1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1IHOPControl.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 #include "utilities/pair.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 G1CollectorPolicy::G1CollectorPolicy() :
  83   _predictor(G1ConfidencePercent / 100.0),
  84   _parallel_gc_threads(ParallelGCThreads),
  85 
  86   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  87   _stop_world_start(0.0),
  88 
  89   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  91 
  92   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _prev_collection_pause_end_ms(0.0),
  94   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _non_young_other_cost_per_region_ms_seq(
 106                                          new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 110 
 111   _pause_time_target_ms((double) MaxGCPauseMillis),
 112 
 113   _recent_prev_end_times_for_all_gcs_sec(
 114                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 115 
 116   _recent_avg_pause_time_ratio(0.0),
 117   _rs_lengths_prediction(0),
 118   _max_survivor_regions(0),
 119 
 120   _eden_cset_region_length(0),
 121   _survivor_cset_region_length(0),
 122   _old_cset_region_length(0),
 123 
 124   _collection_set(NULL),
 125   _collection_set_bytes_used_before(0),
 126 
 127   // Incremental CSet attributes
 128   _inc_cset_build_state(Inactive),
 129   _inc_cset_head(NULL),
 130   _inc_cset_tail(NULL),
 131   _inc_cset_bytes_used_before(0),
 132   _inc_cset_max_finger(NULL),
 133   _inc_cset_recorded_rs_lengths(0),
 134   _inc_cset_recorded_rs_lengths_diffs(0),
 135   _inc_cset_predicted_elapsed_time_ms(0.0),
 136   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 137 
 138   // add here any more surv rate groups
 139   _recorded_survivor_regions(0),
 140   _recorded_survivor_head(NULL),
 141   _recorded_survivor_tail(NULL),
 142   _survivors_age_table(true),
 143 
 144   _gc_overhead_perc(0.0),
 145 
 146   _bytes_allocated_in_old_since_last_gc(0),
 147   _ihop_control(NULL),
 148   _initial_mark_to_mixed() {
 149 
 150   // SurvRateGroups below must be initialized after the predictor because they
 151   // indirectly use it through this object passed to their constructor.
 152   _short_lived_surv_rate_group =
 153     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 154   _survivor_surv_rate_group =
 155     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 156 
 157   // Set up the region size and associated fields. Given that the
 158   // policy is created before the heap, we have to set this up here,
 159   // so it's done as soon as possible.
 160 
 161   // It would have been natural to pass initial_heap_byte_size() and
 162   // max_heap_byte_size() to setup_heap_region_size() but those have
 163   // not been set up at this point since they should be aligned with
 164   // the region size. So, there is a circular dependency here. We base
 165   // the region size on the heap size, but the heap size should be
 166   // aligned with the region size. To get around this we use the
 167   // unaligned values for the heap.
 168   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 169   HeapRegionRemSet::setup_remset_size();
 170 
 171   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 172   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 173   clear_ratio_check_data();
 174 
 175   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 176 
 177   int index = MIN2(_parallel_gc_threads - 1, 7);
 178 
 179   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 180   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 181   _cost_scan_hcc_seq->add(0.0);
 182   _young_cards_per_entry_ratio_seq->add(
 183                                   young_cards_per_entry_ratio_defaults[index]);
 184   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 185   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 186   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 187   _young_other_cost_per_region_ms_seq->add(
 188                                young_other_cost_per_region_ms_defaults[index]);
 189   _non_young_other_cost_per_region_ms_seq->add(
 190                            non_young_other_cost_per_region_ms_defaults[index]);
 191 
 192   // Below, we might need to calculate the pause time target based on
 193   // the pause interval. When we do so we are going to give G1 maximum
 194   // flexibility and allow it to do pauses when it needs to. So, we'll
 195   // arrange that the pause interval to be pause time target + 1 to
 196   // ensure that a) the pause time target is maximized with respect to
 197   // the pause interval and b) we maintain the invariant that pause
 198   // time target < pause interval. If the user does not want this
 199   // maximum flexibility, they will have to set the pause interval
 200   // explicitly.
 201 
 202   // First make sure that, if either parameter is set, its value is
 203   // reasonable.
 204   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 205     if (MaxGCPauseMillis < 1) {
 206       vm_exit_during_initialization("MaxGCPauseMillis should be "
 207                                     "greater than 0");
 208     }
 209   }
 210   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 211     if (GCPauseIntervalMillis < 1) {
 212       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 213                                     "greater than 0");
 214     }
 215   }
 216 
 217   // Then, if the pause time target parameter was not set, set it to
 218   // the default value.
 219   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 220     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 221       // The default pause time target in G1 is 200ms
 222       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 223     } else {
 224       // We do not allow the pause interval to be set without the
 225       // pause time target
 226       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 227                                     "without setting MaxGCPauseMillis");
 228     }
 229   }
 230 
 231   // Then, if the interval parameter was not set, set it according to
 232   // the pause time target (this will also deal with the case when the
 233   // pause time target is the default value).
 234   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 235     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 236   }
 237 
 238   // Finally, make sure that the two parameters are consistent.
 239   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 240     char buffer[256];
 241     jio_snprintf(buffer, 256,
 242                  "MaxGCPauseMillis (%u) should be less than "
 243                  "GCPauseIntervalMillis (%u)",
 244                  MaxGCPauseMillis, GCPauseIntervalMillis);
 245     vm_exit_during_initialization(buffer);
 246   }
 247 
 248   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 249   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 250   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 251 
 252   // start conservatively (around 50ms is about right)
 253   _concurrent_mark_remark_times_ms->add(0.05);
 254   _concurrent_mark_cleanup_times_ms->add(0.20);
 255   _tenuring_threshold = MaxTenuringThreshold;
 256 
 257   assert(GCTimeRatio > 0,
 258          "we should have set it to a default value set_g1_gc_flags() "
 259          "if a user set it to 0");
 260   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 261 
 262   uintx reserve_perc = G1ReservePercent;
 263   // Put an artificial ceiling on this so that it's not set to a silly value.
 264   if (reserve_perc > 50) {
 265     reserve_perc = 50;
 266     warning("G1ReservePercent is set to a value that is too large, "
 267             "it's been updated to " UINTX_FORMAT, reserve_perc);
 268   }
 269   _reserve_factor = (double) reserve_perc / 100.0;
 270   // This will be set when the heap is expanded
 271   // for the first time during initialization.
 272   _reserve_regions = 0;
 273 
 274   _cset_chooser = new CollectionSetChooser();
 275 }
 276 
 277 G1CollectorPolicy::~G1CollectorPolicy() {
 278   delete _ihop_control;
 279 }
 280 
 281 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 282   return _predictor.get_new_prediction(seq);
 283 }
 284 
 285 size_t G1CollectorPolicy::get_new_size_prediction(TruncatedSeq const* seq) const {
 286   return (size_t)get_new_prediction(seq);
 287 }
 288 
 289 void G1CollectorPolicy::initialize_alignments() {
 290   _space_alignment = HeapRegion::GrainBytes;
 291   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 292   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 293   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 294 }
 295 
 296 void G1CollectorPolicy::initialize_flags() {
 297   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 298     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 299   }
 300 
 301   if (SurvivorRatio < 1) {
 302     vm_exit_during_initialization("Invalid survivor ratio specified");
 303   }
 304   CollectorPolicy::initialize_flags();
 305   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 306 }
 307 
 308 void G1CollectorPolicy::post_heap_initialize() {
 309   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 310   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 311   if (max_young_size != MaxNewSize) {
 312     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 313   }
 314 
 315   _ihop_control = create_ihop_control();
 316 }
 317 
 318 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 319 
 320 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 321         _min_desired_young_length(0), _max_desired_young_length(0) {
 322   if (FLAG_IS_CMDLINE(NewRatio)) {
 323     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 324       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 325     } else {
 326       _sizer_kind = SizerNewRatio;
 327       _adaptive_size = false;
 328       return;
 329     }
 330   }
 331 
 332   if (NewSize > MaxNewSize) {
 333     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 334       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 335               "A new max generation size of " SIZE_FORMAT "k will be used.",
 336               NewSize/K, MaxNewSize/K, NewSize/K);
 337     }
 338     MaxNewSize = NewSize;
 339   }
 340 
 341   if (FLAG_IS_CMDLINE(NewSize)) {
 342     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 343                                      1U);
 344     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 345       _max_desired_young_length =
 346                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 347                                   1U);
 348       _sizer_kind = SizerMaxAndNewSize;
 349       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 350     } else {
 351       _sizer_kind = SizerNewSizeOnly;
 352     }
 353   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 354     _max_desired_young_length =
 355                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 356                                   1U);
 357     _sizer_kind = SizerMaxNewSizeOnly;
 358   }
 359 }
 360 
 361 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 362   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 363   return MAX2(1U, default_value);
 364 }
 365 
 366 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 367   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 368   return MAX2(1U, default_value);
 369 }
 370 
 371 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 372   assert(number_of_heap_regions > 0, "Heap must be initialized");
 373 
 374   switch (_sizer_kind) {
 375     case SizerDefaults:
 376       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 377       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 378       break;
 379     case SizerNewSizeOnly:
 380       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 381       *max_young_length = MAX2(*min_young_length, *max_young_length);
 382       break;
 383     case SizerMaxNewSizeOnly:
 384       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 385       *min_young_length = MIN2(*min_young_length, *max_young_length);
 386       break;
 387     case SizerMaxAndNewSize:
 388       // Do nothing. Values set on the command line, don't update them at runtime.
