1 /*
   2  * Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1AllocRegion.inline.hpp"
  27 #include "gc/g1/g1EvacStats.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "runtime/orderAccess.inline.hpp"
  30 
  31 G1CollectedHeap* G1AllocRegion::_g1h = NULL;
  32 HeapRegion* G1AllocRegion::_dummy_region = NULL;
  33 
  34 void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) {
  35   assert(_dummy_region == NULL, "should be set once");
  36   assert(dummy_region != NULL, "pre-condition");
  37   assert(dummy_region->free() == 0, "pre-condition");
  38 
  39   // Make sure that any allocation attempt on this region will fail
  40   // and will not trigger any asserts.
  41   assert(allocate(dummy_region, 1, false) == NULL, "should fail");
  42   assert(par_allocate(dummy_region, 1, false) == NULL, "should fail");
  43   assert(allocate(dummy_region, 1, true) == NULL, "should fail");
  44   assert(par_allocate(dummy_region, 1, true) == NULL, "should fail");
  45 
  46   _g1h = g1h;
  47   _dummy_region = dummy_region;
  48 }
  49 
  50 size_t G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region,
  51                                               bool bot_updates) {
  52   assert(alloc_region != NULL && alloc_region != _dummy_region,
  53          "pre-condition");
  54   size_t result = 0;
  55 
  56   // Other threads might still be trying to allocate using a CAS out
  57   // of the region we are trying to retire, as they can do so without
  58   // holding the lock. So, we first have to make sure that noone else
  59   // can allocate out of it by doing a maximal allocation. Even if our
  60   // CAS attempt fails a few times, we'll succeed sooner or later
  61   // given that failed CAS attempts mean that the region is getting
  62   // closed to being full.
  63   size_t free_word_size = alloc_region->free() / HeapWordSize;
  64 
  65   // This is the minimum free chunk we can turn into a dummy
  66   // object. If the free space falls below this, then noone can
  67   // allocate in this region anyway (all allocation requests will be
  68   // of a size larger than this) so we won't have to perform the dummy
  69   // allocation.
  70   size_t min_word_size_to_fill = CollectedHeap::min_fill_size();
  71 
  72   while (free_word_size >= min_word_size_to_fill) {
  73     HeapWord* dummy = par_allocate(alloc_region, free_word_size, bot_updates);
  74     if (dummy != NULL) {
  75       // If the allocation was successful we should fill in the space.
  76       CollectedHeap::fill_with_object(dummy, free_word_size);
  77       alloc_region->set_pre_dummy_top(dummy);
  78       result += free_word_size * HeapWordSize;
  79       break;
  80     }
  81 
  82     free_word_size = alloc_region->free() / HeapWordSize;
  83     // It's also possible that someone else beats us to the
  84     // allocation and they fill up the region. In that case, we can
  85     // just get out of the loop.
  86   }
  87   result += alloc_region->free();
  88 
  89   assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill,
  90          "post-condition");
  91   return result;
  92 }
  93 
  94 size_t G1AllocRegion::retire(bool fill_up) {
  95   assert_alloc_region(_alloc_region != NULL, "not initialized properly");
  96 
  97   size_t result = 0;
  98 
  99   trace("retiring");
 100   HeapRegion* alloc_region = _alloc_region;
 101   if (alloc_region != _dummy_region) {
 102     // We never have to check whether the active region is empty or not,
 103     // and potentially free it if it is, given that it's guaranteed that
 104     // it will never be empty.
 105     assert_alloc_region(!alloc_region->is_empty(),
 106                            "the alloc region should never be empty");
 107 
 108     if (fill_up) {
 109       result = fill_up_remaining_space(alloc_region, _bot_updates);
 110     }
 111 
 112     assert_alloc_region(alloc_region->used() >= _used_bytes_before, "invariant");
 113     size_t allocated_bytes = alloc_region->used() - _used_bytes_before;
 114     retire_region(alloc_region, allocated_bytes);
 115     _used_bytes_before = 0;
 116     _alloc_region = _dummy_region;
 117   }
 118   trace("retired");
 119 
 120   return result;
 121 }
 122 
 123 HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size,
 124                                                        bool force) {
 125   assert_alloc_region(_alloc_region == _dummy_region, "pre-condition");
 126   assert_alloc_region(_used_bytes_before == 0, "pre-condition");
 127 
 128   trace("attempting region allocation");
 129   HeapRegion* new_alloc_region = allocate_new_region(word_size, force);
 130   if (new_alloc_region != NULL) {
 131     new_alloc_region->reset_pre_dummy_top();
 132     // Need to do this before the allocation
 133     _used_bytes_before = new_alloc_region->used();
 134     HeapWord* result = allocate(new_alloc_region, word_size, _bot_updates);
 135     assert_alloc_region(result != NULL, "the allocation should succeeded");
 136 
 137     OrderAccess::storestore();
 138     // Note that we first perform the allocation and then we store the
 139     // region in _alloc_region. This is the reason why an active region
 140     // can never be empty.
 141     update_alloc_region(new_alloc_region);
 142     trace("region allocation successful");
 143     return result;
 144   } else {
 145     trace("region allocation failed");
 146     return NULL;
 147   }
 148   ShouldNotReachHere();
 149 }
 150 
 151 void G1AllocRegion::init() {
 152   trace("initializing");
 153   assert_alloc_region(_alloc_region == NULL && _used_bytes_before == 0, "pre-condition");
 154   assert_alloc_region(_dummy_region != NULL, "should have been set");
 155   _alloc_region = _dummy_region;
 156   _count = 0;
 157   trace("initialized");
 158 }
 159 
 160 void G1AllocRegion::set(HeapRegion* alloc_region) {
 161   trace("setting");
 162   // We explicitly check that the region is not empty to make sure we
 163   // maintain the "the alloc region cannot be empty" invariant.
