapRegion* head = _g1->young_list()->first_region();
 734   return
 735     verify_young_ages(head, _short_lived_surv_rate_group);
 736   // also call verify_young_ages on any additional surv rate groups
 737 }
 738 
 739 bool
 740 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 741                                      SurvRateGroup *surv_rate_group) {
 742   guarantee( surv_rate_group != NULL, "pre-condition" );
 743 
 744   const char* name = surv_rate_group->name();
 745   bool ret = true;
 746   int prev_age = -1;
 747 
 748   for (HeapRegion* curr = head;
 749        curr != NULL;
 750        curr = curr->get_next_young_region()) {
 751     SurvRateGroup* group = curr->surv_rate_group();
 752     if (group == NULL && !curr->is_survivor()) {
 753       log_info(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 754       ret = false;
 755     }
 756 
 757     if (surv_rate_group == group) {
 758       int age = curr->age_in_surv_rate_group();
 759 
 760       if (age < 0) {
 761         log_info(gc, verify)("## %s: encountered negative age", name);
 762         ret = false;
 763       }
 764 
 765       if (age <= prev_age) {
 766         log_info(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 767         ret = false;
 768       }
 769       prev_age = age;
 770     }
 771   }
 772 
 773   return ret;
 774 }
 775 #endif // PRODUCT
 776 
 777 void G1CollectorPolicy::record_full_collection_start() {
 778   _full_collection_start_sec = os::elapsedTime();
 779   record_heap_size_info_at_start(true /* full */);
 780   // Release the future to-space so that it is available for compaction into.
 781   collector_state()->set_full_collection(true);
 782 }
 783 
 784 void G1CollectorPolicy::record_full_collection_end() {
 785   // Consider this like a collection pause for the purposes of allocation
 786   // since last pause.
 787   double end_sec = os::elapsedTime();
 788   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 789   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 790 
 791   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 792 
 793   update_recent_gc_times(end_sec, full_gc_time_ms);
 794 
 795   collector_state()->set_full_collection(false);
 796 
 797   // "Nuke" the heuristics that control the young/mixed GC
 798   // transitions and make sure we start with young GCs after the Full GC.
 799   collector_state()->set_gcs_are_young(true);
 800   collector_state()->set_last_young_gc(false);
 801   collector_state()->set_initiate_conc_mark_if_possible(false);
 802   collector_state()->set_during_initial_mark_pause(false);
 803   collector_state()->set_in_marking_window(false);
 804   collector_state()->set_in_marking_window_im(false);
 805 
 806   _short_lived_surv_rate_group->start_adding_regions();
 807   // also call this on any additional surv rate groups
 808 
 809   record_survivor_regions(0, NULL, NULL);
 810 
 811   _free_regions_at_end_of_collection = _g1->num_free_regions();
 812   // Reset survivors SurvRateGroup.
 813   _survivor_surv_rate_group->reset();
 814   update_young_list_max_and_target_length();
 815   update_rs_lengths_prediction();
 816   _collectionSetChooser->clear();
 817 }
 818 
 819 void G1CollectorPolicy::record_stop_world_start() {
 820   _stop_world_start = os::elapsedTime();
 821 }
 822 
 823 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 824   // We only need to do this here as the policy will only be applied
 825   // to the GC we're about to start. so, no point is calculating this
 826   // every time we calculate / recalculate the target young length.
 827   update_survivors_policy();
 828 
 829   assert(_g1->used() == _g1->recalculate_used(),
 830          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 831          _g1->used(), _g1->recalculate_used());
 832 
 833   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 834   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 835   _stop_world_start = 0.0;
 836 
 837   record_heap_size_info_at_start(false /* full */);
 838 
 839   phase_times()->record_cur_collection_start_sec(start_time_sec);
 840   _pending_cards = _g1->pending_card_num();
 841 
 842   _collection_set_bytes_used_before = 0;
 843   _bytes_copied_during_gc = 0;
 844 
 845   collector_state()->set_last_gc_was_young(false);
 846 
 847   // do that for any other surv rate groups
 848   _short_lived_surv_rate_group->stop_adding_regions();
 849   _survivors_age_table.clear();
 850 
 851   assert( verify_young_ages(), "region age verification" );
 852 }
 853 
 854 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 855                                                    mark_init_elapsed_time_ms) {
 856   collector_state()->set_during_marking(true);
 857   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 858   collector_state()->set_during_initial_mark_pause(false);
 859   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 860 }
 861 
 862 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 863   _mark_remark_start_sec = os::elapsedTime();
 864   collector_state()->set_during_marking(false);
 865 }
 866 
 867 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 868   double end_time_sec = os::elapsedTime();
 869   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 870   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 871   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 872   _prev_collection_pause_end_ms += elapsed_time_ms;
 873 
 874   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec);
 875 }
 876 
 877 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 878   _mark_cleanup_start_sec = os::elapsedTime();
 879 }
 880 
 881 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 882   collector_state()->set_last_young_gc(true);
 883   collector_state()->set_in_marking_window(false);
 884 }
 885 
 886 void G1CollectorPolicy::record_concurrent_pause() {
 887   if (_stop_world_start > 0.0) {
 888     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 889     _trace_young_gen_time_data.record_yield_time(yield_ms);
 890   }
 891 }
 892 
 893 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 894   return phase_times()->average_time_ms(phase);
 895 }
 896 
 897 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 898   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 899     return false;
 900   }
 901 
 902   size_t marking_initiating_used_threshold =
 903     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 904   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 905   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 906 
 907   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 908     if (collector_state()->gcs_are_young() && !collector_state()->last_young_gc()) {
 909       log_debug(gc, ergo, conc)("Request concurrent cycle initiation (occupancy higher than threshold)"
 910                                 "occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (" UINTX_FORMAT "%%) source: %s",
 911                                 cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, InitiatingHeapOccupancyPercent, source);
 912       return true;
 913     } else {
 914       log_debug(gc, ergo, conc)("Do not request concurrent cycle initiation (still doing mixed collections)"
 915                                 "occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (" UINTX_FORMAT "%%) source: %s",
 916                                 cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, InitiatingHeapOccupancyPercent, source);    }
 917   }
 918 
 919   return false;
 920 }
 921 
 922 // Anything below that is considered to be zero
 923 #define MIN_TIMER_GRANULARITY 0.0000001
 924 
 925 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
 926   double end_time_sec = os::elapsedTime();
 927   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 928          "otherwise, the subtraction below does not make sense");
 929   size_t rs_size =
 930             _cur_collection_pause_used_regions_at_start - cset_region_length();
 931   size_t cur_used_bytes = _g1->used();
 932   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 933   bool last_pause_included_initial_mark = false;
 934   bool update_stats = !_g1->evacuation_failed();
 935 
 936   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 937 
 938   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 939   if (last_pause_included_initial_mark) {
 940     record_concurrent_mark_init_end(0.0);
 941   } else if (need_to_start_conc_mark("end of GC")) {
 942     // Note: this might have already been set, if during the last
 943     // pause we decided to start a cycle but at the beginning of
 944     // this pause we decided to postpone it. That's OK.