 389       break;
 390     case SizerNewRatio:
 391       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 392       *max_young_length = *min_young_length;
 393       break;
 394     default:
 395       ShouldNotReachHere();
 396   }
 397 
 398   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 399 }
 400 
 401 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 402   // We need to pass the desired values because recalculation may not update these
 403   // values in some cases.
 404   uint temp = _min_desired_young_length;
 405   uint result = _max_desired_young_length;
 406   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 407   return result;
 408 }
 409 
 410 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 411   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 412           &_max_desired_young_length);
 413 }
 414 
 415 void G1CollectorPolicy::init() {
 416   // Set aside an initial future to_space.
 417   _g1 = G1CollectedHeap::heap();
 418 
 419   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 420 
 421   initialize_gc_policy_counters();
 422 
 423   if (adaptive_young_list_length()) {
 424     _young_list_fixed_length = 0;
 425   } else {
 426     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 427   }
 428   _free_regions_at_end_of_collection = _g1->num_free_regions();
 429 
 430   update_young_list_max_and_target_length();
 431   // We may immediately start allocating regions and placing them on the
 432   // collection set list. Initialize the per-collection set info
 433   start_incremental_cset_building();
 434 }
 435 
 436 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 437   phase_times()->note_gc_start(num_active_workers);
 438 }
 439 
 440 // Create the jstat counters for the policy.
 441 void G1CollectorPolicy::initialize_gc_policy_counters() {
 442   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 443 }
 444 
 445 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 446                                          double base_time_ms,
 447                                          uint base_free_regions,
 448                                          double target_pause_time_ms) const {
 449   if (young_length >= base_free_regions) {
 450     // end condition 1: not enough space for the young regions
 451     return false;
 452   }
 453 
 454   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 455   size_t bytes_to_copy =
 456                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 457   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 458   double young_other_time_ms = predict_young_other_time_ms(young_length);
 459   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 460   if (pause_time_ms > target_pause_time_ms) {
 461     // end condition 2: prediction is over the target pause time
 462     return false;
 463   }
 464 
 465   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 466 
 467   // When copying, we will likely need more bytes free than is live in the region.
 468   // Add some safety margin to factor in the confidence of our guess, and the
 469   // natural expected waste.
 470   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 471   // of the calculation: the lower the confidence, the more headroom.
 472   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 473   // copying due to anticipated waste in the PLABs.
 474   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 475   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 476 
 477   if (expected_bytes_to_copy > free_bytes) {
 478     // end condition 3: out-of-space
 479     return false;
 480   }
 481 
 482   // success!
 483   return true;
 484 }
 485 
 486 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 487   // re-calculate the necessary reserve
 488   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 489   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 490   // smaller than 1.0) we'll get 1.
 491   _reserve_regions = (uint) ceil(reserve_regions_d);
 492 
 493   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 494 }
 495 
 496 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 497                                                        uint base_min_length) const {
 498   uint desired_min_length = 0;
 499   if (adaptive_young_list_length()) {
 500     if (_alloc_rate_ms_seq->num() > 3) {
 501       double now_sec = os::elapsedTime();
 502       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 503       double alloc_rate_ms = predict_alloc_rate_ms();
 504       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 505     } else {
 506       // otherwise we don't have enough info to make the prediction
 507     }
 508   }
 509   desired_min_length += base_min_length;
 510   // make sure we don't go below any user-defined minimum bound
 511   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 512 }
 513 
 514 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 515   // Here, we might want to also take into account any additional
 516   // constraints (i.e., user-defined minimum bound). Currently, we
 517   // effectively don't set this bound.
 518   return _young_gen_sizer->max_desired_young_length();
 519 }
 520 
 521 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 522   return update_young_list_max_and_target_length(get_new_size_prediction(_rs_lengths_seq));
 523 }
 524 
 525 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 526   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 527   update_max_gc_locker_expansion();
 528   return unbounded_target_length;
 529 }
 530 
 531 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 532   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 533   _young_list_target_length = young_lengths.first;
 534   return young_lengths.second;
 535 }
 536 
 537 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 538   YoungTargetLengths result;
 539 
 540   // Calculate the absolute and desired min bounds first.
 541 
 542   // This is how many young regions we already have (currently: the survivors).
 543   uint base_min_length = recorded_survivor_regions();
 544   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 545   // This is the absolute minimum young length. Ensure that we
 546   // will at least have one eden region available for allocation.
 547   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 548   // If we shrank the young list target it should not shrink below the current size.
 549   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 550   // Calculate the absolute and desired max bounds.
 551 
 552   uint desired_max_length = calculate_young_list_desired_max_length();
 553 
 554   uint young_list_target_length = 0;
 555   if (adaptive_young_list_length()) {
 556     if (collector_state()->gcs_are_young()) {
 557       young_list_target_length =
 558                         calculate_young_list_target_length(rs_lengths,
 559                                                            base_min_length,
 560                                                            desired_min_length,
 561                                                            desired_max_length);
 562     } else {
 563       // Don't calculate anything and let the code below bound it to
 564       // the desired_min_length, i.e., do the next GC as soon as
 565       // possible to maximize how many old regions we can add to it.
 566     }
 567   } else {
 568     // The user asked for a fixed young gen so we'll fix the young gen
 569     // whether the next GC is young or mixed.
 570     young_list_target_length = _young_list_fixed_length;
 571   }
 572 
 573   result.second = young_list_target_length;
 574 
 575   // We will try our best not to "eat" into the reserve.
 576   uint absolute_max_length = 0;
 577   if (_free_regions_at_end_of_collection > _reserve_regions) {
 578     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 579   }
 580   if (desired_max_length > absolute_max_length) {
 581     desired_max_length = absolute_max_length;
 582   }
 583 
 584   // Make sure we don't go over the desired max length, nor under the
 585   // desired min length. In case they clash, desired_min_length wins
 586   // which is why that test is second.
 587   if (young_list_target_length > desired_max_length) {
 588     young_list_target_length = desired_max_length;
 589   }
 590   if (young_list_target_length < desired_min_length) {
 591     young_list_target_length = desired_min_length;
 592   }
 593 
 594   assert(young_list_target_length > recorded_survivor_regions(),
 595          "we should be able to allocate at least one eden region");
 596   assert(young_list_target_length >= absolute_min_length, "post-condition");
 597 
 598   result.first = young_list_target_length;
 599   return result;
 600 }
 601 
 602 uint
 603 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 604                                                      uint base_min_length,
 605                                                      uint desired_min_length,
 606                                                      uint desired_max_length) const {
 607   assert(adaptive_young_list_length(), "pre-condition");
 608   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 609 
 610   // In case some edge-condition makes the desired max length too small...
 611   if (desired_max_length <= desired_min_length) {
 612     return desired_min_length;
 613   }
 614 
 615   // We'll adjust min_young_length and max_young_length not to include
 616   // the already allocated young regions (i.e., so they reflect the
 617   // min and max eden regions we'll allocate). The base_min_length
 618   // will be reflected in the predictions by the
 619   // survivor_regions_evac_time prediction.
 620   assert(desired_min_length > base_min_length, "invariant");
 621   uint min_young_length = desired_min_length - base_min_length;
 622   assert(desired_max_length > base_min_length, "invariant");
 623   uint max_young_length = desired_max_length - base_min_length;
 624 
 625   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 626   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 627   size_t pending_cards = get_new_size_prediction(_pending_cards_seq);
 628   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 629   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 630   double base_time_ms =
 631     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 632     survivor_regions_evac_time;
 633   uint available_free_regions = _free_regions_at_end_of_collection;
 634   uint base_free_regions = 0;
 635   if (available_free_regions > _reserve_regions) {
 636     base_free_regions = available_free_regions - _reserve_regions;
 637   }
 638 
 639   // Here, we will make sure that the shortest young length that
 640   // makes sense fits within the target pause time.
 641 
 642   if (predict_will_fit(min_young_length, base_time_ms,
 643                        base_free_regions, target_pause_time_ms)) {
 644     // The shortest young length will fit into the target pause time;
 645     // we'll now check whether the absolute maximum number of young
 646     // regions will fit in the target pause time. If not, we'll do
 647     // a binary search between min_young_length and max_young_length.
 648     if (predict_will_fit(max_young_length, base_time_ms,
 649                          base_free_regions, target_pause_time_ms)) {
 650       // The maximum young length will fit into the target pause time.
 651       // We are done so set min young length to the maximum length (as
 652       // the result is assumed to be returned in min_young_length).
 653       min_young_length = max_young_length;
 654     } else {
 655       // The maximum possible number of young regions will not fit within
 656       // the target pause time so we'll search for the optimal
 657       // length. The loop invariants are:
 658       //
 659       // min_young_length < max_young_length
 660       // min_young_length is known to fit into the target pause time
 661       // max_young_length is known not to fit into the target pause time
 662       //
 663       // Going into the loop we know the above hold as we've just
 664       // checked them. Every time around the loop we check whether
 665       // the middle value between min_young_length and
 666       // max_young_length fits into the target pause time. If it
 667       // does, it becomes the new min. If it doesn't, it becomes
 668       // the new max. This way we maintain the loop invariants.