 164   assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition");
 165   assert_alloc_region(_alloc_region == _dummy_region &&
 166                          _used_bytes_before == 0 && _count == 0,
 167                          "pre-condition");
 168 
 169   _used_bytes_before = alloc_region->used();
 170   _alloc_region = alloc_region;
 171   _count += 1;
 172   trace("set");
 173 }
 174 
 175 void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) {
 176   trace("update");
 177   // We explicitly check that the region is not empty to make sure we
 178   // maintain the "the alloc region cannot be empty" invariant.
 179   assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition");
 180 
 181   _alloc_region = alloc_region;
 182   _alloc_region->set_allocation_context(allocation_context());
 183   _count += 1;
 184   trace("updated");
 185 }
 186 
 187 HeapRegion* G1AllocRegion::release() {
 188   trace("releasing");
 189   HeapRegion* alloc_region = _alloc_region;
 190   retire(false /* fill_up */);
 191   assert_alloc_region(_alloc_region == _dummy_region, "post-condition of retire()");
 192   _alloc_region = NULL;
 193   trace("released");
 194   return (alloc_region == _dummy_region) ? NULL : alloc_region;
 195 }
 196 
 197 #if G1_ALLOC_REGION_TRACING
 198 void G1AllocRegion::trace(const char* str, size_t min_word_size, size_t desired_word_size, size_t actual_word_size, HeapWord* result) {
 199   // All the calls to trace that set either just the size or the size
 200   // and the result are considered part of level 2 tracing and are
 201   // skipped during level 1 tracing.
 202   if ((actual_word_size == 0 && result == NULL) || (G1_ALLOC_REGION_TRACING > 1)) {
 203     const size_t buffer_length = 128;
 204     char hr_buffer[buffer_length];
 205     char rest_buffer[buffer_length];
 206 
 207     HeapRegion* alloc_region = _alloc_region;
 208     if (alloc_region == NULL) {
 209       jio_snprintf(hr_buffer, buffer_length, "NULL");
 210     } else if (alloc_region == _dummy_region) {
 211       jio_snprintf(hr_buffer, buffer_length, "DUMMY");
 212     } else {
 213       jio_snprintf(hr_buffer, buffer_length,
 214                    HR_FORMAT, HR_FORMAT_PARAMS(alloc_region));
 215     }
 216 
 217     if (G1_ALLOC_REGION_TRACING > 1) {
 218       if (result != NULL) {
 219         jio_snprintf(rest_buffer, buffer_length, "min " SIZE_FORMAT " desired " SIZE_FORMAT " actual " SIZE_FORMAT " " PTR_FORMAT,
 220                      min_word_size, desired_word_size, actual_word_size, result);
 221       } else if (min_word_size != 0) {
 222         jio_snprintf(rest_buffer, buffer_length, "min " SIZE_FORMAT " desired " SIZE_FORMAT, min_word_size, desired_word_size);
 223       } else {
 224         jio_snprintf(rest_buffer, buffer_length, "");
 225       }
 226     } else {
 227       jio_snprintf(rest_buffer, buffer_length, "");
 228     }
 229 
 230     tty->print_cr("[%s] %u %s : %s %s",
 231                   _name, _count, hr_buffer, str, rest_buffer);
 232   }
 233 }
 234 #endif // G1_ALLOC_REGION_TRACING
 235 
 236 G1AllocRegion::G1AllocRegion(const char* name,
 237                              bool bot_updates)
 238   : _name(name), _bot_updates(bot_updates),
 239     _alloc_region(NULL), _count(0), _used_bytes_before(0),
 240     _allocation_context(AllocationContext::system()) { }
 241 
 242 
 243 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
 244                                                     bool force) {
 245   return _g1h->new_mutator_alloc_region(word_size, force);
 246 }
 247 
 248 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
 249                                        size_t allocated_bytes) {
 250   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
 251 }
 252 
 253 HeapRegion* G1GCAllocRegion::allocate_new_region(size_t word_size,
 254                                                  bool force) {
 255   assert(!force, "not supported for GC alloc regions");
 256   return _g1h->new_gc_alloc_region(word_size, count(), _purpose);
 257 }
 258 
 259 void G1GCAllocRegion::retire_region(HeapRegion* alloc_region,
 260                                     size_t allocated_bytes) {
 261   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, _purpose);
 262 }
 263 
 264 size_t G1GCAllocRegion::retire(bool fill_up) {
 265   HeapRegion* retired = get();
 266   size_t end_waste = G1AllocRegion::retire(fill_up);
 267   // Do not count retirement of the dummy allocation region.
 268   if (retired != NULL) {
 269     _stats->add_region_end_waste(end_waste / HeapWordSize);
 270   }
 271   return end_waste;
 272 }
 273 
 274 HeapRegion* OldGCAllocRegion::release() {
 275   HeapRegion* cur = get();
 276   if (cur != NULL) {
 277     // Determine how far we are from the next card boundary. If it is smaller than
 278     // the minimum object size we can allocate into, expand into the next card.
 279     HeapWord* top = cur->top();
 280     HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, BOTConstants::N_bytes);
 281 
 282     size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
 283 
 284     if (to_allocate_words != 0) {
 285       // We are not at a card boundary. Fill up, possibly into the next, taking the
 286       // end of the region and the minimum object size into account.
 287       to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
 288                                MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
 289 
 290       // Skip allocation if there is not enough space to allocate even the smallest
 291       // possible object. In this case this region will not be retained, so the
 292       // original problem cannot occur.
 293       if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
 294         HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
 295         CollectedHeap::fill_with_object(dummy, to_allocate_words);
 296       }
 297     }
 298   }
 299   return G1AllocRegion::release();
 300 }