 945     collector_state()->set_initiate_conc_mark_if_possible(true);
 946   }
 947 
 948   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0, end_time_sec);
 949 
 950   if (update_stats) {
 951     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
 952     // this is where we update the allocation rate of the application
 953     double app_time_ms =
 954       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 955     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 956       // This usually happens due to the timer not having the required
 957       // granularity. Some Linuxes are the usual culprits.
 958       // We'll just set it to something (arbitrarily) small.
 959       app_time_ms = 1.0;
 960     }
 961     // We maintain the invariant that all objects allocated by mutator
 962     // threads will be allocated out of eden regions. So, we can use
 963     // the eden region number allocated since the previous GC to
 964     // calculate the application's allocate rate. The only exception
 965     // to that is humongous objects that are allocated separately. But
 966     // given that humongous object allocations do not really affect
 967     // either the pause's duration nor when the next pause will take
 968     // place we can safely ignore them here.
 969     uint regions_allocated = eden_cset_region_length();
 970     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 971     _alloc_rate_ms_seq->add(alloc_rate_ms);
 972 
 973     double interval_ms =
 974       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 975     update_recent_gc_times(end_time_sec, pause_time_ms);
 976     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 977     if (recent_avg_pause_time_ratio() < 0.0 ||
 978         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 979       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 980       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 981       if (_recent_avg_pause_time_ratio < 0.0) {
 982         _recent_avg_pause_time_ratio = 0.0;
 983       } else {
 984         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 985         _recent_avg_pause_time_ratio = 1.0;
 986       }
 987     }
 988   }
 989 
 990   bool new_in_marking_window = collector_state()->in_marking_window();
 991   bool new_in_marking_window_im = false;
 992   if (last_pause_included_initial_mark) {
 993     new_in_marking_window = true;
 994     new_in_marking_window_im = true;
 995   }
 996 
 997   if (collector_state()->last_young_gc()) {
 998     // This is supposed to to be the "last young GC" before we start
 999     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1000 
1001     if (!last_pause_included_initial_mark) {
1002       if (next_gc_should_be_mixed("start mixed GCs",
1003                                   "do not start mixed GCs")) {
1004         collector_state()->set_gcs_are_young(false);
1005       }
1006     } else {
1007       log_debug(gc, ergo)("Do not start mixed GCs (concurrent cycle is about to start)");
1008     }
1009     collector_state()->set_last_young_gc(false);
1010   }
1011 
1012   if (!collector_state()->last_gc_was_young()) {
1013     // This is a mixed GC. Here we decide whether to continue doing
1014     // mixed GCs or not.
1015 
1016     if (!next_gc_should_be_mixed("continue mixed GCs",
1017                                  "do not continue mixed GCs")) {
1018       collector_state()->set_gcs_are_young(true);
1019     }
1020   }
1021 
1022   _short_lived_surv_rate_group->start_adding_regions();
1023   // Do that for any other surv rate groups
1024 
1025   if (update_stats) {
1026     double cost_per_card_ms = 0.0;
1027     double cost_scan_hcc = average_time_ms(G1GCPhaseTimes::ScanHCC);
1028     if (_pending_cards > 0) {
1029       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1030       _cost_per_card_ms_seq->add(cost_per_card_ms);
1031     }
1032     _cost_scan_hcc_seq->add(cost_scan_hcc);
1033 
1034     double cost_per_entry_ms = 0.0;
1035     if (cards_scanned > 10) {
1036       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1037       if (collector_state()->last_gc_was_young()) {
1038         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1039       } else {
1040         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1041       }
1042     }
1043 
1044     if (_max_rs_lengths > 0) {
1045       double cards_per_entry_ratio =
1046         (double) cards_scanned / (double) _max_rs_lengths;
1047       if (collector_state()->last_gc_was_young()) {
1048         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1049       } else {
1050         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1051       }
1052     }
1053 
1054     // This is defensive. For a while _max_rs_lengths could get
1055     // smaller than _recorded_rs_lengths which was causing
1056     // rs_length_diff to get very large and mess up the RSet length
1057     // predictions. The reason was unsafe concurrent updates to the
1058     // _inc_cset_recorded_rs_lengths field which the code below guards
1059     // against (see CR 7118202). This bug has now been fixed (see CR
1060     // 7119027). However, I'm still worried that
1061     // _inc_cset_recorded_rs_lengths might still end up somewhat
1062     // inaccurate. The concurrent refinement thread calculates an
1063     // RSet's length concurrently with other CR threads updating it
1064     // which might cause it to calculate the length incorrectly (if,
1065     // say, it's in mid-coarsening). So I'll leave in the defensive
1066     // conditional below just in case.