 669 
 670       assert(min_young_length < max_young_length, "invariant");
 671       uint diff = (max_young_length - min_young_length) / 2;
 672       while (diff > 0) {
 673         uint young_length = min_young_length + diff;
 674         if (predict_will_fit(young_length, base_time_ms,
 675                              base_free_regions, target_pause_time_ms)) {
 676           min_young_length = young_length;
 677         } else {
 678           max_young_length = young_length;
 679         }
 680         assert(min_young_length <  max_young_length, "invariant");
 681         diff = (max_young_length - min_young_length) / 2;
 682       }
 683       // The results is min_young_length which, according to the
 684       // loop invariants, should fit within the target pause time.
 685 
 686       // These are the post-conditions of the binary search above:
 687       assert(min_young_length < max_young_length,
 688              "otherwise we should have discovered that max_young_length "
 689              "fits into the pause target and not done the binary search");
 690       assert(predict_will_fit(min_young_length, base_time_ms,
 691                               base_free_regions, target_pause_time_ms),
 692              "min_young_length, the result of the binary search, should "
 693              "fit into the pause target");
 694       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 695                                base_free_regions, target_pause_time_ms),
 696              "min_young_length, the result of the binary search, should be "
 697              "optimal, so no larger length should fit into the pause target");
 698     }
 699   } else {
 700     // Even the minimum length doesn't fit into the pause time
 701     // target, return it as the result nevertheless.
 702   }
 703   return base_min_length + min_young_length;
 704 }
 705 
 706 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 707   double survivor_regions_evac_time = 0.0;
 708   for (HeapRegion * r = _recorded_survivor_head;
 709        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 710        r = r->get_next_young_region()) {
 711     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 712   }
 713   return survivor_regions_evac_time;
 714 }
 715 
 716 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 717   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 718 
 719   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 720   if (rs_lengths > _rs_lengths_prediction) {
 721     // add 10% to avoid having to recalculate often
 722     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 723     update_rs_lengths_prediction(rs_lengths_prediction);
 724 
 725     update_young_list_max_and_target_length(rs_lengths_prediction);
 726   }
 727 }
 728 
 729 void G1CollectorPolicy::update_rs_lengths_prediction() {
 730   update_rs_lengths_prediction(get_new_size_prediction(_rs_lengths_seq));
 731 }
 732 
 733 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 734   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 735     _rs_lengths_prediction = prediction;
 736   }
 737 }
 738 
 739 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 740                                                bool is_tlab,
 741                                                bool* gc_overhead_limit_was_exceeded) {
 742   guarantee(false, "Not using this policy feature yet.");
 743   return NULL;
 744 }
 745 
 746 // This method controls how a collector handles one or more
 747 // of its generations being fully allocated.
 748 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 749                                                        bool is_tlab) {
 750   guarantee(false, "Not using this policy feature yet.");
 751   return NULL;
 752 }
 753 
 754 
 755 #ifndef PRODUCT
 756 bool G1CollectorPolicy::verify_young_ages() {
 757   HeapRegion* head = _g1->young_list()->first_region();
 758   return
 759     verify_young_ages(head, _short_lived_surv_rate_group);
 760   // also call verify_young_ages on any additional surv rate groups
 761 }
 762 
 763 bool
 764 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 765                                      SurvRateGroup *surv_rate_group) {
 766   guarantee( surv_rate_group != NULL, "pre-condition" );
 767 
 768   const char* name = surv_rate_group->name();
 769   bool ret = true;
 770   int prev_age = -1;
 771 
 772   for (HeapRegion* curr = head;
 773        curr != NULL;
 774        curr = curr->get_next_young_region()) {
 775     SurvRateGroup* group = curr->surv_rate_group();
 776     if (group == NULL && !curr->is_survivor()) {
 777       log_info(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 778       ret = false;
 779     }
 780 
 781     if (surv_rate_group == group) {
 782       int age = curr->age_in_surv_rate_group();
 783 
 784       if (age < 0) {
 785         log_info(gc, verify)("## %s: encountered negative age", name);
 786         ret = false;
 787       }
 788 
 789       if (age <= prev_age) {
 790         log_info(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 791         ret = false;
 792       }
 793       prev_age = age;
 794     }
 795   }
 796 
 797   return ret;
 798 }
 799 #endif // PRODUCT
 800 
 801 void G1CollectorPolicy::record_full_collection_start() {
 802   _full_collection_start_sec = os::elapsedTime();
 803   // Release the future to-space so that it is available for compaction into.
 804   collector_state()->set_full_collection(true);
 805 }
 806 
 807 void G1CollectorPolicy::record_full_collection_end() {
 808   // Consider this like a collection pause for the purposes of allocation
 809   // since last pause.
 810   double end_sec = os::elapsedTime();
 811   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 812   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 813 
 814   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 815 
 816   update_recent_gc_times(end_sec, full_gc_time_ms);
 817 
 818   collector_state()->set_full_collection(false);
 819 
 820   // "Nuke" the heuristics that control the young/mixed GC
 821   // transitions and make sure we start with young GCs after the Full GC.
 822   collector_state()->set_gcs_are_young(true);
 823   collector_state()->set_last_young_gc(false);
 824   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 825   collector_state()->set_during_initial_mark_pause(false);
 826   collector_state()->set_in_marking_window(false);
 827   collector_state()->set_in_marking_window_im(false);
 828 
 829   _short_lived_surv_rate_group->start_adding_regions();
 830   // also call this on any additional surv rate groups
 831 
 832   record_survivor_regions(0, NULL, NULL);
 833 
 834   _free_regions_at_end_of_collection = _g1->num_free_regions();
 835   // Reset survivors SurvRateGroup.
 836   _survivor_surv_rate_group->reset();
 837   update_young_list_max_and_target_length();
 838   update_rs_lengths_prediction();
 839   cset_chooser()->clear();
 840 
 841   _bytes_allocated_in_old_since_last_gc = 0;
 842 
 843   record_pause(FullGC, _full_collection_start_sec, end_sec);
 844 }
 845 
 846 void G1CollectorPolicy::record_stop_world_start() {
 847   _stop_world_start = os::elapsedTime();
 848 }
 849 
 850 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 851   // We only need to do this here as the policy will only be applied
 852   // to the GC we're about to start. so, no point is calculating this
 853   // every time we calculate / recalculate the target young length.
 854   update_survivors_policy();
 855 
 856   assert(_g1->used() == _g1->recalculate_used(),
 857          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 858          _g1->used(), _g1->recalculate_used());
 859 
 860   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 861   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 862   _stop_world_start = 0.0;
 863 
 864   phase_times()->record_cur_collection_start_sec(start_time_sec);
 865   _pending_cards = _g1->pending_card_num();
 866 
 867   _collection_set_bytes_used_before = 0;
 868   _bytes_copied_during_gc = 0;
 869 
 870   collector_state()->set_last_gc_was_young(false);
 871 
 872   // do that for any other surv rate groups
 873   _short_lived_surv_rate_group->stop_adding_regions();
 874   _survivors_age_table.clear();
 875 
 876   assert( verify_young_ages(), "region age verification" );
 877 }
 878 
 879 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 880                                                    mark_init_elapsed_time_ms) {
 881   collector_state()->set_during_marking(true);
 882   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 883   collector_state()->set_during_initial_mark_pause(false);
 884 }
 885 
 886 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 887   _mark_remark_start_sec = os::elapsedTime();
 888   collector_state()->set_during_marking(false);
 889 }
 890 
 891 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 892   double end_time_sec = os::elapsedTime();
 893   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 894   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 895   _prev_collection_pause_end_ms += elapsed_time_ms;
 896 
 897   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 898 }
 899 
 900 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 901   _mark_cleanup_start_sec = os::elapsedTime();
 902 }
 903 
 904 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 905   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 906                                                               "skip last young-only gc");
 907   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 908   // We skip the marking phase.