1067     size_t rs_length_diff = 0;
1068     if (_max_rs_lengths > _recorded_rs_lengths) {
1069       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1070     }
1071     _rs_length_diff_seq->add((double) rs_length_diff);
1072 
1073     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1074     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1075     double cost_per_byte_ms = 0.0;
1076 
1077     if (copied_bytes > 0) {
1078       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1079       if (collector_state()->in_marking_window()) {
1080         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1081       } else {
1082         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1083       }
1084     }
1085 
1086     double all_other_time_ms = pause_time_ms -
1087       (average_time_ms(G1GCPhaseTimes::UpdateRS) + average_time_ms(G1GCPhaseTimes::ScanRS) +
1088        average_time_ms(G1GCPhaseTimes::ObjCopy)  + average_time_ms(G1GCPhaseTimes::Termination));
1089 
1090     double young_other_time_ms = 0.0;
1091     if (young_cset_region_length() > 0) {
1092       young_other_time_ms =
1093         phase_times()->young_cset_choice_time_ms() +
1094         phase_times()->young_free_cset_time_ms();
1095       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1096                                           (double) young_cset_region_length());
1097     }
1098     double non_young_other_time_ms = 0.0;
1099     if (old_cset_region_length() > 0) {
1100       non_young_other_time_ms =
1101         phase_times()->non_young_cset_choice_time_ms() +
1102         phase_times()->non_young_free_cset_time_ms();
1103 
1104       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1105                                             (double) old_cset_region_length());
1106     }
1107 
1108     double constant_other_time_ms = all_other_time_ms -
1109       (young_other_time_ms + non_young_other_time_ms);
1110     _constant_other_time_ms_seq->add(constant_other_time_ms);
1111 
1112     double survival_ratio = 0.0;
1113     if (_collection_set_bytes_used_before > 0) {
1114       survival_ratio = (double) _bytes_copied_during_gc /
1115                                    (double) _collection_set_bytes_used_before;
1116     }
1117 
1118     _pending_cards_seq->add((double) _pending_cards);
1119     _rs_lengths_seq->add((double) _max_rs_lengths);
1120   }
1121 
1122   collector_state()->set_in_marking_window(new_in_marking_window);
1123   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1124   _free_regions_at_end_of_collection = _g1->num_free_regions();
1125   update_young_list_max_and_target_length();
1126   update_rs_lengths_prediction();
1127 
1128   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1129   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1130 
1131   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1132 
1133   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1134     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1135                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1136                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1137 
1138     update_rs_time_goal_ms = 0;
1139   } else {
1140     update_rs_time_goal_ms -= scan_hcc_time_ms;
1141   }
1142   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1143                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1144                                update_rs_time_goal_ms);
1145 
1146   _collectionSetChooser->verify();
1147 }
1148 
1149 #define EXT_SIZE_FORMAT "%.1f%s"
1150 #define EXT_SIZE_PARAMS(bytes)                                  \
1151   byte_size_in_proper_unit((double)(bytes)),                    \
1152   proper_unit_for_byte_size((bytes))
1153 
1154 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1155   YoungList* young_list = _g1->young_list();
1156   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1157   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1158   _heap_capacity_bytes_before_gc = _g1->capacity();
1159   _heap_used_bytes_before_gc = _g1->used();
1160   _old_used_bytes_before_gc = _heap_used_bytes_before_gc - _survivor_used_bytes_before_gc - _eden_used_bytes_before_gc;
1161   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1162 
1163   _eden_capacity_bytes_before_gc =
1164          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1165 
1166   _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1167 }
1168 
1169 void G1CollectorPolicy::print_detailed_heap_transition() const {
1170   YoungList* young_list = _g1->young_list();
1171 
1172   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1173   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1174   size_t old_used_bytes_after_gc = _g1->used() - eden_used_bytes_after_gc - eden_used_bytes_after_gc;
1175 
1176   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1177   size_t eden_capacity_bytes_after_gc =
1178     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1179   size_t survivor_capacity_bytes_after_gc = _max_survivor_regions * HeapRegion::GrainBytes;
1180 
1181   log_info(gc, heap)("Eden: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1182       _eden_used_bytes_before_gc / K, eden_used_bytes_after_gc /K, eden_capacity_bytes_after_gc /K);
1183 
1184   log_info(gc, heap)("Survivor: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1185       _survivor_used_bytes_before_gc / K, survivor_used_bytes_after_gc /K, survivor_capacity_bytes_after_gc /K);
1186 
1187   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1188       _old_used_bytes_before_gc / K, old_used_bytes_after_gc /K, heap_capacity_bytes_after_gc /K);
1189 
1190   MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1191 }
1192 
1193 void G1CollectorPolicy::print_phases(double pause_time_sec) {
1194   phase_times()->print(pause_time_sec);
1195 }
1196 
1197 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1198                                                      double update_rs_processed_buffers,
1199                                                      double goal_ms) {
1200   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1201   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1202 
1203   if (G1UseAdaptiveConcRefinement) {
1204     const int k_gy = 3, k_gr = 6;
1205     const double inc_k = 1.1, dec_k = 0.9;
1206 
1207     int g = cg1r->green_zone();
1208     if (update_rs_time > goal_ms) {
1209       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1210     } else {
1211       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1212         g = (int)MAX2(g * inc_k, g + 1.0);
1213       }
1214     }
1215     // Change the refinement threads params
1216     cg1r->set_green_zone(g);
1217     cg1r->set_yellow_zone(g * k_gy);
1218     cg1r->set_red_zone(g * k_gr);
1219     cg1r->reinitialize_threads();
1220 
1221     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1222     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1223                                     cg1r->yellow_zone());
1224     // Change the barrier params
1225     dcqs.set_process_completed_threshold(processing_threshold);
1226     dcqs.set_max_completed_queue(cg1r->red_zone());
1227   }
1228 
1229   int curr_queue_size = dcqs.completed_buffers_num();
1230   if (curr_queue_size >= cg1r->yellow_zone()) {
1231     dcqs.set_completed_queue_padding(curr_queue_size);
1232   } else {
1233     dcqs.set_completed_queue_padding(0);
1234   }
1235   dcqs.notify_if_necessary();
1236 }
1237 
1238 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1239   return (size_t) get_new_prediction(_rs_length_diff_seq);
1240 }
1241 
1242 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1243   return get_new_prediction(_alloc_rate_ms_seq);
1244 }
1245 
1246 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1247   return get_new_prediction(_cost_per_card_ms_seq);
1248 }
1249 
1250 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1251   return get_new_prediction(_cost_scan_hcc_seq);
1252 }
1253 
1254 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1255   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1256 }
1257 
1258 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1259   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1260 }
1261 
1262 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1263   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1264     return predict_young_cards_per_entry_ratio();