 909   if (!should_continue_with_reclaim) {
 910     abort_time_to_mixed_tracking();
 911   }
 912   collector_state()->set_in_marking_window(false);
 913 }
 914 
 915 void G1CollectorPolicy::record_concurrent_pause() {
 916   if (_stop_world_start > 0.0) {
 917     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 918     _trace_young_gen_time_data.record_yield_time(yield_ms);
 919   }
 920 }
 921 
 922 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 923   return phase_times()->average_time_ms(phase);
 924 }
 925 
 926 double G1CollectorPolicy::young_other_time_ms() const {
 927   return phase_times()->young_cset_choice_time_ms() +
 928          phase_times()->young_free_cset_time_ms();
 929 }
 930 
 931 double G1CollectorPolicy::non_young_other_time_ms() const {
 932   return phase_times()->non_young_cset_choice_time_ms() +
 933          phase_times()->non_young_free_cset_time_ms();
 934 
 935 }
 936 
 937 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 938   return pause_time_ms -
 939          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 940          average_time_ms(G1GCPhaseTimes::ScanRS) -
 941          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 942          average_time_ms(G1GCPhaseTimes::Termination);
 943 }
 944 
 945 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 946   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 947 }
 948 
 949 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 950   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 951 }
 952 
 953 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 954   if (about_to_start_mixed_phase()) {
 955     return false;
 956   }
 957 
 958   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 959 
 960   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 961   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 962   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 963 
 964   bool result = false;
 965   if (marking_request_bytes > marking_initiating_used_threshold) {
 966     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 967     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 968                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 969                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 970   }
 971 
 972   return result;
 973 }
 974 
 975 // Anything below that is considered to be zero
 976 #define MIN_TIMER_GRANULARITY 0.0000001
 977 
 978 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 979   double end_time_sec = os::elapsedTime();
 980 
 981   size_t cur_used_bytes = _g1->used();
 982   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 983   bool last_pause_included_initial_mark = false;
 984   bool update_stats = !_g1->evacuation_failed();
 985 
 986   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 987 
 988   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 989 
 990   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 991   if (last_pause_included_initial_mark) {
 992     record_concurrent_mark_init_end(0.0);
 993   } else {
 994     maybe_start_marking();
 995   }
 996 
 997   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 998   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 999     // This usually happens due to the timer not having the required
1000     // granularity. Some Linuxes are the usual culprits.
1001     // We'll just set it to something (arbitrarily) small.
1002     app_time_ms = 1.0;
1003   }
1004 
1005   if (update_stats) {
1006     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
1007     // We maintain the invariant that all objects allocated by mutator
1008     // threads will be allocated out of eden regions. So, we can use
1009     // the eden region number allocated since the previous GC to
1010     // calculate the application's allocate rate. The only exception
1011     // to that is humongous objects that are allocated separately. But
1012     // given that humongous object allocations do not really affect
1013     // either the pause's duration nor when the next pause will take
1014     // place we can safely ignore them here.
1015     uint regions_allocated = eden_cset_region_length();
1016     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1017     _alloc_rate_ms_seq->add(alloc_rate_ms);
1018 
1019     double interval_ms =
1020       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1021     update_recent_gc_times(end_time_sec, pause_time_ms);
1022     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1023     if (recent_avg_pause_time_ratio() < 0.0 ||
1024         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1025       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1026       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1027       if (_recent_avg_pause_time_ratio < 0.0) {
1028         _recent_avg_pause_time_ratio = 0.0;
1029       } else {
1030         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1031         _recent_avg_pause_time_ratio = 1.0;
1032       }
1033     }
1034 
1035     // Compute the ratio of just this last pause time to the entire time range stored
1036     // in the vectors. Comparing this pause to the entire range, rather than only the
1037     // most recent interval, has the effect of smoothing over a possible transient 'burst'
1038     // of more frequent pauses that don't really reflect a change in heap occupancy.
1039     // This reduces the likelihood of a needless heap expansion being triggered.
1040     _last_pause_time_ratio =
1041       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
1042   }
1043 
1044   bool new_in_marking_window = collector_state()->in_marking_window();
1045   bool new_in_marking_window_im = false;
1046   if (last_pause_included_initial_mark) {
1047     new_in_marking_window = true;
1048     new_in_marking_window_im = true;
1049   }
1050 
1051   if (collector_state()->last_young_gc()) {
1052     // This is supposed to to be the "last young GC" before we start
1053     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1054     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
1055 
1056     if (next_gc_should_be_mixed("start mixed GCs",
1057                                 "do not start mixed GCs")) {
1058       collector_state()->set_gcs_are_young(false);
1059     } else {
1060       // We aborted the mixed GC phase early.
1061       abort_time_to_mixed_tracking();
1062     }
1063 
1064     collector_state()->set_last_young_gc(false);
1065   }
1066 
1067   if (!collector_state()->last_gc_was_young()) {
1068     // This is a mixed GC. Here we decide whether to continue doing
1069     // mixed GCs or not.
1070     if (!next_gc_should_be_mixed("continue mixed GCs",
1071                                  "do not continue mixed GCs")) {
1072       collector_state()->set_gcs_are_young(true);
1073 
1074       maybe_start_marking();
1075     }
1076   }
1077 
1078   _short_lived_surv_rate_group->start_adding_regions();
1079   // Do that for any other surv rate groups
1080 
1081   if (update_stats) {
1082     double cost_per_card_ms = 0.0;
1083     double cost_scan_hcc = average_time_ms(G1GCPhaseTimes::ScanHCC);
1084     if (_pending_cards > 0) {
1085       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1086       _cost_per_card_ms_seq->add(cost_per_card_ms);
1087     }
1088     _cost_scan_hcc_seq->add(cost_scan_hcc);
1089 
1090     double cost_per_entry_ms = 0.0;
1091     if (cards_scanned > 10) {
1092       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1093       if (collector_state()->last_gc_was_young()) {
1094         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1095       } else {
1096         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1097       }
1098     }
1099 
1100     if (_max_rs_lengths > 0) {
1101       double cards_per_entry_ratio =
1102         (double) cards_scanned / (double) _max_rs_lengths;
1103       if (collector_state()->last_gc_was_young()) {
1104         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1105       } else {
1106         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1107       }
1108     }
1109 
1110     // This is defensive. For a while _max_rs_lengths could get
1111     // smaller than _recorded_rs_lengths which was causing
1112     // rs_length_diff to get very large and mess up the RSet length
1113     // predictions. The reason was unsafe concurrent updates to the
1114     // _inc_cset_recorded_rs_lengths field which the code below guards
1115     // against (see CR 7118202). This bug has now been fixed (see CR
1116     // 7119027). However, I'm still worried that
1117     // _inc_cset_recorded_rs_lengths might still end up somewhat
1118     // inaccurate. The concurrent refinement thread calculates an
1119     // RSet's length concurrently with other CR threads updating it
1120     // which might cause it to calculate the length incorrectly (if,
1121     // say, it's in mid-coarsening). So I'll leave in the defensive
1122     // conditional below just in case.
1123     size_t rs_length_diff = 0;
1124     if (_max_rs_lengths > _recorded_rs_lengths) {
1125       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1126     }
1127     _rs_length_diff_seq->add((double) rs_length_diff);
1128 
1129     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
1130     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1131     double cost_per_byte_ms = 0.0;
1132 
1133     if (copied_bytes > 0) {
1134       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1135       if (collector_state()->in_marking_window()) {
1136         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1137       } else {
1138         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1139       }
1140     }
1141 
1142     if (young_cset_region_length() > 0) {
1143       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1144                                                young_cset_region_length());
1145     }
1146 
1147     if (old_cset_region_length() > 0) {
1148       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1149                                                    old_cset_region_length());
1150     }
1151 
1152     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1153 
1154     _pending_cards_seq->add((double) _pending_cards);
1155     _rs_lengths_seq->add((double) _max_rs_lengths);
1156   }
1157 
1158   collector_state()->set_in_marking_window(new_in_marking_window);
1159   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1160   _free_regions_at_end_of_collection = _g1->num_free_regions();
1161   // IHOP control wants to know the expected young gen length if it were not
1162   // restrained by the heap reserve. Using the actual length would make the
1163   // prediction too small and the limit the young gen every time we get to the
1164   // predicted target occupancy.
1165   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
1166   update_rs_lengths_prediction();
1167 
1168   update_ihop_prediction(app_time_ms / 1000.0,
1169                          _bytes_allocated_in_old_since_last_gc,
1170                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1171   _bytes_allocated_in_old_since_last_gc = 0;
1172 
1173   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1174 
1175   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1176   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1177 
1178   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1179 
1180   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1181     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1182                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1183                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1184 
1185     update_rs_time_goal_ms = 0;
1186   } else {
1187     update_rs_time_goal_ms -= scan_hcc_time_ms;
1188   }
1189   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1190                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1191                                update_rs_time_goal_ms);
1192 
1193   cset_chooser()->verify();
1194 }
1195 
1196 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1197   if (G1UseAdaptiveIHOP) {
1198     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1199                                      G1CollectedHeap::heap()->max_capacity(),
1200                                      &_predictor,
1201                                      G1ReservePercent,
1202                                      G1HeapWastePercent);
1203   } else {
1204     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
1205                                    G1CollectedHeap::heap()->max_capacity());
1206   }
1207 }
1208 
1209 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1210                                                size_t mutator_alloc_bytes,
1211                                                size_t young_gen_size) {
1212   // Always try to update IHOP prediction. Even evacuation failures give information
1213   // about e.g. whether to start IHOP earlier next time.
1214 
1215   // Avoid using really small application times that might create samples with
1216   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1217   double const min_valid_time = 1e-6;
1218 
1219   bool report = false;
1220 
1221   double marking_to_mixed_time = -1.0;
1222   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1223     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1224     assert(marking_to_mixed_time > 0.0,
1225            "Initial mark to mixed time must be larger than zero but is %.3f",
1226            marking_to_mixed_time);
1227     if (marking_to_mixed_time > min_valid_time) {
1228       _ihop_control->update_marking_length(marking_to_mixed_time);
1229       report = true;
1230     }
1231   }
1232 
1233   // As an approximation for the young gc promotion rates during marking we use
1234   // all of them. In many applications there are only a few if any young gcs during
1235   // marking, which makes any prediction useless. This increases the accuracy of the
1236   // prediction.