1265   } else {
1266     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1267   }
1268 }
1269 
1270 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1271   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1272 }
1273 
1274 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1275   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1276 }
1277 
1278 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1279   if (collector_state()->gcs_are_young()) {
1280     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1281   } else {
1282     return predict_mixed_rs_scan_time_ms(card_num);
1283   }
1284 }
1285 
1286 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1287   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1288     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1289   } else {
1290     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1291   }
1292 }
1293 
1294 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1295   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1296     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1297   } else {
1298     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1299   }
1300 }
1301 
1302 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1303   if (collector_state()->during_concurrent_mark()) {
1304     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1305   } else {
1306     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1307   }
1308 }
1309 
1310 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1311   return get_new_prediction(_constant_other_time_ms_seq);
1312 }
1313 
1314 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1315   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1316 }
1317 
1318 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1319   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1320 }
1321 
1322 double G1CollectorPolicy::predict_remark_time_ms() const {
1323   return get_new_prediction(_concurrent_mark_remark_times_ms);
1324 }
1325 
1326 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1327   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1328 }
1329 
1330 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1331   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1332   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1333   double pred = get_new_prediction(seq);
1334   if (pred > 1.0) {
1335     pred = 1.0;
1336   }
1337   return pred;
1338 }
1339 
1340 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1341   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1342 }
1343 
1344 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1345   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1346 }
1347 
1348 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1349                                                        size_t scanned_cards) const {
1350   return
1351     predict_rs_update_time_ms(pending_cards) +
1352     predict_rs_scan_time_ms(scanned_cards) +
1353     predict_constant_other_time_ms();
1354 }
1355 
1356 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1357   size_t rs_length = predict_rs_length_diff();
1358   size_t card_num;
1359   if (collector_state()->gcs_are_young()) {
1360     card_num = predict_young_card_num(rs_length);
1361   } else {
1362     card_num = predict_non_young_card_num(rs_length);
1363   }
1364   return predict_base_elapsed_time_ms(pending_cards, card_num);
1365 }
1366 
1367 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1368   size_t bytes_to_copy;
1369   if (hr->is_marked())
1370     bytes_to_copy = hr->max_live_bytes();
1371   else {
1372     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1373     int age = hr->age_in_surv_rate_group();
1374     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1375     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1376   }
1377   return bytes_to_copy;
1378 }
1379 
1380 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1381                                                          bool for_young_gc) const {
1382   size_t rs_length = hr->rem_set()->occupied();
1383   size_t card_num;
1384 
1385   // Predicting the number of cards is based on which type of GC
1386   // we're predicting for.
1387   if (for_young_gc) {
1388     card_num = predict_young_card_num(rs_length);
1389   } else {
1390     card_num = predict_non_young_card_num(rs_length);
1391   }
1392   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1393 
1394   double region_elapsed_time_ms =
1395     predict_rs_scan_time_ms(card_num) +
1396     predict_object_copy_time_ms(bytes_to_copy);
1397 
1398   // The prediction of the "other" time for this region is based
1399   // upon the region type and NOT the GC type.
1400   if (hr->is_young()) {
1401     region_elapsed_time_ms += predict_young_other_time_ms(1);
1402   } else {
1403     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1404   }
1405   return region_elapsed_time_ms;
1406 }
1407 
1408 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1409                                                  uint survivor_cset_region_length) {
1410   _eden_cset_region_length     = eden_cset_region_length;
1411   _survivor_cset_region_length = survivor_cset_region_length;
1412   _old_cset_region_length      = 0;
1413 }
1414 
1415 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1416   _recorded_rs_lengths = rs_lengths;
1417 }
1418 
1419 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1420                                                double elapsed_ms) {
1421   _recent_gc_times_ms->add(elapsed_ms);
1422   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1423   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1424 }
1425 
1426 size_t G1CollectorPolicy::expansion_amount() const {
1427   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1428   double threshold = _gc_overhead_perc;
1429   if (recent_gc_overhead > threshold) {
1430     // We will double the existing space, or take
1431     // G1ExpandByPercentOfAvailable % of the available expansion
1432     // space, whichever is smaller, bounded below by a minimum
1433     // expansion (unless that's all that's left.)
1434     const size_t min_expand_bytes = 1*M;
1435     size_t reserved_bytes = _g1->max_capacity();
1436     size_t committed_bytes = _g1->capacity();
1437     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1438     size_t expand_bytes;
1439     size_t expand_bytes_via_pct =
1440       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1441     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1442     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1443     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1444 
1445     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1446                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B calculated expansion amount: " SIZE_FORMAT "B (" INTX_FORMAT "%%)",
1447                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes_via_pct, G1ExpandByPercentOfAvailable);
1448 
1449     return expand_bytes;
1450   } else {
1451     return 0;
1452   }
1453 }
1454 
1455 void G1CollectorPolicy::print_tracing_info() const {
1456   _trace_young_gen_time_data.print();
1457   _trace_old_gen_time_data.print();
1458 }
1459 
1460 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1461 #ifndef PRODUCT
1462   _short_lived_surv_rate_group->print_surv_rate_summary();
1463   // add this call for any other surv rate groups
1464 #endif // PRODUCT
1465 }
1466 
1467 bool G1CollectorPolicy::is_young_list_full() const {
1468   uint young_list_length = _g1->young_list()->length();
1469   uint young_list_target_length = _young_list_target_length;
1470   return young_list_length >= young_list_target_length;
1471 }
1472 
1473 bool G1CollectorPolicy::can_expand_young_list() const {
1474   uint young_list_length = _g1->young_list()->length();
1475   uint young_list_max_length = _young_list_max_length;
1476   return young_list_length < young_list_max_length;
1477 }
1478 
1479 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1480   uint expansion_region_num = 0;
1481   if (GCLockerEdenExpansionPercent > 0) {
1482     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1483     double expansion_region_num_d = perc * (double) _young_list_target_length;
1484     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1485     // less than 1.0) we'll get 1.