1237   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1238     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1239     report = true;
1240   }
1241 
1242   if (report) {
1243     report_ihop_statistics();
1244   }
1245 }
1246 
1247 void G1CollectorPolicy::report_ihop_statistics() {
1248   _ihop_control->print();
1249 }
1250 
1251 #define EXT_SIZE_FORMAT "%.1f%s"
1252 #define EXT_SIZE_PARAMS(bytes)                                  \
1253   byte_size_in_proper_unit((double)(bytes)),                    \
1254   proper_unit_for_byte_size((bytes))
1255 
1256 void G1CollectorPolicy::print_phases() {
1257   phase_times()->print();
1258 }
1259 
1260 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1261                                                      double update_rs_processed_buffers,
1262                                                      double goal_ms) {
1263   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1264   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1265 
1266   if (G1UseAdaptiveConcRefinement) {
1267     const int k_gy = 3, k_gr = 6;
1268     const double inc_k = 1.1, dec_k = 0.9;
1269 
1270     int g = cg1r->green_zone();
1271     if (update_rs_time > goal_ms) {
1272       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1273     } else {
1274       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1275         g = (int)MAX2(g * inc_k, g + 1.0);
1276       }
1277     }
1278     // Change the refinement threads params
1279     cg1r->set_green_zone(g);
1280     cg1r->set_yellow_zone(g * k_gy);
1281     cg1r->set_red_zone(g * k_gr);
1282     cg1r->reinitialize_threads();
1283 
1284     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1285     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1286                                     cg1r->yellow_zone());
1287     // Change the barrier params
1288     dcqs.set_process_completed_threshold(processing_threshold);
1289     dcqs.set_max_completed_queue(cg1r->red_zone());
1290   }
1291 
1292   int curr_queue_size = dcqs.completed_buffers_num();
1293   if (curr_queue_size >= cg1r->yellow_zone()) {
1294     dcqs.set_completed_queue_padding(curr_queue_size);
1295   } else {
1296     dcqs.set_completed_queue_padding(0);
1297   }
1298   dcqs.notify_if_necessary();
1299 }
1300 
1301 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1302   return get_new_size_prediction(_rs_length_diff_seq);
1303 }
1304 
1305 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1306   return get_new_prediction(_alloc_rate_ms_seq);
1307 }
1308 
1309 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1310   return get_new_prediction(_cost_per_card_ms_seq);
1311 }
1312 
1313 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1314   return get_new_prediction(_cost_scan_hcc_seq);
1315 }
1316 
1317 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1318   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1319 }
1320 
1321 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1322   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1323 }
1324 
1325 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1326   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1327     return predict_young_cards_per_entry_ratio();
1328   } else {
1329     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1330   }
1331 }
1332 
1333 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1334   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1335 }
1336 
1337 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1338   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1339 }
1340 
1341 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1342   if (collector_state()->gcs_are_young()) {
1343     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1344   } else {
1345     return predict_mixed_rs_scan_time_ms(card_num);
1346   }
1347 }
1348 
1349 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1350   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1351     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1352   } else {
1353     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1354   }
1355 }
1356 
1357 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1358   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1359     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1360   } else {
1361     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1362   }
1363 }
1364 
1365 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1366   if (collector_state()->during_concurrent_mark()) {
1367     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1368   } else {
1369     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1370   }
1371 }
1372 
1373 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1374   return get_new_prediction(_constant_other_time_ms_seq);
1375 }
1376 
1377 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1378   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1379 }
1380 
1381 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1382   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1383 }
1384 
1385 double G1CollectorPolicy::predict_remark_time_ms() const {
1386   return get_new_prediction(_concurrent_mark_remark_times_ms);
1387 }
1388 
1389 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1390   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1391 }
1392 
1393 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1394   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1395   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1396   double pred = get_new_prediction(seq);
1397   if (pred > 1.0) {
1398     pred = 1.0;
1399   }
1400   return pred;
1401 }
1402 
1403 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1404   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1405 }
1406 
1407 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1408   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1409 }
1410 
1411 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1412                                                        size_t scanned_cards) const {
1413   return
1414     predict_rs_update_time_ms(pending_cards) +
1415     predict_rs_scan_time_ms(scanned_cards) +
1416     predict_constant_other_time_ms();
1417 }
1418 
1419 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1420   size_t rs_length = predict_rs_length_diff();
1421   size_t card_num;
1422   if (collector_state()->gcs_are_young()) {
1423     card_num = predict_young_card_num(rs_length);
1424   } else {
1425     card_num = predict_non_young_card_num(rs_length);
1426   }
1427   return predict_base_elapsed_time_ms(pending_cards, card_num);
1428 }
1429 
1430 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1431   size_t bytes_to_copy;
1432   if (hr->is_marked())
1433     bytes_to_copy = hr->max_live_bytes();
1434   else {
1435     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1436     int age = hr->age_in_surv_rate_group();
1437     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1438     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1439   }
1440   return bytes_to_copy;
1441 }
1442 
1443 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1444                                                          bool for_young_gc) const {
1445   size_t rs_length = hr->rem_set()->occupied();
1446   size_t card_num;
1447 
1448   // Predicting the number of cards is based on which type of GC
1449   // we're predicting for.
1450   if (for_young_gc) {
1451     card_num = predict_young_card_num(rs_length);
1452   } else {
1453     card_num = predict_non_young_card_num(rs_length);
1454   }
1455   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1456 
1457   double region_elapsed_time_ms =
1458     predict_rs_scan_time_ms(card_num) +
1459     predict_object_copy_time_ms(bytes_to_copy);
1460 
1461   // The prediction of the "other" time for this region is based
1462   // upon the region type and NOT the GC type.
1463   if (hr->is_young()) {
1464     region_elapsed_time_ms += predict_young_other_time_ms(1);
1465   } else {
1466     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1467   }
1468   return region_elapsed_time_ms;
1469 }
1470 
1471 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1472                                                  uint survivor_cset_region_length) {
1473   _eden_cset_region_length     = eden_cset_region_length;
1474   _survivor_cset_region_length = survivor_cset_region_length;
1475   _old_cset_region_length      = 0;
1476 }
1477 
1478 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1479   _recorded_rs_lengths = rs_lengths;
1480 }
1481 
1482 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1483                                                double elapsed_ms) {
1484   _recent_gc_times_ms->add(elapsed_ms);
1485   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1486   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1487 }
1488 
1489 void G1CollectorPolicy::clear_ratio_check_data() {
1490   _ratio_over_threshold_count = 0;
1491   _ratio_over_threshold_sum = 0.0;
1492   _pauses_since_start = 0;
1493 }
1494 
1495 size_t G1CollectorPolicy::expansion_amount() {
1496   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1497   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1498   double threshold = _gc_overhead_perc;
1499   size_t expand_bytes = 0;
1500 
1501   // If the heap is at less than half its maximum size, scale the threshold down,
1502   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1503   // though the scaling code will likely keep the increase small.
1504   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1505     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1506     threshold = MAX2(threshold, 1.0);
1507   }
1508 
1509   // If the last GC time ratio is over the threshold, increment the count of
1510   // times it has been exceeded, and add this ratio to the sum of exceeded
1511   // ratios.
1512   if (last_gc_overhead > threshold) {
1513     _ratio_over_threshold_count++;
1514     _ratio_over_threshold_sum += last_gc_overhead;
1515   }
1516 
1517   // Check if we've had enough GC time ratio checks that were over the
1518   // threshold to trigger an expansion. We'll also expand if we've
1519   // reached the end of the history buffer and the average of all entries
1520   // is still over the threshold. This indicates a smaller number of GCs were
1521   // long enough to make the average exceed the threshold.
1522   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1523   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1524       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1525     size_t min_expand_bytes = HeapRegion::GrainBytes;
1526     size_t reserved_bytes = _g1->max_capacity();
1527     size_t committed_bytes = _g1->capacity();
1528     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1529     size_t expand_bytes_via_pct =
1530       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1531     double scale_factor = 1.0;
1532 
1533     // If the current size is less than 1/4 of the Initial heap size, expand
1534     // by half of the delta between the current and Initial sizes. IE, grow
1535     // back quickly.
1536     //
1537     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1538     // the available expansion space, whichever is smaller, as the base
1539     // expansion size. Then possibly scale this size according to how much the
1540     // threshold has (on average) been exceeded by. If the delta is small
1541     // (less than the StartScaleDownAt value), scale the size down linearly, but
1542     // not by less than MinScaleDownFactor. If the delta is large (greater than
1543     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1544     // times the base size. The scaling will be linear in the range from
1545     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1546     // ScaleUpRange sets the rate of scaling up.