1486     expansion_region_num = (uint) ceil(expansion_region_num_d);
1487   } else {
1488     assert(expansion_region_num == 0, "sanity");
1489   }
1490   _young_list_max_length = _young_list_target_length + expansion_region_num;
1491   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1492 }
1493 
1494 // Calculates survivor space parameters.
1495 void G1CollectorPolicy::update_survivors_policy() {
1496   double max_survivor_regions_d =
1497                  (double) _young_list_target_length / (double) SurvivorRatio;
1498   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1499   // smaller than 1.0) we'll get 1.
1500   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1501 
1502   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1503         HeapRegion::GrainWords * _max_survivor_regions, counters());
1504 }
1505 
1506 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1507                                                      GCCause::Cause gc_cause) {
1508   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1509   if (!during_cycle) {
1510     log_debug(gc, ergo, conc)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1511     collector_state()->set_initiate_conc_mark_if_possible(true);
1512     return true;
1513   } else {
1514     log_debug(gc, ergo, conc)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1515     return false;
1516   }
1517 }
1518 
1519 void
1520 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1521   // We are about to decide on whether this pause will be an
1522   // initial-mark pause.
1523 
1524   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1525   // will set it here if we have to. However, it should be cleared by
1526   // the end of the pause (it's only set for the duration of an
1527   // initial-mark pause).
1528   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1529 
1530   if (collector_state()->initiate_conc_mark_if_possible()) {
1531     // We had noticed on a previous pause that the heap occupancy has
1532     // gone over the initiating threshold and we should start a
1533     // concurrent marking cycle. So we might initiate one.
1534 
1535     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1536     if (!during_cycle) {
1537       // The concurrent marking thread is not "during a cycle", i.e.,
1538       // it has completed the last one. So we can go ahead and
1539       // initiate a new cycle.
1540 
1541       collector_state()->set_during_initial_mark_pause(true);
1542       // We do not allow mixed GCs during marking.
1543       if (!collector_state()->gcs_are_young()) {
1544         collector_state()->set_gcs_are_young(true);
1545         log_debug(gc, ergo)("End mixed GCs (concurrent cycle is about to start");
1546       }
1547 
1548       // And we can now clear initiate_conc_mark_if_possible() as
1549       // we've already acted on it.
1550       collector_state()->set_initiate_conc_mark_if_possible(false);
1551       log_debug(gc, ergo, conc)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1552     } else {
1553       // The concurrent marking thread is still finishing up the
1554       // previous cycle. If we start one right now the two cycles
1555       // overlap. In particular, the concurrent marking thread might
1556       // be in the process of clearing the next marking bitmap (which
1557       // we will use for the next cycle if we start one). Starting a
1558       // cycle now will be bad given that parts of the marking
1559       // information might get cleared by the marking thread. And we
1560       // cannot wait for the marking thread to finish the cycle as it
1561       // periodically yields while clearing the next marking bitmap
1562       // and, if it's in a yield point, it's waiting for us to
1563       // finish. So, at this point we will not start a cycle and we'll
1564       // let the concurrent marking thread complete the last one.
1565       log_debug(gc, ergo, conc)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1566     }
1567   }
1568 }
1569 
1570 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1571   G1CollectedHeap* _g1h;
1572   CSetChooserParUpdater _cset_updater;
1573 
1574 public:
1575   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1576                            uint chunk_size) :
1577     _g1h(G1CollectedHeap::heap()),
1578     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1579 
1580   bool doHeapRegion(HeapRegion* r) {
1581     // Do we have any marking information for this region?
1582     if (r->is_marked()) {
1583       // We will skip any region that's currently used as an old GC
1584       // alloc region (we should not consider those for collection
1585       // before we fill them up).
1586       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1587         _cset_updater.add_region(r);
1588       }
1589     }
1590     return false;
1591   }
1592 };
1593 
1594 class ParKnownGarbageTask: public AbstractGangTask {
1595   CollectionSetChooser* _hrSorted;
1596   uint _chunk_size;
1597   G1CollectedHeap* _g1;
1598   HeapRegionClaimer _hrclaimer;
1599 
1600 public:
1601   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1602       AbstractGangTask("ParKnownGarbageTask"),
1603       _hrSorted(hrSorted), _chunk_size(chunk_size),
1604       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1605 
1606   void work(uint worker_id) {
1607     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1608     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1609   }
1610 };
1611 
1612 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1613   assert(n_workers > 0, "Active gc workers should be greater than 0");
1614   const uint overpartition_factor = 4;
1615   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1616   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1617 }
1618 
1619 void
1620 G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1621   _collectionSetChooser->clear();
1622 
1623   WorkGang* workers = _g1->workers();
1624   uint n_workers = workers->active_workers();
1625 
1626   uint n_regions = _g1->num_regions();
1627   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1628   _collectionSetChooser->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1629   ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1630   workers->run_task(&par_known_garbage_task);
1631 
1632   _collectionSetChooser->sort_regions();
1633 
1634   double end_sec = os::elapsedTime();
1635   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1636   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1637   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1638   _prev_collection_pause_end_ms += elapsed_time_ms;
1639   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec);
1640 }
1641 
1642 // Add the heap region at the head of the non-incremental collection set
1643 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1644   assert(_inc_cset_build_state == Active, "Precondition");
1645   assert(hr->is_old(), "the region should be old");
1646 
1647   assert(!hr->in_collection_set(), "should not already be in the CSet");
1648   _g1->register_old_region_with_cset(hr);
1649   hr->set_next_in_collection_set(_collection_set);
1650   _collection_set = hr;
1651   _collection_set_bytes_used_before += hr->used();
1652   size_t rs_length = hr->rem_set()->occupied();
1653   _recorded_rs_lengths += rs_length;
1654   _old_cset_region_length += 1;
1655 }
1656 
1657 // Initialize the per-collection-set information
1658 void G1CollectorPolicy::start_incremental_cset_building() {
1659   assert(_inc_cset_build_state == Inactive, "Precondition");
1660 
1661   _inc_cset_head = NULL;
1662   _inc_cset_tail = NULL;
1663   _inc_cset_bytes_used_before = 0;
1664 
1665   _inc_cset_max_finger = 0;
1666   _inc_cset_recorded_rs_lengths = 0;
1667   _inc_cset_recorded_rs_lengths_diffs = 0;
1668   _inc_cset_predicted_elapsed_time_ms = 0.0;
1669   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1670   _inc_cset_build_state = Active;
1671 }
1672 
1673 void G1CollectorPolicy::finalize_incremental_cset_building() {
1674   assert(_inc_cset_build_state == Active, "Precondition");
1675   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1676 
1677   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1678   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1679   // that adds a new region to the CSet. Further updates by the
1680   // concurrent refinement thread that samples the young RSet lengths
1681   // are accumulated in the *_diffs fields. Here we add the diffs to
1682   // the "main" fields.
1683 
1684   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1685     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1686   } else {
1687     // This is defensive. The diff should in theory be always positive
1688     // as RSets can only grow between GCs. However, given that we
1689     // sample their size concurrently with other threads updating them
1690     // it's possible that we might get the wrong size back, which
1691     // could make the calculations somewhat inaccurate.
1692     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1693     if (_inc_cset_recorded_rs_lengths >= diffs) {
1694       _inc_cset_recorded_rs_lengths -= diffs;
1695     } else {
1696       _inc_cset_recorded_rs_lengths = 0;
1697     }
1698   }
1699   _inc_cset_predicted_elapsed_time_ms +=
1700                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1701 
1702   _inc_cset_recorded_rs_lengths_diffs = 0;
1703   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1704 }
1705 
1706 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1707   // This routine is used when:
1708   // * adding survivor regions to the incremental cset at the end of an
1709   //   evacuation pause,
1710   // * adding the current allocation region to the incremental cset
1711   //   when it is retired, and
1712   // * updating existing policy information for a region in the
1713   //   incremental cset via young list RSet sampling.
1714   // Therefore this routine may be called at a safepoint by the
1715   // VM thread, or in-between safepoints by mutator threads (when
1716   // retiring the current allocation region) or a concurrent
1717   // refine thread (RSet sampling).
1718 
1719   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1720   size_t used_bytes = hr->used();
1721   _inc_cset_recorded_rs_lengths += rs_length;
1722   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1723   _inc_cset_bytes_used_before += used_bytes;
1724 
1725   // Cache the values we have added to the aggregated information
1726   // in the heap region in case we have to remove this region from
1727   // the incremental collection set, or it is updated by the
1728   // rset sampling code
1729   hr->set_recorded_rs_length(rs_length);
1730   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1731 }
1732 
1733 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1734                                                      size_t new_rs_length) {
1735   // Update the CSet information that is dependent on the new RS length
1736   assert(hr->is_young(), "Precondition");
1737   assert(!SafepointSynchronize::is_at_safepoint(),
1738                                                "should not be at a safepoint");
1739 
1740   // We could have updated _inc_cset_recorded_rs_lengths and
1741   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1742   // that atomically, as this code is executed by a concurrent
1743   // refinement thread, potentially concurrently with a mutator thread
1744   // allocating a new region and also updating the same fields. To
1745   // avoid the atomic operations we accumulate these updates on two
1746   // separate fields (*_diffs) and we'll just add them to the "main"
1747   // fields at the start of a GC.
1748 
1749   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1750   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1751   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1752 
1753   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1754   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1755   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1756   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1757 
1758   hr->set_recorded_rs_length(new_rs_length);
1759   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1760 }
1761 
1762 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1763   assert(hr->is_young(), "invariant");
1764   assert(hr->young_index_in_cset() > -1, "should have already been set");
1765   assert(_inc_cset_build_state == Active, "Precondition");
1766 
1767   // We need to clear and set the cached recorded/cached collection set
1768   // information in the heap region here (before the region gets added
1769   // to the collection set). An individual heap region's cached values
1770   // are calculated, aggregated with the policy collection set info,
1771   // and cached in the heap region here (initially) and (subsequently)
1772   // by the Young List sampling code.