1547     if (committed_bytes < InitialHeapSize / 4) {
1548       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1549     } else {
1550       double const MinScaleDownFactor = 0.2;
1551       double const MaxScaleUpFactor = 2;
1552       double const StartScaleDownAt = _gc_overhead_perc;
1553       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1554       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1555 
1556       double ratio_delta;
1557       if (filled_history_buffer) {
1558         ratio_delta = recent_gc_overhead - threshold;
1559       } else {
1560         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1561       }
1562 
1563       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1564       if (ratio_delta < StartScaleDownAt) {
1565         scale_factor = ratio_delta / StartScaleDownAt;
1566         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1567       } else if (ratio_delta > StartScaleUpAt) {
1568         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1569         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1570       }
1571     }
1572 
1573     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1574                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1575                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1576 
1577     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1578 
1579     // Ensure the expansion size is at least the minimum growth amount
1580     // and at most the remaining uncommitted byte size.
1581     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1582     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1583 
1584     clear_ratio_check_data();
1585   } else {
1586     // An expansion was not triggered. If we've started counting, increment
1587     // the number of checks we've made in the current window.  If we've
1588     // reached the end of the window without resizing, clear the counters to
1589     // start again the next time we see a ratio above the threshold.
1590     if (_ratio_over_threshold_count > 0) {
1591       _pauses_since_start++;
1592       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1593         clear_ratio_check_data();
1594       }
1595     }
1596   }
1597 
1598   return expand_bytes;
1599 }
1600 
1601 void G1CollectorPolicy::print_tracing_info() const {
1602   _trace_young_gen_time_data.print();
1603   _trace_old_gen_time_data.print();
1604 }
1605 
1606 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1607 #ifndef PRODUCT
1608   _short_lived_surv_rate_group->print_surv_rate_summary();
1609   // add this call for any other surv rate groups
1610 #endif // PRODUCT
1611 }
1612 
1613 bool G1CollectorPolicy::is_young_list_full() const {
1614   uint young_list_length = _g1->young_list()->length();
1615   uint young_list_target_length = _young_list_target_length;
1616   return young_list_length >= young_list_target_length;
1617 }
1618 
1619 bool G1CollectorPolicy::can_expand_young_list() const {
1620   uint young_list_length = _g1->young_list()->length();
1621   uint young_list_max_length = _young_list_max_length;
1622   return young_list_length < young_list_max_length;
1623 }
1624 
1625 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1626   uint expansion_region_num = 0;
1627   if (GCLockerEdenExpansionPercent > 0) {
1628     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1629     double expansion_region_num_d = perc * (double) _young_list_target_length;
1630     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1631     // less than 1.0) we'll get 1.
1632     expansion_region_num = (uint) ceil(expansion_region_num_d);
1633   } else {
1634     assert(expansion_region_num == 0, "sanity");
1635   }
1636   _young_list_max_length = _young_list_target_length + expansion_region_num;
1637   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1638 }
1639 
1640 // Calculates survivor space parameters.
1641 void G1CollectorPolicy::update_survivors_policy() {
1642   double max_survivor_regions_d =
1643                  (double) _young_list_target_length / (double) SurvivorRatio;
1644   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1645   // smaller than 1.0) we'll get 1.
1646   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1647 
1648   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1649         HeapRegion::GrainWords * _max_survivor_regions, counters());
1650 }
1651 
1652 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1653   // We actually check whether we are marking here and not if we are in a
1654   // reclamation phase. This means that we will schedule a concurrent mark
1655   // even while we are still in the process of reclaiming memory.
1656   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1657   if (!during_cycle) {
1658     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1659     collector_state()->set_initiate_conc_mark_if_possible(true);
1660     return true;
1661   } else {
1662     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1663     return false;
1664   }
1665 }
1666 
1667 void G1CollectorPolicy::initiate_conc_mark() {
1668   collector_state()->set_during_initial_mark_pause(true);
1669   collector_state()->set_initiate_conc_mark_if_possible(false);
1670 }
1671 
1672 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1673   // We are about to decide on whether this pause will be an
1674   // initial-mark pause.
1675 
1676   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1677   // will set it here if we have to. However, it should be cleared by
1678   // the end of the pause (it's only set for the duration of an
1679   // initial-mark pause).
1680   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1681 
1682   if (collector_state()->initiate_conc_mark_if_possible()) {
1683     // We had noticed on a previous pause that the heap occupancy has
1684     // gone over the initiating threshold and we should start a
1685     // concurrent marking cycle. So we might initiate one.
1686 
1687     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1688       // Initiate a new initial mark if there is no marking or reclamation going on.
1689       initiate_conc_mark();
1690       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1691     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1692       // Initiate a user requested initial mark. An initial mark must be young only
1693       // GC, so the collector state must be updated to reflect this.
1694       collector_state()->set_gcs_are_young(true);
1695       collector_state()->set_last_young_gc(false);
1696 
1697       abort_time_to_mixed_tracking();
1698       initiate_conc_mark();
1699       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1700     } else {
1701       // The concurrent marking thread is still finishing up the
1702       // previous cycle. If we start one right now the two cycles
1703       // overlap. In particular, the concurrent marking thread might
1704       // be in the process of clearing the next marking bitmap (which
1705       // we will use for the next cycle if we start one). Starting a
1706       // cycle now will be bad given that parts of the marking
1707       // information might get cleared by the marking thread. And we
1708       // cannot wait for the marking thread to finish the cycle as it
1709       // periodically yields while clearing the next marking bitmap
1710       // and, if it's in a yield point, it's waiting for us to
1711       // finish. So, at this point we will not start a cycle and we'll
1712       // let the concurrent marking thread complete the last one.
1713       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1714     }
1715   }
1716 }
1717 
1718 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1719   G1CollectedHeap* _g1h;
1720   CSetChooserParUpdater _cset_updater;
1721 
1722 public:
1723   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1724                            uint chunk_size) :
1725     _g1h(G1CollectedHeap::heap()),
1726     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1727 
1728   bool doHeapRegion(HeapRegion* r) {
1729     // Do we have any marking information for this region?
1730     if (r->is_marked()) {
1731       // We will skip any region that's currently used as an old GC
1732       // alloc region (we should not consider those for collection
1733       // before we fill them up).
1734       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1735         _cset_updater.add_region(r);
1736       }
1737     }
1738     return false;
1739   }
1740 };
1741 
1742 class ParKnownGarbageTask: public AbstractGangTask {
1743   CollectionSetChooser* _hrSorted;
1744   uint _chunk_size;
1745   G1CollectedHeap* _g1;
1746   HeapRegionClaimer _hrclaimer;
1747 
1748 public:
1749   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1750       AbstractGangTask("ParKnownGarbageTask"),
1751       _hrSorted(hrSorted), _chunk_size(chunk_size),
1752       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1753 
1754   void work(uint worker_id) {
1755     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1756     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1757   }
1758 };
1759 
1760 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1761   assert(n_workers > 0, "Active gc workers should be greater than 0");
1762   const uint overpartition_factor = 4;
1763   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1764   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1765 }
1766 
1767 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1768   cset_chooser()->clear();
1769 
1770   WorkGang* workers = _g1->workers();
1771   uint n_workers = workers->active_workers();
1772 
1773   uint n_regions = _g1->num_regions();
1774   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1775   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1776   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1777   workers->run_task(&par_known_garbage_task);
1778 
1779   cset_chooser()->sort_regions();
1780 
1781   double end_sec = os::elapsedTime();
1782   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1783   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1784   _prev_collection_pause_end_ms += elapsed_time_ms;
1785 
1786   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1787 }
1788 
1789 // Add the heap region at the head of the non-incremental collection set
1790 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1791   assert(_inc_cset_build_state == Active, "Precondition");
1792   assert(hr->is_old(), "the region should be old");
1793 
1794   assert(!hr->in_collection_set(), "should not already be in the CSet");
1795   _g1->register_old_region_with_cset(hr);
1796   hr->set_next_in_collection_set(_collection_set);
1797   _collection_set = hr;
1798   _collection_set_bytes_used_before += hr->used();
1799   size_t rs_length = hr->rem_set()->occupied();
1800   _recorded_rs_lengths += rs_length;
1801   _old_cset_region_length += 1;
1802 }
1803 
1804 // Initialize the per-collection-set information
1805 void G1CollectorPolicy::start_incremental_cset_building() {
1806   assert(_inc_cset_build_state == Inactive, "Precondition");
1807 
1808   _inc_cset_head = NULL;
1809   _inc_cset_tail = NULL;
1810   _inc_cset_bytes_used_before = 0;
1811 
1812   _inc_cset_max_finger = 0;
1813   _inc_cset_recorded_rs_lengths = 0;
1814   _inc_cset_recorded_rs_lengths_diffs = 0;
1815   _inc_cset_predicted_elapsed_time_ms = 0.0;
1816   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1817   _inc_cset_build_state = Active;
1818 }
1819 
1820 void G1CollectorPolicy::finalize_incremental_cset_building() {
1821   assert(_inc_cset_build_state == Active, "Precondition");
1822   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1823 
1824   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1825   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1826   // that adds a new region to the CSet. Further updates by the
1827   // concurrent refinement thread that samples the young RSet lengths
1828   // are accumulated in the *_diffs fields. Here we add the diffs to
1829   // the "main" fields.
1830 
1831   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1832     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1833   } else {
1834     // This is defensive. The diff should in theory be always positive
1835     // as RSets can only grow between GCs. However, given that we
1836     // sample their size concurrently with other threads updating them
1837     // it's possible that we might get the wrong size back, which
1838     // could make the calculations somewhat inaccurate.
1839     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1840     if (_inc_cset_recorded_rs_lengths >= diffs) {
1841       _inc_cset_recorded_rs_lengths -= diffs;
1842     } else {
1843       _inc_cset_recorded_rs_lengths = 0;
1844     }
1845   }
1846   _inc_cset_predicted_elapsed_time_ms +=
1847                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1848 
1849   _inc_cset_recorded_rs_lengths_diffs = 0;
1850   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1851 }
1852 
1853 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1854   // This routine is used when:
1855   // * adding survivor regions to the incremental cset at the end of an
1856   //   evacuation pause,
1857   // * adding the current allocation region to the incremental cset
1858   //   when it is retired, and
1859   // * updating existing policy information for a region in the
1860   //   incremental cset via young list RSet sampling.
1861   // Therefore this routine may be called at a safepoint by the
1862   // VM thread, or in-between safepoints by mutator threads (when
1863   // retiring the current allocation region) or a concurrent
1864   // refine thread (RSet sampling).
1865 
1866   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1867   size_t used_bytes = hr->used();
1868   _inc_cset_recorded_rs_lengths += rs_length;
1869   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1870   _inc_cset_bytes_used_before += used_bytes;
1871 
1872   // Cache the values we have added to the aggregated information
1873   // in the heap region in case we have to remove this region from
1874   // the incremental collection set, or it is updated by the
1875   // rset sampling code
1876   hr->set_recorded_rs_length(rs_length);
1877   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1878 }
1879 
1880 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1881                                                      size_t new_rs_length) {
1882   // Update the CSet information that is dependent on the new RS length
1883   assert(hr->is_young(), "Precondition");
1884   assert(!SafepointSynchronize::is_at_safepoint(),
1885                                                "should not be at a safepoint");
1886 
1887   // We could have updated _inc_cset_recorded_rs_lengths and
1888   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1889   // that atomically, as this code is executed by a concurrent
1890   // refinement thread, potentially concurrently with a mutator thread
1891   // allocating a new region and also updating the same fields. To
1892   // avoid the atomic operations we accumulate these updates on two
1893   // separate fields (*_diffs) and we'll just add them to the "main"
1894   // fields at the start of a GC.
1895 
1896   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1897   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1898   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1899 
1900   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1901   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1902   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1903   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1904 
1905   hr->set_recorded_rs_length(new_rs_length);
1906   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1907 }
1908 
1909 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1910   assert(hr->is_young(), "invariant");
1911   assert(hr->young_index_in_cset() > -1, "should have already been set");
1912   assert(_inc_cset_build_state == Active, "Precondition");
1913 
1914   // We need to clear and set the cached recorded/cached collection set
1915   // information in the heap region here (before the region gets added
1916   // to the collection set). An individual heap region's cached values
1917   // are calculated, aggregated with the policy collection set info,
1918   // and cached in the heap region here (initially) and (subsequently)
1919   // by the Young List sampling code.
1920 
1921   size_t rs_length = hr->rem_set()->occupied();
1922   add_to_incremental_cset_info(hr, rs_length);
1923 
1924   HeapWord* hr_end = hr->end();
1925   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1926 
1927   assert(!hr->in_collection_set(), "invariant");
1928   _g1->register_young_region_with_cset(hr);
1929   assert(hr->next_in_collection_set() == NULL, "invariant");
1930 }
1931 
1932 // Add the region at the RHS of the incremental cset
1933 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1934   // We should only ever be appending survivors at the end of a pause
1935   assert(hr->is_survivor(), "Logic");
1936 
1937   // Do the 'common' stuff
1938   add_region_to_incremental_cset_common(hr);
1939 
1940   // Now add the region at the right hand side
1941   if (_inc_cset_tail == NULL) {
1942     assert(_inc_cset_head == NULL, "invariant");
1943     _inc_cset_head = hr;
1944   } else {
1945     _inc_cset_tail->set_next_in_collection_set(hr);
1946   }
1947   _inc_cset_tail = hr;
1948 }
1949 
1950 // Add the region to the LHS of the incremental cset
1951 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1952   // Survivors should be added to the RHS at the end of a pause
1953   assert(hr->is_eden(), "Logic");
1954 
1955   // Do the 'common' stuff
1956   add_region_to_incremental_cset_common(hr);
1957 
1958   // Add the region at the left hand side
1959   hr->set_next_in_collection_set(_inc_cset_head);
1960   if (_inc_cset_head == NULL) {
1961     assert(_inc_cset_tail == NULL, "Invariant");
1962     _inc_cset_tail = hr;
1963   }
1964   _inc_cset_head = hr;
1965 }
1966 
1967 #ifndef PRODUCT
1968 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1969   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1970 
1971   st->print_cr("\nCollection_set:");
1972   HeapRegion* csr = list_head;
1973   while (csr != NULL) {
1974     HeapRegion* next = csr->next_in_collection_set();
1975     assert(csr->in_collection_set(), "bad CS");
1976     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1977                  HR_FORMAT_PARAMS(csr),
1978                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1979                  csr->age_in_surv_rate_group_cond());
1980     csr = next;
1981   }
1982 }
1983 #endif // !PRODUCT
1984 
1985 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1986   // Returns the given amount of reclaimable bytes (that represents
1987   // the amount of reclaimable space still to be collected) as a
1988   // percentage of the current heap capacity.
1989   size_t capacity_bytes = _g1->capacity();
1990   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1991 }
1992 
1993 void G1CollectorPolicy::maybe_start_marking() {
1994   if (need_to_start_conc_mark("end of GC")) {
1995     // Note: this might have already been set, if during the last
1996     // pause we decided to start a cycle but at the beginning of
1997     // this pause we decided to postpone it. That's OK.
1998     collector_state()->set_initiate_conc_mark_if_possible(true);
1999   }
2000 }
2001 
2002 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
2003   assert(!collector_state()->full_collection(), "must be");
2004   if (collector_state()->during_initial_mark_pause()) {
2005     assert(collector_state()->last_gc_was_young(), "must be");
2006     assert(!collector_state()->last_young_gc(), "must be");
2007     return InitialMarkGC;
2008   } else if (collector_state()->last_young_gc()) {
2009     assert(!collector_state()->during_initial_mark_pause(), "must be");
2010     assert(collector_state()->last_gc_was_young(), "must be");
2011     return LastYoungGC;
2012   } else if (!collector_state()->last_gc_was_young()) {
2013     assert(!collector_state()->during_initial_mark_pause(), "must be");
2014     assert(!collector_state()->last_young_gc(), "must be");
2015     return MixedGC;
2016   } else {
2017     assert(collector_state()->last_gc_was_young(), "must be");
2018     assert(!collector_state()->during_initial_mark_pause(), "must be");
2019     assert(!collector_state()->last_young_gc(), "must be");
2020     return YoungOnlyGC;
2021   }
2022 }
2023 
2024 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
2025   // Manage the MMU tracker. For some reason it ignores Full GCs.
2026   if (kind != FullGC) {
2027     _mmu_tracker->add_pause(start, end);
2028   }
2029   // Manage the mutator time tracking from initial mark to first mixed gc.
2030   switch (kind) {
2031     case FullGC:
2032       abort_time_to_mixed_tracking();
2033       break;
2034     case Cleanup:
2035     case Remark:
2036     case YoungOnlyGC:
2037     case LastYoungGC:
2038       _initial_mark_to_mixed.add_pause(end - start);
2039       break;
2040     case InitialMarkGC:
2041       _initial_mark_to_mixed.record_initial_mark_end(end);
2042       break;
2043     case MixedGC:
2044       _initial_mark_to_mixed.record_mixed_gc_start(start);
2045       break;
2046     default:
2047       ShouldNotReachHere();
2048   }
2049 }
2050 
2051 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
2052   _initial_mark_to_mixed.reset();
2053 }
2054 
2055 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2056                                                 const char* false_action_str) const {
2057   if (cset_chooser()->is_empty()) {
2058     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
2059     return false;
2060   }
2061 
2062   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
2063   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2064   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2065   double threshold = (double) G1HeapWastePercent;
2066   if (reclaimable_perc <= threshold) {
2067     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2068                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2069     return false;
2070   }
2071   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2072                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2073   return true;
2074 }
2075 
2076 uint G1CollectorPolicy::calc_min_old_cset_length() const {
2077   // The min old CSet region bound is based on the maximum desired
2078   // number of mixed GCs after a cycle. I.e., even if some old regions
2079   // look expensive, we should add them to the CSet anyway to make
2080   // sure we go through the available old regions in no more than the
2081   // maximum desired number of mixed GCs.
2082   //
2083   // The calculation is based on the number of marked regions we added
2084   // to the CSet chooser in the first place, not how many remain, so
2085   // that the result is the same during all mixed GCs that follow a cycle.
2086 
2087   const size_t region_num = (size_t) cset_chooser()->length();
2088   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
2089   size_t result = region_num / gc_num;
2090   // emulate ceiling
2091   if (result * gc_num < region_num) {
2092     result += 1;
2093   }
2094   return (uint) result;
2095 }
2096 
2097 uint G1CollectorPolicy::calc_max_old_cset_length() const {
2098   // The max old CSet region bound is based on the threshold expressed
2099   // as a percentage of the heap size. I.e., it should bound the
2100   // number of old regions added to the CSet irrespective of how many
2101   // of them are available.