1773 
1774   size_t rs_length = hr->rem_set()->occupied();
1775   add_to_incremental_cset_info(hr, rs_length);
1776 
1777   HeapWord* hr_end = hr->end();
1778   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1779 
1780   assert(!hr->in_collection_set(), "invariant");
1781   _g1->register_young_region_with_cset(hr);
1782   assert(hr->next_in_collection_set() == NULL, "invariant");
1783 }
1784 
1785 // Add the region at the RHS of the incremental cset
1786 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1787   // We should only ever be appending survivors at the end of a pause
1788   assert(hr->is_survivor(), "Logic");
1789 
1790   // Do the 'common' stuff
1791   add_region_to_incremental_cset_common(hr);
1792 
1793   // Now add the region at the right hand side
1794   if (_inc_cset_tail == NULL) {
1795     assert(_inc_cset_head == NULL, "invariant");
1796     _inc_cset_head = hr;
1797   } else {
1798     _inc_cset_tail->set_next_in_collection_set(hr);
1799   }
1800   _inc_cset_tail = hr;
1801 }
1802 
1803 // Add the region to the LHS of the incremental cset
1804 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1805   // Survivors should be added to the RHS at the end of a pause
1806   assert(hr->is_eden(), "Logic");
1807 
1808   // Do the 'common' stuff
1809   add_region_to_incremental_cset_common(hr);
1810 
1811   // Add the region at the left hand side
1812   hr->set_next_in_collection_set(_inc_cset_head);
1813   if (_inc_cset_head == NULL) {
1814     assert(_inc_cset_tail == NULL, "Invariant");
1815     _inc_cset_tail = hr;
1816   }
1817   _inc_cset_head = hr;
1818 }
1819 
1820 #ifndef PRODUCT
1821 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1822   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1823 
1824   st->print_cr("\nCollection_set:");
1825   HeapRegion* csr = list_head;
1826   while (csr != NULL) {
1827     HeapRegion* next = csr->next_in_collection_set();
1828     assert(csr->in_collection_set(), "bad CS");
1829     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1830                  HR_FORMAT_PARAMS(csr),
1831                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1832                  csr->age_in_surv_rate_group_cond());
1833     csr = next;
1834   }
1835 }
1836 #endif // !PRODUCT
1837 
1838 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1839   // Returns the given amount of reclaimable bytes (that represents
1840   // the amount of reclaimable space still to be collected) as a
1841   // percentage of the current heap capacity.
1842   size_t capacity_bytes = _g1->capacity();
1843   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1844 }
1845 
1846 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1847                                                 const char* false_action_str) const {
1848   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1849   if (cset_chooser->is_empty()) {
1850     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1851     return false;
1852   }
1853 
1854   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1855   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1856   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1857   double threshold = (double) G1HeapWastePercent;
1858   if (reclaimable_perc <= threshold) {
1859     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1860                         false_action_str, cset_chooser->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1861     return false;
1862   }
1863 
1864   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1865                       true_action_str, cset_chooser->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1866   return true;
1867 }
1868 
1869 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1870   // The min old CSet region bound is based on the maximum desired
1871   // number of mixed GCs after a cycle. I.e., even if some old regions
1872   // look expensive, we should add them to the CSet anyway to make
1873   // sure we go through the available old regions in no more than the
1874   // maximum desired number of mixed GCs.
1875   //
1876   // The calculation is based on the number of marked regions we added
1877   // to the CSet chooser in the first place, not how many remain, so
1878   // that the result is the same during all mixed GCs that follow a cycle.
1879 
1880   const size_t region_num = (size_t) _collectionSetChooser->length();
1881   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1882   size_t result = region_num / gc_num;
1883   // emulate ceiling
1884   if (result * gc_num < region_num) {
1885     result += 1;
1886   }
1887   return (uint) result;
1888 }
1889 
1890 uint G1CollectorPolicy::calc_max_old_cset_length() const {
1891   // The max old CSet region bound is based on the threshold expressed
1892   // as a percentage of the heap size. I.e., it should bound the
1893   // number of old regions added to the CSet irrespective of how many
1894   // of them are available.
1895 
1896   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1897   const size_t region_num = g1h->num_regions();
1898   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1899   size_t result = region_num * perc / 100;
1900   // emulate ceiling
1901   if (100 * result < region_num * perc) {
1902     result += 1;
1903   }
1904   return (uint) result;
1905 }
1906 
1907 
1908 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
1909   double young_start_time_sec = os::elapsedTime();
1910 
1911   YoungList* young_list = _g1->young_list();
1912   finalize_incremental_cset_building();
1913 
1914   guarantee(target_pause_time_ms > 0.0,
1915             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
1916   guarantee(_collection_set == NULL, "Precondition");
1917 
1918   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1919   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1920 
1921   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
1922                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1923 
1924   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
1925 
1926   if (collector_state()->last_gc_was_young()) {
1927     _trace_young_gen_time_data.increment_young_collection_count();
1928   } else {
1929     _trace_young_gen_time_data.increment_mixed_collection_count();
1930   }
1931 
1932   // The young list is laid with the survivor regions from the previous
1933   // pause are appended to the RHS of the young list, i.e.
1934   //   [Newly Young Regions ++ Survivors from last pause].
1935 
1936   uint survivor_region_length = young_list->survivor_length();
1937   uint eden_region_length = young_list->eden_length();
1938   init_cset_region_lengths(eden_region_length, survivor_region_length);
1939 
1940   HeapRegion* hr = young_list->first_survivor_region();
1941   while (hr != NULL) {
1942     assert(hr->is_survivor(), "badly formed young list");
1943     // There is a convention that all the young regions in the CSet
1944     // are tagged as "eden", so we do this for the survivors here. We
1945     // use the special set_eden_pre_gc() as it doesn't check that the
1946     // region is free (which is not the case here).
1947     hr->set_eden_pre_gc();
1948     hr = hr->get_next_young_region();
1949   }
1950 
1951   // Clear the fields that point to the survivor list - they are all young now.
1952   young_list->clear_survivors();
1953 
1954   _collection_set = _inc_cset_head;
1955   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1956   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1957 
1958   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
1959                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);
1960 
1961   // The number of recorded young regions is the incremental
1962   // collection set's current size
1963   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1964 
1965   double young_end_time_sec = os::elapsedTime();
1966   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1967 
1968   return time_remaining_ms;
1969 }
1970 
1971 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
1972   double non_young_start_time_sec = os::elapsedTime();
1973   double predicted_old_time_ms = 0.0;
1974 
1975 
1976   if (!collector_state()->gcs_are_young()) {
1977     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1978     cset_chooser->verify();
1979     const uint min_old_cset_length = calc_min_old_cset_length();
1980     const uint max_old_cset_length = calc_max_old_cset_length();
1981 
1982     uint expensive_region_num = 0;
1983     bool check_time_remaining = adaptive_young_list_length();
1984 
1985     HeapRegion* hr = cset_chooser->peek();
1986     while (hr != NULL) {
1987       if (old_cset_region_length() >= max_old_cset_length) {
1988         // Added maximum number of old regions to the CSet.