2102 
2103   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
2104   const size_t region_num = g1h->num_regions();
2105   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
2106   size_t result = region_num * perc / 100;
2107   // emulate ceiling
2108   if (100 * result < region_num * perc) {
2109     result += 1;
2110   }
2111   return (uint) result;
2112 }
2113 
2114 
2115 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2116   double young_start_time_sec = os::elapsedTime();
2117 
2118   YoungList* young_list = _g1->young_list();
2119   finalize_incremental_cset_building();
2120 
2121   guarantee(target_pause_time_ms > 0.0,
2122             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2123   guarantee(_collection_set == NULL, "Precondition");
2124 
2125   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2126   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2127 
2128   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
2129                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2130 
2131   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2132 
2133   if (collector_state()->last_gc_was_young()) {
2134     _trace_young_gen_time_data.increment_young_collection_count();
2135   } else {
2136     _trace_young_gen_time_data.increment_mixed_collection_count();
2137   }
2138 
2139   // The young list is laid with the survivor regions from the previous
2140   // pause are appended to the RHS of the young list, i.e.
2141   //   [Newly Young Regions ++ Survivors from last pause].
2142 
2143   uint survivor_region_length = young_list->survivor_length();
2144   uint eden_region_length = young_list->eden_length();
2145   init_cset_region_lengths(eden_region_length, survivor_region_length);
2146 
2147   HeapRegion* hr = young_list->first_survivor_region();
2148   while (hr != NULL) {
2149     assert(hr->is_survivor(), "badly formed young list");
2150     // There is a convention that all the young regions in the CSet
2151     // are tagged as "eden", so we do this for the survivors here. We
2152     // use the special set_eden_pre_gc() as it doesn't check that the
2153     // region is free (which is not the case here).
2154     hr->set_eden_pre_gc();
2155     hr = hr->get_next_young_region();
2156   }
2157 
2158   // Clear the fields that point to the survivor list - they are all young now.
2159   young_list->clear_survivors();
2160 
2161   _collection_set = _inc_cset_head;
2162   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2163   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2164 
2165   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
2166                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);
2167 
2168   // The number of recorded young regions is the incremental
2169   // collection set's current size
2170   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2171 
2172   double young_end_time_sec = os::elapsedTime();
2173   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2174 
2175   return time_remaining_ms;
2176 }
2177 
2178 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2179   double non_young_start_time_sec = os::elapsedTime();
2180   double predicted_old_time_ms = 0.0;
2181 
2182 
2183   if (!collector_state()->gcs_are_young()) {
2184     cset_chooser()->verify();
2185     const uint min_old_cset_length = calc_min_old_cset_length();
2186     const uint max_old_cset_length = calc_max_old_cset_length();
2187 
2188     uint expensive_region_num = 0;
2189     bool check_time_remaining = adaptive_young_list_length();
2190 
2191     HeapRegion* hr = cset_chooser()->peek();
2192     while (hr != NULL) {
2193       if (old_cset_region_length() >= max_old_cset_length) {
2194         // Added maximum number of old regions to the CSet.
2195         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
2196                                   old_cset_region_length(), max_old_cset_length);
2197         break;
2198       }
2199 
2200 
2201       // Stop adding regions if the remaining reclaimable space is
2202       // not above G1HeapWastePercent.
2203       size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2204       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2205       double threshold = (double) G1HeapWastePercent;
2206       if (reclaimable_perc <= threshold) {
2207         // We've added enough old regions that the amount of uncollected
2208         // reclaimable space is at or below the waste threshold. Stop
2209         // adding old regions to the CSet.
2210         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2211                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2212                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2213         break;
2214       }
2215 
2216       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2217       if (check_time_remaining) {
2218         if (predicted_time_ms > time_remaining_ms) {
2219           // Too expensive for the current CSet.
2220 
2221           if (old_cset_region_length() >= min_old_cset_length) {
2222             // We have added the minimum number of old regions to the CSet,
2223             // we are done with this CSet.
2224             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2225                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2226                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);
2227             break;
2228           }
2229 
2230           // We'll add it anyway given that we haven't reached the
2231           // minimum number of old regions.
2232           expensive_region_num += 1;
2233         }
2234       } else {
2235         if (old_cset_region_length() >= min_old_cset_length) {
2236           // In the non-auto-tuning case, we'll finish adding regions
2237           // to the CSet if we reach the minimum.
2238 
2239           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
2240                                     old_cset_region_length(), min_old_cset_length);
2241           break;
2242         }
2243       }
2244 
2245       // We will add this region to the CSet.
2246       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2247       predicted_old_time_ms += predicted_time_ms;
2248       cset_chooser()->pop(); // already have region via peek()
2249       _g1->old_set_remove(hr);
2250       add_old_region_to_cset(hr);
2251 
2252       hr = cset_chooser()->peek();
2253     }
2254     if (hr == NULL) {
2255       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
2256     }
2257 
2258     if (expensive_region_num > 0) {
2259       // We print the information once here at the end, predicated on
2260       // whether we added any apparently expensive regions or not, to
2261       // avoid generating output per region.
2262       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2263                                 "old %u regions, expensive: %u regions, min %u regions, remaining time: %1.2fms",
2264                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
2265     }
2266 
2267     cset_chooser()->verify();
2268   }
2269 
2270   stop_incremental_cset_building();
2271 
2272   log_debug(gc, ergo, cset)("Finish choosing CSet. old %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2273                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);
2274 
2275   double non_young_end_time_sec = os::elapsedTime();
2276   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2277 }
2278 
2279 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2280   if(TraceYoungGenTime) {
2281     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2282   }
2283 }
2284 
2285 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2286   if(TraceYoungGenTime) {
2287     _all_yield_times_ms.add(yield_time_ms);
2288   }
2289 }
2290 
2291 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2292   if(TraceYoungGenTime) {
2293     _total.add(pause_time_ms);
2294     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2295     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2296     _parallel.add(phase_times->cur_collection_par_time_ms());
2297     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2298     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2299     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2300     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2301     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2302     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2303 
2304     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2305       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2306       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2307       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2308       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2309       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2310 
2311     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2312     _parallel_other.add(parallel_other_time);
2313     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2314   }
2315 }
2316 
2317 void TraceYoungGenTimeData::increment_young_collection_count() {
2318   if(TraceYoungGenTime) {
2319     ++_young_pause_num;
2320   }
2321 }
2322 
2323 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2324   if(TraceYoungGenTime) {
2325     ++_mixed_pause_num;
2326   }
2327 }
2328 
2329 void TraceYoungGenTimeData::print_summary(const char* str,
2330                                           const NumberSeq* seq) const {
2331   double sum = seq->sum();
2332   tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2333                 str, sum / 1000.0, seq->avg());
2334 }
2335 
2336 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2337                                              const NumberSeq* seq) const {
2338   print_summary(str, seq);
2339   tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2340                 "(num", seq->num(), seq->sd(), seq->maximum());
2341 }
2342 
2343 void TraceYoungGenTimeData::print() const {
2344   if (!TraceYoungGenTime) {
2345     return;
2346   }
2347 
2348   tty->print_cr("ALL PAUSES");
2349   print_summary_sd("   Total", &_total);
2350   tty->cr();
2351   tty->cr();
2352   tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2353   tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2354   tty->cr();
2355 
2356   tty->print_cr("EVACUATION PAUSES");
2357 
2358   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2359     tty->print_cr("none");
2360   } else {
2361     print_summary_sd("   Evacuation Pauses", &_total);
2362     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2363     print_summary("      Parallel Time", &_parallel);
2364     print_summary("         Ext Root Scanning", &_ext_root_scan);
2365     print_summary("         SATB Filtering", &_satb_filtering);
2366     print_summary("         Update RS", &_update_rs);
2367     print_summary("         Scan RS", &_scan_rs);
2368     print_summary("         Object Copy", &_obj_copy);
2369     print_summary("         Termination", &_termination);
2370     print_summary("         Parallel Other", &_parallel_other);
2371     print_summary("      Clear CT", &_clear_ct);
2372     print_summary("      Other", &_other);
2373   }
2374   tty->cr();
2375 
2376   tty->print_cr("MISC");
2377   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2378   print_summary_sd("   Yields", &_all_yield_times_ms);
2379 }
2380 
2381 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2382   if (TraceOldGenTime) {
2383     _all_full_gc_times.add(full_gc_time_ms);
2384   }
2385 }
2386 
2387 void TraceOldGenTimeData::print() const {
2388   if (!TraceOldGenTime) {
2389     return;
2390   }
2391 
2392   if (_all_full_gc_times.num() > 0) {
2393     tty->print("\n%4d full_gcs: total time = %8.2f s",
2394       _all_full_gc_times.num(),
2395       _all_full_gc_times.sum() / 1000.0);
2396     tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2397     tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2398       _all_full_gc_times.sd(),
2399       _all_full_gc_times.maximum());
2400   }
2401 }