1989         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
1990                                   old_cset_region_length(), max_old_cset_length);
1991         break;
1992       }
1993 
1994 
1995       // Stop adding regions if the remaining reclaimable space is
1996       // not above G1HeapWastePercent.
1997       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1998       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1999       double threshold = (double) G1HeapWastePercent;
2000       if (reclaimable_perc <= threshold) {
2001         // We've added enough old regions that the amount of uncollected
2002         // reclaimable space is at or below the waste threshold. Stop
2003         // adding old regions to the CSet.
2004         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2005                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2006                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2007         break;
2008       }
2009 
2010       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2011       if (check_time_remaining) {
2012         if (predicted_time_ms > time_remaining_ms) {
2013           // Too expensive for the current CSet.
2014 
2015           if (old_cset_region_length() >= min_old_cset_length) {
2016             // We have added the minimum number of old regions to the CSet,
2017             // we are done with this CSet.
2018             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2019                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2020                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);
2021             break;
2022           }
2023 
2024           // We'll add it anyway given that we haven't reached the
2025           // minimum number of old regions.
2026           expensive_region_num += 1;
2027         }
2028       } else {
2029         if (old_cset_region_length() >= min_old_cset_length) {
2030           // In the non-auto-tuning case, we'll finish adding regions
2031           // to the CSet if we reach the minimum.
2032 
2033           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
2034                                     old_cset_region_length(), min_old_cset_length);
2035           break;
2036         }
2037       }
2038 
2039       // We will add this region to the CSet.
2040       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2041       predicted_old_time_ms += predicted_time_ms;
2042       cset_chooser->pop(); // already have region via peek()
2043       _g1->old_set_remove(hr);
2044       add_old_region_to_cset(hr);
2045 
2046       hr = cset_chooser->peek();
2047     }
2048     if (hr == NULL) {
2049       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
2050     }
2051 
2052     if (expensive_region_num > 0) {
2053       // We print the information once here at the end, predicated on
2054       // whether we added any apparently expensive regions or not, to
2055       // avoid generating output per region.
2056       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2057                                 "old %u regions, expensive: %u regions, min %u regions, remaining time: %1.2fms",
2058                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
2059     }
2060 
2061     cset_chooser->verify();
2062   }
2063 
2064   stop_incremental_cset_building();
2065 
2066   log_debug(gc, ergo, cset)("Finish choosing CSet. old %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2067                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);
2068 
2069   double non_young_end_time_sec = os::elapsedTime();
2070   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2071 }
2072 
2073 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2074   if(TraceYoungGenTime) {
2075     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2076   }
2077 }
2078 
2079 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2080   if(TraceYoungGenTime) {
2081     _all_yield_times_ms.add(yield_time_ms);
2082   }
2083 }
2084 
2085 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2086   if(TraceYoungGenTime) {
2087     _total.add(pause_time_ms);
2088     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2089     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2090     _parallel.add(phase_times->cur_collection_par_time_ms());
2091     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2092     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2093     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2094     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2095     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2096     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2097 
2098     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2099       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2100       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2101       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2102       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2103       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2104 
2105     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2106     _parallel_other.add(parallel_other_time);
2107     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2108   }
2109 }
2110 
2111 void TraceYoungGenTimeData::increment_young_collection_count() {
2112   if(TraceYoungGenTime) {
2113     ++_young_pause_num;
2114   }
2115 }
2116 
2117 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2118   if(TraceYoungGenTime) {
2119     ++_mixed_pause_num;
2120   }
2121 }
2122 
2123 void TraceYoungGenTimeData::print_summary(const char* str,
2124                                           const NumberSeq* seq) const {
2125   double sum = seq->sum();
2126   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2127                 str, sum / 1000.0, seq->avg());
2128 }
2129 
2130 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2131                                              const NumberSeq* seq) const {
2132   print_summary(str, seq);
2133   gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2134                 "(num", seq->num(), seq->sd(), seq->maximum());
2135 }
2136 
2137 void TraceYoungGenTimeData::print() const {
2138   if (!TraceYoungGenTime) {
2139     return;
2140   }
2141 
2142   gclog_or_tty->print_cr("ALL PAUSES");
2143   print_summary_sd("   Total", &_total);
2144   gclog_or_tty->cr();
2145   gclog_or_tty->cr();
2146   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2147   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2148   gclog_or_tty->cr();
2149 
2150   gclog_or_tty->print_cr("EVACUATION PAUSES");
2151 
2152   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2153     gclog_or_tty->print_cr("none");
2154   } else {
2155     print_summary_sd("   Evacuation Pauses", &_total);
2156     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2157     print_summary("      Parallel Time", &_parallel);
2158     print_summary("         Ext Root Scanning", &_ext_root_scan);
2159     print_summary("         SATB Filtering", &_satb_filtering);
2160     print_summary("         Update RS", &_update_rs);
2161     print_summary("         Scan RS", &_scan_rs);
2162     print_summary("         Object Copy", &_obj_copy);
2163     print_summary("         Termination", &_termination);
2164     print_summary("         Parallel Other", &_parallel_other);
2165     print_summary("      Clear CT", &_clear_ct);
2166     print_summary("      Other", &_other);
2167   }
2168   gclog_or_tty->cr();
2169 
2170   gclog_or_tty->print_cr("MISC");
2171   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2172   print_summary_sd("   Yields", &_all_yield_times_ms);
2173 }
2174 
2175 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2176   if (TraceOldGenTime) {
2177     _all_full_gc_times.add(full_gc_time_ms);
2178   }
2179 }
2180 
2181 void TraceOldGenTimeData::print() const {
2182   if (!TraceOldGenTime) {
2183     return;
2184   }
2185 
2186   if (_all_full_gc_times.num() > 0) {
2187     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2188       _all_full_gc_times.num(),
2189       _all_full_gc_times.sum() / 1000.0);
2190     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2191     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2192       _all_full_gc_times.sd(),
2193       _all_full_gc_times.maximum());
2194   }
2195 }